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Abstract
The k-Clique problem is a canonical hard problem in parameterized complexity. In this paper, we
study the parameterized complexity of approximating the k-Clique problem where an integer k and
a graph G on n vertices are given as input, and the goal is to find a clique of size at least k/F (k)
whenever the graph G has a clique of size k. When such an algorithm runs in time T (k) ·poly(n) (i.e.,
FPT-time) for some computable function T , it is said to be an F (k)-FPT-approximation algorithm
for the k-Clique problem.

Although, the non-existence of an F (k)-FPT-approximation algorithm for any computable
sublinear function F is known under gap-ETH [Chalermsook et al., FOCS 2017], it has remained a
long standing open problem to prove the same inapproximability result under the more standard
and weaker assumption, W[1]̸=FPT.

In a recent breakthrough, Lin [STOC 2021] ruled out constant factor (i.e., F (k) = O(1)) FPT-
approximation algorithms under W[1] ̸=FPT. In this paper, we improve this inapproximability result
(under the same assumption) to rule out every F (k) = k1/H(k) factor FPT-approximation algorithm
for any increasing computable function H (for example H(k) = log∗ k).

Our main technical contribution is introducing list decoding of Hadamard codes over large prime
fields into the proof framework of Lin.
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1 Introduction

In the clique problem (Clique), we are given an undirected graph G on n vertices and an
integer k, and the goal is to decide whether there is a subset of vertices S ⊆ V (G) of size k

such that every two distinct vertices in S share an edge in G. Often regarded as one of the
classical problems in computational complexity, Clique was first shown to be NP-complete in
the seminal work of Karp [38]. Thus, its optimization variant, namely the maximum clique,
where the goal is to find a clique of the largest possible size, is also NP-hard.

To circumvent this apparent intractability of the problem, the study of an approximate
version was initiated. The quality of an approximation algorithm is measured by the
approximation ratio, which is the ratio between the size of the maximum clique and the size
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of the solution output by the algorithm. It is trivial to obtain an n/c factor approximation
algorithm for any constant c ∈ N. The state-of-the-art approximation algorithm is due to
Feige [27] which yields an approximation ratio of O(n(log log n)2/ log3 n). On the opposite
side, Maximum Clique is arguably the first natural combinatorial optimization problem
studied in the context of hardness of approximation; in a seminal work of Feige, Goldwasser,
Lovász, Safra and Szegedy [28], a connection (hereafter referred to as the FGLSS reduction)
was made between interactive proofs and hardness of approximating Clique. The FGLSS
reduction, together with the PCP theorem [3, 2, 20] and gap amplification via randomized
graph products [8], immediately implies nε ratio inapproximability of Clique for some constant
ε > 0 under the assumption that NP ̸⊆ BPP. Following [28], a long line of research on the
inapproximability of Clique [6, 29, 5, 7], culminated in the works of Håstad [36, 35], wherein
it was shown that Clique cannot be approximated to within a factor of n1−ε in polynomial
time unless NP⊆ZPP; this was later derandomized by Zuckerman [57]. Since then, better
inapproximability ratios are known [26, 42, 43], with the best ratio being n/2(log n)3/4+ε for
every ε > 0 (assuming NP ⊈ BPTIME(2(log n)O(1))). Summarizing, our understanding of the
limits of efficient computation of approximating clique in the NP world is almost complete.

Besides approximation, another widely-used technique to cope with NP-hardness is
parameterization. The parameterized version of Clique, which we will refer to simply as
k-Clique, is exactly the same as the original decision version of the problem except that now
we are not looking for a polynomial time algorithm but rather a fixed parameter tractable
(FPT) algorithm – one that runs in time T (k) · poly(n) for some computable function T

(e.g., T (k) = 2k or even 22k ). Such running time will henceforth be referred to as FPT
time. It turns out that even with this relaxed requirement, k-Clique still remains intractable:
in the same work that introduced the W -hierarchy, Downey and Fellows [22] showed that
k-Clique is complete for the class W[1], which is generally believed to not be contained in
FPT, the class of fixed parameter tractable problems. Subsequently, stronger running time
lower bounds have been shown for k-Clique under stronger assumptions. Specifically, Chen
et al. [15] ruled out T (k) · no(k)-time algorithms for k-Clique assuming the Exponential Time
Hypothesis (ETH)1. Note that the trivial algorithm that enumerates through every k-tuple
of vertices, and checks whether it forms a clique, runs in Õ(nk) time. It is possible to speed
up this running time using fast matrix multiplication [52, 25].

Given the strong negative results for k-Clique discussed in the previous paragraph, it is
natural to ask whether one can come up with a fixed parameter approximation (FPT-
approximation) algorithm for k-Clique. The notion of FPT-approximation algorithms
is motivated primarily through the consideration of inputs with small sized optimal
solutions. Case in point, the state-of-the-art polynomial time approximation ratio of
O(n(log log n)2/ log3 n) [27] would be meaningless if the size of the maximum clique (denoted
OPT) was itself O(n(log log n)2/ log3 n), as outputting a single vertex already guarantees an
OPT-approximation ratio. In this case, a bound such as o(OPT) would be more meaningful.
Unfortunately, no approximation ratio of the form o(OPT) is known even when FPT-time
is allowed. We refer the reader to the textbooks [23, 19] for an excellent introduction to
the area. On the other hand, inapproximability results in parameterized complexity aim to
typically rule out algorithms running in FPT time (under the W[1]̸=FPT hypothesis) for
various classes of computable functions F . This brings us to the main question addressed in
our work:

1 ETH [37] states that no subexponential time algorithm can solve 3-SAT.
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Is there an F (k)-FPT-approximation algorithm for k-Clique
for some computable function F which is o(k)?

This question, which dates back to late 1990s (see, e.g., remarks in [24]), has attracted
significant attention in literature and continues to be repeatedly raised in workshops and
surveys on parameterized complexity [16, 51, 18, 12, 55, 17, 40, 30]. This open problem is
even listed2 in the seminal textbook of Downey and Fellows [23].

Early attempts [34, 12] ruled out constant ratio FPT-approximation algorithms for
k-Clique, but under very strong assumptions such as the combination of ETH and the
existence of a linear-size PCP. However, a few years ago, the authors in [14] proved under the
Gap Exponential Time Hypothesis (Gap-ETH)3, that no F (k)-approximation algorithm for
k-Clique exists for any computable function F . Such non-existence of FPT-approximation
algorithms is referred to in literature as the total FPT-inapproximability of k-Clique.

While the result in [14] seems to settle the parameterized complexity of approximating
k-Clique, there are a few disadvantages to their result. First, while Gap-ETH may be
plausible, it is a strong conjecture and in their reduction, the hypothesis does much of
the work in the proof. In particular, Gap-ETH itself already gives the gap in hardness of
approximation; once they have such a gap, it suffices to design gap preserving reductions to
prove other inapproximability results (although some care needs to be taken as they cannot
directly use Raz’s parallel repetition theorem [54] for gap amplification). This is analogous
to the NP-world, where once one inapproximability result can be shown, many others follow
via relatively simple gap-preserving reductions (see, e.g., [53]). However, creating a gap in
the first place requires the PCP Theorem [3, 2, 20], which involves several new technical
ideas such as local checkability and decodability of codes and proof composition. Hence, it
is desirable to bypass Gap-ETH and prove total FPT-inapproximability under a standard
assumption such as W[1]̸=FPT, that does not inherently have a gap.

The last seven years have witnessed many significant inapproximability results in paramet-
erized complexity that are only based on the assumption W[1] ̸=FPT. A key component in all
these works is a gap creating technique. Elaborating, we now have strong inapproximability
results under W[1] ̸=FPT for Set Cover [17, 40, 46, 41], Set Intersection [45, 13], Steiner
Orientation problem [56], and problems in Coding theory and Lattice theory [9]. There have
been even more strong inapproximability results under Gap-ETH proved in these last few
years and we direct the reader to a recent survey [30] on the topic.

