
The Composition Complexity of Majority
Victor Lecomte
Stanford University, CA, USA

Prasanna Ramakrishnan
Stanford University, CA, USA

Li-Yang Tan
Stanford University, CA, USA

Abstract
We study the complexity of computing majority as a composition of local functions:

Majn = h(g1, . . . , gm),

where each gj : {0, 1}n → {0, 1} is an arbitrary function that queries only k ≪ n variables and
h : {0, 1}m → {0, 1} is an arbitrary combining function. We prove an optimal lower bound of

m ≥ Ω
(

n

k
log k

)
on the number of functions needed, which is a factor Ω(log k) larger than the ideal m = n/k. We call
this factor the composition overhead; previously, no superconstant lower bounds on it were known
for majority.

Our lower bound recovers, as a corollary and via an entirely different proof, the best known
lower bound for bounded-width branching programs for majority (Alon and Maass ’86, Babai et
al. ’90). It is also the first step in a plan that we propose for breaking a longstanding barrier in
lower bounds for small-depth boolean circuits.

Novel aspects of our proof include sharp bounds on the information lost as computation flows
through the inner functions gj , and the bootstrapping of lower bounds for a multi-output function
(Hamming weight) into lower bounds for a single-output one (majority).

2012 ACM Subject Classification Theory of computation → Circuit complexity

Keywords and phrases computational complexity, circuit lower bounds

Digital Object Identifier 10.4230/LIPIcs.CCC.2022.19

Related Version Full Version: https://arxiv.org/abs/2205.02374

Funding Victor, Pras, and Li-Yang are supported by NSF CAREER Award CCF-1942123. Pras is
also supported by Moses Charikar’s Simons Investigator Award.

Acknowledgements Li-Yang thanks Xi Chen, Rocco Servedio, and Erik Waingarten for numerous
discussions about this problem.

1 Introduction

A basic theme in computer science is the representation of certain functions as the combination
of simpler ones. Indeed, the field of distributed computing and the widespread principle of
divide-and-conquer rely on this property of functions.

In this paper we focus on locality as our notion of simplicity: a k-local function over
n variables is one that depends only on k ≪ n input coordinates. This leads us to the
following complexity measure of boolean functions, first studied by Hrubeš and Rao [15],
which quantifies how easily they can be represented as the combination of local functions:

▶ Definition 1 (composition complexity). The k-composition complexity of a function f ,
denoted CCk(f), is the minimum m such that f can be expressed as h(g1, . . . , gm), where
each of the inner functions gj queries only k variables.

© Victor Lecomte, Prasanna Ramakrishnan, and Li-Yang Tan;
licensed under Creative Commons License CC-BY 4.0

37th Computational Complexity Conference (CCC 2022).
Editor: Shachar Lovett; Article No. 19; pp. 19:1–19:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CCC.2022.19
https://arxiv.org/abs/2205.02374
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 The Composition Complexity of Majority

Clearly, any function f that actually depends on all n variables must have CCk(f) ≥ n/k,
since every variable must be queried at least once. The parity function shows that this bound
can be tight: CCk(Parityn) ≤ O(n/k), since we can let each gj compute the parity of a set of
k variables, and let h compute the parity of these parities. However, some functions inherently
require more than n/k inner functions: they incur a composition overhead. This motivates
defining the k-composition overhead of f to be the ratio CCk(f)

n/k between its k-composition
complexity and the ideal n/k.

1.1 This work
In this paper we study the composition complexity of the majority function. Prior to our
work, this was perhaps the most basic function whose composition complexity was not well
understood. For an upper bound, it is not hard to see that CCk(Majn) ≤ O(n

k log k). We can
split the variables into n/k disjoint sets of size k and devote O(log k) of the inner functions gi

to computing the Hamming weight of each set. Then h can determine the overall Hamming
weight, and output 1 if and only if it is at least n/2. This uses a total of m ≤ O(n

k log k)
inner functions.

As for lower bounds, while it is an easy exercise to improve the trivial lower bound
of ≥ n/k to > n/k in the case of majority, even a modest lower bound of ≥ 1.1n

k seems
challenging to establish. Our main result is an asymptotically tight lower bound showing that
the construction described above is optimal, and that majority has a composition overhead
of Θ(log k).

▶ Theorem 2 (Main theorem). For all ϵ > 0 and k ≤ n1−ϵ, CCk(Majn) ≥ Ω(n
k log k).

In addition to being a natural complexity measure that is of independent interest, our
study of composition complexity is further motivated by its relationships to two important
models of computation: bounded-width branching programs and small-depth circuits. These
are two of the most intensively studied models in circuit complexity, and majority plays a
starring role in the efforts at lower bounds for both models. As we now elaborate, Theorem 2
recovers, as a corollary and via an entirely different proof, the current best lower bounds
on the length of bounded-width branching programs for majority [2, 4]. It is also the first
step in a plan that we propose for lower bounds against depth-3 circuits computing majority,
a long-standing open problem that dates back to the 1990s [13]; such lower bounds would
represent the first improvements over the state of the art for depth-3 circuits in over three
decades [12].

1.2 Motivation and implications
1.2.1 Bounded-width branching programs
There is an easy reduction from branching programs to our model: if function f is computed
by a bounded-width branching program of length L, then CCk(f) ≤ O(L/k). The reduction
works by cutting the branching programs into ∼ L/k segments of length at most k, then
for each segment and for each state s at the start of the segment, use O(1) inner functions
to compute which state one would end up at the end of the segment if one started from s.
Since the segments have length at most k, each of the inner functions depends on at most k

variables.
This means that nontrivial lower bounds on the composition complexity CCk(f) for

any k directly imply nontrivial lower bounds on the length of bounded-width branching
programs: L ≥ Ω(k · CCk(f)). In particular, setting k =

√
n, by Theorem 2 we obtain

V. Lecomte, P. Ramakrishnan, and L.-Y. Tan 19:3

that bounded-width branching programs computing the majority function must have length
L ≥ Ω(

√
n · n√

n
log

√
n) = Ω(n log n), recovering the classic lower bound of Alon and Maass [2]

and Babai, Pudlák, Rödl, and Szemerédi [4] as a corollary:

▶ Theorem 3 ([2, 4]). Any bounded-width branching program computing Majn must have
length Ω(n log n).

This lower bound remains the current state of the art. Interestingly, our techniques
are completely different from the techniques used in [2] and [4]: they first prove a Ramsey-
theoretic lemma that identifies two sets of variables that are queried in disjoint segments of
the branching program, then conclude by a communication complexity argument between
them. We elaborate on our techniques in Section 1.3.

1.2.2 Lower bounds for small-depth circuits computing majority
We view Theorem 2 in part as an essential and necessary first step towards proving stronger
lower bounds against small-depth circuits. In this section, we will outline why such lower
bounds are particularly interesting, and the relationship between our composition complexity
lower bounds and circuit lower bounds.

Lower bounds for small-depth circuits

A fruitful line of work from the ’80s [7, 1, 32, 12] managed to prove strong lower bounds
against small-depth circuits, but using a surprisingly simple function: parity. In particular,
the result that culminated from these works was that any depth-d circuit computing Parityn

must have size 2Ω
(

n
1

d−1
)
, which is superpolynomial for any d = o(log n/ log log n). These

bounds are optimal for parity – an extension of the divide-and-conquer scheme mentioned
earlier matches this bound. As we now elaborate, these remain essentially the strongest
(explicit) lower bounds against small-depth circuits we have for any function, even in the
case of d = 3, despite the fact that counting arguments give lower bounds of Ω(2n/n), and
we expect that circuits for hard functions like SAT must also have size 2Ω(n).

Depth-3 circuits and majority

The problem of improving the state of the art for depth-3 circuits (2Ω(
√

n) for Parityn) in
particular has received significant attention as one of the simplest restricted models that are
poorly understood. Stronger depth-3 bounds are likely to imply stronger small-depth bounds
in general, and much stronger bounds of the form 2ω(n/ log log n) would also give functions that
cannot be computed by linear-size log-depth circuits due to a classical result of Valiant [30].
For a detailed exposition of the motivations for depth-3 and the attempts to understand the
model, see [16, Chapter 11].

Of the functions that could prove stronger depth-3 lower bounds, majority, being such a
basic and simple-to-understand function, is a particularly enticing candidate. The divide-and
conquer construction analogous to that for parity gives depth-3 circuits of size 2O(

√
n log n),

and the same 2Ω(
√

n) lower bound for parity also applies to majority.1 In light of this gap,
Håstad, Jukna, and Pudlák [13] posed the following challenge.

1 For general depth d, the upper bound is 2O

(
n

1
d−1 ·(log n)1− 1

d−1
)

[17] and the lower bound is 2Ω
(

n
1

d−1
)

once again.

CCC 2022

19:4 The Composition Complexity of Majority

▶ Open Problem 1 ([13]). Find an explicit function that requires depth-3 circuits of size
2ω(

√
n). In particular, does Majn require depth-3 circuits of that size?

Despite this natural candidate function, all of the improvements on the lower bounds
for depth-3 circuits have still been of the form 2c

√
n for successively larger c. [13] found an

innovative method of proving lower bounds for circuits from the “top down”, and were able
to get constants c = 0.618 and 0.849 for parity and majority respectively. Paturi, Pudlák,
and Zane [24] improved the constant to the optimal c = 1 for parity, and later the same
authors along with Saks [23] obtained the constant c = 1.282 for the membership function of
an error-correcting code. Getting a super-constant improvement over this state of the art
has been a major frontier of circuit complexity for decades.

