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Abstract
Random subspaces 𝑋 of ℝ𝑛 of dimension proportional to 𝑛 are, with high probability, well-spread
with respect to the ℓ2-norm. Namely, every nonzero 𝑥 ∈ 𝑋 is “robustly non-sparse” in the following
sense: 𝑥 is 𝜀 ∥𝑥∥2-far in ℓ2-distance from all 𝛿𝑛-sparse vectors, for positive constants 𝜀, 𝛿 bounded
away from 0. This “ℓ2-spread” property is the natural counterpart, for subspaces over the reals, of
the minimum distance of linear codes over finite fields, and corresponds to 𝑋 being a Euclidean
section of the ℓ1 unit ball. Explicit ℓ2-spread subspaces of dimension Ω(𝑛), however, are unknown,
and the best known explicit constructions (which achieve weaker spread properties), are analogs of
low density parity check (LDPC) codes over the reals, i.e., they are kernels of certain sparse matrices.

Motivated by this, we study the spread properties of the kernels of sparse random matrices.
We prove that with high probability such subspaces contain vectors 𝑥 that are 𝑜(1) · ∥𝑥∥2-close
to 𝑜(𝑛)-sparse with respect to the ℓ2-norm, and in particular are not ℓ2-spread. This is strikingly
different from the case of random LDPC codes, whose distance is asymptotically almost as good as
that of (dense) random linear codes.

On the other hand, for 𝑝 < 2 we prove that such subspaces are ℓ𝑝-spread with high probability.
The spread property of sparse random matrices thus exhibits a threshold behavior at 𝑝 = 2. Our
proof for 𝑝 < 2 moreover shows that a random sparse matrix has the stronger restricted isometry
property (RIP) with respect to the ℓ𝑝 norm, and in fact this follows solely from the unique expansion
of a random biregular graph, yielding a somewhat unexpected generalization of a similar result
for the ℓ1 norm [6]. Instantiating this with suitable explicit expanders, we obtain the first explicit
constructions of ℓ𝑝-RIP matrices for 1 ≤ 𝑝 < 𝑝0, where 1 < 𝑝0 < 2 is an absolute constant.
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7:2 ℓ𝑝-Spread and Restricted Isometry Properties of Sparse Random Matrices

1 Introduction

Classical results in asymptotic geometric analysis on the Gelfand/Kolmogorov widths of ℓ2
balls [14, 24, 16] show that random subspaces 𝑋 of ℝ𝑛 of dimension proportional to 𝑛 (say,
defined as the kernel of random 𝑛/2 × 𝑛 matrices with i.i.d. Gaussian or ±1 entries) are good
Euclidean sections of ℓ 𝑛1 : namely, ∥𝑥∥1 ≥ Ω(

√
𝑛) ∥𝑥∥2 for every 𝑥 ∈ 𝑋. An elementary proof

of this fact also follows from the Johnson-Lindenstrauss (JL) property of random matrices,
its connection to the restricted isometry property (RIP) and compressed sensing, and their
relationship to the Euclidean sections property [4].

The condition ∥𝑥∥1 ≥ Ω(
√
𝑛) ∥𝑥∥2 can equivalently be expressed as a “well-spreadness”

criterion satisfied by every nonzero vector 𝑥 ∈ 𝑋: the largest 𝛿𝑛 entries of 𝑥 have at most 1−𝜀
of its ℓ2 mass, for some positive constants 𝛿, 𝜀 bounded away from 0 as 𝑛 →∞. Equivalently,
this means that all nonzero vectors 𝑥 ∈ 𝑋 are incompressible – there is no sparse vector that
approximates 𝑥 well in ℓ2 norm (in other words, ∥𝑥 − 𝑦∥2 ≥ 𝜀 ∥𝑥∥2 for all 𝛿𝑛-sparse vectors
𝑦). This can be naturally viewed as a robust analog, for subspaces of ℝ𝑛 , of the distance
property of linear error-correcting codes.

The above well-spreadness criterion can naturally be imposed with respect to any ℓ𝑝
metric: a subspace 𝑋 is said to be ℓ𝑝-spread if every nonzero vector 𝑥 ∈ 𝑋 is 𝜀 ∥𝑥∥𝑝-far in
ℓ𝑝-distance from all 𝛿𝑛-sparse vectors. The ℓ𝑝-spread property is a more stringent requirement
for larger 𝑝. For 𝑝 > 2, the optimal asymptotic dimension of ℓ𝑝-spread subspaces is at most
𝑂𝑝(𝑛2/𝑝) and thus 𝑜(𝑛) [17]. In this work, we therefore focus on 𝑝 ∈ [1, 2] where it is possible
to have ℓ𝑝-spread subspaces of dimension proportional to 𝑛.

For a subspace 𝑋 of ℝ𝑛 , define its ℓ𝑝-distortion Δ𝑝(𝑋) to be the following quantity:

Δ𝑝(𝑋) := sup
𝑥∈𝑋\{0𝑛 }

𝑛
1− 1

𝑝 ∥𝑥∥𝑝
∥𝑥∥1

.

Note that 1 ≤ Δ𝑝(𝑥) ≤ 𝑛1−1/𝑝 . Good ℓ𝑝-spread of 𝑋 can be captured by the condition that
Δ𝑝(𝑋) is bounded by a fixed constant independent of 𝑛; this generalizes the aforementioned
equivalence of ℓ2-spread and the Euclidean section property. The term distortion is used
because the natural inclusion of 𝑋 in ℝ𝑛 induces a bi-Lipschitz embedding of 𝑋, taken with
the ℓ𝑝 norm, into ℓ 𝑛1 , with distortion Δ𝑝(𝑋). The distortion/spread property of subspaces with
respect to different ℓ𝑝 norms has been extensively studied, owing to its connections to width
properties in convex geometry [17, 25], embeddings between metric spaces [20], compressed
sensing [13, 10, 25], error-correction over the reals [11, 18], and the restricted isometry (RIP)
and dimensionality-reduction/Johnson-Lindenstrauss (JL) properties [25, 4, 1].

Despite a lot of interest and the abundance of probabilistic constructions, an outstanding
question is to construct an explicit subspace 𝑋 ⊆ ℝ𝑛 of dimension Ω(𝑛) that is ℓ2-spread, or
equivalently has Δ2(𝑋) ≤ 𝑂(1). By explicit, we mean deterministically constructing a basis
for the subspace (or its dual) in poly(𝑛) time.1 This is a counterpart, for subspaces of ℝ𝑛 , of
the problem of constructing asymptotically good binary linear codes 𝐶 ⊆ {0, 1}𝑛 : namely,
codes whose dimension and minimum distance are both proportional to 𝑛. In addition to
being a natural and basic challenge in pseudorandomness, explicit constructions are also
valuable in applications of spread subspaces such as compressed sensing, as they provide a
guarantee that the matrix will have the stipulated properties. This is particularly important
since there are no known methods to efficiently certify the ℓ2-spread (or even ℓ𝑝-spread) of
random subspaces.

1 Explicit constructions of ℓ𝑝-spread spaces of dimension Ω(𝑛) are given in [6] (𝑝 = 1) and [23] (1 ≤ 𝑝 < 2).
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1.1 Kernels of sparse matrices
In the case of 𝑝 = 2, the best known explicit constructions of subspaces 𝑋 ⊆ ℝ𝑛 with
dim(𝑋) ≥ Ω(𝑛), in terms of their distortion Δ2(𝑋), are due to [19]. They give a construction
analogous to Tanner codes from coding theory [32], combining appropriately chosen unbal-
anced bipartite expanders and local subspaces, to produce 𝑋 with dim(𝑋) ≥ 𝑛 − 𝑜(𝑛) and
Δ2(𝑋) ≤ (log 𝑛)𝑂(log log log 𝑛) (so almost poly-logarithmic).2 A simpler construction analogous
to Sipser-Spielman codes [31], using 𝑠-regular spectral expanders and local well-spread sub-
spaces of ℝ𝑠 , was given in [18] and achieves3 Δ2(𝑋) ≤ 𝑛𝑂(1/log 𝑠). An alternate probabilistic
construction achieving similar parameters to [18] based on tensor products was given in [22].
The approach of [22] can further achieve distortion approaching 1 at the expense of making
dim(𝑋) smaller, but still Ω(𝑛).

One notable attribute of the constructions above is that the subspace 𝑋 can be expressed
as the kernel of a matrix that is sparse. For instance, the construction of [18] picks a matrix
where each row is 𝑠-sparse with ±1 entries (that are chosen randomly for a probabilistic
construction), and the construction in [22] defines the subspace 𝑋 ⊆ ℝ𝑛 as the 𝑘-fold tensor
product of another subspace, and so 𝑋 can be defined as the kernel of an 𝑛1/𝑘-sparse matrix.
Moreover, known explicit constructions of ℓ𝑝-spread subspaces for 1 ≤ 𝑝 < 2 [6, 23] are also
kernels of sparse matrices.

