
Third International Computer
Programming Education
Conference

ICPEC 2022, June 2–3, 2022, Polytechnic Institute of Cávado and
Ave (IPCA), Barcelos, Portugal

Edited by

Alberto Simões
João Carlos Silva

OASIcs – Vo l . 102 – ICPEC 2022 www.dagstuh l .de/oas i c s

Editors

Alberto Simões
Polytechnic Institute of Cávado and Ave (IPCA), Barcelos, Portugal
asimoes@ipca.pt

João Carlos Silva
Polytechnic Institute of Cávado and Ave (IPCA), Barcelos, Portugal
jcsilva@ipca.pt

ACM Classification 2012
Applied computing → Education

ISBN 978-3-95977-229-7

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-229-7.

Publication date
July, 2022

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/OASIcs.ICPEC.2022.0

ISBN 978-3-95977-229-7 ISSN 1868-8969 https://www.dagstuhl.de/oasics

https://orcid.org/0000-0001-6961-2660
mailto:asimoes@ipca.pt
https://orcid.org/0000-0002-4575-0142
mailto:jcsilva@ipca.pt
https://www.dagstuhl.de/dagpub/978-3-95977-229-7
https://www.dagstuhl.de/dagpub/978-3-95977-229-7
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/OASIcs.ICPEC.2022.0
https://www.dagstuhl.de/dagpub/978-3-95977-229-7
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/oasics

0:iii

OASIcs – OpenAccess Series in Informatics

OASIcs is a series of high-quality conference proceedings across all fields in informatics. OASIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Daniel Cremers (TU München, Germany)
Barbara Hammer (Universität Bielefeld, Germany)
Marc Langheinrich (Università della Svizzera Italiana – Lugano, Switzerland)
Dorothea Wagner (Editor-in-Chief, Karlsruher Institut für Technologie, Germany)

ISSN 1868-8969

https://www.dagstuhl.de/oasics

ICPEC 2022

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/oasics

Contents

Preface
Alberto Simões and João Carlos Silva . 0:vii

Scientific Committee
. 0:ix

List of Authors
. 0:xiii

Papers

Value-Focused Investigation into Programming Languages Affinity
Alvaro Costa Neto, Cristiana Araújo, Maria João Varanda Pereira, and
Pedro Rangel Henriques . 1:1–1:12

Sprinter: A Didactic Linter for Structured Programming
Francisco Alfredo, André L. Santos, and Nuno Garrido . 2:1–2:8

Understanding the Usage of IT-Security Games in the Industry and Its Mapping
to Job Profiles

Tilman Dewes, Tiago Gasiba, and Thomas Schreck . 3:1–3:12

Introductory Programming in Higher Education: A Systematic Literature Review
Gabryella Rodrigues, Ana Francisca Monteiro, and António Osório 4:1–4:17

Feedback Systems for Students Solving Problems Related to Polynomials of
Degree Two or Lower

Luke Adrian Gubbins Bayzid, Ana Maria Reis D’Azevedo Breda,
Eugénio Alexandre Miguel Rocha, and José Manuel Dos Santos Dos Santos 5:1–5:10

Cloud of Assets and Threats: A Playful Method to Raise Awareness for Cloud
Security in Industry

Tiange Zhao, Ulrike Lechner, Maria Pinto-Albuquerque, and Ece Ata 6:1–6:13

Python Programming Topics That Pose a Challenge for Students
Justyna Szydłowska, Filip Miernik, Marzena Sylwia Ignasiak, and
Jakub Swacha . 7:1–7:9

Thoughts of a Post-Pandemic Higher Education in Information Systems and
Technologies

Francini Hak, Jorge Oliveira e Sá, and Filipe Portela . 8:1–8:9

Integration of Computer Science Assessment into Learning Management Systems
with JuezLTI

Juan V. Carrillo, Alberto Sierra, José Paulo Leal, Ricardo Queirós,
Salvador Pellicer, and Marco Primo . 9:1–9:8

WebPuppet – A Tiny Automated Web UI Testing Tool
Ricardo Queirós . 10:1–10:8

Third International Computer Programming Education Conference (ICPEC 2022).
Editors: Alberto Simões and João Carlos Silva

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

0:vi Contents

Learning Computer Programming: A Gamified Approach
Mário Pinto and Teresa Terroso . 11:1–11:8

A Roadmap to Convert Educational Web Applications into LTI Tools
José Paulo Leal, Ricardo Queirós, Pedro Ferreirinha, and Jakub Swacha 12:1–12:12

Programming for Non-Programmers: An Approach Using Creative Coding in
Higher Education

Teresa Terroso and Mário Pinto . 13:1–13:8

Program Comprehension and Quality Experiments in Programming Education
Maria Medvidova and Jaroslav Porubän . 14:1–14:12

Preface

This book includes the articles that were accepted for the Third Edition of the Interna-
tional Computer Programming Education Conference (ICPEC). Born in the COVID era,
this is the first edition of the conference that was held physically. The event took place
in Barcelos, Portugal, at Instituto Politécnico do Cávado e do Ave, from June, 2nd to June, 3rd.

Teaching computer science is a challenging task: from the traditional education, with
paper and a blackboard, to more computational training, where students are able to test their
solutions in a computer, or even with sophisticated approaches, using interactive learning
tools, there is still no perfect solution. Computer science, and specifically learning how to
program and how to develop algorithms and data structures, are still the subjects with less
success in Computer Science Bachelor Degrees.

While a lot of lecturers have their own research interests, apart from their teaching
duties, there are some lecturers that continue to debate, study and analyse different teaching
approaches, and developing solutions to help in the learning process. ICPEC was created
by such a group of lecturers, enthusiastic with teaching computer science and, specifically,
programming languages and algorithms. During the last three years, ICPEC has grown in a
larger (but still small) community of researchers interested in these topics.

This edition includes fourteen contributions in the area of education of computer science
subjects. While most works still focus on the challenge that is the teaching of programming
languages and algorithms, there are also contributions for the awareness of cloud and internet
security, user-interface testing and even mathematics.

We are sure that the possibility to discuss these subjects in a community, and live without
digital means of communication, that we are all tired of, has been productive and that
synergies will be created for further study of this conference topics.

Hopefully, with the probable control of COVID and the return to face-to-face conferences,
we will be able to increase this community and share experiences in order to be better
teachers and researchers in this challenging area of computer programming.

The Steering Committee

Alberto Simões
Filipe Portela

Mario Pinto
Ricardo Queirós

Third International Computer Programming Education Conference (ICPEC 2022).
Editors: Alberto Simões and João Carlos Silva

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

Scientific Committee

Editors

Alberto Simões
2Ai, School of Technology, IPCA
Barcelos, Portugal
asimoes@ipca.pt

João Carlos Silva
School of Technology, IPCA
Barcelos, Portugal
jcsilva@ipca.pt

Committees

Alberto Simões
2Ai, School of Technology, IPCA
Barcelos, Portugal
asimoes@ipca.pt

Filipe Portela
Algoritmi, Universidade do Minho
Guimarães, Portugal
cfp@dsi.uminho.pt

Mário Pinto
ESMAD, Politécnico do Porto
Vila do Conde, Portugal
mariopinto@esmad.ipp.pt

Ricardo Queirós
ESMAD, Politécnico do Porto
Vila do Conde, Portugal
ricardoqueiros@esmad.ipp.pt

Organizing Committee

Alberto Simões
2Ai, School of Technology, IPCA
Barcelos, Portugal
asimoes@ipca.pt

Daniel Miranda
2Ai, School of Technology, IPCA
Barcelos, Portugal
damiranda@ipca.pt

João Carlos Silva
School of Technology, IPCA
Barcelos, Portugal
jcsilva@ipca.pt

Nuno Rodrigues
School of Technology, IPCA
Barcelos, Portugal
nfr@ipca.pt

Patrícia Leite
School of Technology, IPCA
Barcelos, Portugal
patricialeite@ipca.pt

Scientific Committee

Alba Amato
Seconda Università degli Studi di Napoli
Naples, Italy
alba.amato@unina2.it

Alberto Simões
2Ai, School of Technology, IPCA
Barcelos, Portugal
asimoes@ipca.pt

Alexander Paar
Duale Hochschule Schleswig-Holstein
Kiel, Germany
alexpaar@acm.org

Alexandre Braganca
ISEP, Politécnico do Porto
Porto, Portugal
atb@isep.ipp.pt

Ana Azevedo
ISCAP, Politécnico do Porto
S. Mamede de Infesta, Portugal
aazevedo@iscap.ipp.pt

Anabela Gomes
University of Coimbra
Coimbra, Portugal
anabela@isec.pt

Third International Computer Programming Education Conference (ICPEC 2022).
Editors: Alberto Simões and João Carlos Silva

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

asimoes@ipca.pt
jcsilva@ipca.pt
asimoes@ipca.pt
cfp@dsi.uminho.pt
mariopinto@esmad.ipp.pt
ricardoqueiros@esmad.ipp.pt
asimoes@ipca.pt
damiranda@ipca.pt
jcsilva@ipca.pt
nfr@ipca.pt
patricialeite@ipca.pt
alba.amato@unina2.it
asimoes@ipca.pt
alexpaar@acm.org
atb@isep.ipp.pt
aazevedo@iscap.ipp.pt
anabela@isec.pt
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

0:x Scientific Committee

Anna Kobusinska
Poznan University of Technology
Poznan, Poland
anna.kobusinska@cs.put.poznan.pl

Antonio Manso
Instituto Politécnico de Tomar
Tomar, Portugal
manso@ipt.pt

António Mendes
University of Coimbra
Coimbra, Portugal
toze@dei.uc.pt

Antonio Vieira De Castro
ISEP, Politécnico do Porto
Porto, Portugal
aavieiracastro@gmail.com

Antonios Andreatos
Hellenic Air Force Academy
Acharnes Attikis, Tatoi, Greece
aandreatos@gmail.com

Bárbara Cleto
ESMAD, Politécnico do Porto
Vila do Conde, Portugal
bgcleto@esmad.ipp.pt

Bruno Cunha
Portic, Politécnico do Porto
Porto, Portugal
bruno.cunha@portic.ipp.pt

Cristina Alcaraz
University of Málaga
Málaga, Spain
alcaraz@lcc.uma.es

Daniel Azevedo
Escola Superior de Tecnologia de Lamego
Lamego, Portugal
azevedo21@gmail.com

Daniela Pedrosa
Univ. de Trás-os-Montes e Alto Douro
Vila Real, Portugal
dpedrosa@utad.pt

Fabrizio Messina
University of Catania
Sicily, Italy
messina@dmi.unict.it

Fernando Moreira
Universidade Portucalense
Porto, Portugal
fmoreira@upt.pt

Filipe Pinto
Polytechnic Institute of Leiria
Leiria, Portugal
filipe.pinto@ipleiria.pt

Filipe Portela
Algoritmi, Universidade do Minho
Guimarães, Portugal
cfp@dsi.uminho.pt

Filomena Castro Lopes
Universidade Portucalense
Porto, Portugal
flopes@upt.pt

George Stalidis
Alexander TEI of Thessaloniki
Thessaloniki, Greece
stalidgi@mkt.teithe.gr

Govardhan Aliseri
Jawaharlal Nehru Technological University
Hyderabad, Telangana, India
govardhan_cse@jntuh.ac.in

Hanmin Jung
Korea Inst. of Sc. and Tech. Information
Daejeon, South Korea
jhm@kisti.re.kr

Ivone Amorim
Portic, Politécnico do Porto
Porto, Portugal
ivone.amorim@portic.ipp.pt

Jakub Swacha
University of Szczecin
Szczecin, Poland
jakubs@uoo.univ.szczecin.pl

Jaroslav Porubän
Technical University of Košice
Slovak Republic
jaroslav.poruban@tuke.sk

João Carlos Silva
School of Technology, IPCA
Barcelos, Portugal
jcsilva@ipca.pt

anna.kobusinska@cs.put.poznan.pl
manso@ipt.pt
toze@dei.uc.pt
aavieiracastro@gmail.com
aandreatos@gmail.com
bgcleto@esmad.ipp.pt
bruno.cunha@portic.ipp.pt
alcaraz@lcc.uma.es
azevedo21@gmail.com
dpedrosa@utad.pt
messina@dmi.unict.it
fmoreira@upt.pt
filipe.pinto@ipleiria.pt
cfp@dsi.uminho.pt
flopes@upt.pt
stalidgi@mkt.teithe.gr
govardhan_cse@jntuh.ac.in
jhm@kisti.re.kr
ivone.amorim@portic.ipp.pt
jakubs@uoo.univ.szczecin.pl
jaroslav.poruban@tuke.sk
jcsilva@ipca.pt

Scientific Committee 0:xi

João Cordeiro
Universidade da Beira Interior
Bragança, Portugal
jpcc@ubi.pt

J. Ángel Velázquez-Iturbide
Universidad Rey Juan Carlos
Madrid, Spain
angel.velazquez@urjc.es

José Carlos Paiva
Faculdade de Ciências
Universidade do Porto, Portugal
josepaiva94@gmail.com

José Paulo Leal
Faculdade de Ciências
Universidade do Porto, Portugal
zp@dcc.fc.up.pt

Karolina Baras
University of Madeira
Funchal, Portugal
kbaras@uma.pt

Leonel Morgado
INESC TEC/Universidade Aberta
Coimbra, Portugal
leonel.morgado@gmail.com

Marco Temperini
Sapienza University of Rome
Rome, Italy
marte@dis.uniroma1.it

María Ángeles Pérez Juárez
University of Valladolid
Valladolid, Spain
mperez@tel.uva.es

Maria José Marcelino
University of Coimbra
Coimbra, Portugal
zemar@dei.uc.pt

Mário Pinto
ESMAD, Politécnico do Porto
Vila do Conde, Portugal
mariopinto@esmad.ipp.pt

Martinha Piteira
EST, Instituto Politécnico de Setúbal
Setúbal, Portugal
martinha.piteira@estsetubal.ips.pt

Micaela Esteves
Polytechnic Institute of Leiria
Leiria, Portugal
micaela.dinis@ipleiria.pt

Míriam Antón-Rodríguez
University of Valladolid
Valladolid, Spain
mirant@tel.uva.es

Muhammad Younas
Oxford Brookes University
Oxford, United Kingdom
m.younas@brookes.ac.uk

Nikolaos Matsatsinis
Technical University of Crete
Akrotiri, Crete, Greece
nikos@ergasya.tuc.gr

Nuno Rodrigues
School of Technology, IPCA
Barcelos, Portugal
nfr@ipca.pt

Patrícia Leite
School of Technology, IPCA
Barcelos, Portugal
patricialeite@ipca.pt

Paula Morais
Universidade Portucalense
Porto, Portugal
pmorais@upt.pt

Paula Tavares
ISEP, Politécnico do Porto
Porto, Portugal
pct@isep.ipp.pt

Pedro Rangel Henriques
Algoritmi, Universidade do Minho
Braga, Portugal
prh@di.uminho.pt

Pedro Ribeiro
Faculdade de Ciências
Universidade do Porto, Portugal
pribeiro@dcc.fc.up.pt

Raffaele Montella
University of Napoli Parthenope
Napoli, Italy
raffaele.montella@uniparthenope.it

ICPEC 2022

jpcc@ubi.pt
angel.velazquez@urjc.es
josepaiva94@gmail.com
zp@dcc.fc.up.pt
kbaras@uma.pt
leonel.morgado@gmail.com
marte@dis.uniroma1.it
mperez@tel.uva.es
zemar@dei.uc.pt
mariopinto@esmad.ipp.pt
martinha.piteira@estsetubal.ips.pt
micaela.dinis@ipleiria.pt
mirant@tel.uva.es
m.younas@brookes.ac.uk
nikos@ergasya.tuc.gr
nfr@ipca.pt
patricialeite@ipca.pt
pmorais@upt.pt
pct@isep.ipp.pt
prh@di.uminho.pt
pribeiro@dcc.fc.up.pt
raffaele.montella@uniparthenope.it

0:xii Scientific Committee

Ricardo Martinho
Polytechnic Institute of Leiria
Leiria, Portugal
ricardo.martinho@ipleiria.pt

Ricardo Queirós
ESMAD, Politécnico do Porto
Vila do Conde, Portugal
ricardoqueiros@esmad.ipp.pt

Robertas Damasevicius
Silesian University of Technology
Silesia, Poland
robertas.damasevicius@polsl.pl

Roberto Hirata Jr
University of São Paulo
São Paulo, Brazil
hirata@ime.usp.br

Rosa Maria Bottino
Instituto Tecnologie Didattiche-CNR
Genova, Italy
bottino@itd.cnr.it

Rui Mendes
University of Minho
Braga, Portugal
azuki@di.uminho.pt

Sergio Ilarri
University of Zaragoza
Zaragoza, Spain
silarri@unizar.es

Simon Fong
University of Macau, Macau, China
ccfong@umac.mo

Sokol Kosta
Aalborg University
Aalborg East, Denmark
sok@es.aau.dk

Sónia Sobral
Universidade Portucalense
Porto, Portugal
soniarollandsobral@gmail.com

Spyros Panagiotakis
Hellenic Mediterranean University
Heraclion, Creta, Greece
spanag@hmu.gr

Štefan Korečko
FEEI, Technical University of Košice
Slovak Republic
stefan.korecko@tuke.sk

Teresa Terroso
ESMAD, Politécnico do Porto
Vila do Conde, Portugal
teresaterroso@esmad.ipp.pt

Vítor Sá
Universidade Católica Portuguesa
Braga, Portugal
vitor.sa@ucp.pt

Wei Zhou
ESCP Europe
Paris, France
wzhou@escpeurope.eu

Ya-Han Hu
National Chung Cheng University
Taiwan, China
yahan.hu@mis.ccu.edu.tw

ricardo.martinho@ipleiria.pt
ricardoqueiros@esmad.ipp.pt
robertas.damasevicius@polsl.pl
hirata@ime.usp.br
bottino@itd.cnr.it
azuki@di.uminho.pt
silarri@unizar.es
ccfong@umac.mo
sok@es.aau.dk
soniarollandsobral@gmail.com
spanag@hmu.gr
stefan.korecko@tuke.sk
teresaterroso@esmad.ipp.pt
vitor.sa@ucp.pt
wzhou@escpeurope.eu
yahan.hu@mis.ccu.edu.tw

List of Authors

Alberto Sierra
CIFP Carlos III
Cartagena, Spain
alberto.sierra@murciaeduca.es

Álvaro Costa Neto
Instituto Federal de Educação
Ciência e Tecnologia de São Paulo
São Paulo, Brazil
nepheus.br@gmail.com

Ana Breda
University of Aveiro
Aveiro, Portugal
ambreda@ua.pt

Ana Francisca Monteiro
Universidade do Minho
Braga, Portugal
anafmonteiro@gmail.com

André Santos
ISCTE-Instituto Universitário de Lisboa
Lisboa, Portugal
andre.santos@iscte-iul.pt

António Osório
Universidade do Minho
Braga, Portugal
ajosorio@ie.uminho.pt

Cristiana Araújo
Universidade do Minho
Braga, Portugal
decristianaaraujo@hotmail.com

Ece Ata
Siemens AG
Germany
eceatata@gmail.com

Eugénio A.M. Rocha
University of Aveiro
Aveiro, Portugal
eugenio@ua.pt

Filipe Portela
Algoritmi, University of Minho
Guimarães, Portugal
cfp@dsi.uminho.pt

Francini Hak
Algoritmi, University of Minho
Guimarães, Portugal
francini.hak@algoritmi.uminho.pt

Gabryella Rodrigues
Universidade do Minho
Braga, Portugal
gabryella.rocha@gmail.com

Jakub Swacha
University of Szczecin
Szczecin, Poland
jakubs@uoo.univ.szczecin.pl

Jorge Oliveira E Sá
Algoritmi, University of Minho
Guimarães, Portugal
jos@dsi.uminho.pt

José Manuel Dos Santos Dos Santos
Escola Superior de Educação, Politécnico do
Porto
Porto, Portugal
dossantosdossantos@gmail.com

José Paulo Leal
CRACS - INESC-Porto LA & DCC - FCUP
Porto, Portugal
zp@dcc.fc.up.pt

Juan V. Carrillo
CIFP Carlos III
Cartagena, Spain
juanvicente.carrillo@murciaeduca.es

Luke Adrian Bayzid Gubbins
Universidade de Aveiro
Aveiro, Portugal
luke.adrian@ua.pt participant Marco
Primo
Faculty of Sciences, University of Porto
Porto, Portugal
up201800388@edu.fc.up.pt

Maria João Varanda Pereira
Instituto Politécnico de Bragança
Bragança, Portugal
mjoao@ipb.pt

Third International Computer Programming Education Conference (ICPEC 2022).
Editors: Alberto Simões and João Carlos Silva

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

alberto.sierra@murciaeduca.es
nepheus.br@gmail.com
ambreda@ua.pt
anafmonteiro@gmail.com
andre.santos@iscte-iul.pt
ajosorio@ie.uminho.pt
decristianaaraujo@hotmail.com
eceatata@gmail.com
eugenio@ua.pt
cfp@dsi.uminho.pt
francini.hak@algoritmi.uminho.pt
gabryella.rocha@gmail.com
jakubs@uoo.univ.szczecin.pl
jos@dsi.uminho.pt
dossantosdossantos@gmail.com
zp@dcc.fc.up.pt
juanvicente.carrillo@murciaeduca.es
luke.adrian@ua.pt
up201800388@edu.fc.up.pt
mjoao@ipb.pt
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

0:xiv Authors

Maria Medvidova
Technical University in Kosice
Kosice, Slovakia
maria.medvidova@gmail.com

Maria Pinto-Albuquerque
ISCTE-IUL - Instituto Universitário de
Lisboa Lisboa, Portugal
maria.albuquerque@iscte-iul.pt

Mario Pinto
ESMAD, Politecnico do Porto
Vila do Conde, Portugal
mariopinto@esmad.ipp.pt

Pedro Ferreirinha
Faculty of Sciences of University of Porto
Porto, Portugal
up201805186@edu.fc.up.pt

Pedro Rangel Henriques
Universidade do Minho
Braga, Portugal
prh@di.uminho.pt

Ricardo Queirós
ESMAD - P.PORTO & CRACS - INESC
TEC
Vila do Conde, Portugal
ricardo.queiros@gmail.com

Salvador Pellicer
Entornos de Formación (EdF)
Valencia, Spain
salvador.pellicer@
entornosdeformacion.com

Teresa Terroso
ESMAD, Politécnico do Porto
Vila do Conde, Portugal
teresaterroso@esmad.ipp.pt

Thomas Schreck
Munich University of Applied Sciences
Munich, Germany
thomas.schreck@hm.edu

Tiago Gasiba
Siemens AG
Germany
tiago.gasiba@siemens.com

Tiange Zhao
Siemens AG
Germany
zhaotiange123@gmail.com

Tilman Dewes
Munich University of Applied Sciences
Munich, Germany
dewes@hm.edu

Ulrike Lechner
Universität der Bundeswehr München
München, Germany
ulrike.lechner@unibw.de

maria.medvidova@gmail.com
maria.albuquerque@iscte-iul.pt
mariopinto@esmad.ipp.pt
up201805186@edu.fc.up.pt
prh@di.uminho.pt
ricardo.queiros@gmail.com
salvador.pellicer@entornosdeformacion.com
salvador.pellicer@entornosdeformacion.com
teresaterroso@esmad.ipp.pt
thomas.schreck@hm.edu
tiago.gasiba@siemens.com
zhaotiange123@gmail.com
dewes@hm.edu
ulrike.lechner@unibw.de

Value-Focused Investigation into Programming
Languages Affinity
Alvaro Costa Neto !

Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, Barretos, Brazil

Cristiana Araújo ! Ï

Centro ALGORITMI, Departamento de Informática,
University of Minho, Campus Gualtar – Braga, Portugal

Maria João Varanda Pereira ! Ï

Research Centre in Digitalization and Intelligent Robotics,
Polythechnic Insitute of Bragança, Portugal

Pedro Rangel Henriques ! Ï

Centro ALGORITMI, Departamento de Informática,
University of Minho, Campus Gualtar – Braga, Portugal

Abstract
The search for better techniques to teach computer programming is paramount in order to improve
the students’ learning experiences. Several approaches have been proposed throughout the years,
usually through technical solutions such as evaluation systems, digital classrooms, interactive lessons
and so on. Personal factors, such as affinity, have been largely unexplored due to their qualitative
and abstract nature. The results of a preliminary survey on how and why affinity is created between
programmers and their favorite languages, conducted on a master’s degree class at Universidade
do Minho, showed unexpected results as to which languages became favorites and the possible
reasons for the students’ choices. Aiming at further exploration on this topic and continuation of
this research, the Value-Focused Thinking method was applied in order to construct a more complex,
in-depth survey. This value-oriented method kept focus under control and even raised a handful of
opportunities to improve the research as a whole. This paper describes the Value-Focused Thinking
method and how it was applied to construct a new and deeper computer programming education
survey to understand affinity with languages.

2012 ACM Subject Classification Social and professional topics → Computing education; Software
and its engineering → General programming languages

Keywords and phrases Computer Programming, Programming Languages, Affinity, Education,
Learning, Value-Focused Thinking

Digital Object Identifier 10.4230/OASIcs.ICPEC.2022.1

Funding This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the
R&D Units Project Scope: UIDB/05757/2020 and UIDB/00319/2020.

1 Introduction

Being an inherently intricate process, learning computer programming is widely accepted as
being a complex and difficult task. Technical approaches applied to research on how to teach
and learn computer programming date many decades ago [6, 1, 2], and has kept high interest
in the academic field [7, 18, 14, 3, 9, 10] ever since. Personal and contextual factors also play
important roles in learning and should be considered when teaching computer programming.
Pedagogical research has shown for more than a century that these personal factors are
influential to the teaching-learning process [12, 17, 8, 4] and should be taken into account at
all times.

© Alvaro Costa Neto, Cristiana Araújo, Maria João Varanda Pereira, and Pedro Rangel Henriques;
licensed under Creative Commons License CC-BY 4.0

Third International Computer Programming Education Conference (ICPEC 2022).
Editors: Alberto Simões and João Carlos Silva; Article No. 1; pp. 1:1–1:12

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alvaro@ifsp.edu.br
https://orcid.org/0000-0003-1861-3545
mailto:decristianaaraujo@hotmail.com
https://epl.di.uminho.pt/~cristiana.araujo/
https://orcid.org/0000-0002-9656-3304
mailto:mjoao@ipb.pt
http://www.ipb.pt/~mjoao/
https://orcid.org/0000-0001-6323-0071
mailto:prh@di.uminho.pt
https://www.di.uminho.pt/~prh/
https://orcid.org/0000-0002-3208-0207
https://doi.org/10.4230/OASIcs.ICPEC.2022.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

1:2 Value-Focused Investigation into Programming Languages Affinity

Affinity to programming languages, as a personal factor, may play an important role
in the teaching-learning process, as indicated in a previous survey conducted in 2021 with
a class of master’s degree students [13]. Those preliminary results showed that affinity is
more complex than previously assumed and that a deeper, more structured study should be
conducted. A value-focused approach was used in order to better organize the construction
of the survey for this new study, yelding a strongly focused questionnaire.

This paper starts with a brief presentation of a former preliminary study on affinity to
programming languages, but focuses on the construction of a new survey through the Value-
Focused Thinking method. The new survey will be used in the near future, aiming to further
understand how affinity to a programming language is created. The overall structure of this
article is composed of six sections: the introduction discusses which factors may influence the
learning process and how they may be categorized. The second section presents the initial
investigation, including a preliminary study about affinity to programming languages and
a small previous survey that showed interesting results. The third section gives a general
explanation of Value-Focused Thinking (VFT), a decision making method used to structure
the new survey. Section four explains how Value-Focused Thinking was directly applied to
the construction of the new survey. Section five lists the final structure of the new survey
and the expected results. The final section concludes this paper and lists the next steps that
shall be taken to apply the new survey on affinity to programming languages.

2 Background and Previous Work

Assuming that personal factors are relevant to students – as previously stated – and focusing on
the affinity that is commonly observed among programmers (both students and professionals)
towards specific programming languages, it would be reasonable to investigate how it
is established and which role it plays on the learning process. In order to initiate this
investigation, a preliminary study was conducted.

2.1 Lecture and Preliminary Study
In order to better understand what role affinity takes in the learning process and how it is
constructed, a preliminary study was conducted with twenty three students of a Masters’
degree class in Computer Engineering at Universidade do Minho [13]. The study consisted
of a lecture about teaching and learning computer programming, a quick survey during the
lecture, and a small questionnaire with a few questions about programming languages, their
learning experiences, and which languages they prefered.

The lecture presented and discussed which factors might be relevant to the learning
process and how these factors could be applied to improve the students’ experiences. During
the lecture, a quick survey was conducted, based on snippets of source code that printed
a few numbers of the Fibonacci sequence. These snippets were written in seven different
languages – BASIC, Lisp, C, Java, Python, Ruby, and Swift – and were shown sequentially
at first, and then simultaneously for comparison purposes.

Since it would be impractical – and probably confusing – to show all possible combinations,
only a few comparisons were made. Each combination tried to explicate either differences
or similarities in their programming languages, encouraging students to consider unusual
characteristics that could influence their affinity to one of the languages. As an example,
when comparing two different versions of Lisp code, the goal was to highlight the impact
caused by the use of the natural coding style for a certain language. This would allow the
students to consider nuances beyond the plain syntax definition of a language.

A. Costa Neto, C. Araújo, M. J. V. Pereira, and P. R. Henriques 1:3

Students were then promptly asked to vocalize their preferred languages and the answers
showed C, Java and Haskell1 as the three highest ranked choices. This question was proposed
and read during the lecture, and students answered directly without any kind of written form.

After the lecture, the students were then asked to answer a small questionnaire containing
three questions:

1. In a range of very low to very high, how important is the language choice for learning
computer programming? Justify your answer;

2. Which factors – presented in the lecture – are most relevant and influential to learning
computer programming?

3. Which languages would you choose to teach computer programming: BASIC, Lisp, C,
Java, Python, Ruby, Swift, or some other language? Justify your answer.

The answers to the first question were interesting, albeit inconclusive. While almost every
student agreed that it is crucial to wisely choose an initial programming language, pretty
much all of them differed on the justification. Opinions ranged from technical – mainly based
on the availability of certain syntax constructs and data structures – to pedagogical – the
initial language should have an easy learning curve in order to avoid discouraging students.
Other justifications cited documentation availability, prospective employability, and in one
case, indifference for the language choice per se.

Answers to the second question focused on the obstacles that the initial programming
language could impose. Technical aspects of the language were preeminent among the answers,
but affinity was also considered an important factor. Other personal factors included: the
relationship stablished with the teachers and the motivation that is cultivated during the
first contact with computer programming.

The last question allowed multiple choices and its main goal was to compare the results
of the lecture’s question (the one where C, Java and Haskell were three favorite languages),
with the selection of languages they would choose to pass on, possibly influencing the affinity
other students would develop. This would either support their initial choices – their preferred
languages were chosen to continue the learning cycle – or contradict it – their preferred
languages and their choices to pass on programming knowledge were different. The final
goal for this question was to test for external influences, such as popularity and market
share. Being currently a popular programming language [16, 15], with many applications in
high demand, such as artificial intelligence, data science and numerical computing, Python
was expected to be preferred. Nonetheless, C and Java were the highest ranked in the
questionnaire, while Haskell also had a perceptive presence in the results and tied the fourth
place with BASIC (figure 1). These results become clearer if the students’ affinity to these
languages was actually constructed as a consequence of their learning experiences, since they
had been formally taught Haskell, C and Java as their initial programming languages.

These results implied that more conclusions would arise from a new survey for a deeper
investigation on how students learn computer programming and their prefered languages.
The complex nature of personal factors that influence this process creates opportunities
for continued investigation on affinity with programming languages and its relation to the
learning process.

1 Haskell is the first programming language for students of Universidade do Minho.

ICPEC 2022

1:4 Value-Focused Investigation into Programming Languages Affinity

0 2 4 6 8 10 12 14 16 18 20

BASIC

Lisp
C

Java

Python

Ruby
Swift

Haskell

3

1

15

12

6

0

0

3

Figure 1 Languages chosen by students when asked which one they would use to teach computer
programming. These answers were gathered through a small survey after the lecture. This figure
was originaly published in [13].

3 Value-Focused Thinking

Value-Focused Thinking (VFT) is a decision making process proposed by Ralph Kenney [11]
and it was chosen as the formal method to plan and guide the construction of the new survey.
It is based on the fact that planning alternatives and practical details in the first place tends
to diverge the solution from what should be its main focus, concentrating efforts on features
that might be discarded, and missing other opportunities that could emerge. In order to
avoid this kind of recurrent and short sighted behavior, Kenney proposed a method that
would force the definition of the main values and their derived objectives first, driving the
whole decision making process with focus. In the author’s words:

Alternative-focused thinking is designed to solve decision problems. Value-focused
thinking is designed to identify desirable decision opportunities and create alternatives
[11, p. 538].

The method stablishes a well-founded process, based on the premise that the main
values, central to the decisions being made, should always be enforced and guarded when
thinking about objectives and alternatives. The whole VFT process follows three main stages:
definition of values, gathering of objectives and construction of alternatives.

3.1 Definition of Values
The first stage in a Value-Focused Thinking process is to define the values and contextualize
the problem to be solved. This step takes into account the desired results, what are the
expectations – both for success and failure – and what kind of experience has been observed
in the same context and on similar problems. While it is not the most operational part of
the process, information gathered at this point is crucial to gather realistic objectives in the
next step and to keep the whole decision making process focused.

3.2 Gathering of Objectives
In the second stage of the process, the objectives are gathered, sorted and classified. This
stage is crucial for grounded and efficient construction of alternatives – the main goal of
the Value-Focused Thinking process. The first to be defined is the strategic objective which
states the main abstract goal of the decision being made. Other objectives are listed and
roughly classified into fundamental or means:

A. Costa Neto, C. Araújo, M. J. V. Pereira, and P. R. Henriques 1:5

Fundamental objectives stablish the main reasons for the decision making in the first
place, and are usually directly related to the strategic objective;
Means objectives define what is necessary to achieve other objectives.

In order to determine if an objective should be considered fundamental or means, Kenney
proposed the question “why is this objective important in the decision context?”. If the
answer is “because it is one of the essential reasons for interest in the situation” then the
objective should be considered fundamental. On the other side, if the answer resembles
“because of its implications for achieving some other objective”, it is a means objective [11].

When the first version of the objectives list is concluded, revisions should be made in
order to simplify – by aggregating redundant objectives – and reclassify the list – by applying
the question above. There is no definition as to when this revision cycle should end. In
summary, as soon as all important objectives are listed and classified, and the revisions no
longer change the list, this part of the process is done.

3.3 Construction of Alternatives

The final stage concludes the process by creating alternatives while also identifying opportun-
ities. The alternatives represent the courses of action to be taken and need to directly relate
to the previously listed objectives (usually means objectives, but not exclusively). The most
obvious alternatives usually come from previous experiences and commonly are the first ones
to be thought of. Once these have been considered, deep thought about the problem should
be carried on, in order to pursue hidden and more unexpected alternatives, always keeping
in mind the values defined as per the Subsection 3.1.

Since each alternative should be related to at least one objective, the most straightforward
way to undertake this stage is to list the objectives and propose one alternative for each.
Once all objectives are evaluated, the construction stage restarts considering two objectives
at a time, then three, and so on until all objectives are grouped together to create one
alternative. This final state may not be reachable depending on the problem being tackled,
but the construction stage should go as far as possible in this direction. Once all alternatives
are listed, a review process should try to eliminate redundancies, which usually occurs with
the first entries of the list.

Opportunities arise when trying to create alternatives. In some situations, an alternative
presents some kind of limitation or necessity that must be fulfilled. Instead of considering it
a failed attempt, one should identify these obstacles as opportunities to be further explored,
possibly starting entirely new decision making processes.

4 Application of Value-Focused Thinking

The application of Value-Focused Thinking into the development of the survey was based on
the fact that, for all intended purposes, deciding which questions to ask and how to ask them
is a decision making situation. The choice of VFT among other methods was also motivated
by its lean and straighforward mechanism that generates highly focused outcomes, and by
previous positive experiences using it on similar projects.

The process of constructing the survey through VFT followed the standard course of
action for the method: definition of the main values and context, gathering of the objectives,
and construction of the alternatives2.

2 A read-only copy of the VFT document may be found in the following address: https://bit.ly/3LrVV2D.

ICPEC 2022

https://bit.ly/3LrVV2D

1:6 Value-Focused Investigation into Programming Languages Affinity

4.1 Values and Context
The initial part of the VFT method is essential for focusing the rest of the process (as
previously mentioned in Subsection 3.1) and it is usually a relatively straightforward part.
In this case, though, the method was not being applied to a conventional situation – business
related decision making, such as which parts to buy, who to buy them from or which bonds
to sell – but to aid in the construction of a research survey. This peculiarity posed an
interesting view on the whole process, since the decision being made did not apply directly
to the research conducted through the survey, but to the survey itself. Being a means to
an end – finding out which characteristics are related to programming language affinity –
the survey is still part of the research as a whole, but the VFT was applied specifically to
support the construction of the survey and its values represented that intent.

The chosen values were:
1. High comprehensability;
2. Focus on the main topics being researched;
3. Maximum coverage of different personal profiles;
4. Easy publishing and completion;
5. Gathering of valid and trustworthy answers.

The list of values clearly states the focus of the survey: to be efficient (values 1, 3 and 4)
and reliable (values 2 and 5). Obvious as it might seem, it is crucial to list – and later abide
to – these values. When thinking only on the objectives, as an example, one could easily lose
focus and plan too many questions. By clearly stating the values, this unintentional mistake
would be immediately identified violating “Easy [...] completion” and properly fixed.

The following step in this part was to list the perfect, average and terrible scenarios
that could happen, to serve as guidelines. The perfect scenario pointed to a totally efficient
questionnaire, with as many answers as possible, from multiple and varied sources, leading to
a clear and encompassing conclusion. The average scenario presented high efficiency to the
questionnaire with many answers from many sources, leading to an important and relevant
conclusion. The terrible scenario represented an ineficient questionnaire with almost no
answers, leading to no conclusion at all.

The final step for the contextualization listed previous experiences in similar endeavours
that influenced the results of previous surveys and could possibly happen again. The main
occurrences were:

Low quantity of answers, which diminished the representativeness of the conclusions;
Discarded answers that pointed to some kind of misunderstanding of what was asked;
Unexpected and interesting results from open ended questions;
Direct questions that seemed to be answered randomly (in contrast with other answers).

These experiences, being good or bad, were important warnings of caution to take into
consideration for the next part of the VFT method: gathering and listing the objectives.

4.2 Objectives
Based on the values and the context previously stablished, the objectives were listed and
categorized. The strategic objective, as explained in Subsection 3.2, represented the main
goal of the survey: to construct and conduct a capable, valid and trustworthy survey to
evaluate which factors influence the affinity stablished between programmers – of any level or
context – to computer programming languages.

While the strategic objective was an abstract take on the main values, the following
fundamental objectives were a further step into its concretization:

A. Costa Neto, C. Araújo, M. J. V. Pereira, and P. R. Henriques 1:7

1. To select as wide a range of respondents as possible, including those without prior
knowledge of computer programming;

2. To ask questions that allow finding correlations between respondents and their favorite
languages;

3. To faithfully characterize both personal aspects of the respondents and technical aspects
of the programming languages.