For majority, there have also been attempts at improved upper bounds. [31] proposed a
probabilistic construction of a depth-3 circuit computing Majn with size 2O(

√
n), but the

construction turned out to be mistaken.2

The need for new techniques

One view of why previous techniques have fallen short on resolving Open Problem 1 is that
at their core, they use sensitivity as the key complexity measure for which small depth
circuits are weak (see [5, 28, 20]). With respect to sensitivity, of course Parityn is the most
complex function because it has sensitivity n at every input. The fact that parity is the
hardest should suggest why we have struggled to get lower bounds stronger than those for
parity. More concretely, these techniques do not establish bounds stronger than 2Ω(s(f)

1
d−1)

where s(f) is the sensitivity of f : {0, 1}n → {0, 1}. But s(f) ≤ n, so this leaves us stuck the
current state of the art (2Ω(

√
n) for depth-3).

To push beyond our current small-depth circuit lower bounds, there is a need for new
techniques. In particular, we need to make use of complexity measures beyond sensitivity,
where parity is no longer the hardest function. Moreover, to solve Open Problem 1, such
a complexity measure needs to be one where majority is demonstrably harder than parity.
The notion of composition complexity and the techniques of this paper meet both of these
demands (as shown by Theorem 2). We are hopeful that these techniques (described in
Section 1.3) can be extended to prove stronger lower bounds in more general settings.

Composition complexity and depth-3 circuits

If CCk(f) ≤ m, then we can write f = h(g1, . . . , gm) where each of the functions gj only
needs to query k variables. But then we can write h as a DNF (or CNF) of size 2m, and
we can write the inner functions gj as CNFs (or DNFs) of size 2k. In this form we have a
depth-3 circuit for f of size

2m + m · 2k ≤ 2O(m+k) (1)

with bottom fan-in k. The best-known depth-3 circuits for computing Majn are obtained in
precisely this manner, by using the bound CCk(Majn) ≤ O(n

k log k) and setting k :=
√

n log n.
It follows that in order to prove that Majn requires depth-3 circuits of size 2Ω(

√
n log n), one

must first prove that max(CCk(f), k) ≥ Ω(
√

n log n). This is implied directly by Theorem 2,
which we view as a key first step towards proving stronger depth-3 lower bounds. In particular,

2 Briefly, in the notation of [31], it requires that kn/c < n, and so k < c, but c then takes on all the values
of n, n/2, n/3, . . . , 1 and k ≈

√
n. The third author thanks Srikanth Srinivasan [29] who informed him

about this gap in the proof.

V. Lecomte, P. Ramakrishnan, and L.-Y. Tan 19:5

it shows that if one wanted to construct a depth-3 circuit for Majn of size 2o(
√

n log n), it
would have to look very different from the current divide-and-conquer strategy. In Section 6.1
we outline some ways in which our results could be extended beyond the model we consider
to depth-3.

1.3 Our techniques
In this section, we briefly describe the techniques we use to prove Theorem 2, and highlight
some aspects that we feel are particularly interesting.

Information theory

While there have been some attempts to incorporate information theory into the toolbox
of boolean function lower bounds [22, 8], these techniques remain uncommon. Our proof
crucially uses mutual information to measure information flow from the input variables to
the inner functions.

Our key insight can be summed up as the counterintuitive maxim “the less it is queried
the more it is revealed”. More concretely, suppose we can compute the Hamming weight
function as h(g1, . . . , gm), then we show that if few of the inner functions g1, . . . , gm query
a particular input variable xi, then the output of the inner functions must reveal a lot of
information about xi’s value – that is, one can guess xi better than random chance based on
g1(x), . . . , gm(x).

▶ Lemma 4 (key insight, informally). Suppose that xi is queried by at most q of the inner
functions g1, . . . , gm. Then I[Xi : g1(X), . . . , gm(X)] ≥ 2−O(q).

One of the novelties of our proof is that the information flow can be distilled so cleanly
as the above lemma, and that tight lower bounds follow quite easily from it (see Section 3).
It is natural to wonder whether this approach can be generalized to stronger models of
computation.

From multi-output functions to binary-output functions

Another intriguing aspect of our proof is that in proving the lower bound for majority,
it turns out to be easiest to first prove a lower bound for the Hamming weight function
HWn : {0, 1}n → {0, . . . , n}, which maps x 7→ |x| (i.e., the number input bits that are 1).
Notably, this is not a binary-output function, but rather a “multi-output” function (its output
takes ⌈log(n + 1)⌉ bits), and the proof of our information-theoretic Lemma 4 fundamentally
uses this larger output space.

The way in which we extend the lower bound from HWn to Majn is also worth noting.
In Section 4, we give a general framework for, in a sense, forcing binary-output functions to
become multi-output. We use “control variables” to manipulate the construction h(g1, . . . , gm)
into telling us more about the input, and “buffer variables” to avoid incurring a blowup in
how many inner functions are necessary. This allows us to show that an efficient construction
for Majn would imply a similarly efficient construction computing the Hamming weight on
a large fraction of inputs, and we can then conclude with a slightly more general version of
Lemma 4.

Perhaps there is more to be found in this direction. Could the frontier of circuit lower
bounds be pushed further by first proving lower bounds for multi-output functions, and then
bootstrapping these to get lower bounds against the usual single-output functions? Indeed,

CCC 2022

19:6 The Composition Complexity of Majority

our proof technique suggests that proving more lower bounds for multi-output functions
could be a valuable endeavor, even when those lower bounds do not seem to immediately
lead to lower bounds for binary-output functions we traditionally study.

Natural proofs

The proof of our key lemma in Section 5 is tailored specifically to the Hamming weight
function.3 While this could be seen as a limitation, it can also be seen as a strength. Indeed,
Razborov and Rudich [27] showed that lower bound arguments cannot apply to too broad
a range of functions, assuming that pseudorandom functions exist. Given that our lower
bound argument only works for the Hamming weight and closely related functions like the
majority function, it does not seem to fall within the natural proofs framework.

1.4 Related work
Hrubeš-Rao and Nechiporuk’s method

Hrubeš and Rao [15] gave a function f for which CCk(f) ≥ nΩ(1−k/n).4 Their proof draws
inspiration from Nechiporuk’s method [21], which gives lower bounds for functions f for
which one can split the variables into disjoint sets S1, . . . , Sℓ such that f has many distinct
subfunctions on each Sr (r ∈ [ℓ]).

Their lower bound is quantitatively stronger than ours, but just like other bounds obtained
from Nechiporuk’s method, it only applies to a limited set of functions specially created
for that purpose, and says nothing about many basic functions like majority. Nechiporuk’s
method is unable to prove lower bounds for majority because its subfunctions are all threshold
functions, of which there are only a handful.5 Moreover, the functions that [15] uses have no
bearing on stronger lower bounds for depth-3 circuits, since their functions actually have
depth-2 circuits of size nO(log n).

It is interesting to contrast our techniques with Nechiporuk’s method. At a very high
level, Nechiporuk’s method considers what one can infer about the function after fixing
several variables (particularly, how many subfunctions remain), whereas our method considers
what one can infer about the variables given the output of several of the inner functions.
This difference in perspective is key in our ability to get tight lower bounds in a case where
Nechiporuk’s method only gives trivial bounds.

Lower bounds for canonical boolean circuits

Goldreich and Wigderson [11] recently introduced a new restricted of model of “canonical”
boolean circuits, with the hope of proving 2ω(

√
n) lower bounds for this model. Their model

is inspired by the structure of optimal depth-3 circuits for Parityn, which dissects the
computation into disjoint parities of smaller arity (over

√
n variables). [11] proposes a

generalization of this construction, where one aims to represent a multi-linear function as
a depth-2 circuit where the gates are arbitrary multi-linear functions of small arity. They

3 At a high level, it uses the facts that the possible Hamming weight values 0, . . . , n are a completely
ordered set and that flipping a bit from 0 to 1 increases the Hamming weight by one, in order to find
one weight w∗ for which the corresponding inputs are biased on a given coordinate.

4 Their paper denotes k-composition complexity as C2
k instead of CCk.

5 Indeed, there is an exactly analogous situation with branching programs. While Nechiporuk’s method
can establish strong branching program lower bounds (see [26, Theorem 2], attributed to Beame and
Cook), [2, 4] had to introduce new techniques to prove lower bounds for majority.

V. Lecomte, P. Ramakrishnan, and L.-Y. Tan 19:7

propose proving strong lower bounds in this model as a “sanity check” for proving better
general depth-3 circuit bounds (Open Problem 1) – to do the latter, one must necessarily do
the former as well.

Our approach can be viewed in a very similar light. In fact, our model is strictly stronger:
we consider gates that compute arbitrary boolean functions of small arity, not just functions
that are multi-linear over GF(2). In the same way, our model serves as a sanity check for
Open Problem 1 – any proof that depth-3 circuits for Majn require size 2Ω(

√
n log n) must

prove Theorem 2 as well.
Strong lower bounds have indeed been proven in the model introduced by [11]. Goldreich

and Tal [9] proved a lower bound of 2Ω̃(n2/3). [10] also proved lower bounds of 2Ω̃(n3/8) for
canonical depth-4 circuits, an improvement over the 2Ω(n1/3) bound that is known for the
general depth-4 circuits computing Parityn. In our model where the gates can compute
arbitrary boolean functions of small arity, such strong bounds are not possible for the Majn

function, and we pin down exactly the right bounds in this case.

Majority as a majority of majorities

There has been interest [18, 6, 14, 3, 25] in the optimal ways of computing majority as a
composition of functions h(g1, . . . , gm) in the restricted model, where the h and g1, . . . , gm

are majority functions of smaller fan-in (Maj≤k for some k). [18] showed that k ≥ n0.7 was
necessary, [6] improved this to k ≥ n0.8, and [14] further improved this to k ≥ n/2 − o(n). In
terms of upper bounds, [3] gave k ≤ n+2 for odd n ≥ 7, and [25] improved this to k ≤ 2

3 n+4
(for all n).

Similar to the state of canonical boolean circuits discussed above, this setting is more
restrictive, so it makes sense that their lower bounds are stronger than Theorem 2. It would
be interesting to see if our techniques could apply to these more restricted models as well.

2 Preliminaries

2.1 Locality
In this subsection, we define some notation that we will use repeatedly, and we give a formal
definition of k-locality.