The sparsity of these constructions is inherited from the “underlying constructions” for
codes; the constructions of [19, 18, 22] come from “lifting” constructions of linear codes
(namely, Tanner codes [32], Sipser-Spielman codes [31], and tensor product codes, respectively)
to this setting, and these constructions (for linear codes) are known to give good low density
parity check (LDPC) codes: namely, codes that are the kernels of sparse matrices.

In light of these works, a natural question (and indeed one explicitly posed in [18]), is the
following.

▶ Question 1. Does there exist an 𝑚 × 𝑛 matrix 𝐴 with 𝑛 − 𝑚 ≥ Ω(𝑛) whose rows are
𝑠-sparse for 𝑠 ≤ 𝑂(1) (or even 𝑠 ≤ polylog(𝑛)) such that Δ2(ker(𝐴)) ≤ 𝑂(1)?

The approaches of [18, 22] show that one can achieve Δ2(ker(𝐴)) ≤ exp(𝑂(1/𝛿)) when 𝑠 = 𝑛𝛿.
A positive answer to Question 1, even via random matrices, would likely yield good progress
towards explicit constructions, as 𝑂(1)-sparse matrices are likely easier to derandomize
than dense random ones. A negative answer to Question 1 would likely rule out explicit
constructions based on the current state-of-the-art approaches of [19, 18, 22].

In addition to exploring the potential of the approaches behind the current best construc-
tions, sparsity is desirable from a computational efficiency standpoint. Sparse matrices lead
to faster algorithms, for example when used as measurement matrices in compressed sensing
or to compute a sparse JL transform for dimensionality-reduction.

Motivated by these considerations, we study the ℓ2-spread, and, more generally, ℓ𝑝-spread
(1 ≤ 𝑝 ≤ 2) of subspaces defined as the kernel of sparse random matrices. Such subspaces
are the continuous analogues of random low density parity check (LDPC) codes. Random
LDPC codes have been studied in coding theory since Gallager’s seminal work [15], with
a renaissance since the mid 1990s [30] due to their fast iterative decoding algorithms and
performance close to capacity.

2 For sublinear dimension, an explicit construction of 𝑋 ⊆ ℝ𝑛 with distortion Δ2(𝑋) ≤ 1 + 𝑜(1) and
dim(𝑋) ≥ 𝑛/2𝑂((log log 𝑛)2) was given in [21].

3 This construction is not explicit except for very small 𝑠, as the local subspace of ℝ𝑠 is either constructed
by brute force or drawn at random.

CCC 2022
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Random LDPC codes are known to achieve rate vs. distance trade-offs approaching that
of random (dense) linear codes [15]. Recently, even the list-decodability, and indeed any
“local” property, of random LDPC codes was shown to be similar to that of random linear
codes [28]. Given that random subspaces are well-spread and that random LDPC codes
achieve similar properties to random (dense) codes, one might naturally expect, by analogy,
that the kernels of sparse random matrices are also well-spread.

1.2 Our results
Our results paint a precise picture of the ℓ𝑝-spread of kernels 𝑋 of sparse random matrices.
Before stating our results, we first define ℓ𝑝-spread and state the random matrix model that
we use.

▶ Definition 2 (ℓ𝑝-spread). Fix 𝑝 ∈ [1,∞], 𝜀 ∈ [0, 1] and 𝑘 ≤ 𝑛 ∈ ℕ. A vector 𝑦 ∈ ℝ𝑛

is 𝑘-sparse if |supp(𝑦)| ≤ 𝑘. A vector 𝑥 ∈ ℝ𝑛 \ {0𝑛} is said to be (𝑘, 𝜀)-ℓ𝑝-compressible if
there exists a 𝑘-sparse 𝑦 ∈ ℝ𝑛 such that ∥𝑥 − 𝑦∥𝑝 ≤ 𝜀∥𝑥∥𝑝. Otherwise, we say that 𝑥 is
(𝑘, 𝜀)-ℓ𝑝-spread.

A subspace 𝑋 ⊆ ℝ𝑛 is (𝑘, 𝜀)-ℓ𝑝-spread if every 𝑥 ∈ 𝑋 \ {0𝑛} is (𝑘, 𝜀)-ℓ𝑝-spread.

The random matrix model. A matrix 𝐴 ∈ {0, 1,−1}𝑚×𝑛 is said to be (𝑠, 𝑡)-biregular if
every row and column of 𝐴 has exactly 𝑠 and 𝑡 nonzero entries, respectively. Letℳ𝑚,𝑛,𝑠,𝑡

denote the set of all (𝑠, 𝑡)-biregular matrices in {0, 1,−1}𝑚×𝑛 .
All of our theorems for random matrices will be for a matrix 𝐴 drawn uniformly at

random from ℳ𝑚,𝑛,𝑠,𝑡 , where 𝛼 = 𝑚
𝑛 = 𝑡

𝑠 ∈ (0, 1) is a fixed constant and 𝑛 → ∞; for this
exposition, we will use 𝐴 to denote a random matrix from ℳ𝑚,𝑛,𝑠,𝑡 , and 𝐵 to denote an
arbitrary matrix in {0, 1,−1}𝑚×𝑛 . We additionally assume that 𝑠 := 𝑠(𝑛) ≤ 𝑛𝑐 for some
absolute constant 0 < 𝑐 < 1, and 𝑡 = 𝛼𝑠 ≥ 3. An event ℰ is said to hold with high probability
if lim𝑛→∞ Pr [ℰ] = 1. All asymptotic notation refers to the regime of 𝑛 →∞ and constant 𝛼.
The constants implied by asymptotic notation are universal, unless stated otherwise. The
symbols 𝑐, 𝑐′, 𝑐1 and 𝑐2 always stand for positive universal constants, which may differ across
different lemma and theorem statements.

1.2.1 Poor ℓ2-spread of sparse random matrices
Our first theorem shows that, surprisingly, ker(𝐴) is, with high probability, not ℓ2-spread.

▶ Theorem 3 (Poor ℓ2-spread of ker(𝐴)). With high probability over 𝐴, there exists an
(𝑚𝑐 , 𝑛

−Ω(log(1/𝛼)/log 𝑠)

1−
√
𝛼

)-ℓ2-compressible vector 𝑥 ∈ ker(𝐴), where 𝑐 < 1 is an absolute constant.
In particular,

Δ2(ker(𝐴)) ≥ (1 −
√
𝛼) · 𝑛Ω(log(1/𝛼)/log 𝑠) .

Moreover, there is a poly(𝑛)-time algorithm that, on input 𝐴, outputs such an 𝑥.

Choosing 𝑠 = 𝑂(1) in Theorem 3 (and letting 𝛼 be bounded away from 1) implies4 that
Δ2(ker(𝐴)) ≥ 𝑛Ω(1) with high probability, and choosing 𝑠 = polylog(𝑛) implies Δ2(ker(𝐴)) ≥
𝑛Ω(log(1/𝛼)/log log 𝑛). We always trivially have Δ2(ker(𝐴)) ≤

√
𝑛, so not only does Theorem 3

4 Note that since 𝛼𝑠 = 𝑡 ≥ 3, we must have log 𝑠 ≥ log 1
𝛼 .
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answer Question 1 in the negative for sparse random matrices, but it also does so in a very
strong sense. For instance, when 𝑠 = 𝑂(1), Theorem 3 shows that Δ2(ker(𝐴)) is “maximally
bad”, up to a constant factor in the exponent.

Another point of interest is the choice 𝑠 = 𝑛𝛿 for some fixed 𝛿. This yields the tradeoff
of Δ2(ker(𝐴)) ≥ ( 1𝛼 )Ω(

1
𝛿 ), which precisely matches the tradeoff (in terms of 𝛿) achieved by

both [18, 22]. While our matrix ensemble is “more random” compared to those in [18, 22],
Theorem 3 can nonetheless be interpreted as giving evidence that this exp

(
𝑂(1𝛿 )

)
tradeoff

from [18, 22] is tight and inherent to sparse constructions.
Our proof of Theorem 3 is constructive, in the sense that we give a very simple, efficient

algorithm to find such an 𝑥 ∈ ker(𝐴). This moreover shows that for sparse random matrices,
one can efficiently refute the claim that Δ2(ker(𝐴)) = 𝑂(1), as the vector 𝑥 is a refutation
witness. Our algorithm provides an interesting counterpoint to the work of [3], who gave
an algorithm based on the sum-of-squares SDP hierarchy to certify that Δ2(ker(𝐴)) ≤ 𝑂(1)
with high probability for dense matrices 𝐴 where dim(ker(𝐴)) ≤ 𝑂(

√
𝑛). In contrast, our

algorithm succeeds when dim(ker(𝐴)) = Ω(𝑛) and the matrix 𝐴 is sparse. The two results
taken together suggest an interesting relationship between the density and dim(ker(𝐴)) of
matrices 𝐴 for which we can efficiently certify or refute bounds on Δ2(ker(𝐴)).

