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Abstract
In this paper we study the problem of efficiently factorizing polynomials in the free noncommutative
ring F⟨x1, x2, . . . , xn⟩ of polynomials in noncommuting variables x1, x2, . . . , xn over the field F. We
obtain the following result:

We give a randomized algorithm that takes as input a noncommutative arithmetic formula
of size s computing a noncommutative polynomial f ∈ F⟨x1, x2, . . . , xn⟩, where F = Fq is a
finite field, and in time polynomial in s, n and log2 q computes a factorization of f as a product
f = f1f2 · · · fr, where each fi is an irreducible polynomial that is output as a noncommutative
algebraic branching program.
The algorithm works by first transforming f into a linear matrix L using Higman’s linearization
of polynomials. We then factorize the linear matrix L and recover the factorization of f . We
use basic elements from Cohn’s theory of free ideals rings combined with Ronyai’s randomized
polynomial-time algorithm for computing invariant subspaces of a collection of matrices over
finite fields.
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1 Introduction

Let F be any field and X = {x1, x2, . . . , xn} be a set of n free noncommuting variables.
Let X∗ denote the set of all free words (which are monomials) over the alphabet X with
concatenation of words as the monoid operation and the empty word ϵ as identity element.

The free noncommutative ring F⟨X⟩ consists of all finite F-linear combinations of monomi-
als in X∗, where the ring addition + is coefficient-wise addition and the ring multiplication
∗ is the usual convolution product. More precisely, let f, g ∈ F⟨X⟩ and let f(m) ∈ F denote
the coefficient of monomial m in polynomial f . Then we can write f =

∑
m f(m)m and

g =
∑

m g(m)m, and in the product polynomial fg for each monomial m we have

fg(m) =
∑

m1m2=m

f(m1)g(m2).

The degree of a monomial m ∈ X∗ is the length of the monomial m, and the degree deg f

of a polynomial f ∈ F⟨X⟩ is the degree of a largest degree monomial in f with nonzero
coefficient. For polynomials f, g ∈ F⟨X⟩ we clearly have deg(fg) = deg f + deg g.
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12:2 On Efficient Noncommutative Polynomial Factorization

A nontrivial factorization of a polynomial f ∈ F⟨X⟩ is an expression of f as a product
f = gh of polynomials g, h ∈ F⟨X⟩ such that deg g > 0 and deg h > 0. A polynomial
f ∈ F⟨X⟩ is irreducible if it has no nontrivial factorization and is reducible otherwise. For
instance, all degree 1 polynomials in F⟨X⟩ are irreducible. Clearly, by repeated factorization
every polynomial in F⟨X⟩ can be expressed as a product of irreducibles.

In this paper we study the algorithmic complexity of polynomial factorization in the free
ring F⟨X⟩. The factorization algorithm is by an application of Higman’s linearization process
followed by factorization of a matrix with linear entries (under some technical conditions)
using Cohn’s factorization theory.

It is interesting to note that Higman’s linearization process [15] has been used to obtain
a deterministic polynomial-time algorithm for the RIT problem. That is, the problem of
testing if a noncommutative rational formula (which computes an element of the free skew
field F⦓X⦔) is zero on its domain of definition [13, 17, 18, 16].

1.1 Overview of the results
The main result of the paper is the following.

▶ Theorem (Main Theorem). Given a multivariate noncommutative polynomial f ∈ Fq⟨X⟩
for a finite field1 Fq by a noncommutative arithmetic formula of size s as input, a factorization
of f as a product f = f1f2 · · · fr can be computed in randomized time poly(s, log2 q, |X|),
where each fi ∈ Fq⟨X⟩ is an irreducible polynomial that is output as an algebraic branching
program.

The proof has three broad steps described below.

Higman linearization and Cohn’s factorization theory. Briefly, given a noncom-
mutative polynomial f ∈ F⟨X⟩ by a formula, we can transform it into a linear matrix L

such that f ⊕ I = PLQ, where P is an upper triangular matrix with polynomial entries
and all 1’s diagonal and Q is a lower triangular matrix with polynomial entries and all
1’s diagonal, P and Q are the matrices implementing the sequence of row and column
operations required for the Higman linearization process. Cohn’s theory of factorization
of noncommutative linear matrices gives us sufficient information about the structure of
irreducible linear matrices.

Ronyai’s common invariant subspace algorithm. Next, the most important tool
algorithmically, is Ronyai’s algorithm for computing common invariant subspaces of a
collection of matrices over finite fields [24]. We show that Ronyai’s common invariant sub-
space algorithm can be repeatedly applied to factorize a linear matrix L = A0 +

∑n
i=1 Aixi,

into a product of irreducible linear matrices provided A0 is invertible and [A1A2 · · ·An]
has full row rank or [AT

1 AT
2 · · ·AT

n ]T has full column rank. The later conditions are called
as right and left monicity of the linear matrix L respectively. With some technical work
we can ensure these conditions for a linear matrix L that is produced from a polynomial
f by Higman linearization. Then Ronyai’s algorithm yields the factorization of L into a
product of irreducible linear matrices (upto multiplication by units).

1 We present the detailed randomized algorithm over large finite fields. In the case of small finite fields
we obtain a deterministic poly(s, q, |X|) time algorithm with minor modifications.
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Recovering the factors of f . Finally, we design a simple linear algebraic algorithm for
trivializing a matrix product AB = 0, where A is a linear matrix and B is a column vector
of polynomials from F⟨X⟩, using which we are able to extract the irreducible factors of
f from the factors of L. An invertible matrix M with polynomial entries trivializes the
relation AB = 0 if the modified relation (AM)(M−1B) = 0 has the property that for
every index i either the ith column of AM is zero or the ith row of M−1B is zero. While
such matrices M exist for any matrix product AB = 0 with entries from F⟨X⟩, we obtain
an efficient algorithm in the special case when A is linear and B’s entries are polynomials
computed by small arithmetic circuits. This special case is sufficient for our application.

There are some additional technical aspects we need to deal with. Let L = A0 +∑n
i=1 Aixi be the linear matrix obtained from f ∈ Fq⟨X⟩ by Higman linearization, where

X = {x1, x2, . . . , xn} and Ai ∈ Fd×d
q , 0 ≤ i ≤ n. If A0 is an invertible matrix then it turns

out that the problem of factorizing L can be directly reduced to the problem of finding a
common invariant subspace for the matrices A−1

0 Ai, 1 ≤ i ≤ n. In general, however, A0 is
not invertible. Two cases arise:
(a) The polynomial f is commutatively nonzero. That is, it is nonzero on Fn

q (or on Fn

for a small extension field F). In this case, by the DeMillo-Lipton-Schwartz-Zippel
Lemma [9, 25, 27], we can do a linear shift of the variables xi ← xi +αi in the polynomial
f , for αi randomly picked from Fq (or F). Let the resulting polynomial be f ′ and let its
Higman linearization be Lf ′ . In Lf ′ the constant matrix term A′

0 will be invertible with
high probability, and the reduction steps outlined above will work for Lf ′ . Furthermore,
from the factorization of f ′ we can efficiently recover the factorization of f . Section 4
deals with Case (a), with Theorem 32 summarizing the algorithm for factorizing f .
Theorem 28 describes the algorithm for factorization of the linear matrix Lf ′ , and the
factor extraction lemma (Lemma 31) allows us to efficiently recover the factorization of
f ′ from the factorization of Lf ′ .

(b) In the second case, suppose f is zero on all scalars. Then, for example by Amit-
sur’s theorem [1], for a random matrix substitution xi ← Mi ∈ F2s×2s the matrix
f(M1, M2, . . . , Mn) is invertible with high probability, where s is the formula size of
f .2 3 Accordingly, we can consider the factorization problem for shifted and dilated
linear matrix L′ = A0 ⊗ Iℓ +

∑n
i=1 Ai ⊗ (Yi + Mi) which will have the constant matrix

term invertible, where each Yi is an ℓ × ℓ matrix of distinct noncommuting variables,
where ℓ = 2s. Recovering the factorization of L from the factorization of L′ requires
some additional algorithmic work based on linear algebra. A lemma from [14] (refer
Section 5 and the Appendix for the details) turns out to be crucial here. The algorithm
handling Case (b) is described in Section 5. Indeed, the new aspect of the algorithm
is factorization of the dilated matrix L′ from which we recover the factorization of the
Higman linearization Lf of f . The remaining algorithm steps are exactly as in Section 4.