▶ Definition 5 (x(i 7→b), x⊕i). For any x ∈ {0, 1}n, i ∈ [n] and b ∈ {0, 1}, let
x(i 7→b) := (x1, . . . , xi−1, b, xi+1, . . . , xn);
x⊕i := (x1, . . . , xi−1, 1 − xi, xi+1, . . . , xn).

▶ Definition 6 (k-local). A function g : {0, 1}n → {0, 1} is k-local if there is a set of variables
I ⊆ [n] with |I| = k such that g depends only on the variables in I, i.e. for each x ∈ {0, 1}n

and each i ∈ [n] \ I, we have g(x) = g(x⊕i).

▶ Definition 7 (composition complexity, formal version of Definition 1). The k-composition
complexity of a function f : {0, 1}n → D, denoted CCk(f), is the minimum integer m such
that there exist functions g1, . . . , gm : {0, 1}n → {0, 1} and h : {0, 1}m → D with the following
properties:

(i) for all x ∈ {0, 1}n, f(x) = h(g1(x), . . . , gm(x));
(ii) for each j ∈ [m], gj is k-local.

▶ Remark 8. Note that the inner functions gj are restricted to having binary outputs. This
is necessary for making the definition nontrivial: if their output domains were arbitrary, then
the composition complexity would always be O(n/k), since we could simply let each inner
function output the values of all of the variables they query.

CCC 2022

19:8 The Composition Complexity of Majority

2.2 Number of queries per variable
In this subsection, we show that without loss of generality, we can assume that all variables
are queried roughly the same number of times. More precisely, say that f = h(g1, . . . , gm)
where each gj is k-local. Then the total number of queries is at most mk, so the average
variable is queried at most mk

n times. We will show that for the purpose of proving lower
bounds on composition complexity, we can assume that every variable is queried at most mk

n

times.

▶ Definition 9 (self-containing). A family of functions {fn}n∈N is self-containing if for any
n and any I ⊆ [n], there is a subfunction of fn on I that computes f|I|.

▶ Fact 10. Both majority {Majn}n∈N and Hamming weight {HWn}n∈N are self-containing.

▶ Lemma 11. Let {fn}n∈N be a self-containing family of functions. Suppose that CCk(f2n) ≤
m. Then we can write fn = h(g1, . . . , gm) where each gj is k-local and each variable is queried
at most mk

n times.

Proof. Suppose f2n = h(g1, . . . , gm), where each gj is k-local. Let q := mk
2n . Then the

average variable is queried ≤ q times, so by Markov’s inequality at most half of the variables
are queried more than 2q times. Let I be any set of n variables, each of which is queried
at most 2q = mk

n times. Since {fn}n∈N is self-containing, there is a subfunction of f2n on I

that computes fn. The lemma follows by restricting each gj to I. ◀

▶ Corollary 12. In order to prove that CCk(fn) ≥ Ω(n
k log k), it is enough to prove that if

fn = h(g1, . . . , gm) and each variable is queried at most mk
n times by the inner functions gj,

then m ≥ Ω(n
k log k).

▶ Remark 13. The quantity mk
n corresponds exactly to our definition of composition overhead

(recall the discussion following Definition 1). This makes sense, since the composition
overhead is the ratio of how many inner functions we need compared to the ideal situation
where each variable is queried exactly once. The more inner functions, the more queries per
variable (assuming they all query roughly k variables).

2.3 Information theory
In this subsection, we introduce some information-theoretic notions and properties that are
used in our proofs. To learn more about information theory from a theoretical computer
science perspective, we recommend checking out the Simons Institute workshop titled
“Information Theory Boot Camp”.6

The most important notion in information theory is the entropy of a random variable
X, denoted H[X], which represents “how much randomness” the variable contains, or how
many bits I need to communicate to you on average for you to learn X.

▶ Definition 14 (entropy). Given a random variable X with support D, the entropy of X is
the quantity

H[X] :=
∑
x∈D

Pr[X = x] log
(

1
Pr[X = x]

)
= E

X′∼X

[
log

(
1

Pr[X = X ′]

)]
where X ′ is an independent copy of X.

6 https://simons.berkeley.edu/workshops/inftheory2015-boot-camp

https://simons.berkeley.edu/workshops/inftheory2015-boot-camp

V. Lecomte, P. Ramakrishnan, and L.-Y. Tan 19:9

A related notion is the conditional entropy H[X | Y] of two random variables X and Y ,
which represents the “how much randomness remains” in X once you know Y , or how many
bits I need to communicate to you on average for you to learn X, assuming that you already
know Y .

▶ Definition 15 (conditional entropy). Given two random variables (X, Y) over domain D,
the entropy of X conditioned on Y is the quantity

H[X | Y] :=
∑

(x,y)∈D

Pr[X = x ∧ Y = y] log
(

1
Pr[X = x | Y = y]

)

= E
(X′,Y ′)∼(X,Y)

[
log

(
1

Pr[X = X ′ | Y = Y ′]

)]
where (X ′, Y ′) is an independent copy of (X, Y).

The entropy and conditional entropy have the following properties, which we use in our
proofs.

▶ Fact 16 (bounds). If X is a random variable over a finite domain D and Y is a random
variable, then

0 ≤ H[X | Y] ≤ H[X] ≤ log |D|,

where the last inequality is tight iff X is uniform on D.

▶ Fact 17 (subadditivity). Let X1 and X2 be two random variables. Then H[X1, X2] ≤
H[X1] + H[X2], with equality iff X1 and X2 are independent. Similarly, H[X1, X2 | Y] ≤
H[X1 | Y] + H[X2 | Y].

▶ Fact 18 (dependence). Let X, Y be random variables such that X2 is completely determined
by X1 (i.e. X2 = f(X1) where f is a function). Then we have the following:

H[X2 | X1] = 0;
H[Y | X1] ≤ H[Y | X2].

Finally, a crucial notion in our proof is the mutual information I[X : Y] of two random
variables X and Y , which represents “how much information X reveals about Y ”, or
symmetrically, “how much information Y reveals about X”.

▶ Definition 19 (mutual information). Given two random variables X, Y , the mutual inform-
ation of X and Y is the quantity I[X : Y] := H[X] − H[X | Y].

▶ Fact 20 (symmetry of mutual information). I[X : Y] = I[Y : X].

3 The less it is queried, the more it is revealed

Hamming weight: a multi-output function

Even though the main function of interest in this paper is the majority function, we will first
prove a lower bound for the related Hamming weight function: a “multi-output” function (as
opposed to binary-output) that reveals the entire Hamming weight of the input string.

▶ Definition 21. Let HWn : {0, 1}n → {0, 1, . . . , n} : x 7→ |x| = x1 + · · · + xn be the
Hamming weight function.

CCC 2022

19:10 The Composition Complexity of Majority

The most natural way to express HWn as h(g1, . . . , gm) is to split the n variables into
groups of k variables, and for each group to create ⌈log(k + 1)⌉ inner functions gj , each
computing one bit of the sum of the k variables in this group. The function h can then
compute the Hamming weight of the whole input string by first recovering the sum for
each group, then adding them up. Clearly, each of the inner functions is k-local, and there
are O(n

k log k) of them, so CCk(HWn) ≤ O(n
k log k). We will show that this is optimal:

CCk(HWn) = Θ(n
k log k).

Simple counting does not give much

It is easy to see CCk(HWn) > n/k: suppose that there were a way to represent HWn as
h(g1, . . . , gm) with m = n/k. Then each of the inner functions gj would query k variables
and each variable would be queried only once. Take g1, and consider the k variables it queries.
Say that we fix all other variables to 0. Then there are still k + 1 possible values for the
Hamming weight. But this fixes the outputs of g2, . . . , gm, so there can only be two possible
values for h(g1, . . . , gm) (one where g1 outputs 0 and the other where g1 outputs 1), so we
have a contradiction.

In general, it is easy to see that each set of r variables must collectively be queried by at
least log(r + 1) different inner functions. But this observation is not enough to show that
the average variable will need to be queried a super-constant number of times.

A very counterintuitive lemma

Basic counting arguments like the above do not seem to say anything that keeps a variable
from being queried by only a constant number of inner functions. But it turns out there is
something we can say about variables that are queried by few inner functions: the outputs
of the inner functions must reveal a lot about their value, in terms of mutual information.
Put another way, this means that if you are given the outputs of the inner functions, you
can often guess the value of such variables better than random chance.

▶ Lemma 22 (key lemma). Suppose that HWn = h(g1, . . . , gm) and that variable i is queried
at most q of the inner functions g1, . . . , gm. Let X ∼ {0, 1}n be a uniformly random input.
Then I[Xi : g1(X), . . . , gm(X)] ≥ 2−O(q).

Consider how counterintuitive this statement is: it says that the less the ith variable is
queried by the inner functions g1, . . . , gm, the more it will be revealed by their collective
outputs.

A lower bound for Hamming weight, assuming Lemma 22

We will not prove Lemma 22 until Section 5, but let us see how it implies the lower bound
we want. First, we will show the intuitive fact that “if the inner functions reveal a lot about
many of the variables, then there must be many inner functions”.

▶ Corollary 23. Suppose that HWn = h(g1, . . . , gm) and each variable is queried by at most
q of the inner functions g1, . . . , gm. Then m ≥ n · 2−O(q).

Proof. We bound the quantity I[X : g1(X), . . . , gm(X)] in two ways. First, we give an
upper bound on m based on the fact that there are only m inner functions, each of which
outputs a single bit. Then we lower bound this same quantity using Lemma 22. Combining
these bounds yields the corollary.