Returning to the discussion on the inapproximability of k-Clique, the difficulty in adopting
the techniques from the NP world into parameterized complexity were discussed in many
previous works, such as [16, 45, 17, 30], and it was also widely believed [16] that one needs
to prove a PCP theorem analogue for parameterized complexity4 in order to obtain any
non-trivial inapproximability result for k-clique under the W[1]̸=FPT assumption. Recently,
in a remarkable breakthrough, Lin [47] negated this belief, and designed a different approach
to prove constant ratio inapproximability for the k-Clique problem assuming W[1] ̸=FPT.

2 In [23], the authors list proving hardness of approximation for dominating set as one of the six “most
infamous” open questions in the area of Parameterized Complexity. Immediately, they clairfy that,
“One can ask similarly about an FPT Approximation for Independent Set”. Note that inapproximability
results for independent set problem imply hardness of approximation of k-Clique and vice versa.

3 Gap-ETH [21, 50] is a strengthening of ETH, and states that no subexponential time algorithm can
distinguish satisfiable 3-CNF formulae from ones that are not even (1 − ε)-satisfiable for some ε > 0.

4 One such formulation is called the Parameterized Inapproximability Hypothesis (PIH) and was putforth
by [49]. See Section 5 for a small discussion on PIH.
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Lin’s proof framework is briefly described in Section 1.1, but even given the result of [47],
one remains very far from proving the total FPT-inapproximability of k-Clique. Thus, our
result stated below, is a significant improvement over Lin’s result.

▶ Theorem 1 (Almost Polynomial Factor Inapproximability of k-Clique). Let H : N → N be an
increasing5 computable function such that ∀k ∈ N, we have H(k) ⩽ k. Given as input an
integer k and a graph G on n vertices, it is W[1]-hard parameterized by k (under randomized
reductions), to distinguish between the following two cases:
Completeness: G has a clique of size k.
Soundness: G does not have a clique of size k/k1/H(k).

For example, if we plug in H(k) = log log k in our theorem, we obtain k1/ log log k =
ω(polylog k) ratio inapproximability of k-Clique. In fact, if we susbstitute H in the theorem
statement with a very slowly growing function, then we almost obtain polynomial ratio
inapproximability of k-Clique. We reiterate again that the only comparable result to the
above theorem, is by Lin [47], who ruled out constant ratio (i.e., H(k) = O(log k)) FPT-
approximation algorithms.

Our result also rules out k1/H(k) ratio FPT-approximation algorithms for the k-
Independent Set problem by using the well-known connection to the k-Clique problem.

We remark here that independent of our work, in [48], the authors assuming ETH, rule
out FPT algorithms for approximating k-clique to the same hardness of approximation
factors as in Theorem 1. Note that W [1] ̸= FPT is a weaker assumption than ETH as the
latter is known to imply the former [15].

1.1 Proof Overview
In this subsection, we provide a proof overview of Theorem 1. In order to motivate our proof
framework and ideas, we first describe a wishful thinking reduction to gap k-Clique, and
then describe Lin’s framework, and finally provide the details of our techniques.

From PIH to gap k-Clique

Suppose, our starting point was a gap 2-CSP6 instance φ on k variables and alphabet [n], which
is either completely satisfiable (i.e., there exists an assignment that satisfies all the constraints)
or every assignment to the variables violates at least 1% of the constraints. Furthermore,
suppose that it was W[1]-hard, parameterized by k, to decide φ. This assumption is known
as PIH and it was believed [16] that we need to first prove PIH in order to prove the hardness
of gap k-Clique. Applying the well-known FGLSS reduction to φ, we obtain a graph in which
finding a clique which is larger than 99% of the maximum clique size is W[1]-hard. Of course,
the big problem with this reduction is that we do not know if PIH is true.

Lin’s Framework

In [47], the author circumvents proving PIH, and instead makes the following surprising
observation. Let φ be a 2-CSP instance where the variable set is thought of as {0, 1}k, and
the constraints are only between a pair of points that differ on one coordinate. We call a

5 A function H : N → N is said to be increasing if for all k ∈ N we have H(k + 1) ⩾ H(k), and
lim

k→∞
H(k) = ∞.

6 A t-CSP is a constraint satisfaction problem in which every constraint involves at most t variables.
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constraint to be in direction i ∈ [k] if the constraint is between a pair of points that differ on
the ith coordinate. Suppose we can show that it is W[1]-hard parameterized by t := 2k, to
distinguish between the cases when either φ is satisfiable or when, for every assignment to
{0, 1}k, there exists i ∈ [k], such that 1% of the constraints in the ith direction are violated.
Note that in the soundness case, there is no guarantee that for every assignment, 1% of
the total constraints are violated, in fact, for every assignment we are only guaranteed that
Ω(1/k) fraction of the total constraints are violated. Nevertheless, by applying the FGLSS
reduction to φ, we obtain a gap t-Clique!

Therefore, informally speaking, a wishful version of Lin’s framework comprises of two
steps.

(i) Show W[1]-hardness of deciding 2-CSP on the Boolean hypercube host graph with the
aforementioned soundness property.

(ii) Apply FGLSS reduction to reduce the above 2-CSP to the gap t-Clique problem.

Lin starts from the k-Vector Sum problem, where given k collections of n Boolean vectors
each, the goal is to decide if there are k vectors, one in each collection, that sum to 0⃗. Starting
from the k-Vector Sum problem and by using the local testability and local decodability of
Hadamard codes over F2, he shows the W[1]-hardness of deciding 3-CSP on some variant of
the Boolean hypercube host graph, with the aforementioned soundness property.

However, since we have a CSP of arity three, applying the FGLSS directly becomes tricky,
and he finds a critical modification to the FGLSS reduction, which allows him to reduce
to the gap t-Clique problem. We note that the gap created is between the existence of a
t-clique in the completeness case versus no 0.99t-clique in the soundness case. In order to
rule out FPT-approximation algorithms for all constant ratios, he applies the well-known
technique of graph product, by taking an O(1)-wise product of the hard k-Clique instance
and the size of the graph increases only to nO(1).

Our Framework

We are now ready to describe our proof framework. At a high level, the gap created by Lin
mainly arrives from the distance of the Hadamard code. Since the gap generated by using
Hadamard codes over F2 is at most 1/2, in order to obtain larger gaps, we use Hadamard
codes over Fq, for some large q only depending on k. However, working with Hadamard
codes over Fq in the low acceptance regime, has its own challenges, such as:

First, in Lin’s case, local testability of Hadamard codes in the high acceptance regime is
just the standard BLR Linearity testing [11], which can be used off the shelf. However,
we need to test the Hadamard code in the low acceptance regime over Fq, and thus we
prove results on the list decodability of Hadamard codes over Fq. Such results appear
implicitly in literature, and we make them explicit through our Theorems 4 and 5.
Second, because we deal with list decoding instead of standard decoding, all the rela-
tionships in our proofs have some “noise” and therefore the arguments in our soundness
analysis of Theorem 1 are very intricate.

We have described above, the challenges that we had to address to prove Theorem 1 over
the result of [47]. Next, we sketch the outline of our proof.

Our starting point is the same as Lin, i.e., the k-Vector Sum problem, but over Fq. The
W[1]-hardness of the k-Vector Sum problem is known in literature [1], and in fact Lin provides
a short proof in his paper. Then we create a 3-CSP on the variable set Fk

q and alphabet size
[n] with three types of constraints:

CCC 2022



6:6 Almost Polynomial Factor Inapproximability for Parameterized k-Clique

(i) We have 3-arity constraints arising from the 3-query list decoding of Hadamard codes.
These constraints enforce that the assignments satisfying them can themselves be viewed
as a Hadamard codeword. In particular, for every k-tuple of vectors of the k-Vector
Sum instance, our assignment is supposed to be the Hadamard encoding of the sum of
the k-tuple of vectors.

(ii) We have 2-arity constraints arising from a pair of points on any axis parallel line in
Fk

q . The constraints along the ith direction enforce that the ith vector in our k-tuple of
vectors indeed comes from the ith collection in the k-Vector Sum instance.