1.2 Small Finite fields
We now briefly explain the deterministic poly(s, q, |X|) time factorization algorithm (when Fq

is small). There are two places in the factorization algorithm outlined above where randomiz-
ation is used: first, to obtain a matrix tuple (M1, M2, . . . , Mn) such that f(M1, M2, . . . , Mn)

2 Amitsur’s theorem strengthens the Amitsur-Levitski theorem [2] often used in noncommutative PIT
algorithms [5].

3 In the actual algorithm we pick the matrices Mi using a result from [10]

CCC 2022



12:4 On Efficient Noncommutative Polynomial Factorization

is invertible, which ensures that the constant matrix term of the linear matrix L′ is invertible.
When q = Ω(d), where d = deg f , it suffices to randomly pick Mi ∈ F2s×2s

q . However, if q < d

we can choose entries of the matrices Mi from a small extension field Fqk such that qk = Ω(d).
Thereby, we will obtain factorization of L′ and subsequently that of the polynomial f over the
extension field Fqk . However, we can use the fact that the finite field Fqk can be embedded
using the regular representation of the elements of Fqk in the matrix algebra Fk×k

q . Thus,
we can obtain from (M1, M2, . . . , Mn) a matrix tuple (M ′

1, M ′
2, . . . , M ′

n) with M ′
i ∈ F2sk×2sk

q

such that f(M ′
1, M ′

2, . . . , M ′
n) is invertible. This will ensure that the linear matrix L′ can be

factorized over the field Fq which will allow us to obtain a complete factorization of f into
irreducible factors over Fq.

In order to get a deterministic polynomial-time algorithm for finding such matrices
M ′

i , 1 ≤ i ≤ n we will use the fact that the polynomial f is given by a small noncommutative
formula and hence has a small algebraic branching program. Then, using ideas from [23, 11, 4]
we can easily find such matrices M ′

i in deterministic polynomial time.
Next, we notice that Ronyai’s algorithm for finding common invariant subspaces of matrices

over Fq is essentially a polynomial-time reduction to univariate polynomial factorization
over Fq. We can use Berlekamp’s deterministic poly(q, D) algorithm for the factorization of
univariate degree D polynomials over Fq. Putting it together, we can obtain a deterministic
poly(s, q, |X|) time algorithm for factorization of f ∈ Fq⟨X⟩ as a product of irreducible
factors over Fq.

Unfortunately, the algorithm outlined above does not yield an efficient algorithm for
noncommutative polynomial factorization over rationals. The bottleneck is the problem of
computing common invariant subspaces for a collection of matrices over Q. Ronyai’s algorithm
for the problem over finite fields [24] builds on the decomposition of finite-dimensional
associative algebras over fields. Given an algebra A over a finite field Fq the algorithm
decomposes A as a direct sum of minimal left ideals of A which is used to find nontrivial
common invariant subspaces. However, as shown by Friedl and Ronyai [12], over rationals
the problem of decomposing a simple algebra as a direct sum of minimal left ideals is at least
as hard as factoring square-free integers.

1.3 Related research
The study of factorization in noncommutative rings is systematically investigated as part
of Cohn’s general theory of noncommutative free ideal rings [7, 8] which is based on the
notion of the weak algorithm. In fact, there is a hierarchy of weak algorithms generalizing
the division algorithm for commutative integral domains [7].

To the best of our knowledge, the complexity of noncommutative polynomial factorization
has not been studied much, unlike the problem of commutative polynomial factorization
[26, 19, 20]. Prior work on the complexity of noncommutative polynomial factorization
we are aware of is [3] where efficient algorithms are described for the problem of factoring
homogeneous noncommutative polynomials (which enjoy the unique factorization property,
and indeed the algorithms in [3] crucially use the unique factorization property). When the
input homogeneous noncommutative polynomial has a small noncommutative arithmetic
circuit (even given by a black-box as in Kaltofen’s algorithms [19, 20]) it turns out that
the problem is efficiently reducible to commutative factorization by set-multilinearizing the
given noncommutative polynomial with new commuting variables. This also works in the
black-box setting and yields a randomized polynomial-time algorithm which will produce as
output black-boxes for the irreducible factors (which will all be homogeneous). When the
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input homogeneous polynomial is given by an algebraic branching program there is even a
deterministic polynomial-time factorization algorithm. Indeed, the noncommutative factoriz-
ation problem in for homogeneous polynomials efficiently reduces to the noncommutative
PIT problem [3], analogous to the commutative case [21], modulo the randomness required
for univariate polynomial factorization in the case of finite fields of large characteristic. The
motivation of the present paper is to extend the above results to the inhomogeneous case.

Plan of the paper. In Section 2 we present basic definitions and the background results from
Cohn’s work on factorization. In Section 3 we further present some results from Cohn’s work
relevant to the paper. In Section 4 we present the factorization algorithm for polynomials f

that does not vanish on scalars and in Section 5 we present the algorithm for the general
case. Omitted proofs from the conference version can be found in full version.

2 Preliminaries

In this section we give some basic definitions and results relevant to the paper, mainly
from Cohn’s theory of factorization. Analogous to integral domains and unique factoriz-
ation domains in commutative ring theory, P.M. Cohn [7, 8] has developed a theory for
noncommutative rings based on the weak algorithm (a noncommutative generalization of
the Euclidean division algorithm) and the notion of free ideal rings. We present the relevant
basic definitions and results, specialized to the ring F⟨X⟩ of noncommutative polynomials
with coefficients in a (commutative) field F, and also for matrix rings with entries from F⟨X⟩.

The results about F⟨X⟩ in Cohn’s text [7, Chapter 5] are stated uniformly for algebraically
closed fields F. However, those we discuss hold for any field F (in particular for Fq or a small
degree extension of it). The proofs are essentially based on linear algebra.

Since we will be using Higman’s linearization [15] to factorize noncommutative polynomials,
we are naturally lead to studying the factorization of linear matrices in F⟨X⟩d×d using Cohn’s
theory.

▶ Definition 1 ([7]). A matrix M in F⟨X⟩d×d is called full if it has (noncommutative)
rank d. That is, it cannot be decomposed as a matrix product M = M1 ·M2, for matrices
M1 ∈ F⦓X⦔d×e and M2 ∈ F⦓X⦔e×d with e < d.

▶ Remark 2. Based on the notion of noncommutative matrix rank [7], the square matrix
M ∈ F⟨X⟩d×d is full precisely when it is invertible in the skew field F⦓X⦔. That is, M is
full if and only if there is a matrix N ∈ F⦓X⦔d×d such that MN = NM = Id, where Id

is d × d identity matrix. We refer to [13] and [18] for different equivalent formulations of
noncommutative matrix rank.

We note the distinction between full matrices and units in the matrix ring F⟨X⟩d×d.

▶ Definition 3. A matrix U ∈ F⟨X⟩d×d is a unit if there is a matrix V ∈ F⟨X⟩d×d such that
UV = V U = Id, where Id is d× d identity matrix.

Clearly, units in F⟨X⟩d×d are full. Examples of units in F⟨X⟩d×d, which have an important
role in our factorization algorithm, are upper (or lower) triangular matrices in F⟨X⟩d×d

whose diagonal entries are all nonzero scalars. Full matrices, in general, need not be units:
for example, the 1× 1 matrix x, where x is a variable, is full but it is not a unit in the ring
F⟨X⟩1×1 = F⟨X⟩.

CCC 2022

https://arxiv.org/pdf/2202.09883.pdf


12:6 On Efficient Noncommutative Polynomial Factorization

▶ Remark 4. Full non-unit matrices are essentially non-unit non-zero-divisors. For the
factorization of elements in F⟨X⟩d×d, units are similar to scalars in the factorization of
polynomials in polynomial rings. Cohn’s theory [7] considers factorizations of full non-unit
elements in F⟨X⟩d×d.