V. Lecomte, P. Ramakrishnan, and L.-Y. Tan 19:11

On the one hand,

I[X : g1(X), . . . , gm(X)] = H[g1(X), . . . , gm(X)] − H[g1(X), . . . , gm(X) | X]
= H[g1(X), . . . , gm(X)]

(because X determines gj(X) completely)
≤ H[g1(X)] + . . . + H[gm(X)] (because H[·] is subadditive)
≤ m. (because each gj has a binary output)

On the other hand,

I[X : g1(X), . . . , gm(X)] = H[X] − H[X | g1(X), . . . , gm(X)]

=

 ∑
i∈[n]

H[Xi]

 − H[X | g1(X), . . . , gm(X)]

(because the Xi are independent)

≥
∑
i∈[n]

(H[Xi] − H[Xi | g1(X), . . . , gm(X)])

(because H[· | Y] is subadditive for any Y)

=
∑
i∈[n]

I[Xi : g1(X), . . . , gm(X)]

≥
∑
i∈[n]

2−O(q) (by Lemma 22)

= n · 2−O(q).

The corollary follows from combining these two bounds. ◀

We can now use Corollary 23 to deduce the desired lower bound.

▶ Theorem 24 (composition complexity of HWn). CCk(HWn) ≥ Ω(n
k log k).

Proof. Suppose that HWn = f(g1, . . . , gm), where each of the inner functions g1, . . . , gm is
k-local. By Corollary 12, we only have to show that m ≥ Ω(n

k log k) under the assumption
that each variable is queried at most q := mk

n times. Then by Corollary 23,

nq

k
= m ≥ n · 2−O(q).

Rearranging, we get

q · 2O(q) ≥ k ⇒ q ≥ Ω(log k),

which means m = n
k q ≥ Ω(n

k log k). ◀

4 From Hamming weight to majority

In the previous section, we gave a lower bound on the composition complexity for the
Hamming weight function HWn. This is a multi-output function (it has more than two
possible outputs), and the proof arguably relied a lot on this fact. In this section, we show
how to extend the lower bound to Majn, a binary-output function, by manipulating it to
become multi-output.

CCC 2022

19:12 The Composition Complexity of Majority

▶ Definition 25 (majority function). Let

Majn : {0, 1}n → {0, 1} : x 7→

{
1 if |x| ≥ n/2
0 otherwise

be the majority function.

4.1 Reduction toolkit
Before proving the lower bound, let us introduce the tools we will use to reduce majority to
Hamming weight.

Control variables

Majn(x) tells us whether x has Hamming weight ≥ n/2 or < n/2, but nothing more. For
example, what if we wanted it to also tell us something special when the Hamming weight is
exactly n/2? Suppose n is even, then we could figure this out by looking at the values of
Majn+1(x1, . . . , xn, 0) and Majn+1(x1, . . . , xn, 1): indeed,

if |x| < n/2 then both return 0;
if |x| > n/2 then both return 1;
if |x| = n/2 then Majn+1(x1, . . . , xn, 0) = 0 but Majn+1(x1, . . . , xn, 1) = 1.

Note how the last variable of Majn+1 does not stay free, but rather is assigned a fixed value
that modifies the behavior of Majn+1 as a function of x1, . . . , xn. For this reason, we will
call it a control variable, and we will call the n other variables free variables.

Now, assume that Majn+1 can be computed as h(g1, . . . , gm). Then we can compute the
function

f : {0, 1}n → {0, 1, 2} : x 7→


0 if |x| < n/2
1 if |x| = n/2
2 if |x| > n/2

as h′(g0
1 , . . . , g0

l , g1
1 , . . . , g1

l) where

g0
j (x) := gj(x1, . . . , xn, 0) g1

j (x) := gj(x1, . . . , xn, 1).

This suggests a potential approach for proving a lower bound on the composition complexity
Majn: add enough control variables to it so that the values we get are enough to determine
the Hamming weight of x, then use the lower bound for HWn as a black box. Indeed, if we
know all of the values

Maj2n−1(x1, . . . , xn, 0, 0, . . . , 0)
Maj2n−1(x1, . . . , xn, 1, 0, . . . , 0)

...
Maj2n−1(x1, . . . , xn, 1, 1, . . . , 1)

then we can recover |x|. However, this would cause a huge blowup in the number of inner
functions needed to compute it: assuming Maj2n−1 can be computed as h(g1, . . . , gm), this
would only guarantee that HWn can be computed as a function of the nm components

gj(x1, . . . , xn, 0, . . . , 0), . . . , gj(x1, . . . , xn, 1, . . . , 1)

for j ∈ [m], thus the Ω(n
k log k) lower bound we have for HWn would fail to give any

nontrivial lower bound on m. So we need to do this in a smarter way.

V. Lecomte, P. Ramakrishnan, and L.-Y. Tan 19:13

Buffer variables

We will avoid this blowup by using some buffer variables to “isolate” the control variables
from the free variables. Assume that Majn = h(g1, . . . , gm). Suppose we split the variables
into three sets Ifree, Icontrol, Ibuffer ⊆ [n] such that none of the inner functions gj queries
variables from both Ifree and Icontrol (informally, Ibuffer acts as a buffer between Ifree and
Icontrol; see Figure 1).

Ifree Ibuffer Icontrol

gj

OK

Ifree Ibuffer Icontrol

gj

OK

Ifree Ibuffer Icontrol

gj

not allowed!

Figure 1 The inner functions gj are allowed to query variables in both Ifree and Ibuffer, or variables
in both Ibuffer and Icontrol, but not variables in both Ifree and Icontrol.

Then if we fix the value of the variables in Ibuffer, we can avoid a blow up in the number
of times each variable is queried. Let us informally see why. There are two types of inner
functions gj :

if gj queries a free variable, then it does not query any control variables, so no blowup
will happen;
if gj does not query any free variables, then it only depends on the control variables
and the buffer variables, both of which are known, so in that case we can recompute the
output of gj ourselves.

A bit more formally, let x(Icontrol 7→0) denote x with all variables in Icontrol set to 0. Then
we can recover Majn(x) if we know only g1(x(Icontrol 7→0)), . . . , gm(x(Icontrol 7→0)) as well as the
value of the variables in Icontrol and Ibuffer. Since gj(x(Icontrol 7→0)) does not depend on the
value of the variables in Icontrol, no blowup happens when we start to vary their values.

Partial functions

Even with the help of buffer variables, though, it turns out we will not be able to have
enough control variables to compute HWn from Majn.7 We will only be able to compute
the Hamming weight correctly on a fraction of the possible inputs. Therefore we need to
adapt our techniques from Section 3 to a “partial functions” setting, where f(x) = |x| is only
guaranteed when x is in a subset D ⊆ {0, 1}n of the possible inputs.

First, the following lemma is a generalization of our key lemma Lemma 22, which gave
a lower bound on the mutual information between Xi and the inner function outputs
g1(X), . . . , gm(X) when variable i is queried few times. What differs from Lemma 22 is that

7 Or more precisely, to compute HWn′ from Majn for some n′ = Ω(n).

CCC 2022

19:14 The Composition Complexity of Majority

the result gives a nontrivial bound only when the probability Pr[X⊕i ̸∈ D] is small. This
probability measures how likely you are to leave D if you start out in D then flip the ith bit,
so intuitively, the bigger D is, the smaller it will be.

▶ Lemma 26 (key lemma, “partial functions” version). Let D ⊆ {0, 1}n be a non-empty
subset of the hypercube (the “domain” on which f computes the Hamming weight), and
let f : {0, 1}n → {0, . . . , n} be a function such that ∀x ∈ D, f(x) = |x|. Suppose that
f = h(g1, . . . , gm) and that variable i is queried by at most q of the inner functions g1, . . . , gm.
Let X ∼ D be a random input drawn uniformly over D. Then H[Xi | g1(X), . . . , gm(X)] ≤
1 + Pr[X⊕i ̸∈ D] − 2−O(q).

We postpone the proof of this lemma until Section 5. For now, let us see why it implies
Lemma 22.

Proof of Lemma 22 assuming Lemma 26. Set f := HWn. Then f(x) = |x| for all x ∈
{0, 1}n, so we can set D := {0, 1}n. This means that X is a uniformly random input, and
Pr[X⊕i ̸∈ D] = 0. Therefore, after rearranging, we obtain

2−O(q) ≤ 1 − H[Xi | g1(X), . . . , gm(X)]
= H[Xi] − H[Xi | g1(X), . . . , gm(X)] (because X is uniformly random)
= I[Xi : g1(X), . . . , gm(X)]. (by definition of mutual information)

◀

We can also prove an analog of Corollary 23, which gave a lower bound on the number of
inner functions m assuming that many variables are queried few times by the inner functions.

▶ Corollary 27. There is an integer constant C > 0 such that the following holds. Let D ⊆
{0, 1}n be a non-empty subset of the hypercube, and let f : {0, 1}n → {0, . . . , n} be a function
such that ∀x ∈ D, f(x) = |x|. Suppose that f = h(g1, . . . , gm), that each variable is queried
by at most q > 0 of the inner functions g1, . . . , gm, and that PrX∼D[X⊕i ̸∈ D] ≤ 2−Cq.
Then m + (n − log |D|) ≥ n · 2−O(q).

Proof. Let C ′ be a possible integer value for the constant in the O(·) of Lemma 26. We
will prove the corollary for C := C ′ + 1. The proof works in the same way as the proof of
Corollary 23: we will upper and lower bound the quantity I[X : g1(X), . . . , gm(X)]. On the
one hand,

I[X : g1(X), . . . , gm(X)] = H[g1(X), . . . , gm(X)] − H[g1(X), . . . , gm(X) | X]
= H[g1(X), . . . , gm(X)]

(because X determines gj(X) completely)
≤ H[g1(X)] + . . . + H[gm(X)] (because H[·] is subadditive)
≤ m. (because each gj has a binary output)

V. Lecomte, P. Ramakrishnan, and L.-Y. Tan 19:15

On the other hand,

I[X : g1(X), . . . , gm(X)] = H[X] − H[X | g1(X), . . . , gm(X)]

≥ H[X] −
∑
i∈[n]

H[Xi | g1(X), . . . , gm(X)]

(because H[· | Y] is subadditive for any Y)

≥ H[X] −
∑
i∈[n]

(
1 + Pr[X⊕i ̸∈ D] − 2−C′q

)
(by Lemma 26)

≥ H[X] − n +
∑
i∈[n]

(
2−C′q − 2−(C′+1)q

)
(by assumption that PrX∼D[X⊕i ̸∈ D] ≤ 2−Cq)

= log |D| − n +
∑
i∈[n]

2−O(q).