(iii) We have 2-arity constraints arising from a pair of points on specific lines through the
origin, which enforce that the sum of the k-tuple of vectors is 0⃗.

After constructing this CSP, we build an instance of the t-Clique problem, where t := q2k,
by building a graph on q2k clouds of vertices, where each cloud is an independent set
containing one vertex for each triple (x, y, x + y) ∈ [n] × [n] × [n]. Each cloud represents
a pair of variables of our CSP, which are the queries to the linearity test. The satisfying
pairs of the alphabet set of the constraints in items (ii) and (iii) appear directly as edges in
the graph. Since every variable appear in multiple clouds of vertices, we only put an edge
between pairs of vertices that are “consisitent” on their assigment to a variable.

Unlike [47], we do not analyze the reduction from k-Vector Sum problem to the 3-CSP
and from the 3-CSP to the t-Clique problem, in two separate steps, but rather we analyze
the instance of the t-Clique directly with respect to the k-Vector Sum problem, and this
helps us keep the analysis clean and succinct. A more detailed overview of this reduction
and analysis is given in Section 4.2.

1.2 Organization of Paper

The paper is organized as follows. First, in Section 2 we define the k-Vector Sum problem
and state its known hardness result. Then, in Section 3 we prove linearity testing result in
the low soundness regime (a.k.a. list decoding of Hadamard code) over fields of large prime
order. Next, in Section 4 we prove our main result, i.e., Theorem 1. Finally, in Section 5 we
highlight a couple of important open problems.

2 Preliminaries

First, we define the notion of relative Hamming distance that is used throughout this paper.
Let q be a prime power and n ∈ N. For any two vectors x, y ∈ Fd

q we define its relative
Hamming distance, denoted ∥x − y∥, as the fraction of coordinates in [d] in which x and y

differ, i.e.,

∥x − y∥ := |{i ∈ [d] : xi ̸= yi}|
d

.

Next, we define the k-Vector Sum problem and state its known W[1]-hardness result.

▶ Definition 2 (k-Vector Sum). Let q be a prime. Given k sets U1, . . . , Uk of vectors in Fm
q ,

the goal of k-vector-sum problem is to decide whether there exist u⃗1 ∈ U1, . . . , u⃗k ∈ Uk such
that

∑
i∈[k] u⃗i = 0⃗.
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It is known that the above problem is W[1]-hard over finite fields [1]. We direct the reader
to [47] for a short proof7.

▶ Theorem 3 ([1, 47]). For every prime q (independent of n), k-Vector-Sum over Fq and
m = Θ(k2 log n) is W [1]-hard parameterized by k.

3 Low Soundness Linearity Testing over Large Characteristic Fields

In this section, we prove a linearity testing result which is a key technical component in
proving our inapproximability result.

Let q be a prime number and d, ℓ ∈ N. Given a function f : Fd
q → Fℓ

q, consider the
following test T . Pick α⃗, β⃗ ∈ Fd

q uniformly and independently at random. Accept if
f(α⃗) + f(β⃗) = f(α⃗ + β⃗) and reject otherwise. Further, we define Sf,T ⊆ Fd

q × Fd
q as follows:

Sf,T := {(α⃗, β⃗) ∈ Fd
q × Fd

q : f(α⃗) + f(β⃗) = f(α⃗ + β⃗)}.

Furthermore, we define var(f, T ) ⊆ Fd
q as follows:

var(f, T ) := {α⃗ ∈ Fd
q : ∃β⃗ ∈ Fd

q such that (α⃗, β⃗) ∈ Sf,T }.

We say that a function c : Fd
q → Fℓ

q is linear if for all α⃗, β⃗ ∈ Fd
q we have c(α⃗)+c(β⃗) = c(α⃗+β⃗).

Moreover, we say that a function f : Fd
q → Fℓ

q is scalar respecting if for all α⃗ ∈ Fd
q and all

γ ∈ Fq we have f(γ · α⃗) = γ · f(α⃗).
We prove below a couple of theorems in the flavor of the many list-decoding results known

in literature for Hadamard codes [31, 32, 33].

▶ Theorem 4 (Linearity Testing). Let q be a prime number and d ∈ N. Let f : Fd
q → Fq

be a scalar respecting function. Let ε, δ > 0 be parameters such that ε ≫ δ ≫ 1
q1/3 . If f

passes T with probability ε, then there exists an integer r = O(1/δ2) and linear functions
c1, . . . , cr : Fd

q → Fq, such that the following holds.

Pr
(α⃗,β⃗)∼Sf,T

[
∃ unique j ∈ [r] such that f(α⃗) = cj(α⃗), f(β⃗) = cj(β⃗)

]
⩾ 1 − O

(
δ

ε

)
.

The proof of the above theorem follows by combining known ideas in literature, more
precisely, we combine the arguments made in [4] and [44] to obtain the theorem. We include
a proof of the above theorem in the full version [39], for the sake of completeness.

Next, we extend the above theorem to functions from Fd
q to Fℓ

q for any ℓ ∈ N by using
the above theorem as a blackbox result. The proof is deferred to the full version [39].

▶ Theorem 5 (Piecing Together). Let q be a prime number and d, ℓ ∈ N. Let f : Fd
q → Fℓ

q be
a scalar respecting function. Let ε, τ > 0 be parameters such that τ ⩾ ε ≫ 1

q1/3 . If f passes
T with probability ε, then there exists a linear function c : Fd

q → Fℓ
q, such that the following

holds.

Pr
α⃗∼var(f,T )

[∥f(α⃗) − c(α⃗)∥ ⩽ τ ] ⩾ ε2

3 .

7 The proof in [47] is over F2 but it is easy to see that their reduction generalizes to fields of larger
characteristic. Also, they prove the hardness result for a version of k-Vector Sum where a target vector
is given as input, but that version reduces to the version given in this paper by simply including an
extra collection containing only the negative of the target vector.

CCC 2022



6:8 Almost Polynomial Factor Inapproximability for Parameterized k-Clique

4 Almost Polynomial Factor FPT Inapproximability of k-Clique

In this section we prove Theorem 1. More precisely, we prove the following.

▶ Theorem 6. Let P be the set of all prime numbers. For every increasing computable
function F : N → N , there exists computable functions Λ : N → N and q̂ : N → P such that
the following holds. For every fixed parameter k ∈ N, there is a randomized reduction running
in Λ(k)O(1) · poly(n) time which given an instance (U1, U2, . . . , Uk) of k-vector sum as input,
where for all i ∈ [k] we have that Ui is a collection of n vectors in FO(k2 log n)

q̂(k) , outputs a
graph G such that the following holds.
Completeness: If there exist u⃗1 ∈ U1, . . . , u⃗k ∈ Uk such that

∑
i∈[k] u⃗i = 0⃗, then, there is a

clique in G of size exactly Λ(k).
Soundness: If for all u⃗1 ∈ U1, . . . , u⃗k ∈ Uk we have that

∑
i∈[k] u⃗i ̸= 0⃗, then, there is no

clique in G of size Λ(k)1− 1
F (Λ(k)) .

Size: The number of vertices in G is at most Λ(k) · poly(n).

The proof of Theorem 1 then follows by invoking the above theorem and noting the
W[1]-hardness of k-Vector Sum problem (Theorem 3).

The proof outline of Theorem 6 in the subsequent subsections is as follows. In Section 4.1
we introduce a few definitions and results which will be useful for the design and analysis of
our reduction. In Section 4.2, we outline a randomized reduction from the k-vector sum to
the Λ(k)-clique problem. In Section 4.3, we prove the completeness, soundness, and claims
on the reduction parameters.

4.1 Notations and Definitions
In this subsection we introduce a few definitions and prove some basic results which will
come in handy in the subsequent subsections.