We next define atoms in F⟨X⟩d×d, which are essentially the irreducible elements in it.

▶ Definition 5. A full non-unit element A in F⟨X⟩d×d is an atom if A cannot be factorized
as A = A1A2 for full non-unit matrices A1, A2 in F⟨X⟩d×d.

Noncommutative polynomials do not have unique factorization in the usual sense of
commutative polynomial factorization.4 A classic example [7] is the polynomial x + xyx with
its two different factorizations

x + xyx = x(1 + yx) = (1 + xy)x,

where 1 + xy and 1 + yx are distinct irreducible polynomials.

▶ Definition 6. Elements A ∈ F⟨X⟩d×d and B ∈ F⟨X⟩d′×d′ are called stable associates if
there are positive integers t and t′ such that d + t = d′ + t′ and units P, Q ∈ F⟨X⟩(d+t)×(d+t)

such that A⊕ It = P (B ⊕ It′)Q.

It is easy to check that the polynomials 1 + xy and 1 + yx are stable associates.
Notice that if A and B are full non-unit matrices that are stable associates then A is

atom if and only if B is atom. Furthermore, we note that stable associativity defines an
equivalence relation between full matrices over the ring F⟨X⟩.

We observe that the problem of checking if two polynomials in F⟨X⟩ given as arithmetic
formulas are stable associates or not has an efficient randomized algorithm (Lemma 17).

Now we turn to the problem of noncommutative polynomial factorization. By Higman’s
linearization [15, 7], given a polynomial f ∈ F⟨X⟩ there is a positive integer ℓ such that
f is stably associated with a linear matrix L ∈ F⟨X⟩ℓ×ℓ, that is to say, the entries of L

are affine linear forms.5 Higman’s linearization process is a simple algorithm obtaining the
linear matrix L for a given f , and it plays a crucial role in our factorization algorithm. We
describe it and state an effective version [13] which gives a simple polynomial-time algorithm
to compute L when f is given as a noncommutative arithmetic formula.

Higman’s linearization process

We describe a single step of the linearization process. Given an m×m matrix M over F⟨X⟩
such that M [m, m] = f + g × h, apply the following:

Expand M to an (m + 1)× (m + 1) matrix by adding a new last row and last column
with diagonal entry 1 and remaining new entries zero:[

M 0
0 1

]
.

4 However, as shown by Cohn, using the notion of stable associates there is a more general sense in which
noncommutative polynomials have “unique” factorization [7].

5 More generally, by Higman’s linearization any matrix of polynomials M is stably associated with a
linear matrix L ∈ F⟨X⟩ℓ×ℓ for some ℓ.
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Then the bottom right 2× 2 submatrix is transformed as follows by elementary row and
column operations(

f + gh 0
0 1

)
→

(
f + gh g

0 1

)
→

(
f g

−h 1

)
Given a polynomial f ∈ F⟨X⟩ by repeated application of the above step we will finally

obtain a linear matrix L = A0 +
∑n

i=1 Aixi, where each Ai, 0 ≤ i ≤ n is an ℓ× ℓ over F, for
some ℓ. The following theorem summarizes its properties.

▶ Theorem 7 (Higman Linearization, [7]). Given a polynomial f ∈ F⟨X⟩, there are matrices
P, Q ∈ F⟨X⟩ℓ×ℓ and a linear matrix L ∈ F⟨X⟩ℓ×ℓ such that(

f 0
0 Iℓ−1

)
= PLQ (1)

with P upper triangular, Q lower triangular, and the diagonal entries of both P and Q are
all 1’s (hence, P and Q are both units in F⟨X⟩ℓ×ℓ).

Instead of a single f , we can apply Higman linearization to a matrix of polynomials
M ∈ F⟨X⟩m×m to obtain a linear matrix L that is stably associated to M . We state the
algorithmic version of Garg et al. [13] in this general form.

▶ Theorem 8 ([13], Proposition A.2). Let M ∈ F⟨X⟩m×m such that Mi,j is computed by a
noncommutative arithmetic formula of size at most s and bit complexity at most b. Then,
for some k = O(s), in time poly(s, b) we can compute the matrices P, Q and L in F⟨X⟩ℓ×ℓ

of Higman’s linearization such that(
M 0
0 Ik

)
= PLQ.

where ℓ = m + k. Moreover, the entries of the matrices P and Q as well as P −1 and Q−1

are given by polynomial-size algebraic branching programs which can also be obtained in
polynomial time.

We will sometimes denote the block diagonal matrix
(

M 0
0 Ik

)
by M ⊕ Ik.

As P and Q are units with diagonal entries all 1’s, the matrix M is full iff the linear
matrix L is full. Also, the scalar matrix M(0) (obtained by setting all variables to zero) is
invertible iff the scalar matrix L(0), similarly obtained, is invertible.

Invariant Subspaces and Ronyai’s Algorithm
▶ Definition 9. Let A1, . . . , An ∈ Fd×d. A subspace V ⊆ Fn is called as common invariant
subspace of A1, . . . , An if Aiv ∈ V for all i ∈ [n] and v ∈ V .

Clearly 0 and Fn are, trivially, common invariant subspaces for any collection of matrices.
The algorithmic problem is to find a non-trivial common invariant subspace if one exists.
Ronyai [24] gives a randomized polynomial-time algorithm for this problem when F is finite
field.

▶ Theorem 10 ([24]). Given A1, . . . , An ∈ Fd×d
q there is a randomized algorithm running

in time polynomial in n, d, log q that computes with high probability a non-trivial common
invariant subspace of A1, . . . , An if such a subspace exists, and outputs “no” otherwise.

CCC 2022



12:8 On Efficient Noncommutative Polynomial Factorization

▶ Remark 11. We should note here, the classical Burnside’s theorem [6] for matrix algebras over
algebraically closed fields. It essentially shows that the algebra generated by A1, A2, . . . , An

is the full matrix algebra iff there is no nontrivial common invariant subspace.
▶ Remark 12. As already mentioned in the introduction, Friedl and Ronyai [12] have shown
that over rationals the problem is at least as hard as factoring square-free integers, and hence
likely to be intractable.

For standard definitions of noncommutative formulas and noncommutative algebraic
branching programs (ABPs) we refer to [22].

3 Some Basic Results

In this section we present some basic results required for our factorization algorithm.

Monic linear matrices
▶ Definition 13 ([7]). Let L = A0 + A1x1 + . . . + Anxn ∈ F⟨X⟩d×d be a linear matrix, where
each Ai is a d×d scalar matrix over F. Then L is called right monic if the d×nd scalar matrix
[A1 A2 . . . An] has full row rank. Equivalently, if there are matrices B1, . . . , Bn ∈ Fd×d

such that Σn
i=1AiBi = Id (i.e. the matrix [A1 A2 . . . An] has right inverse).

Similarly, L is left monic if the nd× d matrix [AT
1 AT

2 . . . AT
n ]T has full column rank.

L is called monic if it is both left and right monic.

The next two results from Cohn [7] are important properties of monic linear matrices.

▶ Lemma 14 ([7]). A right (or left) monic linear matrix in F⟨X⟩d×d is not a unit in
F⟨X⟩d×d.

Let f ∈ F⟨X⟩ be a nonzero polynomial and L be a linear matrix obtained from f by
Higman linearization as in Equation 1. Clearly, L is a full linear matrix. We show that we
can transform L to obtain a full and right (or left) monic linear matrix L′ that is stably
associated to f . Furthermore, we can efficiently compute L′ and the related transformation
matrices.

▶ Theorem 15 ([7]). Let L = A0 +
∑n

i=1 Aixi be a full linear matrix in F⟨X⟩d×d obtained by
Higman linearization from a non constant polynomial f ∈ F⟨X⟩. Then there are deterministic
poly(n, d, log2 q) time algorithms that compute units U, U ′ ∈ F⟨X⟩d×d and invertible scalar
matrices S, S′ ∈ Fd×d

q such that:
1. ULS = L′ ⊕ Ir, and L′ is right monic. Moreover, if L is not right monic then r > 0.
2. S′LU ′ = L′ ⊕ Ir′ , and L′ is left monic. Moreover, if L is not left monic then r′ > 0.