The next step was to stablish the means objectives. They were constructed to support
the fundamental objectives, creating the basic ideas of a real survey. Albeit being the most
practical step of the gathering of objectives, these should not include implementation details,
as these would follow in the construction of alternatives. The mean objectives listed practical
needs (an on-line survey system that allows the construction of the intended questionnaire),
publishing strategies (educational institutions, social media and professional hubs), which
kind of information to gather (personal data, educational history, which languages are known
etc.) and interesting results to be obtained (influence of peers on the choices of favorite
languages, favorite technical aspects of the programming languages, popularity etc.). These
objectives were then directly mapped to an implementation proposal of the survey in the
last part of the VFT method: the construction of alternatives.

4.3 Alternatives
The last part of the VFT method created the alternatives for the undergoing decision-making
process. In a general sense, the alternatives presented different possibilities to achieve the
intended goals. In this specific case, alternatives stablished different ways of constructing the
questionnaire, always keeping objectives and values in mind3.

Each element of the survey definition – which on-line survey tool to use, possible publishing
methods, valid and robust user agreement, questions, and desired results – was directly
related to the means objectives gathered in the previous part. This meant that the whole
survey construction was indirectly guided by all of its values through its previsouly listed
objectives.

As an example, one of the means objectives specified that it would be important to
gather if the respondent has got a competitive or cooperative nature, in order to later verify
a possible correlation between this kind of personal characteristic and his or her favorite
languages. This objective resulted directly in the following question definition:

Subject: competitive or cooperative profile;
Alternatives:

1. Indirect observation by asking the number of participations in competitive or cooper-
ative activities;

2. Direct question of personal preference – competitive or cooperative.

As can be seen, the question itself was not written in this stage, only its specifications
were listed. This precaution was taken in order to avoid prematurely fixing the survey
before it could be reviewed as a whole. As for the alternatives, they presented themselves as
different ways of constructing the questions and which kind of answers would be allowed.
The resulting structure of the survey is described in Section 5 with all question definitions
that were proposed at this moment.

3 It is important to realize that the term alternatives should be understood as defined in the VFT method,
not necessarily options for answering a question. As an example, a compilation of available on-line
survey tools could be considered alternatives.

ICPEC 2022

1:8 Value-Focused Investigation into Programming Languages Affinity

During the definition of the questions, desired statistical results – listed in Subsection 5.4
– were also specified. These served as checkpoints for the questions themselves, revealing
possible “blind spots” in the survey through the absence of questions that would be necessary
to obtain certain results.

The final step in the creation of alternatives was to list the opportunities that have been
identified so far. In total, three opportunities were listed:
1. Since the range of desired results and questions is very wide, it would be possible to

create more than one survey, dividing and better focusing the research in specific areas,
such as personal factors, technical characteristics of the languages etc.

2. Available free survey tools seem to be incapable of constructing more complex surveys, so
it would be beneficial to create a new system;

3. Instead of using real languages to verify the influence of technical characteristics on
affinity, it would be better to create a pseudo-language flexible enough to be used in all
situations.

It is important to emphasize that these opportunities were not mandatory courses of
action, but presented different decision-making possibilities that emerged during the process
of the survey construction. They may not have been detected if the alternatives (the questions
of the survey, in this case) were the first elements to be thought of and, ultimately, this is
one of the main advantages of the Value-Focused Thinking method.

5 Structure of the Survey

After applying all the steps of the VFT method, the structure of the survey was completed
albeit not implemented. The implementation – i.e. to add the sections, questions and
commentary to an on-line tool for publication and participation – is a direct consequence of
the planning process, much like in computer programming, and should not be considered
a requirement for conclusion of the VFT method. Based on the constructed alternatives,
a general structure for the survey has been reached and it was divided into three sections:
personal data; background and projections in computer programming; affinity to different
programming language characteristics.

5.1 Personal Data
This first section of the survey deals with personal background and is composed of nine direct
questions:

1. Age;
2. Gender;
3. Country of residence;
4. Native language;
5. English language level according to the Common European Framework of Reference [5];
6. Formal education level, from “Uneducated” to “Doctorate or beyond”;
7. Learning style, with choices for both easiest and hardest to learn: “Mathematical and

numerical problems”, “Logic exercises”, “Memory based questions” and “Practical applic-
ations”;

8. Household income per capita;
9. Current occupation.

The answers to these questions will be correlated to the programming language affinity
choices in the third section of the survey (5.3).

A. Costa Neto, C. Araújo, M. J. V. Pereira, and P. R. Henriques 1:9

5.2 Background and Projections in Computer Programming
This section deals with previous experiences and future goals specifically about computer
programming. It is composed of seven questions:
1. Time spent studying computer programming, in years;
2. Time spent working at computer programming, in years;
3. Time spent teaching computer programming, in years;
4. Learning methodologies during studying computer programming;
5. Learning methodologies applied to teach computer programming;
6. Competitive or cooperative preference for group working, measured through number of

participations in activities of each kind;
7. List of effectively known programming languages, multiple choices allowed;
8. Which programming language first had contact with;
9. Intended position for future jobs in computer programming.

The answers to these questions in this section will help on drawing a picture of experience
with computer programming and its languages. The answers will be compared to choices
made in the third section of the survey, in order to procure possible correlations of affinity to
the respondents’ backgroung with computer programming – meaning that affinity is a result
of learning or working with a particular language – and personal foresight – meaning that
factors such as popularity and market influence are relevant to affinity.

5.3 Affinity to Different Programming Language Characteristics
The last section of the survey deals directly with affinity, collecting data about which
languages lead to affinity and why. It is composed of five questions:
1. Comparisons of source code snippets, written specifically to test common syntax and

semantic differences in current programming languages. This question was divided into
subquestions which are detailed below;

2. Affinity level to programming languages, measured from “No affinity at all” to “Favorite”;
3. Change in affinity to programming languages, which ones lost affinity, which ones gained

affinity thoughout the years and what was the perceived cause to the change;
4. Influence of peers in affinity, as a personal observation;
5. Main motivation for affinity to the favorite languages, also as a personal observation.

A list of programming languages has been selected to compose the questions 2 and 3
of this section. This list included both current and former popular languages, aiming also
at gathering as varied characteristics as possible, such as syntax, semantics, market share,
popularity, paradigm etc.

The snippets of source code shown in question 1 were written carefuly to contrast only
one syntactical or semantical characteristic at a time. This question is essential for obtaining
insight into which practical characteristics of the programming languages are influential to
affinity growth. Also, it represented the most practical and applied questioning of the survey.
The following characteristics are queried:

Variable declaration syntax;
String representation and basic operation;
Type inference and conversion;
Block delimitation;
Conditional structures;
Repetition structures;

ICPEC 2022

1:10 Value-Focused Investigation into Programming Languages Affinity

Function or method calling convention;
Presence and use of jumps (as in goto);
End-of-statement syntax;
General paradigm;
Default data structures;
Verbosity.

This list covers most technical characteristics of programming languages that might have
some effect on affinity. In order to avoid blurring the respondents’ answers by other personal
factors, the snippets were written in a neutral algorithmic language that was informally
defined4.

Answers in this section are paramount for any conclusions about affinity, since most of
them will be used as the counterpart to the correlation with answers in the previous sections.
In the end of the process, since this question would have too many subquestions, it was
decided to create another section of the survey dedicated to it.

5.4 Expected Statistical Results

Expected results form an important part of any survey construction. These results were
identified during the application of the VFT method:

Correlation between time spent formally studying, working and teaching computer
programming and the languages with most affinity;
Correlation between the most common technical characteristics of the languages and the
affinity level;
Preferred structural, syntatic and semantic programming languages characteristics;
Correlation of personal background and affinity;
Changes in favorite languages and the reasons for the new choice;
Languages that most frequently lost or gained affinity after a change;
Frequency at which the first learnt language presents high level of affinity;
Correlation between career prospection and affinity to the languages with higher market
share;
Correlation between learning style and language affinity;
Correlation between popularity and language affinity.

With this part done, the Value-Focused Thinking method successfuly helped the con-
struction of a Beta version for the desired survey, that aimed at gathering feedback for
improvements and validation. This version implemented the result of the VFT method
almost entirely without changes, with the exception of characteristics that proved to be
unbalanced in practice, such as the number of sections that raised from three to four in order
to better separate the types of questions. Finally, feedback questions were added to the end
of each section to gather opinions about the questionnaire per se. This proved to be of great
value for assessing the questionnaire’s main values and validate the process of Value-Focused
Thinking.

4 This decision was taken based on an opportunity, as explained in Subsection 4.3, and it might even be
relevant in subsequent studies.

A. Costa Neto, C. Araújo, M. J. V. Pereira, and P. R. Henriques 1:11

5.5 Feedback and Validation

The Beta version5 of the survey was applied to three different groups of students from
Universidade do Minho and Instituto Politécnico de Bragança, in order to test and validate
the current implementation. Feedback from the respondents pointed towards a few notes:

The question about household income were considered too intrusive by a few respondents;
Some respondents had trouble understanding a few english terms in the questions, which
in turn, made the survey harder to answer;
The grid of possible answers to the questions about syntactic and semantic characeristics
confused a few respondents. Some students initially considered that affinity choices were
mutually exclusive, allowing only one answer of either “I don’t like it”, “I like it”, or “I
prefer it” for each snippet of code. In actuality, each answer could be selected for more
than one snippet;
Although the feedback was essentially positive, both in comprehension and duration of
the survey, some notes stating that there were too many questions were collected. This
was one of the main concerns about the survey and its values.

With this feedback in mind, the final version of the survey was prepared and will be
published for open access in the near future. The changes that will be applied will not
be translated back to the Value-Focused Thinking document, since it will be considered
a snapshot of the planning process before the first round of feedback. If, otherwise, it is
intended to be a live document, changes to the survey should be transcribed back.

6 Conclusion

Strategies to support computer programming education are numerous but still face several and
interesting challenges. While many and diverse characteristics have been shown as influential
to the teaching-learning process, affinity to a programming language as an influential factor
is largely unexplored and might have a positive – or even negative – influence on the whole
process.

In order to further understand this topic, a new survey has been constructed, concentrating
its focus into realizing which characteristics (personal, technical, contextual etc.) influence
affinity between programmers of any level and programming languages. Being a complex and
in-depth approach to the continuation of this research, this survey was prepared in a formal
manner, using the Value-Focused Thinking method to guide the whole process. This method
lead to the definition of the survey’s elements based on core values and its derived objectives,
creating a highly focused Beta version. The final version of the new survey is now finished –
taking into account feedback already gathered – and it is currently open for answers6. That
version of the survey will be disseminated, in the near future, as much as possible to a broad
community of students, teachers and practitioners of programming in order to collect a huge
amount of answers; then the collected data will be statistically analyzed and the results will
be published.

5 A copy may be found in the following address: https://bit.ly/3DDJFtv.
6 The survey may be found and fulfilled at the following address: https://bit.ly/3MdDgIH.

ICPEC 2022

https://bit.ly/3DDJFtv
https://bit.ly/3MdDgIH

1:12 Value-Focused Investigation into Programming Languages Affinity

References
1 M. V. P. Almeida, L. M. Alves, M. J. V. Pereira, and G. A. R. Barbosa. EasyCoding -

Methodology to Support Programming Learning. In Ricardo Queirós, Filipe Portela, Mário
Pinto, and Alberto Simões, editors, First International Computer Programming Education
Conference (ICPEC 2020), volume 81 of OpenAccess Series in Informatics (OASIcs), pages
1:1–1:8, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:
10.4230/OASIcs.ICPEC.2020.1.

2 M.V.P. Almeida. Easycoding: Methodology to support programming learning. Master’s thesis,
Instituto Politécnico de Bragança, 2020.

3 A.G. Applin. Second language acquisition and cs1. SIGCSE Bull., 33(1):174–178, February
2001. doi:10.1145/366413.364579.

4 D.R. Barbosa. Adequacy Analysis of Learning Resources in Adult Education. Master’s thesis,
Minho University, Braga, Portugal, October 2021.

5 Council of Europe. Common European Framework of Reference for Languages: Learning,
teaching, assessment – Companion volume. Council of Europe Publishing, Strasbourg, France,
2020. URL: https://www.coe.int/lang-cefr.

6 R.R. Fenichel, J. Weizenbaum, and J.C. Yochelson. A program to teach programming.
Communications of the ACM, 13(3):141–146, March 1970. doi:10.1145/362052.362053.

7 J. Figueiredo and F.J. García-Peñalvo. Building skills in introductory programming. In
Proceedings of the Sixth International Conference on Technological Ecosystems for Enhancing
Multiculturality, TEEM’18, pages 46–50, New York, NY, USA, 2018. Association for Computing
Machinery. doi:10.1145/3284179.3284190.

8 P. Freire. Pedagogia da Autonomia: Saberes necessários à prática educativa. Paz e Terra, 2011.
9 A. Gomes and A.J. Mendes. Learning to program: difficulties and solutions. In Proceedings of

the 2007 ICEE International Conference on Engineering and Education, ICEE ’07. International
Network on Engineering Education and Research, 2007.

10 P.J. Guo. Non-native english speakers learning computer programming: Barriers, desires,
and design opportunities. In Proceedings of the 2018 CHI Conference on Human Factors
in Computing Systems, CHI ’18, pages 1–14, New York, NY, USA, 2018. Association for
Computing Machinery.

11 Ralph L. Keeney. Value-focused thinking: Identifying decision opportunities and creating
alternatives. European Journal of Operational Research, 92(3):537–549, 1996. doi:10.1016/
0377-2217(96)00004-5.

12 J. Piaget, M. Piercy, and D.E. Berlyne. The Psychology of Intelligence. Routledge classics.
Routledge, 2001.

13 Redacted. Redacted for blind review purposes. In Redacted for blind review purposes, Redacted.
14 S.A. Robertson and M.P. Lee. The application of second natural language acquisition pedagogy

to the teaching of programming languages—a research agenda. SIGCSE Bulletin, 27(4):9–12,
December 1995. doi:10.1145/216511.216517.

15 Stack Overflow. Stack overflow developer survey, 2021. URL: https://insights.
stackoverflow.com/survey/2021.

16 StatisticsTimes.com. Top computer languages, 2020. URL: http://statisticstimes.com/
tech/top-computer-languages.php.

17 L.S. Vygotsky, E. Hanfmann, G. Vakar, and A. Kozulin. Thought and Language. The MIT
Press. MIT Press, 2012.

18 B.C. Wilson and S. Shrock. Contributing to success in an introductory computer science
course: A study of twelve factors. In Proceedings of the Thirty-Second SIGCSE Technical
Symposium on Computer Science Education, SIGCSE ’01, pages 184–188, New York, NY,
USA, 2001. Association for Computing Machinery. doi:10.1145/364447.364581.

https://doi.org/10.4230/OASIcs.ICPEC.2020.1
https://doi.org/10.4230/OASIcs.ICPEC.2020.1
https://doi.org/10.1145/366413.364579
https://www.coe.int/lang-cefr
https://doi.org/10.1145/362052.362053
https://doi.org/10.1145/3284179.3284190
https://doi.org/10.1016/0377-2217(96)00004-5
https://doi.org/10.1016/0377-2217(96)00004-5
https://doi.org/10.1145/216511.216517
https://insights.stackoverflow.com/survey/2021
https://insights.stackoverflow.com/survey/2021
http://statisticstimes.com/tech/top-computer-languages.php
http://statisticstimes.com/tech/top-computer-languages.php
https://doi.org/10.1145/364447.364581

Sprinter: A Didactic Linter for Structured
Programming
Francisco Alfredo #

Visor.ai Portugal, S.A., Lisbon, Portugal

André L. Santos #

ISTAR-IUL, University Institute of Lisbon, Portugal

Nuno Garrido #

ISCTE-IUL, IT-IUL, University Institute of Lisbon, Portugal

Abstract
Code linters are tools for detecting improper uses of programming constructs and violations of style
issues. Despite that professional linters are available for numerous languages, they are not targeted
to introductory programming, given their prescriptive nature that does not take into consideration a
didactic viewpoint of learning programming fundamentals. We present Sprinter, a didactic code
linter for structured programming supporting Java whose novelty aspects are twofold: (a) providing
formative feedback on code with comprehensive explanatory messages (rather then prescriptive);
(b) capability of detecting some control-flow issues to a deeper extent than professional linters. We
review Sprinter features against popular tools, namely IntelliJ IDEA and Sonarlint.

2012 ACM Subject Classification Social and professional topics → Computer science education;
Applied computing → Interactive learning environments

Keywords and phrases structured programming, code quality, code linter

Digital Object Identifier 10.4230/OASIcs.ICPEC.2022.2

Funding This work was partially supported by Fundação para a Ciência e a Tecnologia, I.P. (FCT)
[ISTAR Projects: UIDB/04466/2020 and UIDP/04466/2020]. We thank the anonymous reviewers
for their valuable feedback.

1 Introduction

Code quality has not been widely researched by the programming education community,
namely with respect to tooling. Recent studies have identified that quality issues have a
significant presence in the code of students [9]. Given the importance of code quality in
the software industry, we believe that it is important to bring up the topic early on in the
curricula.

From teaching experience, we frequently observe that code quality issues in student code
are in part due to their fragile skills with respect to programming constructs. Ruvo et. al.
[5] referred to such issues as semantic style indicators, and discovered that these are found in
the code of students throughout the degree curriculum.

The fact that students develop implementations that work, does not necessarily imply
that they fully understand the underlying concepts [8, 14]. Certain aspects of non-optimal
student code may have resulted from trial-and-error attempts, combined with unsatisfactory
mastery of programming constructs. We speculate that some code quality issues may relate
to misconceptions [13], but that investigation is out of the scope of this paper.

In this paper we present Sprinter, a didactic code linter that comprehensively explains
code quality issues in terms of what is expressed in the user program, evidencing the problem,
rather than the fix (see Figure 1). The perceptions of code quality are not consensual among

© Francisco Alfredo, André L. Santos, and Nuno Garrido;
licensed under Creative Commons License CC-BY 4.0

Third International Computer Programming Education Conference (ICPEC 2022).
Editors: Alberto Simões and João Carlos Silva; Article No. 2; pp. 2:1–2:8

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:francisco.miguel.alfredo@gmail.com
mailto:andre.santos@iscte-iul.pt
https://orcid.org/0000-0002-8247-7413
mailto:nuno.garrido@iscte-iul.pt
https://orcid.org/0000-0001-7404-6923
https://doi.org/10.4230/OASIcs.ICPEC.2022.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

2:2 Sprinter: A Didactic Linter for Structured Programming

Figure 1 Sprinter: student code is analized and annotated with a comprehensive explanation of
an encountered issue.

Figure 2 Prescriptive warnings on a code quality issues given by IntelliJ IDEA and Sonarlint.

educators, students, and developers [3]. We focus on quality issues that stem from lack of
mastery of elementary programming constructs, as opposed to purely stylistic issues, such as
naming and spacing conventions.

Software quality is recommended as a learning goal of Software Engineering curricula [12].
Therefore, didactic tools that raise awareness to code quality issues are an advantage towards
this aim. In our contribution we address quality issues within the scope of optimal usage
of structured programming constructs, which fundamentally involve sequence, branching,
and looping. We address characteristics of programs that in isolation or simultaneously: (a)
lead to useless computations, (b) exhibit redundancy in their instructions (duplication), or
(c) are unnecessarily verbose. We aim at providing code quality feedback targeting novice
programmers, differing from professional linters in terms of message format and improvements
in issue detection.

Sprinter is a proof of concept for Java. However, the issues are not Java-specific, and our
approach is applicable to languages that have similar structured programming constructs.
So far, we have developed 14 detectors for structured programming issues, mostly relying on
control-flow analysis. In addition to presenting the issues centered on the problem rather
than the fix, our tool detects a few issues that some professional linters are not able to
detect. A tool such as Sprinter could be useful in programming courses, given that it can
raise awareness of knowledge gaps and deliver hints for students to improve their skills.

2 Related work

Professional code linters may be used in teaching, as they typically provide plugins for
widely-used IDEs (e.g., Sonarlint1) or are integrated in the IDEs themselves (e.g., IntelliJ2).
These industrial linters have a prescriptive nature in their interaction, since they simply tell
what to do to fix an issue, typically with an accompanying quick fix option for performing the

1 https://www.sonarlint.org
2 https://www.jetbrains.com/idea

https://www.sonarlint.org
https://www.jetbrains.com/idea

F. Alfredo, A. L. Santos, and N. Garrido 2:3

operation automatically. For didactic purposes, we believe that a tool should explain why
some aspect of the program is not as good as it could be, elucidating the user as much as
possible, while not providing a “blind fix” that can be applied without understanding. Our
goal is that students can understand an issue, and ideally, fix it autonomously without the
aid of automatic features. Otherwise, one may fix without understanding, which we argue is
not ideal for the learning process.

The code linter concept has been applied to early stages of programming learning.
LitterBox [6] is a linter for Scratch programs that is capable of providing hints to users based
on a catalog of patterns, which are used to analyze the abstract syntax tree. One of the main
motivations for this approach is aligned with ours. The fact that learners produce working
code with correct outputs does not imply that they are using programming constructs in the
best way and have no misconceptions regarding their application.

Keuning et al. [9] have analyzed a large amount of Java code from the BlackBox dataset [4],
finding that quality issues have a significant presence in student code. Further, they observed
that some quality issues tend to remain as a code file evolves. The same authors have
conducted a study with programming teachers [10] in order to investigate the type of quality
feedback they would provide to students. They observed that teacher feedback consists of
aspects pertaining to reducing algorithmic complexity that is not covered by professional
tools, such as simplifications of if-else statements. We address several of those issues in
Sprinter.

Keuning et al. [11] also investigated if students were able to address quality issues using
a refactoring tutor, where instructors develop exercises that start with working code with
quality issues, and further provide hints for students to fix, while checking progress when
correct steps are taken. Sprinter is similar to such a tutor, but it supports detection of
quality issues in arbitrary student code. Hence, students become aware of quality issues by
means of their own code, rather than through instructor-designed cases.

FrenchPress [2] is a diagnosing system for Java programs that focuses on issues related to
object-orientation and use of variables. Sprinter has only a small overlap with FrenchPress
with respect to boolean expressions. Our focus is on structured programming constructs,
and nearly to practically all the issues we detect are not handled by FrenchPress. Hence, the
diagnoses of both tools could be combined into a broader tool.

The CompareCFG tool [7] provides students with a control-flow graph (CFG) for their
submitted solution, side by side with a CFG of another submitted solution that is less
complex. The goal is that students can improve their code autonomously by comparing the
solutions and reading additional actionable feedback provided by the tool. This approach is
similar to ours, as we also make use of a CFG to detect issues and derive actionable feedback,
but we do not present it to students.

Hyperstyle [1] is a tool for automated evaluation of code quality that relies on reusing the
functionality provided by professional linters. The messages that explain the issues are not
those provided by linters, but rather custom designed by the tool. However, no details are
available so far regarding how issues are presented. Hyperstyle supports several languages,
but with respect to Java, it relies on the linters Checkstyle3 and PMD4. The latter address
mostly syntactic stylistic issues, whereas issues related to control-flow are not detected. In
our work we focus on issues related control-flow and structured programming constructs.

3 https://checkstyle.sourceforge.io
4 https://pmd.github.io

ICPEC 2022

https://checkstyle.sourceforge.io
https://pmd.github.io

2:4 Sprinter: A Didactic Linter for Structured Programming

boolean contains (int [] a,
int n) {

int i = 0;
int c = 0;
while(i < a. length) {

i f (a[i] == n) {
c = c + 1;
i = i + 1;

}
else {

c = c;
i = i + 1;

}
}
i f (c != 0)

return true;
else

return false ;
}

(a) Code example with quality is-
sues.

i = 0

c = 0

i < a.length

return true

c != 0

return false

a[i] == n

c = c + 1

i = i + 1

c = c

i = i + 1

entry

exit

(b) Control-Flow Graph of (a).

boolean contains (int [] a,
int n) {

int i = 0;
int c = 0;
while(i < a. length) {

i f (a[i] == n)
c = c + 1;

i = i + 1;
}
return c != 0;

}

(c) Version of (a) with improved
quality.

(d) Presentation of the quality issues in Sprinter (when c=c was already addressed).

Figure 3 Quality issue detection based on control-flow analysis.

3 Control-flow analysis

With the exception of the more trivial cases, most of the issues detected by Sprinter rely
on control-flow analysis. We derive a CFG for each procedure (i.e., method, using Java’s
terminology) of the code under analysis. A CFG models a procedure with an entry and exit
point, statements (nodes), and transitions (edges). Each node is either a statement, or a
branching point that determines the following statement according to the evaluation of an
expression (control structures). The detection of code issues is performed by querying the
CFG for “anomalies”.

Figure 3a presents a code example which, despite its contrived appearance, combines
several aspects reported in previous studies [5, 9] that any programming education teacher
with some experience has seen. For illustration purposes, we combine three code issues in a
single example. Notice that in addition to the code issues, algorithmic-wise, the solution
is also not optimal (the array iteration does not have to be complete, and no counter is
strictly necessary). However, our approach is not concerned with algorithmic strategies, but
rather in how those are expressed. Figure 3b presents a CFG that models the code of Figure
3a. The gray instructions are “superfluous” and could be removed through the process of
reaching the equivalent solution presented in Figure 3c.

F. Alfredo, A. L. Santos, and N. Garrido 2:5

The most trivial issue in the code is the self assignment c=c. Given its redundancy, it
could be eliminated without any elaborate analysis. Further, by analyzing branches to check
that all starting/ending have the same statements (i=i+1), we detect that they could be
factored out from their branch. As so, the else branch becomes empty, and in turn, may
be removed as well. Finally, the last if is an identity map of the expression c!=0 to the
return expression, and hence, it may be simplified to return c!=0.

Another aspect that we rely on for detecting code issues is the nature of procedures,
namely if they are either pure functions without side-effects, or procedures that modify
state. We determine this through static analysis. When there are no references passed to
a procedure, or when all the referenced arrays/objects are not modified nor passed to a
procedure, we classify it as pure function. We also distinguish between constant-time and
non-constant-time function, by analyzing the function body.

4 Sprinter

We developed the Sprinterprototype supporting Java. Although it is an object-oriented
language, in this work we are only focusing on structured programming constructs, which
are available across many programming languages with equivalent or similar semantics (e.g.,
C, Python, Matlab, R). The tool is currently standalone, but it would certainly make sense
to integrate it in an IDE in the future (e.g., Eclipse, IntelliJ, VS Code). We also aim at

Sprinter takes as input Java files, which are checked against issue detectors. Each
encountered issue is presented to the user in isolation, using annotations in the code (see
Figure 3d). We highlight the parts of the code that are involved in the issue and we may
attach a small warning sentence about the problem (see Figure 1). In a separate panel, we
provide an accompanying explanation of the issue and related concerns. The text may hold
links to the code to aid the user in relating the explanation to the code. We do not provide
any quick fix options to solve the issues automatically.

So far, we managed to successfully implement detectors for 14 issues, of which we present
the ten-most significant in Table 1. We have omitted the more trivial cases such as self-
assigning a variable or “tautology if-guards” consisting of the literal true. Each case is
illustrated with a sketch-example, and we indicate if IntelliJ (version 2022.1.1) and Sonarlint
(version 6.4.3) are capable of fully or partially detecting the issue. The former can be
considered to be one of the most advanced IDEs for Java, whereas the the latter is a leading
professional linter. Notice that in order to have the coverage of issue detection of Sprinter one
has to use a combination of two widely used professional linters. Using multiple (professional)
tools in educational settings creates undesired overhead.

In addition to the form in which code issues are presented, Sprinter detects some issues
that are not flagged by some industry-strength tools. Notice that there are issues not (fully)
detected by either IntelliJ or Sonarlint. We are able to achieve this in part because we reduce
the scope of code analysis, currently by not delving into Java’s library classes. That is, the
classification of pure functions is not performed in these cases, as required by some detectors.

The issue of Magic Numbers is prone to some subjectivity. We compromise by flagging
cases when the same literal is found twice or more within the same procedure (excluding
literals 0, 1, and 2). However, the solution is not perfect, and achieving one is not trivial. A
same number may refer to different unrelated things, and that is hard to determine with
precision. On the other hand, the often-used 0, 1, and 2, may also be used in situations
where a constant would make sense.

ICPEC 2022

2:6 Sprinter: A Didactic Linter for Structured Programming

Table 1 Code issues detected by Sprinter with illustrative examples. We mark the issues for
which there is an equivalent detection available in IntelliJ IDEA (IJ) and Sonarlint (SL). Full support:
 ; partial support: G#; a Does not take into account semantically equivalent duplication (see code
example); b Empty if is signaled, but else is not take into consideration in the explanations.

Name Description Example (Java) IJ SL

Useless As-
signment

Assignment of a value that is
not used.

int [] array = new int [100];
array = newRandomArray (100);

Useless
Call

A call to a function that has
no side-effects without mak-
ing use of the returned value.

copy(array);

Useless Re-
turn

Return at the end of
void methods.

void doSomething () {
...
return;

}

Identity
Return

Mapping the evaluation to
separate return statements.

i f (bool) return true;
else return f a l s e ;

Redundant
Equality

Comparing a boolean expres-
sion to a boolean literal.

i f (boolExpression == true) {
...

}

Redundant
Call

A call to a non-constant pure
function with the same argu-
ments.

int m = max(list);
list. remove (max(list));

Redundant
Guard

A guard that is checking a
condition that is known to
be true (given the enclosing
control structure).

while(i > 0) {
i f (i > 0) { ... }

}

Duplication
in
Branches

Common behavior in altern-
ative branches that could be
factored out.

i f (v[i] > 0) {
c++;
i++;

} else {
i+=1;

}

G#a

Counter
Guard
Branching

Empty block in if with de-
sired behavior in else.

i f (guard) {

} else {
// do something

}

G#b G#b

Magic
Number

Numeric literal that is used
without an explanation.

i f (c > 255)
c = 255;

F. Alfredo, A. L. Santos, and N. Garrido 2:7

5 Conclusions

We presented a novel form of explaining code quality issues related to structured programming
constructs embodied in the Sprinter tool. Some of these issues are not, or are only partially
addressed by professional tools. As future work, we plan to address other issues, such as
code duplication at the expression level, as well as other issues related to branching.

A tool such as Sprinter, if properly integrated in the programming practice workflow,
could be beneficial to raise awareness to code quality, while helping students to improve their
code autonomously. Tool support becomes even more relevant in the context of large-scale
course where human tutoring is scarce or not even available. As future work, we plan to
carry out a user study with programming beginners to investigate how they can cope with
the issues raised by Sprinter.

References
1 Anastasiia Birillo, Ilya Vlasov, Artyom Burylov, Vitalii Selishchev, Artyom Goncharov, Elena

Tikhomirova, Nikolay Vyahhi, and Timofey Bryksin. Hyperstyle: A tool for assessing the code
quality of solutions to programming assignments. In Proceedings of the 53rd ACM Technical
Symposium on Computer Science Education V. 1, SIGCSE 2022, pages 307–313, New York,
NY, USA, 2022. Association for Computing Machinery. doi:10.1145/3478431.3499294.

2 Hannah Blau and J. Eliot B. Moss. Frenchpress gives students automated feedback on java
program flaws. In Proceedings of the 2015 ACM Conference on Innovation and Technology in
Computer Science Education, ITiCSE ’15, pages 15–20, New York, NY, USA, 2015. Association
for Computing Machinery. doi:10.1145/2729094.2742622.

3 Jürgen Börstler, Harald Störrle, Daniel Toll, Jelle van Assema, Rodrigo Duran, Sara Hooshangi,
Johan Jeuring, Hieke Keuning, Carsten Kleiner, and Bonnie MacKellar. “I know it when I see
it” perceptions of code quality: ITiCSE ’17 working group report. In Proceedings of the 2017
ITiCSE Conference on Working Group Reports, ITiCSE-WGR ’17, pages 70–85, New York,
NY, USA, 2018. Association for Computing Machinery. doi:10.1145/3174781.3174785.

4 Neil Christopher Charles Brown, Michael Kölling, Davin McCall, and Ian Utting. Blackbox:
A large scale repository of novice programmers’ activity. In Proceedings of the 45th ACM
Technical Symposium on Computer Science Education, SIGCSE ’14, pages 223–228, New York,
NY, USA, 2014. Association for Computing Machinery. doi:10.1145/2538862.2538924.

5 Giuseppe De Ruvo, Ewan Tempero, Andrew Luxton-Reilly, Gerard B. Rowe, and Nasser
Giacaman. Understanding semantic style by analysing student code. In Proceedings of the
20th Australasian Computing Education Conference, ACE ’18, pages 73–82, New York, NY,
USA, 2018. Association for Computing Machinery. doi:10.1145/3160489.3160500.

6 Gordon Fraser, Ute Heuer, Nina Körber, Florian Obermüller, and Ewald Wasmeier. Litterbox:
A linter for scratch programs. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering: Software Engineering Education and Training (ICSE-SEET), pages 183–188,
2021. doi:10.1109/ICSE-SEET52601.2021.00028.

7 Lucy Jiang, Robert Rewcastle, Paul Denny, and Ewan Tempero. Comparecfg: Providing visual
feedback on code quality using control flow graphs. In Proceedings of the 2020 ACM Conference
on Innovation and Technology in Computer Science Education, ITiCSE ’20, pages 493–499, New
York, NY, USA, 2020. Association for Computing Machinery. doi:10.1145/3341525.3387362.

8 Cazembe Kennedy and Eileen T. Kraemer. Qualitative observations of student reasoning:
Coding in the wild. In Proceedings of the 2019 ACM Conference on Innovation and Technology
in Computer Science Education, ITiCSE ’19, pages 224–230, New York, NY, USA, 2019.
Association for Computing Machinery. doi:10.1145/3304221.3319751.

9 Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. Code quality issues in student programs.
In Proceedings of the 2017 ACM Conference on Innovation and Technology in Computer
Science Education, ITiCSE ’17, pages 110–115, New York, NY, USA, 2017. Association for
Computing Machinery. doi:10.1145/3059009.3059061.

ICPEC 2022

https://doi.org/10.1145/3478431.3499294
https://doi.org/10.1145/2729094.2742622
https://doi.org/10.1145/3174781.3174785
https://doi.org/10.1145/2538862.2538924
https://doi.org/10.1145/3160489.3160500
https://doi.org/10.1109/ICSE-SEET52601.2021.00028
https://doi.org/10.1145/3341525.3387362
https://doi.org/10.1145/3304221.3319751
https://doi.org/10.1145/3059009.3059061

2:8 Sprinter: A Didactic Linter for Structured Programming

10 Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. How teachers would help students to
improve their code. In Proceedings of the 2019 ACM Conference on Innovation and Technology
in Computer Science Education, ITiCSE ’19, pages 119–125, New York, NY, USA, 2019.
Association for Computing Machinery. doi:10.1145/3304221.3319780.

11 Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. Student refactoring behaviour in a
programming tutor. In Koli Calling ’20: Proceedings of the 20th Koli Calling International
Conference on Computing Education Research, Koli Calling ’20, New York, NY, USA, 2020.
Association for Computing Machinery. doi:10.1145/3428029.3428043.

12 T. C. Lethbridge, R. J. Leblanc Jr, A. E. Kelley Sobel, T. B. Hilburn, and J. L. Diaz-Herrera.
Se2004: Recommendations for undergraduate software engineering curricula. IEEE Software,
23(6):19–25, 2006. doi:10.1109/MS.2006.171.

13 Yizhou Qian and James Lehman. Students’ misconceptions and other difficulties in introductory
programming: A literature review. ACM Trans. Comput. Educ., 18(1), October 2017. doi:
10.1145/3077618.

14 Jean Salac and Diana Franklin. If they build it, will they understand it? exploring the
relationship between student code and performance. In Proceedings of the 2020 ACM Conference
on Innovation and Technology in Computer Science Education, ITiCSE ’20, pages 473–479, New
York, NY, USA, 2020. Association for Computing Machinery. doi:10.1145/3341525.3387379.

https://doi.org/10.1145/3304221.3319780
https://doi.org/10.1145/3428029.3428043
https://doi.org/10.1109/MS.2006.171
https://doi.org/10.1145/3077618
https://doi.org/10.1145/3077618
https://doi.org/10.1145/3341525.3387379

Understanding the Usage of IT-Security Games in
the Industry and Its Mapping to Job Profiles
Tilman Dewes !

Siemens AG, München, Germany

Tiago Gasiba !

Siemens AG, München, Germany

Thomas Schreck !

Hochschule für angewandte Wissenschaften München, Germany

Abstract
Due to the increasing dependency on IT systems in both the private and industrial sectors, IT
security training is becoming increasingly important. One way to teach IT security topics is through
serious games, which besides being fun to play, impart knowledge on certain topics. As these games
are more and more used in the industrial environment, this paper aims to develop a mapping between
industrial roles and the games to show which game fits how well for the training of an industrial
role. In doing so, an evaluation of the games was established that allows for comparability across
the different roles. Thus, the research question which serious games is suitable for which industrial
role could be addressed. Further results of the work are an ontology, which contains the essential
characteristics of serious games for this work, a collection of industrial roles with their required
IT-skills and a collection of serious games with an evaluation of the level of support of IT-skills.

2012 ACM Subject Classification Applied computing → Learning management systems; Security
and privacy → Software security engineering; Applied computing → Distance learning; Applied
computing → E-learning

Keywords and phrases Serious Games, IT-Security, Industrial Roles, Mapping, Ontology

Digital Object Identifier 10.4230/OASIcs.ICPEC.2022.3

1 Introduction

Obtaining practical IT security skills takes much effort. To acquire the required level of skills,
it often takes “a long journey of discovery, trial and error, and optimization seeking through
a broad range of programming activities that learners must perform themselves.“ [12]. In
order to ensure secure systems in today’s world, where the dependency of companies on IT
systems continues to grow, programmers must be adequately trained. Especially because
in the last few years, there has been an increase in IT attacks of all kinds, as the current
version of the report on the state of IT security in Germany [2] shows.

One possibility to impart knowledge in the area of IT security offers Serious Games [4].
These games with a pedagogical learning background usually impart knowledge in a particular
topic through gameplay. As the work of Lui et al. [10] and Švábensk et al. [15] shows,
game-based learning offers an effective way of teaching security-related scenarios. However,
the field of Serious Games in the IT security is diverse and ranges from the conventional
board and card games to Capture the Flag- (CTF) and other Cyber Security Challenges
(CSC) [6].

