
Trading Time and Space in Catalytic Branching
Programs
James Cook #

Independent Researcher1, Toronto, Canada

Ian Mertz #

University of Toronto, Canada

Abstract
An m-catalytic branching program (Girard, Koucký, McKenzie 2015) is a set of m distinct branching
programs for f which are permitted to share internal (i.e. non-source non-sink) nodes. While
originally introduced as a non-uniform analogue to catalytic space, this also gives a natural notion of
amortized non-uniform space complexity for f , namely the smallest value |G|/m for an m-catalytic
branching program G for f (Potechin 2017).

Potechin (2017) showed that every function f has amortized size O(n), witnessed by an m-
catalytic branching program where m = 22n−1. We recreate this result by defining a catalytic
algorithm for evaluating polynomials using a large amount of space but O(n) time. This allows us to
balance this with previously known algorithms which are efficient with respect to space at the cost of
time (Cook, Mertz 2020, 2021). We show that for any ϵ ≥ 2n−1, every function f has an m-catalytic
branching program of size Oϵ(mn), where m = 22ϵn

. We similarly recreate an improved result due
to Robere and Zuiddam (2021), and show that for d ≤ n and ϵ ≥ 2d−1, the same result holds for
m = 2(n

≤ϵd) as long as f is a degree-d polynomial over F2. We also show that for certain classes of
functions, m can be reduced to 2poly n while still maintaining linear or quasi-linear amortized size.

In the other direction, we bound the necessary length, and by extension the amortized size, of
any permutation branching program for an arbitrary function between 3n and 4n − 4.

2012 ACM Subject Classification Theory of computation → Computational complexity and
cryptography

Keywords and phrases complexity theory, branching programs, amortized, space complexity, catalytic
computation

Digital Object Identifier 10.4230/LIPIcs.CCC.2022.8

Related Version Full Version: https://eccc.weizmann.ac.il/report/2022/026/

Funding Ian Mertz: Partially funded by NSERC.

Acknowledgements The authors would like to thank Toniann Pitassi, Robert Robere, Jeroen
Zuiddam, and Aaron Potechin for many helpful discussions.

1 Introduction

In computational complexity, there is often a focus on analyzing the worst-case scenario
for a given computation model C and a given function f , but there are other natural cases
to consider. One such case is amortized computation, where our C algorithm computes
many copies of f in such a way that the average cost per copy may be much less than the
worst-case cost of computing f a single time.

1 Now at Amazon, Toronto, Canada.

© James Cook and Ian Mertz;
licensed under Creative Commons License CC-BY 4.0

37th Computational Complexity Conference (CCC 2022).
Editor: Shachar Lovett; Article No. 8; pp. 8:1–8:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:falsifian@falsifian.org
mailto:mertz@cs.toronto.edu
https://doi.org/10.4230/LIPIcs.CCC.2022.8
https://eccc.weizmann.ac.il/report/2022/026/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Trading Time and Space in Catalytic Branching Programs

Amortized analysis has typically been used in the context of (time-bounded) Turing
Machines, but studying the amortized complexity of syntactic – and in particular non-uniform
– computation models goes back just as far, such as Uhlig’s results on circuits computing
f on m different inputs. The study of amortized analysis for branching programs, a model
corresponding to non-uniform space-bounded complexity, was initiated by Potechin [11] and
later standardized by Robere and Zuiddam [12] for branching programs and other syntactic
models.

The amortized model was introduced by [8] in a different context, namely as a non-uniform
version of catalytic space, originally introduced in the uniform setting by Buhrman et al. [4]
as a new type of space-bounded complexity class. In a catalytic Turing Machine, there are
four tapes: as in a traditional space-bounded Turing Machine there is a read-only input tape
of length n, a write-only output tape of length 1, and a read-write work tape of length s(n),
but additionally we have a read-write catalytic tape of length 2O(s(n)). Ordinarily a tape of
this length would allow us to capture SPACE(2O(s(n))) rather than SPACE(s(n)), but the
catalytic tape comes with a catch: the entire tape is initialized to an arbitrary string τ , and
at the end of the computation it must contain that same string τ . Since the algorithm must
work for every string τ (so, for example, τ cannot be compressed), it seems as if we should
get no additional power over SPACE(s(n)). Buhrman et al. defied this intuition, showing
that when s(n) = O(log n), the catalytic tape allows us to compute any function in TC1, a
class which as far as we know is larger even than NL = NSPACE(s(n)).

Going to the non-uniform setting, an m-catalytic branching program for f [8] is defined
as having m start nodes, m 1-end nodes, and m 0-end nodes, where if we restrict to any
particular start node we get an ordinary branching program for f with a single start, 1-end,
and 0-end node, all of which are distinct for each different choice of the start node. To see
the connection to catalytic space, we can think of each start node as corresponding to a
different setting of a log m-length catalytic tape, where the “restoration” of the catalytic tape
is captured by the fact that the two end nodes corresponding to any start node are unique
to that start node. After defining this model and showing multiple results extending the
uniform arguments in [4], Girard, Koucký, and McKenzie [8] left open the question of how
large of an m-catalytic branching program is required to compute an arbitrary function f .

As observed by Potechin [11], this definition is also a natural interpretation of branching
programs in the amortized world, as our m-catalytic branching program can be thought of
as computing the function f m times. Thus in approaching the question left open by [8],
they also settled the question of the amortized space required for an arbitrary function f ;
they showed that every function f has an m-catalytic branching program of size O(mn), or
in other words amortized size O(n). The only catch is that the number of copies is doubly
exponential; specifically, there exists a (layered) m-catalytic branching program of width
2m and length 4n, where m = 22n−1. The branching program also has the nice property of
reading each input variable exactly 4 times, and thus this also has implications for read-k
branching programs for k = O(1).

In terms of amortized size, the result of [11] is clearly optimal up to constant factors, and
so following [8] the central open question they posed is to understand whether or not m can
be improved while maintaining linear amortized size, and what the implications of this result
may be. Taking up this challenge, Robere and Zuiddam [12] showed that any function f

can be computed by an m-catalytic branching program with the same parameters as [11]
even when m = 2(n

≤d)−1, where d is the degree of f as an F2 polynomial. Unfortunately
this doesn’t allow us to go beyond [11] for most functions, but it provides a much sharper
analysis for many functions that still appear quite difficult. The proof uses properties of F2
polynomials under permutations of the input variables.

J. Cook and I. Mertz 8:3

1.1 Our results
1.1.1 Main result
While the m-catalytic branching programs of [11, 12] can be viewed as catalytic algorithms
by definition, our initial aim is to restate these algorithms using the basic catalytic tools
derived in [4] and follow-up works. In particular we reprove their results using the natural
non-uniform variant of register programs, which were defined by Ben-Or and Cleve [3] as
space-bounded machines for computing simple arithmetic operations and were also the model
used in [4] for their results. Our non-uniform register program follows by extending previous
work on catalytic algorithms for the tree evaluation problem [5, 6], by adapting their register
program to optimize time rather than space.

More importantly, as a result of this connection, we can also exploit a trade-off between
space and time – here corresponding to m and length, respectively – in order to strongly
break the 22n−1 barrier for arbitrary functions. In Section 3, we show:

▶ Theorem 1. For any function f : {0, 1}n → {0, 1} and any ϵ ≥ 2n−1, there exists
an m-catalytic branching program of width 2m and length 21/ϵ · 2ϵn computing f , where
m = 2n+ 1

ϵ ·2ϵn .
Furthermore, if f is a degree-d polynomial over F2 and ϵ ≥ 2d−1, there is an m-catalytic

branching program of width 2m and length 21/ϵ · 2n and computing f , where m = 2n+ 1
ϵ (n

≤ϵd).

Focusing on the case when ϵ = Ω(1), this gives us a read-O(1) m-catalytic branching program
with m significantly less than 22n−1 for every function, as well as significantly less than
2(n

≤d)−1 for degree d functions.

1.1.2 Other results
As a bonus, this interpretation also allows us to show significant improvements on m (while
still maintaining linear amortized size) for some functions not covered by [12], in particular
all functions in TC0, the class of functions computable by low-depth threshold circuits of
polynomial size. By allowing the amortized size to increase to quasilinear, we can capture the
much larger class VP, which is the class of all polynomials computable by poly-size arithmetic
circuits. See the full version of the paper for proofs and discussions of these results.