We also note that, by the well-known duality formula relating Kolmorogov and Gelfand
widths (see [KT07] and the references therein), Theorem 3 implies that the row span of 𝐴 is
far from approximating the ℓ2-sphere in ℓ∞ distance. Concretely, with high probability over
𝐴 there exists 𝑥 ∈ ℝ𝑛 with ∥𝑥∥2 = 1 that is (1 −

√
𝛼) · 𝑛Ω(log(1/𝛼)/log 𝑠)/

√
𝑛-far in ℓ∞ norm

from all vectors of the form 𝐴⊤𝑦, where 𝑦 ∈ ℝ𝑚 .
The proof of Theorem 3 requires the following strong bound that we show on the singular

values of 𝐴.

▶ Theorem 4 (Singular value bound). With high probability, the set of singular values 𝜎(𝐴)
of 𝐴 satisfy

𝜎(𝐴) ⊆
[√
𝑠 − 1 − (1 + 𝑜(1)) ·

√
𝑡 − 1,

√
𝑠 − 1 + (1 + 𝑜(1)) ·

√
𝑡 − 1

]
.

Moreover, the above bound holds even without our (otherwise global) assumption that 𝑠 ≤ 𝑛𝑐
for some absolute constant 𝑐 < 1.

Theorem 4 should not be surprising, especially given the recent works of [9, 7, 8, 26, 27,
29, 34], and indeed our proof follows the same overall blueprint of these works. Most of these
papers, however, only handle the case when the degree of the graph is constant as 𝑛 →∞;5
this corresponds to the case of 𝑠 = 𝑂(1) in Theorem 4. Theorem 4 thus differs as it allows for
𝑠 = 𝜔(1), and indeed we can even take 𝑠 = 𝑛𝑐 for some absolute constant 𝑐 < 1. On the other
hand, most of the aforementioned works deal with the case of unsigned adjacency matrices,
whereas we only prove Theorem 4 for randomly signed adjacency matrices. We note that
proving the analogue of Theorem 4 for unsigned adjacency matrices (where 𝜎(𝐴) now denotes
the set of singular values, excluding the trivial value of

√
𝑠𝑡) and for all (non-constant) 𝑠, 𝑡

remains open.
The singular value bound in Theorem 4 is challenging to prove because it is so sharp.

Indeed, it is not too difficult to show that 𝜎(𝐴) ⊆ [
√
𝑠 − 𝑂(

√
𝑡),
√
𝑠 + 𝑂(

√
𝑡)] with high

probability via black-box applications of known results, e.g., [2]. However, this does not

5 The exceptions are [26], which handles polylog(𝑛) degree, and [34], which handles 𝑛𝑐 degree but does
not obtain as sharp bounds.

CCC 2022
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suffice for our use in the proof of Theorem 3, as the aforementioned weaker bound would
only suffice to prove Theorem 3 provided that 𝛼 ≤ 𝑐 for some absolute constant 𝑐, where 𝑐
depends on the absolute constant 𝑐′ hidden in the “𝑂(

√
𝑡)”. We need the sharp bound of

Theorem 4 in order to allow for 𝛼 to be an arbitrary constant in (0, 1).
As a counterpart to Theorem 3, we give the following partial converse, which shows that

ker(𝐴) is (𝑘, 𝜀)-ℓ2-spread for a weak choice of parameters 𝑘 and 𝜀.

▶ Theorem 5 (Converse to Theorem 3). Assume that 𝑡 ≥ 9. Then, with high probability over
𝐴, the space ker(𝐴) is

(
Ω(𝛼2𝑛/𝑡4), 𝛼𝑂(log 𝑛/log 𝑡)

)
-ℓ2-spread.

We note that in Theorem 5, the parameter 𝑘 is Ω(𝛼2𝑛/𝑡4) = 𝑚Ω(1) and the parameter 𝜀 is
𝛼𝑂(log 𝑛/log 𝑠).6 Theorem 5 thus shows that the parameters in Theorem 3 are tight up to the
universal constants in the exponent. Our proof of Theorem 5 is an adaptation of the proof
of [5, Lemma 3.4].

1.2.2 ℓ𝒑-RIP and ℓ𝒑-spread for 𝒑 < 2
We next focus on the ℓ𝑝 norm for 𝑝 < 2. For 𝑝 < 2, there are known explicit constructions of
ℓ𝑝-spread subspaces [23]. Because of this, for 𝑝 < 2 we focus on the stronger, well-studied
Restricted Isometry Property (RIP). We also note that the constructions of [23] are highly
structured, and so even though they also come from sparse matrices, they do not tell us
anything about the ℓ𝑝-spread of sparse random matrices.

We prove that sparse random matrices are not only ℓ𝑝-spread, but are also ℓ𝑝-RIP, and,
moreover, this follows merely from the expansion of the underlying bipartite graph of the
random matrix 𝐴. In particular, we prove that any signed adjacency matrix 𝐵 of a left-regular
bipartite expander graph 𝐺 is ℓ𝑝-RIP, provided that the maximum right degree 𝑠max is above
a small threshold independent of 𝑛.

The RIP is a well-studied property of matrices from the compressed sensing literature,
defined as follows.

▶ Definition 6 (ℓ𝑝-RIP). Let 𝐵 ∈ ℝ𝑚×𝑛 be a matrix. We say that 𝐵 is (𝑘, 𝜀)-ℓ𝑝-RIP if there
exists 𝐾 > 0 such that for every 𝑘-sparse 𝑥 ∈ ℝ𝑛, it holds that7

𝐾(1 − 𝜀) ∥𝑥∥𝑝 ≤ ∥𝐵𝑥∥𝑝 ≤ 𝐾(1 + 𝜀) ∥𝑥∥𝑝 .

We note that ℓ𝑝-RIP implies ℓ𝑝-spread, and in fact it is a strictly stronger property [25].
RIP matrices have been studied extensively in the context of compressed sensing, as

they yield a polynomial-time algorithm based on linear programming for the robust sparse
recovery problem. Namely, given a “noisy measurement sketch” 𝑦 = 𝐵𝑥 + 𝑒 of a vector
𝑥, where 𝐵 is (𝑘, 𝜀)-ℓ𝑝-RIP and ∥𝑒∥𝑝 ≤ 𝜂, there is a polynomial-time algorithm to recover
an estimate 𝑥̂ for 𝑥 with the so-called “ℓ𝑝-ℓ1 guarantee,” namely the estimate 𝑥̂ satisfies
∥ 𝑥̂ − 𝑥∥𝑝 ≤ 𝑂

(
𝑘
−(1− 1

𝑝 ) ∥𝑥 − 𝑥∗∥1 + 𝜂
)
, where 𝑥∗ is a 𝑘-sparse vector minimizing ∥𝑥 − 𝑥∗∥1

(see Appendix A in [1] for details). We note that if 𝐵 is merely ℓ𝑝-spread, then 𝐵 suffices for
the (non-robust) sparse recovery problem, i.e., when there is no noise 𝑒.

We now turn to formally stating our results. We first recall the definition of a (unique)
bipartite expander.

6 This follows since 𝑡 = 𝛼𝑠 ≤ 𝑠, 𝑚 = 𝛼𝑛, and 𝑠 ≤ 𝑛𝑐 for some absolute constant 𝑐.
7 We note that the standard definition of RIP typically appears without the normalization factor 𝐾

above. We include the parameter 𝐾 for convenience, as the random sparse matrices we consider are not
normalized.
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▶ Definition 7 (Unique expanders). A bipartite graph 𝐺 = (𝑉𝐿 = [𝑛], 𝑉𝑅 = [𝑚], 𝐸) is a
𝑡-left-regular (𝛾, 𝜇)-unique expander if (1) deg(𝑢) = 𝑡 for all 𝑢 ∈ 𝑉𝐿, and (2) for all 𝑆 ⊆ 𝑉𝐿,
|𝑆 | ≤ 𝛾𝑛, there are at least 𝑡(1 − 𝜇)|𝑆 | vertices 𝑣 ∈ 𝑉𝑅 which each have exactly one neighbor
in 𝑆.