Mainly, these games are produced by many developers, which is why a general disorder of
games prevails, also with variations in terms of quality as shown in the work of Caserman et
al. [3]. Although the work of Katsantonis et al. [9] shows that frameworks for Serious Games
in the field of IT-Security are available, these are only aimed at the development of the
games, not at publication or description. Consequently, the games are scattered distributed

© Tilman Dewes, Tiago Gasiba, and Thomas Schreck;
licensed under Creative Commons License CC-BY 4.0

Third International Computer Programming Education Conference (ICPEC 2022).
Editors: Alberto Simões and João Carlos Silva; Article No. 3; pp. 3:1–3:12

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tilman.dewes@siemens.com
https://orcid.org/0000-0002-8458-8221
mailto:tiago.gasiba@siemens.com
https://orcid.org/0000-0003-1462-6701
mailto:thomas.schreck@hm.edu
https://orcid.org/0000-0002-8960-6986
https://doi.org/10.4230/OASIcs.ICPEC.2022.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

3:2 Usage of IT-Security Games in the Industry and Its Mapping to Job Profiles

throughout the world wide web, often with inadequate descriptions and unclear educational
goals. As a result, it is often unclear which game is suitable for which situation, especially in
an industrial environment. In particular, it is unclear which games can be used to promote
the know-how needed for specific industrial roles. Considering all these circumstances, it
becomes clear that there is a need for a clearer structure in this area, especially since the
games are often not focused on the industry and its requirements (Gasiba et al. [5]).

The contribution of this work is to present a framework for the selection of Serious Games
for people in industrial environments. It highlights how well a game is suitable for the
training of an industrial role compared to other games. Therefore, a mapping process for
existing Serious Games to industrial roles is presented in this work. The methodology of
this work is adaptable to non-industrial educational activities and students and pupils. By
contributing a proposal on the selection of games when using them for education, we believe
that this work contributes to a better structure and clearer arrangement of the topic of
Serious Games.

The next section provides an overview of relevant related work on this topic. Section 3
describes the methodology that was used to achieve the goals of this work. Section 4 then
states the achieved results of the approach. These are then discussed in section 5, put into
context, and consequences drawn from them. In the 6th section, all points of the work are
briefly summarized, and an outline of further work is given.

2 Related Work

In order to gather the necessary information, the topic of serious games, in general, was
considered first. The paper of Stephen Tang and Martin Hanneghan [14] served as a first
introduction to the topic of serious games. It describes a broad ontology that describes
serious games in detail with all their characteristics. However, the level of detail is relatively
high, and therefore much information is superfluous for the goal of this work. Furthermore,
the ontology presented by the authors does not aim at mapping games to roles. Nevertheless,
their work serves as a basis for building our ontology. This work was considered relevant,
although it is older than 2016, since the information of the paper is up to date and no
comparable more recent work could be found regarding ontology in the field of serious games.

In order to determine relevant industrial roles, the company internally published job
descriptions were considered. These roles were derived from the Product Solution Security
(PSS) Curriculum. The PSS Curriculum is a pictorial representation of the organization
within the company to ensure product security. Eight different job profiles were considered
relevant through additional expert interviews and internal research. A distinction was made
between two types of product solution officers and six different types of product solution
experts. The only difference between the two types of officers is the scope of the systems
to be supported. The classic Product Solution Security Officer (PSSO) usually operates on
a hierarchically lower level and reports to the Principal Product Solution Security Officer
(PPSSO). Even though the scope of their tasks is similar, their skillsets differ, as different
skills are required at different hierarchical levels. In addition, six different areas were
identified in which the Product Solution Security Experts (PSSE) specialize. The following
areas of expertise were considered: Expert in Secure Architecture, Implementation, Testing,
Manufacturing, Service, and Project Integration. These job profiles contained information
about which skills are in demand at what level in which role and served as an essential basis
for mapping the Serious Games to them.

T. Dewes, T. Gasiba, and T. Schreck 3:3

Adam Shostack describes himself on his homepage [13] as one of the leading experts
in threat modeling and a consultant, expert witness, author, and game designer. He has
designed games such as Elevation of Privilege and researched serious games. He presents
a collection of physical board and card games that have an IT security learning objective
on his website. This collection serves as the basis for the mapping. However, it had to be
expanded with information to guarantee a successful mapping. Furthermore, some games
were outdated, are no longer sold, or are so similar to other games that they had to be
trimmed from the list.

Hill et al. [8] provide a survey of serious games used in cybersecurity education and
training. A categorization of the games was carried out into four types based on the topics
they cover and the purposes of the games: security awareness, network, and web security,
cryptography, and secure software development. The paper then offers a catalog of serious
games for different target audiences. However, their work does not consider industrial roles
but mainly targets groups in the school environment. Also, no evaluation was performed,
but the games were recommended only on the authors’ assessment. Furthermore, the
categorization for recommendations in the industrial environment is too superficial and does
not sufficiently reflect the required skills of the roles.

Gasiba et al. [5] investigate the requirements for Serious Games geared towards software
developers in the industry, with the focus on CTFs. It was found that although there are a
lot of games available, they are mainly developed for pen-testers and white hackers. Software
developers receive little attention; hence there is little information about the challenge design
requirements in the secure coding area, especially in the industry. This paper was already an
essential indication for this work that industrial roles are neglected in the development of
serious games.

Hendrix et al. [7] investigate whether Serious Games are suitable for cybersecurity training.
The authors examined several serious games in the IT security context. It was found that
games are effective cyber security training tools. Nevertheless, some quality deficiencies could
be identified. For example, some of the games were not evaluated, or the overall topic of
the game was not clearly communicated. In the end, they conclude that “there is a clear
gap in target audience with almost all products and studies targeting the general public and
very little attention given to IT professionals and managers“[7]. This work clarified that the
subject area of serious games in IT security needs to be more clearly structured and better
aligned with the industry.

3 Methodology

In order to develop a suitable mapping process of Serious Games to industrial roles, the
procedure was divided into five major steps, which are illustrated by the following graphic:

Table 1 Mapping Methodology and Outcome.

Step: Literature Review Expert Interviews Role Research Game Research Mapping

Outcome: Ontology Evaluated Ontolgy Industrial Roles and
Skills Collection

Game Collection Game/Role
Mapping

Duration:
(in Weeks)

4 2 2 4 3

Time

ICPEC 2022

3:4 Usage of IT-Security Games in the Industry and Its Mapping to Job Profiles

As can be seen, the steps were performed sequentially and produced different results. The
results are presented in detail in Chapter 4. In this chapter the methodology is clarified by
describing the steps in detail.

3.1 Literature Review

A literature review was conducted as an initial introduction to the topic. Primarily the google
scholar database, other search engines like researchgate or springer were used. These were
searched for the keywords Serious Games, IT security, ontology, and efficiency. In addition,
the work of Adam Shostack [13] was considered, who broadly gives information about Serious
Games on his homepage. In the literature review, only works no older than 2016 were
consulted, with two exceptions. The work of Stephen Tang and Martin Hanneghan [14],
and from N. Noy and Deborah Mcguinness [11] are from the year 2011, and 2001. However,
it was considered relevant for this work because the characteristics of Serious Games and
ontologies have not changed in time, and this work contributed essential insights, especially
for ontology development. The most important sources used are described in more detail in
the Chapter 2. The literature review gained insights into how Serious Games can be used in
the IT security context and what characterizes Serious Games in general. The results of the
literature review are presented in detail in Chapter 4.

3.2 Expert-Interviews

After the literature review, the collected knowledge was evaluated in several expert interviews.
A total of five security experts were interviewed. The interviews were conducted in January
2022 with experts from Germany who work in the company’s Product Security Lifecycle. In
all cases, an interview lasted between 30 and 60 minutes. In this process, the interviewees
were first informed about the work’s general aim, and then the knowledge gained through
the literature review was presented in the form of an ontology. Based on the feedback from
the experts, the ontology was shortened in superfluous places and supplemented in missing
places. However, not only was the ontology evaluated, but also knowledge about contact
points where know-how about internal/industrial roles, their skillset and Serious Games can
be found was collected. Thus, the expert interviews were an essential step for the subsequent
role research.

3.3 Role Research

The expert discussions described above determined that the focus should be on the Product
Solution Security (PSS) Curriculum with its roles and respective skillset. The PSS curriculum
represents and details the company’s organization established to ensure product security. It
maps job roles with their associated training. For the roles mentioned therein, detailed job
profiles could be found, describing the roles with their functions and their required skills.
Each skill has been assigned a skill level between Basic, Advanced, Expert, or none. Since
the role descriptions were too confusing for quick comparison and evaluation, the relevant
information was filtered out and transferred to a spreadsheet. The different skill levels were
assigned numbers representing the skill level instead of the written word (Basic =1, Advanced
=2, Expert =3). These numbers allow for comparing different roles and more easily present
the differences and commonalities between them. A total of 40 different skills in four different
skill categories were identified with the previously mentioned skill levels.

T. Dewes, T. Gasiba, and T. Schreck 3:5

3.4 Game Research

After roles and skills were defined, the next step was to create a detailed collection of Serious
Games that target the area of IT security. The collection of Adam Shostack [13] described
in the related work chapter was primarily used for this purpose. Since this collection offers
only rather superficial descriptions, it had to be supplemented with some information. In
addition, a few of the games were no longer available, so they had to be removed from the
collection. In order to obtain all the necessary information, all the games were inspected
individually, and the relevant data was again recorded in the form of an spreadsheet, with
the following information: Game name, overall topic, costs, duration, number of players,
availability, further link, and a short game description.

3.5 Skillset Mapping

For the mapping process, the first step was to shorten the skillset of the industrial roles to
those skills that do not have an IT security background. Thus, only eleven of the 40 skills
were considered relevant to IT security. Then, an assessment was performed for each of the
games: Each game got a rating between the skill level 1 (Basic), 2 (Advanced), 3 (Expert),
or - (none) on the previously defined skill, depending on how strongly the game promotes
the respective IT security skill. This resulted in an overview of the games which showed
which IT security skill they promote at which level (see Table 4).
In the second step, an assessment was made on how well a game fits a role and its skillset. In
each case, the distance (d) between the skill level of the role and the skill level of the game
was considered. The distance was calculated according to the following formula:

d = (Skill level Role − Skill level Game) (1)

Points were then awarded for each of the eleven skills according to the following scheme:

Table 2 Scoring in the Mapping Process.

d −2 −1 0 1 2
points −50 −25 100 50 25

As can be seen, a maximum distance between −2 and 2 could be reached (Skill level Game 1
− Skill level Role 3 or Skill level Game 3 − Skill level Game 1). For a negative distance,
either 25 or 50 negative points were assigned; the higher the distance in the negative range,
the higher the negative points. This calculation is based on the fact that if a game promotes
a higher skill level on a certain skill than is required in a role, it is not suitable for this role.
This is especially true if the game targets a topic not required for an expert role in another
area, for example. On the other hand, if the skill level of the role is higher than that of the
game, positive points are still awarded. Because even if the required skill level of the role
is higher, the required skill is still promoted to a certain extent. The highest points were
awarded when the distance was zero. In this case, the game maps the respective skill exactly
to the role level and fits the role accordingly. All points awarded for each of the eleven
skills were added up, so the maximum score was 1100 points (11×100 points). This score
ultimately shows how well the game fits the industrial role. Through Excel, an automated
evaluation in the form of formulas was possible. The results of the mapping are listed in the
next chapter.

ICPEC 2022

3:6 Usage of IT-Security Games in the Industry and Its Mapping to Job Profiles

4 Results

After the steps of Table 1 were explained in the last chapter, the outcome of the steps will
be described in more detail in the following.

4.1 Ontology
The general knowledge about Serious Games gathered through the literature review and the
expert interviews was captured in the form of an ontology. It is provided in the appendix.
The upper left part of the ontology refers to Serious Games. Explaining the characteristics
contained therein would go beyond the scope of this paper, which is why only the aspects
relevant to this paper will be discussed here. It can be seen that an essential part of Serious
Games is the game player. He/she has personal characteristics determined by his role and
the resulting skills with their skill level. The second part important for this work is the
pedagogic learning factor. This has a specific goal and a specific topic. This topic can be IT
security. This work aims to match the IT security topics of the Serious Game with the IT
security skills of the game player. In the ontology, the matching is represented by the big
arrow.

4.2 Industrial Role and IT security Skill Collection
The second achievement of the work was to get a collection of industrial roles with their IT
security skillset.

Table 3 Role Collection with Skillset Assessment.

As can be seen, eleven IT security skills were defined. Each of the eight different industrial
roles was assigned a skill level between 1 (Basic), 2 (Advanced) , 3 (Expert), or – (none).
This table was essential for the subsequent mapping of the games to the roles.

T. Dewes, T. Gasiba, and T. Schreck 3:7

4.3 Game Collection
Another partial result of the work was a collection of 18 board and card games with IT
security references. The collection contains information about game-name, overall topic,
costs, duration, number of players, availability, further links, and a short game description.
In addition, all games in this collection contain a rating between –, 1, 2, and 3 on each
of the skills mentioned in Chapter 4.2, depending on how strongly the game promotes the
respective skill.

Table 4 Game Collection with Skillset Assessment.

4.4 Game/Role Mapping
The main result of the work is a mapping between the previously described Game Collection
and the Role Collection. The data mentioned in Tables 3 and 4 were used to evaluate through
the procedure mentioned in Chapter 3. As a result, a table was created to record how well a
game fits the respective industrial role. The higher the score, the better the game supports
the required skills mentioned in the job profiles. As shown in Table 5, scores between 675
and −100 were achieved. The games in bold show which games achieve the highest score in
each role and thus best match it. The accumulated value is the added value of the games
across the roles. From this, it can be derived how well a game fits the industrial roles in
general. The highest value was achieved by Cyber Threat Defender, followed by OWASP
Cornucopia and Protection Poker. So these are particularly well suited to training in the
industrial sector. The game Crypto Go is the least suitable, with a score of only 50, mainly
because it hardly promotes skills in demand, as shown in Table 4. The highest score for a
specific role was achieved by the game OWASP Cornucopia in combination with the PSSE for
Implementation. Besides this, only the game Protection Poker and Cyber Threat Defender
on the roles PSSE for Implementation and PSSE for Manufacturing could collect points
of 600 or more. The Agile App Security Game, Decisions and Disruptions, d0x3d, Hacker,
and Oh Noes! were also able to collect a score of over 400 in certain roles and thus achieve
comparatively high values. The table also shows that the score achieved in a game can vary

ICPEC 2022

3:8 Usage of IT-Security Games in the Industry and Its Mapping to Job Profiles

Table 5 Results of Game Role Mapping.

greatly from role to role, for example in the game Oh Noes! where values between −75
and 550 were achieved. This shows that the different skillsets of the role have a substantial
impact on the rating. Other games, such as Crypto go or Data Heist, failed to score 200
or more on any reel. This shows that these games are unsuitable for use in the industrial
sector. This table shows how well a game fits one of the defined industrial roles, and the
Accumulated Value shows how well it is generally applicable in the industrial environment.

5 Discussion

The previously described results are discussed and put into context in this chapter. For all
of the results, it should be noted that the majority knowledge come from internal company
sources are therefore limited.

5.1 Discussion on Literature Review
In the course of the review, it became apparent that a large number of literature on the topic
of Serious Games is available, including literature on IT security, which demonstrates a high
degree of research in this area. Nevertheless, the quality of the games is mostly not on the
expected level. This does not mean the creativity or the structure of the games, but rather
that the learning objective and the required and promoted skills are not clearly recognizable.
Even if new works like from Zhao et al. [16] or Beckers and Pape [1] show that there is a
stronger focus on suitability in the industrial environment, the majority of available games
neglect this factor. It would be desirable to establish a procedure in which the developers
of the games define the goal of the games and the associated skills. These could then be
easily understood with the overall topic as a unified game description. Furthermore, it was
noticeable that there are hardly any games specifically designed for use in the industrial
sector for professionals in the cybersecurity workforce. Although some of the games covered
knowledge areas that are important for specific roles, no game specifically designed for one
of the roles could be found.

T. Dewes, T. Gasiba, and T. Schreck 3:9

5.2 Discussion on Ontology
In the case of ontology, it is important to note that it has been adapted to the purpose of
the work. Especially subcategories of aspects of Serious Games that do not contribute to
the mapping or are essential to the understanding of Serious Games have been shortened.
For example, there are different types of rules, such as Interaction Rules or Scoring Rules,
that determine the events within the game. Also, the game objects were described in much
more detail in the initial ontology by attributes such as Vital, Position, or Solidity State,
but these did not contribute to the mapping or the general basic understanding of Serious
Game. However, changes and additions were also made through the expert discussions
and our reflections. Two experts mentioned that it would also be important to map the
game’s internal role, game master or player, in the ontology. The division into game-specific
and personal characteristics were based on the experts’ considerations. This way, a good
differentiation could occur because the game-specific characteristics serve mainly the basic
understanding for Serious Games while the personal characteristics were essential for mapping
the games. Also, the wording was adapted in some places to provide a better understanding
by the players; for example, the Pedagogic Event Indicator became a pedagogic learning
factor, or the Game Scenario became a Level. Overall, the ontology could make the purpose
of this work more understandable and can be used for research on similar topics, but it
could be that for another goal, the ontology contains too little information, or the added
information is superfluous. The ontology aims to support research and help understand what
the industrial requirements are for games. Thus, it can support the preparation and selection
of games.

5.3 Discussion on the Mapping Process
The mapping process must also be considered from a certain point of view. Although the
games were examined in as much detail as possible, the evaluation of the games in their
respective skill levels was still done from a subjective point of view. In addition, there was
simply no time to play each game from start to finish, which is why there could be reasons
for distortions in the evaluation. In order to ensure the most accurate rating possible, an
evaluation of the required skills directly by the developer or publisher would be desirable.
For this purpose, a framework could be developed. For example, the developer or publisher
of the game could choose from a pool of skills how strongly they are promoted. This could
easily create comparability of the games, and mapping to industrial roles would be much
easier, and it would generally contribute to standardization in the field of Serious Games.

Nevertheless, the mapping process created here can also be used for roles and games not
covered in this paper. When adding new games, you only have to evaluate how strongly the
game promotes the eleven defined skills, according to the principle outlined in the chapter
methodology. The same applies to adding new roles, as long as they contain the same IT
security skills.

A role with new skills would also be conceivable. But then the new skills would have
to be evaluated for the PSSO and PSSE roles as well, or they would have to be deleted,
and only the new roles are considered. Practically speaking, one could define what skills
children of a certain grade level need to have and thus select the most appropriate game to
complement traditional teaching methods.

A finer detailing of the skill levels is also discussable. In this work, a distinction is only
made between the Basic, Advanced, Expert, and none levels. This can be extended as desired.
Then a new evaluation of all games and roles must take place; thereby, a more exact mapping
evaluation could be done. However, the amount of work must be considered because this
should be in proportion to the benefits.

ICPEC 2022

3:10 Usage of IT-Security Games in the Industry and Its Mapping to Job Profiles

6 Conclusion

In summary, through research, feedback from experts, and an evaluation system, it was
possible to determine which Serious Games are relevant for IT security roles in the industry.
In this paper, two different roles for general Product Security (PSSO) and six different types
of Expert roles (PSSE) in the industry were considered relevant. A collection of board and
card games by Adam Shostack was used to conduct a mapping for these roles. Some useful
information was added to this collection, and a few outdated or no longer available games
were removed from the list. The mapping result was that the games were given a score that
shows how well a game fits an IT security role. The mapping assessment considered how
much a game promoted the required skills of one of the PSSO or Expert roles. Eleven IT
security skills were taken into account. Thereby comparability could be established based on
how well a game represents the required IT security skills of the respective role. The basis
for this scoring was that each game received a rating between none, Basic, Advanced, and
Expert, which showed how a particular skill was promoted in one of the games. The roles
also received a rating, as described, considering what level of skill is required in that role.
A score could then be derived based on a rating system, which describes how well a game
fits a role.

During the process, an ontology was developed, which only contains the essential aspects
of Serious Games and mainly aims at developing the mapping process. The level of detail of
the general characteristics of Serious Games is not very high, but the ontology shows which
aspects can be used to map the games to the personal characteristics determined by the
industrial role and the resulting skills. This knowledge can be used to apply the mapping
process to other circumstances, such as companies, schools, or universities with other roles
with other skillsets or to the general audience. Also, the created collection of games with
skills ratings can be used for other mapping processes, either by adding new games to the
games collection with a skills rating or by adding new roles with a rating of the eleven skills.

We will transfer the obtained results into a database for easy querying for future work.
The results can also be presented in a graphical user interface. It would be conceivable to
expand the interface with additional information about Serious Games so that a platform is
established that serves as a central point of contact for Serious Games in the context of IT
security. Furthermore, a recommendation process could be created here, which concludes
the interests and skills of the user based on specific questions. Based on the answers, extra
points can be given to the games, and the ones with the highest score will be recommended.
In conclusion a process could be developed to run a mapping between industrial roles and IT
security Serious Games. As a result, different games are now available with an evaluation
that describes how much the required skills of the industrial roles are mapped. The result of
the work also shows that there is an unused potential for Serious Games in IT security. First,
the games’ content and goals can be better adapted to the industrial roles and skills, and
second, the content and the goal could be communicated more transparently, for example,
by a standardized description of which skills the respective game promotes.

References
1 Kristian Beckers and Sebastian Pape. A Serious Game for Eliciting Social Engineering Security

Requirements. In 2016 IEEE 24th International Requirements Engineering Conference (RE),
pages 16–25, 2016. doi:10.1109/RE.2016.39.

2 Bundesamt für Sicherheit in der Informationstechnik. Die Lage der IT-Sicherheit in Deutsch-
land 2021. BSI, 2021.

https://doi.org/10.1109/RE.2016.39

T. Dewes, T. Gasiba, and T. Schreck 3:11

3 Polona Caserman, Katrin Hoffmann, Philipp Müller, Marcel Schaub, Katharina Straßburg,
Josef Wiemeyer, Regina Bruder, and Stefan Göbel. Quality criteria for serious games: Serious
part, game part, and balance. JMIR Serious Games, 8(3):e19037, July 2020. doi:10.2196/
19037.

4 Ralf Dörner, Stefan Göbel, Wolfgang Effelsberg, and Josef Wiemeyer. Serious Games:
Foundations, Concepts and Practice. Springer International Publishing, 1. Ed, Switzerland,
2016. doi:10.1007/978-3-319-40612-1.

5 Tiago Espinha Gasiba, Kristian Beckers, Santiago Suppan, and Filip Rezabek. On the
Requirements for Serious Games Geared Towards Software Developers in the Industry. In
2019 IEEE 27th International Requirements Engineering Conference (RE), pages 286–296,
2019. doi:10.1109/RE.2019.00038.

6 Tiago Gasiba, Ulrike Lechner, and Maria Pinto-Albuquerque. CyberSecurity Challenges
for Software Developer Awareness Training in Industrial Environments. In International
Conference on Wirtschaftsinformatik, pages 370–387. Springer, 2021.

7 Maurice Hendrix, Ali Al-Sherbaz, and Victoria Bloom. Game Based Cyber Security Training:
are Serious Games suitable for cyber security training? International Journal of Serious
Games, 3, March 2016. doi:10.17083/ijsg.v3i1.107.

8 Hill Jr, Mesafint Fanuel, Xiaohong Yuan, Jinghua Zhang, and Sajad Sajad. A Survey of
Serious Games for Cybersecurity Education and Training. KSU Conference on Cybersecurity
Education, Research and Practice, October 2020.

9 Menelaos Katsantonis, Isabella Kotini, Panayotis Fouliras, and Ioannis Mavridis. Conceptual
Framework for Developing Cyber Security Serious Games. In 2019 IEEE Global Engineering
Education Conference (EDUCON), pages 872–881, April 2019. doi:10.1109/EDUCON.2019.
8725061.

10 Lin Liu, Affan Yasin Chouhan, Tong Li, Rubia Fatima, and Jianmin Wang. Improving
Software Security Awareness Using A Serious Game. IET Software, 13, July 2018. doi:
10.1049/iet-sen.2018.5095.

11 Natalia. Noy and Deborah Mcguinness. Ontology Development 101: A Guide to Creating
Your First Ontology. Knowledge Systems Laboratory, 32, January 2001.

12 José Carlos Paiva, José Paulo Leal, and Álvaro Figueira. Automated Assessment in Computer
Science Education: A State-of-the-Art Review. ACM Trans. Comput. Educ., January 2022.
Just Accepted. doi:10.1145/3513140.

13 Adam Shostack. Threat Modeling Expertise, Training, Coaching, July 2022. URL: https:
//shostack.org/.

14 Stephen Tang and Martin Hanneghan. Game Content Model: An Ontology for Documenting
Serious Game Design. In 2011 Developments in E-systems Engineering, pages 431–436, 2011.
doi:10.1109/DeSE.2011.68.

15 Valdemar Švábenský, Jan Vykopal, Milan Cermak, and Martin Laštovička. Enhancing
Cybersecurity Skills by Creating Serious Games. In Proceedings of the 23rd Annual ACM
Conference on Innovation and Technology in Computer Science Education, ITiCSE 2018,
pages 194–199, New York, NY, USA, 2018. Association for Computing Machinery. doi:
10.1145/3197091.3197123.

16 Tiange Zhao, Tiago Espinha Gasiba, Ulrike Lechner, and Maria Pinto-Albuquerque. Exploring
a Board Game to Improve Cloud Security Training in Industry (Short Paper). In ICPEC,
2021.

ICPEC 2022

https://doi.org/10.2196/19037
https://doi.org/10.2196/19037
https://doi.org/10.1007/978-3-319-40612-1
https://doi.org/10.1109/RE.2019.00038
https://doi.org/10.17083/ijsg.v3i1.107
https://doi.org/10.1109/EDUCON.2019.8725061
https://doi.org/10.1109/EDUCON.2019.8725061
https://doi.org/10.1049/iet-sen.2018.5095
https://doi.org/10.1049/iet-sen.2018.5095
https://doi.org/10.1145/3513140
https://shostack.org/
https://shostack.org/
https://doi.org/10.1109/DeSE.2011.68
https://doi.org/10.1145/3197091.3197123
https://doi.org/10.1145/3197091.3197123

3:12 Usage of IT-Security Games in the Industry and Its Mapping to Job Profiles

A Appendix

Table 6 Ontology of Serious Games regarding Mapping to Industrial Roles.

Serious Games

Game Structure

Game Context

Game Presentation

Level

Game Simulation
Level of Difficulty

Game Environment

Challenge

Target Value

Game Objects

Game PlayerGamespecific
Characteristics

Personal
Characteristics

Game RecordAvatar

Game Rules

Pedagic Learning
Factor

Game Attributes

Role Skill Cyber-Security Skills

Event Trigger

Goal

Topic Cyber-Security

Gamespecific Role

Player

Game Master

Teaching new learning
content

Repetition of known
learning content

Determination of skills
(Tests)

Create interest and
attention

Skilllevel Skillname

Legend
: consists of

: is a

Introductory Programming in Higher Education:
A Systematic Literature Review
Gabryella Rodrigues #

Research Centre on Education (CIEd), Institute of Education, University of Minho, Braga, Portugal

Ana Francisca Monteiro #

Research Centre on Education (CIEd), Institute of Education, University of Minho, Braga, Portugal

António Osório #

Research Centre on Education (CIEd), Institute of Education, University of Minho, Braga, Portugal

Abstract
A systematic literature review was performed on 33 papers obtained from the ACM, IEEE and
Sciencedirect databases, in order to understand in depth, the introductory programming discipline
(CS1) in higher education. Recently published works have been covered, providing an overview of
the teaching-learning process of introductory programming and enabling to find out whether the
research developed by universities worldwide is in line with the proposals made by ACM/IEEE-CS
group for computer courses, regarding the transition to the competency-based model. The results
show that the new techniques/technologies currently used in software development, as an example of
agile methodology, has influenced the teaching-learning process of CS1 together with methods such
as visual programming and e-learning. The analyzed papers discuss the importance of developing
not only technical, but also social skills, corroborating that methodologies used in introductory
programming courses need to focus on preparing students for an increasingly competitive market,
associating new skills with technical aspects.

2012 ACM Subject Classification General and reference → Surveys and overviews

Keywords and phrases systematic literature review, CS1, introductory programming, teaching
programming, learning programming

Digital Object Identifier 10.4230/OASIcs.ICPEC.2022.4

Funding This work is supported by CIEd – Research Centre on Education, Institute of Education,
University of Minho, and funded by FCT – Foundation for Science and Technology, scholarship
nº2021.07850.BD.

1 Introduction

The Association for Computing Machinery (ACM) guides and recommends higher education
institutions worldwide in the context of analyzing the characteristics of graduation students
and in the construction of curricula in the field of computing, since 1960. The most recent
document – published in partnership with the Computer Society of the Institute of Electrical
and Electronics Engineers (IEEE-CS) – the Computing Curricula 2020: Paradigms for Global
Computing Education [19], referred to as CC2020, records significant updates.

The main change from previous documents focuses on the transition from a traditional
teaching model to a competency-based model. The first one is described through areas of
knowledge, units of knowledge and learning outcomes. However, this paradigm has been
shown to be inefficient through two new challenges: the new ways of acquiring knowledge
and the gap between graduates’ skills and the skills expected in professional activities, known
as “the skill gap” [19].

© Gabryella Rodrigues, Ana Francisca Monteiro, and António Osório;
licensed under Creative Commons License CC-BY 4.0

Third International Computer Programming Education Conference (ICPEC 2022).
Editors: Alberto Simões and João Carlos Silva; Article No. 4; pp. 4:1–4:17

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gabryella.rocha@gmail.com
https://orcid.org/0000-0003-2528-8138
mailto:anafmonteiro@gmail.com
https://orcid.org/0000-0001-6204-5456
mailto:ajosorio@ie.uminho.pt
https://orcid.org/0000-0002-9931-1962
https://doi.org/10.4230/OASIcs.ICPEC.2022.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

4:2 Introductory Programming in Higher Education: A Systematic Literature Review

Therefore, with the aim of promoting the success of learning and the effective reduction
of the skill gap, the ACM/IEEE group made use of previous experiences and incorporated to
CC2020 the concept of competence as a primary characteristic in the construction of the
computer science curriculum. The curriculum guidelines for undergraduate degree programs
in Information Technology [45] identified as IT2017 was the initial inspiration.

This research focuses on the introductory programming discipline, specifically in
algorithms, which according to CC2013 [44] are fundamental to the development of any
software system and present in all areas of computing. The study of algorithms provides an
insight into the nature of the problem as well as possible solution techniques, independently
of a programming language and programming paradigm, computer hardware or any other
aspect of implementation.

A systematic literature review was conducted in June 2021 in order to systematically
collect recent data available in scientific databases on: the course identity, expected skills,
methodologies, programming languages and tools used in teaching and learning of introductory
programming.

2 Previous Studies

Most of the recent systematic literature review on introductory programming focus on a
specific teaching/learning method [32, 35, 53, 36] or on the assessment of tools, programming
languages or programming paradigms [27, 24, 3]. In general, studies that address the teaching
and learning programming on novice, do not cover results after 2018 [5, 37, 40] and centers
only on dropout, failure rates, problems faced by students and technical skills expected before
and at the end of the course.

Despite the large volume of work on introductory programming, there is a lack of studies
that focus on competency instead of knowledge expectations [45]. To gain a different
perspective in this review, we aiming in studies that also include a competence model.

3 Research Questions

Firstly, given the recommendation to parameterize the course´s terminologies and
classifications and the areas of knowledge proposed in CC2020, this research seeks to
identify how the introductory programming discipline is identified and structured and in
which computing degree program is targeted (Q1). In addition to pointing out, or not, a
pattern in the discipline´s identity, this research seeks to register what contents are covered,
in order to recognize the presence of the algorithm subject. It also seeks to examine which
undergraduate courses in computing place more emphasis on the development of algorithms,
comparing these results with the panorama suggested in CC2020, in which it is quantified
the importance that each area of knowledge offers to courses.

Secondly, driven by the transition to the CC2020 competency model, this research
investigated whether universities are still based on the classical teaching model or are already
concerned about the transition to the new model proposed and what skill set are classified
as essential for computer science students taking the introductory programming course and
whether these skills are explored within a real-world context. For that it is important to
note which technical and social skills are involved in the process of creating and analyzing
an algorithm (Q2).

After the analysis of the included texts, a list of methodologies, tools, languages and
programming paradigms used in the teaching and learning of introductory programming
course was compiled, in order to analyze the influence of the technology in this process and

G. Rodrigues, A. F. Monteiro, and A. Osório 4:3

observe how close are the tools used in universities of those required by job market, identified
through the question: What are the methodologies, tools, languages and programming
paradigms used in the teaching and learning process of introductory programming (Q3)?

The results of this work will define which terminologies will be used to reference this course
in future work; the level of importance that the discipline has in each computer course will
be used to define which curriculum recommendations documents (currently there are seven
different reports regulating computer courses) will be used as a basis in the construction
of a conceptual framework of a doctoral research project in the context of learning the
introductory programming course in higher education. In addition to providing information
to justify the choice of the courses that will be observed in the field work.

The data related to skills, technical skills, social skills and methodologies described in
the collected documents will be used as a basis for the construction of a observation guide in
a case study that will be developed in the future.

4 Method

The systematic literature review seeks to employ a research methodology with scientific rigor
and great transparency. To ensure such rigor and transparency Elisa Nakagawa [42] affirm
that all systematic review must contain a protocol of investigation, which describes the entire
process in detail. This study follows the guidelines for systematic literature review presented
by [29] and [42] and consists of the following stages: formulation of the research questions to
be answered; strategies adopted in the search and selection process of the studies that will
be included in the review; the procedure for data extraction and classification and finally the
data synthesis strategies and analysis of results.

4.1 Search Strategy
To define the string used in this systematic review, the research questions were broken down
into keywords and synonyms were searched for each term [29]. For the first research question
(Q1), in which the objective is to reveal the identity of the discipline, we opted to use a
manual search (test search) in computing databases with the terminology CS1.

The CS1 (Computer Science 1) acronym was originally created in 1978 by the ACM and
refers to the first computing course that introduces the programming basics [18]. Although
the contents have changed over the past four decades, the name and general principles have
remained [23].

The result of this preliminary search showed us that the researches carried out on this field
also make references to the keywords: “Introductory Programming Course” and “Introduction
to Programming”.

Similarly to the second research question (Q2), the word “skill” was chosen to identify
which skills are described as necessary to students who are attending and/or have attended
the fundamentals of programming. The choice of not distinguishing social skills from technical
skills in this process was based on the results obtained in this preliminary exercise, which
showed that with the exclusive use of the word Skill researches involving both capabilities
were returned.

For the third research question (Q3), the chosen words that proved to be timely in
identifying the methodologies, tools, languages and programming paradigms used by teachers
and students in the discipline were: method and tools. When the word “method” was
associated with “CS1” it returned works that involve the use of new teaching methods in the
teaching of introductory programming. Using the keyword “tools” combined with “CS1”,

ICPEC 2022

4:4 Introductory Programming in Higher Education: A Systematic Literature Review

we obtained papers that cited the use of tools and programming languages. For the last
item of Q3: programming paradigms, it was not necessary to use a specific keyword, because
programming paradigms can be revealed from the identification of the programming language
used, as [11] explains.

Since this work seeks to research both teaching and learning processes of introductory
programming, the identified keywords were associated to the terms: “teaching programming”
and “learning programming” and the search strategy, described in Table 01, was built.

The use of a wide search string, provided its use in several databases [29] and its validation
was made by an expert in the area, who reproduced the final protocol.

4.2 Database
After the process described above, an automatic search was performed in Sciencedirect, IEEE
Xplore and ACM Digital Library, using the previously constructed research strategy. The
first two sources, according to the classification of Felizardo et al. [16] are identified as
bibliographic databases, I.e only return studies published by their own publisher. And in
order to mitigate possible limitations in the searches, we also used a hybrid database: ACM
Digital Library, which indexes studies published by the publisher and studies from other
sources [16].

In addition to the characteristics mentioned above, the ACM and IEEE associations, which
respectively maintain the ACM Digital Library and IEEE Xplore database, are responsible
for producing and publishing all the reports that guide computer courses. Also, they are
classified as two of the main indexing services in the area of computing, electricity and
electronics [9].

In order to collect all the evidence used to answer the research questions, we have
made use of a third source: Sciencedirect. A multidisciplinary database made available by
Elsevier, which brought together papers published by researchers from various countries and
a collection covering several thematic areas in the field of Science and Technology.

Another point to consider about the databases chosen was the fact that they index new
studies regularly and with peer-reviewed. They have a search engine that allow an easy
adaptation of the string, versatility in exporting the results and integration with a reference
management software.

4.3 Selection Criteria
In order to include relevant documents and ensure that no important study was excluded,
selection criteria were defined (inclusion and exclusion) in the search protocol before starting
the automatic searching process in ScienceDirect, IEEE Xplore and ACM Digital Library
databases.

4.3.1 Inclusion Criteria
The condition of having been published in the period from June 2017 to June 2021 (five-
year period), was the inclusion criteria used to select documents in this systematic review,
allowing the presentation of a current scenario of what has been investigated on “introductory
programming”. In particular, it can provide insights into what new technologies are influencing
the teaching and learning process in this discipline.

At the same time, the first document of the ACM/IEEE that embraced the concept of
competencies as the main characteristic of a computing curriculum was the Information
Technology (IT2017) report [45], published in 2017. This led to the adherence of CC2020 to
the competence-based learning model.

G. Rodrigues, A. F. Monteiro, and A. Osório 4:5

Although the mentioned document was published only in December 2017, this review
moved the observation window back to June 2017 with the intention to identify whether the
literature already indicate this concern even before any publication by the ACM/IEEE.

We highlight that the selection criteria was not limited to a specific languages, the only
criteria for including documents in this systematic review is limited to time.

4.3.2 Exclusion Criteria
And with the aim of eliminating texts considered irrelevant [29], a set of five exclusion criteria
was adopted:

Duplicate Records

According to Kitchenham and Charters [29], it is important not to consider repeated
evidence from the same study, to avoid create distortions in the conclusions. Thus, this
criteria considers the most recent study, in cases of papers written by the same author or
group of authors that address the same subject. However the study will only be deleted if
the most recent one deals with all the contents of the older version. If the study contains an
intersection, it will not be excluded.

Papers providing only the abstract or unfinished research

Detailed information on the methodological aspects, such as type of research, data
collection method, target audience, instruments, programming languages used, as well as
details of the results, may not be included in the abstract or in unfinished research. However,
it is a type of information that needs to be collected to assist the data analysis phase.
Therefore, works that do not provide access to the full text or are ongoing research will not
be included in the analysis phase.

Papers that do not result from a scientific research

A systematic literature review aims to collect evidence from primary studies [42]. Thus,
studies that are not the result of a research will not be considered. This case includes panel,
journal column, tutorial, editorial and other systematic literature reviews.

Works carried out with students of different levels

The interest in programming is not exclusive to higher education courses and much less to
courses in the exact sciences area. There are many researches carried out also with students
of all levels and modalities of teaching. However the interest of this review is to focus only
on how to learn and teach in introductory programming in undergraduate courses.

Works that do not address identity, basic learning conditions and the teaching methods
of the discipline of “introductory programming”

The quality of a systematic review is linked to the papers chosen for the analysis. Works
that do not answer at least one of the research questions of this review were not classified for
the next phase.

After the definition of the inclusion and exclusion criteria, a research protocol, used in
the selection process of the studies in this work was defined and is described in Table 01.

This protocol summarizes information on research questions, keywords and boolean
operators used in the search process, databases, inclusion and exclusion criteria,
methodological validation criteria and analysis of results.

ICPEC 2022

4:6 Introductory Programming in Higher Education: A Systematic Literature Review

Table 1 Research Protocol.