▶ Theorem 2. Let f be a function which can be computed by a Boolean circuit C which
has depth O(1), size poly(n), and consists of unbounded fan-in MAJ gates. Then f can
be computed by an m-catalytic branching program of length O(n) and width 3m, where
m = 2poly(n).

Let F ∈ {Fp∈[poly n],Z,Q}, and let f be a function which can be computed by an arithmetic
circuit2 C over F which has depth O(log n), size poly(n), and consists of unbounded fan-in
+ gates and fan-in 2 × gates. Then for any ϵ > 0, f can be computed by an m-catalytic
branching program of length O(nϵ) · n and width 3m, where m = 2nO(1/ϵ) .

In Section 4, we study whether tradeoffs can be made in the other direction, namely
whether length 4n is optimal for m-catalytic branching programs of width O(m). We show
that a few modifications can bring the length down even while slightly improving the original

2 Our notion of an arithmetic circuit computing a Boolean function is the Boolean part of the circuit
class, meaning that for all inputs coming from {0, 1}n, the polynomial the circuit computes will either
evaluate to 0 or 1 over F. See e.g. [1] for more discussion of such models.

CCC 2022

8:4 Trading Time and Space in Catalytic Branching Programs

parameter m = 22n−1. As with the results of [11, 12] and our improvements, this program is
not only layered with optimal width 2m, but in fact can be made a permutation branching
program, meaning that each layer has exactly 2m nodes and the transition between layers is
restricted to be a permutation.3

▶ Theorem 3. For every function f , there is a read-4 permutation branching program of
width 2n+2n−1 and length 4n− 4 computing f .

To complement this result, we show that for such restricted programs and any m, even
the AND function cannot be computed by permutation programs of length less than 3n once
n ≥ 4. In fact our lower bound is very suggestive; it shows that any attempt to read any
variable less than three times results in a program exactly matching Theorem 3.

▶ Theorem 4. Any permutation branching program computing AND(x1, . . . , xn) which reads
some variable at most twice must have length at least 4n− 4.

Together these two results leave three questions: 1) what, between 3n and 4n− 4, is the
shortest length of a permutation branching program for an arbitrary function?; 2) can m

can be improved for programs of length 3n – or in general any fixed length?; and 3) can we
get any improvements by moving to more general programs?

2 Preliminaries

We introduce two space-bounded models of computation. Our first model is a variation of
branching programs, which are the standard syntactic (i.e. non-uniform) notion of space-
bounded computation (see [7]).

▶ Definition 5 (m-catalytic branching program [8]). Let n ∈ N and let f : {0, 1}n → {0, 1} be
an arbitrary function. An m-catalytic branching program is a directed acyclic graph G with
the following properties:

There are m source nodes and 2m sink nodes.
Every non-sink node is labeled with an input variable xi for i ∈ [n], and has two outgoing
edges labeled 0 and 1.
For every source node v there is one sink node labeled with (v, 0) and one with (v, 1).

We say that G computes f if for every x ∈ {0, 1}n and source node v, the path defined by
starting at v and following the edges labeled by the value of the xi labeling each node ends at
the sink labeled by (v, f(x)). The size of G is the number of non-sink nodes4 in G.

We also consider m-catalytic branching programs with standard restrictions:
layered branching programs: for some ℓ ∈ N, there exists a function σ : G→ [ℓ+1] such that
for all u ∈ G, the outgoing edges of u go to nodes v, w such that σ(v) = σ(w) = σ(u) + 1;
we call the set of nodes {v ∈ σ−1(j)} the jth layer. Furthermore for each j ∈ [ℓ] there
exists an input variable xji

which is the variable labeling every v ∈ σ−1(j).5 The width
of G is maxj∈[ℓ] |σ−1(j)| and the length of G is ℓ. Note that the size of G is at most the
product of the length and width of G.

3 It is likely m can be improved to 22n−1
by arguing directly about the branching program. E.g. our

Theorem 9 loses a similar factor compared to Potechin’s Theorem 3.1 [11], by using register programs.
4 This is somewhat non-standard, but when talking about layered branching programs this simplifies

things by defining the length as the number of times we read variables, which will in turn be connected
to the number of instructions in our register program model. This choice does not affect the asymptotics
of any results.

5 By construction layer ℓ + 1 will contain exactly the sink nodes of G. See the previous footnote for an
explanation of this somewhat non-standard convention.

J. Cook and I. Mertz 8:5

1

(1, 0)

(1, 1)

2

(2, 0)

(2, 1)

3

(3, 0)

(3, 1)

4

(4, 0)

(4, 1)

Sources

Sinks

1

(1, 0)

(1, 1)

2

(2, 0)

(2, 1)

3

(3, 0)

(3, 1)

4

(4, 0)

(4, 1)

Sources

Sinks

Figure 1 The computation of an m-catalytic branching program starting at source node i ends
at sink node (i, 0) if f(x) = 0 (left) or (i, 1) if f(x) = 1 (right). In these diagrams, m = 4.

read-k branching programs: for any start node v and any input x, each variable xi is
read at most k times during the computation starting at v. We note that for layered
branching programs, this corresponds to each variable xj labeling at most k layers.
permutation branching programs: consider a layered branching program of width 2m

with 2m source nodes S = {s1 . . . s2m} and 2m sink nodes T = {t1 . . . t2m}, and let
P (x) : [2m]→ [2m] be the function such that P (x)(i) = i′ where the computation path
starting from si on input x goes to ti′ . Then there exists a permutation σ∗ : [2m]→ [2m]
such that P (x) is the identity function when f(x) = 0 and P (x) = σ∗ when f(x) = 1.
This is not an m-catalytic branching program in the strict sense, and we will address this
model more precisely in Section 4.

Our second model comes from a line of work starting with [3], more recently fleshed out
in [4] and used in many follow-up works on catalytic computation [5, 6].

▶ Definition 6 (Transparent register program). Let R be a ring and f ∈ {0, 1}n → {0, 1}
a function. A register program P is defined by a set of registers S = {R1 . . . Rs, Rout},
each storing a value in R, plus an ordered list of t instructions where for every j ∈ [t]
the jth instruction is R ← R + pj(xi,S \ {R}) for some i ∈ [n], R ∈ S, and polynomial
pj ∈ R[x, y0 . . . ys].

We say that P computes f if for every x ∈ {0, 1}n, after initializing R = 0 for all registers
R and then executing all instructions in order, the value stored in Rout is f(x). We say that
P transparently computes f if instead of initializing all R to 0, each R begins in an arbitrary
initial state τi, and at the end of the program we have Rout = τout + f(x) and Ri = τi for
all i. The size of P is the number of registers s + 1 and the time of P is the number of
instructions t.

We use register programs as an abstraction for understanding m-catalytic branching
programs, which will be the model our main results will refer to. The two models are connected
through the following observation (see Figure 2 for an example of our construction).

▶ Observation 7. Let fn : {0, 1}n → {0, 1} be a family of functions and let Pn be a family of
register programs over a family of rings Rn with size s(n)+1 and time t(n) each transparently
computing fn. Then fn can be computed by a family of m-catalytic branching programs of
width |Rn|m and length t(n), where m = |Rn|s(n).

CCC 2022

8:6 Trading Time and Space in Catalytic Branching Programs

1: R1 ← R1 + x1
2: Rout ← Rout + R1x2
3: R1 ← R1 + x1
4: Rout ← Rout + R1x2

x1

0 0

x1

1 0

x2

0 0

x2

0 1

x2

1 0

x2

1 1

x1

0 0

x1

0 1

x1

1 0

x1

1 1

x2

0 0

x2

0 1

x2

1 0

x2

1 1

0 0

0 1

1 0

1 1

R1 = 1
Rout = 0

x1 = 0
x
1 =

1

2

1

(2, 0)

(2, 1)

(1, 0)

(1, 1)

Figure 2 A transparent register program computing AND(x1, x2), and its realization as a 2-
catalytic branching program using Observation 7. Each node is annotated (above, in boxes) with
the register values it stores, and each non-sink node is labelled (inside the circle) with the input to
be read. Dashed lines are transitions taken when that input is zero, and solid lines are taken when
the input is one. Finally, the source nodes are assigned the numbers 1 and 2 (since m = 2), and the
sink nodes are assigned pairs of numbers, so that like in the more abstract Figure 1, a computation
starting at source node v will end at end at sink node (v, f(x)). Note that nodes/edges that appear
in gray are unreachable from the start states and thus would not appear in the final branching
program; they appear only for reference as to how the register program translates to a branching
program.