A matrix 𝐵 ∈ {0, 1,−1}𝑚×𝑛 is a signed adjacency matrix of a bipartite graph 𝐺 = (𝑉𝐿 =
[𝑛], 𝑉𝑅 = [𝑚], 𝐸) if

𝐵𝑟,𝑢 ≠ 0 ⇐⇒ (𝑢, 𝑟) ∈ 𝐸

for all 𝑢 ∈ 𝑉𝐿, 𝑟 ∈ 𝑉𝑅.

▶ Theorem 8 (ℓ𝑝-RIP of expander graphs). Let 𝐺 be a bipartite 𝑡-left-regular (𝛾, 𝜇)-unique
expander with maximum right degree 𝑠max, and let 𝐵 be any signed adjacency matrix of 𝐺.
Let 0 < 𝜀 ≤ 1 and 1 ≤ 𝑝 < 2 such that 𝜀2 ≥ 9𝜇𝑠𝑝−1

max. Then, 𝐵 is (𝛾𝑛, 𝜀)-ℓ𝑝-RIP, i.e., for
every 𝛾𝑛-sparse 𝑥 ∈ ℝ𝑛,

𝑡
1
𝑝 (1 − 𝜀) ∥𝑥∥𝑝 ≤ ∥𝐵𝑥∥𝑝 ≤ 𝑡

1
𝑝 (1 + 𝜀) ∥𝑥∥𝑝 .

Theorem 8 generalizes a result of [6], which shows that any signed adjacency matrix 𝐵 of 𝐺
is ℓ1-RIP, provided that 𝐺 is an expander. This is somewhat surprising, as the proof in [6]
makes heavy use of properties specific to the ℓ1 norm.8

The ℓ𝑝-RIP of matrices for general 𝑝 has been studied in other contexts, most notably
in [1]. As is typical when studying RIP matrices, they view the sparsity parameter 𝑘 as a
fixed function of 𝑛, and determine 𝑚 as a function of 𝑘, 𝑛. However, the results in [1] are
incomparable to ours, as they hold only for the low-sparsity case of 𝑘 = 𝑂(𝑛1/𝑝) (so 𝑘 = 𝑜(𝑛)
if 𝑝 > 1), but we are concerned with the case of 𝑘 = Ω(𝑛), when the sparsity is a small
constant fraction of 𝑛.

As a random 𝑡-left-regular bipartite graph is a good expander with high probability, we
obtain the following corollary of Theorem 8, which shows that ker(𝐴) for 𝐴 ← ℳ𝑚,𝑛,𝑠,𝑡

achieves very good ℓ𝑝-spread for every 𝑝 ∈ [1, 2). Thus, the poor ℓ2-spread of ker(𝐴) is in
fact specific to the case of 𝑝 = 2.

▶ Corollary 9 (Good ℓ𝑝-RIP and ℓ𝑝-spread of 𝐴). Fix 𝑝 ∈ [1, 2), 0 < 𝜀 < 1
2 , and suppose that

𝑠 ≥
(

18
𝛼𝜀2

) 1
2−𝑝 . Then, with high probability over 𝐴, the matrix 𝐴 is (Ω(𝛾𝑛), 𝜀)-ℓ𝑝-RIP for

𝛾 = 𝛼2

𝑡4
: for every Ω(𝛾𝑛)-sparse 𝑥 ∈ ℝ𝑛, it holds that

𝑡
1
𝑝 (1 − 𝜀) ∥𝑥∥𝑝 ≤ ∥𝐴𝑥∥𝑝 ≤ 𝑡

1
𝑝 (1 + 𝜀) ∥𝑥∥𝑝 .

In particular, the subspace ker(𝐴) is
(
Ω(𝛾𝑛),Ω

(
𝛾1− 1

𝑝

))
-ℓ𝑝-spread and Δ𝑝(ker(𝐴)) ≤

𝑂
(
1/𝛾2− 2

𝑝

)
.

Fixing 𝑝, 𝛼, 𝜀 to be constants and taking 𝑠 to be a large enough constant, this shows that
ker(𝐴) is (Ω(𝑛),Ω(1))-ℓ𝑝-spread with high probability, and therefore Δ𝑝(ker(𝐴)) = 𝑂(1).
Together with Theorem 3, this shows that the ℓ𝑝-spread property of ker(𝐴) exhibits an
interesting threshold phenomenon at 𝑝 = 2.

8 They also show that their proof for ℓ1-RIP extends to ℓ𝑝-RIP for 𝑝 ≤ 1 + 𝑂( 1
log 𝑛 ), because the “Hölder

factor” of 𝑛1− 1
𝑝 is 𝑂(1), but it does not extend to ℓ𝑝 for any constant 𝑝 > 1.
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We also combine Theorem 8 with the explicit constructions of expander graphs of [12] to
obtain the following corollary, which gives an explicit construction of ℓ𝑝-RIP matrices for
all 𝑝 ∈ [1, 𝑝0), where 1 < 𝑝0 < 2 is an absolute constant. We thus obtain the first explicit
construction of a matrix 𝐵 achieving the “ℓ𝑝/ℓ1 guarantee” for the robust sparse recovery
problem, and our matrices are for the regime 𝑘 = Θ(𝑛) and any 𝑝 ∈ [1, 𝑝0). Previously, such
constructions were only known for 𝑝 ≤ 1 + 𝑂

(
1

log 𝑛

)
[6]. Unlike Corollary 9, our explicit

constructions only extend up to some threshold 𝑝0 < 2. This is because the expanders
of [12] achieve weaker expansion than random graphs. Concretely, the “expansion error” 𝜇
of the [12] expanders is 𝜇 = 𝑂(1/𝑡)𝜏 for some constant 𝜏 < 1, which yields the threshold of
𝑝0 = 1 + 𝜏, whereas random graphs achieve 𝜇 = 𝑂(1/𝑡), allowing for 𝑝0 = 2.

▶ Corollary 10 (Explicit construction of ℓ𝑝-RIP matrices). Let 0 < 𝜀 < 1
2 , 𝛼 ∈ (0, 1), and

let 𝑛 ∈ ℕ be sufficiently large. For some universal constant 1 < 𝑝0 < 2, there exists a
deterministic algorithm which, given 𝑝 ∈ [1, 𝑝0), 𝜀, 𝛼 and 𝑛, outputs in time poly(𝑛/𝛿) +
2𝑂(1/𝛿) a matrix 𝐵 ∈ {0, 1}𝑚×𝑛, for some 𝑚 ≤ 𝛼𝑛, such that 𝐵 is (𝛾𝑛, 𝜀)-ℓ𝑝-RIP, for some
𝛿, 𝛾 = poly(𝜀, 𝛼)

1
𝑝0−𝑝 . In particular, ker(𝐵) is (𝛾𝑛, 𝛾1− 1

𝑝 )-ℓ𝑝-spread and Δ𝑝(ker(𝐵)) ≤ 1/𝛾2− 2
𝑝 .

Note that as 𝜀, 𝛼 and 𝑝 are constants, the matrix 𝐵 in Corollary 10 is (Ω(𝑛), 𝑂(1))-ℓ𝑝-RIP,
ker(𝐵) is (Ω(𝑛),Ω(1))-ℓ𝑝-spread, and Δ𝑝(ker(𝐵)) ≤ 𝑂(1).

As noted earlier, [23] gives explicit constructions of (Ω(𝑛),Ω(1))-ℓ𝑝-spread subspaces, for
all 1 ≤ 𝑝 < 2. This is incomparable to Corollary 10: on one hand, [23] obtains the full range
of 1 ≤ 𝑝 < 2, but on the other hand, his matrices only are ℓ𝑝-spread and do not satisfy the
(strictly stronger) ℓ𝑝-RIP. Our construction is moreover the “simplest” black-box reduction
to expansion: we show that the mere adjacency matrix of a bipartite expander is ℓ𝑝-RIP.
While the constructions in [23] are themselves not too complicated, we think that this is
nonetheless an interesting conceptual contribution of our work.

Finally, we also prove the following partial converse to Corollary 9, which shows that
when 𝑠2−𝑝 ⪅ 1

𝛼 (i.e., 𝑠2−𝑝 is a constant factor below the threshold in Corollary 9), then 𝐴 is
not ℓ𝑝-RIP.

▶ Theorem 11 (Partial converse to Corollary 9). Let 𝑝 ∈ [1, 2), 𝜀 > 0. If 𝑠 − 1 ≤
(

1
(1+𝜀)𝛼

) 1
2−𝑝 ,

then with high probability over 𝐴, there exists an 𝑛𝑐-sparse vector 𝑥 ∈ ℝ𝑛 \ {0𝑛} such that

∥𝐴𝑥∥𝑝
∥𝑥∥𝑝

≤ 𝑡
1
𝑝 · 𝑚−Ω

(
𝜀

log 𝑠

)
.