Research Questions
Q1 – How the introductory programming discipline is identified and structured and in which
computer courses are the researches carried out??
Q2 – What are the technical and social skills involved in the process of creating and analyzing
an algorithm?
Q3 – What are the methodologies, tools, languages and programming paradigms used in the
process of teaching and learning introductory programming?
Search Strategy
All: (“introductory programming course” OR “introduction to programming” OR “cs1”)
AND All: (“teaching programming” OR “learning programming”)
AND Abstract: (“skill” OR “knowledge” OR “method” OR “tools”)
AND (publication date: 01/01/2016 TO 12/31/2021)
Database
ACM Digital Library, IEEE Xplore e ScienceDirect
Inclusion Criteria
1. Papers published between June 2017 and June 2021
Exclusion Criteria
1. Duplicate Records
2. Papers providing only the abstract or unfinished research
3. Papers that do not result from a scientific research
4. Works carried out with students of different levels
5. Works that do not address identity, basic learning conditions
and the teaching methods of the discipline of “introductory programming”
Methodological validation criteria
Replication of the search process by another researcher

4.3.3 Selecting Studies
The first step was to conduct an automatic search in the databases, using the string and
inclusion criteria defined in the search protocol. In total, 136 papers have been provided of
which 90 from the ACM Digital Library, 21 from IEEE Xplore and finally 25 from Science
Direct.

The identification and organization of all studies was done. The metadata were exported
to a reference management software, which enabled the proper organization and automatic
detection of duplicate articles. Eleven documents were excluded for duplicity, resulting 125
selected to the next stage of the process. After reading the respective titles and abstracts,
the exclusion criteria 2, 3 and 4 have been applied.

In the end, 70 documents were selected for the full reading phase. Then, the last exclusion
criterion has been applied, generating a set of 33 eligible studies (24,6% of the total) to data
extraction and analysis step.

4.3.4 Data Classification
In addition to documenting the search and selection strategy used, the authors Kitchenham
and Charters [29] indicate the need to also document the strategy used to extract the data
contained in the selected studies. Pointing to the importance of constructing a data extraction
form, which contains fields that record all documents uniformly – built in parallel with
the search protocol – providing the foundation for appraising, analysing, summarising and
interpreting a body of evidence.

G. Rodrigues, A. F. Monteiro, and A. Osório 4:7

The first data was collected by the reference management software. Items such as: title,
authors, institution, country of publication, type of document, year of publication, abstract,
keywords and database were inserted in the data extraction form.

Information such as research questions, data collection technique, type of study and results
obtained were also identified in the studies to assist in the final analysis. All information
extracted from the primary studies were managed by a spreadsheet program.

In order to standardize the extracted data, a data dictionary [29] was created to restrict
the possibilities of categorizing certain form items, establishing a set of permissible values in
each field, in order to facilitate the classification process.

5 Results

5.1 Identity of the Introductory Programming discipline (Q1)

The first research question launched by this study aims to determine how researchers, who
investigate this topic, refer to this discipline. Thus, analyzing the collected data it was
possible to realize that 22 papers refers to the name “introductory program course”. However,
similar nomenclatures have also been identified as “introduction to programming” and
“introductory computer programming”. In spite of being similar terminologies, all studies
use the acronym CS1 to quote the discipline. That term, as previously identified, refers to
Computer Science I, the first discipline created for the computer science course, in which the
fundamentals of programming are addressed [30]. However, it is still used in the curriculum
of all courses in the computing field, aiming to facilitate the transfer of students between
educational institutions and also as a keyword for research developed in this field [23].

As can be seen in Table 02, other denominations were also identified and a new proposal
is reported in [21]: “Computational Thinking Course”, being considered a lighter version
of CS1 designed to engage and stimulate future CS1 students. And training skills such
as: problem solving, logical thinking, abstraction, decomposition and pattern recognition,
recommendations already foreseen in the ACM/IEEE-CS 2013 Report [44], that arise mainly
to address students outside of computer or engineering courses.

This proposal can also be found in specific courses in the computing field, but is classified
as an optional discipline and often offered before the beginning of the regular academic
period. Identified by the terminology CS0. It is responsible for presenting computer science
to students without previous skill, promoting mainly the development of problem solving and
mathematical skills, in order to reduce retention rates and withdrawals in the future [14].

Of the papers that identified the audience involved in the study, 73% engaged students of
computer courses, namely: computer science, computer engineering, information systems,
information technology and software engineering. Also 9% of the research included students
from other STEM courses like: electrical, electronics, civil, industrial and telecommunications
engineering or bachelor’s degree in mathematics and 18% developed activities with graduates
from other courses, that is, outside the computing field, which are also identified in the
literature as non-Computer Science (non-CS) [11].

Offer introductory programming courses for audiences with different backgrounds,
expectations and with a thematic focus became popular [44]. The great interest in
programming in non-CS courses is related to initiatives that seek to make computing
accessible to all [12], enabling students to interact consciously with new technologies, allowing
the acquisition of the ability to read, write, analyze and modify program codes.

ICPEC 2022

4:8 Introductory Programming in Higher Education: A Systematic Literature Review

Table 2 Introductory Programming Identity.

Term References
Algorithms and Problem Solving [22]
Algorithms and Programming I [52]
Computational Thinking Course [21]

Introductory Computer Programming [51]
Introductory Programming Course [63, 33, 25, 47, 1, 2, 55, 58, 50],

[13, 7, 38, 46, 12, 28, 4, 59, 56],
[57, 6, 41, 48]

Introduction to Programming [49, 20, 34, 17]
Programming 1 [15]

Programming Course [39]

With regard to the approaches, most of the research focused on the use of a certain
programming language. Leaving aside the emphasis on coding, 33% ([33, 39, 47, 2, 58, 34,
21, 52, 22, 46, 41]) provided a broader introduction to the concepts of programming, using
algorithmic as an alternative approach.

This last perspective is analogous to the “Algorithms-first” model, proposed in CC2001 [18],
which emphasizes the importance of students working with a variety of data and control
structures, without having to deal with the specificities that programming languages inevitably
introduce.

The research studies that used this approach were developed in the courses of: computer
science [33, 2, 34] and [46], computer engineering [52, 41] and [58], information systems [58]
and software engineering [58]. This information corroborates with the data published in
CC2020 about the degree of importance that algorithms and data structure have in each
course.

5.2 Technical and Social Skills (Q2)
Considering the 33 articles analyzed, 29 identified one or more previous skills needed or
expected at the end of an introductory programming course. They are identified in table 03
and were gathered in two groups: technical skills (related to programming) and general skills.

Problem solving was the most cited skill, which it is identified by the computer science
– CS2013 ([44]) and computer engineering – CE2016 ([43]) reports and defined by [34] as
being the ability to understand a given context, identify key information and build a plan to
solve it. To plan a solution, the programmer needs to divide the problem into smaller parts,
analyze input and output data, and formulate the necessary steps for resolution [62]. The
ability to divide a large and complex problem into parts that are manageable to solve, test,
and maintain is also known as decomposition. Another skill identified in three papers as a
prerequisite for learning programming. [25] states that learn to decompose a computational
problem facilitates the software development process, but [13] emphasize that it is not a
determining factor of success.

Besides decomposition, another skill, also related to problem solving, is algorithmic
thinking. It is defined by [34] as a set of skills connected to building and analyzing algorithms;
problem analysis; detailed specification/description of the problem; definition of the necessary
actions and construction of an algorithm to solve the problem.

G. Rodrigues, A. F. Monteiro, and A. Osório 4:9

Table 3 Technical and General Skills.

Skill References Category
Abstraction [25, 20, 34, 7, 22, 46] Technical Skill
Algorithmic Thinking [25, 47, 20, 15] Technical Skill
Decomposition [33, 25, 58, 20, 34, 52, 57] Technical Skill
Debugging [51, 2, 55, 58, 7, 59] Technical Skill
Mathematical Skill [46, 28] Technical Skill

Problem Solving [51, 33, 25, 2, 58, 20, 34, 50, 52,
56, 57] Technical Skill

Critical Thinking [51, 20, 21, 52, 59] General Skill
Communication, creativity, persistence,
voluntary participation, perseverance
and trust

[51, 28, 41, 10] General Skill

Spatial Visualization [17] General Skill
Team Work and collaboration [52, 22, 28, 59] General Skill

In six publications the importance of abstraction was discussed. [61] claims that it is the
process used in setting patterns, generalized from specific instances and parameterization in
order to capture essential properties that are common to a set of objects. The author also
describes that an algorithm is an example of a process abstraction, that starts by receiving
input values (input), running a sequence of steps (algorithm), and producing a result (output)
to satisfy a given objective (problem).

These skills (abstraction, decomposition, algorithmic thinking and problem resolution) are
the key concepts of computational thinking, proposed by [60] and defined as a set of skills that
allows us to recognize aspects of computing in everyday life. Beyond computational thinking,
another feature developed throughout the discipline and evidenced by [51, 2, 55, 58, 7] and
[59] is the debugging. Defined as the process of finding and reducing errors in a code [51], it
is identified as the most neglected topic in teaching introductory programming. [59] have
identified that software developers tend to debug codes using a scientific method that requires
cycles of generations and hypothesis testing. This process, according to the authors, promotes
a deeper learning and provides an insight into how critical the individual is and the strategies
used. However, the curriculum tends not to focus on teaching strategies that promote critical
thinking [59]. Authors such as [20] and [52] claim that this ability is usually noticeable only
in experienced programmers, as it is related to the individual’s level of maturity.

Mathematical knowledge is cited as necessary and closely related to problem solving,
decomposition, and abstraction skills. The lack of this ability can influence programming
learning [46] and [28]. However, [34] rejects the hypothesis of correlation between grades
obtained by high school students in mathematics and learning programming. Nevertheless,
mathematical skills can be used to identify cognitive problems in students as incapable
of connecting algorithmic thinking to other mathematical concepts [13]. Associated with
mathematical skills, geometry and spatial visualization is also present in the collected data,
which influences the understanding and the ability to mentally manipulate a two/three-
dimensional figure in space [54]. [17] exposes an example in which a 3D object is placed on a
table, and the student needs to imagine how the object will be rotated, without having any
physical/real interaction or change of perspective.

And finally, teamwork, communication, creativity, persistence, voluntary participation,
perseverance and trust are social skills identified in eight different papers. The authors
[51] and [52] emphasized several aspects related to the attitude of students and [22] sustain
that knowledge is built from the participation and collaboration between peers. CC2020

ICPEC 2022

4:10 Introductory Programming in Higher Education: A Systematic Literature Review

corroborates with this statement, and clarifies that all computer courses emphasize the
professional knowledge required of each professional, including problem solving, critical
thinking, communication, and teamwork [19].

In summary, two areas of computational thinking were outlined in the collected data:
Computational practices (algorithm, decomposition, abstraction, etc.) and computer
perspectives, i.e. the understanding that students have of themselves and their interaction
with others and with technology [8]. This idea broadens the original definition of
computational thinking proposed by [60], changing the individualistic conception of
programming to a vision that includes focusing on social dimensions, called computational
participation [26]. This new conception explore computational practices and perspectives
that together enable insight into sociological and cultural dimensions, with an emphasis on
learning to code so that learners are able to meaningfully participate as critical thinkers, as
well as producers, consumers, and distributors of technology [26].

5.3 Methodologies, Tools, Languages and Programming Paradigms(Q3)
Many teaching strategies have been used and reported. However, a trend towards the use
of traditional approach was identified: where the teacher reviews the content, explain the
terms and concepts followed by paper-based programming exercises ([10, 50] and [52]). The
practical activities are developed later in a laboratory with the support of software/tools
([63, 51, 39, 47, 55, 20, 7, 52, 15, 4, 59, 56, 57, 6] and [48]) or hardware ([10] and [50]). Facing
the constraints of using the traditional teaching method, or in order to increase students’
motivation ([21, 39, 47, 1, 56]), reduce failure rates in CS1 ([34, 56, 25, 20]), attend classes
with large numbers of students ([55, 50] and [41]), active methods have been incorporated as
innovative teaching strategy and are cited in Table 4.

Table 4 Methodologies.

Teaching Strategy References
Active Learning/Peer learning [21, 22]
Blended Learning [38]
E-learning [25, 1, 12, 48]
Flipped Classroom [25, 2]
Gamification [39, 38]
Peer Programming [49, 21, 22]
Problem Based Learning [52]
Project Based Learning [10, 22, 46]
Storytelling/Storyboard [58, 38]
Tradicional Classes [63, 51, 47, 55, 20, 50, 7, 52, 15, 4, 59, 56, 57, 6, 48]

This scenario, in which traditional classes are enriched with laboratory practice are
foreseen in the reports published in 2013 (computer science), 2014 (software engineering)
and 2016 (computer engineering). The suggestion for change is clear and incisive from the
CC2020, which suggests that exploring new methods of learning can augment the learning of
knowledge and allow students to interact with each other to develop new skill sets as well as
to develop both communication and teamwork skills by studying with others [19].

About programming languages and paradigms, 57,5% of the authors used a programming
language in the discipline under investigation. The summary of these data is identified in
Table 5 and from this information it was possible to correlate which programming paradigms
the courses chose to use.

G. Rodrigues, A. F. Monteiro, and A. Osório 4:11

A programming paradigm, according to [31] is a way to classify programming languages
according to their functionalities, it will determine how the program will be structured and
executed. Most of the research studies opted for the use of the object-oriented paradigm,
followed by five papers that addressed the structured paradigm and two multi-paradigm. The
courses that used one of the programming languages, also associated the use of an Integrated
Development Environment (IDE), a software for building applications that combines common
developer tools into a single graphical user interface (GUI). As an example were mentioned:
Spyder, Visual Studio, ArduinoStudio and Eclipse.

Table 5 Programming Languages used in CS1.

Programming Languages Paradigms References
C Structured [63, 1, 7, 52, 46]
C++ Object-oriented [39, 47, 10]
Java Object-oriented [25, 49, 13, 12]
Phyton Multi-paradigm [20, 21]
C# Object-oriented [15]

Research such as [20] and [10] also integrated the use of an Arduino, an electronic
prototyping platform which allows the development and control of interactive systems of low
cost. Another particularity was the adoption of a code review tools used by [25, 49, 1, 55, 7, 59]
e [48] in order to facilitate the work done by the teachers in correcting coding exercises,
consequence of a large number of students per class.

Despite the facilities offered by these tools, [7] and [6] proved the importance of a
qualitative feedback, so that students can identify not only where the syntax error is, but
also what cause the error. Others ([33, 58, 22, 15]) have made the option to use block-
based programming environments, such as: Alice, Inventior app, Blockly games, code.org,
gameblox, Pencil code, microsoft makecode and Scratch. These platforms allow more
accessible programming environments than programming languages, as they use graphical
interfaces that enable programs by dragging and dropping blocks.

Studies ([33, 34, 13, 28]) in which tools or code evaluation techniques have been developed,
did not mention methods of teaching or learning introductory programming. In contrast,
[21, 22] and [38] cited the use of one or more strategies in their research.

Although 54% of studies referenced the use of innovative methods, but most described
conducting uniquely a single experiment. Only [10] narrates a four-year experience with
students of computer engineering, software engineering and information systems courses.

6 Conclusion

A systematic review was performed with the analysis of 33 recently published studies
obtained from ACM, IEEE and ScienceDirect databases in order to understand in depth,
the introductory programming discipline in higher education.

For the first research question, the data revealed that most studies mentioned the name
“Introductory Program Course”. In addition to this, the acronym CS1 was also widely used
as a synonym for “introductory program course”. Thus, in future work, the authors will opt
to use the term and the acronym to indicate the first course in which students have the first
contact with the fundamentals of programming.

Throughout the history of computing, the structure of the CS1 discipline has been the
subject of intense debate. Many strategies have been proposed and numerous discussions
have been raised around. As explained, the analyzed papers present several approaches.

ICPEC 2022

4:12 Introductory Programming in Higher Education: A Systematic Literature Review

Some have focused on the core concepts of software development associated with a particular
programming language, others put aside the emphasis on programming and provide a broader
introduction to the concepts, with an emphasis on algorithmic. And the courses that
were involved in the development of these reflections were: Computer Science, Computer
Engineering, Software Engineering and Information System. This corroborates with the
CC2020 report about the level of importance that this discipline has in each course.

For Q2, there was a concern in stimulating technical skills linked to programming. On the
other hand, skills such as critical thinking, communication, creativity, persistence, voluntary
participation, perseverance, trust and teamwork emerged in twelve studies. 69% of the
papers that identified the use of some active method in teaching-learning CS1, identified
one or more social skills developed in programming practice. These data lead us to believe
that knowledge and skills, be they technical or social are clearly identified, transferred and
achieved through the practices described. However, research has not yet identified this triad
as part of a competency-based model.

Finally, in response to Q3, it was noted that instead of a particular programming language
or paradigm being favored, a list of programming languages and paradigms are successfully
used in the courses. As this systematic review collected data that refers only to CS1, it was
not possible to observe whether the analyzed courses address more than one paradigm in
their programs. But, restricting the students’ experience to just one paradigm can make
the transition to the next more complicated [64]. Shifting the focus from the programming
languages and paradigms to the tools, it was observed that the courses used different platforms,
that can bring the classroom learning closer to professional contexts, as is the case of IDE.

The same applies for teaching and learning strategies. Methods like pair programming, a
practice derived from the agile software (EXtreme programming - XP) and other methods
like problem-based and design-based learning, are techniques that provide the development
of the triad: knowledge, technical and social skills, in a practical context.

In conclusion, this systematic literature review in the area of introductory programming
education over the past 5 years, have explored a variety of themes in the computing field,
making at least the following contributions: identifying a standard identity for introductory
programming discipline; identifying the aspects of CS1 have been focus of publication;
summarizing the strategies, tools and technology used in teaching and learning programming;
and highlighting the evidence of the use of a competency-based model in learning-teaching
process.

This work is part of a PhD thesis and as future work the authors intend to further explore
these issues and to focus on how the dimensions of computational participation may influence
the learning processes of introductory programming, promoting the skills revealed in this
review.

7 Limitation of Our Systematic Review

This work shares the most limitations of systematic review method: the bias in selecting
articles and in data extraction due to our choices of eligibility criteria. Furthermore, other
limitation lies to the fact that the research was not supplemented with a complementary
process or made use of a quality evaluation to selecting papers. These limitations were
addressed developing a strong protocol that answer the search problem and using a combined
manual and automatic search. For ensuring the quality we selected papers based on the
characteristics of the studies, described in item “Data Classification” and used different types
of databases.

G. Rodrigues, A. F. Monteiro, and A. Osório 4:13

References
1 Ella Albrecht, Fabian Gumz, and Jens Grabowski. (R08) Experiences in Introducing Blended

Learning in an Introductory Programming Course. In Proceedings of the 3rd European
Conference of Software Engineering Education, ECSEE’18, pages 93–101, New York, NY,
USA, 2018. Association for Computing Machinery. event-place: Seeon/ Bavaria, Germany.
doi:10.1145/3209087.3209101.

2 Saleh Alhazbi and Osama Halabi. (R09) Flipping Introductory Programming Class: Potentials,
Challenges, and Research Gaps. In Proceedings of the 10th International Conference on
Education Technology and Computers, ICETC ’18, pages 27–32, New York, NY, USA, 2018.
Association for Computing Machinery. event-place: Tokyo, Japan. doi:10.1145/3290511.
3290552.

3 Mike Barkmin and Torsten Brinda. Analysis of programming assessments — building an
open repository for measuring competencies. In Koli Calling ’20: Proceedings of the 20th Koli
Calling International Conference on Computing Education Research, Koli Calling ’20, New
York, NY, USA, 2020. Association for Computing Machinery. doi:10.1145/3428029.3428039.

4 Brett A. Becker, Catherine Mooney, Amruth N. Kumar, and Sean Russell. (R26) A Simple,
Language-Independent Approach to Identifying Potentially At-Risk Introductory Programming
Students. In Australasian Computing Education Conference, ACE ’21, pages 168–175, New
York, NY, USA, 2021. Association for Computing Machinery. event-place: Virtual, SA,
Australia. doi:10.1145/3441636.3442318.

5 Brett A. Becker and Keith Quille. 50 years of cs1 at sigcse: A review of the evolution of
introductory programming education research. In Proceedings of the 50th ACM Technical
Symposium on Computer Science Education, SIGCSE ’19, pages 338–344, New York, NY,
USA, 2019. Association for Computing Machinery. doi:10.1145/3287324.3287432.

6 Jeremiah Blanchard, Christina Gardner-McCune, and Lisa Anthony. (R30) Dual Modality
Instruction & Programming Environments: Student Usage & Perceptions. In
Proceedings of the 52nd ACM Technical Symposium on Computer Science Education, SIGCSE
’21, pages 481–487, New York, NY, USA, 2021. Association for Computing Machinery. event-
place: Virtual Event, USA. doi:10.1145/3408877.3432434.

7 Yorah Bosse, David Redmiles, and Marco A. Gerosa. (R18) Pedagogical Content for Professors
of Introductory Programming Courses. In Proceedings of the 2019 ACM Conference on
Innovation and Technology in Computer Science Education, pages 429–435. Association for
Computing Machinery, New York, NY, USA, 2019. doi:10.1145/3304221.3319776.

8 Karen Brennan and Mitchel Resnick. New frameworks for studying and assessing the
development of computational thinking. In Proceedings of the 2012 annual meeting of the
American educational research association, Vancouver, Canada, volume 1, page 25, 2012.

9 Pearl Brereton, Barbara Kitchenham, David Budgen, Mark Turner, and Mohamed Khalil.
Lessons from applying the systematic literature review process within the software engineering
domain. Journal of Systems and Software, 80(4):571–583, 2007. doi:10.1016/j.jss.2006.
07.009.

10 David W. Brown, Sheikh K. Ghafoor, and Stephen Canfield. (R13) Instruction of Introductory
Programming Course Using Multiple Contexts. In Proceedings of the 23rd Annual ACM
Conference on Innovation and Technology in Computer Science Education, ITiCSE 2018, pages
147–152, New York, NY, USA, 2018. Association for Computing Machinery. event-place:
Larnaca, Cyprus. doi:10.1145/3197091.3197105.

11 Parmit Chilana, Celena Alcock, Shruti Dembla, Anson Ho, Ada Hurst, Brett Armstrong, and
Philip Guo. Perceptions of non-CS majors in intro programming: The rise of the conversational
programmer. In 2015 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), pages 251–259, 2015. doi:10.1109/VLHCC.2015.7357224.

12 Rodrigo Silva Duran, Jan-Mikael Rybicki, Arto Hellas, and Sanna Suoranta. (R24) Towards
a Common Instrument for Measuring Prior Programming Knowledge. In Proceedings of
the 2019 ACM Conference on Innovation and Technology in Computer Science Education,
pages 443–449. Association for Computing Machinery, New York, NY, USA, 2019. doi:
10.1145/3304221.3319755.

ICPEC 2022

https://doi.org/10.1145/3209087.3209101
https://doi.org/10.1145/3290511.3290552
https://doi.org/10.1145/3290511.3290552
https://doi.org/10.1145/3428029.3428039
https://doi.org/10.1145/3441636.3442318
https://doi.org/10.1145/3287324.3287432
https://doi.org/10.1145/3408877.3432434
https://doi.org/10.1145/3304221.3319776
https://doi.org/10.1016/j.jss.2006.07.009
https://doi.org/10.1016/j.jss.2006.07.009
https://doi.org/10.1145/3197091.3197105
https://doi.org/10.1109/VLHCC.2015.7357224
https://doi.org/10.1145/3304221.3319755
https://doi.org/10.1145/3304221.3319755

4:14 Introductory Programming in Higher Education: A Systematic Literature Review

13 Nikita Dümmel, Bernhard Westfechtel, and Matthias Ehmann. (R17) MuLE: A Multiparadigm
Language for Education. The Object-Oriented Part of the Language. In Proceedings of the 4th
European Conference on Software Engineering Education, ECSEE ’20, pages 32–41, New York,
NY, USA, 2020. Association for Computing Machinery. event-place: Seeon/Bavaria, Germany.
doi:10.1145/3396802.3396806.

14 Cenk Erdil and Darcy Ronan. Implementing CS0 with Computer Science Principles Curriculum.
In Proceedings of the 50th ACM Technical Symposium on Computer Science Education, SIGCSE
’19, page 1272, New York, NY, USA, 2019. Association for Computing Machinery. event-place:
Minneapolis, MN, USA. doi:10.1145/3287324.3293791.

15 Osman Erol and Adile Aşkım Kurt. (R22) The effects of teaching programming with scratch
on pre-service information technology teachers’ motivation and achievement. Computers in
Human Behavior, 77:11–18, 2017. doi:10.1016/j.chb.2017.08.017.

16 Katia Romero Felizardo, Emilia Mendes, Marcos Kalinowski, Érica Ferreira Souza, and
Nandamudi L. Vijaykumar. Using forward snowballing to update systematic reviews in
software engineering. In Proceedings of the 10th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, ESEM ’16, New York, NY, USA, 2016.
Association for Computing Machinery. doi:10.1145/2961111.2962630.

17 José Figueiredo and Francisco García-Peñalvo. (R32) Teaching and Learning Tools for
Introductory Programming in University Courses. In 2021 International Symposium on
Computers in Education (SIIE), pages 1–6, 2021. doi:10.1109/SIIE53363.2021.9583623.

18 The Joint Task Force for Computing Curricula 2001. Computing curricula 2001. Journal on
Educational Resources in Computing (JERIC), 1(3ª), 2001. Publisher: ACM New York, NY,
USA.

19 The Joint Task Force for Computing Curricula 2020. Computing Curricula 2020: Paradigms
for Global Computing Education. Association for Computing Machinery, New York, NY, USA,
2020.

20 G. Cooper, R. Walker, E. Hill, and N. Waksmanski. (R12) Incorporating IoT and Data
Analytics in an Introductory Programming Course. In 2020 15th International Conference on
Computer Science & Education (ICCSE), pages 169–175, August 2020. Journal Abbreviation:
2020 15th International Conference on Computer Science & Education (ICCSE). doi:10.
1109/ICCSE49874.2020.9201863.

21 Luke Gusukuma, Austin Cory Bart, Dennis Kafura, and Jeremy Ernst. (R16) Misconception-
Driven Feedback: Results from an Experimental Study. In Proceedings of the 2018 ACM
Conference on International Computing Education Research, ICER ’18, pages 160–168, New
York, NY, USA, 2018. Association for Computing Machinery. event-place: Espoo, Finland.
doi:10.1145/3230977.3231002.

22 H. Amer and S. Harous. (R20) Smart-Learning Course Transformation for an Introductory
Programming Course. In 2017 IEEE 17th International Conference on Advanced Learning
Technologies (ICALT), pages 463–465, July 2017. Journal Abbreviation: 2017 IEEE 17th
International Conference on Advanced Learning Technologies (ICALT). doi:10.1109/ICALT.
2017.91.

23 Matthew Hertz. What Do "CS1" and "CS2" Mean? Investigating Differences in the Early
Courses. In Proceedings of the 41st ACM Technical Symposium on Computer Science Education,
SIGCSE ’10, pages 199–203, New York, NY, USA, 2010. Association for Computing Machinery.
event-place: Milwaukee, Wisconsin, USA. doi:10.1145/1734263.1734335.

24 Theresia Devi Indriasari, Andrew Luxton-Reilly, and Paul Denny. Improving student peer
code review using gamification. In Australasian Computing Education Conference, ACE
’21, pages 80–87, New York, NY, USA, 2021. Association for Computing Machinery. doi:
10.1145/3441636.3442308.

25 J. Skalka, M. Drlík, and J. Obonya. (R05) Automated Assessment in Learning and
Teaching Programming Languages using Virtual Learning Environment. In 2019 IEEE
Global Engineering Education Conference (EDUCON), pages 689–697, April 2019. Journal
Abbreviation: 2019 IEEE Global Engineering Education Conference (EDUCON). doi:
10.1109/EDUCON.2019.8725127.

https://doi.org/10.1145/3396802.3396806
https://doi.org/10.1145/3287324.3293791
https://doi.org/10.1016/j.chb.2017.08.017
https://doi.org/10.1145/2961111.2962630
https://doi.org/10.1109/SIIE53363.2021.9583623
https://doi.org/10.1109/ICCSE49874.2020.9201863
https://doi.org/10.1109/ICCSE49874.2020.9201863
https://doi.org/10.1145/3230977.3231002
https://doi.org/10.1109/ICALT.2017.91
https://doi.org/10.1109/ICALT.2017.91
https://doi.org/10.1145/1734263.1734335
https://doi.org/10.1145/3441636.3442308
https://doi.org/10.1145/3441636.3442308
https://doi.org/10.1109/EDUCON.2019.8725127
https://doi.org/10.1109/EDUCON.2019.8725127

G. Rodrigues, A. F. Monteiro, and A. Osório 4:15

26 Yasmin B. Kafai and Quinn Burke. Computational Participation: Teaching Kids to Create and
Connect Through Code. In Peter J. Rich and Charles B. Hodges, editors, Emerging Research,
Practice, and Policy on Computational Thinking, pages 393–405. Springer International
Publishing, Cham, 2017. doi:10.1007/978-3-319-52691-1_24.

27 Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. A systematic literature review of
automated feedback generation for programming exercises. ACM Trans. Comput. Educ., 19(1),
September 2018. doi:10.1145/3231711.

28 Natalie Kiesler. (R25) Towards a Competence Model for the Novice Programmer Using
Bloom’s Revised Taxonomy - An Empirical Approach. In Proceedings of the 2020 ACM
Conference on Innovation and Technology in Computer Science Education, ITiCSE ’20, pages
459–465, New York, NY, USA, 2020. Association for Computing Machinery. event-place:
Trondheim, Norway. doi:10.1145/3341525.3387419.

29 Barbara Kitchenham and Stuart Charters. Guidelines for performing systematic literature
reviews in software engineering. Citeseer, 2007.

30 Elliot Koffman, Philip Miller, and Caroline Wardle. Recommended Curriculum for CS1, 1984.
Commun. ACM, 27(10):998–1001, October 1984. Place: New York, NY, USA Publisher:
Association for Computing Machinery. doi:10.1145/358274.358279.

31 Sirojiddin Komolov, Nursultan Askarbekuly, and Manuel Mazzara. An Empirical Study of
Multi-Threading Paradigms Reactive Programming vs Continuation-Passing Style. In 2020
the 3rd International Conference on Computing and Big Data, ICCBD ’20, pages 37–41, New
York, NY, USA, 2020. Association for Computing Machinery. event-place: Taichung, Taiwan.
doi:10.1145/3418688.3418695.

32 Patrick Korber and Renate Motschnig. The effects of pair-programming in introductory
programming courses with visual and text-based languages. In 2021 IEEE Frontiers in
Education Conference (FIE), pages 1–9, 2021. doi:10.1109/FIE49875.2021.9637186.

33 L. Carlos Begosso, L. Ricardo Begosso, and N. Aragao Christ. (R03) An analysis of block-based
programming environments for CS1. In 2020 IEEE Frontiers in Education Conference (FIE),
pages 1–5, October 2020. Journal Abbreviation: 2020 IEEE Frontiers in Education Conference
(FIE). doi:10.1109/FIE44824.2020.9273982.

34 L. M. de Souza, B. M. Ferreira, I. M. Félix, L. de Oliveira Brandão, A. A. F. Brandão,
and P. A. Pereira. (R14) Mathematics and programming: marriage or divorce? In 2019
IEEE World Conference on Engineering Education (EDUNINE), pages 1–5, March 2019.
Journal Abbreviation: 2019 IEEE World Conference on Engineering Education (EDUNINE).
doi:10.1109/EDUNINE.2019.8875849.

35 Philip I.S. Lei and António José Mendes. A systematic literature review on knowledge tracing
in learning programming. In 2021 IEEE Frontiers in Education Conference (FIE), pages 1–7,
2021. doi:10.1109/FIE49875.2021.9637323.

36 Madeleine Lorås, Guttorm Sindre, Hallvard Trætteberg, and Trond Aalberg. Study behavior
in computing education – a systematic literature review. ACM Trans. Comput. Educ., 22(1),
October 2021. doi:10.1145/3469129.

37 Andrew Luxton-Reilly, Simon, Ibrahim Albluwi, Brett A. Becker, Michail Giannakos,
Amruth N. Kumar, Linda Ott, James Paterson, Michael James Scott, Judy Sheard, and
Claudia Szabo. Introductory programming: A systematic literature review. In Proceedings
Companion of the 23rd Annual ACM Conference on Innovation and Technology in Computer
Science Education, ITiCSE 2018 Companion, pages 55–106, New York, NY, USA, 2018.
Association for Computing Machinery. doi:10.1145/3293881.3295779.

38 M. F. Ercan and D. Sale. (R21) Teaching programming: An evidence based and reflective
approach. In 2020 IEEE REGION 10 CONFERENCE (TENCON), pages 997–1001, November
2020. Journal Abbreviation: 2020 IEEE REGION 10 CONFERENCE (TENCON). doi:
10.1109/TENCON50793.2020.9293812.

ICPEC 2022

https://doi.org/10.1007/978-3-319-52691-1_24
https://doi.org/10.1145/3231711
https://doi.org/10.1145/3341525.3387419
https://doi.org/10.1145/358274.358279
https://doi.org/10.1145/3418688.3418695
https://doi.org/10.1109/FIE49875.2021.9637186
https://doi.org/10.1109/FIE44824.2020.9273982
https://doi.org/10.1109/EDUNINE.2019.8875849
https://doi.org/10.1109/FIE49875.2021.9637323
https://doi.org/10.1145/3469129
https://doi.org/10.1145/3293881.3295779
https://doi.org/10.1109/TENCON50793.2020.9293812
https://doi.org/10.1109/TENCON50793.2020.9293812

4:16 Introductory Programming in Higher Education: A Systematic Literature Review

39 B. Marín, J. Frez, J. Cruz-Lemus, and M. Genero. (R04) An Empirical Investigation on
the Benefits of Gamification in Programming Courses. ACM Trans. Comput. Educ., 19(1),
November 2018. Place: New York, NY, USA Publisher: Association for Computing Machinery.
doi:10.1145/3231709.

40 Rodrigo Pessoa Medeiros, Geber Lisboa Ramalho, and Taciana Pontual Falcão. A systematic
literature review on teaching and learning introductory programming in higher education.
IEEE Transactions on Education, 62(2):77–90, 2019. doi:10.1109/TE.2018.2864133.

41 Nathan Mills, Allen Wang, and Nasser Giacaman. (R31) Visual Analogy for Understanding
Polymorphism Types. In Australasian Computing Education Conference, ACE ’21, pages
48–57, New York, NY, USA, 2021. Association for Computing Machinery. event-place: Virtual,
SA, Australia. doi:10.1145/3441636.3442304.

42 Elisa Yumi Nakagawa, Kátia Romero Felizardo Scannavino, Sandra Camargo Pinto Ferraz
Fabbri, and Fabiano Cutigi Ferrari. Revisão sistemática da literatura em engenharia de
software: teoria e prática. Elsevier Brasil, 2017.

43 Task Group on Computer Engineering Curricula. Curriculum Guidelines for Undergraduate
Degree Programs in Computer Engineering. Technical report, Association for Computing
Machinery, New York, NY, USA, 2016.

44 Task Group on Computer Science Curricula. Computer Science Curricula 2013: Curriculum
Guidelines for Undergraduate Degree Programs in Computer Science. Association for Computing
Machinery, New York, NY, USA, 2013.

45 Task Group on Information Technology Curricula. Information Technology Curricula
2017: Curriculum Guidelines for Baccalaureate Degree Programs in Information Technology.
Association for Computing Machinery, New York, NY, USA, 2017.

46 P. E. Martínez López, D. Ciolek, G. Arévalo, and D. Pari. (R23) The GOBSTONES method
for teaching computer programming. In 2017 XLIII Latin American Computer Conference
(CLEI), pages 1–9, September 2017. Journal Abbreviation: 2017 XLIII Latin American
Computer Conference (CLEI). doi:10.1109/CLEI.2017.8226428.

47 Fredi E. Palominos, Seomara K. Palominos, Claudia A. Durán, Felisa M. Córdova, and
Hernán Díaz. (R06) Challenges in the use of a support tool with automated review in
student learning of programming courses. Procedia Computer Science, 139:424–431, 2018.
doi:10.1016/j.procs.2018.10.260.

48 Filipe Dwan Pereira, Samuel C. Fonseca, Elaine H. T. Oliveira, Alexandra I. Cristea, Henrik
Bellhäuser, Luiz Rodrigues, David B. F. Oliveira, Seiji Isotani, and Leandro S. G. Carvalho.
(R33) Explaining Individual and Collective Programming Students’ Behavior by Interpreting
a Black-Box Predictive Model. IEEE Access, 9:117097–117119, 2021. doi:10.1109/ACCESS.
2021.3105956.

49 Reinhold Plösch and Cornelia Neumüller. (R07) Does Static Analysis Help Software Engineering
Students? In Proceedings of the 2020 9th International Conference on Educational and
Information Technology, ICEIT 2020, pages 247–253, New York, NY, USA, 2020. Association
for Computing Machinery. event-place: Oxford, United Kingdom. doi:10.1145/3383923.
3383957.

50 James Prather, Raymond Pettit, Kayla McMurry, Alani Peters, John Homer, and Maxine
Cohen. (R15) Metacognitive Difficulties Faced by Novice Programmers in Automated
Assessment Tools. In Proceedings of the 2018 ACM Conference on International Computing
Education Research, ICER ’18, pages 41–50, New York, NY, USA, 2018. Association for
Computing Machinery. event-place: Espoo, Finland. doi:10.1145/3230977.3230981.

51 Vijayalakshmi Ramasamy, Hakam W. Alomari, James D. Kiper, and Geoffrey Potvin. (R02) A
Minimally Disruptive Approach of Integrating Testing into Computer Programming Courses.
In Proceedings of the 2nd International Workshop on Software Engineering Education for
Millennials, SEEM ’18, pages 1–7, New York, NY, USA, 2018. Association for Computing
Machinery. event-place: Gothenburg, Sweden. doi:10.1145/3194779.3194790.

https://doi.org/10.1145/3231709
https://doi.org/10.1109/TE.2018.2864133
https://doi.org/10.1145/3441636.3442304
https://doi.org/10.1109/CLEI.2017.8226428
https://doi.org/10.1016/j.procs.2018.10.260
https://doi.org/10.1109/ACCESS.2021.3105956
https://doi.org/10.1109/ACCESS.2021.3105956
https://doi.org/10.1145/3383923.3383957
https://doi.org/10.1145/3383923.3383957
https://doi.org/10.1145/3230977.3230981
https://doi.org/10.1145/3194779.3194790

G. Rodrigues, A. F. Monteiro, and A. Osório 4:17

52 S. M. Souza and R. A. Bittencourt. (R19) Report of a CS1 Course for Computer Engineering
Majors Based on PBL. In 2020 IEEE Global Engineering Education Conference (EDUCON),
pages 837–846, April 2020. Journal Abbreviation: 2020 IEEE Global Engineering Education
Conference (EDUCON). doi:10.1109/EDUCON45650.2020.9125121.

53 Leonardo Silva, António José Mendes, and Anabela Gomes. Computer-supported collaborative
learning in programming education: A systematic literature review. In 2020 IEEE Global
Engineering Education Conference (EDUCON), pages 1086–1095, 2020. doi:10.1109/
EDUCON45650.2020.9125237.