For any finite field F we define the operator ⟨·⟩ : Fd ×Fd → F (for every d ∈ N) as follows.
For all a⃗ := (a1, . . . , ad), b⃗ := (b1, . . . , bd) ∈ Fd we have ⟨⃗a, b⃗⟩ =

∑
i∈[d] (ai · bi), where the

sum is over F.
Next, we define an operator M which mimics matrix multiplication but by treating the

matrices as vectors. Formally, for any field F and t, d ∈ N, we define M : Fd × Ft·d → Ft

as follows. For all a⃗ ∈ Fd, b⃗ := (⃗b1, . . . , b⃗t) ∈ Ft·d (where b⃗i ∈ Fd for all i ∈ [t]) we have:
M(⃗a, b⃗) :=

(
⟨⃗a, b⃗1⟩, . . . , ⟨⃗a, b⃗t⟩

)
.

We now define a linear transformation g that will be useful later on. Let k ∈ N and q ∈ P.
Let B ⊆ Fm

q , where m = Θ(k2 log n) and |B| = n. Let ℓ := 12 logq n. In the next subsection,
we will fix k, set q to be a prime depending on k, and use the notations m and ℓ as specified
here.

Select ℓ matrices A1, A2, . . . , Aℓ ∈ Fk×m
q uniformly and independently at random. For

every b⃗ ∈ Fm
q , let g(⃗b) := (A1⃗b, · · · , Aℓ⃗b) ∈ Fk·ℓ

q .
Let B̃r ⊆ Fm

q be the r-sumset of B, i.e.,

B̃r :=

∑
i∈[r]

γi · b⃗i

∣∣∣∣γ1, . . . , γr ∈ Fq, and b⃗1, . . . , b⃗r ∈ B

 .

We next show that if q is large but only a function of k (independent of n), then with
very high probability, the relative Hamming weight of the images of all vectors in B̃k under
g is high.
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▶ Proposition 7. Suppose q > 212k but q = Ok(1). Then with probability at least 1 − Ok(1)
nk ,

for every b⃗ ∈ B̃k \ {⃗0}, we have that ∥g(⃗b)∥ ⩾ 2/3.

Proof. For every i ∈ [ℓ], let a⃗1
i , . . . , a⃗k

i ∈ Fm
q be the row vectors of Ai. Fix b⃗ ∈ B̃k \ {⃗0}. For

any fixed i ∈ [ℓ] and j ∈ [k], we have Pr
[
⟨⃗aj

i , b⃗⟩ ≠ 0
]

= 1 − 1
q , where the probability is over

the selection of the random matrix row a⃗j
i .

Next, the probability that for a fixed b⃗ we have ∥g(⃗b)∥ < 2/3 is upper bounded by the
probability that there exists a subset S ⊆ [ℓ]× [k] of size ℓk/3 such that for every (i, j) ∈ S we
have ⟨⃗aj

i , b⃗⟩ = 0. Therefore, Pr
[
∥g(⃗b)∥ < 2

3

]
⩽
(

ℓk
|S|
)

·q−ℓk/3. By union bound, the probability

that for every b⃗ ∈ B̃k \ {⃗0}, we have ∥g(⃗b)∥ ⩾ 2
3 is at least:

1 − |B̃k| ·
(

ℓk

ℓk/3

)
· q−ℓk/3. (1)

Note that |B̃k| ⩽ (qn)k = Ok(1) · nk,
(

ℓk
ℓk/3

)
⩽ 2ℓk = n12k/ log q < n, and q−ℓk/3 ⩽ n−4k. Thus

we have expression in (1) is lower bounded by 1 − Ok(1)
nk . ◀

We saw above that any two vectors in B disagree on most coordinates under g. We see
below that this continues to hold even when projected to a fixed smaller subspace.

▶ Proposition 8. Suppose q > 212k but q = Ok(1). Then with probability at least 1 − Ok(1)
n ,

for every distinct b⃗1, b⃗2 ∈ B̃2, and linealy independent a⃗1, a⃗2 ∈ Fk
q , we have that∥∥∥M

(
a⃗1, g(⃗b1)

)
− M

(
a⃗2, g(⃗b2)

)∥∥∥ ⩾
1
2 .

Proof. For fixed non-zero a⃗ ∈ Fk
q , i ∈ [ℓ], and any ρ⃗ ∈ Fm

q we have Pr
[⃗
aT Ai = ρ⃗T

]
= 1

qm ,
where the probability is over the selection of the random matrix Ai. Thus, for a fixed non-zero
b⃗ ∈ Fm

q , and any fixed γ ∈ Fq we have

Pr
[
⟨⃗aT Ai, b⃗⟩ = γ

]
= 1

q
. (2)

Next the probability that for fixed distinct b⃗1, b⃗2 ∈ B̃2 \ {⃗0}, and fixed linearly inde-
pendent a⃗1, a⃗2 ∈ Fk

q we have
∥∥∥M

(
a⃗1, g(⃗b1)

)
− M

(
a⃗2, g(⃗b2)

)∥∥∥ < 1
2 is upper bounded by the

probability that there exists a subset S ⊆ [ℓ] of size ℓ/2 such that for every i ∈ S we have
⟨⃗aT

1 Ai, b⃗1⟩ = ⟨⃗aT
2 Ai, b⃗2⟩. However, for a fixed i ∈ S, we have from (2) that

Pr
[
⟨⃗aT

1 Ai, b⃗1⟩ = ⟨⃗aT
2 Ai, b⃗2⟩

]
=
∑
γ∈Fq

Pr
[
⟨⃗aT

1 Ai, b⃗1⟩ = ⟨⃗aT
2 Ai, b⃗2⟩ = γ

]
=
∑
γ∈Fq

1
q2 = 1

q
,

where we used the linear independence of a⃗1 and a⃗2 in the penultimate equality. Therefore
we have,

Pr
[∥∥∥M

(
a⃗1, g(⃗b1)

)
− M

(
a⃗2, g(⃗b2)

)∥∥∥ <
1
2

]
⩽

(
ℓ

|S|

)
· q−ℓ/2.

By union bound, the probability that for every distinct b⃗1, b⃗2 ∈ B̃2 \{⃗0}, and every linearly in-
dependent a⃗1, a⃗2 ∈ Fk

q , we have that the probability that
∥∥∥M

(
a⃗1, g(⃗b1)

)
− M

(
a⃗2, g(⃗b2)

)∥∥∥ ⩾
1
2 is at least:

1 − n4 · q2k ·
(

ℓ

ℓ/2

)
· q−ℓ/2. (3)

Note that
(

ℓ
ℓ/2
)
⩽ 2ℓ = n12/ log q ⩽ n and q−ℓ/2 ⩽ 1/n6. Thus, we have expression in (3) is

lower bounded by 1 − Ok(1)
n .
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Finally, we consider the case that either b⃗1 or b⃗2 is 0⃗. Then the proposition amounts
to proving that for every b⃗ ∈ B̃2 \ {⃗0}, and a⃗ ∈ Fk

q \ {⃗0}, we have that
∥∥∥M

(
a⃗, g(⃗b)

)∥∥∥ ⩾ 1
2 .

For fixed b⃗ ∈ B̃2 \ {⃗0} and a⃗ ∈ Fk
q \ {⃗0} we have the probability that

∥∥∥M
(

a⃗, g(⃗b)
)∥∥∥ < 1

2 is
upper bounded by the probability that there exists a subset S ⊆ [ℓ] of size ℓ/2 such that
for every i ∈ S we have ⟨⃗aT Ai, b⃗⟩ = 0. However, for a fixed i ∈ S, we have from (2) that
this probability is 1/q. Therefore we have, Pr

[∥∥∥M
(

a⃗, g(⃗b)
)∥∥∥ < 1

2

]
⩽
(

ℓ
|S|
)

· q−ℓ/2. By union
bound, and calculations similar to the one done previously, the proof is completed. ◀

4.2 Construction
In this subsection, we provide the reduction from the k-Vector Sum problem to the Λ(k)-Clique
problem.

Fix F : N → N as in the statement of Theorem 6. Without loss of generality, we assume
that F satisfies the following: for all k ∈ N, we have that F (k) ⩽ ⌊ log k

15 ⌋. This is because,
suppose there is an FPT algorithm which can decide if a graph has a clique of size k or no
clique of size k1−1/F (k), then we can use the same algorithm to decide if a graph has a clique
of size k or no clique of size k1−1/F ′(k), where F ′(k) := min

(
F (k), ⌊ log k

15 ⌋
)

.
We define the functions q̂ : N → P and Λ : N → N as follows. For every k ∈ N, we define

q̂(k) as the smallest prime number greater than8 212k. Note that,

F (q̂(k)2k2
) ⩽

⌊
log q̂(k)2k2

15

⌋
⩽

⌊
2k2(12k + 1)

15

⌋
< 2k3, (4)

where we used that q̂(k) < 2 · 212k, which follows from Bertrand’s postulate. For every k ∈ N,
we define Λ(k) := (q̂(k))2k2 .