Proof. We will define a branching program with width |Rn|s(n)+1 and length t(n). Each
layer will represent a stage in the register program and each node in a layer will represent a
setting to the registers at that time. Since each register program step only requires us to read
one input variable, at layer k we query the variable associated with step k in the register
program and create edges from each node in layer k to the nodes at layer k + 1 representing
the state of our memory after the step has completed. We label each input node as τ for
some distinct initial configuration τ = (τ1 . . . τs(n)) to all registers except Rout, and we treat
Rout as being initialized to 0. Then by the fact that P transparently computes f , starting at
node τ we are guaranteed to reach a node (τ, f(x)). Since in each layer we have a node for
every setting of the s(n) + 1 registers, the width of our branching program is |Rn|s(n)+1, and
since each non-output layer corresponds to a unique instruction from our register program,
the length of our branching program is t(n). ◀

▶ Note 8. In our computation we often include instructions of the form R← R + pj(R/{R}),
i.e. instructions that do not require reading a variable xi. By observing the above proof, it is
clear that such instructions do not add any length to the branching program, as they can be
computed at the same time as an adjacent instruction.

3 Saving Space

In this section we show that every function can be computed by an m-catalytic branching
program with size O(mn) for m≪ 22n−1 (improving on [11]) and m≪ 2(n

≤d)−1 (improving
on [12]). We present our algorithm in three steps:

J. Cook and I. Mertz 8:7

In Section 3.1 we show a simpler version of our algorithm which is sufficient to reproduce
– with a negligible loss in parameters – Potechin’s result [11] that any function can be
computed with a linear-amortized-size m-catalytic branching program. Our program has
length 4n and width 2m, where m = 22n+n.
In Section 3.2 we show how to trade off between m and amortized size, yielding for every
k ∈ [d] an m-catalytic branching program of length 2k · 4⌈n/k⌉ and width 2m, where
m = 2k·2⌈n/k⌉+n.
In Section 3.3 we show a simple modification of our first algorithm which reproduces –
again with a negligible loss – the result of Robere and Zuiddam [12] that m can be made
as small as 2(n

≤d)−1, where d is the degree of f as an F2 polynomial, with no cost to the
length. Our program has length 4n and width 2m, where m = 2(n

≤d)+n. We then show
that the tradeoff algorithm gives us an m-catalytic branching program of length 2k · 2n

and width 2m, where m = 2k·(n
≤⌈d/k⌉)+n.6

In these sections, our register programs will all operate over the field of two elements:
Rn = F2 for all n.

3.1 Basic Algorithm
In this section, we will prove:

▶ Theorem 9. For any function f : {0, 1}n → {0, 1} there is an m-catalytic branching
program with length 4n and width 2m that computes f , where m = 2n+2n .

This is proved by Algorithm 1 below. This nearly reproduces Potechin’s Theorem 3.1 [11],
but with a worse value m = 2n+2n instead of 22n−1. Nonetheless, we will find it a useful
starting point for our algorithm that trades space for time in Section 3.2.

Proof. We will design a program that uses n+2n work registers plus one output register Rout,
which is sufficient by Observation 7. First, we have n registers Rin

1 , . . . , Rin
n , corresponding

to the n input bits. This correspondence is given by the following subroutine:
1: procedure ToggleInput
2: for i = 1, . . . , n do
3: Rin

i ← Rin
i + xi

4: end for
5: end procedure

After ToggleInput runs, the registers have values Rin
i = τ in

i + xi, where τ in
i stands for the

initial value of Rin
i . If we run it a second time, the registers are restored to their original

values: Rin
i = τ in

i . Since we query all n variables once, ToggleInput requires time n to run
once.

Before defining our other 2n registers, we introduce an algebraic view of f , which will be
our main focus. We can view f as a multilinear polynomial pf ∈ F2[x1, . . . , xn] using basic
interpolation:

▶ Lemma 10. For any function f : {0, 1}n → {0, 1} there is a multilinear polynomial
pf ∈ F2[x1, . . . , xn] such that pf (#–x) = f(#–x) for all #–x ∈ {0, 1}n.

6 While the program of [12] matches or beats [11] for all d, our improved version of [12] is worse than
our improved version of [11] when d = Ω(n) (although still an improvement over the original results of
both papers), and thus we state and prove both results separately rather than subsuming our improved
version of [11].

CCC 2022

8:8 Trading Time and Space in Catalytic Branching Programs

Proof. For any #–y ∈ {0, 1}n, we can algebraically define the indicator function [#–x = #–y] as∏n
i=1(xi + yi + 1) ∈ F2[x1, . . . , xn]. Then we can set

pf =
∑

#–y ∈{0,1}n:f(#–y)=1

[#–x = #–y] ◀

Now define yi = τ in
i + xi; in other words, yi is the value of Rin

i after running ToggleInput.
Define qf (y1, . . . , yn, τ in

1 , . . . , τ in
n) = pf (y1 − τ in

1 , . . . , yn − τ in
n) to be the result of rewriting

pf using the yi and τi variables.7 For S, S′ ⊆ [n], let cS,S′ be the coefficient of
(∏

i∈S τ in
i

)
·(∏

i∈S′ yi

)
in qf , so that

qf (
–

τ in, #–y) =
∑

S,S′⊆[n]

cS,S′

(∏
i∈S

τ in
i

)(∏
i∈S′

yi

)

Note that S and S′ are disjoint whenever cS,S′ ̸= 0, because pf is multilinear. We now
introduce our other registers: we have 2n registers RS indexed by subsets S ⊆ [n]. Our next
subroutine prepares us to use these registers to compute qf :

1: procedure ToggleMonomials
2: ToggleInput
3: for S′ ⊆ [n] do
4: RS′ ← RS′ +

∏
i∈S′ Rin

i

5: end for
6: ToggleInput
7: end procedure

After ToggleMonomials runs, we have RS = τS +
∏

i∈S yi for each S ⊆ [n], where τS

stands for the register’s initial value. The Rin registers have their initial values Rin
i = τ in

i .
We run ToggleInput twice and have 2n additional instructions, but since the additional
instructions do not query any x variables they can be computed in the last x query of
ToggleInput, for a total runtime of 2n.

Our final algorithm for computing f is:

Algorithm 1 Transparently compute f in time 4n with n + 2n + 1 registers.

1: ToggleMonomials
2: Rout ← Rout +

∑
S,S′⊆[n] cS,S′

(∏
i∈S Rin

i

)
RS′

3: ToggleMonomials
4: Rout ← Rout −

∑
S,S′⊆[n] cS,S′

(∏
i∈S Rin

i

)
RS′

When Line 2 executes, we have RS′ = τS′ +
∏

i∈S′ yi, so after that line,

Rout = τout +
∑

S,S′⊆[n]

cS,S′

(∏
i∈S

τ in
i

)(
τS′ +

∏
i∈S′

yi

)
.

Then when Line 4 executes, we have RS′ = τS′ , so the final value is

Rout = τout +
∑

S,S′⊆[n]

cS,S′

(∏
i∈S

τ in
i

)(∏
i∈S′

yi

)
= τout + f(x1, . . . , xn).

7 For example, if f is the OR function f(x1, x2) = x1 ∨ x2, we have pf (x1, x2) = x1 + x2 + x1x2 and
qf (τ in

1 , τ in
2 , y1, y2) = y1 + τ in

1 + y2 + τ in
2 + y1y2 + y1τ in

2 + τ in
1 y2 + τ in

1 τ in
2 , and both are equal to f(x1, x2)

so long as #–y have the correct values.

J. Cook and I. Mertz 8:9

So Algorithm 1 correctly computes f . The space of the program is n + 2n by construction,
and as before we can ignore the instructions on lines 2 and 4 since they do not use x, giving
us a total runtime of 4n from the two calls to ToggleMonomials. ◀

3.2 Trading Space for Time
In this section, we will modify Algorithm 1 to make m dramatically smaller, in exchange for
making the branching program longer.

▶ Theorem 11. For any k ∈ N and any function f : {0, 1}n → {0, 1} there is an m-
catalytic branching program with length 2k · 2⌈n/k⌉ and width 2m that computes f , where
m = 2n+k·2⌈n/k⌉ .