54 Sheryl Sorby. A Course in Spatial Visualization and its Impact on the Retention of Female
Engineering Students. Journal of Women and Minorities in Science and Engineering, 7:50,
January 2001. doi:10.1615/JWomenMinorScienEng.v7.i2.50.

55 Kristin Stephens-Martinez and Armando Fox. (R10) Giving Hints is Complicated:
Understanding the Challenges of an Automated Hint System Based on Frequent Wrong Answers.
In Proceedings of the 23rd Annual ACM Conference on Innovation and Technology in Computer
Science Education, ITiCSE 2018, pages 45–50, New York, NY, USA, 2018. Association for
Computing Machinery. event-place: Larnaca, Cyprus. doi:10.1145/3197091.3197102.

56 Shelsey Sullivan, Hillary Swanson, and John Edwards. (R28) Student Attitudes Toward Syntax
Exercises in CS1. In Proceedings of the 52nd ACM Technical Symposium on Computer Science
Education, SIGCSE ’21, pages 782–788, New York, NY, USA, 2021. Association for Computing
Machinery. event-place: Virtual Event, USA. doi:10.1145/3408877.3432399.

57 Lasang Jimba Tamang, Zeyad Alshaikh, Nisrine Ait Khayi, Priti Oli, and Vasile Rus. (R29) A
Comparative Study of Free Self-Explanations and Socratic Tutoring Explanations for Source
Code Comprehension. In Proceedings of the 52nd ACM Technical Symposium on Computer
Science Education, SIGCSE ’21, pages 219–225, New York, NY, USA, 2021. Association for
Computing Machinery. event-place: Virtual Event, USA. doi:10.1145/3408877.3432423.

58 Damla Topalli and Nergiz Ercil Cagiltay. (R11) Improving programming skills in engineering
education through problem-based game projects with Scratch. Computers & Education,
120:64–74, 2018. doi:10.1016/j.compedu.2018.01.011.

59 Jacqueline Whalley, Amber Settle, and Andrew Luxton-Reilly. (R27) Novice Reflections on
Debugging. In Proceedings of the 52nd ACM Technical Symposium on Computer Science
Education, SIGCSE ’21, pages 73–79, New York, NY, USA, 2021. Association for Computing
Machinery. event-place: Virtual Event, USA. doi:10.1145/3408877.3432374.

60 Jeannette Wing. Computational thinking. Communications of the ACM, 49(3):33–35, 2006.
Publisher: ACM New York, NY, USA.

61 Jeannette Wing. Computational Thinking. J. Comput. Sci. Coll., 24(6):6–7, June 2009. Place:
Evansville, IN, USA Publisher: Consortium for Computing Sciences in Colleges.

62 Lan Wu, Yang Liu, Axi Wang, YuanLi Gong, and ShengQuan Yu. An analysis of Interaction
of Cognitive and Social Aspects during Collaborative Problem Solving. In 2021 International
Conference on Advanced Learning Technologies (ICALT), pages 105–107, 2021. doi:10.1109/
ICALT52272.2021.00039.

63 Jooyong Yi, Umair Z. Ahmed, Amey Karkare, Shin Hwei Tan, and Abhik Roychoudhury.
(R01) A Feasibility Study of Using Automated Program Repair for Introductory Programming
Assignments. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2017, pages 740–751, New York, NY, USA, 2017. Association for
Computing Machinery. event-place: Paderborn, Germany. doi:10.1145/3106237.3106262.

64 Daeng Zuhud. Some Prospective Approaches for the Shift of Programming Paradigms.
In Proceedings of the 2013 International Conference on Information Systems and Design
of Communication, ISDOC ’13, pages 87–93, New York, NY, USA, 2013. Association for
Computing Machinery. event-place: Lisboa, Portugal. doi:10.1145/2503859.2503873.

ICPEC 2022

https://doi.org/10.1109/EDUCON45650.2020.9125121
https://doi.org/10.1109/EDUCON45650.2020.9125237
https://doi.org/10.1109/EDUCON45650.2020.9125237
https://doi.org/10.1615/JWomenMinorScienEng.v7.i2.50
https://doi.org/10.1145/3197091.3197102
https://doi.org/10.1145/3408877.3432399
https://doi.org/10.1145/3408877.3432423
https://doi.org/10.1016/j.compedu.2018.01.011
https://doi.org/10.1145/3408877.3432374
https://doi.org/10.1109/ICALT52272.2021.00039
https://doi.org/10.1109/ICALT52272.2021.00039
https://doi.org/10.1145/3106237.3106262
https://doi.org/10.1145/2503859.2503873

Feedback Systems for Students Solving Problems
Related to Polynomials of Degree Two or Lower
Luke Adrian Gubbins Bayzid ! Ï

Campus Universitário de Santiago, University of Aveiro, Portugal
Thematic Line GEOMETRIX, University of Aveiro, Portugal

Ana Maria Reis D’Azevedo Breda ! Ï

Campus Universitário de Santiago, University of Aveiro, Portugal
Center for Research & Development in Mathematics and Applications,
University of Aveiro, Portugal

Eugénio Alexandre Miguel Rocha ! Ï

Campus Universitário de Santiago, University of Aveiro, Portugal
Center for Research & Development in Mathematics and Applications,
University of Aveiro, Portugal

José Manuel Dos Santos Dos Santos 1 ! Ï

Centre for Research and Innovation in Education (inED),
Escola Superior de Educação – Politechnic of Porto, Portugal

Abstract
In this paper, we present the first attempts to design and implement an algorithm that effectively
responds to errors in a student’s resolution in problems related to polynomials of degree two or
lower. The algorithm analyzes the student’s input by comparing pre-established resolution patterns.
The obtained results of the implementation show that the algorithm is effective at the classes of
problems created within the project’s scope. Future work will concern the expansion of the number
of classes to other common types of problems, such as higher-degree polynomials, and its use at a
large scale using open-source software with CAS capabilities.

2012 ACM Subject Classification Mathematics of computing; Computing methodologies

Keywords and phrases Automatic feedback, Algorithms, Algebraic systems

Digital Object Identifier 10.4230/OASIcs.ICPEC.2022.5

Funding This research was supported by the Center for Research and Development in Mathematics
and Applications (CIDMA) through the Portuguese Foundation for Science and Technology (FCT –
Fundação para a Ciência e a Tecnologia), and within the scope of the research conducted by Thematic
Line GEOMETRIX, references UIDB/04106/2020 and UIDP/04106/2020; The Centre for Research
and Innovation in Education (inED), through the FCT – Fundação para a Ciência e a Tecnologia,
I.P., under the scope of the project UIDB/05198/2020; and Organization of Ibero-American States
for Education, Science and Culture (OEI).

1 Introduction

Feedback is crucial in the development of a student’s ability to validly reason in any subject
of study [2, 3, 1]. Consequently, the detection of mistakes made by students while solving a
problem is of extreme importance, as it permits the personalization of feedback, highlighting
aspects of the problem that the student should pay more attention to. Once a student knows
which issues they should focus on, studying goes from a task about haphazardly improving
at a set of problems into recognizing and formulating specific ideas associated to the material
at hand, facilitating the identification and communication of issues.

1 Corresponding author.
© Luke Adrian Gubbins Bayzid, Ana Maria Reis D’Azevedo Breda, Eugénio Alexandre Miguel Rocha,
and José Manuel Dos Santos Dos Santos;
licensed under Creative Commons License CC-BY 4.0

Third International Computer Programming Education Conference (ICPEC 2022).
Editors: Alberto Simões and João Carlos Silva; Article No. 5; pp. 5:1–5:10

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:luke.adrian@ua.pt
https://www.ua.pt/pt/p/80648791
https://orcid.org/0000-0003-2120-1752
mailto:ambreda@ua.pt
https://www.ua.pt/pt/p/10312469
https://orcid.org/0000-0001-7076-707X
mailto:eugenio@ua.pt
https://www.ua.pt/pt/p/10315682
https://orcid.org/0000-0003-3628-6795
mailto:santosdossantos@ese.ipp.pt
https://www.cienciavitae.pt/8B10-D3D1-1373
https://orcid.org/0000-0002-6830-6503
https://doi.org/10.4230/OASIcs.ICPEC.2022.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

5:2 Feedback Systems for Students Solving Problems

Given the number of students assigned to a class, it can be difficult or even impossible for
a teacher to provide each student with the advice needed to improve at the subject at hand,
and this situation becomes even more complex for students with difficulties in expressing
their doubts, some of them choosing to focus only on autonomous study as a consequence.

Unlike many other fields, mathematics deals with structured forms that have definite
rules, allowing anyone, even computers, to modify previous structures into others. While
generating interesting structures continues to be an issue, verifying them automatically is
something that computers excel at.

In this article, we propose a general method to generate feedback based on the input of
an ordered list of structured equations provided by a student, presenting a particular case of
using this procedure for problems involving polynomials of degree two or lower.

2 Feedback

In general, feedback can be defined as a piece of information related to the previous results of
a particular task that reflects what ought to be improved. For example, information detailing
only the subject’s achieved score would be considered as a form of feedback [7].

Given that definition, one aspect to focus on would be the quality of the information
provided. In particular, the information that we decided to tackle in this article concerns
only the quality of the result or the method used by the student; this restriction was made
to ensure the feasibility of the project within its intended scope. An example of a type of
feedback that falls outside of those two categories would be recommendations regarding the
mindsets that a student should consider while studying.

With regard to education, feedback seeks to increase the long-term score of a student’s
ability to perform the tasks associated to the subject being taught. From various experiments
performed over the years using a variety of methods, the positive effects of feedback within
education have been empirically validated with a high degree of statistical certainty [8].
However, different categories of feedback and subsets thereof have also proven to be more
influential than others [5, 6], necessitating a more particular analysis of the chosen categories
for the project.

Using our categorizations of feedback, we were interested in knowing how much feedback
regarding the student’s methodology would benefit them over merely providing an aptitude
score. In accordance with relevant research [4], while the results aren’t drastic enough to
cause a sudden shift in the education system, the measurable increase in providing both
types of feedback was sufficient enough for us to deem it as a worthwhile endeavor.

Though effective feedback can take many forms [2], only the lesser of them tend to get
implemented into software that’s meant to support the education of students. In particular,
one commonly observed detail about many of those programs is that they can only discern
whether or not an answer is correct; some of them might also provide a solution written out
by a professor. While having a curated solution can definitely help students struggling to
answer questions aptly, it might not help them with understanding the subject at hand, only
to memorize a list of steps that lead to a correct answer. Though a proper understanding is
not the goal of all students, having such might help them generalize what they’re taught,
improving performance in similar kinds of questions over a variety of circumstances.

3 Motivation and Problem

The difficulty in solving this particular kind of problem primarily stems from automating the
process of identifying a mistake and appropriately associating it to its respective feedback.
While the former problem can be solved by using a sufficiently powerful CAS, the fact that a

L. A. G. Bayzid, A. M. R. D. Breda, E. A. M. Rocha, and J. M. D. S. Dos Santos 5:3

problem can be solved through a variety of means and with varying amounts of detail makes
the latter problem a bit less trivial to solve. For example, the two mistaken resolutions
x + 1 = 0 ⇐⇒ x = 1 and x + 1 = 0 ⇐⇒ x + 1 − 1 = 0 + 1 ⇐⇒ x = 1 have different
lengths and vary in detail but still display the misuse of signs being the source of the issue.
As such, the feedback returned by the algorithm should be invariant to such changes.

Our motivation to implement a system based on axiom schemata and tree substitution
came from the necessity to generate structured data using simple rules. Originally, we
believed that it would be too computationally inefficient, but further tests showed that a
naive implementation would suffice for the sample of rules necessary to represent a subset
of the types of mistakes performed by a student in the given task. Later on, different
ideas for optimization were considered but deemed unnecessary for the algorithm’s first
implementation; more research will be made in that regard.

Given the initial goal of managing polynomials of degree two or lower, a previous attempt
used the roots of the provided polynomial to construct a canonical representation by expanding
its factored form and dividing all coefficients by the value of the leading coefficient. From
there, comparisons would be made between that representation and the one of the step at
which the student made a mistake. However, due to its lack of generality beyond polynomials,
this algorithm was dropped in favor of the one detailed in this article.

An idea that came from that previous attempt was to automatically encode every step in
a canonical representation; in particular, the canonical representations would be constructed
in a way that would facilitate the detection of mistaken symbols, such as inserting a minus
instead of a plus. This idea was also abandoned due to the lack of a general pattern regarding
what might facilitate the detection of mistakes for more complicated kinds of equations.

4 Algorithm

4.1 Overview
The algorithm described in this article consists in four steps: parsing and cleaning text,
validating the equality of the solution sets of adjacent steps, generating paths that match
the student’s mistake, and providing adequate feedback. Following the presented order, each
of the following paragraphs will detail the overview of the process.

The parsing algorithm that we implemented consists of a collection of metrics that decide
whether or not to include a character of the input based on surrounding characters and if it
belongs to a curated set of expected characters. After that, a structured tree is formed using
the order of operations that are either implicit or explicit through the use of parentheses and
common syntax.

The goal of a validation system is to ensure that each step is entailed from those that
came before it. A property that facilitates this goal is that equations can be marked as
equivalent if they have equal solution sets. Knowing that, our method uses a CAS to search
for the first step in which a mistake was made by testing the equality of the solution sets
of each ordered pair of consecutive steps. For a formalization thereof, see Algorithm 1; it
should be noted that Ω is a function that returns the solution set associated to a step and
that Steps is a tuple representing each equation written down by the student in order.

Once the first two equations in which a mistake happened have been identified, the system
will take the first of them and generate all of the possible expressions from it using the
supplied patterns; it will repeat that process for a finite number of steps. Finally, it will
aggregate all of the paths with solution sets that are equal to the solution set of the mistaken
step.

ICPEC 2022

5:4 Feedback Systems for Students Solving Problems

Algorithm 1 Determine First Erroneous Step.

1: for i = 1, . . . , |Steps| − 1 do
2: if Ω(Stepsi) ̸= Ω(Stepsi+1) then
3: return (Stepsi, Stepsi+1, i + 1)
4: end if
5: end for
6: return ()

Given that each pattern used in the previous step has an associated flag, the final aspect
of the algorithm is to return the feedback associated to each of the generated paths in natural
language.

Figure 1 shows an overview of the algorithm’s logic.

Start

Text

Generate
Structured

Tree

Are the steps valid? Return No Mistakes End

Determine
First

Erroneous
Step

Generate Paths

Filter by Matches

Are there matches? Return Default Mistake End

Return Matches

End

Yes.

No.

No.

Yes.

Figure 1 Flowchart of the Algorithm’s Logic.

L. A. G. Bayzid, A. M. R. D. Breda, E. A. M. Rocha, and J. M. D. S. Dos Santos 5:5

4.2 Patterns
Within our implementation, expressions are represented as trees with subtrees that are
determined by the order of operations presented within the mathematical expression. In the
case of polynomials, only functions of arity two or lower need to be considered, so each node
in a polynomial expression need only have two or three children, where those children can be
strings or other trees.

Each pattern consists of an axiom schema that reflects a particular deformation that can
be applied to an expression. Our implementation represents axiom schemata as pairs of trees
consisted only of constants, schematic variables, and subtrees. Constants are strings that must
be exactly matched to have the pattern apply, whereas schematic variables are strings that
are uniquely denoted using a dollar symbol before their declaration and can be substituted by
a constant or a tree; subtrees are used to encode the order of operations within an expression.
For example, ((”$1”, ” + ”, ”$2”), (”$2”, ” + ”, ”$1”)) would represent the commutativity of
addition, and ((”$1”, ” ∗ ”, (”$2”, ” + ”, ”$3”)), ((”$1”, ” ∗ ”, ”$2”), ” + ”, (”$1”, ” ∗ ”, ”$3”)))
would represent the distributive property of multiplication over addition.

4.3 Applying Patterns
Similar to many previous approaches regarding applying rules to structured data, using an
ordered list of strings denoting schematic variables, constants, and other lists of the same
type to represent a tree, applying a pattern merely requires verifying several conditions
before performing a substitution.

A necessary property to apply patterns is to detect when they can be applied. This can
be achieved by having the tree representing the pattern be a generalization of the structure
that we want to deform, which primarily pertains to the order of its subtrees and schematic
variables. We say that X is a generalization of Y , which we denote as X ≥ Y , if and only if

|X| = |Y | ∧ ∀i ∈ [|X|], Xi ≥ Yi ∨ (Xi ∈ VX ∧ Yi ̸∈ E),

where VX is the set of schematic variables of X and of all of the subtrees thereof; should X

be a string, VX will return a set containing only X if and only if X is a schematic variable,
returning an empty set otherwise. Another aspect of importance is that if X and Y are
strings, then X ≥ Y if and only if X is a schematic variable or syntactically equal to Y .
Finally, E represents the set of strings that cannot be considered for substitutions; our
implementation disregarded operators, functions, and predicates.

Let S be the set of all strings. Given that X ≥ Y , the next step is to generate a set
containing all of the differences between them. This can be done by defining

∆(X, Y) =

{(X, Y)} X ∈ S ∧X ̸= Y⋃
i∈[|X|]

∆(Xi, Yi) X ̸∈ S ∧X ̸= Y

∅ X = Y

.

We say that a set of differences is consistent if and only if it can be constructed into a
function. In other words, ∀x, y ∈ ∆(X, Y), x1 = y1 =⇒ x2 = y2, which we represent as
ϕ(∆(X, Y)).

Under the assumption that it’s consistent, we need a function to apply the set of differences
provided by ∆ to a particular tree. Denoting it by α, we can define it as

α(X, ∆(X, Y)) =

∆(X, Y)i,2 ∃i ∈ [|∆(X, Y)|], X = ∆(X, Y)i,1

X ∀i ∈ [|∆(X, Y)|], X ̸= ∆(X, Y)i,1 ∧X ∈ S

(α(X1, ∆(X, Y)), . . . , α(X|X|, ∆(X, Y))) ∀i ∈ [|∆(X, Y)|], X ̸= ∆(X, Y)i,1 ∧X ̸∈ S

.

ICPEC 2022

5:6 Feedback Systems for Students Solving Problems

Having defined all of the above, the substitution function can, therefore, be defined as

σ(X, (Y, Y ′)) =
{

α(Y ′, ∆(Y, X)) Y ≥ X ∧ ϕ(∆(Y, X))
X Y ̸≥ X ∨ ¬ϕ(∆(Y, X))

,

where (Y, Y ′) represents a pattern.

4.4 Generating Paths
A path consists of an ordered list of trees. Given a particular axiom schema, our implementa-
tion generates a path by starting from the top node, creating one tree where the axiom schema
is not applied and one where it is applied, and applying this algorithm recursively to each
of the possibilities generated by the previous step. Finally, once all of the axiom schemata
have been applied, all of the generated paths are collected and taken into consideration for
the next application of the same set of axiom schemata, and this process repeats itself for a
number of steps chosen by the user. More precisely, letting

Σ(X, (Y, Y ′)) =

{X, σ(X, (Y, Y ′))} ∪
⋃

i∈[|X|]
{(. . . , Xi−1, x, Xi+1, . . .) | x ∈ Σ(Xi, (Y, Y ′))} X ̸∈ S

{σ(X, (Y, Y ′))} X ∈ S
,

we can generate all possibilities of the application of a pattern to a particular tree. From
that, denoting A as the last step before the first mistake, we can start with an initial set T0,
where T0 = {(A)}. As such, to generate the paths, we need only state that

Ti =
⋃

((x1,...,xm),Y)∈Ti−1×P

{(x1, . . . , xm, y) | y ∈ Σ(xm, Y)},

where P represents the set of all specified patterns for the algorithm. This process of iterating
Ti happens until i reaches a desired value.

For an overview of this section in pseudocode, see Algorithm 2.

Algorithm 2 Generate Paths.

1: Paths← {(Stepsk, ())}
2: for i = 1, . . . , n do
3: Copy ← Paths

4: for ((x1, p1), . . . , (xi, pi)) ∈ Copy do
5: for j ∈ Patterns do
6: Paths← Paths ∪ {((x1, p1), . . . , (xi, pi), (x, j)) | x ∈ Σ(xi, j)}
7: end for
8: end for
9: end for

10: return Paths

4.5 Returning Feedback
Once all paths have been generated, the algorithm picks only the ones whose final step has a
solution set that’s equal to the solution set of the student’s mistaken step.

It is important to note that since only the solution sets need to be equal, which is not as
strict as requiring syntactic equality between a generated step and the subsequent step, the
algorithm is robust against not having all steps provided or a general lack of detail. While

L. A. G. Bayzid, A. M. R. D. Breda, E. A. M. Rocha, and J. M. D. S. Dos Santos 5:7

this might come at the cost of potentially returning irrelevant feedback when the algorithm is
equipped with patterns that conditionally return the same solution sets without having the
same sort of feedback associated, we believe that certain heuristics or statistical models could
be used to manage conflicts of that sort by ranking each piece of returned feedback. To that
end, under the assumption that the probability that a student will perform many mistakes is
low, we chose to implement a heuristic that sorts the list of matches by the number of steps
associated to each match in ascending order, putting at the forefront the matches that are
considered more common. While many other heuristics were considered to rank the matches,
they were not a part of what was researched.

After the matches have been filtered, a function that maps each used pattern to its
associated feedback is used. For a complete picture of the algorithm, see Algorithm 3.

Algorithm 3 Feedback Algorithm.

1: Error ← Determine F irst Erroneous Step(Steps)
2: if Error ̸= () then
3: Paths← {p ∈ Generate Paths(Error1, Patterns) | Ω(p|p|,1) = Ω(Error2)}
4: if |Paths| > 0 then
5: return {(Feedback(p1), . . . , F eedback(pn), Error3) | ((x1, p1), . . . , (xn, pn)) ∈

Paths}
6: else
7: return {(Error3)}
8: end if
9: else

10: return ∅
11: end if

4.6 Complexity
One aspect of concern within this project regarding its generality is how the computational
complexity of algorithm grows with an increase in the number of patterns and the maximum
path length. In particular, this information can help make guided decisions on how the
algorithm might be made more efficient in future works.

While the complexity varies significantly with the patterns and input being used, an
approximation for the upper bound can trivially be found. Under the assumption that n

patterns that are different from the identity pattern and result in k expressions can be
applied during each step, the algorithm can generate (n ∗ k + 1)m paths at most from a single
expression, where m represents the maximum path length; the addition of unity comes as a
consequence of the necessity of at least one pattern being the identity pattern. As such, an
increase in the number of patterns causes a polynomial growth in complexity, whereas the
algorithm’s complexity scales exponentially with the maximum path length.

Taking the approximation for an upper bound of the algorithm’s complexity into account,
we can conclude that it is more efficient to add more patterns and reduce the maximum path
length. However, while decreasing the maximum path length and increasing the number of
patterns, care must be taken not to reduce the algorithm’s ability to properly discern the
necessary information to provide feedback.

Finally, given that each pattern can be applied independently from the others during
each step, parallelization can be implemented trivially, opening avenues for hardware that
supports it. While implementing it might not be prove to be too beneficial for a large
maximum path length, it might be helpful for time-sensitive tasks, such as a server hosting
an implementation of this algorithm responding to requests from clients.

ICPEC 2022

5:8 Feedback Systems for Students Solving Problems

5 Preliminary Results

5.1 Example
Before ascertaining the results, let’s manually perform the algorithm. Using only (”− ”, ” + ”)
as a pattern and a maximum path length of one, we’ll run through an informal example of
how the algorithm ought to be performed.

Given that x−1 = 0 ⇐⇒ x = −1 is the student’s input, let’s attempt to provide feedback.
First of all, we need to find the first pair of adjacent steps whose solution sets are different;
since {1} ≠ {−1}, we’ve found a mistake on the second step. Secondly, each equation within
the mistaken step provided must be formatted as a tree, leading x− 1 = 0 and x = −1 to be
formatted as ((”x”, ”− ”, ”1”), ” = ”, ”0”) and (”x”, ” = ”, (”− ”, ”1”)) respectively. Next, we
need to exhaustively apply our patterns to the first of those expressions:
Σ(((”x”, ”− ”, ”1”), ” = ”, ”0”), (”− ”, ” + ”)) =

{((”x”, ” − ”, ”1”), ” = ”, ”0”), σ(((”x”, ” − ”, ”1”), ” = ”, ”0”), (” − ”, ” + ”))} ∪ {(x, ” =
”, ”0”) | x ∈ Σ((”x”, ” − ”, ”1”), (” − ”, ” + ”))} ∪ {((”x”, ” − ”, ”1”), x, ”0”) | x ∈ Σ(” =
”, (”− ”, ” + ”))} ∪ {((”x”, ”− ”, ”1”), ” = ”, x) | x ∈ Σ(”0”, (”− ”, ” + ”))} =

{((”x”, ”− ”, ”1”), ” = ”, ”0”)} ∪ {(x, ” = ”, ”0”) | x ∈ Σ((”x”, ”− ”, ”1”), (”− ”, ” + ”))} =

{((”x”, ”− ”, ”1”), ” = ”, ”0”)} ∪ {(x, ” = ”, ”0”) | x ∈ {(”x”, ”− ”, ”1”), (”x”, ” + ”, ”1”)}} =

{((”x”, ”− ”, ”1”), ” = ”, ”0”), ((”x”, ” + ”, ”1”), ” = ”, ”0”)}.
Finally, by checking the solution sets of our acquired paths, we can conclude that ((”x”, ” +
”, ”1”), ” = ”, ”0”) has the same solution set as (”x”, ” = ”, (”− ”, ”1”)); as such, since what
led to that path was changing a sign, we may return feedback stating that the student erred
on the second step by mistaking a sign.

5.2 Results From a Python Implementation
To perform a preliminary test of the algorithm’s ability to provide meaningful feedback,
twenty representative examples were chosen and tested with an implementation of this
algorithm in Python using SymPy. These examples were manually sampled from what we
considered to be common mistakes, such as mistaking signs or factoring incorrectly; our future
works will go over results aggregated on a larger scale and under more realistic conditions.

The following is a list of the patterns used for the examples:
(” + ”, ”− ”), (”− ”, ” + ”),
(((”$1”, ” + ”, ”$2”), ” ∗ ∗”, ”2”), ((”$1”, ” ∗ ∗”, ”2”), ” + ”, (”$2”, ” ∗ ∗”, ”2”))),
(((”$1”, ”− ”, ”$2”), ” ∗ ∗”, ”2”), ((”$1”, ” ∗ ∗”, ”2”), ”− ”, (”$2”, ” ∗ ∗”, ”2”))),
(((”$1”, ” ∗ ∗”, ”2”), ” + ”, (”$2”, ” ∗ ∗”, ”2”)), ((”$1”, ” + ”, ”$2”), ” ∗ ∗”, ”2”)), and
(((”$1”, ” ∗ ∗”, ”2”), ”− ”, (”$2”, ” ∗ ∗”, ”2”)), ((”$1”, ”− ”, ”$2”), ” ∗ ∗”, ”2”)).

Before interpreting the results, a metric of success ought to be defined. Given the easy
way of finding the first step in which a mistake occurred, we consider a result to be successful
if and only if one of the found matches returns feedback that would’ve prevented the mistake.
That being said, even if it can only detect which step was mistaken, the algorithm might
still prove to be useful to many students.

Given that definition, despite the good results with the limited patterns used, more of them
might need to be added to correctly detect certain categories of mistakes. For example, given
49− x2 = 0 ⇐⇒ (7− x)2 = 0 as the input, the equipped patterns would not be sufficient;
however, the addition of more patterns, such as (”$1”, ((”$1”, ”∗∗”, (”1”, ”/”, ”2”)), ”∗∗”, ”2”)),
would permit the algorithm to respond aptly.

L. A. G. Bayzid, A. M. R. D. Breda, E. A. M. Rocha, and J. M. D. S. Dos Santos 5:9

Table 1 Results From a Python Implementation of the Misuse of Signs.

Input Erroneous Step Output Expected Output

((”x”, ” − ”, ”1”), ” = ”, ”0”),
(”x”, ” = ”, (” − ”, ”1”)) Second Step Sign Error Sign Error

((”2”, ” + ”, ”x”), ” = ”, ”0”),
(”x”, ” = ”, ”2”) Second Step Sign Error Sign Error

((” − ”, ”10”), ” = ”, (”5”, ” ∗ ”, ”x”)),
(((”5”, ” ∗ ”, ”x”), ” − ”, ”10”), ” = ”, ”0”),

((”5”, ” ∗ ”, ”x”), ” = ”, ”10”),
(”x”, ” = ”, ”2”) Second Step Sign Error Sign Error

(((”7”, ” ∗ ”, ”x”), ” − ”, ”8”), ” = ”, ”0”),
((”7”, ” ∗ ”, ”x”), ” = ”, (” − ”, ”8”)),
(”x”, ” = ”, (” − ”, (”8”, ”/”, ”7”))) Second Step Sign Error Sign Error

((”x”, ” − ”, (”x”, ” ∗ ∗”, ”2”)), ” = ”, ”0”),
((”x”, ” ∗ ∗”, ”2”), ” = ”, (” − ”, ”x”)) Second Step Sign Error Sign Error

(((”5”, ” ∗ ”, (”x”, ” ∗ ∗”, ”2”)), ” + ”, (” − ”, (”10”, ” ∗ ”, ”x”))), ” = ”, ”0”),
(((”x”, ” ∗ ∗”, ”2”), ” + ”, (” − ”, (”2”, ” ∗ ”, ”x”))), ” = ”, ”0”),

((”x”, ” ∗ ∗”, ”2”), ” = ”, (” − ”, (”2”, ” ∗ ”, ”x”))) Third Step Sign Error Sign Error
(((”5”, ” ∗ ”, ”x”), ” + ”, ”1”), ” = ”, ”0”),

((”5”, ” ∗ ”, ”x”), ” = ”, ”1”),
(”x”, ” = ”, (”1”, ”/”, ”5”)) Second Step Sign Error Sign Error

((((”2”, ” ∗ ”, (”x”, ” ∗ ∗”, ”2”)), ” − ”, ”x”), ” + ”, ”1”), ” = ”, ”0”),
((”2”, ” ∗ ”, (”x”, ” ∗ ∗”, ”2”)), ” = ”, (”1”, ” − ”, ”x”)),

((”x”, ” = ”, (” − ”, ”1”)), ”|”, (”x”, ” = ”, (”1”, ”/”, ”2”))) Second Step Sign Error Sign Error
(((”x”, ” ∗ ∗”, ”2”), ” + ”, ”5”), ” = ”, ”0”),

((”x”, ” ∗ ∗”, ”2”), ” = ”, ”5”),
((”x”, ” = ”, (” − ”, (”5”, ” ∗ ∗”, (”1”, ”/”, ”2”)))), ”|”, (”x”, ” = ”, (”5”, ” ∗ ∗”, (”1”, ”/”, ”2”)))) Second Step Sign Error Sign Error

Table 2 Results From a Python Implementation of the Misuse of Factoring.

Input Erroneous Step Output Expected Output

(((”x”, ” − ”, ”1”), ” ∗ ∗”, ”2”), ” = ”, ”0”),
(((”x”, ” ∗ ∗”, ”2”), ” − ”, (”1”, ” ∗ ∗”, ”2”)), ” = ”, ”0”),

((”x”, ” = ”, (” − ”, ”1”)), ”|”, (”x”, ” = ”, ”1”)) Second Step Factoring Error Factoring Error
(((”x”, ” ∗ ∗”, ”2”), ” + ”, ((”x”, ” − ”, ”10”), ” ∗ ∗”, ”2”)), ” = ”, ”0”),

(((”2”, ” ∗ ”, (”x”, ” ∗ ∗”, ”2”)), ” − ”, ”100”), ” = ”, ”0”),
((”x”, ” = ”, (” − ”, (”50”, ” ∗ ∗”, (”1”, ”/”, ”2”)))), ”|”, (”x”, ” = ”, (”50”, ” ∗ ∗”, (”1”, ”/”, ”2”)))) Second Step Factoring Error Factoring Error

((”x”, ” ∗ ∗”, ”2”), ” = ”, (” − ”, ((”x”, ” − ”, ”1”), ” ∗ ∗”, ”2”))),
((”x”, ” ∗ ∗”, ”2”), ” = ”, (”1”, ” − ”, (”x”, ” ∗ ∗”, ”2”))),

(”x”, ” = ”, ((”1”, ”/”, ”2”), ” ∗ ∗”, (”1”, ”/”, ”2”))) Second Step Factoring Error Factoring Error
((((”x”, ” + ”, ”1”), ” ∗ ∗”, ”2”), ” + ”, (” − ”, (”2”, ” ∗ ”, ”x”))), ” = ”, ”0”),
((((”x”, ” ∗ ∗”, ”2”), ” + ”, ”1”), ” + ”, (” − ”, (”2”, ” ∗ ”, ”x”))), ” = ”, ”0”),

(”x”, ” = ”, ”1”) Second Step Factoring Error Factoring Error
(((”x”, ” ∗ ∗”, ”2”), ” + ”, (”1”, ” ∗ ∗”, ”2”)), ” = ”, ”0”),

(((”x”, ” + ”, ”1”), ” ∗ ∗”, ”2”), ” = ”, ”0”),
(”x”, ” = ”, (” − ”, ”1”)) Second Step Factoring Error Factoring Error

(((”x”, ” − ”, ”5”), ” ∗ ∗”, ”2”), ” = ”, ”0”),
(((”x”, ” ∗ ∗”, ”2”), ” − ”, (”5”, ” ∗ ∗”, ”2”)), ” = ”, ”0”),

((”x”, ” = ”, (” − ”, ”5”)), ”|”, (”x”, ” = ”, ”5”)) Second Step Factoring Error Factoring Error
((((”x”, ” − ”, ”6”), ” ∗ ∗”, ”2”), ” + ”, (”2”, ” ∗ ”, (”x”, ” ∗ ∗”, ”2”))), ” = ”, ”0”),

(((”3”, ” ∗ ”, (”x”, ” ∗ ∗”, ”2”)), ” − ”, ”36”), ” = ”, ”0”),
((”x”, ” = ”, (” − ”, (”12”, ” ∗ ∗”, (”1”, ”/”, ”2”)))), ”|”, (”x”, ” = ”, (”12”, ” ∗ ∗”, (”1”, ”/”, ”2”)))) Second Step Factoring Error Factoring Error

((”7”, ” ∗ ”, (”x”, ” ∗ ∗”, ”2”)), ” = ”, (” − ”, ((”x”, ” − ”, ”2”), ” ∗ ∗”, ”2”))),
((”7”, ” ∗ ”, (”x”, ” ∗ ∗”, ”2”)), ” = ”, (”4”, ” − ”, (”x”, ” ∗ ∗”, ”2”))),

(”x”, ” = ”, ((”1”, ”/”, ”2”), ” ∗ ∗”, (”1”, ”/”, ”2”))) Second Step Factoring Error Factoring Error
((((”5”, ” − ”, ”x”), ” ∗ ∗”, ”2”), ” + ”, (” − ”, (”24”, ” ∗ ”, ”x”))), ” = ”, ”0”),
(((”25”, ” − ”, (”x”, ” ∗ ∗”, ”2”)), ” + ”, (” − ”, (”24”, ” ∗ ”, ”x”))), ” = ”, ”0”),

((”x”, ” = ”, (” − ”, ”25”)), ”|”, (”x”, ” = ”, ”1”)) Second Step Factoring Error Factoring Error
((”49”, ” − ”, (”x”, ” ∗ ∗”, ”2”)), ” = ”, ”0”),

(((”7”, ” ∗ ∗”, ”2”), ” − ”, (”x”, ” ∗ ∗”, ”2”)), ” = ”, ”0”),
(((”7”, ” − ”, ”x”), ” ∗ ∗”, ”2”), ” = ”, ”0”),

((”7”, ” − ”, ”x”), ” = ”, ”0”),
(”x”, ” = ”, ”7”) Third Step Factoring Error Factoring Error

ICPEC 2022

5:10 Feedback Systems for Students Solving Problems

Another issue with this approach is that it requires the solution sets of all of the expressions
to be computable by the CAS. Given the task of solving it for polynomials of degree two
or lower, this was not a problem, but it is possible that complications may arise from
generalizations of this algorithm.

6 Future Work

Given what was discussed in the section about the algorithm’s complexity, one avenue of
research is finding which patterns should be used to reduce the number of steps needed
to provide apt feedback. In particular, the plan is to develop a method of automatically
generating useful patterns and manually label them with appropriate feedback; currently, we
plan to research how machine learning could be used to do such.

Beyond that, as mentioned in our section about preliminary results, experiments will be
performed on a larger scale with open-source software with CAS capabilities. The hope is to
be able to find software that can serve as a front-end interface for the presented algorithm
and test its capabilities on a larger scale and with a greater variety of inputs and patterns.
Should the results show promise, other avenues of improvement will be researched.

References
1 Anderson Pinheiro Cavalcanti, Arthur Barbosa, Ruan Carvalho, Fred Freitas, Yi-Shan Tsai,

Dragan Gašević, and Rafael Ferreira Mello. Automatic feedback in online learning environments:
A systematic literature review. Computers and Education: Artificial Intelligence, 2:100027,
2021. doi:10.1016/j.caeai.2021.100027.

2 John Hattie and Helen Timperley. The power of feedback. Review of Educational Research,
77(1):81–112, 2007. doi:10.3102/003465430298487.

3 Mark Jellicoe and Alex Forsythe. The development and validation of the feedback in learning
scale (fls). Frontiers in Education, 4, 2019. doi:10.3389/feduc.2019.00084.

4 Raymond W. Kulhavy and William A. Stock. Feedback in written instruction: The place
of response certitude. Educational Psychology Review, 1(4):279–308, 1989. doi:10.1007/
BF01320096.

5 Susanne Narciss. Feedback strategies for interactive learning tasks. Handbook of re-
search on educational communications and technology, 3:125–144, 2008. URL: https:
//www.routledgehandbooks.com/doi/10.4324/9780203880869.ch11.

6 Susanne Narciss, Elsa Hammer, Gregor Damnik, Kerstin Kisielski, and Hermann Körndle.
Promoting prospective teacher competencies for designing, implementing, evaluating, and
adapting interactive formative feedback strategies. Psychology Learning & Teaching, 20(2):261–
278, 2021. doi:10.1177/1475725720971887.

7 Ernesto Panadero and Anastasiya A. Lipnevich. A review of feedback models and typologies:
Towards an integrative model of feedback elements. Educational Research Review, 35:100416,
2022. doi:10.1016/j.edurev.2021.100416.

8 Scott A. Schartel. Giving feedback – an integral part of education. Best Practice & Research
Clinical Anaesthesiology, 26(1):77–87, 2012. Challenges in Anaesthesia Education. doi:
10.1016/j.bpa.2012.02.003.

https://doi.org/10.1016/j.caeai.2021.100027
https://doi.org/10.3102/003465430298487
https://doi.org/10.3389/feduc.2019.00084
https://doi.org/10.1007/BF01320096
https://doi.org/10.1007/BF01320096
https://www.routledgehandbooks.com/doi/10.4324/9780203880869.ch11
https://www.routledgehandbooks.com/doi/10.4324/9780203880869.ch11
https://doi.org/10.1177/1475725720971887
https://doi.org/10.1016/j.edurev.2021.100416
https://doi.org/10.1016/j.bpa.2012.02.003
https://doi.org/10.1016/j.bpa.2012.02.003

Cloud of Assets and Threats: A Playful Method to
Raise Awareness for Cloud Security in Industry
Tiange Zhao !