▶ Remark 16. By repeated application of the algorithm in Theorem 15 we can compute units
U1, U2 ∈ F⟨X⟩d×d such that U1LU2 = L′ ⊕ Ir, where L′ is both left and right monic. Such a
two-sided monic L′ is called monic in [7].

For our factorization algorithm, it suffices to compute an L′ that is either left or right
monic that is associated to L as in Theorem 15. It turns out that either a left monic or a
right monic L′ suffices to use Ronyai’s common invariant subspace algorithm to factorize L′

(and hence also L) as we show in Theorem 28. More importantly, the fact that matrices S

and S′ in Theorem 15 are scalar is important for the factor extraction algorithm as discussed
in Theorem 32.

▶ Lemma 17. Given polynomials f, g ∈ F⟨X⟩ as input by noncommutative arithmetic
formulas, we can check in randomized polynomial time if f and g are stable associates.
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The next result shows how irreducibility (more generally, the property of being an atom)
is preserved by Higman linearization.

▶ Theorem 18. Let f ∈ F⟨X⟩ be a nonconstant polynomial and L be a full linear matrix stably
associated with f (obtained via Higman linearization).Then the polynomial f is irreducible
iff L is an atom.

We give a self-contained proof of the above theorem, using the following (suitably
paraphrased) result of Cohn.

▶ Lemma 19 (Matrix Product Trivialization, [8], pp. 198). Let A ∈ F⟨X⟩m×n and B ∈ F⟨X⟩n×s

be polynomial matrices such that their product AB = 0. Then there exists a unit P ∈ F⟨X⟩n×n

such that for every index i ∈ [n] either the ith column of the matrix product AP is all zeros
or the ith row of the matrix product P −1B is all zeros.

Let L ∈ F⟨X⟩d×d be a full and right (or left) monic linear matrix. Let L = A0+
∑n

i=1 Aixi.
For a positive integer ℓ let Mi, i ∈ [n] be ℓ × ℓ scalar matrices with entries from F (or a
small degree extension of F). Let Yi, i ∈ [n] be ℓ × ℓ matrices whose entries are distinct
noncommuting variables yijk, 1 ≤ j, k ≤ ℓ. Then the evaluation of the linear matrix L at
xi ← Yi + Mi, 1 ≤ i ≤ n is the dℓ× dℓ linear matrix in the yijk variables:

L′ = A0 ⊗ Iℓ +
n∑

i=1
Ai ⊗Mi +

n∑
i=1

ℓ∑
j,k=1

(Ai ⊗ Ejk) · yijk

▶ Lemma 20. There is a positive integer ℓ ≤ 2d such that for randomly picked ℓ × ℓ

matrices Mi, i ∈ [n] ( with entries from F or a small degree extension field) the matrix
A0 ⊗ Iℓ +

∑n
i=1 Ai ⊗Mi is an invertible matrix.

Proof. Since L ∈ F⟨X⟩d×d is a full linear matrix, it has noncommutative rank d. Hence, by
the result of [10] for the generic 2d× 2d matrix substitution xi ← Xi, i ∈ [n], where Xi is a
matrix of distinct commuting variables, the commutative rank of L(X1, X2, . . . , Xn) is 2d2

(which means it is invertible). Hence there is a least ℓ ≤ 2d such that the commutative rank
of L(X1, X2, . . . , Xn) is dℓ, where Xi are generic ℓ× ℓ matrices with commuting variables.
Hence, by the DeMillo-Lipton-Schwartz-Zippel lemma [9, 25, 27] the rank of the scalar matrix
L(M1, M2, . . . , Mn) is dℓ, where Mi is a random scalar matrix with entries from F or a small
extension. ◀

Finally, we state and prove a modified version of a result due to Cohn that allows us
to relate the factorization of a polynomial f ∈ F⟨X⟩ to the factorization of its Higman
linearization L. The proof is given in the appendix.

▶ Theorem 21 ([7], Theorem 5.8.8). Let C ∈ F⟨X⟩d×d be a full and right monic (or left
monic) linear matrix for d > 1. Then C is not an atom if and only if there are d×d invertible
scalar matrices S and S′ such that

SCS′ =
(

A 0
D B

)
(2)

where A is an r × r full right (respec. left) monic linear matrix and B is an s× s full right
(respec. left) monic linear matrix such that r + s = d.

▶ Remark 22. In [7] the theorem is proved under the stronger assumption that C is monic.
However, as we show, it holds even for C that is right monic or left monic with minor changes
to Cohn’s proof. We require the above version for our factorization algorithm.
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4 Polynomial factorization: commutatively non-zero case

Recall that F⟨X⟩ denotes the free noncommutative polynomial ring F⟨x1, x2, . . . , xn⟩ and our
goal is to give a randomized polynomial-time factorization algorithm for input polynomials
in F⟨X⟩ given as arithmetic formulas when F = Fq is a finite field of size q.

A polynomial f ∈ F⟨X⟩ is commutatively nonzero if f(α1, α2, . . . , αn) ̸= 0 for scalars
αi ∈ F (or a small extension field of F).

In this section we will present the factorization algorithm for commutatively nonzero
polynomials.6 It has three broad steps:

(i) We transform the given polynomial f to a full and right (or left) monic linear matrix
L by first the Higman linearization of f followed by the algorithm in the proof of
Theorem 15.

(ii) Next, we factorize the full and right (or left) monic linear matrix L into atoms.
(iii) Finally, we recover the irreducible factors of f from the atomic factors of L.

We formally state the three problems of interest in this paper.

▶ Problem 23 (FACT(F)).
Input A noncommutative polynomial f ∈ F⟨X⟩ given by an arithmetic formula.
Output Compute a factorization f = f1f2 · · · fr, where each fi is irreducible, and each fi is

output as an algebraic branching program.

▶ Problem 24 (LIN-FACT(F)).
Input A full and right (or left) monic linear matrix L ∈ F⟨X⟩d×d.
Output Compute a factorization L = F1F2 · · ·Fr, where each Fi is a full linear matrix that

is an atom.

▶ Problem 25 (INV(F)).
Input A list of scalar matrices A1, A2, . . . , An ∈ Fd×d.
Output Compute a nontrivial invariant subspace V ⊂ Fd or report that the only invariant

subspaces are 0 and Fd.

In the three-step outline of the algorithm, for the second step we will show that factoring
a full and right (or left) monic linear matrix is randomized polynomial-time reducible to the
problem of computing a common invariant subspace for a collection of scalar matrices. For
the third step, we will give a polynomial-time algorithm (based on Lemma 19) to recover the
irreducible factors of f from the atomic factors of L.
▶ Remark 26. We use Ronyai’s randomized polynomial-time algorithm [24] to solve the
problem of computing a a common invariant subspace for a collection of matrices over Fq.
Over rational numbers Q, even for a special case the problem of computing a common
invariant subspace turns out to be at least as hard as factoring square-free integers [12].
Hence, our approach to noncommutative polynomial factorization does not yield an efficient
algorithm over Q.

Suppose f ∈ F⟨X⟩ is given by a noncommutative arithmetic formula. Since f has small
degree we can check if it is commutatively nonzero in randomized polynomial-time by the
DeMillo-Lipton-Schwartz-Zippel test [9, 25, 27] and, if so, find αi ∈ F, i ∈ [n] such that
f(α1, α2, . . . , αn) ̸= 0 (if F is small, we pick αi from a small extension field). Furthermore,

6 In the next section we will deal with the general case. The algorithm is more technical in detail, although
in essence the same.
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by a linear shift of the variables xi ← xi + αi, i ∈ [n] followed by scaling we can assume
f(0) = 1. Note that from the factorization of the linear shift of f we can recover the factors
of f by shifting the variables back, and irreducibility is preserved by linear shift. For the rest
of this section we will assume f(0) = 1.

Let L = A0 +
∑n

i=1 Aixi. As f(0) = 1, we have L(0) = A0 is an invertible matrix. We
now present an efficient algorithm for factoring L as a product of linear matrices L1L2 · · ·Lr,
where each Li is an atom.