Before jumping into the proof of Theorem 11, we will address the main innovation of our
work, namely trading off time for space. Namely we begin by building a register program
that takes time n2n+1 but uses only the n + 1 registers Rin

1 . . . Rin
n , Rout. This is similar to

what Theorem 11 guarantees when k = n.
As in Sections 3.1 and 3.3, let pf ∈ F2[x1, . . . , xn] be f as a polynomial, let qf ∈

F2[τ in
1 , . . . , τ in

n , y1, . . . , yn] be equal to pf so long as yi = τ in
i + xi for all i, and let cS,S′ be the

coefficient of
(∏

i∈S τ in
i

) (∏
i∈S′ yi

)
in qf . We define a small generalization of ToggleInput,

where we can choose to toggle only a subset of our inputs:
1: procedure ToggleSomeInputs(S’)
2: for i ∈ S′ do
3: Rin

i ← Rin
i + xi

4: end for
5: end procedure

Using ToggleSomeInputs(S’), we can replace the register RS′ in Algorithm 1 with a
separate set of instructions that computes the corresponding term of qf :

Algorithm 2 A slow algorithm for computing qf .

1: for S′ ⊆ [n] do
2: ToggleSomeInputs(S’)
3: Rout ← Rout +

∑
S⊆[n] cS,S′ ·

∏
i∈S∪S′ Rin

i

4: ToggleSomeInputs(S’)
5: end for

Whenever Line 3 is executed, Rin
i = yi for i ∈ S′, and Rin

i = τ in
i for i ̸∈ S′. By

construction of qf , S and S′ are disjoint whenever cS,S′ ̸= 0, from which it follows that
Rin

i = τ in
i for i ∈ S. Thus the effect of Line 3 is to add

∑
S⊆[n] cS,S′

(∏
i∈S τ in

i

) (∏
i∈S′ yi

)
to

Rout. Since this is run for every subset S′, the overall effect of the program is to add

∑
S,S′⊆[n]

cS,S′

(∏
i∈S

τ in
i

)(∏
i∈S′

yi

)
= pf (x1 . . . xn)

to Rout.
We now give an overview of the full proof. Our goal is to balance Algorithms 1 and 2 by

removing the registers RS corresponding to large subsets S and using slow multiplication to
build the polynomial qf from the remaining small subsets. In particular, if we divide the
input bits into k groups each of size ⌈n/k⌉, and only store all subsets within each group, then

CCC 2022

8:10 Trading Time and Space in Catalytic Branching Programs

any monomial cS,S′
∏

i∈S τ in
i

∏
i∈S′ yi can be computed by multiplying together one subset

from each group, namely the restriction of S to the group. Instead of 2n registers for all
subsets, we use only k · 2⌈n/k⌉ registers corresponding to subsets in the k groups, and we can
compute all the corresponding monomials into these registers in time 2n using the first half
of Algorithm 1. Then since we are only multiplying k monomials together, we can compute
qf using Algorithm 2 in time 2k · 2 · 2n, since each call to ToggleSomeInputs is replaced
with our 2n time execution of Algorithm 1.

As a slight last speedup, we use a Gray code to order our subsets in Algorithm 2, replacing
two executions of ToggleSomeInputs with a subroutine toggling a single group on or off
and only spending 2⌈n/k⌉ time to do so. This allows us to compute qf in 2k · 2⌈n/k⌉ time
rather than 2k · 4n time.

Proof of Theorem 11. For j ∈ [k] let bj = ⌈nj/k⌉, and divide the range [n] into k groups:
G1 = {1, . . . , b1}, G2 = {b1 + 1, . . . , b2}, . . . , Gk = {bk−1 + 1, . . . , bn = n}. For each group Gj ,
we have 2|Gj | registers Rj,S indexed by subsets S ⊆ Gj . As in all previous algorithms we also
use n registers Rin

1 , . . . , Rin
n , corresponding to the n input bits, for a total of n +

∑k
j=1 2|Gj |

registers plus the output register Rout.
We’ll begin by rewriting the polynomial qf in a new form. Recall from Section 3.1 that

qf (
–

τ in, #–y) = f(x) so long as #–y = #–x +
–

τ in, and

qf (
–

τ in, #–y) =
∑

S,S′⊆[n]

cS,S′

(∏
i∈S

τ in
i

)(∏
i∈S′

yi

)

Now, for every S′ ⊆ [n], define S′
j := S′ ∩ Gj . For each j ∈ [k] and S ⊆ Gj , let zj,S =

τj,S +
∏

i∈S yi, where τj,S is the initial value of register Rj,S . Now for every monomial in qf ,
we split the term

∏
i∈S′ yi in the monomial into k different products

∏
i∈S′

j
yi, each of which

we can replace with zj,S′
j
− τj,S′

j
. This gives us a new polynomial

rf (
–

τ in, #–τ , #–z) =
∑

S,S′⊆[n]

cS,S′

(∏
i∈S

τ in
i

) k∏
j=1

(zj,S′ − τj,S′)

 .

As we did with qf , for S, S′ ⊆ [n] and T ⊆ [k], let dS,S′,T be the coefficient of (
∏

i∈S τ in
i) ·

(
∏

j∈T zj,S′
j
) · (
∏

j∈[k]\T τj,S′
j
) in rf , so that

rf (
–

τ in, #–τ , #–z) =
∑

S⊆[n]

∑
S′⊆[n]

∑
T ⊆[k]

dS,S′,T

(∏
i∈S

τ in
i

)∏
j∈T

zj,S′
j

 ∏
j∈[k]\T

τj,S′
j


which is equivalent to f(x1 . . . fn) as long as zj,S′

j
= τj,S′

j
+
∏

i∈S′
j
(xi + τ in

i + 1).
Following ToggleSomeInputs(S′), we define new versions of ToggleInput and

ToggleMonomials from Section 3.1 which focus on some groups and not others. In fact
we will only focus on a single group Gj rather than a subset of the groups, as we will order
our subsets S′ in such a way that we will only ever need to toggle one group at a time:

1: procedure ToggleInputForGroup(j)
2: for i ∈ Gj do
3: Rin

i ← Rin
i + xi

4: end for
5: end procedure

J. Cook and I. Mertz 8:11

1: procedure ToggleMonomialsForGroup(j)
2: ToggleInputForGroup(j)
3: for S ⊆ Gj do
4: Rj,S ← Rj,S +

∏
i∈S Rin

i

5: end for
6: ToggleInputForGroup(j)
7: end procedure

We are now ready to assemble Algorithm 4, which completes the proof of Theorem 11.
To incorporate our improvement using Gray codes [9], let T0 = ∅, . . . , T2k−1 be an ordering
of all subsets of [k] such that each consecutive pair of sets Tℓ, Tℓ+1 mod 2k differs by exactly
one element eℓ ∈ [k]; thus we will only need to toggle the group Geℓ

as claimed:

Algorithm 3 Transparently compute f in time 2k · 2⌈n/k⌉ with n + k · 2⌈n/k⌉ registers.

1: for ℓ = 0, . . . , 2k − 1 do
2: Rout ← Rout +

∑
S⊆[n]

∑
S′⊆[n] dS,S′,Tℓ

(∏
i∈S Rin

i

) (∏k
j=1 Rj,S′

j

)
3: ToggleMonomialsForGroup(eℓ)
4: end for

Each time Line 2 is reached, we have Rj,S = τj,S +
∏

i∈S yj for j ∈ Tℓ, and Rj,S = τj,S

for j ∈ [k] \ Tℓ. We also have Rin
i = τ in

i for each i ∈ [n]. So the effect of the line is to add

∑
S⊆[n]

∑
S′⊆[n]

dS,S′,Tℓ

(∏
i∈S

τ in
i

)∏
j∈Tℓ

zj,S′
j

 ∏
j∈[k]\Tℓ

τj,S′
j


to Rout. Summing this expression over all possible subsets Tℓ ⊆ [k] gives Rout = τout +
rf (· · ·) = τout + f(x1, . . . , xn), and so our algorithm transparently computes f . ◀

▶ Note 12. It is not difficult to save k registers by removing R1,∅, . . . , Rk,∅, as we simply
add each value dS,∅,T (

∏
i∈S Rin

i) to our polynomial without concerning ourselves with any xi

(and by extension any yi or zi) variables.