Siemens AG, München, Germany
Universität der Bundeswehr München, Germany

Ulrike Lechner !

Universität der Bundeswehr München, Germany

Maria Pinto-Albuquerque !

Instituto Universitário de Lisboa (ISCTE-IUL), ISTAR, Portugal

Ece Ata !

Siemens AG, München, Germany
Technische Universität München, Germany

Abstract
Cloud computing has become a convenient technology widely used in industry, providing profit and
flexibility to companies. Many enterprises embrace cloud service by migrating their products and
solutions from on-premise to cloud environments. Cloud assets and applications are vulnerable to
security challenges if not adequately protected. Regulations, standards and guidelines aim to enforce
cloud security controls in the industry and practitioners need training to raise awareness of cloud
security issues and learn about the defense mechanisms and controls. We propose a serious game
Cloud of Assets and Threats (CAT) for enhancing cloud security awareness of industrial practitioners.
This study extends first results of applying such a serious game in industry [25] and refines its design
in two iterations. In the first design iteration, we implemented a digital game platform with six
attack scenarios and developed a new player versus environment gaming mode. In the second design
iteration, we adjusted the attack scenarios and introduced different difficulty levels for the scenarios.
We present, analyse, and discuss the game events. We conclude that CAT is a promising method to
raise awareness for cloud security in the industry.

2012 ACM Subject Classification Computer systems organization → Cloud computing; Social and
professional topics → Computer and information systems training

Keywords and phrases Cloud security, Cloud control matrix, Shared-responsibility model, Industry,
Training, Gamification

Digital Object Identifier 10.4230/OASIcs.ICPEC.2022.6

Funding This work is partially financed by Portuguese national funds through FCT – Fundação para
a Ciência e Tecnologia, I.P., under the projects FCT UIDB/04466/2020 and FCT UIDP/04466/2020.
Furthermore, the third author thanks the Instituto Universitário de Lisboa and ISTAR, for their
support. We acknowledge funding for project LIONS by dtec.bw.

1 Introduction

Nowadays, companies are moving their products and solutions from on-premises to cloud
deployment. The size of the cloud computing and hosting market grows at a steady speed,
as shown statistically [22]. On the one hand, the convenience and flexibility of cloud services
contribute to the market growth. On the other hand, cloud deployment could expose
industry systems to serious cybersecurity threats. The traditional vulnerabilities become
more dangerous as cloud deployment increases system exposure and new types of cloud
specific threats, e.g. breach of cloud storage object, are emerging. Several stakeholders,
including cloud asset managers, cloud asset owners and cloud service providers, are involved in

© Tiange Zhao, Ulrike Lechner, Maria Pinto-Albuquerque, and Ece Ata;
licensed under Creative Commons License CC-BY 4.0

Third International Computer Programming Education Conference (ICPEC 2022).
Editors: Alberto Simões and João Carlos Silva; Article No. 6; pp. 6:1–6:13

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tiange.zhao@siemens.com
https://orcid.org/0000-0003-1518-4730
mailto:ulrike.lechner@unibw.de
https://orcid.org/0000-0002-4286-3184
mailto:maria.albuquerque@iscte-iul.pt
https://orcid.org/0000-0002-2725-7629
mailto:ece.ata@siemens.com
https://orcid.org/0000-0003-0924-6325
https://doi.org/10.4230/OASIcs.ICPEC.2022.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

6:2 Cloud of Assets and Threats: Raise Awareness in Industry

the design and development life cycle of cloud services. Each stakeholder needs to understand
its role and responsibility to secure a cloud asset. Standards and white papers aim to
regulate the industry field and provide the basis for a shared understanding of roles and
responsibilities in securing cloud assets among all stakeholders involved. However, security
training is important to convey concepts and strategy to decision makers, developers, system
architects and cloud service users. In cybersecurity, serious games can be a method to
raise awareness and enable learning by doing in a playful, safe environment. This research
contributes to enrich and improve the existing training methods in cloud security through a
serious game. Our goal is to increase the level of cloud security by increasing cloud security
awareness with a special focus on shared roles and responsibilities in securing cloud assets.

We have designed a board game, Cloud of Assets and Threats(CAT), which can be used
for cybersecurity educational purposes for industry practitioners. We address different roles
and their shared responsibilities to secure cloud asset as one of the topics of our serious game.
This study presents a refinement of our board game dedicated to tackling different aspects
of cloud security and facilitating awareness and improving cloud security for the industry.
This initial prototype is described in our previous work [25]. It is a game in which attacker
and defender develop strategies to attack or defend the cloud assets. This study presents a
refinement: single players or teams play defenders for cloud-based systems in various attack
scenarios and a evaluator component assesses the effectiveness of defense. This refinement of
the game logic allows for a more effective training as defense is what professionals in industry
need to understand. Two contexts of the game are used in the two design iterations: in the
first design iteration, the game is part of a larger serious game experience, in the second it is
a stand-alone game used to bring contents from a training session into practical application.
These two different contexts allow to understand how to tailor the game to specific user
groups and insights on raising awareness. This paper describes the design, implementation,
and evaluation of such a game performed in first and second design iterations. We reflect on
the effectiveness of the game to raise awareness and the understanding of how to tailor the
game to various user groups.

This article is structured in the following sections: section 2 introduces the related work
in the areas of information security standards relevant for cloud security, and serious games
in information security. Section 3 gives an overview of the design science research method
we followed in our research. Section 4 describes the framework of our game and the two
design iterations we went through. Section 5 shares the game dynamic data and results we
collected from our game events and our thinking upon them. Section 6 concludes this work
and gives an outlook into the future research direction.

2 Related work

Existing information security standards in the industry describe the requirements and
necessary controls on cloud security. The cloud controls matrix (CCM) [1] from cloud security
alliance (CSA) provides mapping and comparison of various control specifications and 44
relevant industrial standards. Best known is the ISO/IEC 2700X family [8, 18, 19, 20], which
provides information security requirements in general, or specifically address information
security controls for cloud service. In addition to the standards mentioned above, MITRE
ATT&CK cloud matrix categorizes possible attacks towards cloud systems based on real-world
observation and groups them in different techniques and tactics [5]. For each possible attack,
the defense mechanisms are listed. Our work uses the MITRE framework as a reference for
the attack and defense models. This helps to bring industry standard requirements to the
practitioners by introducing the cloud security concepts through a serious game.

T. Zhao, U. Lechner, M. Pinto-Albuquerque, and E. Ata 6:3

Dörner et al. [7] presents seminal concepts for designing serious games. They describe
that serious games are designed with a goal instead of pure entertainment. It guides us
in the design and instantiation of our game. The goal of the serious game is to raise the
cybersecurity awareness of the participants.

There are numerous examples of serious games application in information security that
help raise awareness and serves educational purposes directly or indirectly. Frey et al. [9]
focus on the human factor and use a serious game as a novel method to study the decision-
making process in the field of information security. Shostack lists more than forty tabletop
serious games for cybersecurity [23], and the list is still growing. One of them is the game
Riskio [14], which is successful in increasing cybersecurity awareness for people without
technical backgrounds working in organizations. Apart from tabletop games, the work of
Gasiba et al. [10, 11, 13, 12] present a serious game inspired by the capture-the-flag genre,
yet dedicated to software developers in the industry to raise their awareness on secure
programming and improve their secure coding skills in a variety of programming languages.

However, none of the games mentioned above specifically addresses the issues in cloud
security, e.g., the shared-responsibility model and the newborn types of threats that are
unique in the cloud environment. This article is based on our design and evaluation of a
cloud security game firstly introduced in our previous research [25, 24]. This work extends
and improves the existing game prototype by implementing a digital platform, designing
game mode variations, and refining the game to address the feedback collected.

3 Method

Our research is guided by the design science paradigm proposed by Hevner et al. [16, 15].
They describe the design of a useful artefact as a creative search process. Hevner et al.
describe the cycle of design & implement and justify & evaluate to be the core of design
science. We use explanatory design theory proposed by Baskerville et al. [6] to guide design
and evaluation. Baskerville et al. present an approach which differentiates between the
process to design the artefact and the evaluation of the artefact and emphasises on the design
process to be a creative endeavor. This approach describes a general design solution as a class
of problems that relates a set of general components to a set of general requirements [17].

We identify the requirements and relate them to components in our design. General
requirements (GR) for the game are listed as the following:

GR1: The game artefact should reflect facts or characteristics about cloud security.
GR2: The game artefact should be understandable and straightforward to the players.
GR3: Players’ cloud security awareness should increase by playing the game.
GR4: The game should be fun and interactive in that it motivates the participants to
learn about cloud security.

General components (GC) are also identified and could be mapped to the general requirements:
GC1, mapped to GR1: Attack scenarios developed are based on actual attacking
activities observed from real-world as well as standards as the MITRE attack vectors.
GC2, mapped to GR2: Tutorials and different difficulty levels are available in the
game.
GC3, mapped to GR3: The game concept encourages players to act as defenders
against the game´s attack scenarios. This addresses the specific skills needed in the
everyday job.
GC4, mapped to GR4: Participants see hints and suggestions from the platform to
strengthen their defense strategy until the threshold of defense success rate is reached.

ICPEC 2022

6:4 Cloud of Assets and Threats: Raise Awareness in Industry

Table 1 Overview of the game events in iteration 1 and 2.

Iteration 1 (I1) Iteration 2 (I2)
Number of participants 17 14
Date January 26, 2022 March 15, 2022
Teams / single players 4 Teams 14 Single players
Game time ∼60 mins 30 mins
Number of submissions 175 656
Avg. submission per scenario per team/player 7.3 7.8

This study builds on a game idea and a prototype with its evaluation presented in [25].
This study continues the creative search process for a solution that is more effective in
raising the level of cloud security awareness and to a deeper understanding of players needs,
and players level of cloud security knowledge. Our game design is developed in two design
iterations. In both iterations we organized game events to collect feedback for evaluation of
the artefact. Table 1 provides an overview of the two iterations and the serious game event
conducted as empirical basis for the evaluation. All players are professionals in industry and
they are invited to game event after awareness training or during a CyberSecurity Challenges
(CSC) event [13, 12], which normally has a group size of 10 to 20 trainees or participants.
The table provides information about the number of participants, whether the game was
played in single player or team mode, the number of solution submissions done in the game
and the average number of submissions per team or per single player.

4 Game design

In this section, we describe the design of our game. Firstly, we briefly introduce our game
prototype as a base line. Then we describe our game design in the first iteration. At last, we
explain the improvement and adjustment we made in the second iteration.

4.1 Baseline – the Game prototype

The original game artefact is an online board game. There is a game master (GM), and
players play either as defender team or as attacker team against each other. The defender
team uses the defense action cards to build a defense-in-depth defense plan within a given time
by selecting cards and assigning the cards to the responsible roles. The attacker team uses
the attack action cards to build a step-by-step attack plan. When time is up, an automated
evaluator takes both the attack and defense plans as input and calculates the defense plan’s
probability of withstanding the attack plan. The higher the probability, the more likely
the defender team would win. A wheel-of-fortune takes the probabilities calculated by the
evalulator components and determines the winner. A more detailed description of the game
prototype can be found in our previous publication [25]. This game was evaluated positively
on the basis of a limited empirical basis. The game logic is validated and the trial run
participants found the game engaging and they learned about how to build an effective
defense for cloud assets in real world. Notwithstanding this first positive evaluation, we
did an analysis to see whether there is room for improvement. In our previous work, we
conducted online trial runs with the game prototype, where players played versus players
(PvP) integrated either in defender team or attacker team. There are some disadvantages of
such a game mode:

T. Zhao, U. Lechner, M. Pinto-Albuquerque, and E. Ata 6:5

The learning effect for the attacker team is not well aligned with the goal, since profes-
sionals need skills in defense, not in attack strategies.
This game mode requires a game master to coordinate and the game master cannot take
care of the training activities and questions while managing the game.
There must be at least two players to build two teams, and the size of a team cannot be
too big for effective communications and a good sense of involvement. So the game does
not scale well in an industrial context.

4.2 First design iteration
In the first design iteration (I1), the previously-mentioned disadvantages are addressed. We
implement a digital platform with a player versus environment (PvE) game mode and as a
part of the environment, we build six attack scenarios derived from real-world cloud security
attack activities. The implementation is based on the game board we designed as baseline
in the prototype and we developed the digital platform using konva[4]. Konva is HTML5
2d canvas JavaScript library for desktop and mobile applications, which provides our the
necessary features for the development. We introduce each element one by one subsequently
and share the evaluation of the first iteration.

4.2.1 Digital platform

Figure 1 Mock-up of the cloud security game board.

The digital platform is a single-page web application, on which the players play the game.
When a player accesses the game homepage, the game interface depicted in figure 1 will be
displayed. The web application has a back-end and a front-end. The evaluator algorithm
runs in the back-end calculating the quality of the defense plan against the given attack.
The front-end displays the cards and game interface, players can drag and drop cards. The
defense plan area is designed with magnetic effect. When the player drags the cards near to

ICPEC 2022

6:6 Cloud of Assets and Threats: Raise Awareness in Industry

the area, the card would be pulled to one of the reserved space. Magnetic effect assures the
player that this is the place where the cards should be placed. If cards are placed outside this
area, it would be sent to its original position in the defense pool. The The game interface
has seven areas with specific purpose and functionality. Clockwise from the top left are:

Defense Plan Area – The defense plan area consists of the business and technical respons-
ibility zones. The players are supposed to pick cards from these sub-areas and place them
in the correct responsibility zone.
Attack Plan Description Area – This area describes the hypothetical attackers plan,
step-by-step. In the mock-up of figure 1, we show the attack scenario I1S1. The players
can search for technical terms that the attackers use in each step to build an effective
defense plan.
Submit Button and Threshold – The player can send the selected defense plan to the
back-end for evaluation by hitting the Submit button. The calculated probability of the
submitted defense plan withstanding the hypothetical attack is displayed in the top right
corner. The player completes the challenge if the threshold is reached.
Hint Area for Responsibility – Hint Area for Responsibility is the first hint area. It shows
in the last submission if all the cards are assigned to the correct responsibility. The
wrongly assigned ones will be listed here, and the players can improve their defense plan
based on the hint.
Hint Area for Undefended Attacks – Hint Area for Undefended Attacks is the second hint
area. Based on the last defense plan submission, it shows the undefended cards in the
given attack plan. The players can improve their defense success rate by trying to cover
as many attack actions as possible.
Last Submission Area – The defense plan in the last submission is shown here. It gives
the player a reference as they are trying to improve their Defense.
Defense Pool – The defense pool shows a wide range of defense cards from which the
players can choose. There are 24 cards in total. The details regarding each defense card
can be found in our previous work [25, 24].

In the game event of the first design iteration, CAT was a part of a full-day CyberSecurity
Challenges (CSC) event [13, 12]. The game engine was hosted in a docker container in a
cloud environment, and the backend logged the player submissions and access. After the end
of the event, data were downloaded from the cloud virtual machine instance, and then the
instance was cleaned up.

4.2.2 Player-vs-environment game mode
The player-vs-environment (PvE) mode allows all game participants to address cloud security
from the security or defense perspective. We defined six different scenarios from real-world
hacking activities as described in the section 4.2.3. In game, all players build defense plans
to stop the attack.

Note that the PvE mode allows more flexibility with little overhead - there is no limitation
on the number of players, and actions from a game master are not required. Participants
can join as single players or play in teams. Since the task is to defend themselves against
pre-defined attack scenarios, players dedicate the time spent in the event to learn about
how to be a good defender for their cloud assets instead of learning to be strategic hackers.
We argue that this new mode is more efficient in raising awareness for cloud security than
the baseline game prototype. This is in line with design decisions we took in the design of
the CyberSecurity Challenges and we argue that such a defense-only perspective might be
successful in optimizing the outcome for the players gain.

T. Zhao, U. Lechner, M. Pinto-Albuquerque, and E. Ata 6:7

Table 2 The attack scenarios Scenario 1 (S1) – Scenario 6 (S6) used in iteration 1 and 2.

Attack Action Card Scenario
I1S1 I1S2 I1S3 I1S4 I1S5 I1S6 I2S6

Step 1:
Initial
Access

Exploit Public-Facing Application x x x
Abuse Credential x x
Cloud Infrastructure Discovery x x x x
Network Service Discovery x x x
Brute Force x x

Step 2:
Launch
Attack

Abuse Trusted Relationship x x x x x x
Cloud Storage Breach x x x
Account Manipulation x x
Exploit Unused Region x
Impair Defenses x x x x x x
Infrastructure Manipulation x
Monitoring Escaping x x

Step 3:
Make
Impact

Defacement x x
Resource Hijacking x x x x
Denial of Service x

4.2.3 Attack scenarios
As mentioned above, the game includes six attack scenarios in the PvE game mode. In
the first design iteration, we presented attack scenarios I1S1–6 as shown in Tab. 2. Each
scenario consists of three attack steps: Initial Access, Launch Attack and Make Impact. That
reflects the attack kill chain [2]. Each step in the kill chain uses different attack actions, each
represented in an attack card. Each step may consist of several attack actions.

Players are instructed to defend their cloud assets against these kill chains. Their task
is to defend themselves by selecting helpful defense cards and assigning the cards to the
responsible organizational role.

I1S1–4 are based on the examples listed in MITRE ATT&CK Cloud Matrix [5]. For
instance, I1S1 is derived from the hacking activity of threat group Lazarus Group [3] and
Sandworm Team [3]. In the first step, to gain initial access, the attackers have two attack
actions in parallel: Abuse Credential and Cloud infrastructure Discovery. Abuse Credential
means the attacker tries to obtain and abuse account credentials to access the system [21].
“Cloud Infrastructure Discover” means the attackers discover resources that are available
within the environment [21]. In the second step to launch the attack, the attackers have
three attack actions in parallel: Abuse Trusted Relationship, Account Manipulation, and
Impair Defense. Abuse Trusted Relationship means the attackers breach the organization
to access the protected resource in the environment [21]. Account Manipulation refers to
the attack that they manipulate the stolen account to open a backdoor and maintain access
to victim systems [21]. In the meantime, Impair Defenses symbolizes that they maliciously
modify the components of a victim environment in order to hinder defensive mechanisms [21].
In the last step, Make Impact, the attackers choose Defacement, which means they modify
the homepage of the enterprise homepage to cause a panic and gain fame [21]. I1S5 is a
collection of historically attackers’ most-chosen cards from early trial runs of PvP mode.
I1S6 is a collection of attack cards that can be defended by the least number of defense cards,
which are supposed to be difficult to defend. The table 2 gives an overview of the pre-defined
attack cards. Every scenario consists of 3 steps, and each step has 2, 3, or 1 card(s) chosen.
In the table, “X” means this attack action card is chosen for the given scenario.

ICPEC 2022

6:8 Cloud of Assets and Threats: Raise Awareness in Industry

In all the scenarios, the players are required to build a complete defense plan from the
beginning. The defense plan is assessed by the evaluator and a probability of withstanding
the given attack scenario will be calculated. Players solve the challenge if the calculated
probability is higher than 90%. Additionally, during the game time, a brief description of
each scenario is distributed to the players. In the description, each attack action on the three
attack steps are explained. The players can use the description as assistance material or
background information.

4.2.4 Evaluation of first design iteration
As shown in table 1, we conducted the game event on January 26, 2022. In the game event,
17 participants formed four teams with 4 or 5 players per team. One player in each team
shared the screen with other teammates and was in charge of submissions. Submissions were
first discussed within the team and agreed upon by all the team members. The six scenarios
of I1 were included in a full day CyberSecurity Challenge [13, 12] event as six challenges one
after another. The teams were free to choose when to work on these challenges within the
full day event. Therefore, we cannot precisely determine the exact game time. According to
our observation, each team spent about 60 minutes on the six scenarios. We collected 175
valid submissions from the four teams over six scenarios. On average, each team makes 7.3
submissions per scenario. A submission was captured when player hit the “Submit” button.
It included the defense cards the team has chosen in a certain scenario. Feedback from the
players were collected and analyzed as evaluation of the first design iteration. The collected
feedback and observation can be summarized as following:

S1: Players enjoyed the game and found it helpful for understanding cloud security.
S2: Players liked the interactive game as a hands-on exercise.
S3: For some, it is challenging to build a full defense plan from scratch.
S4: For some, the feedback of incorrectly assigned cards is not clear.
S5: Some teams discovered some cards, e.g. “Account Management” was useful in all
the scenarios and has an strong positive effect on the success rate.
S6: All teams solved all scenarios in approximately one hour.

S1 and S2 are positive feedback that implies the game logic is correct and the game itself is
interesting and helpful for player. So we kept organizing game events and maintained the
game logic in the second design iteration.

4.3 Second design iteration
We aim to improve our game artefact by addressing the issues exposed in the first design
iteration. After adapting the game artefact, we conducted another game event to validate
the improvement on March 15, 2022, as shown in table 1. In this iteration, the game event
was a standalone game event following a full-day security awareness training. Recall, in the
first design iteration, the cloud game was part of a full-day CyberSecurity Challenge. In this
section, we introduce the changes we made and summarize the second design iteration (I2).

4.3.1 Design changes in second design iteration
To address the issues exposed in the first design iteration, we made the following changes in
the second iteration:

The first two scenarios were used as tutorials. We pre-selected cards on I1S1 and I1S2
and guided the players through the scenarios as a tutorial. This was meant to reduce
difficulty as reflected in S3.

T. Zhao, U. Lechner, M. Pinto-Albuquerque, and E. Ata 6:9

Table 3 Comparison of the presented scenarios in I1 and I2.

Iteration 1 (I1) Iteration 2 (I2)
I1S1 Full scenario Tutorial scenario w. pre-selected cards
I1S2 Full scenario Tutorial scenario w. pre-selected cards
I1S3 Full scenario, same for I1 and I2
I1S4 Full scenario, threshold = 90% Full scenario, threshold = 95%
I1S5 Full scenario, threshold = 90% Full scenario, threshold = 95%
I1S6 Full scenario, only presented in I1
I2S6 Full scenario, only presented in I2

We gave more detailed information to the players: We demonstrated in I1S1 that the
success rate can be improved by covering more attack cards. In I1S2, we demonstrated
that the success rate can be improved by correctly assigning a misplaced card to the
proper role to cover S4.
Transforming I1S1 and I2S2 into a tutorial reduced the difficulty of the game. We
increased the success rate threshold to 95% from 90% for I1S4 and I1S5 to make the game
more challenging. Note that S6 implies that there is room for higher difficulty levels.
As mentioned in S5, there are some overlaps in the attack scenarios. On one hand,
repetition enhances learning. On the other hand, we could use the opportunity to show
the importance of other defense mechanisms. So we decided to replace I1S6 with a new
scenario I2S6 in which the defense card “Account Management” is not helpful. The last
column of table 2 shows the exact attack actions in I2S6, which includes a new attack
card, “Exploit Unused Region.” That card means that the attacker creates cloud instances
in new geographic service regions to evade detection [21]. Note that this type of attack is
not covered in previous scenarios and it is an attack not often seen in practice.

Table 3 shows a summary of the differences in each scenario presented in iteration 1 (I1)
and iteration 2 (I2).

4.3.2 Evaluation of second design iteration

Based on the feedback we collected in the first iteration, we made improvements in second
design iteration. As shown in table 1, in the game event there were 14 participants, and
everyone interacted with the platform as single players. The game was meant to deepen
the understanding of cloud security topics covered in a “classic” training the day before the
game.

Since the defense plans in the first two scenarios were partially pre-selected, we assigned
30 minutes for the players to solve all the six scenarios. We collected 656 valid submissions
from the 14 participants over the six scenarios. On average, one player had 7.8 submissions
on each scenario, slightly more than in Iteration 1. One of the reasons contributing to this
might be that the single players cannot discuss with the teammates, so they sometimes
choose the strategy to figure out the solution by trial and error.

As expected, with the help of the tutorials, we did not receive any feedback like S3
or S4 after the second game event. Even though we increased the threshold for I1S4 and
I1S5, participants understood the tasks well and some managed to solve all the scenarios.
Additionally, we continued to receive positive feedback as S1 and S2. Some participants
mentioned: “It would be nice to have more exercises like this one.” and “Last exercise

ICPEC 2022

6:10 Cloud of Assets and Threats: Raise Awareness in Industry

was quite good, quite interactive. The game was very good!”. It seems interactive hands-
on exercises are highly welcomed by the participants and add fun to the overall training
experience. Also, the participants learned about the cloud security concept by building
defense plans that are more solid and have better coverage. One of the participants shared
the experience of reaching 99% of success rate for all six scenarios and spending quite some
time trying to get 100%. It was not mentioned at the beginning that 100% security exists
neither in the real world nor in the game. It was very well reflected in the game. Our
lesson learned is that this needs to be better explained when introducing the game to the
participants to avoid confusion.

5 Result and analysis

In the game event of both iterations, we captured the submissions of the teams and players.
In this section, we will share our observations in the captured data.

5.1 Growth of success rate

Figure 2 Success rate rising during gaming process per scenario.

In I1, all the teams are asked to build full defense plans for six attack scenarios. Figure 2
illustrates the growth of success rate across the submissions in six scenarios. The X-axis is
the order of submission, and the Y-axis is the success rate of each submission. Despite some
turbulence, the success rate increases as the team continues to try. The observed tendency in
submission data shows that the game logic is understandable to the players. It implies that
the participants learned from each submission and used the hint to improve their defense
plan until the threshold was reached for them to solve the task. As in real life, 100% security

T. Zhao, U. Lechner, M. Pinto-Albuquerque, and E. Ata 6:11

does not exist. In our game, we set the threshold for a success defence to be 90%. The drops
of success rate in scenario 2, 3 and 6 suggest that the teams could also make mistakes and
weaken the defense plan, but finally every team manage to correct the mistakes and reach
the threshold. The “x” symbol on the figure means that the team solved the task on the first
try. We observed that Team 1 was having some quick success in solving the scenarios. It
could be a sign that the difficulty level should be increased.

5.2 Average number of attempts and duration to complete each
scenario

(a) Average submission numbers per scenarios. (b) Time spent on each scenario.

Figure 3 Average data collected from trial runs.

Figure 3a illustrates the average number of attempts the teams made in six scenarios in
I1. Teams made more attempts in I1S1 since it was the first scenario. As players became
more familiar with the platform, the attempts number reduces in I1S2–5. We observe no
significant difference among I1S2–5, since they are designed to be equally difficult. Besides,
figure 3b presents the average time spent for each scenario, which shares the same tendency
with figure on the left. In the last scenario I1S6, the teams made more attempts. However, if
we compare it with right figure in 3a, there is no significant difference in the spent time. This
might suggest the players entered the gaming mode, i.e. the players try to beat the game
engine without considering the learning goal. We need to investigate further this observation
and understand the reason behind it.

6 Conclusion and future work

In this paper, we presented CAT, an online board game with attack scenarios in different
difficulty levels designed for industrial practitioners. We implemented and improved CAT
in two iterations starting from a prototype, with a limited yet positive evaluation. Based
on the feedback collected in the first iteration, we refined and validated the game in the
second iteration. CAT provides an interactive and enjoyable way to convey critical concepts
in cloud security. By engaging in attack scenarios derived from actual attacks, CAT enables
a proactive thinking. Through building and strengthening a defense plan, the participants
can gain a straightforward impression of cloud security roles and responsibilities and raise
awareness about cloud security in the industry. In the future, we would like to collect further
feedback for improvement in additional game events.

ICPEC 2022

6:12 Cloud of Assets and Threats: Raise Awareness in Industry

References
1 Cloud Security Alliance. Cloud controls matrix v4. https://cloudsecurityalliance.org/

artifacts/cloud-controls-matrix-v4/, 2021.
2 Michael J Assante and Robert M Lee. The industrial control system cyber kill chain. SANS

Institute InfoSec Reading Room, 1, 2015.
3 MITRE ATT&CK. Hacking group. https://attack.mitre.org/groups/, May 2017.
4 MITRE ATT&CK. Techniques. https://attack.mitre.org/techniques/, May 2017.
5 MITRE ATT&CK. Mitre att&ck cloud matrix. https://attack.mitre.org/versions/v8/

matrices/enterprise/cloud/, 2020.
6 Richard L. Baskerville and Jan Pries-Heje. Explanatory design theory. Business & Information

Systems Engineering, 2:271–282, 2010. URL: https://aisel.aisnet.org/bise/vol2/iss5/2.
7 Ralf Dörner, Stefan Göbel, Wolfgang Effelsberg, and Josef Wiemeyer. Serious Games:

Foundations, Concepts and Practice. Springer, 2016.
8 International Organization for Standardization. Iso/iec 27001 information security management.

https://www.iso.org/isoiec-27001-information-security.html, 2017.
9 Sylvain Frey, Awais Rashid, Pauline Anthonysamy, Maria Pinto-Albuquerque, and Syed Asad

Naqvi. The good, the bad and the ugly: a study of security decisions in a cyber-physical
systems game. IEEE Transactions on Software Engineering, 2017.

10 Tiago Espinha Gasiba, Kristian Beckers, Santiago Suppan, and Filip Rezabek. On the
requirements for serious games geared towards software developers in the industry. In 2019
IEEE 27th International Requirements Engineering Conference (RE), pages 286–296. IEEE,
2019.

11 Tiago Espinha Gasiba, Ulrike Lechner, and Maria Pinto-Albuquerque. Sifu-a cybersecurity
awareness platform with challenge assessment and intelligent coach. Cybersecurity, 3(1):1–23,
2020.

12 Tiago Espinha Gasiba, Ulrike Lechner, and Maria Pinto-Albuquerque. Cybersecurity challenges
for software developer awareness training in industrial environments. Innovation Through
Information Systems. WI 2021. Lecture Notes in Information Systems and Organisation, 47,
2021. doi:https://doi.org/10.1007/978-3-030-86797-3_25.

13 Tiago Espinha Gasiba, Ulrike Lechner, and Maria Pinto-Albuquerque. Cybersecurity challenges:
Serious games for awareness training in industrial environments. Federal Office for Information
Security (ed.): Germany. Digital. Secure. 30 Years BSI - Proceedings of the 17th German IT
Security Congress 2021, February 2021.

14 Stephen Hart, Andrea Margheri, Federica Paci, and Vladimiro Sassone. Riskio: A serious
game for cyber security awareness and education. Computers & Security, 95:101827, 2020.
doi:10.1016/j.cose.2020.101827.

15 Alan Hevner. A three cycle view of design science research. Scandinavian Journal of Information
Systems, 19:4, January 2007.

16 Alan Hevner, Salvatore March, and Jinsoo Park. Design science in information systems
research. Management Information Systems Quarterly, 28:75–105, 2004.

17 IEEE. IEEE standard glossary of software engineering terminology. IEEE Std 610.12-1990,
pages 1–84, 1990. doi:10.1109/IEEESTD.1990.101064.

18 ISO27002. Iso/iec 27002:2013information technology – security techniques – code of practice
for information security controls. https://www.iso.org/standard/54533.html, 2013.

19 ISO27017. Iso/iec 27017:2015 information technology – security techniques – code of practice
for information security controls based on iso/iec 27002 for cloud services. https://www.iso.
org/standard/43757.html, 2015.

20 ISO27018. Iso/iec 27018:2019information technology – security techniques – code of practice for
protection of personally identifiable information (pii) in public clouds acting as pii processors.
https://www.iso.org/standard/76559.html, 2019.

21 konva. Konva.js - html5 2d canvas js library for desktop and mobile applications. https:
//konvajs.org/, May 2022.

https://cloudsecurityalliance.org/artifacts/ cloud-controls-matrix-v4/
https://cloudsecurityalliance.org/artifacts/ cloud-controls-matrix-v4/
https://attack.mitre.org/groups/
https://attack.mitre.org/techniques/
https://attack.mitre.org/versions/v8/ matrices/enterprise/cloud/
https://attack.mitre.org/versions/v8/ matrices/enterprise/cloud/
https://aisel.aisnet.org/bise/vol2/iss5/2
https://www.iso.org/isoiec-27001-information-security.html
https://doi.org/https://doi.org/10.1007/978-3-030-86797-3_25
https://doi.org/10.1016/j.cose.2020.101827
https://doi.org/10.1109/IEEESTD.1990.101064
https://www.iso.org/standard/54533.html
https://www.iso.org/standard/43757.html
https://www.iso.org/standard/43757.html
https://www.iso.org/standard/76559.html
https://konvajs.org/
https://konvajs.org/

T. Zhao, U. Lechner, M. Pinto-Albuquerque, and E. Ata 6:13

22 Kimberly Mlitz. Size of the cloud computing and hosting market market worldwide from
2010 to 2020 (in billion u.s. dollars). https://www.statista.com/statistics/500541/
worldwide-hosting-and-cloud-computing-market/, January 2021. Accessed: 2021-05-08.

23 Adam Shostack. Tabletop security games & cards. https://https://shostack.org/games.
html, 2021.

24 Tiange Zhao, Tiago Gasiba, Ulrike Lechner, and Maria Pinto-Albuquerque. Raising awareness
about cloud security in industry through a board game. Information, 12(11), 2021. doi:
10.3390/info12110482.

25 Tiange Zhao, Tiago Espinha Gasiba, Ulrike Lechner, and Maria Pinto-Albuquerque. Exploring
a Board Game to Improve Cloud Security Training in Industry. In Pedro Rangel Henriques,
Filipe Portela, Ricardo Queirós, and Alberto Simões, editors, Second International Computer
Programming Education Conference (ICPEC 2021), volume 91 of Open Access Series in
Informatics (OASIcs), pages 11:1–11:8, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik. URL: https://drops.dagstuhl.de/opus/volltexte/2021/14227,
doi:10.4230/OASIcs.ICPEC.2021.11.

ICPEC 2022

https://www.statista.com/statistics/500541/worldwide-hosting-and-cloud-computing-market/
https://www.statista.com/statistics/500541/worldwide-hosting-and-cloud-computing-market/
https://https://shostack.org/games.html
https://https://shostack.org/games.html
https://doi.org/10.3390/info12110482
https://doi.org/10.3390/info12110482
https://drops.dagstuhl.de/opus/volltexte/2021/14227
https://doi.org/10.4230/OASIcs.ICPEC.2021.11

Python Programming Topics That Pose a
Challenge for Students
Justyna Szydłowska !

University of Szczecin, Poland

Filip Miernik !

University of Szczecin, Poland

Marzena Sylwia Ignasiak !

University of Szczecin, Poland

Jakub Swacha ! Ï

University of Szczecin, Poland

Abstract
Learning programming is often considered as difficult, but it would be wrong to assume that all
programming topics are equally tough to learn. In this paper, we make use of a gamified programming
learning environment submission repository containing records of over 9000 attempts of solving
Python exercises to identify topics which pose the largest challenge for students. By comparing
students’ effort and progress among sets of exercises assigned to respective topics, two topics emerged
as especially difficult (Object-oriented programming and Classic algorithms). Also interesting are
the identified differences between genders (indicating female students to fare better than male at the
initial topics, and the opposite for the most advanced topics), and the scale of effort some students
put to succeed with the most difficult exercises (sometimes solved only after tens of failed attempts).

2012 ACM Subject Classification Applied computing → Interactive learning environments; Applied
computing → E-learning

Keywords and phrases learning programming, programming exercises, gamified learning environment,
learning Python

Digital Object Identifier 10.4230/OASIcs.ICPEC.2022.7

Funding The work described in this paper was achieved within two projects supported by the
European Union’s Erasmus Plus programme: the Framework for Gamified Programming Educa-
tion (2018-1-PL01-KA203-050803) and FGPE Plus: Learning tools interoperability for gamified
programming education (2020-1-PL01-KA226-HE-095786).

1 Introduction

Students that are trying to learn programming face a variety of problems, which concern
many different fields. Obstacles and challenges encountered on the way relate to almost every
aspect of the area. A question arises, which of them are the most difficult, or posing the
largest challenge for students. Knowing that can be helpful in deciding where the focus of
programming courses should be made, assigning sufficient time frames for learning respective
topics, and selecting problems of adequate difficulty for the final exam.

In this paper, we investigate this matter on the case of the “Introduction to Python 3
programming” exercise set developed at University of Szczecin by a team led by the last
co-author of this paper, as a part of the effort on the Framework for Gamified Programming
Education project realized under the Erasmus+ international programme [6]. The exercise set
covers all key aspects of Python, from the basics of the syntax to the Python implementation
of classic algorithms, arranged in 12 thematic sections (called lessons). The exercise set
is released as open source as a part of a larger collection, and can be freely reused and

© Justyna Szydłowska, Filip Miernik, Marzena Sylwia Ignasiak, and Jakub Swacha;
licensed under Creative Commons License CC-BY 4.0

Third International Computer Programming Education Conference (ICPEC 2022).
Editors: Alberto Simões and João Carlos Silva; Article No. 7; pp. 7:1–7:9

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:justyna.szydlowska@usz.edu.pl
https://orcid.org/0000-0001-6350-9590
mailto:filip@flexile.io
https://orcid.org/0000-0002-5565-7670
mailto:m.ignasiak97@gmail.com
https://orcid.org/0000-0001-5411-0107
mailto:jakub.swacha@usz.edu.pl
http://iiwz.wneiz.pl/jakubs
https://orcid.org/0000-0002-2214-6989
https://doi.org/10.4230/OASIcs.ICPEC.2022.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

7:2 Python Programming Topics That Pose a Challenge for Students

modified [8]. What is important, the whole exercise set is gamified in order to constantly
encourage students to keep learning. While solving the exercises, writing their own code,
finding bugs and improving previous submissions, students receive various virtual rewards,
and compete against each other for the top ranks in the leaderboard.

The exercises were provided on the FGPE PLE interactive learning web platform [13]
to two groups of students (counting together 39 students, including 30 male and 9 female)
attending introductory Python courses in the winter semester 2021/2022 at two business
schools in Szczecin, Poland. FGPE PLE consequently records students’ submissions at the
server, including the result of their evaluation. During the whole semester, the students
made over 9000 code submissions.

We decided to capitalize on the collected data to identify the programming topics (i.e.,
lessons, or thematic sections of the exercise set) which posed the largest challenge for the
students, in belief that results obtained this way were more precise and reliable than those
obtained by interviewing the students on the difficulty of respective topics – especially, if the
latter is performed at the end of a course, when students’ memory is already blurred.

In order to identify the topics which pose the most challenge to the students, two measures
were employed:

the average number of code submissions made for an exercise, which reflects how much
effort was put by those who eventually solved an exercise,
the lesson completion ratio, or the percentage of students who completed all exercises
from a lesson out of all who started it, which shows for how many students the challenge
was big enough to resign from completing a lesson.

The paper is organized as follows. In the subsequent section, we describe the context
of our research and briefly review existing reports of similar kind. Next, we describe the
structure and the contents of the exercise set, and present student progress data revealing
which topics were the most challenging, and which were not. We then discuss the obtained
results and conclude the paper.