Note that ∥𝐴𝑒1∥𝑝 /∥𝑒1∥𝑝 = 𝑡
1
𝑝 always holds, so Corollary 9 demonstrates that, given small

enough 𝑠, the ratio ∥
𝐴𝑥∥𝑝
∥𝑥∥𝑝

has a large range over different choices of 𝑛𝑐-sparse 𝑥.

2 Proof overview

We outline the proofs of our results. For the purposes of this exposition, we will adopt the
same convention as in Section 1.2 and use 𝐴 and 𝐵 to denote a uniformly sampled matrix
from ℳ𝑚,𝑛,𝑠,𝑡 and arbitrary matrix from {0, 1,−1}𝑚×𝑛 , respectively. Recall that ℳ𝑚,𝑛,𝑠,𝑡

denotes the set of (𝑠, 𝑡)-biregular matrices with entries in {0, 1,−1}, and that 𝑚
𝑛 = 𝑡

𝑠 = 𝛼 for
some constant 𝛼, and 𝑛 →∞. For simplicity of this exposition, in this section we restrict
ourselves to the regime 𝑠 = 𝑂(1) unless stated otherwise.
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We naturally associate with 𝐵 the bipartite graph 𝐺 = 𝐺𝐵 = (𝑉𝐿 , 𝑉𝑅 , 𝐸) with 𝑛 = |𝑉𝐿 |
left vertices, 𝑚 = |𝑉𝑅 | right vertices, and an edge between 𝑢 ∈ 𝑉𝐿 and 𝑟 ∈ 𝑉𝑅 if 𝐵𝑟,𝑢 ≠ 0.
We view the rows and columns of 𝐵 as indexed by 𝑉𝑅 and 𝑉𝐿, respectively, and identify ℝ𝑛

with ℝ𝑉𝐿 , and ℝ𝑚 with ℝ𝑉𝑅 . In addition, we define the function sign = sign𝐵 : 𝐸→ {1,−1},
which maps an edge {𝑢, 𝑟} as above to 𝐵𝑟,𝑢 . We note that the combination of 𝐺𝐵 and sign𝐵
completely describes 𝐵.

2.1 Theorem 3: ker(𝑨) in not ℓ2-spread
For simplicity, we only sketch here why ker(𝐴) is likely to contain an (𝑜(𝑛), 𝑜(1))-compressible
vector.

The proof of Theorem 3 consists of two steps. In the first step we find an 𝑜(𝑛)-sparse
vector 𝑥 ∈ ℝ𝑛 with ∥𝑥∥2 ≥ 1 and ∥𝐴𝑥∥2 ≤ 𝑜(1). In the second step we find a vector
𝑦 ∈ ker(𝐴) with ∥𝑦 − 𝑥∥2 ≤ 𝑜(1) · ∥𝑦∥2. In particular, 𝑦 is (𝑜(𝑛), 𝑜(1))-compressible, so ker(𝐴)
cannot be ℓ2-spread.

Below, we outline these two steps. It is straightforward to see, given the construction
described below, that both 𝑥 and 𝑦 can be computed in polynomial time given 𝐴.

We also note that an ℓ𝑝 analog of Step 1 is the main technical component in the proof of
Theorem 11.

Step 1: constructing a sparse 𝒙 with small ∥𝑨𝒙∥2. To obtain the vector 𝑥, we first prove
that 𝐺 is highly likely to contain a vertex 𝑣∗ ∈ 𝑉𝐿 such that the ball of radius 2ℓ + 1 about
𝑣∗, for some ℓ ≤ 𝑂(log 𝑛), contains no cycles. That is, the radius-ℓ neighborhood of 𝑣∗ is a
complete (𝑡 , 𝑠)-biregular tree 𝑇 rooted at 𝑣∗. Recall that a rooted tree is (𝑡 , 𝑠)-biregular if
the even depth (resp. odd depth) inner vertices have degree 𝑡 (resp. s). The existence of such
a vertex 𝑣∗ is the only random property of 𝐴 needed in this step of the proof. In particular,
assuming that 𝐺 has the aforementioned property, our construction of 𝑥 is always possible,
regardless of the sign function.

To describe the construction of 𝑥 itself, we assume for simplicity that sign(𝑒) = 1 for all
𝑒 ∈ 𝐸. Namely, all the non-zero entries of 𝐴 are 1. In this setting, let 𝑣 ∈ 𝑉𝐿 ∩ 𝑇 be a vertex
of depth 2𝑘 in the tree for some 𝑘 ≥ 0 (note that a vertex in 𝑉𝐿 must have even depth), and
set 𝑥𝑣 = (−(𝑠 − 1))−𝑘 . For any 𝑥 ∈ 𝑉𝐿 \ 𝑇, set 𝑥𝑣 = 0. Note that supp(𝑥) ⊆ 𝑇. We choose ℓ
above to be as large as possible, i.e., 𝑂(log 𝑛), so that the size of 𝑇 is roughly 𝑛𝑐 for some
𝑐 < 1. In particular, 𝑥 is ≈ 𝑛𝑐-sparse. Also, note that ∥𝑥∥22 ≥ 𝑥2

𝑣∗ = 1. We informally refer to
the vector 𝑥 produced by this construction as a tree vector.

Our construction guarantees that (𝐴𝑥)𝑟 = 0 for every internal node 𝑟 ∈ 𝑇 ∩𝑉𝑅. Indeed,
suppose that 𝑟 is of depth 2𝑘 + 1. Then, it has one neighbor of depth 2𝑘, and 𝑠 − 1
neighbors of depth 2𝑘 + 2. As (𝐴𝑥)𝑟 is the sum of 𝑥𝑣 over neighbors 𝑣 of 𝑟, we have
(𝐴𝑥)𝑟 = (−(𝑠 − 1))−𝑘 + (𝑠 − 1) · (−(𝑠 − 1))−(𝑘+1) = 0.

To compute ∥𝐴𝑥∥2, it thus suffices to compute |(𝐴𝑥)𝑟 | when 𝑟 is one of the 𝑡(𝑡−1)ℓ (𝑠−1)ℓ
leaves of 𝑇. It is not hard to see that in this case |(𝐴𝑥)𝑟 | = (𝑠 − 1)ℓ , and so

∥𝐴𝑥∥22 = 𝑡(𝑡 − 1)ℓ (𝑠 − 1)ℓ · (𝑠 − 1)−2ℓ = 𝑒−Ω(ℓ ) = 𝑜(1) .

We note that our tree vector construction is similar in spirit to a construction by Noga
Alon [18, Theorem 8], which demonstrates the limitations of expander-based analysis of the
spread property. In [18], however, they choose their graph 𝐺 so that (their analog of) the
tree vector 𝑥 will lie in (their analog of) ker(𝐴) by design. Our graph is random and not
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up to our choice, so we cannot simply orchestrate the graph so that our tree vector 𝑥 to
belong to ker(𝐴). This necessitates that we perform the nontrivial step of rounding 𝑥 to
some 𝑦 ∈ ker(𝐴), which we discuss next.

Step 2: finding 𝒚 ∈ ker(𝑨) close to 𝒙. Our main goal in this step is to establish the
following lemma:

▶ Lemma 12 (Informal). With high probability over 𝐴, it holds that every 𝑥 ∈ ℝ𝑛 with
∥𝐴𝑥∥2 ≤ 𝑜(1) is 𝑜(1)-close to some vector 𝑦 ∈ ker(𝐴).

Indeed, let 𝑥 be the tree vector constructed in Step 1. Then 𝑥 is 𝑜(𝑛)-sparse with ∥𝑥∥2 ≥ 1
and ∥𝐴𝑥∥2 ≤ 𝑜(1). By Lemma 12, there exists a vector 𝑦 ∈ ker(𝐴), which is 𝑜(1)-close to 𝑥.
This vector 𝑦 is (𝑜(𝑛), 𝑜(1))-compressible, which yields Theorem 3 in the present parameter
setting.

One may naively try to prove Lemma 12 by locally perturbing 𝑥 to try to make 𝐴𝑥 = 0𝑚 ,
e.g. by designing a greedy algorithm for this task. This approach, however, seems difficult to
execute, especially given that Lemma 12 is in fact not true in general. For example, it could
be the case that 𝑥 is a (unit norm) right singular vector of 𝐴 with singular value 𝑜(1). Then,
∥𝐴𝑥∥2 = 𝑜(1), but ∥𝑥 − 𝑦∥2 ≥ 1 for all 𝑦 ∈ ker(𝐴), and in fact the closest vector in ker(𝐴) to
𝑥 is 0𝑛 .