(because X is uniform on D, and because q > 0)

The corollary follows from combining these two bounds. ◀

4.2 A lower bound for majority
With all the tools in hand, let us prove a lower bound on the composition for Majn by
reducing it to a partial version of Hamming weight.

▶ Theorem 28 (composition complexity of Majn). CCk(Majn) ≥ Ω(n
k · min(log k, log n

k)).

Proof. Suppose that Majn = h(g1, . . . , gm) where each of the inner functions gj is k-
local. By Corollary 12, it is enough to show that m ≥ Ω(n

k · min(log k, log n
k)) under the

assumption that each variable is queried at most q := mk
n times. To do this, we will show

that q ≥ Ω(min(log k, log n
k)).

The plan of the proof is as follows. We will start by defining the sets of variables Ifree,
Ibuffer and Icontrol. We will make sure that |Ifree| = Ω(n), and we will play with the variables
in Icontrol to show that the inner functions g1, . . . , gm must compute the Hamming weight over
a large subset D of {0, 1}Ifree . From there, we will apply Corollary 27, and only asymptotic
calculations will remain, similar to the proof of Theorem 24.

Defining Ifree, Ibuffer and Icontrol. Let C be the constant in Corollary 27. Assume that
22Cq+1qk ≤ n/2 (otherwise, q = Ω(log n

k) and we are done). Let Icontrol be any 22Cq+1-
element subset of [n], let J ⊆ [m] be the set of inner functions that query some variable
in Icontrol, and let I ′ ⊆ [n] be the set of all variables queried by at least one of the inner
functions in J . That is, let I ′ be the set of variables that are queried by some inner function
gj that also queries a variable in Icontrol.

Since each variable in Icontrol is queried by at most q inner functions, and each inner
function queries at most k variables, we have |I ′| ≤ |I| · q ·k = 22Cq+1qk ≤ n/2. In case |I ′| <

2|Icontrol|+1, extend I ′ to include some more variables of [n] until it reaches size 2|Icontrol|+1.
After this, we still have |I ′| ≤ max(n/2, 2|Icontrol| + 1) = max(n/2, 2 · 22Cq+1 + 1) ≤ n/2.

Let Ifree := [n] \ I ′, and let Ibuffer := I ′ \ Icontrol (see Figure 2). Note that Ifree ∪ Ibuffer ∪
Icontrol = [n]. Since Ifree contains no element of I ′, it is clear that no inner function queries
both variables in Ifree and Icontrol. Also, defining nfree := |Ifree|, we have

nfree = n − |I ′| ≥ n − n/2 = n/2. (2)

CCC 2022

19:16 The Composition Complexity of Majority

[n]

I ′

Icontrol

Ibuffer

Ifree

Figure 2 A schematic view of the sets of variables Ifree, Ibuffer, and Icontrol.

Computing a partial version of HWnfree from Majn. We will split the input into three
parts x = xfree ◦ xbuffer ◦ xcontrol, where xfree ∈ {0, 1}Ifree , xbuffer ∈ {0, 1}Ibuffer and xcontrol ∈
{0, 1}Icontrol . First, let us fix a value for xbuffer. We will fix xbuffer to be some vector with
exactly |xbuffer| = ⌈n/2⌉−⌈nfree/2⌉−22Cq ones. To make sure this is possible, we need to show
0 ≤ ⌈n/2⌉−⌈nfree/2⌉−22Cq ≤ |Ibuffer|. Firstly, we have that n−nfree = |Ibuffer|+ |Icontrol| ≥
|Icontrol| = 22Cq+1, so ⌈n/2⌉ − ⌈nfree/2⌉ ≥

⌊
n−nfree

2
⌋

≥
⌊

22Cq+1

2

⌋
= 22Cq, which gives the

lower bound. Secondly, we have |Ibuffer| ≥ |I ′| − |Icontrol| ≥ |Icontrol| + 1 (since we made sure
that |I ′| ≥ 2|Icontrol| + 1) and thus

|Ibuffer| ≥ |Ibuffer| + |Icontrol| + 1
2 = n − |Ifree| + 1

2 = n − nfree + 1
2 ≥ ⌈n/2⌉ − ⌈nfree/2⌉,

which gives the upper bound.
Since each inner function gj(x) is either completely determined by xfree and xbuffer or

completely determined by xbuffer and xcontrol, in order to compute Majn(x), it is enough to
know gj(xfree ◦ xbuffer ◦ 0Icontrol) for all j ∈ [m] (where 0Icontrol ∈ {0, 1}Icontrol is the all zeros
string) as well as the value of xbuffer and xcontrol. So even if gj(xfree ◦ xbuffer ◦ 0Icontrol) for
j ∈ [m] is all we know about xfree, we can compute the value of Majn(xfree ◦ xbuffer ◦ xcontrol)
for any xcontrol we desire. Thus, setting |xcontrol| between 0 and |Icontrol| = 22Cq+1, we can
figure out:

whether |xfree| + |xbuffer| + 0 ≥ ⌈n/2⌉;

whether |xfree| + |xbuffer| + 1 ≥ ⌈n/2⌉;

. . .

whether |xfree| + |xbuffer| + 22Cq+1 ≥ ⌈n/2⌉.
Given that we set |xbuffer| = ⌈n/2⌉ − ⌈nfree/2⌉ − 22Cq, this means we can distinguish between
the following cases:

|xfree| ≥ ⌈nfree/2⌉ + 22Cq;

|xfree| = ⌈nfree/2⌉ + 22Cq − 1;

. . .

|xfree| = ⌈nfree/2⌉ − 22Cq;

|xfree| < ⌈nfree/2⌉ − 22Cq.

V. Lecomte, P. Ramakrishnan, and L.-Y. Tan 19:17

Therefore, we can form a function f(xfree) = h′(g1(xfree ◦ xbuffer ◦ 0Icontrol), . . . , gm(xfree ◦
xbuffer ◦ 0Icontrol)) such that

f(xfree) =



⌈nfree/2⌉ + 22Cq if |xfree| ≥ ⌈nfree/2⌉ + 22Cq

⌈nfree/2⌉ + 22Cq − 1 if |xfree| = ⌈nfree/2⌉ + 22Cq − 1
. . .

⌈nfree/2⌉ − 22Cq if |xfree| = ⌈nfree/2⌉ − 22Cq

⌈nfree/2⌉ − 22Cq − 1 if |xfree| < ⌈nfree/2⌉ − 22Cq.

Applying Corollary 27. This function f computes the Hamming weight correctly on the set

D =
{

xfree ∈ {0, 1}Ifree
∣∣ ⌈nfree/2⌉ − 22Cq − 1 ≤ |xfree| ≤ ⌈nfree/2⌉ + 22Cq

}
.

We now prepare to apply Corollary 27 to f . Clearly, each input variable of f is queried by at
most q of the inner functions g1(xfree ◦ xbuffer ◦ 0Icontrol), . . . , gm(xfree ◦ xbuffer ◦ 0Icontrol). Let
us see check that D satisfies the condition of Corollary 27. Observe that |X⊕i| = |X| ± 1, so
when ⌈nfree/2⌉ − 22Cq ≤ |X| < ⌈nfree/2⌉ + 22Cq, we have X⊕i ∈ D. Therefore,

Pr
X∼D

[X⊕i ̸∈ D] ≤ Pr
X∼D

[|X| = ⌈nfree/2⌉ − 22Cq − 1 ∨ |X| = ⌈nfree/2⌉ + 22Cq]

≤ 2
#{⌈nfree/2⌉ − 22Cq − 1, . . . , ⌈nfree/2⌉ + 22Cq}

(because the further |X| is from nfree/2, the fewer possible values there are for X)

= 2
22Cq+1 + 2

≤ 2−2Cq.

Thus we can apply Corollary 27 and obtain

m + (nfree − log |D|) ≥ nfree · 2−O(q). (3)

Now, we also have

log |D| ≥ log
∣∣{xfree ∈ {0, 1}Ifree | |xfree| = ⌈nfree/2⌉}

∣∣
≥ log(Ω(2nfree/

√
nfree))

= nfree − O(log nfree),

so nfree − log |D| = O(log nfree) = O(log n). Plugging this into (3), we get

m + O(log n) ≥ nfree · 2−O(q). (4)

Asymptotics and conclusion. Since each inner function g1, . . . , gm queries k variables and
each variable is queried at most q times, we have mk ≤ nq. Therefore,

nq

k
+ O(log n) ≥ m + O(log n)

≥ nfree · 2−O(q) (by (4))

≥ n

2 · 2−O(q). (by (2))

CCC 2022

19:18 The Composition Complexity of Majority

Rearranging, we get 2O(q)
(

q
k + O(log n)

n

)
≥ 1/2, so either

2O(q)q

k
≥ 1/4 ⇒ q = Ω(log k)

or

2O(q)O(log n)
n

≥ 1/4 ⇒ q = Ω(log n) ≥ Ω(log k). ◀

5 Proof of Lemma 26

In this section we present the proof of our key lemma Lemma 26, which is a generalization of
Lemma 22 to functions that only compute the Hamming weight correctly on a subset of the
inputs.

▶ Lemma 26 (key lemma, “partial functions” version). Let D ⊆ {0, 1}n be a non-empty
subset of the hypercube (the “domain” on which f computes the Hamming weight), and
let f : {0, 1}n → {0, . . . , n} be a function such that ∀x ∈ D, f(x) = |x|. Suppose that
f = h(g1, . . . , gm) and that variable i is queried by at most q of the inner functions g1, . . . , gm.
Let X ∼ D be a random input drawn uniformly over D. Then H[Xi | g1(X), . . . , gm(X)] ≤
1 + Pr[X⊕i ̸∈ D] − 2−O(q).