Fix k ∈ N and let q := q̂(k). Starting from an instance (U1, . . . , Uk) of k-Vector Sum
over Fq (where the vectors are m-dimensional for m = Θ(k2 log n)) we construct a graph
G(V, E) as follows. For all i ∈ [k], let |Ui| = n/k. Let U := U1 ∪ · · · ∪ Uk. Recall that
ℓ = 12 logq n. We next put together Propositions 7 and 8 as follows. We sample9 ℓ matrices
A1, A2, . . . , Aℓ ∈ Fk×m

q uniformly and independently at random and with probability at least
1 − o(1) we have (i) ∀ γ1, . . . , γk ∈ Fq, ∀ (u⃗1, . . . , u⃗k) ∈ U1 × · · · × Uk, if

∑
i∈[k]

γi · u⃗i ̸= 0⃗ then:

∥∥∥∥∥∥g

∑
i∈[k]

γi · u⃗i

∥∥∥∥∥∥ ⩾
2
3 , (5)

and (ii) ∀ i ∈ [k] and for every three vectors u⃗1, u⃗2, u⃗3 ∈ Ui such that u⃗3 − u⃗1 ̸= u⃗2 − u⃗3, and
every linearly independent α⃗, β⃗ ∈ Fk

q we have:∥∥∥M (α⃗, g(u⃗3 − u⃗1)) − M
(

β⃗, g(u⃗2 − u⃗3)
)∥∥∥ ⩾

1
2 . (6)

Now we are ready to construct G. First we define the vertex set V of G:

V :=
{

(α⃗, β⃗, x⃗, y⃗) ∈ Fk2

q × Fk2

q × Fℓ
q × Fℓ

q

∣∣ if α⃗ = β⃗ then x⃗ = y⃗
}

.

8 This lower bound on the choice of q̂(k) is needed as we would like to use Propositions 7 and 8 later in
the section.

9 The usage of these sampled matrices makes our reduction randomized.
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Next, instead of defining the edge set E, we will define the graph through it’s non-edges.
But to do so in a clean way, we need a few additional notations and definitions.

We view every v := (α⃗, β⃗, x⃗, y⃗) ∈ V as a function from {α⃗, β⃗, α⃗ + β⃗} to Fℓ
q where we

define v(α⃗) = x⃗, v(β⃗) = y⃗, and v(α⃗ + β⃗) = x⃗ + y⃗.
For a vertex v = (α⃗, β⃗, x⃗, y⃗) ∈ V , we define var(v) := {α⃗, β⃗, α⃗ + β⃗}. Further, for any set

T ⊆ V , we abuse notation and define var(T ) to be ∪
v∈T

var(v).

Finally, for every v := (α⃗, β⃗, x⃗, y⃗) and v′ := (α⃗′, β⃗′, x⃗′, y⃗′) ∈ V we do not have an edge
between them if and only if at least one of the following conditions hold.
Type 1: α⃗ = α⃗′ and β⃗ = β⃗′.
Type 2: There exists ρ⃗ ∈ var(v) ∩ var(v′) such that v(ρ⃗) ̸= v′(ρ⃗).
Type 3: There exists some γ ∈ Fq such that α⃗ = γ · α⃗′ and x⃗ ̸= γ · x⃗′.
Type 4: There exists some i ∈ [k] and α⃗ ∈ Fk

q , such that

α⃗ − α⃗′ = α⃗ · e⃗i = ( 0⃗, . . . , 0⃗︸ ︷︷ ︸
i−1

coordinates

, α⃗, 0⃗, . . . , 0⃗),

and for all u⃗ ∈ Ui we have M(α⃗, g(u⃗)) ̸= x⃗ − x⃗′. We emphasize here that we think of
each coordinate as a vector in Fk

q .
Type 5: There exists some α⃗ ∈ Fk

q , such that α⃗ − α⃗′ = (α⃗, . . . , α⃗) and x⃗ ̸= x⃗′.

The intuition behind specifying these non-edges is as follows. For every k-tuple of vectors
u⃗ := (u⃗1, . . . , u⃗k) ∈ U1 × · · · × Uk we associate a unique subset of vertices Tu⃗ as follows:

Tu⃗ :=


α⃗ = (α⃗1, . . . , α⃗k), β⃗ = (β⃗1, . . . , β⃗k),

∑
i∈[k]

M(α⃗i, g(u⃗i)),
∑
i∈[k]

M(β⃗i, g(u⃗i))

∣∣∣∣α⃗, β⃗ ∈ Fk2
q

 .

The claim then is that if u⃗1 + · · · + u⃗k = 0⃗ then Tu⃗ is a clique. On the other hand if
u⃗1 + · · · + u⃗k ̸= 0⃗ then the Type 5 non-edges ensure that there is no |Tu⃗|/q1/k sized10 clique
in the graph induced by Tu⃗.

On the other hand if we pick any subset T ′ ⊆ V of size q2k2 in G then one of the first four
types of non-edges ensures that there is no |T ′|/q1/k sized clique in the graph induced by T ′.
In other words, the first four types of non-edges incentivize to pick subset of vertices which
corresponds to Tu⃗ for some u⃗ ∈ U1×· · ·×Uk. Type 1 non-edges incentivize to include only one
vertex in T ′ of the form (α⃗, β⃗, x⃗, y⃗) for every α⃗, β⃗ ∈ Fk2

q . Type 2 non-edges incentivize only to
pick those vertices which are “consistent”, i.e., we can extract an assignment σ : var(T ′) → Fℓ

q

in a consistent manner. Type 3 non-edges are introduced for technical reasons, as we would
like to invoke Theorem 5 in our analysis, i.e., to say that if T ′ contains a large clique, then it
must have some “linear structure”. Equipped with having an assignment σ and some linear
structure, the dearth of Type 4 non-edges enables us to decode a vector u⃗∗

i ∈ Ui such that
T ′ has a large intersection with Tu⃗∗ where u⃗∗ := (u⃗∗

1, . . . , u⃗∗
k) ∈ U1 × · · · × Uk.

In summary, Types 1-4 non-edges ensure that any subset T ⊆ V of size q2k2 in G which
contains a large clique must overlap significantly with Tu⃗ for some u⃗ ∈ U1 × · · · × Uk. Then
the lack of Type 5 non-edges ensure that if T has a large clique then the k-tuple of vectors
represented by u⃗ must sum to 0⃗.

10 In fact, we could claim that if u⃗1 + · · · + u⃗k ̸= 0⃗ then there is no |Tu⃗|/qδ sized clique, for some tiny
δ > 0.
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4.3 Analysis
In this section, we analyze the parameters of the reduction, and prove the completeness and
soundness claims of the theorem statement.

Parameters of the reduction

The new graph has at most |F2k2

q | · |F2ℓ
q | = Λ(k) · n24 many vertices. The time needed to

construct this graph is Λ(k) · n25.

Completeness

Suppose there exist u⃗1 ∈ U1, . . . , u⃗k ∈ Uk such that
∑

i∈[k] u⃗i = 0⃗. Then, we can find a clique
of size |Fq|2k2 in G as follows. Consider T ⊆ V defined as below:

T :=


α⃗1, . . . , α⃗k, β⃗1, . . . , β⃗k,

∑
i∈[k]

M(α⃗i, g(u⃗i)),
∑
i∈[k]

M(β⃗i, g(u⃗i))

∣∣∣∣α⃗i, β⃗i ∈ Fk
q , i ∈ [k]

 .