Instead, we set 𝑦 to be the orthogonal projection of 𝑥 onto ker(𝐴). In hindsight, this
is the obvious choice for 𝑦, as then 𝑦 ∈ ker(𝐴) is the vector that minimizes ∥𝑥 − 𝑦∥2. How
large can ∥𝑥 − 𝑦∥2 be? Intuitively, we would like to say that ∥𝐴𝑥∥2 being small implies that
∥𝑥 − 𝑦∥2 is small as well. As the earlier example shows, this is not true for a general matrix
𝐴, as 𝐴 could have small singular values. However, the implication does hold provided that
all singular values of 𝐴 are Ω(1).9 Indeed, the singular value decomposition of 𝐴 implies that

∥𝐴𝑥∥2 = ∥𝐴(𝑥 − 𝑦)∥2 ≥ 𝜎min(𝐴) ∥𝑥 − 𝑦∥2 ,

where 𝜎min(𝐴) is the minimum singular value of 𝐴 and the inequality holds as 𝑥 − 𝑦 is
orthogonal to ker(𝐴). Hence, ∥𝑥 − 𝑦∥2 ≤

∥𝐴𝑥∥2
𝜎min(𝐴) .

The main technical component of Step 2 is therefore the lower bound on 𝜎min(𝐴), given
by Theorem 4. As we have argued above, the crude lower bound of 𝜎min(𝐴) ≥ Ω(1) suffices
to yield Lemma 12. Indeed, if 𝜎min(𝐴) ≥ Ω(1), then ∥𝑥 − 𝑦∥2 ≤ 𝑜(1), and so ker(𝐴) contains
an (𝑜(𝑛), 𝑜(1))-compressible vector. The precise high-probability lower bound on 𝜎min(𝐴)
established in Theorem 4 implies a finer quantitative version of Lemma 12, which yields the
full Theorem 3. The latter gives a much sharper bound on the 𝑜(1) term, and also applies to
sparsity all the way up to 𝑂 (𝑛𝑐) for some 𝑐 > 0.

We remark that one can easily show that 𝜎min(𝐴) ≥
√
𝑠 − 𝑂(

√
𝑡) via “off-the-shelf”

methods, such as [2]. However, this would only allow us to prove Theorem 3 provided that
𝛼 ≤ 𝑐 for some absolute constant 𝑐 < 1 (related to the 𝑂(1) factor in front of

√
𝑡 above), and

thus would not allow us to take 𝛼 to be any constant in (0, 1), e.g., 𝛼 = 0.999. Our sharper
bound also highlights the difficulty in lower bounding the minimum singular value when
𝛼 = 𝑚/𝑛 is close to 1.

We postpone our discussion of the proof of Theorem 4 to Section 2.3, and turn next to
our positive result for ℓ𝑝-spread for 𝑝 < 2.

9 Technically, what matters is the minimum nonzero singular value. However, with high probability
the matrix 𝐴 will be full rank (i.e., rank 𝑚), so that 𝜎min(𝐴) > 0. Indeed, this is trivially implied by
Theorem 4.
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2.2 Theorem 8: ℓ𝒑-RIP for 𝒑 < 2 from vertex expansion
We sketch the proof of Theorem 8. For simplicity, we will assume that 𝐵 ∈ ℳ𝑚,𝑛,𝑠,𝑡 , i.e.,
that the bipartite graph 𝐺𝐵 is 𝑡-left-regular and 𝑠-right-regular (and hence 𝑠max = 𝑠) and
also that 𝐺𝐵 is a (𝛾, 𝜇)-unique expander. For this exposition, we only discuss the claimed
lower bound on ∥𝐵𝑥∥𝑝 stated in the theorem, namely,

∥𝐵𝑥∥𝑝 ≥ 𝑡
1
𝑝 (1 − 𝜀) ∥𝑥∥𝑝 (1)

for all 𝛾𝑛-sparse 𝑥 ∈ ℝ𝑛 , as the upper bound is obtained via a variation on the same method.

Theorem 8 for tree vectors. As a warm-up for the proof of Theorem 8, we show why
the 𝑜(𝑛)-sparse tree vector 𝑥 constructed in Section 2.1 does not yield a counterexample to
Equation (1). Let 𝑥(𝑘) (0 ≤ 𝑘 ≤ ℓ) denote the restriction of 𝑥 to the vertices in the 2𝑘-th
level of the tree 𝑇. Then,


𝑥(𝑘)


𝑝

𝑝
= 𝑡(𝑡 − 1)𝑘−1(𝑠 − 1)(1−𝑝)𝑘 .

For 𝑝 = 2, this expression decreases exponentially in 𝑘, and thus the ℓ2-mass of 𝑥 is
concentrated at the top of the tree. For 𝑝 < 2, however,



𝑥(𝑘)

𝑝
𝑝

actually grows exponentially
in 𝑘 provided that 𝑠 is large enough (concretely, one needs 𝑠2−𝑝 ⪆ 1

𝛼 ).10 In this case, the
ℓ𝑝-mass is concentrated towards the bottom of the tree. Moreover, one can take 𝑠 large
enough so that all but an 𝜀

2 -fraction of the mass lies in the bottom layer. Then,

∥𝐵𝑥∥𝑝𝑝
∥𝑥∥𝑝𝑝

≥
(
1 − 𝜀

2

)
·
∥𝐵𝑥∥𝑝𝑝

𝑥(ℓ )

𝑝

𝑝

=

(
1 − 𝜀

2

)
· 𝑡(𝑡 − 1)ℓ (𝑠 − 1)(1−𝑝)ℓ

𝑡(𝑡 − 1)ℓ−1(𝑠 − 1)(1−𝑝)ℓ
=

(
1 − 𝜀

2

)
· (𝑡 −1) ≥ (1− 𝜀)𝑡 .

Hence, 𝑥 is not a counterexample to Equation (1).

Theorem 8 for general vectors with tree-shaped support. Fix a set 𝑆 ⊆ 𝑉𝐿 such that
the subgraph induced by 𝑇 := 𝑆 ∪ 𝑁(𝑆) is a (𝑡 , 𝑠)-biregular tree. We generalize the above
discussion of tree vectors by explaining why Equation (1) holds for any vector 𝑥 ∈ ℝ𝑛

supported on 𝑆.
Given 𝑟 ∈ 𝑁(𝑆), let 𝑣𝑟 denote the parent of 𝑟 in the tree 𝑇. In an overly optimistic

scenario, if we could show that |(𝐵𝑥)𝑟 | ≈ |𝑣𝑟 | for all 𝑟 ∈ 𝑁(𝑆), then we would be done, as
each vertex 𝑣 ∈ 𝑆 has 𝑡 − 1 children.11 Each of these children then contributes ≈ |𝑥𝑣 |𝑝 mass
to ∥𝐵𝑥∥𝑝𝑝 , so that ∥𝐵𝑥∥𝑝𝑝 ≈ (𝑡 − 1) ·∑𝑣∈𝑆 |𝑥𝑣 |𝑝 = (𝑡 − 1) · ∥𝑥∥𝑝𝑝 , implying Equation (1). As the
tree vector case shows, one cannot, in fact, hope to guarantee |(𝐵𝑥)𝑟 | ≈ |𝑣𝑟 | for all 𝑟 ∈ 𝑁(𝑆).
Indeed, for a tree vector 𝑥 we have (𝐵𝑥)𝑟 = 0 for any non-leaf 𝑟 ∈ 𝑁(𝑆). Thus, a more
delicate analysis is required.

For intuition, let us consider the viewpoint of an adversary seeking to construct an 𝑥

supported on 𝑆 such that ∥𝐵𝑥∥𝑝𝑝 is small. We shall think of the adversary as assigning values
to {𝑥𝑣}𝑣∈𝑆 starting from the root, and then moving down the tree.

For each non-leaf 𝑟 ∈ 𝑁(𝑆), let 𝑊𝑟 denote the set of 𝑠 − 1 children of 𝑟. Recall that 𝑣𝑟 is
the parent of 𝑟. Note that |(𝐵𝑥)𝑟 | ≥ |𝑥𝑣𝑟 | −

∑
𝑢∈𝑊𝑟
|𝑥𝑢 | due to the triangle inequality. Hence,

when assigning values to the vertices in 𝑊𝑟 , the adversary morally has two choices: (1) either

10And, indeed, if instead 𝑠2−𝑝 ⪅ 1
𝛼 , then we have ∥𝐵𝑥∥𝑝 = 𝑜(1), and this gives us Theorem 11.