3.3 Bounded-Degree Polynomials
Robere and Zuiddam [12, Theorem 5.13] showed that if f is a polynomial of degree d < n, it
is possible to improve on Potechin’s theorem by decreasing m = 22n−1 down to m = 2(n

≤d)−1.
Here we show how to adapt Algorithm 1 to get a similar result, and then at the end of the
section we build a tradeoff algorithm to improve it.

▶ Theorem 13. For any function f : {0, 1}n → {0, 1} which is a degree-d polynomial, there
is an m-catalytic branching program with length 4n and width 2m that computes f , where
m ≤ 2n+(n

≤d).

Again, while this is slightly worse than Robere and Zuiddam’s original result, we include it
to show the flexibility of our approach and as a stepping stone to our tradeoff result.

Proof. The proof can be summarized as follows. We start with Algorithm 1, and make the
following change: for every S′ ∈ [n] such that cS,S′ = 0 for all S, remove the register RS′ .
We then argue that only n +

(
n

≤d

)
registers remain.

CCC 2022

8:12 Trading Time and Space in Catalytic Branching Programs

Let pf = f ∈ F2[x1, . . . , xn] – since f is already a polynomial, there’s no need to define
pf using interpolation this time. As before, let

qf (
–

τ in, #–y) = pf (#–y −
–

τ in) =
∑

S,S′⊆[n]

cS,S′

(∏
i∈S

τ in
i

)(∏
i∈S′

yi

)

Let Mf ⊆ 2[n] be the set of all S′ such that there exists an S where cS,S′ ̸= 0. We define
the following subroutine:

1: procedure ToggleUsefulMonomials
2: ToggleInput
3: for S ∈Mf do
4: RS ← RS +

∏
i∈S Rin

i

5: end for
6: ToggleInput
7: end procedure

The only difference from ToggleMonomials is that we ignore subsets S which are not in
Mf (not “useful”). Our final algorithm is

Algorithm 4 Transparently compute a degree-d polynomial f in time 4n with n +
(

n
≤d

)
registers.

1: ToggleUsefulMonomials
2: Rout ← Rout +

∑
S⊆[n]

∑
S′∈Mf

cS,S′
(∏

i∈S Rin
i

)
RS′

3: ToggleUsefulMonomials
4: Rout ← Rout −

∑
S⊆[n]

∑
S′∈Mf

cS,S′
(∏

i∈S Rin
i

)
RS′

To conclude the proof of Theorem 13, we need to show |Mf | ≤
(

n
≤d

)
. Indeed, since pf is

a degree-d polynomial, qf also has degree d, which means cS,S′ = 0 whenever |S|+ |S′| > d.
So, Mf only contains sets S′ with size at most d, of which there are

(
n

≤d

)
. ◀

▶ Note 14. The original algorithms of [11, 12] rely on the symmetries of f as an F2 polynomial,
in essence having each start state represent a possible function g which can be obtained from
f by negating input variables or taking ⊕ with f itself. [11] takes this set of functions to be
the space of all n-variable functions, while [12] analyzes these rules and obtains a more exact
characterization. While this characterization is phrased in terms of orbit closures, it can also
be described in terms of polynomials as the span of the set of all monomials appearing in f

as an F2 polynomial along with all submonomials of this set; this exactly coincides with our
notion as

∏
i∈S yi generates all submonomials

∏
i∈S′⊆S xi for yi := xi + τi, which leads to

the quantitative results being essentially the same despite taking two completely different
approaches.

Now we state our tradeoff algorithm, which goes much in the same way as Theorem 11
but without breaking the variables into groups.

▶ Theorem 15. For any function f : {0, 1}n → {0, 1} which is a degree-d polynomial and
any k ∈ N, there is an m-catalytic branching program with length 2k · 2n and width 2m that
computes f , where m = 2n+k·(n

≤⌈d/k⌉).

Proof. For any ∆ ∈ N, let M∆
f ⊆

(
n

≤∆
)

be the set of all S′′ of size at most ∆ such that
there exists an S ⊆ [n] and S′ ⊇ S′′ where cS,S′ ≠ 0. We will have k registers Rj,S′′ for
every S′′ ∈ M⌈d/k⌉

f , as well as the usual registers Rin
1 . . . Rin

n , Rout. Note that this gives us
our target space, as |M⌈d/k⌉

f | ≤
(

n
≤⌈d/k⌉

)
.

J. Cook and I. Mertz 8:13

Following our proof of Theorem 11, let zj,S = τj,S +
∏

i∈S yi, where τj,S is the initial value
of register Rj,S , and for every monomial in qf we split the term

∏
i∈S′ yi in the monomial

arbitrarily into k different products
∏

i∈S′
j

yi – each of which we can replace with zj,S′
j
− τj,S′

j

– where S′
j ∈M

⌈d/k⌉
f and ∪j∈[k]S

′
j = S′. This is possible because each non-zero term in qf

has degree at most d, meaning that |S′| ≤ d and furthermore every subset of S′ of size at
most ⌈d/k⌉ appears in M⌈d/k⌉

f by construction.8
Fixing some particular partition (S′

j)j∈[k] for each S′, this gives us a new polynomial

rf (
–

τ in, #–τ , #–z) =
∑

S⊆[n]

∑
S′⊆[n]

∑
T ⊆[k]

dS,S′,T

(∏
i∈S

τ in
i

)∏
j∈T

zj,S′
j

 ∏
j∈[k]\T

τj,S′
j


which is equivalent to f(x1 . . . fn) as long as zj,S′

j
= τj,S′

j
+
∏

i∈S′
j
(xi + τ in

i + 1). We define
ToggleMonomialsForGroup as before, using ToggleInput instead of ToggleInput-
ForGroup since the variables are no longer split into groups, and using a Gray code we get
our final algorithm:

Algorithm 5 Transparently compute f in time 2k · 2n with n + k ·
(

n
≤⌈d/k⌉

)
registers.

1: for ℓ = 0, . . . , 2k − 1 do
2: Rout ← Rout +

∑
S⊆[n]

∑
S′⊆[n] dS,S′,Tℓ

(∏
i∈S Rin

i

) (∏k
j=1 Rj,S′

j

)
3: ToggleMonomialsForGroup(eℓ)
4: end for

The analysis is identical to that of Algorithm 4, except the runtime is 2k · 2n rather than
2k · 2⌈n/k⌉ because we do not split the variables into groups. ◀

4 Saving Time

In the previous section we took the length 4n branching programs of [11, 12] as a starting
point to analyze whether m could be significantly reduced while still maintaining a linear
amortized size. In this section we investigate the opposite question: namely, is 4n optimal?
If we do not restrict the amortized size of our program, then every function has a branching
program of length n regardless of m. We will not only consider branching programs of linear
amortized size, but the stricter model of permutation branching programs.

We focus on permutation branching programs in this section for two reasons. First, all
our algorithms in the previous section can be converted to permutation branching programs.
To see this, we resist our connection between register programs and m-catalytic branching
programs, as proven in Observation 7. Our observation in fact says something stronger,
which is that fn can be computed by a family of permutation branching programs of width
2s(n)+1. This follows because we can choose to not fix Rout to be 0, and instead have one
source node corresponding to each initial configuration τ1 . . . τs, τout; by Definition 6 this

8 Our use of j here is slightly different than in our previous proof; namely, j is not linked to a specific
block of variables, and rather we arbitrarily partitioned S′ into k sets and assigned them each a distinct
j. This will result in us having to spend time n to load the monomials in, rather than time ⌈n/k⌉ as
in the previous proof, but this is necessary as we have no guarantee that there is a partition of the
variables such that every monomial of degree at most d is split into k monomials of degree at most
⌈d/k⌉. Note that this is where our algorithm performs worse than Algorithm 4 when d = Ω(n).

CCC 2022

8:14 Trading Time and Space in Catalytic Branching Programs

source reaches the sink node labeled τ1 . . . τs, τout + f(x), which is the identity permutation
when f(x) = 0 and a fixed set of 2s(n) transpositions otherwise. Thus as a corollary of
[11, 12] we get the following:

▶ Theorem 16. Every function f can be computed by a read-4 permutation branching program
of width 22n−1 (or 2(n

≤d)−1, where d is the F2-degree of pf).