▶ Remark 27. The factorization algorithm for arbitrary full and right (or left) monic linear
matrices (in which A0 need not be invertible) is similar but more involved. It is based on
Lemma 20 and is dealt with in the next section.

4.1 Algorithm for a special case of LIN-FACT(Fq)

▶ Theorem 28. There is a randomized polynomial-time algorithm for the following two
special cases of the LIN-FACT(Fq) problem:
1. Given a full right monic matrix L as input such that L(0) is an invertible matrix, the

algorithm outputs a factorization of L as a product of linear matrices that are atoms.
2. Given a full left monic matrix L as input such that L(0) is an invertible matrix, the

algorithm outputs a factorization of L as a product of linear matrices that are atoms.

Proof. We present the algorithm only for the first part, as the second part has essentially
the same solution.

Let L = A0 +
∑n

i=1 Aixi in F⟨X⟩d×d be such an instance of LIN-FACT(Fq). We can
write L = A0 · L′ where L′ is the full and right monic linear matrix

L′ = Id +
n∑

i=1
A−1

0 Aixi.

Clearly, it suffices to factorize the linear matrix L′ into atoms.
First we show that L′ is not an atom iff matrices A−1

0 Ai, 1 ≤ i ≤ n have a nontrivial
common invariant subspace. By Theorem 21, L′ is not an atom if and only if we can write

S1L′S2 =
(

B 0
D C

)
for invertible scalar matrices S1 and S2, where B and C are full and

right monic linear matrices, and D is some linear matrix. Equating the constant terms on

both sides of the above equation we have S1S2 =
(

B0 0
D0 C0

)
as the constant term of L′ is

Id. Thus the matrices S1S2 and its inverse also has the same block form which implies that
S1L′S−1

1 = S1L′S2(S1S2)−1 also has the same block form. It follows that the n matrices
A−1

0 Ai, 1 ≤ i ≤ n have a nontrivial common invariant subspace. Conversely, if the matrices
A−1

0 Ai, 1 ≤ i ≤ n have a nontrivial common invariant subspace then we have a basic change

scalar matrix S such that SL′S−1 has the block form
(

L1 0
∗ L2

)
, where L1 and L2 are

full and right monic linear matrices. So by Theorem 21 L′ is not an atom. So we have
established, L′ (and hence L) is not an atom iff matrices A−1

0 Ai, 1 ≤ i ≤ n have a nontrivial
common invariant subspace. We will use Ronyai’s randomized polynomial-time algorithm for
finding a nontrivial common invariant subspace for matrices A−1

0 Ai, 1 ≤ i ≤ n over finite
field Fq.
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If there is no nontrivial invariant subspace then the linear matrix L′ (and hence L) is
an atom. Otherwise, by repeated application of Ronyai’s algorithm we will obtain a basis
change scalar matrix T which when applied to L′ yields a linear matrix in the following
atomic block diagonal form:

TL′T −1 =


L1 0 0 . . . 0
∗ L2 0 . . . 0
∗ ∗ L3 . . . 0

. . .
∗ ∗ ∗ . . . Lr

 , (3)

where for each j ∈ [r], the full right monic linear matrix Lj ∈ F⟨X⟩dj×dj is an atom, and
each ∗ stands for some unspecified linear matrix. It is now easy to factorize TL′T −1 as a
product of atoms by noting one step of the factorization of TL′T −1 from its form:

TL′T −1 =
(

A 0
D Lr

)
=

(
A 0
0 I

)
·
(

I 0
D I

)
·
(

I 0
0 Lr

)
.

We note that
(

I 0
D I

)
is a unit. Since Lr is an atom the product

(
I 0
D I

)
·
(

I 0
0 Lr

)
is also an atom and a linear matrix, and it is the rightmost factor of TL′T −1. Continuing
thus with A now, we can factorize TL′T −1 as a product F ′

1F ′
2 · · ·F ′

r of r atoms, each of which
is a linear matrix. It follows that L = A0T −1F ′

1F ′
2 · · ·F ′

rT is a complete factorization of L as
a product of atomic linear matrices (both A0 and T are scalar invertible matrices). ◀

▶ Remark 29. We note that Ronyai’s algorithm [24] for INV(Fq) is actually a deterministic
polynomial-time reduction from INV(Fq) to univariate polynomial factorization over Fq.

Based on whether we want to work with right monic or left monic case we will express
f ⊕ Is in an appropriate form using Higman linearization and Theorem 15 as described in
the equation below:

f ⊕ Is =
{

PU(L′ ⊕ It)SQ, in the right monic case
PS(L′ ⊕ It)UQ, in the left monic case

(4)

where d + t = s + 1, L′ ∈ F⟨X⟩d×d is a full and right (or left) monic linear matrix,
P is upper triangular with all 1’s diagonal, Q is lower triangular with all 1’s diagonal,
U ∈ F⟨X⟩(d+t)×(d+t) is a unit, and S ∈ F(d+t)×(d+t) is an invertible scalar matrix.

Algorithm for FACT(Fq)

We are now ready to describe the polynomial factorization algorithm for commutatively
nonzero polynomials in F⟨X⟩. Starting with the Higman linearization of the input polynomial
f ∈ F⟨X⟩ as in Equation 4, by an application of the first parts of Theorems 15 and 28 we
obtain the factorization f ⊕ Is = PUF ′

1F ′
2 · · ·F ′

rSQ using the structure in Equation 3.
Alternatively, by applying the second part of Theorem 15 we can compute a left monic

linear matrix L′ that is a stable associate of f and, applying the second part of Theorem 28
we can compute the factorization

f ⊕ Is = PS′F ′
1F ′

2 · · ·F ′
rU ′Q. (5)
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where each linear matrix F ′
i is an atom, P is upper triangular with all 1’s diagonal, Q is lower

triangular with all 1’s diagonal, U ′ is a unit and S′ is a scalar invertible matrix. Equation 5
is the form we will use for the algorithm (we could equally well use the other factorization).

From the structure of the atomic block diagonal matrix TL′T −1 in Equation 3 notice
that the product S′F ′

1F ′
2 · · ·F ′

i is a linear matrix for each 1 ≤ i < r.
The next lemma presents an algorithm that is crucial for extracting the factors of f .

▶ Lemma 30. Let C ∈ F⟨X⟩u×d be a linear matrix and v ∈ F⟨X⟩d×1 be a column of
polynomials such that Cv = 0. Each entry vi of v is given by an algebraic branching program
as input. Then, in polynomial time we can compute a invertible matrix N ∈ F⟨X⟩d×d such
that

For 1 ≤ i ≤ d either the ith column of CN is all zeros or the ith row of N−1v is zero.
Each entry of N is a polynomial of degree at most d2 and is computed by a polynomial
size ABP, and also each entry of N−1 is computed by a polynomial size ABP.

Proof. We will describe the algorithm as a recursive procedure Trivialize that takes matrix
C and column vector v as parameters and returns a matrix N as claimed in the statement.

Procedure Trivialize(C ∈ F⟨X⟩u×d, v ∈ F⟨X⟩d×1).
1. If d = 1 then (since Cv = 0 iff either C = 0 or v = 0) return the identity matrix.
2. If d > 1 then
3. write C = C0 + C1, where C0 is a scalar matrix and C1 is the degree 1 homogeneous part

of C. Let k be the degree of the highest degree nonzero monomials in the polynomial
vector v, and let m be a nonzero degree k monomial. Let v(m) ∈ Fd×1

q denote its (nonzero)
coefficient in v. Then Cv = 0 implies C1v(m) = 0. Let T0 ∈ Fd×d

q be a scalar invertible
matrix with first column v(m) obtained by completing the basis.
a. If C0v(m) = 0 then the first column of CT0 is zero.
b. Otherwise, CT0 has first column as the nonzero scalar vector Cv(m) = C0v(m).