11 Except for the root, which has 𝑡 children.
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make
∑
𝑢∈𝑊𝑟
|𝑥𝑢 | ≪ |𝑥𝑣𝑟 |, in which case |(𝐵𝑥)𝑟 | ≈ |𝑥𝑣𝑟 |, or (2) make |(𝐵𝑥)𝑟 | ≈ 0, in which case∑

𝑢∈𝑊𝑟
|𝑥𝑢 | ≈ |𝑥𝑣𝑟 |.12 Let us fix some 𝛽 < 1, and suppose that the adversary chooses values

for {𝑥𝑢}𝑢∈𝑊𝑟 such that
∑
𝑢∈𝑊𝑟
|𝑥𝑢 | ≤ 𝛽 |𝑥𝑣 |, i.e., the adversary chooses Case (1). We then have

that

|(𝐵𝑥)𝑟 | ≥
(
|𝑥𝑣𝑟 | −

∑
𝑢∈𝑊𝑟

|𝑥𝑢 |
)
≥ (1 − 𝛽)|𝑥𝑣𝑟 | ,

so |(𝐵𝑥)𝑟 | ≈ |𝑥𝑣𝑟 |, which is what we wanted. Next, suppose that the adversary makes∑
𝑢∈𝑊𝑟
|𝑥𝑢 | ≥ 𝛽 |𝑥𝑣 |, i.e., the adversary chooses Case (2). Then, |(𝐵𝑥)𝑟 | can be small, but

applying Hölder’s inequality, we have∑
𝑢∈𝑊𝑟

|𝑥𝑢 |𝑝 ≥
𝛽𝑝

(𝑠 − 1)𝑝−1 · |𝑥𝑣 |
𝑝 .

Now, suppose that all children 𝑟 of 𝑣𝑟 have this property. Then, the total ℓ 𝑝𝑝 mass of all of
the grandchildren of 𝑣𝑟 must be at least (𝑡−1)𝛽𝑝

(𝑠−1)𝑝−1 · |𝑥𝑣 |𝑝 ≫ |𝑥𝑣 |𝑝 . We thus see that, intuitively,
the adversary has merely pushed its task down to the grandchildren of 𝑣𝑟 , and in doing so
has not made any progress towards its overall goal. Indeed, this is precisely what happens in
the case of a tree vector!

The above informal argument shows that the adversary does not “win” in either case.
We can concretely capture this intuition via the following potential function:

𝑎𝑟(𝑥) := |(𝐵𝑥)𝑟 |𝑝 + Θ(1) · (𝑠 − 1)𝑝−1

𝜀𝑝−1

∑
𝑢∈𝑊𝑟

|𝑥𝑢 |𝑝 .

In the actual proof, this choice of 𝑎𝑟(𝑥) allows us to cleanly express the intuition that
either |(𝐵𝑥)𝑟 | is large or

∑
𝑢∈𝑊𝑟
|𝑥𝑢 | is large, and further extends beyond the “toy case” of

tree-supported vectors.

Using expansion when 𝑺∪𝑵(𝑺) is not a tree. We now turn to the general case, where the
subgraph induced by 𝑆∪𝑁(𝑆) (where 𝑆 = supp(𝑥)) is not necessarily a tree. We observe that
above, we are only using the tree structure to show that the rooted tree 𝑆 ∪ 𝑁(𝑆) trivially
has a 1-to-(𝑡 − 1) “matching” with the following properties: (1) every vertex 𝑟 ∈ 𝑁(𝑆) is
matched with exactly one vertex 𝑣 ∈ 𝑆, and (2) every vertex 𝑣 ∈ 𝑆 is matched with at least
𝑡 − 1 vertices in 𝑁(𝑆). Indeed, when 𝑆 ∪ 𝑁(𝑆) is a tree, such a matching exists by matching
each vertex 𝑟 ∈ 𝑁(𝑆) with its parent 𝑣𝑟 .

To generalize the above, we use the (unique) expansion of 𝐺 to construct a similar
matching that suffices for the proof. Recall that 𝐺 is a (𝛾, 𝜇)-unique expander, meaning that
every set 𝑆 ⊆ 𝑉𝐿 of size ≤ 𝛾𝑛 has at least 𝑡(1 − 𝜇)|𝑆 | unique neighbors, i.e., neighbors of a
unique element of 𝑆. We construct the matching by “peeling off” vertices one at a time from
𝑆, each time matching a vertex with ≥ 𝑡(1 − 𝜇) vertices in 𝑁(𝑆), namely its neighbors that
are not neighbors of any of the remaining “unpeeled” vertices in 𝑆.

The above step can be viewed as extracting a “tree-like” subgraph from 𝑆 ∪ 𝑁(𝑆), where
each vertex 𝑣 ∈ 𝑆 has at least 𝑡(1 − 𝜇) “children” (the vertices it was matched with), and
at most 𝜇𝑡 “parents” (its neighbors that it was not matched with). Each vertex 𝑟 ∈ 𝑁(𝑆)

12 Note that the adversary has the third choice of setting
∑
𝑢∈𝑊𝑟
|𝑥𝑢 | ≫ |𝑥𝑣𝑟 |, but this is worse for the

adversary.



V. Guruswami, P. Manohar, and J. Mosheiff 7:13

still has exactly one “parent” and ≤ 𝑠 − 1 “children”. Once we have the above “tree-like”
subgraph, the argument for trees goes through with only minor modifications, so this finishes
the proof.

We note that the existence of this “tree-like” subgraph for any set 𝑆 with |𝑆 | ≤ 𝛾𝑛
immediately implies that 𝐺 is a (𝛾, 𝜇)-vertex expander, and hence a (𝛾, 2𝜇)-unique expander.
Thus, the existence of such a subgraph for every 𝑆 of size at most 𝛾𝑛 is equivalent to unique
expansion, up to a factor of 2 loss in the parameter 𝜇.

Comparison with [6]. We briefly summarize the proof in [6] for the case of 𝑝 = 1, and
explain why their proof does not extend to the case of 𝑝 > 1.

The proof in [6] proceeds as follows. For a vector 𝑥 supported on 𝑆, let 𝐸0 denote the
set of edges between 𝑆 and 𝑁(𝑆). First, they match each 𝑟 ∈ 𝑁(𝑆) to its neighbor 𝑣 ∈ 𝑆
with |𝑥𝑣 | maximized. Let 𝐸1 be the set of edges in this matching, and let 𝐸2 = 𝐸0 \ 𝐸1.
For any 𝑟 ∈ 𝑁(𝑆), it then follows that |(𝐵𝑥)𝑟 | ≥ |𝑥𝑣 | −

∑
𝑢∈𝑊𝑟
|𝑥𝑢 |, where (𝑣, 𝑟) ∈ 𝐸1 and

𝑊𝑟 = {𝑢 : (𝑢, 𝑟) ∈ 𝐸2}. Hence, ∥𝐵𝑥∥1 ≥
∑
(𝑣,𝑟)∈𝐸1 |𝑥𝑣 | −

∑
(𝑢,𝑟)∈𝐸2 |𝑥𝑢 |. We observe that this

step of the proof is specific to the ℓ1 norm, and does not generalize to larger ℓ𝑝 norms.
The main step in the proof is to argue that

∑
(𝑣,𝑟)∈𝐸2 |𝑥𝑣 | ≤ 𝑡𝜀 ∥𝑥∥1 using expansion. With

this in hand, it immediately follows that
∑
(𝑣,𝑟)∈𝐸1 |𝑥𝑣 | ≥ 𝑡(1− 𝜀) ∥𝑥∥1, because

∑
(𝑣,𝑟)∈𝐸0 |𝑥𝑣 | =

𝑡 ∥𝑥∥1 by regularity. It then follows that ∥𝐵𝑥∥1 ≥ 𝑡(1− 2𝜀) ∥𝑥∥1. Note that the upper bound
∥𝐵𝑥∥1 ≤ 𝑡 ∥𝑥∥1 is trivial, so this shows that 𝐵 is ℓ1-RIP.

One may attempt to generalize this proof to 𝑝 > 1 by replacing |𝑥𝑣 | with |𝑥𝑣 |𝑝 . For
example, using expansion it follows that

∑
(𝑣,𝑟)∈𝐸2 |𝑥𝑣 |𝑝 ≤ 𝑡𝜀 ∥𝑥∥

𝑝
𝑝 , and as

∑
(𝑣,𝑟)∈𝐸0 |𝑥𝑣 |𝑝 =

𝑡 ∥𝑥∥𝑝𝑝 , we then have
∑
(𝑣,𝑟)∈𝐸1 |𝑥𝑣 |𝑝 ≥ 𝑡(1 − 𝜀) ∥𝑥∥𝑝𝑝 . But this is not enough to complete the

proof, as it does not follow that ∥𝐵𝑥∥𝑝𝑝 ≥
∑
(𝑣,𝑟)∈𝐸1 |𝑥𝑣 |𝑝 −

∑
(𝑣,𝑟)∈𝐸2 |𝑥𝑣 |𝑝 . Indeed, this is a

fundamental barrier, and is the reason why our analysis for 𝑝 ≥ 1 proceeds by analyzing the
“local” potential function 𝑎𝑟(𝑥), rather than the two “global” sums over 𝐸1 and 𝐸2 above.