Given the strength of these results, only a factor of 4 away from the best conceivable amortized
size, there is no reason a priori to believe that permutation branching programs are too weak
to consider even better upper bounds. Indeed we will show that improvements are possible.

This leads to our other reason for focusing on permutation branching programs: lower
bounds against general branching programs are notoriously difficult. Besides the basic
counting argument, the best known branching program lower bounds for an explicit function
are not even quadratic, using techniques known to go no further [10]. Considering the
amortized branching program size needed to compute any function f is always at most the
basic branching program size, and considering the upper bound of 4n given by [11], proving
lower bounds for concrete functions seems exceedingly difficult. Furthermore, even if we were
to seek refuge in focusing on non-constructive lower bounds, the basic counting argument
fails to prove any non-trivial lower bounds in the case of m ≥ 2n/n.

4.1 Notation and tools
Before going into our results, we formally define permutation branching programs along
with the notation we will use in the rest of this section. These programs will have a more
specialized form than when we introduced them in Section 2, which we subsequently justify.
We assume basic familiarity with permutations, and we write σ1σ2 as a shorthand for σ2 ◦ σ1.

▶ Definition 17. Let n, m, s ∈ N and let f : {0, 1}n → {0, 1} be a function such that
f(0 . . . 0) = 0. A permutation branching program is a sequence P = π1 . . . πℓ, where each πj

is a pair ⟨ij , σj⟩ where ij ∈ [0..n] and σj is a permutation of [m]. We refer to each πj as an
instruction of P . The width of P is m and the length of P is ℓ.

For any α ∈ {0, 1}n we define P (α) as follows: fix σ = id, and for every j = 1 . . . s, we
set σ to σσj if πj = ⟨0, σj⟩ or πj = ⟨ij , σj⟩ where αij = 1, and leave σ unchanged otherwise
(that is, if πj = ⟨ij , σj⟩ where αij

= 0). Our output is the final value of σ. We say that
P computes f if there exists a permutation σ∗ ̸= id such that P (α) = id if f(α) = 0 and
P (α) = σ∗ if f(α) = 1.

We make three observations about our choices in Definition 17. First, the restriction
that f(0 . . . 0) = 0 will be a convenience; we can always compute ¬f instead if this condition
does not hold, or change Definition 17 such that P (α) = id if f(α) = 1 and vice versa.9
Second, in a layer ⟨i, σj⟩ reading variable xi, we only fix a permutation in the case that xi is
set to 1. This is without loss of generality, as adding a layer of the form ⟨0, σ′

j⟩ before an
instruction can be thought of as choosing a permutation in the case that xi is set to 0 (while
the permutation for xi = 1 can be adjusted accordingly).

Before going on to our third observation, we state and prove four simple lemmas which
will allow us to conveniently restructure our programs P .

9 We also note that if P computes ¬f , we can compute f by appending the instruction ⟨0, (σ∗)−1⟩ to P .
We avoid taking this route because a later observation will allow us to remove these fixed layers, but
only when f(α) = 0, which would cause our logic to become circular.

J. Cook and I. Mertz 8:15

x1

x1

x1

x1

x2

x2

x2

x2

x1

x1

x1

x1

x2

x2

x2

x2
x1 = 0

x1 = 1

Figure 3 A permutation branching program computing AND(x1, x2). It is identical to the one from
Figure 2, except that two more source nodes have been added so that all layers have the same width.
As before, each non-sink node is labelled with the input to be read, dashed lines represent transitions
taken when that input is zero, and solid lines are taken when the input is one. In the terminology
of Definition 17, this program can be written as ⟨1, (12)(34)⟩, ⟨2, (13)⟩, ⟨1, (12)(34)⟩, ⟨2, (13)⟩ (using
cycle notation for the permutations).

▶ Lemma 18. Let P be a permutation branching program computing f and let j be such that
ij = ij+1. Then the program P ′ resulting from replacing πj , πj+1 with π′

j = ⟨ij , σjσj+1⟩ is
also a valid program for computing f .

Proof. In both P and P ′, the permutations σj and σj+1 are both applied when ij = 1 and
neither are applied when ij = 0. ◀

▶ Lemma 19. Let P be a permutation branching program computing f and let j be such that
σjσj+1 = σj+1σj . Then the program P ′ resulting from switching the order of πj and πj+1 is
also a valid program for computing f .

Proof. Consider any assignment α to x. In the case that either αij or αij+1 is set to 0, these
programs compute identical permutations as either σj or σj+1 will not be applied. If both
are set to 1, then

P ′(α) = Σ1σj+1σjΣ2 = Σ1σjσj+1Σ2 = P (α)

where Σ1, Σ2 are the permutations corresponding to the rest of the instructions on input
α. ◀

▶ Lemma 20. Let P = π1 . . . πs be a permutation branching program computing f , let
πj = ⟨ij , σj⟩ for all j, and let j∗ ∈ [ℓ] be such that ij∗ = 0. Then there exists a permutation
branching program P ′ = π′

1 . . . π′
j∗−1π′

j∗+1 . . . π′
ℓπj∗ computing f , where π′

j = ⟨ij , σ′
j⟩ for some

permutation σ′
j.

Proof. For j < j∗ define σ′
j = σj , and for j > j∗ define σ′

j = σj∗σjσ−1
j∗ . Clearly because σ−1

j∗

and σj∗ cancel out for every adjacent pair of permutations σ′
j , P ′(α) contains exactly the

same permutations as P (α) in the same order regardless of the assignment α.10 ◀

Our next observation is that the layers of the form ⟨0, σj⟩ are only a convenience and are not
necessary to our definition. Let P be our program for f and let σ1 . . . σk be the permutations
corresponding to instructions πj where ij = 0. By our restriction that f(0 . . . 0) = 0 we get

10 This argument actually allows us to move πj∗ to any spot in the program we want, but we are content
with just moving them to the end, for reasons which will become immediately clear.

CCC 2022

8:16 Trading Time and Space in Catalytic Branching Programs

σ1 . . . σk = P (0 . . . 0) = id, and by Lemma 20 we can move the instructions πj with ij = 0
to the end of the program, in order, at which point we can simply remove them all using
Lemma 18 as they compose to the identity for any input α.

We can also generalize Lemma 20 for restrictions of the function f , meaning when we fix
the values of some variables and consider the function on the remaining variables. This is
simply the observation that fixing variable xi turns all instructions of the form ⟨i, σj⟩ into
fixed layers ⟨0, σj⟩.

▶ Corollary 21. Let ρ ∈ {0, 1, ∗}n and let fρ be the function f with xi fixed to ρ(i) wherever
ρ(i) ̸= ∗. Let P = π1 . . . πℓ be a permutation branching program computing f , let πj = ⟨ij , σj⟩
for all j, and let j∗ ∈ [s] be such that ij∗ = 0 or ρ(ij∗) ̸= ∗. Then there exists a permutation
branching program P ′ = π′

1 . . . π′
j∗−1π′

j∗+1 . . . π′
ℓπj∗ computing fρ, where π′

j = ⟨i′
j , σ′

j⟩ for
some permutation σ′

j and i′
j = ij iff ρ(ij) = ∗ and 0 otherwise.

Proof. Let program P ′′ be the result of replacing ij with 0 in each instruction πj ∈ P

such that ρ(ij) ̸= ∗. Clearly this program computes fρ, and so applying Lemma 20 to P ′′

completes the proof. ◀

Assuming that fρ(0 . . . 0) = 0, by our previous observation this allows us to remove all
layers that read variables fixed by ρ. We also note that the other three lemmas hold for fρ

with no changes.
Finally, when f is the AND function, we can rotate our program by moving the first

instruction to the end as many times as we like:

▶ Lemma 22. Let P = Π1, Π2 be a permutation branching program computing AND(x1, . . . ,

xn), where Π1 and Π2 are sequences of instructions. Then P ′ = Π2, Π1 also computes
AND(x1, . . . , xn).

Proof. Let σ∗ = P ′(1, . . . , 1) (that is, P ′ applied to the all-ones input). Referring to
Definition 17, to prove that P ′ computes AND, we must show (a) that σ∗ ̸= id, (b) that
P ′(α) = id whenever AND(α) = 0, and (c) that P ′(α) = σ∗ whenever AND(α) = 1.

(c) follows from the fact that the only string α satisfying AND(α) = 1 is the all-ones
string.