Suppose ith entry of Cv(m) is a nonzero scalar α. With column operations we can
drive the ith entry in all other columns of CT0 to zero. Let the resulting matrix be
CT0T1 (where the matrix T1 is invertible as it is a product of elementary matrices
corresponding to these column operations, each of which is of the form Coli ←
(Coli + Col1 ·α0 +

∑
i αixi)). Notice that CT0T1 is still linear.

c. As Cv = (CT0T1)(T −1
1 T −1

0 v), and in the ith row of CT0T1 the only nonzero entry is α

which is in its first column, we have that the first entry of T −1
1 T −1

0 v is zero.
4. Let C ′ ∈ F⟨X⟩u×(d−1) obtained by dropping the first column of CT0T1. Let v′ ∈

F⟨X⟩(d−1)×1 be obtained by dropping the first entry of T −1
1 T −1

0 v. Note that C ′ is still
linear.

5. Recursively call Trivialize(C ′ ∈ F⟨X⟩u×(d−1), v′ ∈ F⟨X⟩(d−1)×1). and let the matrix
returned by the call be T2 ∈ F⟨X⟩(d−1)×(d−1).

6. Putting it together, return the matrix T0T1(I1 ⊕ T2).

To complete the proof, we note that a highest degree monomial m such that v(m) ̸= 0 is
easy to compute in deterministic polynomial time if each vi is given by an algebraic branching
program using the PIT algorithm of Raz and Shpilka [23]. Notice that for the recursive call
we need C ′ to be also a linear matrix and each entry of v′ to have a small ABP. C ′ is linear
because CT0T1 is a linear matrix since CT0 is linear, its first column is scalar, and each
column operation performed by T1 is scaling the first column of CT0 by a linear form and
subtracting from another column of CT0. Each entry of v′ has a small ABP because T −1

0 is
scalar and it is easy to see that the entries of T −1

1 have ABPs of polynomial size. Finally, we
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note that T1 is a product of at most d− 1 linear matrices (each corresponding to a column
operation), and N is an iterated product of d such matrices. Hence, each entry of N as well
as N−1 is a polynomial of degree at most d2 and is computable by a small ABP. ◀

Turning back to our algorithm for FACT(Fq), in the next lemma we design an efficient
algorithm that will allow us to extract all the irreducible factors of f (given Equation 5).

▶ Lemma 31 (Factor Extraction). Let f ∈ F⟨X⟩ be a polynomial and G ∈ F⟨X⟩(d−1)×(d−1)

be a unit such that(
f u

0 G

)
= PCD, (6)

such that
C is a full linear matrix that is a non-unit, P is upper triangular with all 1’s diagonal,
and D ∈ F⟨X⟩d×d is a full non-unit matrix which is also an atom.
The polynomial f , and the entries of u, G, P, D are all given as input by algebraic branching
programs.

Then we can compute in deterministic polynomial time a nontrivial factorization f = g · h of
the polynomial f such that h is an irreducible polynomial.

Proof. Let

C =
(

c1 c3
c2 c4

)
and D =

(
d1 d3
d2 d4

)
,

written as 2× 2 block matrices where c1 and d1 are 1× 1 blocks. By dropping the first row
of the matrix in the left hand side of Equation 6 and the first row of P we get

(0 G) = (0 P ′)CD,

where P ′ is also an upper triangular matrix with all 1’s diagonal. Equating the first columns
on both sides we have

0 = (0 P ′)
(

c1 c3
c2 c4

) (
d1
d2

)
, which implies that

0 = P ′(c2 c4)
(

d1
d2

)
, and hence

0 = (c2 c4)
(

d1
d2

)
, since P ′ is invertible.

Since (c2 c4) ∈ F⟨X⟩(d−1)×d is a matrix with linear entries and
(

d1
d2

)
∈ F⟨X⟩d×1

is a column vector of polynomials which are given by ABPs as input, we can apply the
algorithm of Lemma 30 to compute a unit N such that its entries are all given by ABPs
such that for 1 ≤ i ≤ d, either the ith column of (c′

2 c′
4) = (c2 c4)N is zero or the ith row of(

d′
1

d′
2

)
= N−1

(
d1
d2

)
is zero.

Now the following argument is almost identical with the argument towards the end of the
proof of the Theorem 18. We give it below for completeness. Since D is a full matrix, the

matrix N−1D is also full which implies its first column
(

d′
1

d′
2

)
cannot be all zeros. So there
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is at least one nonzero entry in
(

d′
1

d′
2

)
and the corresponding column in (c′

2 c′
4) is all zero.

This implies there exist a permutation matrix Π such that the first column of C(c′
2 c′

4)Π is

all zero and first entry of Π−1
(

d′
1

d′
2

)
is non zero.

Consider the matrices C ′′ = CNΠ =
(

c′′
1 c′′

3
c′′

2 c′′
4

)
and D′′ = Π−1N−1D =

(
d′′

1 d′′
3

d′′
2 d′′

4

)
.

We have(
f ∗
0 G′

)
= P −1

(
f u

0 G

)
=

(
c′′

1 c′′
3

c′′
2 c′′

4

) (
d′′

1 d′′
3

d′′
2 d′′

4

)
,

where G′ = (P ′)−1G is a unit, c′′
2 is all zero column matrix and d′′

1 is non-zero. Now observing
(2, 1)th matrix block in the above equation, we get d′′

2 is all zero column. Hence, by looking
at (2, 2)th block in the above equation, we can see that c′′

4 and d′′
4 are units as G′ is a unit.

Clearly, we have f = c′′
1 ·d′′

1 . Now, since C and D are non-units (by assumption), the matrices
C ′′ and D′′ are also non-units. Therefore, c′′

1 is not a scalar for otherwise C ′′ would be a
unit. Similarly, d′′

1 is not a scalar. It follows that f = c′′
1d′′

1 is a nontrivial factorization of f .
Furthermore, since D is an atom by assumption and D′′ is a stable associate of D, D′′ is an

atom. As D′′ =
(

d′′
1 d′′

3
0 d′′

4

)
and d′′

4 is invertible, we get
(

1 0
0 (d′′

4)−1

)
·D′′ =

(
d′′

1 d′′
3

0 Is

)
.

Now applying suitable row operations to the matrix (1⊕ (d′′
4)−1)D′′ we can drive d′′

3 to zero.
So we have U(1⊕ (d′′

4)−1)D′′ = (d′′
1 ⊕ Is) for a unit U . Hence d′′

1 is an associate of D′′ and
therefore d′′

1 is irreducible as D′′ is an atom. ◀

Finally, we describe the factorization algorithm for commutatively nonzero polynomials
f ∈ F⟨X⟩ over finite fields Fq.

▶ Theorem 32. Let F⟨X⟩ = Fq⟨X⟩ and f ∈ F⟨X⟩ be a commutatively nonzero polynomial
given by an arithmetic formula of size s as input instance of FACT(Fq). Then there is a
poly(s, log q) time randomized algorithm that outputs a factorization f = f1f2 · · · fr such
that each fi is irreducible and is output as an algebraic branching program.

Proof. Given f as input, we apply Higman linearization followed by the algorithm for
LIN-FACT(Fq) described in Theorem 28. This will yield the factorization of f ⊕ Is =
PSS1F1F2 . . . FrS2UQ where each linear matrix Fi is an atom, P is upper triangular with
all 1’s diagonal, Q is lower triangular with all 1’s diagonal, U is a unit and S is a scalar
invertible matrix, as given in Equation 5. We can now apply Lemma 31 to extract irreducible
factors of f (one by one from the right).

For the first step, let C = SS1F1F2 · · ·Fr−1 and D = FrS2UQ in Lemma 31. The proof of
Lemma 31 yields the matrix Nr = NΠ such that both matrices C ′′ = PSS1F1F2 · · ·Fr−1Nr

and D′′ = N−1
r FrS2UQ has the first column all zeros except the (1, 1)th entries c′′

1 and d′′
1

which yields the nontrivial factorization f = c′′
1d′′

1 , where d′′
1 = fr is irreducible. Renaming

c′′
1 as gr we have from the structure of C ′′:(

gr ∗
0 Gr

)
= P (SS1F1F2 · · ·Fr−2)(Fr−1Nr).