We will start by proving a special case to build intuition, then prove the full version using
a similar approach.

5.1 Warmup: q = 1 for total functions
In preparation for proving Lemma 26 in its full generality, let us prove the special case q = 1
of Lemma 22 (the “total functions” version), which is simpler and illustrates the core idea
quite well.

▶ Proposition 29 (“baby version” of Lemma 22). Suppose that HWn = h(g1, . . . , gm) and
that variable i is queried by only one of the inner functions g1, . . . , gm. Let X ∼ {0, 1}n be a
uniformly random input. Then I[Xi : g1(X), . . . , gm(X)] = 1. That is, the outputs of the
inner functions g1(X), . . . , gm(X) determine Xi completely.

Proof. Say without loss of generality that the only inner function which queries variable i is
g1. Fix any input x. We will show how to recover xi from the values g1(x), . . . , gm(x).

First, set aside g1(x), and consider what values |x| could take if we knew only
g2(x), . . . , gm(x). By our assumption HWn = h(g1, . . . , gm), |x| = h(g1(x), . . . , gm(x)),
so |x| must belong to the set

W = {h(0, g2(x), . . . , gm(x)), h(1, g2(x), . . . , gm(x))}.

Now, consider the input x⊕i (x with its ith coordinate flipped). Since only g1 depends on
the ith coordinate, x⊕i must share the same output values for g2, . . . gm. This means that
both Hamming weights |x| and |x⊕i| must belong to the set W . But we know that |x⊕i| is
equal to either |x| + 1 (when xi = 0) or |x| − 1 (when xi = 1), and |W | ≤ 2, so that means
that W must be of the form

W = {|x|, |x⊕i|} = {w, w + 1}

for some w.

V. Lecomte, P. Ramakrishnan, and L.-Y. Tan 19:19

So to find the value of xi, it suffices to check whether |x| = w (in which case xi = 0) or
|x| = w + 1 (in which case xi = 1). Since both W and |x| = h(g1(x), . . . , gm(x)) can easily be
computed from g1(x), . . . , gm(x), this gives us a way to recover xi from g1(x), . . . , gm(x). ◀

5.2 General case
The proof of Lemma 26 is a generalization of the trick above: we fix the outputs of the inner
functions that do not query variable i, then consider the (relatively small) set of possible
values for |X| given those outputs, and finally use our knowledge of |X| to guess Xi better
than random chance.

Proof of Lemma 26. First, let us show that the inequality holds when q = 0. If q = 0, then
f does not depend on variable i at all, so for any x ∈ {0, 1}n, f(x) = f(x⊕i). This means
we cannot simultaneously have f(x) = |x| and f(x⊕i) = |x⊕i|. Thus whenever x ∈ D, x⊕i

cannot also be in D. As a result, Pr[X⊕i ̸∈ D] = 1, so the right hand side becomes

1 + Pr[X⊕i ̸∈ D] − 2−O(q) = 1 + 1 − 1 = 1,

and the inequality is trivially verified. Having proved the inequality for q = 0, we may assume
that q ≥ 1 for the remainder of the proof.

Let Ji ⊆ [m] be the set of inner functions that depend on variable i (so |Ji| ≤ q), and
let Ji := [m] \ Ji. Using the fact that g1(X), . . . , gm(X) determine |X| completely, we can
weaken the conditioning to get

H[Xi | g1(X), . . . , gm(X)] ≤ H[Xi | {gj(X)}j∈Ji
, |X|],

and by definition of conditional entropy,

H[Xi | {gj(X)}j∈Ji
, |X|]

= E
Y ∼D

[− log Pr[Xi = Yi | (∀j ∈ Ji, gj(X) = gj(Y)) ∧ |X| = |Y |]]

= E
Y ∼D

[H2(Pr[Xi = 1 | (∀j ∈ Ji, gj(X) = gj(Y)) ∧ |X| = |Y |])],

where H2(p) := −p log p − (1 − p) log(1 − p) is the binary entropy function. Thus, to prove
the lemma, it suffices to show that

E
Y ∼D

[H2(Pr[Xi = 1 | (∀j ∈ Ji, gj(X) = gj(Y))∧|X| = |Y |])] ≤ 1+Pr[X⊕i ̸∈ D]−2−O(q).

(5)

Partitioning D according to the outputs of the inner functions that do not query the
variable i. To prove this inequality, let us first split into cases according to the outputs of the
inner functions that do not query variable i. Fix the output values v ∈ {0, 1}Ji of the inner
functions that do not query variable i, and suppose that those output values are achievable
by some input in D (that is, there exists some input x ∈ D such that ∀j ∈ Ji, gj(x) = vj).
Let Sv := {x ∈ {0, 1}n | ∀j ∈ Ji, gj(x) = vj} be the set of inputs that produce these inner
function outputs. Note that the sets D ∩ Sv form a partition of D. As we will see later, a
key property of Sv is that its image under f has cardinality at most 2q.

Let us call v good if Pr[X⊕i ̸∈ D | X ∈ Sv] ≤ 2 · Pr[X⊕i ̸∈ D] (that is, v is good if
X⊕i is not much more likely to lie outside of D when X is in Sv than on average). By
Markov’s inequality, the sets Sv with good v account for most of the probability mass: that
is,

∑
v good Pr[X ∈ Sv] ≥ 1/2.

CCC 2022

19:20 The Composition Complexity of Majority

Our objective will be to show that for every good v,

E
Y ∼D

[H2(Pr[Xi = 1 | X ∈ Sv ∧ |X| = |Y |]) | Y ∈ Sv] ≤ 1 + Pr[X⊕i ̸∈ D] − 2−O(q). (6)

Informally, the task is: for any good v ∈ {0, 1}Ji (representing the outputs of the inner
functions that do not query variable i), based only on v and the Hamming weight |X|, guess
the value of Xi slightly better than random chance.

Let us see why (6) implies (5):

E
Y ∼D

[H2(Pr[Xi = 1 | (∀j ∈ Ji, gj(X) = gj(Y)) ∧ |X| = |Y |])]

=
∑

v

Pr[X ∈ Sv] · E
Y ∼D

[H2(Pr[Xi = 1 | X ∈ Sv ∧ |X| = |Y |]) | Y ∈ Sv]

(by the law of total expectation)

≤
∑

v

Pr[X ∈ Sv] ·

{
1 + Pr[X⊕i ̸∈ D] − 2−O(q) if v is good
1 otherwise

(by (6) and because H2(·) ≤ 1)

= 1 +

 ∑
v good

Pr[X ∈ Sv]

(
Pr[X⊕i ̸∈ D] − 2−O(q)

)

≤ 1 + Pr[X⊕i ̸∈ D] −

 ∑
v good

Pr[X ∈ Sv]

2−O(q)

(because
∑

v good Pr[X ∈ Sv] ≤ 1)

≤ 1 + Pr[X⊕i ̸∈ D] − 2−O(q). (because
∑

v good Pr[X ∈ Sv] ≥ 1/2 and q > 0)

Proof overview for (6). Fix some good v ∈ {0, 1}Ji , and let Wv := {|x| | x ∈ D ∩ Sv} be
the set of possible Hamming weights for inputs in D ∩ Sv. When x ∈ D, we know that
|x| = f(x) = h(g1(x), . . . , gm(x)), and when in addition x ∈ Sv, then for all j ∈ Ji, the
output value gj(x) is already fixed to vj . Therefore, when x ∈ D ∩ Sv, the Hamming weight
|x| can only depend on the remaining q output values gj(x) for j ∈ Ji, so there are at most
2q possible values for |x|. In other words, |Wv| ≤ 2q.

Informally, using the fact that Wv is small, we will show that there exists a Hamming
weight w∗ ∈ Wv that occurs with significant probability within Sv, and such that conditioned
on |X| = w∗, the probability that Xi = 1 is not too close to 1/2. This means that when
|X| = w∗ we can guess Xi slightly better than random chance, and even if we just guess
randomly when |X| ≠ w∗, we will have achieved better-than-random-chance accuracy overall.
Formally, we will show that ∃w∗ ∈ Wv such that

Pr[|X| = w∗ | x ∈ Sv] ≥ 2−O(q) (7)

and

Pr[Xi = 1 | X ∈ Sv ∧ |X| = w∗] ≤ 1
2 − 2−O(q). (8)

Let us see why (7) and (8) together imply (6):

V. Lecomte, P. Ramakrishnan, and L.-Y. Tan 19:21

E
Y ∼D

[H2(Pr[Xi = 1 | X ∈ Sv ∧ |X| = |Y |]) | Y ∈ Sv]

=
∑

w∈Wv

Pr[|X| = w | X ∈ Sv]

· E
Y ∼D

[H2(Pr[Xi = 1 | X ∈ Sv ∧ |X| = |Y |]) | Y ∈ Sv ∧ |Y | = w]

(by the law of total expectation)

=
∑

w∈Wv

Pr[|X| = w | X ∈ Sv]

· E
Y ∼D

[H2(Pr[Xi = 1 | X ∈ Sv ∧ |X| = w]) | Y ∈ Sv ∧ |Y | = w]

(replace |Y | by w using the conditioning)

=
∑

w∈Wv

Pr[|X| = w | X ∈ Sv] · H2(Pr[Xi = 1 | X ∈ Sv ∧ |X| = w])

(the expectation was constant)

≤
∑

w∈Wv

Pr[|X| = w | X ∈ Sv] ·

{
H2(Pr[Xi = 1 | X ∈ Sv ∧ |X| = w∗]) if w = w∗

1 otherwise
(because H2(·) ≤ 1)

= 1 − Pr[|X| = w∗ | X ∈ Sv] · (1 − H2(Pr[Xi = 1 | X ∈ Sv ∧ |X| = w∗]))
(rearrange and use the fact that probabilities sum to 1)

≤ 1 − 2−O(q)(1 − H2
(
1/2 − 2−O(q)))

(by (7) and (8))

= 1 − 2−O(q)(1 −
(
1 − 2−O(q)))

(because H2(1/2 − p) = 1 − Ω(p2))

= 1 − 2−O(q).