Now, let α ∈ {0, 1}n. Note that P (α) = Π1(α)Π2(α). If AND(α) = 0, then P (α) = id,
so Π1(α) = (Π2(α))−1, and so P ′(α) = id as well: this proves (b).

Finally, note that P (1, . . . , 1) ̸= id, so Π1(1, . . . , 1) ̸= (Π2(1, . . . , 1))−1, and so σ∗ =
P ′(1, . . . , 1) ̸= id, proving (a). ◀

4.2 Upper bounds
For our main upper bound, we modify our algorithm recreating the result of [11] (and
analogously [12]) to have length 4n − 4. In particular, our program will read all but two
variables four times, while the last two variables will be read twice.

Proof of Theorem 3. First, we make an easy change to Theorem 9 which allows us to
achieve 4n − 3. Observe that in ToggleInput the order in which we add the inputs is
irrelevant, and so consider ToggleMonomials where we reverse the order of toggling on
Line 6. Then notice that the last query on Line 2 and the first query on Line 6 are both
made to xn, and so we can merge these two layers along with our entire for loop (which
reads no variables) into a single layer querying xn. Moving to Algorithm 1, this means we

J. Cook and I. Mertz 8:17

only query xn twice, and furthermore the last query on Line 1 and the first query on Line 3
are both made to x1, and so again by merging these two queries along with Line 2 we only
query x1 three times.

Now we will change our program so that x1 is only read twice. Consider two new functions
obtained by fixing the value of x1, namely f0 = f(0, x2 . . . xn) and f1 = f(1, x2 . . . xn). Recall
that we used the following polynomial to compute f , where yi = τ in

i + xi:

qf =
∑

S,S′⊆[n]

cS,S′

(∏
i∈S

τ in
i

)(∏
i∈S′

yi

)

If we choose b ∈ {0, 1} and fix τ in
1 = 0 and y1 = x1 = b, we get the following, which can be

used to compute (since it is equal to) f b:

qfb =
∑

S,S′⊆[2..n]

(cS,S′ + b · cS,S′∪{1})
(∏

i∈S

τ in
i

)(∏
i∈S′

yi

)

We will use Algorithm 1 to compute qfb , where b = x1, by removing all reference to
x1 from ToggleInput and ToggleMonomials, and querying x1 whenever we execute
Lines 2 or 4 to determine whether to compute qf0 or qf1 in place of qf . More specifically,
ToggleInput will now only loop over i = 2 . . . n, while ToggleMonomials will now only
loop over S ⊆ [2..n]. Finally in Algorithm 1 we change Lines 2 and 4 to

Rout ← Rout ±
∑

S,S′⊆[2..n]

(cS,S′ + x1 · cS,S′∪{1})
(∏

i∈S

Rin
i

)
RS′

where Line 2 uses + and Line 4 uses −. Note that to execute these lines correctly, we will
query x1 and perform the corresponding instruction; thus we no longer ignore these two lines
in calculating our program length.

By our earlier definition of qfb , this exactly computes qfb for x1 = b as claimed. As above
we will reverse the order of the queries in ToggleInput the second time it is called in
ToggleMonomials, which allows us to read xn only once per execution for a total of two
reads. x1 will be queried in Lines 2 and 4, and all other variables will be queried four times.

Since we no longer use register R1, or RS when 1 ∈ S, the number of registers is reduced
from the original n + 2n in Theorem 9 to n − 1 + 2n−1. The output register Rout is now
catalytic, so we add one register for a total m = 2n+2n−1 . ◀

▶ Note 23. This strategy also allows us to save an exponential number of registers, as we
only need a register RS for each S ⊆ [2..n]. While it may be tempting to extend this trick
to more variables, say by fixing the values of both x1 and x2, the fact that Lines 2 and 4
depend on the value(s) of the fixed variable(s) means that we will have to store at least one
of these values in a non-catalytic register, which will add to our width and take us out of the
realm of permutation programs. If we go back to m-catalytic branching programs, this gives
us another way to save over [11, 12], but with worse parameters; for any k ∈ [n] by fixing k

values we can get a program of length 2(k + 1) + 4(n− k − 1) and amortized size 2k ·O(n)
as before, but for m = 22n−k−1 instead of 22n/k−1.

There are two known cases in which we can achieve better than read-4 for AND: n = 2, 3.
The n = 2 case is unsurprising, as our argument allows for two variables to be read twice; it
has appeared in many previous works (see c.f. [2]). The case of n = 3 is more surprising, and
suggests that read-3 may be achievable in general. Note that because of the small values of
n involved, neither result gives a program smaller than length 4n− 4.

CCC 2022

8:18 Trading Time and Space in Catalytic Branching Programs

▶ Lemma 24. There is a read-2 permutation branching program of width 3 computing
AND(x1, x2).

Proof. Choose any two permutations σ1 and σ2 such that σ1σ2σ−1
1 σ−1

2 ̸= id; for example
we can choose σ1 = (12) and σ2 = (23). Then consider the following program:

⟨1, σ1⟩, ⟨2, σ2⟩, ⟨1, σ−1
1 ⟩, ⟨2, σ−1

2 ⟩

By definition of σ1 and σ2, P (1, 1) ̸= id, and if either variable is set to 0 then the
only permutations left are σj and σ−1

j for some j ∈ {1, 2}, and the composition of these
permutations is id. ◀

▶ Lemma 25. There is a read-3 permutation branching program of width 3 computing
AND(x1, x2, x3).

Proof. We state the program and leave the reader to check correctness.11 Our permutations
σj are given in cycle notation.

⟨1, (23)⟩, ⟨2, (12)⟩, ⟨3, (123)⟩,
⟨1, (12)⟩, ⟨2, (13)⟩, ⟨3, (23)⟩,
⟨1, (132)⟩, ⟨2, (132)⟩, ⟨3, (13)⟩ ◀

▶ Note 26. We could also consider a stronger model of permutation branching programs
where we only require that P (α) ̸= id whenever f(α) = 1, instead of requiring P (α) always
equal the same permutation when f(α) = 1. This is the model used by e.g. [2]. In this case,
it is not hard to show that for any n, if we can compute AND(x1 . . . xn) in length ℓ, we can
also compute any function f(x1 . . . xn) in length ℓ by “tensoring” the permutations in P

with themselves for each α ∈ f−1(1). Our lower bounds in the following section will still
hold against this model.

4.3 Lower bounds

In this section we show that if one tries to get a program of length less than 3n, one cannot
beat Theorem 3.

Proof of Theorem 4. Let P = π1π2 . . . πs be any program computing AND(x1, . . . , xn). We
will write σj

i to refer to the permutation in the jth instruction in P that reads variable xi;
in other words, the instructions corresponding to xi will be ⟨i, σ1

i ⟩ . . . ⟨i, σk
i ⟩ for some k.

▷ Claim 27. Any program P computing AND of more than one variable must read every
variable at least twice

Proof. Assume that some variable xi is read only once in P . Then setting xi′ = 0 for all
i′ ̸= i, we get σ1

i = P (0, . . . , 0, 1, 0, . . . , 0) = id. Therefore P acts identically whether xi is 0
or 1, which is a contradiction because AND depends on x1. ◁

11 It should be noted that we found this program through an automated search, and it would be interesting
to see what nice properties of the program – of which there are many candidates – could be useful in
searching for read-3 programs for higher n.

J. Cook and I. Mertz 8:19

Now consider when some variable xi is read exactly twice. Then P has the form:

Σ1, ⟨i, σ1
i ⟩, Π1, ⟨i, σ2

i ⟩, Σ2

Rotate this program to produce

P ′ = ⟨i, σ1
i ⟩, Π1, ⟨i, σ2

i ⟩, Π2

where Π2 = Σ2, Σ1. By Lemma 22, P ′ also computes AND.
The following is our main claim.

▷ Claim 28. Every variable besides xi is read at least once in Π1, and there is at most one
such variable xi′ which is not read at least twice in Π1.

The same holds for Π2.