We claim that every pair of distinct vertices in T have an edge in G and since |T | = q2k2 ,
the completeness case follows.

First note that if we fix any α⃗1, . . . , α⃗k, β⃗1, . . . , β⃗k ∈ Fk
q then there are unique vectors

x⃗, y⃗ ∈ Fℓ
q such that

(
α⃗1, . . . , α⃗k, β⃗1, . . . , β⃗k, x⃗, y⃗

)
is in T . Thus, there are no Type 1 non-edges

in subgraph induced by T .
Next, for every two distinct vertices v, v′ ∈ T , and for every ρ⃗ := (ρ⃗1, . . . , ρ⃗k) ∈ var(v) ∩

var(v′), we have v(ρ⃗) = v′(ρ⃗) =
∑

i∈[k] M(ρ⃗i, g(u⃗i)), and thus there are no Type 2 non-edges
in subgraph induced by T .

Then, we note that there are no Type 3 non-edges in the subgraph induced by T because
for every v := (α⃗, β⃗, x⃗, y⃗) ∈ T and every γ ∈ Fq, if v′ := (γ · α⃗, β⃗′, x⃗′, y⃗′) ∈ T , then we have:

γ · x⃗ = γ ·
∑
i∈[k]

M(α⃗i, g(u⃗i)) =
∑
i∈[k]

M(γ · α⃗i, g(u⃗i) = x⃗′.

In order to next show that there are no Type 4 non-edges in subgraph induced by
T , we first fix v := (α⃗, β⃗, x⃗, y⃗) ∈ T , i ∈ [k], and α⃗ ∈ Fk

q . Suppose there exists v′ :=
(α⃗ − α⃗ · e⃗i, β⃗′, x⃗′, y⃗′) ∈ T . Then we have

x⃗ − x⃗′ =
∑
j∈[k]

M(α⃗j , g(u⃗j)) −

∑
j∈[k]
j ̸=i

M(α⃗j , g(u⃗j))

− M(α⃗i − α⃗, g(u⃗i))

= M(α⃗i, g(u⃗i)) − M(α⃗i − α⃗, g(u⃗i)) = M(α⃗, g(u⃗i)).

Thus, (v, v′) is an edge in the subgraph induced by T .
Finally, we show that there are no Type 5 non-edges in subgraph induced by T . Let

v := (α⃗, β⃗, x⃗, y⃗) ∈ T and α⃗ ∈ Fk
q . Suppose there exists v′ := (α⃗ − (α⃗, . . . , α⃗), β⃗′, x⃗′, y⃗′) ∈ T .

Then we have

x⃗ − x⃗′ =
∑
i∈[k]

M(α⃗i, g(u⃗i)) −
∑
i∈[k]

M(α⃗i − α⃗, g(u⃗i))

=
∑
i∈[k]

M(α⃗, g(u⃗i)) = M

α⃗, g

∑
i∈[k]

u⃗i

 = M(α⃗, g(⃗0)) = 0⃗.
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Thus, (v, v′) is an edge in the subgraph induced by T .

Soundness

Let T be the set of vertices of the largest clique in G (breaking ties arbitrarily). Let10

ε := 1/q1/k. Suppose |T | ⩾ ε · q2k2 , then we shall show that for every i ∈ [k] there exists
u∗

i ∈ Ui such that u∗
1 + · · · + u∗

k = 0⃗. Note that the assertion in the theorem statement is
satisfied as follows:

|T | ⩾ q2k2·(1−1/(2k3)) ⩾ q
2k2·
(

1−1/F
(

q2k2))
= Λ(k)1−1/(F (Λ(k))),

where the penultimate inequality follows from (4).
The proof strategy is as follows. First, using T , we construct a function Γ from Fk2

q to Fℓ
q

which we show passes the linearity test with probability at least ε (Claim 9). Then, we invoke
Theorem 5 to say that there exists a collection of few linear functions on k variables over Fk

q

with coefficients from Fk×ℓ
q with the following property: for many queries (α⃗, β⃗) ∈ Fk2

q × Fk2

q

on which Γ passes the linearity test, we have a fixed linear function in our collection whose
evaluation on α⃗ agrees with Γ(α⃗).

Then for every i ∈ [k] and α⃗ ∈ Fk
q , we will identify u⃗α⃗ ∈ Ui such that M(α⃗, g(u⃗α⃗)) is

roughly equal to evaluating the linear function at e⃗i · α⃗ (Claim 10). Next, we show that for
every i ∈ [k], there is a single u⃗i ∈ Ui such that for all α⃗ ∈ Fk

q we have that M(α⃗, g(u⃗i)) is
roughly equal to evaluating the linear function at e⃗i · α⃗ (Claim 11). Finally, the proof follows
by observing that there are no Type 5 non-edges in T , and thus these identified u⃗is must
sum to 0⃗.

We now begin the formal soundness case analysis. We claim that for every α⃗ ∈ var(T ), if
there exist distinct v, v′ ∈ T such that α⃗ ∈ var(v) ∩ var(v′) then, v(α⃗) = v′(α⃗). Otherwise,
(v, v′) would be a non-edge of Type 2 which is not possible as the vertices in T form a clique.

We construct a function Γ : Fk2

q → Fℓ
q in two phases. In the first phase, we define Γ only for

vectors in var(T ). For every α⃗ ∈ var(T ), we set Γ(α⃗) = v(α⃗) if v ∈ T is such that α⃗ ∈ var(v).
In the second phase, we iteratively go over all the vectors in Fk2

q \ var(T ) in some canonical
order. In the jth iteration, let α⃗j be the vector considered. If there exists γ ∈ Fq and
α⃗′ ∈ var(T ) such that α⃗j = γ · α⃗′ then we define Γ(α⃗j) = γ · Γ(α⃗′); otherwise if there exists
j′ < j such that α⃗j = γ · α⃗j′ for some γ ∈ Fq then we define Γ(α⃗j) = γ · Γ(α⃗j′); otherwise,
we set Γ(α⃗j) to a uniformly random vector in Fℓ

q.
Notice that by our construction and that there are no Type 3 non-edges in T , we have

that for all α⃗ ∈ Fk2

q and for all γ ∈ Fq we have Γ(γ · α⃗) = γ · Γ(α⃗), i.e., Γ is scalar respecting.
Next, we have the following claim on Γ passing the linearity test.

▷ Claim 9. Γ passes the linearity test with probability at least ε.

To see the claim, first consider the set S ⊆ Fk2

q × Fk2

q defined as follows.

S :=
⋃

(α⃗,β⃗,x⃗,y⃗)∈T

{(α⃗, β⃗)}.

Notice that the probability of Γ passing the linearity test is lower bounded by:

|S|
|F|2k2 · Pr

(α⃗,β⃗)∼S

[
Γ(α⃗) + Γ(β⃗) = Γ(α⃗ + β⃗)

]
.
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However, for any (α⃗, β⃗) ∈ S, we have that (α⃗, β⃗, Γ(α⃗), Γ(β⃗)) is in T by construction of
set S. Thus, we have Pr(α⃗,β⃗)∼S

[
Γ(α⃗) + Γ(β⃗) = Γ(α⃗ + β⃗)

]
= 1 and Γ passes the linearity

test with probability at least |S|/|Fq|2k2 . Since |S| = |T |, we have that the proof of Claim 9
is completed.

Next invoking Theorem 5 with τ = 1
8k (since Γ is scalar respecting and τ ⩾ ε), we have

that there exist a linear function c : Fk2

q → Fℓ
q, such that the following holds.

Pr
α⃗∼var(T )

[∥Γ(α⃗) − c(α⃗)∥ ⩽ τ ] ⩾ ε2

3 .

Let R∗ ⊆ var(T ) be the largest sized subset such that the following holds:

Pr
α⃗∼R∗

[∥Γ(α⃗) − c(α⃗)∥ ⩽ τ ] = 1. (7)

We note that |R∗| ⩾ ε2

3 · |var(T )|, and since |var(T )| ⩾ ε · |Fk2

q |, we have that |R∗| ⩾ ε3

3 ·qk2 .
Next, we think of c as a linear function on k variables over Fk

q with coefficients in Fk×ℓ
q :

c(α⃗1, . . . , α⃗k) =
∑

i∈[k] M(α⃗i, Θ⃗i), for some Θ⃗1, . . . , Θ⃗k ∈ Fk×ℓ.