Existence of the weight w∗. Let us now find this magical Hamming weight w∗.
First of all, assume that Pr[X⊕i ̸∈ D] ≤ 2−10q (otherwise, we can replace the right-hand

side of (6) by 1 and the inequality becomes trivial). Since v is good, this means that
Pr[X⊕i ̸∈ D | X ∈ Sv] ≤ 2 · 2−10q = 2−10q+1.

When x ∈ Sv, x⊕i must also be in Sv, since flipping variable i does not affect the output
of any inner function gj for j ∈ Ji. Informally, this means that for most inputs x ∈ D ∩ Sv

(those for which x⊕i ∈ D), we can pair it up with another input x⊕i also in D ∩ Sv. We can
identify each such pair by looking at the value of x(i7→0) (x with its ith coordinate set to 0).
Our argument will rely crucially on this pairing of inputs.

For any integer −1 ≤ w ≤ n, let pw := Pr[X⊕i ∈ D ∧ |X(i 7→0)| = w | X ∈ Sv] (note that
p−1 = 0 somewhat vacuously). It is clear that pw = 0 whenever w, w + 1 ̸∈ Wv. This means
that the sequence {pw}w∈{−1,...,n} has at most 2|Wv| ≤ 2q+1 nonzero elements. Moreover∑n

w=−1 pw = Pr[X⊕i ∈ D | X ∈ Sv] ≥ 1 − 2−10q+1, so we must have maxn
w=−1 pw ≥

(1 − 2−10q+1)/2q+1 ≥ 2−q−2. Now, again using the fact that the sequence {pw}w∈{−1,...,n}
has at most 2q+1 nonzero elements, to go from p−1 = 0 to this maximum value of ≥ 2−q−2,
the sequence must contain some “upwards jump” of at least 2−q−2/2q+1 = 2−2q−3, so there
must exist a weight w∗ ∈ {0, . . . , n} such that pw∗ ≥ pw∗−1 + 2−2q−3.

Let us show that w∗ ∈ Wv and that it satisfies (7) and (8). First, note that the set
{x ∈ D ∩ Sv | |x| = w∗} includes at least the following two disjoint sets:

(i) the inputs x ∈ D ∩ Sv such that x⊕i ∈ D, xi = 0, and |x(i 7→0)| = w∗;
(ii) the inputs x ∈ D ∩ Sv such that x⊕i ∈ D, xi = 1 and |x(i 7→0)| = w∗ − 1.

CCC 2022

19:22 The Composition Complexity of Majority

It is easy to see that there are exactly pw∗
2 |D ∩ Sv| inputs of type (i) and pw∗−1

2 |D ∩ Sv|
inputs of type (ii). This means that

Pr[|X| = w∗ | X ∈ Sv] ≥ pw∗ + pw∗−1

2 (9)

≥ pw∗

2 (because pw∗−1 is a probability)

≥ 2−2q−3

2 (because pw∗ ≥ pw∗−1 + 2−2q−3 ≥ 2−2q−3)

= 2−O(q),

satisfying (7). Also, given that Pr[|X| = w∗ | X ∈ Sv] ≥ 2−O(q) > 0, there must be some
x ∈ D ∩ Sv such that |x| = w∗, so w∗ ∈ Wv. Finally,

Pr[Xi = 1 | X ∈ Sv ∧ |X| = w∗]

= Pr[Xi = 1 ∧ |X| = w∗ | X ∈ Sv]
Pr[|X| = w∗ | X ∈ Sv] (by definition of conditional probability)

= Pr[X⊕i ̸∈ D ∧ Xi = 1 ∧ |X| = w∗ | X ∈ Sv] + Pr[X⊕i ∈ D ∧ Xi = 1 ∧ |X| = w∗ | X ∈ Sv]
Pr[|X| = w∗ | X ∈ Sv]

(split according to X⊕i
?
∈ D)

≤ Pr[X⊕i ̸∈ D | X ∈ Sv] + Pr[X⊕i ∈ D ∧ Xi = 1 ∧ |X(i7→0)| = w∗ − 1 | X ∈ Sv]
Pr[|X| = w∗ | X ∈ Sv]

(logical consequences)

≤
2−10q+1 + pw∗−1

2
pw∗ +pw∗−1

2
(because there are pw∗−1

2 |D ∩ Sv| inputs of type (ii), and by (9))

= 2−10q+2 + pw∗−1

pw∗ + pw∗−1

≤ 2−10q+2 + (pw∗ − 2−2q−3)
pw∗ + (pw∗ − 2−2q−3) (because pw∗ ≥ 2−2q−3 > 210q+2 and pw∗−1 ≤ pw∗ − 2−2q−3)

= 1
2 − 2−2q−3/2 − 2−10q+2

2pw∗ − 2−2q−3

≤ 1
2 − 2−2q−5

2pw∗ − 2−2q−3 (because q ≥ 1)

<
1
2 − 2−2q−5

2 (because pw∗ ≤ 1)

= 1
2 − 2−O(q), (because q ≥ 1)

thus (8) is satisfied, and this concludes the proof. ◀

6 Conclusion

In this section we outline several interesting directions for future work.

6.1 A plan towards better depth-3 lower bounds
As we pointed out in the introduction, if it were possible to compute Majn as a fan-in-O(

√
n)

function of fan-in-O(
√

n) functions, there would be 2O(
√

n)-size depth-3 circuits for Majn.
By showing that CCΘ(

√
n)(Majn) = ω(

√
n), we ruled out this particular way of obtaining

2O(
√

n)-size depth-3 circuits for Majn. Theorem 2 is therefore a necessary first step for
showing that Majn requires 2ω(

√
n)-size depth-3 circuits.

If we keep considering constructions of the form Majn = h(g1, . . . , gm), there are several
ways we can make both the outer function h and the inner functions g1, . . . , gm more powerful
while still giving depth-3 circuit upper bounds. For example, one could try to prove that

V. Lecomte, P. Ramakrishnan, and L.-Y. Tan 19:23

Majn cannot be computed as a fan-in-O(
√

n) function of depth-O(
√

n) decision trees, or even
as a depth-O(

√
n) decision tree of depth-O(

√
n) decision trees. Indeed, if such a construction

were possible, the outer function could be transformed into a size-2O(
√

n) DNF (resp. CNF),
while the inner functions and their negations could be transformed into size-2O(

√
n) CNFs

(resp. DNFs), which would give a 2O(
√

n)-size Σ3 (resp. Π3) circuit for Majn.
This motivates the following plan towards proving better depth-3 lower bounds for the

majority function: prove lower bounds against computing Majn as h(g1, . . . , gm), where the
inner and outer functions are replaced by increasingly powerful objects. For now, let us
conjecture the following first steps, which could be solved independently.

▶ Conjecture 30 (making the inner functions more powerful). Majn cannot be represented as
h(g1, . . . , gm), where m = O(

√
n) and each gj is a depth-O(

√
n) decision tree.

▶ Conjecture 31 (making the outer function more powerful). Majn cannot be represented as
h(g1, . . . , gm), where h is a depth-O(

√
n) decision tree and each gj depends on only O(

√
n)

variables.

In fact, we do not have to climb very far up the power ladder in order to reach the full
power of depth-3 circuits. Indeed, if we were to replace “depth-O(

√
n) decision tree” by

“size-2O(
√

n) DNF” (resp. CNF) in Conjecture 31, this would already be equivalent to the
conjecture that Majn cannot be represented by Σ3 (resp. Π3) circuits of size 2O(

√
n).8

6.2 Further applications of our techniques
An information theoretic toolbox for circuit lower bounds?

In this paper, we showed (in Lemma 22 and Lemma 26) how we can trace the information
flow within a circuit of arbitrary functions to prove tight lower bounds. Could one prove
lower bounds against boolean circuits via the same technique? In particular, it would
be interesting to prove a statement analogous to Lemma 22, but quantifying the mutual
information between internal nodes of a boolean circuit.

One challenge of accomplishing this is in the difference in power between the inner
functions and the AND/OR gates of boolean circuits. Since the boolean gates are so much
weaker than the inner functions (which compute arbitrary boolean functions), we would need
to prove much stronger statements about the information flow in order to get tight lower
bounds. Nonetheless, we believe that challenges like Open Problem 1 require techniques that
can precisely identify the weaknesses of small-depth circuits, and that information theory is
a well-suited tool for this task.

The usefulness of multi-output functions

Multi-output functions played a key role in two steps of the proof. These steps can be
distilled as a general plan for proving lower bounds for single-output functions as follows:

(1) Prove a lower bound for a multi-output function (in our case, HWn).
(2) Show that the act of computing a desired single-output function (in our case, Majn)

essentially entails computing the multi-output function (perhaps on a smaller set of
inputs).

8 In fact, this would still be true even if we replaced “each gj depends only on O(
√

n) variables” by “each
gj is an OR of O(

√
n) variables”.

CCC 2022

19:24 The Composition Complexity of Majority

We believe that this general approach could be applied to a much wider range of models.
For example, consider the problem of improving the best lower bounds for depth-3 circuits.
If one could prove a 2ω(

√
n) lower bound against depth-3 circuits of HWn, then this would

automatically give us better lower bounds for an explicit function (we would get a lower
bound of 2ω(

√
n)/ log n = 2ω(

√
n) for at least one of the output bits of HWn). In all likelihood,

this could be extended (perhaps by the approach in step (2)) to work for Majn, thereby
resolving Open Problem 1.

We usually think of single-output functions as being components of multi-output functions,
but this work shows that multi-output functions can be hidden within single-output functions
as well. We hope that this will encourage the incorporation of multi-output functions into
the lexicon of hard functions to prove lower bounds for.