2 Background and Related Work

Learning programming is difficult even to the extent of being called “IS student’s worst
nightmare” [21]. Having been diagnosed already a long time ago (see [1] and works cited
therein), this problem has attained wide research interest ever since. One of the results of this
interest were various attempts made to reduce difficulty of learning programming, by making
use of, e.g., program execution visualization [2], automatic evaluation [9], gamification [13], or
full-fledged educational games [5]. Despite all such efforts and improvements in educational
process and technology, the problem continues to be significant as confirmed by a recent
international survey [19].

An important research direction is focused at finding causes of this difficulty, which may
be of various character [16]. Some researchers look for them within students, pointing to
their prior knowledge [4] or individual patterns of learning [14]; some blame the teachers’
own poor content knowledge [18] or the outdated teaching methods [7]; some indicate the
differences in difficulty of learning various programming languages [17].

This paper contributes to yet another vein of research on programming learning difficulty,
which aims at identifying the programming course topics that pose the largest challenge
for students. The largest research of this kind that we are aware of was done on a cohort
of around 1500 students at the Open University, United Kingdom. The data source was
an online ’Python help forum’ where students were recording and discussing encountered

J. Szydłowska, F. Miernik, M. S. Ignasiak, and J. Swacha 7:3

challenges. The forum contained 178 discussions with a total of 1430 posts of which 29 were
Python-related, 15 focusing on module-specific questions or issue reports and 19 on problem
solving and general programming skills. Among the Python-related topics, IDE was the
most frequently brought up (in 40 discussions), followed by Collections (in 21 discussions),
Functions (16 discussions) and Error messages (15 discussions), whereas if we look at the
median number of posts in a discussion, which may indicate the depth of a problem, the
highest were noted for Functions (12) followed by Imports (11) and Error messages (10) [15].

The second largest study was done at Helsinki University of Technology, Finland, in
a form of a survey administered to programming course participants in two subsequent
years (2006–7). Data were collected from 459 students who passed the course and 119 who
dropped out. Among the programming concepts, inheritance and abstract class, handling
files, object-oriented concepts, and exceptions turned out to be the most difficult, while
statements, loops and methods were the least difficult.

Another study in this vein was conducted in Chennai, India, involving 195 undergraduate
students (56.41% female and 43.59% male) of Engineering and Technology who were taught
Java Programming in the first semester of 2011. The most difficult topics to learn were noted
to be “Concurrent programming”, “UI components with Swing” and “Generic programming”,
whereas “Exceptions and Assertions”, “Event Handling” and “Interfaces and inner classes”
were marked as moderately difficult; topics “Graphics programming”, “OO Access controls”
and “Object Orientation” were perceived as less difficult, and “Fundamental programming
structure in Java” as not to be difficult at all [20].

The results obtained from 145 students (120 female and 25 male) attending a one-
semester introductory programming course at Buraimi University College, Oman, in 2013–14
indicate that the most difficult topics for students beginning their journey with programming
are repetition structures, arrays and functions, the easiest being input/output statements,
selection structure, parameters and operators [11].

Among 105 students (49.5% male and 50.5% female) of Sultan Idris Education University
in Malaysia, the multidimensional array turned out to be the least understood, succeeded by
looping statements, functions and the array data structure. Variables, constants and data
types as well as selection statements were rated as mostly understood and input/output
statements were best understood [3]. Another research involved 66 respondents, comprising
programming students from the University of Dundee, and lecturers and teachers of pro-
gramming from various universities in the UK, who were asked to indicate concepts and
topics they found to be most difficult to cope with. The highest difficulty was given to
copy constructors, operator overloading, templates, dynamic allocation of memory, pointers
and other data structures (trees, linked-lists). In the middle, there were topics such as
virtual functions, polymorphism, constructors/destructors, input/output and file handling,
passing by reference/passing by value, and inheritance. Assessed as the easiest were looping
operations, conditional operations, operators and precedence, basic function calling/program
flow, and variable/function declarations [12].

A much smaller survey from central Anatolia, Turkey, involved 12 undergraduate students
participating in the Internet Programming course in the fall of 2013. Among topics posing a
challenge to learn, “syntax” was reported most often, followed by “functions and parameters”,
“concepts, principles”, “assign variable” and “decision structures and loop” [22].

3 Challenging Topics in an Introductory Python course

3.1 Structure and Contents of the Exercise Set
The “Introduction to Python 3 programming” exercise set consists of 94 gamified exercises
grouped in 12 consecutive lessons (see Table 1).

ICPEC 2022

7:4 Python Programming Topics That Pose a Challenge for Students

Table 1 Content of the “Introduction to Python 3 programming” course.

Lesson 1: Basics Lesson 2: Strings Lesson 3: Variables

1 Arithmetic operators Strings Creating variables
2 Nested parentheses Apostrophes Setting variable values
3 The order of arithmetic operators Special characters Modifying the value of a variable
4 Exponentiation Raw strings Setting several variables at once
5 Alternative number systems Multi-line string literals Changing the values of many variables
6 Real numbers and integers String concatenation Naming variables
7 Scientific notation Strings vs. numbers -
8 Division remainder String repetitions -

Lesson 4: Conditionals Lesson 5: Loops Lesson 6: Sets

1 Comparisons Introduction to loops Introduction to sets
2 Equality check Ranges Set initialization and modification
3 The else block Loop counter Loop over a set
4 Parity checking Two parameters of the range function Functions operating on set elements
5 Many cases Three parameters of the range function Subsets and operations on sets
6 Combining comparisons The continue instruction Turning a string into a set
7 Nesting comparisons Nested loops Operations on sets made from strings
8 - Aggregates -
9 - Breaking a loop and the else block -

Lesson 7: Lists Lesson 8: String processing Lesson 9: Dictionaries

1 Lists ASCII codes Dictionaries
2 Create and combine lists String immutability Accessing items in a dictionary
3 Extending a list Searching for a substring Dictionaries as a collection of keys
4 Shortening a list Determining the substring position Operations on dictionary elements
5 Checking the contents of a list Replacing a substring Operations on a whole dictionary
6 Accessing list items by index or value Changing the letter case Default values of dictionary elements
7 Inserting and deleting elements Centering strings Using a dictionary to translate words
8 List slicing Splitting and combining strings -
9 Counting items in a list - -
10 Converting strings or sets to lists - -

Lesson 10: Functions Lesson 11: Object-oriented programming Lesson 12: Classic algorithms

1 Defining a function Introduction to classes Binary search
2 Function result Parameterized constructor Quicksort
3 Function parameters Displaying object contents Fibonacci sequence
4 Parameter names Defining a class The problem of 8 queens
5 Default values of parameters Inheritance The knight’s tour problem
6 Variable number of parameters Method overloading and base class access The change-making problem
7 Unpacking parameters from the list Accessing object’s class -
8 Many results of the function - -
9 Local variables - -
10 Nested functions - -
11 Global variables - -

3.2 Topics’ Difficulty According to Students’ Effort and Progress

Figure 1 compares the two difficulty measures visually, with each dot representing an
individual exercise, and its color denoting the lesson it belongs to. A reader is reminded that
both the source of the presented data and the procedure of its processing were described in
the Introduction.

As we can observe, generally, the further the lesson an exercise belongs to is placed in
the set, the smaller is the share of students who solved it (note that the students were given
an access to all exercises regardless of its topic from the very beginning, i.e., they were
not required to complete the earlier lessons to access the later ones). Exercise Arithmetic
operators was the one solved by most students (92.31%), whereas exercises The knight’s
tour problem (2.56%), then The problem of 8 queens and The change-making problem (both

J. Szydłowska, F. Miernik, M. S. Ignasiak, and J. Swacha 7:5

Figure 1 Average submissions per solved exercise by percentage of students who solved it.

Figure 2 Completion ratio of every exercise (male and female).

ICPEC 2022

7:6 Python Programming Topics That Pose a Challenge for Students

7.69%) were the ones solved by least students. As for the average number of tries students
made to solve an exercise, the picture is more complicated: even in the later lessons, there
are exercises solved in the first attempt by most students, and most exercises were solved
after few submissions at most. However, we have some outliers: the most notable is exercise
The knight’s tour problem from lesson Classic algorithms which took on average over 80
tries to solve. The similar cases are exercises Defining a class from lesson Object-oriented
programming and Nesting comparisons from lesson Conditionals which both took about 50
submissions on average.

In Figure 2, we present the average ratios of students who completed exercises from a given
lesson, depending on their gender. For females, the average completion ratio ranged from
about 2/3 for the introductory first lesson to about 1/18 for the Object-oriented programming
lesson (which was the one before the last; interestingly, for the last topic, Classic algorithms,
a bit higher ratio of about 1/16 has been achieved among female students). To a lesser
degree, females also struggled with two other lessons: Dictionaries (completion ratio of 1/6)
and Functions (completion ratio near 1/5). For males, unexpectedly, the first lesson was
not the easiest (completion ratio of about 1/2), but the lesson on Lists (completion ratio of
about 3/5). Males struggled the most with the last lesson (Classic algorithms, completion
ratio of about 1/16), then with the topics of Object-oriented programming (completion ratio
of 1/6) and Dictionaries (completion ratio of about 1/4).

In total, female students fared better in the first five lessons, and male students in the
remaining seven. Such a result indicates that females more often than males grasped the
concepts of programming from the very beginning, whereas males were better at dealing with
more complex topics further on. Looking at the differences between the two genders, while
for some lessons it was small, for some it was large. In particular, female students achieved a
23% higher completion ratio for lesson Basics, 19% for Strings, and 24% for Conditionals,
whereas male students achieved a three times higher completion ratio for Object-oriented
programming, 51% for Functions, 41% for String processing, and 48% for Dictionaries.

The number of failed submissions made by students who eventually solved an exercise
averaged for every lesson and disaggregated by gender has been presented in Figure 3.

For females, the average number of failed submissions ranged from about 0.2 (the vast
majority of submissions were accepted on the first try) for the Variables lesson to over 4
per exercise for the Classic algorithms lesson. Females have also sent a significantly high
number of submissions in lesson Loops (3.2). For the remaining lessons, the average numbers
ranged from 1.4 to 2.7. In the case of males, the average number of failed submissions ranged
from about 0.4 for the Variables lesson to 5.9 for the Conditionals lesson. Male students
also needed a small number of tries before passing in lessons Basics (1.0), Strings (1.1) and
Functions (1.4). For the remaining lessons, the average numbers ranged from about 1 to 3.

The average number of failed submissions per solved exercise for both male and female
students is very similar in most lessons. The greatest difference between the two genders can
be seen for lesson Conditionals, where males have sent about 3.7 more failed submissions
per exercise on average than females. The opposite situation happened for lessons: Classic
algorithms (1.4 less submissions sent by male students on average), Functions (1.3 less), and
Object-oriented programming (1.1 less).

4 Discussion

The prior work focused at surveys reporting students’ own estimation of difficulty, whereas
the results presented here were based on objective data measuring students’ ability to solve
particular exercises and the effort they made to accomplish that. While the latter also has

J. Szydłowska, F. Miernik, M. S. Ignasiak, and J. Swacha 7:7

Figure 3 Average failed submissions per solved exercise for every lesson (by gender).

its limitations – students may discontinue a course at any time for reasons other than its
difficulty, and the number of failed submissions may be underestimated as students can
develop and test their code in another environment, and paste it into the learning environment
only after they believe it is correct – we still consider it a more reliable estimator of topic
difficulty than students’ opinion, especially declared long after solving the exercises actually
took place.

Comparing the presented results to those reported in prior work, no clean pattern emerges.
Our results, similar to [12] and [10], point to object-oriented programming as one of the most
difficult topics, and loops as one of the easier ones, whereas works [20] and [3] reported
almost opposite results regarding these two topics. The latter study, however, agrees on
syntax not posing a learning challenge; this is in contrast to [22], which on the other hand is
consistent with our results with regard to considering functions as difficult, alike also [11].
This may stem from differences in both programming languages taught and the educational
context.

The reviewed literature did not give sufficient attention to gender differences. The results
of our study show that female students fare better at handling the basics of programming,
but struggle at later topics, whereas those male students who pass the early barriers, are
more capable of passing the exercises belonging to more difficult topics as well.

5 Conclusion

In this paper, we extended the knowledge of which programming learning topics pose the
largest challenge for students with new results obtained from two groups of students playing

ICPEC 2022

7:8 Python Programming Topics That Pose a Challenge for Students

with a set of gamified Python exercises.
Unlike the most previous research in this vein, instead of surveying the students about the

perceived difficulty of respective topics, we based our analysis on objective data comprising
the share of students who completed all exercises belonging to a lesson on a given topic, and
the average number of submissions the students made before their solution was accepted.

While, in general, the measured difficulty increases the further in the exercise set we
proceed, the most notable observation is the very sharp rise of the difficulty for the two
final lessons, devoted to Object-oriented programming and Classic algorithms, respectively.
Possibly, these two topics should not belong to an introductory programming exercise set.

By distinguishing the gender of students, we were able to reveal in our data that female
students had an easier start with learning programming, whereas the male students were
more inclined to continue solving exercises till the end, even in spite of numerous failed
attempts.

A very interesting observation was made thanks to measuring the number of submissions
before one was accepted: for some exercises, a number of students kept trying and eventually
succeeded even after failing tens of times. We link this observation with the fact the exercises
were gamified, which most probably helped to keep the engagement and motivation high for
at least a part of the students. Proving that, however, would require a comparison with a
group learning with non-gamified exercises. This indicates the direction of our future work.

References
1 Yorah Bosse and Marco Aurélio Gerosa. Why is programming so difficult to learn? patterns of

difficulties related to programming learning mid-stage. SIGSOFT Softw. Eng. Notes, 41(6):1–6,
2017. doi:10.1145/3011286.3011301.

2 Michael P. Bruce-Lockhart and Theodore S. Norvell. Lifting the hood of the computer:
program animation with the teaching machine. In 2000 Canadian Conference on Electrical and
Computer Engineering. Conference Proceedings. Navigating to a New Era (Cat. No.00TH8492),
volume 2, pages 831–835, 2000. doi:10.1109/CCECE.2000.849582.

3 SitiRosminah MD Derus and Ahmad Zamzuri. Difficulties in learning programming: Views of
students. In Proc. 1st International Conference on Current Issues in Education, pages 74–78,
Yogyakarta, Indonesia, 2019. doi:10.13140/2.1.1055.7441.

4 Dimitrios Doukakis, Maria Grigoriadou, and Grammatiki Tsaganou. Understanding the
programming variable concept with animated interactive analogies. In Proceedings of the
The 8th Hellenic European Research on Computer Mathematics & Its Applications Confer-
ence (HERCMA’07), 2007. URL: http://users.sch.gr/adamopou/docs/syn_HERCMA2007_
doukakis.pdf.

5 Michael Eagle and Tiffany Barnes. Experimental evaluation of an educational game for
improved learning in introductory computing. In Proceedings of the 40th ACM Technical
Symposium on Computer Science Education, SIGCSE ’09, pages 321–325, New York, NY,
USA, 2009. Association for Computing Machinery. doi:10.1145/1508865.1508980.

6 FGPE Consortium. Framework for Gamified Programming Education, 2020. accessed on 22
April 2022. URL: http://fgpe.usz.edu.pl.

7 Mark Guzdial and Elliot Soloway. Teaching the nintendo generation to program. Commun.
ACM, 45(4):17–21, 2002. doi:10.1145/505248.505261.

8 Jakub Swacha, Thomas Naprawski, Ricardo Queirós, José Carlos Paiva, José Paulo Leal,
Ciro Giuseppe De Vita, Gennaro Mellone, Raffaele Montella, Davor Ljubenkov, Sokol Kosta.
Open Source Collection of Gamified Programming Exercises. In Proceedings of the thirty-
seventh Information Systems Education Conference ISECON 2021, pages 120–123, Oak
Creek, 2021. Foundation for IT education. URL: http://proceedings.isecon.org/download/
co8h5jrbkvipjznly7dp.

https://doi.org/10.1145/3011286.3011301
https://doi.org/10.1109/CCECE.2000.849582
https://doi.org/10.13140/2.1.1055.7441
http://users.sch.gr/adamopou/docs/syn_HERCMA2007_doukakis.pdf
http://users.sch.gr/adamopou/docs/syn_HERCMA2007_doukakis.pdf
https://doi.org/10.1145/1508865.1508980
http://fgpe.usz.edu.pl
https://doi.org/10.1145/505248.505261
http://proceedings.isecon.org/download/co8h5jrbkvipjznly7dp
http://proceedings.isecon.org/download/co8h5jrbkvipjznly7dp

J. Szydłowska, F. Miernik, M. S. Ignasiak, and J. Swacha 7:9

9 Mike Joy, Nathan Griffiths, and Russell Boyatt. The Boss online submission and assessment
system. J. Educ. Resour. Comput., 5(3):2–es, 2005. doi:10.1145/1163405.1163407.

10 Päivi Kinnunen. Challenges of teaching and studying programming at a university of technology
– viewpoints of students, teachers and the university. Doctoral thesis, Helsinki University of
Technology, Espoo, Finland, 2009. URL: https://aaltodoc.aalto.fi/handle/123456789/
4710.

11 Sohail Iqbal Malik and Jo Coldwell-Neilson. A model for teaching an introductory programming
course using ADRI. Education and Information Technologies, 22(3), 2017. doi:10.1007/
s10639-016-9474-0.

12 Iain Milne and Glenn Rowe. Difficulties in learning and teaching programming – views
of students and tutors. Education and Information Technologies, 7(1):55–66, 2002. doi:
10.1023/A:1015362608943.

13 José Carlos Paiva, Ricardo Queirós, José Paulo Leal, Jakub Swacha, and Filip Miernik. An
open-source gamified programming learning environment. In Second International Computer
Programming Education Conference (ICPEC 2021), volume 91 of OASICS, pages 5.1–5.8,
Saarbrücken, Wadern, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/OASIcs.ICPEC.2021.5.

14 D. N. Perkins, Chris Hancock, Renee Hobbs, Fay Martin, and Rebecca Simmons. Conditions
of learning in novice programmers. Journal of Educational Computing Research, 2(1):37–55,
1986. doi:10.2190/GUJT-JCBJ-Q6QU-Q9PL.

15 Paul Piwek and Simon Savage. Challenges with learning to program and problem solve: An
analysis of student online discussions. In SIGCSE ’20: Proceedings of the 51st ACM Technical
Symposium on Computer Science Education, pages 494–499, New York, 2020. ACM. URL:
http://oro.open.ac.uk/68074/.

16 Yizhou Qian and James Lehman. Students’ misconceptions and other difficulties in introductory
programming: A literature review. ACM Trans. Comput. Educ., 18(1), 2017. doi:10.1145/
3077618.

17 Łukasz Radliński and Jakub Swacha. C# or Java? – analysis of student preferences. Studies
& Proceedings of Polish Association for Knowledge Management, 58:101–113, 2012.

18 Philip Sadler, Gerhard Sonnert, Harold Coyle, Nancy Cook-Smith, Jaimie Miller-Friedmann,
and Harvard-Smithsonian Center. The influence of teachers’ knowledge on student learning in
middle school physical science classrooms. American Educational Research Journal, 50(5):1020–
1049, 2013. doi:10.3102/0002831213477680.

19 Simon, Andrew Luxton-Reilly, Vangel V. Ajanovski, Eric Fouh, Christabel Gonsalvez, Juho
Leinonen, Jack Parkinson, Matthew Poole, and Neena Thota. Pass Rates in Introductory
Programming and in other STEM Disciplines. In Proceedings of the Working Group Reports
on Innovation and Technology in Computer Science Education, pages 53–71, Aberdeen, 2019.
ACM. doi:10.1145/3344429.3372502.

20 M. Sivasakthi and R. Rajendran. Learning difficulties of ’object-oriented programming
paradigm using Java’: students’ perspective. Indian Journal of Science and Technology,
4(8):983–985, 2011. doi:10.17485/ijst/2011/v4i8.9.

21 Amy B. Woszczynski, Hisham M. Haddad, and Anita F. Zgambo. An IS student’s worst
nightmare: Programming courses. In SAIS 2005 Proceedings, 2005. URL: https://aisel.
aisnet.org/sais2005/24/.

22 Büşra Özmen and Arif Altun. Undergraduate Students’ Experiences in Programming: Dif-
ficulties and Obstacles. Turkish Online Journal of Qualitative Inquiry, 5(3):9–27, 2014.
doi:10.17569/tojqi.20328.

ICPEC 2022

https://doi.org/10.1145/1163405.1163407
https://aaltodoc.aalto.fi/handle/123456789/4710
https://aaltodoc.aalto.fi/handle/123456789/4710
https://doi.org/10.1007/s10639-016-9474-0
https://doi.org/10.1007/s10639-016-9474-0
https://doi.org/10.1023/A:1015362608943
https://doi.org/10.1023/A:1015362608943
https://doi.org/10.4230/OASIcs.ICPEC.2021.5
https://doi.org/10.2190/GUJT-JCBJ-Q6QU-Q9PL
http://oro.open.ac.uk/68074/
https://doi.org/10.1145/3077618
https://doi.org/10.1145/3077618
https://doi.org/10.3102/0002831213477680
https://doi.org/10.1145/3344429.3372502
https://doi.org/10.17485/ijst/2011/v4i8.9
https://aisel.aisnet.org/sais2005/24/
https://aisel.aisnet.org/sais2005/24/
https://doi.org/10.17569/tojqi.20328

Thoughts of a Post-Pandemic Higher Education in
Information Systems and Technologies
Francini Hak1 !

Algoritmi Research Center, University of Minho, Braga, Portugal

Jorge Oliveira e Sá !

Algoritmi Research Center, University of Minho, Braga, Portugal

Filipe Portela !

Algoritmi Research Center, University of Minho, Braga, Portugal

Abstract
In late 2019, a new class of coronavirus appeared in China that triggered a worldwide pandemic
declared by the World Health Organization. Several businesses were affected and people had to
adapt their social life to a virtual mode. Higher education institutions suffered from this sudden
change, and had to adapt without any preparation or planning. After almost two years of carrying
out activities in an online format, face-to-face activities in higher education have returned. This
case study aims to analyze the performance of students in a new curricular unit of the Engineering
and Management of Information Systems course at the School of Engineering of the University of
Minho in Portugal. The study is applied to 142 students who entered the 1st year of the 2019/2020
school year and returned to face-to-face activities in the 3rd year of the 2021/2022 school year. Two
questionnaires were applied, one at the beginning of the semester with 71 answers and another at the
end of the semester with 39 answers. The main objective was to understand the students’ feedback
regarding the functioning of the classes, in which a great difficulty in teamwork was highlighted.

2012 ACM Subject Classification Information systems → Evaluation of retrieval results

Keywords and phrases Emergency Remote Teaching, E-learning, Higher Education, Covid-19
Pandemic, Information Systems

Digital Object Identifier 10.4230/OASIcs.ICPEC.2022.8

Funding This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the
R&D Units Project Scope: UIDB/00319/2020.

1 Introduction

Since the World Health Organization (WHO) declared COVID-19 a global pandemic on 11
March 2020, the crisis hit higher education worldwide, including in Portugal. The Coronavirus
catalysed changes, seemingly overnight, from face-to-face to remote classes. Learning online
can be challenging in general, for both teachers and students and remote classes requires
careful preparation and planning [7].

However, in March 2020, there was no time to do this preparation and planning work,
causing a sudden Emergency Remote Teaching (ERT), temporary move to distance education
in response to a crisis that prevents in-person class meeting, may be considerably more
challenging, particularly because of the variation in delivery. Instructors varied in how they
introduced remote teaching. Some approaches focused on classes were limited to set times
of the day or week, with synchronous online teleconference meetings, other classes were
completely asynchronous, with pre-recorded lectures and/or written materials in lieu of live
meetings. However, this affected the students who met a learning experience that for many
was a new experience.

1 Corresponding author
© Francini Hak, Jorge Oliveira e Sá, and Filipe Portela;
licensed under Creative Commons License CC-BY 4.0

Third International Computer Programming Education Conference (ICPEC 2022).
Editors: Alberto Simões and João Carlos Silva; Article No. 8; pp. 8:1–8:9

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:francini.hak@algoritmi.uminho.pt
https://orcid.org/0000-0002-5172-045X
mailto:jos@dsi.uminho.pt
https://orcid.org/0000-0003-4095-3431
mailto:cfp@dsi.uminho.pt
https://orcid.org/0000-0003-2181-6837
https://doi.org/10.4230/OASIcs.ICPEC.2022.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

8:2 Thoughts of a Post-Pandemic Higher Education in IST

This case study was applied in students who started their studies at the University of
Minho in the 2019/2020 academic year, that is, students who were in the 1st year at that time.
In the following academic year 2020/2021, learning should have taken place in a blended
format, that is, a mix between face-to-face and remote; however, most classes took place in a
remote format. What happened is that the theoretical and theoretical-practical classes are
recommended to be in a remote format and the practical classes should have taken place in
a “face-to-face” format; in fact, this did not happen, as the teachers chose to teach these
classes in a remote format. In the actual academic year 2021/2022, classes are mandatory
taught in a face-to-face format.

When the universities closed their campuses in March 2020, the 1st year students of
the 2019/2020 academic year had not yet acclimated to the university context [6], so these
students stayed since March 2020 to September 2021 practically working remotely. This
distance meant that students were deprived of socializing with colleagues (from the academic
year, as well as from later years). Because in addition to the remote classes, all socializing
events between students (new and older) have been cancelled.

At the time of writing this study, these students are in the 3rd year of their study cycle,
in the academic year 2021/2022, and the classes are mandatory in face-to-face format. In
the 3rd year of the study cycle, most courses require students to work in a team and the
number of students can vary from three to eight elements per team. Thus, students currently
attending the 3rd year were faced with the need for face-to-face classes, which for them is
almost a novelty and with the need to work as a team with colleagues that are strangers to
them.

This study focuses on students who attend the last year, 3rd year, of the first cycle of
Engineering and Management of Information Systems (EMIS), of the School of Engineering
of the University of Minho. The course subject of this study is called Data Engineering
for Decision Making Support (DEDMS) which has 162 students enrolled and is a new new
curricular unit created from the restructuring of the EMIS course. This course provides
students with first contact with data engineering to support decision making in organizational
context, providing fundamental knowledge to students to understand the importance of data
and how information technologies enable data collection, processing and analysis. In this
case study, two questionnaires were applied in order to understand the expectations and
opinions of students regarding the DEDMS subject.

This article is structured in five sections, starting with an introductory part. A background
on the pandemic in higher education is presented. The third section address the course
structure and the applied subject. Section four describes the methods used and the results
obtained. Finally, conclusions are made.

2 Background

The Covid-19 pandemic declared in March 2020 affected the entire world, forcing people
to close their businesses and working from home. Higher education was also affected,
as universities were forced to shut down campuses by interrupting classroom education.
Universities were not prepared to suspend their activities, nor were students and teachers
prepared for distance learning. In the beginning, a lot of time was spent choosing the right
methods and resources, such as online platforms for video conferencing classes or platforms
for recording classes.

It can be said that this caused a crisis called Emergency Remote Teaching (ERT) which
translates into a temporary change in the way of teaching due to the circumstances of
the crisis, involving the use of solutions for distance learning. The main objective was to

F. Hak, J. Oliveira e Sá, and F. Portela 8:3

provide fast and reliable access available to perform daily tasks. However, the robustness
and quality of teaching/learning have been compromised [3], as online learning can be a
challenge in general, both for teachers and especially for students who expected a face-to-face
experience [7]. Higher education teachers have approached remote education in different ways.
On the one hand, classes were limited to fixed times of the day or week, with synchronous
online video conferencing meetings. On the other hand, the classes were asynchronous with
pre-recorded classes and with materials available on some platforms. All students, however,
were faced with a learning experience they did not anticipate and that many would not have
chosen for themselves [3].

ERT differs from online education that already existed. Teaching in ERT was a rapid
response to the emergency health crisis that delivered content in a varied, unplanned and
difficult way, without predicting the consequences of these actions. The online teaching
or e-learning method does not compromise the structure of classes and learning content.
Although both methods use evidence-based teaching, this difference suggests that ERT may
be associated with a different learning experience. Some studies focused on the involvement
and motivation of students during the ERT period [5, 2], but did not bother with objectively
measuring the learning [3]. Much discussion around ERT between teachers and administrators
is correctly related to how well students are learning during ERT, and how learning outcomes
we have the knowledge, skills, attitudes and habits that students acquire [3].

However, no distinction was made in the application of ERT education among students
who had just entered university in the 2019/2020 school year, that is, they were attending
their first year, and students who already attended university, that is, who were already in
the 2nd, 3rd, 4th or even 5th grade. This distinction is important, because this group of
students, in the school year 2020/2021, had all their classes remotely and only in 2021/2022
do they attend face-to-face classes.

From our knowledge we did not identify any study directed at these students, we found
that there are studies that report that students who attend the most advanced years of study
tend to be more favourable to the online learning environment than younger students, evident
a tendency to a more favourable engagement in online learning environments with increased
specialization, on the other hand, an important factor is lost which is student-student
interaction [8] and that ERT caused a loss in personal relationships and even loneliness and
depression [1, 4].

Thus, ERT affected the success of teaching and it is urgent to study how universities
implemented organizational, pedagogical and educational concepts to minimize the loss of
learning time due to the closure of schools [9]. In our opinion, this study should include
other factors, such as that proposed in this study, which is the year attended by the student
when the ERT occurred.

3 Course Structure

3.1 EMIS Scope
The Engineering and Management of Information Systems (EMIS) is a high school course
offered by the School of Engineering of the University of Minho in Portugal. The professional
profile associated to the EMIS course combines competences from informatics engineering
and Information Technology (IT) management. The role played by Information Systems (IS)
engineers and managers is to use IT and its applications to the benefit of organizations. IT is
a means to the improvement of organizations and not an end in itself. Therefore, Information
Systems and Technology (IST) professionals are expected to intervene in the adoption of IT
and to manage the organizational and work engineering processes.

ICPEC 2022

8:4 Thoughts of a Post-Pandemic Higher Education in IST

IST graduates should also possess competences for building IT applications and for
getting involved in the activities related to the organization IT infrastructure. The scientific
areas present in the course program reveal the combination of competences mentioned above.
Higher education in IST involves characteristics typical from informatics engineering together
with aspects that enables understanding organizations and their workings, their processes
and management activities. The informatics component of the program emphasizes the
configuration and customization of existing IT products and platforms either for operational
or managerial work.

It is important to mention that the course was recently reformulated, separating the
bachelor (1st cycle – 3 years) and the master (2nd cycle – 2 years). The new program will
substitute one already existing programs: an integrated Master (1st cycle and 2nd cycle –
5 years) program, due to the imposition of Portugal Government. This change will have
implications on the EMIS professionals, because the competences that it is possible to achieve
during the 3 first years of the program correspond to a quite undifferentiated professional
profile. Entering in the labour market with such competences has 2 inconveniences: less
competitiveness of graduates; and obstacles to the development of a professional profile with
higher potential impact in organizations.

In a nutshell, an EMIS professional acts mentioned above demand competences typical
of 2nd cycle education, in what concerns: understanding of technology; understanding
the context where technology will be deployed; application of techno-scientific knowledge;
criticism and judgement capacity; communication of scientific and technological subjects. In
order to achieve an effective integration of the program competences, it is understood that
the informatics component of the program should be well articulated with the managerial
component.

3.2 DEDMS Curricular Unit
Within the scope of Engineering and Management of Information Systems (EMIS) course,
the Data Engineering for Decision Making Support (DEDMS) curricular unit is inserted
in the first semester of the 3rd year and is a new subject resulting from the reformulation
of the course. We selected this curricular unit because it is extremely important for the
third year and has a larger dimension. This course is 10 ECTS (European Credit Transfer
System) and it is divided into 2 theoretical hours (T class), 2 theoretical-practical hours
(TP class) and 2 practical and laboratory hours (PL class) per week, with a teaching team
composed of seven professors. In T classes, the teaching learning method is expository, where
the relevant concepts are presented and students are encouraged to investigate and expose
concepts related to the topics covered. TP classes are an active learning method where
activities are planned that involve students’ participation, both in the accomplishment of
tasks and in the systematization of results and difficulties. In the PL students are involved
in the realization of a practical project.

The scope of DEDMS is to develop a Big Data project through a Delta Lake architecture.
Distributed technologies such as Apache Spark were adopted. This course provides students
with first contact with data engineering to support decision-making in organizational context,
providing fundamental knowledge for students to understand the importance of data and
how information technologies enable data collection, processing and analysis.

This course is project-oriented having 280 working hours, 90 hours of which relate to
teacher and student contact and the remaining to students’ self-study or project work. In
addition to the permanent involvement of students in this process of continuous interaction,
the course provides the involvement of students in a team to the realization of a project. For

F. Hak, J. Oliveira e Sá, and F. Portela 8:5

this project, students dedicate hours of autonomous work. The work is evaluated in stages
that are predefined and the delivery date is set at the beginning of the course. The project is
followed weekly in PL classes, with the objective of identifying the evolution of each work
team and clarifying the doubts that arise as it unfolds.

In general, the main goal is to understand the importance of data in supporting decision-
making; identify the different data sources, data types, data quality and data profiling and the
necessary transformations in a given analytical context; develop extraction, transformation
and loading (ETL) processes whose specification includes mechanisms for optimizing the
resources used; Explore data through presentation and visualization technologies such as
dashboards, reports or tables,highlighting concerns about the effectiveness and efficiency of
the visualization process; Define technology architectures that take advantage of different
data storage and processing systems, supporting the needs of analytical information systems
in organizations.

4 Results

4.1 Materials and Methods
This article approaches a case study developed with the objective of analyzing and under-
standing the performance of a group of students in the return of classroom activities. The
present case study covered 142 students from DEDMS curricular unit of the EMIS course
at the University of Minho in Portugal. The study was applied in the first semester of the
2021/2022 academic year to third-year students, who entered in higher education in the
2019/2020 academic year. The data sample covered 142 students evaluated in DEDMS of 162
enrolled. The evaluation of the curricular unit consisted of an exam and a practical project,
in which 136 students were approved. Of the students enrolled in the subject, 109 were male
and 52 were female. In addition, the average age of students was 21, with a minimum age of
19 and a maximum age of 44.

Two questionnaires were prepared using Google forms, one applied at the beginning of
the semester in order to understand the students’ expectations with the new curricular unit,
and another at the end of the semester to verify if the students’ expectations were met. The
structure of the questionnaires was similar, with a total of 8 questions of different types,
such as multiple choice and free text. The questionnaire was anonymous and did not aim
to identify the students. The questions focused on understanding the students’ motivation
towards the project, their perception of the communication created between the students
and the teaching team, their opinion about the learning contents and about the structure of
the practical project, and finally free text for suggestions and comments. The extraction of
data from the questionnaires was done manually, using data analysis tools such as Excel and
Tableau.

Therefore, it was intended to discuss the evolution of students in DEDMS class in a
post-pandemic phase. In addition, it was also intended to observe the performance of students
in relation to a new curricular unit that emerged due to the reformulation of the course,
which does not contain previous records for comparison.

4.2 Findings
At the beginning of the semester, a questionnaire was made available in order to understand
the expectations of students with DEDMS curricular unit. This questionnaire obtained 71
responses. As shown in Figure 1 a), 58% of students responded that their expectations

ICPEC 2022

8:6 Thoughts of a Post-Pandemic Higher Education in IST

were normal and 32% had high expectations. The second question was related to student
communication with teachers, with a rating from 0 to 5. 46% of students rated the work
environment created as good (4), 28% as normal (3) and 14% as very good (5). Graph c)
corresponds to the students’ understanding of the learning content, with 51% saying yes,
9% partially recording and 4% recording no. In general, students at the beginning showed
motivation to learn and curiosity about the subject studied.

Figure 1 Results obtained from the first questionnaire.

At the end of the semester, a second questionnaire was made available, obtaining 39
responses. Unfortunately, the number of student responses in the second questionnaire
decreased by almost 50% compared to the first questionnaire. A specific reason for this
reduction was not identified, but we believe that the questionnaire should have been applied
a little before the students’ assessment, and not at the end of the semester as it was done.
The interpretation of results was not greatly affected by this reduction, however a larger
sample would be better to compare the results of the two questionnaires. It is also noted
that it is not possible to know whether the audience of the two questionnaires was the same,
but we believe that a large part was.

The first question in Figure 2 a), refers to the learning contents, where 61% of students
reported that the learning contents were clearly presented, 34% classified it as partially
and 5% as not. Question b) refers to the functioning of DEDMS, where 37% of students
classified it as good (4), 29% classified it as normal (3), and 21% as very good (5). Graph c)
corresponds to the general evaluation of DEDMS, where 61% evaluated the course unit as
positive, 34% as very positive, 5% negative and no rating very negative.

Figure 2 Results obtained from the second questionnaire.

Furthermore, some questions were applied in both questionnaires, which served to compare
the results. The graph in Figure 3 a), analyzes the students’ motivation towards the DEDMS
curricular unit. There was a greater motivation of students at the end of the semester, and a

F. Hak, J. Oliveira e Sá, and F. Portela 8:7

decrease in those who registered “no” in the initial questionnaire. The graph in Figure 3
b) demonstrates the students’ opinion towards technologies, where 54% of students at the
beginning thought that technologies were a good bet and only 39% at the end. 36% at the
beginning fount it partially and 47% at the end. In the first questionnaire 10% think the
technologies use were not a good bet and 13% at the second questionnaire. The students’
difficulties with the tools used for the development of the practical project were noticed
during the classes.

Figure 3 Combination of results obtained from the two forms.

In addition to these questions, the second questionnaire contained a free text field for
suggestions and comments that students wished to place. Some comments referred to the
tools chosen for the project, where some students pointed out some difficulties in their use.
On the other hand, most students highlighted the difficulty of teamwork and stated that
the DEDMS project should be more individual and not so much a group. These comments
caught the attention of the teachers, because during the classes it was noticed that students
had a lot of difficulty in team work, as they did not know how to communicate as a team
and ended up creating rivalry between the members of the group itself. In addition to this
behavior being perceived during the practical classes, the questionnaires also confirmed the
fact that students did not know how to work as a team in the face-to-face format.

As DEDMS is a project-oriented course, teamwork is essential. On the one hand, the
results showed that students felt motivated with the DEDMS curricular unit and that they
had high expectations regarding the activity contents. On the other hand, the greatest
difficulties encountered were in the choice of tools and in the performance of team work. The
results of the questionnaires allowed to highlight a difficulty in teamwork on the part of the
students, which sometimes generated a certain rivalry between the members of the group
itself. The lack of communication between the members made group work a hard task. We
believe this was due to students not knowing each other and not being used to working face
to face. The social component in an academic environment is essential for students to get to
know each other, stimulate conversation and also help each other with academic work.

Based on the difficulties encountered, the teachers needed to take certain measures that
promoted continuous monitoring in the exercise of developing the practical project. To this
end, the search for answers to questions that were not fully understood or that should be
deepened was encouraged; Involvement of students in the assessment process in order to
respond to answers from other students; recognition of mistakes made by students; Remember-
ing the evaluation criteria; Promote future performance against established criteria; Promote
students’ critical thinking; Promote team work and student interaction independently.

ICPEC 2022

8:8 Thoughts of a Post-Pandemic Higher Education in IST

5 Conclusion

The Covid-19 pandemic changed format of higher education, contributing to an Emergency
Remote Teaching. This case study aims to analyze the performance of students who entered
university in the 2019/2020 school year and who are now in the third year after two years of
classes in remote format. This school year is in the 3rd year and with face-to-face classes.
The study focused on DEDMS, a new curricular unit from the EMIS course. This 10 ECTS
curricular unit requires students to work as a team to develop a practical project.