▷ Claim 10. For every i ∈ [k] and α⃗ ∈ Fk
q , there exists u⃗∗

i ∈ Ui such that ∥M(α⃗, Θ⃗i −
g(u⃗∗

i ))∥ ⩽ 2τ .

If α⃗ = 0⃗, the claim trivially holds. Therefore we assume that α⃗ ∈ Fk
q \ {⃗0}. For every

i ∈ [k] and every α⃗ ∈ Fk
q , we show that there is a line in the direction of α⃗ · e⃗i which contains

two vertices (α⃗, β⃗, x⃗, y⃗) and (α⃗′, β⃗′, x⃗′, y⃗′) such that α⃗, α⃗′ ∈ R∗. Then, by noting that these
two vertices don’t have a Type 4 non-edge between them, we identify u⃗∗

i ∈ Ui. The formal
argument follows.

We say a line is linear if it passes through the origin and affine otherwise. Note that
every linear line can be identified through one of the non-zero points on it. Also note that
for every linear line in Fk2

q , the line and all its affine shifts always cover the entire space Fk2

q .
Since |R∗|/qk2

> ε3/3 > 1/q, we have that by an averaging argument, for every linear line,
either that line or one of it’s affine shifts contains at least two points in R∗. We use this
argument below and in the proof of Claim 12.

Fix i ∈ [k] and α⃗ ∈ Fk
q \ {⃗0}. Let Li be a linear line in Fk2

q containing the point α⃗ · e⃗i.
Then there exists two points α⃗, α⃗ + e⃗i · (γ · α⃗) ∈ R∗, for some α⃗ ∈ Fk2

q and γ ∈ Fq \ {0}.
From (7) we have

∥Γ(α⃗) − c(α⃗)∥ ⩽ τ and ∥Γ(α⃗ + e⃗i · (γ · α⃗)) − c(α⃗ + e⃗i · (γ · α⃗))∥ ⩽ τ. (8)

Let v := (α⃗, β⃗, Γ(α⃗), Γ(β⃗)) and v′ := (α⃗ + e⃗i · (γ · α⃗), β⃗′, Γ(α⃗ + e⃗i · (γ · α⃗)), Γ(β⃗′)) be the
two vertices in T for some β⃗, β⃗′ ∈ Fk2

q . Since there is no Type 4 non-edge between them,
there exists u∗

i ∈ Ui such that

Γ(α⃗ + e⃗i · (γ · α⃗)) − Γ(α⃗) = M(γ · α⃗, g(u⃗∗
i )). (9)

On a different note, we have

c(α⃗ + e⃗i · (γ · α⃗)) = c(α⃗) + γ · c(e⃗i · α⃗) = c(α⃗) + M(γ · α⃗, Θ⃗i). (10)

Plugging in the simplification in (9) and (10) into (8), we have

2τ ⩾ ∥Γ(α⃗) − c(α⃗)∥ + ∥Γ(α⃗ + e⃗i · (γ · α⃗)) − c(α⃗ + e⃗i · (γ · α⃗))∥
⩾ ∥Γ(α⃗) − c(α⃗) − Γ(α⃗ + e⃗i · (γ · α⃗)) + c(α⃗ + e⃗i · (γ · α⃗))∥

= ∥M(γ · α⃗, Θ⃗i) − M(γ · α⃗, g(u⃗∗
i ))∥ = ∥M(γ · α⃗, Θ⃗i − g(u⃗∗

i ))∥ = ∥M(α⃗, Θ⃗i − g(u⃗∗
i ))∥,

where the last equality follows from noting that for any vector a⃗ and non-zero scalar ζ, we
have ∥ζ · a⃗∥ = ∥a⃗∥.
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▷ Claim 11. For every i ∈ [k], there exists u⃗∗
i ∈ Ui such that for every α⃗ ∈ Fk

q we have

∥M(α⃗, Θ⃗i − g(u⃗∗
i ))∥ ⩽ 2τ.

We prove the claim for non-zero α⃗ as the claim is trivial for the case α⃗ = 0⃗.
For every α⃗ ∈ Fk

q \ {⃗0}, let u⃗α⃗ ∈ Ui be the vector guaranteed in Claim 10, i.e., ∥M(α⃗, Θ⃗i −
g(u⃗α⃗))∥ ⩽ 2τ .

Now consider any linearly independent α⃗, β⃗ ∈ Fk
q . We then have:

∥M(α⃗, Θ⃗i −g(u⃗α⃗))∥ ⩽ 2τ, ∥M(β⃗, Θ⃗i −g(u⃗β⃗))∥ ⩽ 2τ, and ∥M(α⃗+ β⃗, Θ⃗i −g(u⃗α⃗+β⃗))∥ ⩽ 2τ.

Putting these three inequalities together:

6τ ⩾ ∥M(α⃗, Θ⃗i − g(u⃗α⃗))∥ + ∥M(β⃗, Θ⃗i − g(u⃗β⃗))∥ + ∥M(α⃗ + β⃗, Θ⃗i − g(u⃗α⃗+β⃗))∥

⩾ ∥M(α⃗, Θ⃗i − g(u⃗α⃗)) + M(β⃗, Θ⃗i − g(u⃗β⃗)) − M(α⃗ + β⃗, Θ⃗i − g(u⃗α⃗+β⃗))∥

= ∥M(α⃗, g(u⃗α⃗)) + M(β⃗, g(u⃗β⃗)) − M(α⃗ + β⃗, g(u⃗α⃗+β⃗))∥

= ∥M(α⃗, g(u⃗α⃗) − g(u⃗α⃗+β⃗)) + M(β⃗, g(u⃗β⃗) − g(u⃗α⃗+β⃗))∥

= ∥M(α⃗, g(w⃗)) − M(β⃗, g(w⃗′))∥,

where w⃗ := u⃗α⃗ − u⃗α⃗+β⃗ and w⃗′ := u⃗α⃗+β⃗ − u⃗β⃗ .
If w⃗ ̸= w⃗′ then we arrive at a contradiction to (6) (since ∥M(α⃗, g(w⃗))−M(β⃗, g(w⃗′))∥ ⩽ 6τ

and τ = o(1)).
Thus w⃗ = w⃗′ which implies u⃗α⃗ + u⃗β⃗ = 2u⃗α⃗+β⃗ . Since the choice of α⃗ and β⃗ were arbitrary

linearly independent vectors, we also have:

u⃗α⃗+β⃗ + u⃗β⃗ = 2u⃗α⃗+2β⃗ , u⃗α⃗ + u⃗α⃗+β⃗ = 2u⃗2α⃗+β⃗ , u⃗2α⃗+β⃗ + u⃗β⃗ = 2u⃗2⃗α+2β⃗ = u⃗α⃗ + u⃗α⃗+2β⃗ .

We put these relationships together to obtain the following:

u⃗α⃗ = u⃗α⃗ + 4u⃗2⃗α+2β⃗ − 4u⃗2α⃗+2β⃗ = u⃗α⃗ +
(

2u⃗2α⃗+β⃗ + 2u⃗β⃗

)
−
(

2u⃗α⃗ + 2u⃗α⃗+2β⃗

)
= 2u⃗2α⃗+β⃗ + 2u⃗β⃗ − 2u⃗α⃗+2β⃗ − u⃗α⃗ =

(
u⃗α⃗ + u⃗α⃗+β⃗

)
+ 2u⃗β⃗ −

(
u⃗α⃗+β⃗ + u⃗β⃗

)
− u⃗α⃗ = u⃗β⃗ .

So we are only left to handle the cases when α⃗ and β⃗ are linearly dependent, i.e., for some
γ ∈ Fq \ {0} we have α⃗ = γ · β⃗. In this case let β⃗′ ∈ Fk

q such that it is linearly independent
to β⃗ (and thus linearly independent to α⃗ as well). From the above argument we have that
u⃗α⃗ = u⃗β⃗′ = u⃗β⃗ .