Setting C = SS1F1F2 · · ·Fr−2 and D = Fr−1Nr in Lemma 31 we can compute the matrix
Nr−1 using which we will obtain the next factorization gr = gr−1fr−1, where fr−1 is
irreducible because the linear matrix Fr−1 is an atom. Lemma 31 is applicable as all
conditions are met by the matrices in the above equation (note that Gr will be a unit).
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Continuing thus, at the ith stage we will have f = gr−i+1fr−i+1fr−i+2 · · · fr after ob-
taining the rightmost i irreducible factors by the above process. At this stage we will
have(

gr−i+1 ∗
0 Gr−i+1

)
= P (SS1F1F2 · · ·Fr−i−1)(Fr−iNr−i+1),

where Gr−i+1 is a unit and all other conditions are met to apply Lemma 31.
Thus, after r stages we will obtain the complete factorization f = f1f2 · · · fr. For the

running time, it suffices to note that the matrix N computed in Lemma 31 is a product of
degree at most d2 many linear matrices (corresponding to the column operations). Thus, at
the ith of the above iteration, the sizes of the ABPs for the entries of Nr−i+1 are independent
of the stages. Hence, the overall running time is easily seen to be polynomial in s and
log q. ◀

▶ Corollary 33. If f ∈ F⟨X⟩ is commutatively nonzero polynomial given as input in sparse
representation (as an Fq-linear combination of its monomials) then in randomized polynomial
time we can compute a factorization into irreducible factors in sparse representation.

Proof. Let f be given as input in sparse representation. Suppose deg f = d and it is t-sparse.
Then there are at most td2 many monomials that can occur as a substring of the monomials
of f . We can apply the randomized algorithm of Theorem 32 to obtain the factorization
f = f1f2 · · · fr, where each fi is given by an ABP. Now, for each of the td2 many candidate
monomials of fi we can find its coefficient in fi in polynomial time (using the Raz-Shpilka
algorithm [23]). Hence we can obtain the factorization f = f ′

1f ′
2 · · · f ′

r, where each f ′
i is a

t-sparse polynomial. ◀

5 Factorization of Commutatively zero polynomials

In this section we will describe the general case of the factorization algorithm when the input
polynomial f ∈ F⟨X⟩ is a commutatively zero polynomial. That is, f evaluates to zero on all
scalar substitutions from Fq or any (commutative) extension field.

The factorization algorithm will follow the three broad steps described in Section 4 for the
commutatively nonzero case: first, using Higman linearization and Theorem 15, transform
the polynomial f to a stably associated linear matrix L that is full and left (or right) monic.
Next, factorize the linear matrix L into atoms. Finally, recover the irreducible factors of f

from the atomic factors of the linear matrix L using the factor extraction procedure described
in Lemma 31.

The step that requires a new algorithm is factorizing a full and right (or left) monic linear
matrix L ∈ F⟨X⟩ into atoms when f is commutatively zero, which means there is no scalar
substitution xi ← αi, i ∈ [n] such that L(α1, α2, . . . , αn) is invertible. Note that in this case
we cannot apply the algorithm for factorizing a linear matrix as discussed in the proof of
Theorem 28).

5.1 Factorization of full and monic linear matrices
Let f ∈ F⟨X⟩ be the input polynomial given by a size s formula and let L ∈ F⟨X⟩d×d be a
full, right monic linear matrix stably associated with f obtained via Higman linearization
and an application of Theorem 15.
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Recall, by Equation 4 we have f ⊕ Is = PU(L ⊕ It)SQ where, P , Q are respectively
upper triangular and lower triangular units with diagonal entries 1, U is a unit and S is
scalar invertible.

Let L = A0 +
∑n

i=1 Anxi ∈ F⟨X⟩d×d be the given full and right monic linear matrix.
First, by Lemma 20, we will find a suitable scalar matrix n-tuple M̄ = (M1, M2, . . . , Mn),
each Mi ∈ Fℓ×ℓ

q for ℓ ≤ 2d, such that under the substitution xi ← Mi the matrix L(M̄) is
invertible.

For 1 ≤ i ≤ n let Yi be an ℓ × ℓ matrix of distinct noncommuting variables yijk. We
consider the dilated linear matrix

L′ = A0 ⊗ Iℓ +
n∑

i=1
Ai ⊗ (Yi + Mi). (7)

It is not hard to see that L′ is full and L′ is right monic as L is right monic. Additionally,
its constant term is invertible. So, we can apply Theorem 28 to factorize L′ as a product of
two linear matrices, both non-units.

The following lemma [14] has an important role in our algorithm for recovering the
factorization for L from a factorization of L′.

▶ Lemma 34 ([14]). Let L ∈ F⟨X⟩d×d be a full linear matrix with L = A0 +A1x1 +. . .+Anxn

such that Ai ̸= 0 for at least one i, 1 ≤ i ≤ n and L′ ∈ Rdℓ×dℓ be a matrix obtained from L

by substituting variable xi by Yi for i ∈ [n], where Yi is ℓ× ℓ matrix whose (j, k)th entry is a
fresh noncommuting variable yi,j,k for 1 ≤ j, k ≤ ℓ. Then

1. If L′ is of the form GL′H =
(

A′ 0
D′ B′

)
, where A′ is d′ × d′ matrix and B′ is d′′ × d′′

matrix for 0 < d′, d′′, with d′ + d′′ = dℓ and G, H are dℓ× dℓ invertible scalar matrices

then there exist d×d invertible scalar matrices U, V such that ULV =
(

A 0
D B

)
, where

A is e′ × e′ matrix and B is e′′ × e′′ matrix for 0 < e′, e′′, with e′ + e′′ = d.
2. Moreover, given L′ explicitly along with its representation mentioned above, we can find

the matrices U, V in deterministic polynomial time (in n, ℓ, d).

▶ Remark 35. We give a self-contained complete proof of the above linear-algebraic lemma
in the appendix for Fq, because the proof given in [14] is sketchy in parts with some details
missing, and also their lemma is stated only for complex numbers and they are not concerned
about computing the matrices U and V .

Now, we can apply Lemma 34 to transform the factorization of L′ to a factorization of L

as a product of two linear matrices, both non-units. Repeating the above on both the factors
of L we will get a complete atomic factorization of L. Formally, we prove the following.

▶ Theorem 36. On input a full and right (or left) monic linear matrix L = A0 +
∑n

i=1 Aixi

where Ai ∈ Fd×d for i ∈ [n], there is a randomized polynomial time (poly(n, d)) algorithm to
compute scalar invertible matrices S, S′ such that SLS′ has atomic block diagonal form.

Proof. We present the algorithm only for right monic L; the left monic case has essentially
the same solution.

If the input L is not full or right monic the algorithm can efficiently detect that and
output “failure”. If L is an atom the algorithm will output that L is an atom and set the
matrices S and S′ to Id. Otherwise, the algorithm will compute invertible scalar matrices S

and S′ such that
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SLS′ =


L1 0 0 . . . 0
∗ L2 0 . . . 0
∗ ∗ L3 . . . 0

. . .
∗ ∗ ∗ . . . Lr

 , (8)

where the matrix on the right is in atomic block diagonal form, that is, each linear matrix
Li is an atom.

Procedure Factor(L).
1. Test if L has full noncommutative rank using the algorithm in [17] or [13]. Test if L is

right monic by checking if the matrix [A1A2 . . . An] has full row rank (which is d). If L is
not full and right monic the algorithm outputs “fail”.

2. Assume L is full and right monic. Using Lemma 20, find smallest positive integer ℓ ≤ 2d

and ℓ× ℓ scalar matrices Mi, i ∈ [n] with entries from F (or a small degree extension of F)
such that W = L(M̄) is d · ℓ× d · ℓ invertible scalar matrix. Compute the dilated linear
matrix L′ in the yijk variables as in Equation 7 which can be rewritten as:

L′ = A0 ⊗ Iℓ +
n∑

i=1
Ai ⊗Mi +

n∑
i=1

ℓ∑
j,k=1

(Ai ⊗ Ejk) · yijk.