Proof. First, assume for contradiction that there exists i′ ̸= i such that xi′ does not appear in
Π1. Then if we fix xi′′ = 1 for all i′′ ≠ i, i′, we can apply Corollary 21 to move all instructions
querying variables other than xi and xi′ to the end of the program, to get an equivalent
program of the following form which computes AND(xi, xi′):

⟨i, σ′
i
1⟩, ⟨i, σ′

i
2⟩, Σ

where Σ is a sequence of instructions which do not query xi. Applying Lemma 18, we can
replace ⟨i, σ′

i
1⟩, ⟨i, σ′

i
2⟩ with a single instruction ⟨i, σ′′⟩ to we get an equivalent program

⟨i, σ′′
i ⟩, Σ

which also computes AND(xi, xi′), which contradicts Claim 27 as i is only read once.
Next, assume for contradiction that there exist i′ ̸= i′′ ≠ i such that i′ and i′′ appear

only once each in Π1. If we fix xi′′′ = 1 for all i′′′ ≠ i, i′, i′′, applying Lemmas 21 and 18,
without loss of generality the following program computes AND(xi, xi′):

⟨i, σ′
i
1⟩, ⟨i′, σi′⟩, ⟨i′′, σi′′⟩, ⟨i, σ′

i
2⟩, Σ

where σi′ and σi′′ are some permutations and Σ is a set of instructions reading only the
variables xi′ and xi′′ .

Define Σi′ to be the result of fixing xi′′ = 0 in Σ, and define Σi′′ to be the result of fixing
xi′ = 0 in Σ. Note that if only one remaining variable is set to 1 then the program must
output 0, so σ′

i
2 = (σ′

i
1)−1, Σi′ = (σi′)−1, and Σi′′ = (σi′′)−1. Thus if we set xi′′ = 0 our

resulting program is

⟨i, σ′
i
1⟩, ⟨i′, σi′⟩, ⟨i, (σ′

i
1)−1⟩, ⟨i′, (σ1

i′)−1⟩

and so setting xi = xi′ = 1 we get that σ′
i
1
σi′(σ′

i
1)−1(σi′)−1 = id. Therefore by Lemma 19 we

can swap the order of these two instructions and get an equivalent program for AND(xi, xi′ ,

xi′′) of the form

⟨i′, σi′⟩, ⟨i, σ′
i
1⟩, ⟨i′′, σi′′⟩, ⟨i, (σ′

i
1)−1⟩, Σ

and similarly by fixing xi′ = 0 we have σ′
i
1
σi′′(σ′

i
1)−1(σi′′)−1 = id, which by Lemma 19

leaves us with the program

⟨i′, σi′⟩, ⟨i′′, σi′′⟩, ⟨i, σ′
i
1⟩, ⟨i, (σ′

i
1)−1⟩, Σ

and applying Lemma 18 on our two layers reading i gives us a program which never reads xi,
which is a contradiction.

CCC 2022

8:20 Trading Time and Space in Catalytic Branching Programs

Finally, to prove the claim for Π2, observe that by Lemma 22,

P ′′ = ⟨i, σ2
i ⟩, Π2, ⟨i, σ1

i ⟩, Π1

also computes AND, and apply the above argument to P ′′, with Π2 playing the role of Π1.
◁

By a simple analysis of Claim 28, one of two cases must occur for the variables besides
xi: either 1) one variable xi′ is read at least twice and all other variables are read at
least four times or 2) two variables xi′ , xi′′ are read at least three times and all other
variables are read at least four times. This is because a read-2 variable can only be read
at most once in each of Π1 and Π2, while a read-3 variable will be read at most once in
either Π1 or Π2. In either of these cases, our branching program must have length at least
4(n− 2) + 2 · 2 = 4(n− 3) + 2 · 1 + 3 · 2 = 4n− 4. ◀

▶ Note 29. Besides the fact that our lower bound in Theorem 4 quantitatively matches up
with our upper bound in Theorem 3 in the case of reading any variable twice, qualitatively
both cases in the analysis at the end of our lower bound proof match with a possible
construction given by our upper bound. After fixing a read-2 variable to condition f on, we
get two halves to our top level program, and in each of them we will merge two reads of a
variable in order to save a further layer. The choice of which variable to merge the reads
of is arbitrary, so consider our choices for the first and second half. If we choose the same
variable for both halves, it will be read twice and all other variables will be read four times.
If we choose different variables in each half, both will be read three times and the rest will
be read four times.

5 Open Problems

The most obvious problem left open by our work is to figure out, for an arbitrary function f ,
the optimal value of m under which we can still achieve linear amortized size. In the upper
bounds direction, any improved transparent register program for computing the polynomial
qf could potentially give an upper bound of 22o(n) on m. In the other direction, nothing is
known besides the basic counting argument (m ≥ 2n/O(n)), and even getting a lower bound
of m ≥ 2n for some function f could shed some light on where the correct answer should lie.

In terms of connecting uniform and non-uniform models of space, L/ poly is equivalent to
the class of problems solvable by poly n-size branching programs. However, this gets trickier
for catalytic logspace (CL), as the corresponding object for CL/ poly would be m-catalytic
branching programs of amortized size poly(n) for m = 2poly(n), which has exponential size
and thus cannot be written down in polynomial advice. It would be very interesting to
understand the connection between such m-catalytic branching programs and CL/ poly, as
this would immediately give lower bounds on m for random functions.

Also of interest would be to study the same question for other restricted classes of
functions. For example, it is possible that our result for VP could be extended to VNP,
although such a result would presumably need to use non-uniformity in a stronger way lest
we accidentally prove that uniform VNP is contained in CL – and by extension ZPP [4].

Finally, closing the gap between 3n and 4n− 4 on the upper and lower bounds for the
optimal length of permutation branching programs seems within reach. For example, a
cursory machine search gave no read-3 permutation branching programs for AND on four
variables, and if we could formally verify this then it would immediately lead to fully closing
the gap at 4n− 4.

J. Cook and I. Mertz 8:21

References
1 Eric Allender, Anna Gál, and Ian Mertz. Dual VP classes. Comput. Complex., 26(3):583–625,

2017.
2 David A. Mix Barrington. Bounded-width polynomial-size branching programs recognize

exactly those languages in nc1. J. Comput. Syst. Sci., 38(1):150–164, 1989.
3 Michael Ben-Or and Richard Cleve. Computing algebraic formulas using a constant number

of registers. SIAM J. Comput., 21(1):54–58, 1992.
4 Harry Buhrman, Richard Cleve, Michal Koucký, Bruno Loff, and Florian Speelman. Computing

with a full memory: catalytic space. In Symposium on Theory of Computing, STOC 2014,
New York, NY, USA, May 31 - June 03, 2014, pages 857–866. ACM, 2014.

5 James Cook and Ian Mertz. Catalytic approaches to the tree evaluation problem. In Proccedings
of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago,
IL, USA, June 22-26, 2020, pages 752–760. ACM, 2020.

6 James Cook and Ian Mertz. Encodings and the tree evaluation problem. Electron. Colloquium
Comput. Complex., page 54, 2021. URL: https://eccc.weizmann.ac.il/report/2021/054.

7 Stephen A. Cook, Pierre McKenzie, Dustin Wehr, Mark Braverman, and Rahul Santhanam.
Pebbles and branching programs for tree evaluation. ACM Trans. Comput. Theory, 3(2):4:1–
4:43, 2012.

8 Vincent Girard, Michal Koucky, and Pierre McKenzie. Nonuniform catalytic space and the
direct sum for space. Electronic Colloquium on Computational Complexity (ECCC), 138, 2015.

9 Frank Gray. Pulse code communication. https://patents.google.com/patent/US2632058A/
en, 1953. US Patent 2632058A.

10 E.I. Nečiporuk. A boolean function. Dokl. Akad. Nauk SSSR, 169(4), 1966.
11 Aaron Potechin. A note on amortized branching program complexity, 2017.
12 Robert Robere and Jeroen Zuiddam. Amortized circuit complexity, formal complexity measures,

and catalytic algorithms. In FOCS, pages 759–769. IEEE, 2021.

CCC 2022

https://eccc.weizmann.ac.il/report/2021/054
https://patents.google.com/patent/US2632058A/en
https://patents.google.com/patent/US2632058A/en

	1 Introduction
	1.1 Our results
	1.1.1 Main result
	1.1.2 Other results

	2 Preliminaries
	3 Saving Space
	3.1 Basic Algorithm
	3.2 Trading Space for Time
	3.3 Bounded-Degree Polynomials

	4 Saving Time
	4.1 Notation and tools
	4.2 Upper bounds
	4.3 Lower bounds

	5 Open Problems