2.3 Theorem 4: bounds on the singular values of 𝑨

We give a brief overview of the proof of Theorem 4. First, we observe that in order to bound
the singular values of 𝐴, it suffices to bound the spectrum of 𝑀 := 𝐴𝐴⊤ − 𝑠 · 𝐼, as each
singular value of 𝐴 is the square root of an eigenvalue of 𝐴𝐴⊤. Note that 𝑀 is a square
matrix with an all-0 diagonal, by regularity of 𝐴.

Step 1: reducing to the nomadic walk matrix via a modified Ihara–Bass formula. The
first step in the proof is to relate bounds on the spectrum of 𝑀 to the spectral radius (i.e.,
maximum eigenvalue in absolute value) 𝜌(𝐵) of 𝐵, the nomadic walk matrix introduced in
[27].13 The nomadic walk matrix 𝐵 is indexed by pairs of edges14 (𝑒1 , 𝑒2) in 𝐺 that form
a length 2 non-backtracking walk in 𝐺, and its ((𝑒1 , 𝑒2), (𝑒′1 , 𝑒′2))-th entry is sign(𝑒′1)sign(𝑒′2)
if 𝑒1 → 𝑒2 → 𝑒′1 → 𝑒′2 forms a non-backtracking walk of length 4 in 𝐺, and is 0 otherwise.
Note that 𝐵 is not symmetric.

13We note that one could most likely also prove Theorem 4 using the standard nonbacktracking walk
matrix and Ihara–Bass formula, e.g., with similar methods as in [9].

14 In [27], the nomadic walk matrix is indexed by directed edges. In our context, this is equivalent to a
length 2 oriented walk 𝑒1 → 𝑒2, which is equivalent to a pair (𝑒1 , 𝑒2) of undirected edges, as the ordering
in the pair gives the unique orientation 𝑒1 → 𝑒2 in the walk.
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▶ Theorem 13 (Modified Ihara–Bass formula, Theorem 3.1 of [27], informal). If 𝜌(𝐵) ≤
(1 + 𝑜(1))

√
(𝑠 − 1)(𝑡 − 1), then the spectrum Spec(𝑀) of 𝑀 satisfies:

Spec(𝑀) ⊆ [𝑡 − 2 − 2(1 + 𝑜(1))
√
(𝑠 − 1)(𝑡 − 1), 𝑡 − 2 + 2(1 + 𝑜(1))

√
(𝑠 − 1)(𝑡 − 1)] .

The above theorem thus shows that it suffices to prove that 𝜌(𝐵) ≤ (1 + 𝑜(1))
√
(𝑠 − 1)(𝑡 − 1)

with high probability.
We remark that bounds on the spectra of matrices of the form of 𝑀 were studied in

[27] for the case of 𝑠 = 𝑂(1). Unfortunately, this is insufficient to prove Theorem 4, as we
wish to allow 𝑠 to be any function of 𝑛 (provided that 𝑠 ≤ 𝑛𝑐 for some absolute constant 𝑐).
However, [27, Theorem 3.1] is a general statement that holds regardless of 𝑠, so we can make
use of it in our setting.

Step 2: bounding 𝝆(𝑩) via the trace method by counting hikes. The natural approach to
bound 𝜌(𝐵) is by applying the trace method. As the matrix 𝐵 is not symmetric, we compute:

𝑇 := 𝔼sign[tr(𝐵ℓ (𝐵⊤)ℓ )] ,

where the expectation is taken over the function sign that determines the signs of the entries
of 𝐴. By carefully expanding this expectation, one can show that the nonzero contributions
to 𝑇 roughly come from length 4(ℓ − 1) closed walks in 𝐺 where (1) each edge in the walk
appears an even number of times, and (2) the walk is non-backtracking, except possibly at
the middle step in the walk. Such walks (of length 4ℓ ) are commonly referred to as (2ℓ )-hikes
[26].

To finish the proof of Theorem 4, we thus turn to obtaining a careful bound on the
number of such walks.

Counting these walks requires extra care in our setting as our graph is bipartite, and so
the bound needs to be sensitive to the difference in right/left degree. The counting of such
hikes also differs greatly depending on whether 𝑠 ≤ polylog(𝑛) or 𝑠 = 𝜔(polylog(𝑛)).

Step 3: counting the number of hikes when 𝒔 ≤ polylog(𝒏). [26, Section 3] counts the
number of such hikes when 𝑠 = 𝑂(1), provided that 𝐺 is bicycle-free at radius 𝑂(log 𝑛).
Namely, any vertex 𝑣 participates in at most one cycle of length 𝑂(log 𝑛). By repeating their
proof, one can show that their bounds can be extended to the case when 𝑠 ≤ polylog(𝑛).
However, we still cannot use their bound on the number of such hikes naively, as their
counting is for non-bipartite graphs and thus yields a bound of 𝑚(1 + 𝑜(1))ℓ (𝑠 − 1)2ℓ , simply
because it treats left and right vertices the same, and the maximum degree of a vertex is 𝑠.
We refine their approach to ensure that right and left vertices contribute roughly equally,
which will yield the desired bound. One may, at first glance, be tempted to assume that this
is trivial because a closed walk in a bipartite graph has an equal number of left and right
vertices, but this is not the case, as we shall see.

We adopt the bookkeeping approach of [26]. We think of a hike as discovering the graph
𝐺 as one traverses the hike. A step in a hike is fresh if uses an edge for the first time and
ends at a previously undiscovered vertex; it is boundary if it uses an edge for the first time
but ends up at an old vertex; finally, it is stale if it uses an old edge.

Because each edge must appear an even number of times, a hike can have at most 2ℓ
fresh steps. Each fresh step “pays” a factor of (𝑠 − 1) (if we move from a right to a left vertex)
or (𝑡 − 1) (if we move from a left to a right vertex) in our bound in the number of hikes, as
this is the number of choices for the next vertex that the hike moves to. [26, Theorem 2.13]
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implies that, since 𝐺 is bicycle-free, the number of boundary steps is ≪ ℓ ; they also show
that one can bound the “number of choices” for the stale steps by some small factor, which
we ignore here.

We need to augment the argument of [26] with the following addition: if a hike has 𝑐 fresh
steps, then the number of fresh steps 𝑐𝑅 that start at a right vertex is ≈ 𝑐

2 , and similarly
for 𝑐𝐿 for left vertices. Note that by definition, 𝑐 = 𝑐𝑅 + 𝑐𝐿. The key observation is that a
fresh step from a right (resp. left) vertex must be followed by either a fresh step from a left
(resp. right) vertex, or by a boundary step. Indeed, after we take a fresh step we are at a
previously unvisited vertex, so the next step must use a new edge; in particular, it cannot be
stale. This implies that the deviation of each of 𝑐𝐿 , 𝑐𝑅 from 𝑐

2 is bounded by the number of
boundary steps, which is ≪ ℓ .

This implies a bound of 𝑚(1 + 𝑜(1))ℓ (𝑠 − 1)ℓ (𝑡 − 1)ℓ on the number of hikes, provided
that 𝑠 ≤ polylog(𝑛). The 𝑚 comes from the number of start vertices in the hike, and the
(1+ 𝑜(1))ℓ comes from the stale and boundary steps, as well as our new deviation term. This
yields the desired bound for sparse 𝑠.

Step 4: counting the number of hikes when 𝒔 = 𝝎(polylog(𝒏)). For 𝑠 this large, the
graph 𝐺 is “dense”, and so it will not be bicycle-free at radius 𝑂(log 𝑛). This rules out the
approach of [26], which relies on 𝐺 being bicycle-free. Instead, we adapt a standard counting
approach (for bounding the operator norm of a random 𝑛 × 𝑛 Gaussian matrix) given in [33,
Section 2.3.6] to our bipartite setting. Our crucial observation here is to note that any hike
can have at most ℓ distinct left vertices. As we pay a factor of (𝑠 − 1) every time we move to
a left vertex, it then follows that the “power” of (𝑠 − 1) in our bound can only be at most
ℓ . The standard counting argument of [33, Section 2.3.6] for Gaussian matrices then goes
through, yielding the desired bound.
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