Let L′′ = W −1L′. Clearly L′′(0) = Idℓ. Hence, by the algorithm of Theorem 28 we can
either detect that L′′ is an atom or factorize L′′. If L′′ is an atom then L is also an
atom and the algorithm can output that and stop. Otherwise, L′ is not an atom and by
Theorem 28 we will obtain a basis change matrix T such that TW −1L′T −1 = TL′′T −1 =(

C ′′ 0
∗ D′′

)
where C ′′ and D′′ are linear matrices of dimension c′′ × c′′ and d′′ × d′′

respectively, such that c′′ + d′′ = dℓ.

3. By linear shift of variables yijk ← yijk −Mi(j, k) we obtain T̃ L̃T̃ ′ =
(

C ′ 0
∗ D′

)
for

some scalar invertible matrices T̃ , T̃ ′ where L̃ = L(Y1, . . . , Yn).
4. Applying the algorithm of Lemma 34 to L̃, T̃ , and T̃ ′, in deterministic polynomial time

we obtain scalar invertible matrices S̃, S̃′ such that S̃LS̃′ =
(

C 0
∗ D

)
where C, D are

square matrices of dimensions e× e and g × g, respectively, such that e + g = d.
5. Recursively call Factor(C) and Factor(D). Let S1, S′

1 be the matrices returned by
Factor(C) and S2, S′

2 be the matrices returned by Factor(D).
6. Let S = (S1 ⊕ S2)S̃ and S′ = S̃′(S′

1 ⊕ S′
2). Return the invertible scalar matrices S and

S′. Note that at this stage SLS′ has the desired atomic block diagonal form.

Next we give a brief argument for proving correctness of the above algorithm. Firstly, the
algorithm declares L as an atom iff L is indeed an atom. To see this, we will prove L is not
an atom iff L′′ is not an atom. Forward direction is obvious. To prove the reverse direction
of implication, let L′′ is not an atom. Which implies L′ = WL′′ is not an atom. L̃ is a linear
matrix obtained by substituting Mi(j, k) = 0 for all i, j, k in L′. Clearly, L̃ is not an atom as
L′ is not an atom. Using Lemma 34 it follows that L is not an atom. So we have established
L is not a atom iff L′′ is not an atom. So if input linear matrix L is an atom, the algorithm
will correctly declare it to be an atom in step 2.



V. Arvind and P. S. Joglekar 12:19

Now we argue that we will get correct atomic block diagonal form in the last step of the
algorithm. Firstly, for giving recursive calls to the Factor procedure for the matrices C, D,
we must have C, D to be right monic as stated in the claim below. This is proved by the
same argument as in the proof of Theorem 21.

▷ Claim 37. Let L ∈ F⟨X⟩d×d be a full and right monic linear matrix such that P ′LQ′ =(
C 0
E D

)
where C and D are linear matrices of dimensions e× e, g × g, respectively, such

that e + g = d. Then both C, D are right monic.

By recursive calls Factor(C) and Factor(D) obtain matrices S1, S′
1, S2, S′

2 such that
S1CS′

1 = C ′ and S2DS′
2 = D′ are in atomic block diagonal form. We can write S̃LS̃′ as

=
(

C 0
E D

)
=

(
C 0
0 Ig

) (
Ie 0
E Ig

) (
Ie 0
0 B

)
= (S−1

1 ⊕ Ig)(C ′ ⊕ Ig)(S′−1
1 ⊕ Ig)

(
Ie 0
E Ig

)
(Ie ⊕ S−1

2 )(Ie ⊕D′)(Ie ⊕ S′−1
2 )

= (S−1
1 ⊕ Ig)(C ′ ⊕ Ig)(Ie ⊕ S′−1

2 )
(

Ie 0
S2ES′

1 Ig

)
(S′−1

1 ⊕ Ig)(Ie ⊕D′)(Ie ⊕ S′−1
2 )

= (S−1
1 ⊕ Ig)(Ie ⊕ S−1

2 )(C ′ ⊕ Ig)
(

Ie 0
S2ES′

1 Ig

)
(Ie ⊕D′)(S′−1

1 ⊕ Ig)(Ie ⊕ S′−1
2 )

= (S−1
1 ⊕ Ig)(Ie ⊕ S−1

2 )
(

C ′ 0
S2ES′

1 D′

)
(S′−1

1 ⊕ Ig)(Ie ⊕ S′−1
2 )

= (S−1
1 ⊕ S−1

2 )
(

C ′ 0
S2ES′

1 D′

)
(S′−1

1 ⊕ S′−1
2 ).

Thus we have

(S1 ⊕ S2)S̃LS̃′(S′
1 ⊕ S′

2) =
(

C ′ 0
S2ES′

1 D′

)
.

As C ′ and D′ are in atomic block diagonal form, it follows that
(

C ′ 0
S2ES′

1 D′

)
is also

in atomic block diagonal form. Letting S = (S1 ⊕ S2)S̃ and S′ = S̃′(S′
1 ⊕ S′

2), it follows that
SLS′ is in the desired atomic block diagonal form which proves the correctness of Factor
procedure. In each call to the procedure (excluding the recursive calls) the algorithm takes
poly(n, d, log2 q) time. The total number of recursive calls overall is bounded by d. Hence,
the overall running time is poly(n, d, log2 q). This completes the proof of the theorem. ◀

For the factorization of f , we assume the stably associated full linear matrix L is left
monic. After we obtain atomic block diagonal form as in Equation 8, we can factorize L into
atomic factors by Theorem 28. Combined with Equation 5 we have

f ⊕ Is = PS′F ′
1F ′

2 · · ·F ′
rU ′Q,

where each linear matrix F ′
i is an atom, P is upper triangular with all 1’s diagonal, Q is lower

triangular with all 1’s diagonal, and S′ is scalar invertible and U ′ is a unit. Now, applying
Lemma 31 and Theorem 32 we obtain the complete factorization of f into irreducible factors.
This is summarized in the following.
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▶ Theorem 38. Let f ∈ F⟨X⟩ be a polynomial given by an arithmetic formula as input
instance of FACT(Fq). Then there is a poly(s, log q, |X|) time randomized algorithm that
outputs a factorization f = f1f2 · · · fr such that each fi is irreducible and is output as an
algebraic branching program.

Analogous to Corollary 33, when the polynomial is given in a sparse representation,
we have

▶ Corollary 39. If f ∈ F⟨X⟩ is a polynomial given as input in sparse representation (that
is, an Fq-linear combination of its monomials) then in randomized polynomial time we can
compute a factorization into irreducible factors in sparse representation.

5.2 Factorization over small finite fields
Finally, we briefly discuss the factorization problem over small finite fields. As explained
in Section 1.2, the two steps in our factoring algorithm requiring randomization can be
replaced with deterministic poly(s, q, |X|) time computation. Furthermore, as explained in
Section 1.2, the matrix shift (M1, M2, . . . , Mn) required for the Theorem 36 can be obtained
in deterministic polynomial time such that the entries of the matrices Mi are from Fq for each
i. Putting it together, it gives us a deterministic factorization algorithm for noncommutative
polynomials that are input as arithmetic formulas over Fq. In summary, we have the following.

▶ Theorem 40. Given as input a multivariate polynomial f ∈ Fq⟨X⟩ for a finite field Fq by a
noncommutative arithmetic formula of size s, a factorization of f as a product f = f1f2 · · · fr

can be computed in deterministic time poly(s, q, |X|), where each fi ∈ Fq⟨X⟩ is an irreducible
polynomial that is output as an algebraic branching program.

6 Concluding Remarks

In this paper we present a randomized polynomial-time algorithm for the factorization of
noncommutative polynomials over finite fields that are input as arithmetic formulas. The
irreducible factors are output as algebraic branching programs.

Several open questions arise from our work. We mention two of them. The first question
is the complexity of factorization over rationals of noncommutative polynomials given as
arithmetic formulas. Our approach involves the crucial use of Ronyai’s algorithm for invariant
subspace computation which turns out to be a hard problem over rationals. We believe a
different approach may be required for the rational case.

The use of Higman linearization prevents us from generalizing this approach to non-
commutative polynomials given as arithmetic circuits. We do not know any non-trivial
complexity upper bound for the factorization problem for noncommutative polynomials given
as arithmetic circuits.
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