▷ Claim 12. We have u⃗∗
1 + · · · + u⃗∗

k = 0⃗, where for all i ∈ [k], u⃗∗
i is the vector identified in

Claim 11.

The proof idea of this claim is as follows. For every i ∈ [k] and every α⃗ ∈ Fk
q , we show

that there is a line in the direction of (α⃗, . . . , α⃗) which contains two vertices (α⃗, β⃗, x⃗, y⃗) and
(α⃗′, β⃗′, x⃗′, y⃗′) such that α⃗, α⃗′ ∈ R∗. Then, by noting that these two vertices don’t have a
Type 5 non-edge between them, we obtain that the linear function c evaluated at (α⃗, . . . , α⃗)

is almost 0⃗. On the other hand, from Claim 11, we have that M

(
α⃗,
∑

i∈[k]
g(u⃗∗

i )
)

is close to

c(α⃗, . . . , α⃗). Thus, we obtain that M

(
α⃗,
∑

i∈[k]
g(u⃗∗

i )
)

has small relative Hamming weight for
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all α⃗ ∈ Fk
q . However, from (5) we know that if

∑
i∈[k]

u⃗∗
i ̸= 0⃗ then there exists α⃗ ∈ Fk

q such that

M

(
α⃗,
∑

i∈[k]
g(u⃗∗

i )
)

has large relative Hamming weight, and thus, we arrive at a contradiction.

The formal argument follows.
Fix some non-zero α⃗ ∈ Fk

q . Let L0 be a linear line in Fk2

q containing the point (α⃗, . . . , α⃗).
Since |R∗|/qk2

> 1/q, there exists two points α⃗, α⃗ + (γ · α⃗, . . . , γ · α⃗) ∈ R∗, for some α⃗ ∈ Fk2

q

and γ ∈ Fq \ {0}. From (7) we have

∥Γ(α⃗) − c(α⃗)∥ ⩽ τ and ∥Γ(α⃗ + (γ · α⃗, . . . , γ · α⃗)) − c(α⃗ + (γ · α⃗, . . . , γ · α⃗))∥ ⩽ τ. (11)

Let v := (α⃗, β⃗, Γ(α⃗), Γ(β⃗)) and v′ := (α⃗+(α⃗·γ, . . . , α⃗·γ), β⃗′, Γ(α⃗+(α⃗·γ, . . . , α⃗·γ)), Γ(β⃗′))
be the two vertices in T for some β⃗, β⃗′ ∈ Fk2

q . Since there is no Type 5 non-edge between
them, we have

Γ(α⃗) = Γ(α⃗ + (γ · α⃗, . . . , γ · α⃗)). (12)

On a different note, we have

c(α⃗ + (γ · α⃗, . . . , γ · α⃗)) = c(α⃗) + γ · c(α⃗, . . . , α⃗) = c(α⃗) + M

γ · α⃗,
∑
i∈[k]

Θ⃗i

 . (13)

Plugging in the simplification in (12) and (13) into (11), we have

2τ ⩾ ∥Γ(α⃗) − c(α⃗)∥ + ∥Γ(α⃗ + (γ · α⃗, . . . , γ · α⃗)) − c(α⃗ + (α⃗ · γ, . . . , α⃗ · γ))∥
⩾ ∥Γ(α⃗) − c(α⃗) − Γ(α⃗ + (γ · α⃗, . . . , γ · α⃗)) + c(α⃗ + (α⃗ · γ, . . . , α⃗ · γ))∥

=

∥∥∥∥∥∥M

γ · α⃗,
∑
i∈[k]

Θ⃗i

∥∥∥∥∥∥ =

∥∥∥∥∥∥M

α⃗,
∑
i∈[k]

Θ⃗i

∥∥∥∥∥∥ , (14)

where the last equality follows from noting that for any vector a⃗ and non-zero scalar ζ, we
have ∥ζ · a⃗∥ = ∥a⃗∥.

Next, to see the claim, we first define z⃗∗ ∈ Fm
q as follows: z⃗∗ :=

∑
i∈[k] u⃗∗

i .
From Claim 11, we have that for every i ∈ [k] and for all α⃗ ∈ Fk

q we have ∥M(α⃗, Θ⃗i −
g(u⃗∗

i ))∥ ⩽ 2τ . Fix some α⃗ ∈ Fk
q \ {0}. Then,

2τk ⩾
∑
i∈[k]

∥∥M(α⃗, Θ⃗i − g(u⃗∗
i ))
∥∥ ⩾

∥∥∥∥∥∥
∑
i∈[k]

M(α⃗, Θ⃗i − g(u⃗∗
i ))

∥∥∥∥∥∥ =

∥∥∥∥∥∥M

α⃗,
∑
i∈[k]

(
Θ⃗i − g(u⃗∗

i )
)∥∥∥∥∥∥ .

Plugging in (14), we have

1
2 ⩾ 2τ(k + 1) ⩾

∥∥∥∥∥∥M

α⃗,
∑
i∈[k]

g(u⃗∗
i )

∥∥∥∥∥∥ =

∥∥∥∥∥∥M

α⃗, g

∑
i∈[k]

u⃗∗
i

∥∥∥∥∥∥ = ∥M (α⃗, g (z⃗∗))∥ .

Therefore, we have that for all α⃗ ∈ Fk
q

∥M (α⃗, g (z⃗∗)) ∥ ⩽ 1/2. (15)
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From (5) we have that if z⃗∗ ̸= 0⃗ then ∥g(z⃗∗)∥ ⩾ 2/3. We think of g(z⃗∗) as (⃗b1, . . . , b⃗ℓ),
where b⃗i ∈ Fk

q , for all i ∈ [ℓ]. Since ∥g(z⃗∗)∥ ⩾ 2/3, we have that Pr
i∼[ℓ]

[⃗bi = 0⃗] ⩽ 1/3. For every

i ∈ [ℓ] and a uniformly random α⃗ ∈ Fk
q we have that

Pr
α⃗∼Fk

q

[⟨α⃗, b⃗i⟩ = 0] =
{

1
q if b⃗i ̸= 0
0 otherwise

.

Thus, we have E
α⃗∼Fk

q

[∥M(α⃗, g(z⃗∗))∥] ⩾ q−1
q · 2

3 > 1
2 . This implies there exists α⃗ ∈ Fk

q such

that ∥M(α⃗, g (z⃗∗))∥ > 1/2, which contradicts (15), and therefore we have z⃗∗ = 0⃗.

5 Open Problems

The main open problem left behind from this work is to prove the total FPT-inapproximability
of the k-Clique problem. Apart from this open problem, we would like to highlight the
following two open problems too.

Parameterized Inapproximability Hypothesis (PIH): The PIH was putforth in [49] and
asserts that it is W[1]-hard parameterized by k, to decide the satisfiability of gap 2-CSP
on k variables and alphabet size n. It is easy to show that assuming Gap-ETH, the
above gap 2-CSP instances do not admit FPT-approximation algorithms (for example
see [10]). Previously, many researchers belived that the way to obtain inapproximability
results for the parameterized k-Clique problem must be to first resolve PIH. However,
Lin [47] surprisingly found a route to prove inapproximability of the k-Clique problem
while circumventing past PIH. Nevertheless, since one may see PIH as a parameterized
complexity analogue of the PCP theorem (for NP), it remains an outstanding open
problem to be settled.
ETH lower bound for approximating k-Clique: In [47] and this paper, we are primarily
interested in proving strong hardness of approximation factors for the k-Clique problem
under the W[1] ̸=FPT assumption. However, can we prove tighter running time lower
bounds for approximating k-Clique problem under stronger assumptions such as ETH?
For example, assuming ETH, can we rule out constant factor approximation algorithms
for k-Clique problem running in no(k) time? Both [47] and this paper can only prove a
time lower bound of n(log k)Ω(1) under ETH, for approximating the k-Clique to constant
factors.
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