Random linear codes

As a concrete example of functions that one might prove strong lower bounds for using our
techniques, we propose random linear error-correcting codes.

In a celebrated work, Paturi et al. [23] showed that error-correcting codes9 with large
enough distance and enough codewords require size-21.282

√
n-size Σ3 circuits, which remains

to date the strongest lower bound proved for any explicit function. A natural question
is, was this technique tight? Can we obtain 2ω(

√
n) lower bounds for all “good enough”

error-correcting codes?
Unfortunately, the answer is at least partially negative. Leffman, Pudlák, and Savický

[19] showed that there exist linear codes of large distance which have sparse parity check
matrices. More precisely, they show the existence of a linear code f of distance nΩ(1) whose
parity check matrix has

√
n rows, each of which has only O(

√
n) non-zero entries. This

means that we can write f = h(g1, . . . , g√
n), where each of the inner functions gj computes

a parity check over O(
√

n) variables, and h is the AND function. Using the notation of this
paper, CCO(

√
n)(f) ≤

√
n, and thus f has size-2O(

√
n) Σ3 circuits.

However, this code has small depth-3 circuits precisely because its parity check matrix is
sparse. It is easy to see by a counting argument that most linear codes do not have sparse
parity check matrices. So it is natural to wonder whether a random linear code (a code
whose parity check matrix is chosen uniformly at random) might require large Σ3 circuits.
Concretely, we conjecture the following.

▶ Conjecture 32. Let ℓ ≪ k ≪ n. Let H ∼ {0, 1}ℓ×n be a random matrix of ℓ parity checks,
and let

f : {0, 1} → {0, 1}n : x 7→

{
1 if Hx = 0⃗
0 otherwise

be the corresponding linear code. Then, with high probability,
(i) CCk(f) ≥ Ω

(
n
k · ℓ

log(n/k)

)
;

(ii) f requires Σ3 circuits of size 2Ω(
√

nℓ/ log n).

The proposed bound Ω(n
k · ℓ

log(n/k)) in point (i) comes from the observation that one can
verify any log(n/k) parity check using O(n/k) inner functions: first split the variables into
O(n/k) sets according to their coefficients in each of the log(n/k) parity check, then compute
the parity of each of those O(n/k) sets. Point (i) simply conjectures that this observation

9 More precisely, functions computing whether their input x belongs to a fixed error-correcting code.

V. Lecomte, P. Ramakrishnan, and L.-Y. Tan 19:25

gives the best upper bound on CCk(f). The proposed bound 2Ω(
√

nℓ/ log n) in point (ii) is
obtained by conjecturing that the best Σ3 circuit size for f will be obtained as 2O(CCk(f)+k)

through the connection with composition complexity (see Section 1.2.2), then balancing the
sum by setting k :=

√
nℓ/ log n.

If Conjecture 32 is true, it would give lower bounds of the form 2n1−ϵ against Σ3 circuits.
It seems likely to us that, depending on how the proof works, the randomness could then be
lifted, and it could be extended to some explicit pseudorandom linear code.

We think the techniques in our paper would be particularly well-suited to proving
Conjecture 32. Indeed, just like majority has a natural multi-output analog (the Hamming
weight function), f has an even more obvious corresponding multi-output function: the
function f⃗(x) := Hx which gives the outputs of all the parity checks. Therefore, it seems
plausible that one could first prove a lower bound for f⃗ using techniques similar to the ones
in Section 3, then extend it to f using our framework for bootstrapping lower bounds from
multi-output functions to binary-output functions, which we presented in Section 4.

References

1 Miklós Ajtai. Σ1
1-formulae on finite structures. Annals of Pure and Applied Logic, 24(1):1–48,

1983.
2 Noga Alon and Wolfgang Maass. Meanders, ramsey theory and lower bounds for branching

programs. In 27th Annual Symposium on Foundations of Computer Science (SFCS 1986),
pages 410–417. IEEE, 1986.

3 Kazuyuki Amano and Masafumi Yoshida. Depth two (n-2)-majority circuits for n-majority.
IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences,
101(9):1543–1545, 2018.

4 László Babai, Pavel Pudlák, Vojtech Rödl, and Endre Szemerédi. Lower bounds to the
complexity of symmetric boolean functions. Theoretical Computer Science, 74(3):313–323,
1990.

5 Ravi B Boppana. The average sensitivity of bounded-depth circuits. Information processing
letters, 63(5):257–261, 1997.

6 Christian Engels, Mohit Garg, Kazuhisa Makino, and Anup Rao. On expressing majority as a
majority of majorities. SIAM Journal on Discrete Mathematics, 34(1):730–741, 2020.

7 Merrick Furst, James Saxe, and Michael Sipser. Parity, circuits, and the polynomial-time
hierarchy. In Proceedings of the 22nd IEEE Annual Symposium on Foundations of Computer
Science, pages 260–270, 1981.

8 Dmitry Gavinsky, Or Meir, Omri Weinstein, and Avi Wigderson. Toward better formula
lower bounds: an information complexity approach to the krw composition conjecture. In
Proceedings of the forty-sixth annual ACM symposium on Theory of computing, pages 213–222,
2014.

9 Oded Goldreich and Avishay Tal. Matrix rigidity of random toeplitz matrices. computational
complexity, 27(2):305–350, 2018.

10 Oded Goldreich and Avishay Tal. On constant-depth canonical boolean circuits for computing
multilinear functions. In Computational Complexity and Property Testing, pages 306–325.
Springer, 2020.

11 Oded Goldreich and Avi Wigderson. On the size of depth-three boolean circuits for computing
multilinear functions. In Computational Complexity and Property Testing, pages 41–86.
Springer, 2020.

12 Johan Håstad. Computational Limitations for Small Depth Circuits. MIT Press, Cambridge,
MA, 1986.

CCC 2022

19:26 The Composition Complexity of Majority

13 Johan Hastad, Stasys Jukna, and Pavel Pudlák. Top-down lower bounds for depth 3 circuits.
In Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science, pages 124–129.
IEEE, 1993.

14 Pavel Hrubes, Sivaramakrishnan Natarajan Ramamoorthy, Anup Rao, and Amir Yehuday-
off. Lower bounds on balancing sets and depth-2 threshold circuits. In 46th International
Colloquium on Automata, Languages, and Programming (ICALP 2019). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2019.

15 Pavel Hrubes and Anup Rao. Circuits with medium fan-in. In 30th Conference on Computa-
tional Complexity (CCC 2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

16 Stasys Jukna. Boolean function complexity: advances and frontiers, volume 5. Springer, 2012.
17 Maria Klawe, Wolfgang J Paul, Nicholas Pippenger, and Mihalis Yannakakis. On monotone

formulae with restricted depth. In Proceedings of the sixteenth annual ACM symposium on
Theory of computing, pages 480–487, 1984.

18 Alexander S Kulikov and Vladimir V Podolskii. Computing majority by constant depth
majority circuits with low fan-in gates. Theory of Computing Systems, 63(5):956–986, 2019.

19 Hanno Lefmann, Pavel Pudlák, and Petr Savicky. On sparse parity check matrices. Designs,
Codes and Cryptography, 12(2):107–130, 1997.

20 Or Meir and Avi Wigderson. Prediction from partial information and hindsight, with application
to circuit lower bounds. computational complexity, 28(2):145–183, 2019.

21 Edward I Nechiporuk. A boolean function. Engl. transl. in Sov. Phys. Dokl., 10:591–593, 1966.
22 Ilan Newman and Avi Wigderson. Lower bounds on formula size of boolean functions using

hypergraph entropy. SIAM Journal on Discrete Mathematics, 8(4):536–542, 1995.
23 Ramamohan Paturi, Pavel Pudlák, Michael E Saks, and Francis Zane. An improved exponential-

time algorithm for k-sat. Journal of the ACM (JACM), 52(3):337–364, 2005.
24 Ramamohan Paturi, Pavel Pudlák, and Francis Zane. Satisfiability coding lemma. In

Proceedings 38th Annual Symposium on Foundations of Computer Science, pages 566–574.
IEEE, 1997.

25 Gleb Posobin. Computing majority with low-fan-in majority queries. arXiv preprint, 2017.
arXiv:1711.10176.

26 Alexander A Razborov. Lower bounds for deterministic and nondeterministic branching
programs. In International Symposium on Fundamentals of Computation Theory, pages 47–60.
Springer, 1991.

27 Alexander A Razborov and Steven Rudich. Natural proofs. Journal of Computer and System
Sciences, 55(1):24–35, 1997.

28 Benjamin Rossman. The average sensitivity of bounded-depth formulas. computational
complexity, 27(2):209–223, 2018.

29 Srikanth Srinivasan. Personal communication, 2015.
30 Leslie G Valiant. Exponential lower bounds for restricted monotone circuits. In Proceedings of

the fifteenth annual ACM symposium on Theory of computing, pages 110–117, 1983.
31 Guy Wolfovitz. The complexity of depth-3 circuits computing symmetric boolean functions.

Information Processing Letters, 100(2):41–46, 2006.
32 Andrew Yao. Separating the polynomial-time hierarchy by oracles. In Proceedings of the 26th

Annual Symposium on Foundations of Computer Science, pages 1–10, 1985.

http://arxiv.org/abs/1711.10176

	1 Introduction
	1.1 This work
	1.2 Motivation and implications
	1.2.1 Bounded-width branching programs
	1.2.2 Lower bounds for small-depth circuits computing majority

	1.3 Our techniques
	1.4 Related work

	2 Preliminaries
	2.1 Locality
	2.2 Number of queries per variable
	2.3 Information theory

	3 The less it is queried, the more it is revealed
	4 From Hamming weight to majority
	4.1 Reduction toolkit
	4.2 A lower bound for majority

	5 Proof of Lemma 26
	5.1 Warmup: q = 1 for total functions
	5.2 General case

	6 Conclusion
	6.1 A plan towards better depth-3 lower bounds
	6.2 Further applications of our techniques