During the practical classes of the DEDMS project, the teaching staff realized that
students were not working properly as a team, as they lacked communication, organization,
and critical and judgmental capacity. Two questionnaires were applied to understand the
general functioning of the DEDMS curricular unit. However, through free answers and in
the practical classes, it was found that students had difficulty working as a team because
they had not worked face-to-face before. This led to the teaching staff of the practical
DEDMS classes having to take steps so that students could work better as a team, namely
the definition of well-defined roles for each student, for example, defining a project manager,
documentary, responsible for communication, and others; the concrete definition of the
expectations of each team member; the preparation of meetings with well-defined objectives;
the reporting of meetings; planning and implementation rigorous work to be carried out;
among other measures. These recommendations allowed students to be able to bring the
DEDMS curriculum unit to a full term. Thus, of the 162 students enrolled, 20 were not
evaluated, and of the 142 students evaluated, 136 were approved, making only 6 students
not obtained performance and the average of the classifications (0 to 20) in DEDMS was 16
values, which is a good result.

Colleges and universities are trying to decide the ideal way to continue learning. However,
although the online format has its advantages, on the other hand it can compromise the
social life and can harm the development of personal skills. For students entering university,
aged 17 or 18, in addition to the specialization they will get through the course they have
chosen, they will also develop and form their social personality. ERT has eliminated this
prospect of training. It is therefore appropriate that when choosing the remote format, there
is a concern to strengthen the social aspects to overcome the difficulties experienced by these
students. Furthermore, it is expected that this sudden change will serve as a lesson for us to
be prepared for situations of change and to have the necessary resources to do so.

References

1 Tianhua Chen and Mike Lucock. The mental health of university students during the covid-19
pandemic: An online survey in the uk. PLoS ONE, 17, 2022. doi:10.1371/journal.pone.
0262562.

2 Kristen Fox, Gates Bryant, Nicole Lin, and Nandini Srinivasan. Time for class covid-19 edition:
part 1: a national survey of faculty during covid-19 | vocedplus, the international tertiary
education and research database. Tyton Partners and Every Learner Everywhere, 2020. URL:
https://www.voced.edu.au/content/ngv:88359.

3 Regan A. R. Gurung and Arianna M. Stone. You can’t always get what you want and it hurts:
Learning during the pandemic. Scholarship of Teaching and Learning in Psychology, October
2020. doi:10.1037/STL0000236.

4 Madona Kekelia, Eliso Kereselidze, and Ina Shanava. The covid-19 pandemic and the mental
health of students. Vectors of Social Sciences, 1, 2021. URL: https://jlaw.tsu.ge/index.
php/vss/article/view/3639.

https://doi.org/10.1371/journal.pone.0262562
https://doi.org/10.1371/journal.pone.0262562
https://www.voced.edu.au/content/ngv:88359
https://doi.org/10.1037/STL0000236
https://jlaw.tsu.ge/index.php/vss/article/view/3639
https://jlaw.tsu.ge/index.php/vss/article/view/3639

F. Hak, J. Oliveira e Sá, and F. Portela 8:9

5 Barbara Means and Julie Neisler. Suddenly online: A national survey of undergraduates
during the covid-19 pandemic, July 2020. doi:10.51388/20.500.12265/98.

6 Madeleine Pownall, Richard Harris, and Pam Blundell-Birtill. Supporting students during the
transition to university in covid-19: Five key considerations and recommendations for educat-
ors:. Psychology Learning & Teaching, 21:3–18, July 2021. doi:10.1177/14757257211032486.

7 Shannon Riggs, Kathryn E. Linder, and Penny Ralston-Berg. Thrive online: a new approach
to building expertise and confidence as an online educator. STYLUS PUB LLC, 2019.

8 Katerina Salta, Katerina Paschalidou, Maria Tsetseri, and Dionysios Koulougliotis. Students’
engagement and interactions in four university-based science learning communities during a
shift from a traditional to a distance learning environment imposed by the covid-19 pandemic.
Science & Education, 31:93–122, 2022. doi:10.1007/s11191-021-00234-x.

9 Klaus Zierer. Effects of pandemic-related school closures on pupils’ performance and learning
in selected countries: A rapid review. Education Sciences, 11:252, May 2021. doi:10.3390/
EDUCSCI11060252.

ICPEC 2022

https://doi.org/10.51388/20.500.12265/98
https://doi.org/10.1177/14757257211032486
https://doi.org/10.1007/s11191-021-00234-x
https://doi.org/10.3390/EDUCSCI11060252
https://doi.org/10.3390/EDUCSCI11060252

Integration of Computer Science Assessment into
Learning Management Systems with JuezLTI
Juan V. Carrillo #

CIFP Carlos III, Cartagena, Spain

Alberto Sierra #

CIFP Carlos III, Cartagena, Spain

José Paulo Leal #

CRACS – INESC-Porto LA & DCC – FCUP, Porto, Portugal

Ricardo Queirós #

CRACS – INESC-Porto LA & uniMAD, ESMAD/P. Porto, Portugal

Salvador Pellicer #

Entornos de Formación (EdF), Valencia, Spain

Marco Primo #

Faculty of Sciences, University of Porto, Portugal

Abstract

Computer science is a skill that will continue to be in high demand in the foreseeable future.
Despite this trend, automated assessment in computer science is often hampered by the lack of
systems supporting a wide range of topics. While there is a number of open software systems and
programming exercise collections supporting automated assessment, up to this date, there are few
systems that offer a diversity of exercises ranging from computer programming exercises to markup
and databases languages. At the same time, most of the best-of-breed solutions force teachers and
students to alternate between the Learning Management System – a pivotal piece of the e-learning
ecosystem – and the tool providing the exercises.

This issue is addressed by JuezLTI, an international project whose goal is to create an innovative
tool to allow the automatic assessment of exercises in a wide range of computer science topics. These
topics include different languages used in computer science for programming, markup, and database
management.

JuezLTI borrows part of its name from the IMS Learning Tools Interoperability (IMS LTI)
standard. With this standard, the tool will interoperate with reference systems such as Moodle,
Sakai, Canvas, or Blackboard, among many others. Another contribution of JuezLTI will be a pool
of exercises. Interoperability and content are expected to foster the adoption of JuezLTI by many
institutions. This paper presents the JuezLTI project, its architecture, and its main components.

2012 ACM Subject Classification Applied computing → Computer-managed instruction; Applied
computing → Interactive learning environments; Applied computing → E-learning

Keywords and phrases programming, interoperability, automatic assessment, programming exercises

Digital Object Identifier 10.4230/OASIcs.ICPEC.2022.9

Funding JuezLTI is Co-funded by the Erasmus+ Programme of the European Union with ref.
2020-1-ES01-KA226-VET-096004. The European Commission support for the production of this
publication does not constitute an endorsement of the contents which reflects the views only of the
authors, and the Commission cannot be held responsible for any use which may be made of the
information contained therein.

© Juan V. Carrillo, Alberto Sierra, José Paulo Leal, Ricardo Queirós, Salvador Pellicer, and Marco
Primo;
licensed under Creative Commons License CC-BY 4.0

Third International Computer Programming Education Conference (ICPEC 2022).
Editors: Alberto Simões and João Carlos Silva; Article No. 9; pp. 9:1–9:8

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:juanvicente.carrillo@murciaeduca.es
https://orcid.org/0000-0003-1734-0469
mailto:alberto.sierra@murciaeduca.es
mailto:zp@dcc.fc.up.pt
https://orcid.org/0000-0002-8409-0300
mailto:ricardoqueiros@esmad.ipp.pt
https://orcid.org/0000-0002-1985-6285
mailto:salvador.pellicer@edf.global
mailto:up201800388@edu.fc.up.pt
https://orcid.org/0000-0002-5736-0299
https://doi.org/10.4230/OASIcs.ICPEC.2022.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

9:2 Integration of CS Assessment into LMS with JuezLTI

1 Introduction

Computing skills will be among the most in-demand skills of this new decade [3]. These
skills range from building a cloud platform to maintaining it and require solid knowledge in
programming, database, and markup languages.

Most Learning Management Systems (LMS) do not support automated assessment in
these domains. Hence, academic environments resort to the best-of-breed learning tools. To
integrate these tools into the LMS they use several non-standard approaches, ranging from
plugins to ad hoc Web services.

The IMS Learning Tools Interoperability (IMS LTI) specification [4] emerged in the last
decade to facilitate the integration of the LMS with external tools. Its main goal is to release
learning agents from the burden of having to authenticate themselves in multiple tools to
benefit from a more engageable learning experience.

Nonetheless, to the best of the authors’ knowledge, there is yet no available open tool,
seamlessly integrated with the LMS, supporting the automatic assessment of computer science
exercises from different domains, including but limited to computer language programming.

This paper presents the current status of a tool for automatic assessment of computer
science exercises, under development as part of an international project within the scope
of the Erasmus+ programme, key action: Cooperation for innovation and the exchange of
good practices [8]. The objective of this project is a tool – called JuezLTI – to support the
automatic assessment of markup languages, programming, and databases exercises.

As its name suggests, JuezLTI interoperates with online learning environments such as
Moodle, Sakai, Canvas, or Blackboard (among many others), thanks to the LTI standard.
The improved interoperability and the pool of exercises to be developed will open it to many
institutions.The target audience of JuezLTI is computer science instructors and students
(also self-education). All the project outputs will be freely available on the Internet under
open-source licenses.

The remainder of this paper is organized as follows. Section 2 surveys both CS learning
environments and the models they use for LMS integration. Section 3 presents the JuezLTI
architecture and its main components. A particular emphasis is placed on the interoperability
ensured by the LTI specification. The final section summarizes the current status and
identifies opportunities for future developments.

2 Related work

Learning Management Systems (LMS) play a central role in any e-learning ecosystem. These
systems were created to deliver course content, collect student assignments, and evolved to
provide more versatile and engaging tools, including exercise assessment.

The Computer Science (CS) domain is an apt example of this evolution. In the last
decades, due to the high demand of computing skills, a panoply of web-based interactive
exercise systems were created to foster coding practice. In that time, most LMS lacked
out-of-the-box support for automatic assessment of programming exercises, which is an
important feature for a computer science learning environment. This lack of support meant
that teachers and students had to switch between tools to enhance programming language
learning. In order to solve these issues, some LMS offer integration of external tools as simple
modules known as plugins. Some interesting examples are Virtual Programming Lab (VPL)1,
eLiza [2] and Javaunittest2.

1 https://vpl.dis.ulpgc.es/
2 https://moodle.org/plugins/qtype_javaunittest

https://vpl.dis.ulpgc.es/
https://moodle.org/plugins/qtype_javaunittest

J. V. Carrillo, A. Sierra, J. P. Leal, R. Queirós, S. Pellicer, and M. Primo 9:3

A Virtual Programming Lab (VPL) is a programming assignment management system
where students can edit and execute programs, with automatic and continuous assessment.
eLiza [2] is a game-based educational tool, developed and used to support the teaching
and learning of programming languages and paradigms related to the development of web
applications. Javaunittest is a Java question type that allows teachers to create Java questions
and test the knowledge of students about Java programming. The students type source code
for a given interface in Java and the response gets graded automatically.

Table 1 CS exercises assessment systems integrated into LMS.

Systems Module1 WS2 LTI v.13

ACOS X
Codeboard X
CodeCheck X
CodeHS X
CodeWorkOut X
DBQA X
eLiza X
javaunittest X
PERE X
Virtual Progr. Lab X
Web-Cat X

1Module = implemented as a plugin
2WS = implemented as a web service
3LTI 1 = used the LTI specification 1.0 or 1.1

Despite its apparently success, this approach hinder the modularization and interoperab-
ility of tools. In a world where LMS were appearing at a fast pace, other specifications were
born to overcome the LMS dependency avoiding the need to create for each tool a module for
each LMS supported. One notorious example is the IMS LTI specification which offers seam-
less integration with most popular LMS in the market such as Moodle, Canvas, Blackboard,
Sakai, and others. In this case the LMS takes the role of a platform (tool consumer) whereas
the external tool serves as a tool (tool provider). A platform can send (anonymous) student
information to the external tool and, in return, the tool reports the grades of students back
to the platform (LMS). This way, programming exercises can be seamlessly integrated into
every platform that supports LTI [9]. With the evolution and consequent acceptation of the
specification a big number of computer programming environments started to support LTI.
Most popular tools are CodeWorkOut, DBQA and Web-Cat.

CodeWorkOut3 is an online exercise system to help people learn a programming language
for the first time. It is a free, open-source solution for practicing small programming problems.
Web-CAT [15] is a flexible, tailorable automated grading system designed to process computer
programming assignments. Database Query Analyzer (DBQA) [7] is a tool that illustrates
the effects that clauses and conditions have on an SQL SELECT statement using a visualized,
data-oriented approach.

Table 1 presents a few of the most popular solutions and their interoperability features
organized in three integration flavours: as a plugin, using ad hoc Web Services (WS) and using
LTI specification (v1.0/1). As can be seen, most systems support the LTI v1.1 specification

3 https://codeworkout.cs.vt.edu/

ICPEC 2022

https://codeworkout.cs.vt.edu/

9:4 Integration of CS Assessment into LMS with JuezLTI

for integration with the LMS. The most recent version of LTI (v1.3) is not yet supported by
these systems; this may be due to being a recent specification and with a higher degree of
complexity than previous versions.

3 JuezLTI

This section presents JuezLTI – a tool integrated into the LMS to assess exercises in languages
used in computing. Examples of such languages are markup languages (a domain where
few assessment tools are available), database management languages, and programming
languages. Subsection 3.1 provides an overview of JuezLTI, presents its architecture, and
introduces its components. The following subsections describe the main components types of
this architecture. Finally, Subsection 3.5 discusses the integration of JuezLTI on the LMS.

3.1 General overview
The goal of JuezLTI is to provide assessment of exercises in a wide range of languages used in
computing within the LMS. To attain this goal JuezLTI relies on a combination of features:
1. the interoperability with the LMS provided by the TSUGI framework;
2. a modular design allowing the incorporation of evaluators for new domains;
3. a generic feedback system to help students to overcome their difficulties;
4. a centralized repository of exercises from where they can be exported and imported.

<<Tsugi subsystem>>

CodeTest

<<component>>

AuthorKit
<<component>>

Feedback
<<component>>

Evaluator

<<component>>

StudentView
<<component>>

TeacherView

<<component>>

Central
Repository

LTI

<<component>>

LMS

LTI

Figure 1 JuezLTI internal and external components.

The architecture of JuezLTI is depicted by the UML component diagram in Figure 1. At
the center of this architecture is CodeTest, the main component based on TSUGI [6], the
framework that provides LTI support, and its sub-components TeacherView and StudentView.

J. V. Carrillo, A. Sierra, J. P. Leal, R. Queirós, S. Pellicer, and M. Primo 9:5

The former is a web environment where the teacher configures the activity by adding exercises
from a central repository. The latter is a web environment where the student attempt to solve
the proposed exercises. The TSUGI-based component relies on several kinds of components
depicted on the top of the diagram in Figure 1. From left to right they are Autorkit, Central
Repository, Evaluator, and Feedback. AuthorKit [12] is an exercise authoring system that
can be used by teachers to create exercises for JuezLTI. The central repository acts as a
pool of exercises for the system. The evaluator component runs the code of the students
and checks the results. Finally, the feedback system provides information about the result of
exercise resolution.

JuezLTI is an open-source project distributed under an Apache 2.0 license. It can be
installed on the servers of any institution and configured to communicate with the institution’s
Learning Management System. It is available on GitHub in two different forms: production
and development. The former allows the deployment of the entire system (several docker
components) on a production server open to the Internet. With the latter, anyone can build
the platform locally and contribute to JuezLTI development.

3.2 Exercise resolution
There are several tools described in the literature developed to automatically assess pro-
gramming exercises, using different approaches such as static or dynamic evaluation of code;
some examples are AutoGrader, eGrader, or Kassandra [17]. It’s also easy to find tools to
grade SQL assessments, such as Learn-SQL, a tool based on the IMS QTI specification [1];
unfortunately, a closed solution. But, despite the massive presence of markup languages in
the computer science curriculum, there are few solutions to assess XML exercises.

JuezLTI proposes a tool that supports the evaluation of programming, databases and
XML exercises, but that can be extended to other types of exercises given its highly modular
architecture.

The module in charge of exercise resolution is called CodeTest. CodeTest relies on
other JuezLTI modules for retrieving exercises, evaluating code, and generating feedback.
It has web interfaces for two roles: teachers and students. The teacher’s role is to create,
edit, import, and export a set of exercises. Teachers can also review the results of every
single student. Students view exercise statements and have a code editor to introduce their
resolution. As JuezLTI supports multiple programming languages, the student can choose
the language to solve the exercise, restricted to the context of the exercise. For instance,
in a programming language exercise, the student may have the possibility to select among
different languages such as Java, Python, or C.

JuezLTI also acts as a central repository of questions and answers. To do that, it stores all
the exercises proposed in a non-relational database. External questions can also be imported
using the tool AuthorKit.

3.3 Evaluation
The core of JuezLTI is the automated evaluation of different kinds of computer science
exercises. According to the kind of exercise, a different module performs the evaluation.
Currently, JuezLTI has in development modules to evaluate exercises in programming
languages, markup language, and relational databases.

A module responsible for the evaluation of a kind of exercises is called an evaluator.
Evaluators are micro-services, with their own internal structure, running on their own
containers. For instance, a relational databases evaluator can have its own database engine,

ICPEC 2022

9:6 Integration of CS Assessment into LMS with JuezLTI

as a programming language evaluator may have installed several compilers for the languages
it supports. These micro-services share a common API used by CodeTest to invoke them.
This API specifies the data sent to evaluators – exercises, student attempts – and return by
them – evaluation reports.

Student attempts are plain text files. In contrast, exercises are a complex content, including
several files – a statement, one or more solutions , several test cases and other auxiliary files –
as well as specialized metadata. For instance, a relational database exercise requesting an
SQL query may include a database dump and a reference solution; a programming language
exercise may include a set of input files and corresponding expected output. Exercises sent
to evaluators are encoded in the YAPExIL [13].

An evaluator returns a report detailing the assessment performed on the student’s attempt
using the data provided by the exercise. This report includes possible compilation errors,
including resource usage - memory and time. It may also include hints associated with test
cases if these were provided by the exercise. Evaluation reports are encoded as a JSON
document in the Programming Exercise Evaluation Assessment Report Language (PEARL).
This specification is an evolution of similar XML-based specification [10] developed specifically
for JuezLTI.

3.4 Feedback
The role of the feedback manager is to mediate between evaluators and students to distill
effective feedback from evaluation reports. Evaluators produce reports with perfusion of
details. This information needs to be summarized to make it understandable to students.

Students typically submit several attempts before solving an exercise. Hence, feedback
messages must avoid being repetitive and strive to be increasingly more informative. For
instance, a first feedback message may simply acknowledge that most students have difficulty
in solving the exercise in their first attempt; a second message may provide a hint associated
with a failed test case in the evaluation report; a third may provide an input that causes the
program to fail.

On the other hand, automated feedback may also be detrimental to some students if
they use it as a sort of oracle that constantly solves their difficulties. The feedback manager
must also ensure that the information it provides does not scale up too quickly in reaction to
submissions that are too similar to the previous ones.

3.5 Interoperability
JuezLTI uses version 1.0 of the Learning Tools Interoperability standard (LTI) for integration
into the LMS. This interoperability standard was proposed by the IMS Global Learning
Consortium [14] and is supported by reference LMS vendors such as Moodle, Canvas, or
Sakai.

With LTI a set of educational services can be used to extend the functionality of the
LMS [11] using a Service Oriented Architecture (SOA) [14]. The LMS becomes a marketplace
where the teacher can select the resources from different providers to improve the learning
experience.

JuezLTI is based on TSUGI, a framework that simplifies the development and deployment
of LTI applications [6]. The first application of TSUGI was a self-contained MOOC for
training in Python – py4e.com. It was deployed by one of its authors, Dr. Charles Severance,
founder of the Open Source LMS Sakai and currently working for IMS. LTI has been widely
used since 2010, not only for code testing purposes, as in [16], but also for providing complex
assessments not directly supported by the LMS, such as Dig4E, a tool to learn about standards
for creating high-quality digital still images [5].

J. V. Carrillo, A. Sierra, J. P. Leal, R. Queirós, S. Pellicer, and M. Primo 9:7

To use JuezLTI the teacher has to request a key/secret pair on the project’s website. With
those credentials and the supplied URL, the teacher adds an external activity in the LMS.
The students are directly identified in JuezLTI using the information provided by the LMS.
Whenever a student or teacher opens the activity, the LMS communicates with JuezLTI using
LTI (via the TSUGI framework) to identify the user and present the appropriate interface.
Then, the LMS sends the resource_link_id property identifying the relevant activity. This
way, different activities can be added using the same key. Finally, JuezLTI reports grades of
solved exercises back to the LMS using an LTI service.

In short, there is bidirectional communication between JuezLTI and the LMS. JuezLTI
stores the information of students and their results and sends the grades obtained back to
the LMS.

4 Conclusion

The main contribution of the research reported in this paper is JuezLTI – a platform to
assess computer science exercises. JuezLTI is an interoperable, open-source, and modular
platform. Usability, easiness of use, and extensibility were its main design goals.

JuezLTI supports exercises in different kinds of languages, including programming,
database management, and markup. Due to its modular structure, evaluators for new
domains can be easily added. It will have access to a centralized repository of exercises
adapted to EQF levels, which will promote its adoption by teaching institutions. The TSUGI
framework, upon which JuezLTI is based, supports LTI version 1.0, and future versions
of the framework will gain access to more advanced versions of the standard with limited
recodification. JuezLTI is a work-in-progress. It is currently under beta testing, and some
of its components are still being improved, reflecting the suggestions and bugs reported by
early adopters. This project intends to contribute with a collection of exercises compatible
with its evaluators. Collecting and generating these exercises is also part of our immediate
future work.

References
1 Alberto Abelló, M. Elena Rodríguez, Toni Urpí, Xavier Burgués, M. José Casany, Carme Martín,

and Carme Quer. LEARN-SQL: Automatic assessment of SQL based on IMS QTI specification.
In 2008 Eighth IEEE International Conference on Advanced Learning Technologies, pages
592–593, 2008. doi:10.1109/ICALT.2008.27.

2 Míriam Antón-Rodríguez, María Ángeles Pérez-Juárez, Francisco Javier Díaz-Pernas, David
González-Ortega, Mario Martínez-Zarzuela, and Javier Manuel Aguiar-Pérez. An Experience
of Game-Based Learning in Web Applications Development Courses. In Ricardo Queirós, Filipe
Portela, Mário Pinto, and Alberto Simões, editors, First International Computer Programming
Education Conference (ICPEC 2020), volume 81 of OpenAccess Series in Informatics (OASIcs),
pages 3:1–3:11, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.
doi:10.4230/OASIcs.ICPEC.2020.3.

3 European Commission. Coding – the 21st century skill, 2018. accessed on 20 Jan 2020. URL:
https://ec.europa.eu/digital-single-market/en/coding-21st-century-skill.

4 IMS Global Learning Consortium. Learning tools interoperability core specification, 2019.
accessed on 14 Apr 2022. URL: http://www.imsglobal.org/spec/lti/v1p3/.

5 Paul Conway and Ann Arbor. Digitization for everybody (Dig4E). Archiving Conference,
2020:12–16, April 2020. doi:10.2352/issn.2168-3204.2020.1.0.12.

ICPEC 2022

https://doi.org/10.1109/ICALT.2008.27
https://doi.org/10.4230/OASIcs.ICPEC.2020.3
https://ec.europa.eu/digital-single-market/en/coding-21st-century-skill
http://www.imsglobal.org/spec/lti/v1p3/
https://doi.org/10.2352/issn.2168-3204.2020.1.0.12

9:8 Integration of CS Assessment into LMS with JuezLTI

6 Nikolas Galanis, Marc Alier, María José Casany, Enric Mayol, and Charles Severance. Tsugi:
A framework for building PHP-based learning tools. In Proceedings of the Second International
Conference on Technological Ecosystems for Enhancing Multiculturality, TEEM ’14, pages
409–413, New York, NY, USA, 2014. Association for Computing Machinery. doi:10.1145/
2669711.2669932.

7 Ryan Hardt and Esther Gutzmer. Database query analyzer (DBQA): A data-oriented SQL
clause visualization tool. In Proceedings of the 18th Annual Conference on Information
Technology Education, SIGITE ’17, pages 147–152, New York, NY, USA, 2017. Association for
Computing Machinery. doi:10.1145/3125659.3125688.

8 JuezLTI Project Consortium. JuezLTI - automatic assessment of computing exercises using
LTI standard, 2021. accessed on 12 Apr 2022. URL: https://juezlti.eu.

9 José Paulo Leal and Ricardo Queirós. Using the learning tools interoperability framework
for LMS integration in service oriented architectures. Technology Enhanced Learning TECH-
EDUCATION’11, 2011.

10 José Paulo Leal, Ricardo Queirós, and Duarte Ferreira. Specifying a programming exercises
evaluation service on the e-framework. In Xiangfeng Luo, Marc Spaniol, Lizhe Wang, Qing
Li, Wolfgang Nejdl, and Wu Zhang, editors, Advances in Web-Based Learning - ICWL
2010 - 9th International Conference, Shanghai, China, December 8-10, 2010. Proceedings,
volume 6483 of Lecture Notes in Computer Science, pages 141–150. Springer, 2010. doi:
10.1007/978-3-642-17407-0_15.

11 Jeff Merriman, Tom Coppeto, Francesc Santanach Delisau, Cole Shaw, and Xavier Aracil Díaz.
Next generation learning architecture. eLearn Center. Universitat Oberta de Catalunya, 2016.

12 José Carlos Paiva, Ricardo Queirós, José Paulo Leal, and Jakub Swacha. Fgpe authorkit–a
tool for authoring gamified programming educational content. In Proceedings of the 2020 ACM
Conference on Innovation and Technology in Computer Science Education, pages 564–564,
2020.

13 José Carlos Paiva, Ricardo Queirós, José Paulo Leal, and Jakub Swacha. Yet Another Pro-
gramming Exercises Interoperability Language (Short Paper). In Alberto Simões, Pedro Ran-
gel Henriques, and Ricardo Queirós, editors, 9th Symposium on Languages, Applications
and Technologies (SLATE 2020), volume 83 of OpenAccess Series in Informatics (OASIcs),
pages 14:1–14:8, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.
doi:10.4230/OASIcs.SLATE.2020.14.

14 Charles Severance, Ted Hanss, and Josepth Hardin. IMS learning tools interoperability:
Enabling a mash-up approach to teaching and learning tools. Technology, Instruction, Cognition
and Learning, 7(3-4):245–262, 2010.

15 Anuj Ramesh Shah. Web-cat: A web-based center for automated testing. PhD thesis, Virginia
Tech, 2003.

16 Antonio J. Sierra, Álvaro Martín-Rodríguez, Teresa Ariza, Javier Muñoz-Calle, and Francisco J.
Fernández-Jiménez. LTI for interoperating e-assessment tools with LMS. In Mauro Caporuscio,
Fernando De la Prieta, Tania Di Mascio, Rosella Gennari, Javier Gutiérrez Rodríguez, and
Pierpaolo Vittorini, editors, Methodologies and Intelligent Systems for Technology Enhanced
Learning, pages 173–181, Cham, 2016. Springer International Publishing.

17 Zahid Ullah, Adidah Lajis, Mona Jamjoom, Abdulrahman Altalhi, Abdullah Al-Ghamdi, and
Farrukh Saleem. The effect of automatic assessment on novice programming: Strengths and
limitations of existing systems. Computer Applications in Engineering Education, 26(6):2328–
2341, 2018. doi:10.1002/cae.21974.

https://doi.org/10.1145/2669711.2669932
https://doi.org/10.1145/2669711.2669932
https://doi.org/10.1145/3125659.3125688
https://juezlti.eu
https://doi.org/10.1007/978-3-642-17407-0_15
https://doi.org/10.1007/978-3-642-17407-0_15
https://doi.org/10.4230/OASIcs.SLATE.2020.14
https://doi.org/10.1002/cae.21974

WebPuppet – A Tiny Automated Web UI Testing
Tool
Ricardo Queirós #

CRACS – INESC-Porto LA & uniMAD, ESMAD/P. Porto, Portugal

Abstract
One of the most important phases in the Web development cycle is testing. There are several types
of tests, different approaches to their use and a wide range of tools. However, most of them are
not open source, require coding and do not have a pedagogical nature. This article introduces
WebPuppet as an automated Web UI testing tool. The tool is distributed as a small Node package
and can be easily integrated into any learning environment in the web development domain. In
addition, it does not require coding in any language, just use a very simple domain-specific language
that will generate a test script to run in client applications. In order to exemplify its use, a simple
test scenario based on a login page is presented.

2012 ACM Subject Classification Applied computing → Computer-managed instruction; Applied
computing → Interactive learning environments; Applied computing → E-learning

Keywords and phrases User Interface Testing, Web development, DOM

Digital Object Identifier 10.4230/OASIcs.ICPEC.2022.10

1 Introduction

Software testing is the process of evaluating and verifying that a software product or
application does what it is supposed to do. There are several types of tests that can be
performed in a Web product ranging from unit, functional to end-to-end and integration.
Despite the usefulness of all these types, User interface (UI) testing is one of the most
important in the Web development cycle. In order to validate whether applications have
the desired aesthetics and functionalities, Quality Assurance (QA) professionals should test
all interface components. This action will not only improve the software quality but also
ensures a rich experience for end users while using the Web application.

UI testing plays a significant role before an application is released to production. UI
testing is centered around two main things. First, checking how the application handles user
actions carried out using the keyboard, mouse, and other input devices. Second, checking
whether visual elements (e.g. text boxes, checkboxes, radio buttons, menus, toolbars, colors,
fonts, and others) are displayed and working correctly.

The test can be performed manually or with an automated testing tool. There are several
tools that support UI testing (e.g. Parasoft Selenic1, Katalon2, Selenium IDE3, Mabl4,
Perfecto5). Most of these tools have great features such as recording abilities, locators
recommendations, BDD support, CI/CD integration, self-healing capabilities and many
supported languages. Although these features, some of them are proprietary, too complex
and not pedagogical-driven. Regardless of the method and tool used, the goal is to ensure
all UI elements meet the requested specifications.

1 https://www.parasoft.com/products/parasoft-selenic
2 https://katalon.com/
3 https://www.leapwork.com/discover/selenium-automation
4 https://www.mabl.com
5 https://www.perfecto.io/

© Ricardo Queirós;
licensed under Creative Commons License CC-BY 4.0

Third International Computer Programming Education Conference (ICPEC 2022).
Editors: Alberto Simões and João Carlos Silva; Article No. 10; pp. 10:1–10:8

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ricardoqueiros@esmad.ipp.pt
https://orcid.org/0000-0002-1985-6285
https://doi.org/10.4230/OASIcs.ICPEC.2022.10
https://www.parasoft.com/products/parasoft-selenic
https://katalon.com/
https://www.leapwork.com/discover/selenium-automation
https://www.mabl.com
https://www.perfecto.io/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

10:2 WebPuppet – A Tiny Automated Web UI Testing Tool

This paper presents WebPuppet as an automated Web UI Testing tool. The real
motivation for its creation was to test the UI of small web applications created by students
in web development courses. In this way, the teacher does not need to manually create tests
that are always time consuming and error-prone and can thus concentrate on making more
differentiating and impactful exercises. In its genesis, the tool receives as input an instance
with all test cases based on a domain-specific language that will generate a test script to
be executed later in all student applications. As an output, a report is generated for the
student with the identification of all errors and possible solutions.

The remainder is organized as follows. Section 2 provides a background on UI testing
approaches. Section 3 presents the WebPuppet tool and its domain-specific language.
Section 4 presents a simple test scenario where the tool can be used. Finally, Section 5
summarizes the contributions of this work and points to future directions.

2 UI testing approaches

A test is a code which can run automatically in a client application to validate a user interface
in order to meet design and logic requirements. Often we group a set of related tests in a
test case and organize a set of test cases with different priorities and dependencies in a test
scenario. A test case can have tests of two types:

Simulation tests – those responsible for simulating the user’s behavior;
Validation tests – those responsible for checking, after we simulated some user behavior,
if the system worked properly.

In the literature several solutions can be found to perform tests on graphical interfaces
which resort on computer vision [1], web interface matching algorithms [2], structural
comparison (comparing the trees resulting from the two HTML documents) [4], or with very
different goals such as detecting phishing sites [3]. The goal of this section is not to compare
the different solutions found, but rather compare the different approaches that can be used
to automate Web UI testing. There are three main UI testing approaches, namely: manual
testing, record/playback and keyword/data-driven scripting. The following subsections detail
each one.

2.1 Manual testing

A common way of testing the UI of a Web application is to directly write code in a
programming language like JavaScript, Java, PHP or C++. Often this will be the same
programming language used to write the application that is being tested. Using this approach,
a human tester (or a team) performs a set of operations to check whether the application
is functioning correctly and that the graphical elements are conformed to the documented
requirements.

Several frameworks allow the creation of tests for various platforms. The most notable
examples are Selenium (for Web applications), Appium (for mobile), and Microsoft Coded
UI (for Windows applications).

Despite being an flexible approach easy to implement, manual-based testing has some
drawbacks such as it can be time-consuming, and the test coverage is extremely low. Addi-
tionally, the quality of testing in this approach depends excessively on the knowledge and
capabilities of the human tester or testing team.

R. Queirós 10:3

2.2 Record-and-Playback Testing
This approach resorts to automation tools which records all tasks, actions, and interactions
with the application. The recorded steps are then reproduced, executed, and compared with
the expected behavior. For further testing, the replay phase can be repeated with various
data sets.

Using record-and-playback testing the simulation part of the script is relatively easy to
capture just performing the relevant user actions and the system creates a script. However,
the validation part is more difficult to achieve. After simulating the user actions, for each
element to check on the screen, it is necessary to explicitly add steps to the script in order to
identify these elements in the interface, and compare their values to expected values. As
obvious, it is impossible to record these validations because they are not user actions. Thus,
it is mandatory to define them one by one using the automation system’s GUI.

This approach typically generate test scripts behind the scenes in simple scripting
languages like VBScript. Often, advanced users manipulate the code directly to make small
adjustments.

2.3 Keyword/Data-Driven Testing
Other test frameworks support the definition of a set of “keywords” which specify user actions.
This approach calls keyword testing. A human tester can specify these keywords and a
script will be generated that performs the desired actions on the system under test. Listing 1
shows a small example:

Listing 1 Keyword Scripting Test example.
Open Browser To Login Page
Input Username david
Input password 16485
Submit Credentials

In this case, the first line tell that the script should navigate to the login screen and enter
certain user credentials. A script will be generated that knows how to navigate to the login
screen, type in the data provided and submit the form.

Using this approach, the simulation part of the script will be handled by one keyword
that defines the user action (e.g. “login page” in the example above). The validation part of
your script will require multiple keywords and multiple values of expected data for each part
of the UI to validate. From the tester’s perspective it is just using the keywords, and don’t
need to deal with the code. However, this means that typically few validation options are
available, and adding more will require help from the responsible for the generation script.

A variant of this approach, called data-driven testing (Figure 1), is when the same test
needs to be repeated several times with different data values or different user operations.

Data-driven testing (DDT) is data that is external to your functional tests, and is loaded
and used to extend the automated test cases. The same test case cab be taken and run it
with as many different inputs, thus getting better coverage from a single test.

The advantage of this testing approach is that the code that simulates user operations is
not repeated in every test script, rather it is defined in one place, and a tester can use it as a
building block in multiple test cases. This reduces the code writing and also the maintenance
required as the application under test changes.

One of the most famous testing frameworks which uses this approach is the open source
Robot Framework. There are others test automation frameworks which provides a mix
between keyword-driven or data-driven testing functionality.

ICPEC 2022

10:4 WebPuppet – A Tiny Automated Web UI Testing Tool

Figure 1 Data-driven Testing.

3 WebPuppet

WebPuppet is a small tool for automating web application UI tests. Its creation arises
from the need to support the evaluation of students’ performance in the creation of Web
applications in learning environments. The architecture of WebPuppet is straightforward
and is composed of the following components:

The editor – Web-based component with a GUI for the definition of test scenarios.
The engine – client component responsible for the generation of the test script that will
run on the client application.

3.1 The Editor
The editor is a Web-based component for the creation of a test scenario. A test scenario is a
document that explains how the application under test will be used in real life. A simple
test scenario could be: “users will successfully sign in with a valid username and password”.
In this scenario, we can have tests for multiple GUI events (e.g. provide a valid username
and password combination, enter an invalid username, hit the login button). These tests are
grouped in test cases for logic organization and dependency.

A test scenario is defined as a domain-specific language (DSL) formalized with a JSON
Schema. As said before, a test scenario is composed by one or more test cases. Listing 2
presents how a test case is described.

Listing 2 Test case schema.
{

" $schema ": "http :// json - schema .org/draft -04/ schema #",
" description ": "A schema to formalize a Test Case",
"type ": " object ",
" properties ": {

"id": {" type ": " integer "},
" description ": {" type ": " string "},
" depends ": {" type ": "array", "items ": {" type ": " integer "}},
"tests ": {" type ":" array", "items ": {" $ref ": "#/ definitions /Test "}}

},
" required ": ["id", " description ", " depends ", "tests "]

}

R. Queirós 10:5

The id property is the test case identifier. The description property describes in
natural language the test case. The depends property refers to the test case(s) that this test
case depends on. Finally, the tests property is an array with all the tests that compose a
test case.

A test (Listing 3) is the smallest unit in the DSL and will actually contain the test to be
performed in the client code.

Listing 3 Test schema.
{

" $schema ": "http :// json - schema .org/draft -04/ schema #",
" description ": "A schema to formalize a single test",
"type ": " object ",
" properties ": {

"id": { "type ": " integer " },
" description ": { "type ": " string " },
" selector ": { "type ": " string " },
" action ": { "enum ": [" VALIDATE ", "GET", "FILL", "CLICK "] },
" operator ": { "enum ": ["=" , "!=" , ">", " <" ,"..."] },
"value ": { "type ":" string " },
"error ": {" type ": " string " }

},
" required ": ["id", " selector ", " action "]

}

The id property is the test identifier. The description property describes in natural
language the test. The selector property is a CSS selector responsible to find the element
to test in the DOM tree. The action property is a enumeration of all the actions that can
be made in the element selected:

VALIDATE – verify if certain DOM element or attribute exist;
GET – get a value from a DOM element or attribute and compare it with a specific value.
In this case two more actions should be defined:

OPERATOR – the operator to use in the comparison;
VALUE – the value to compare.

FILL – inject text in a selected text box or select an item in a selected combo box;
CLICK – click in a selected button, radio button or checkbox.

The error property is a string with a feedback to be delivered to the student when the
test is not passed.

3.2 The Engine

The engine is a JavaScript file that will receive as input an instance of a test scenario formalized
in the previous DSL and will generate a test script to be executed in the client application
code created by the student. All tests will run according to predefined dependencies and the
generated feedback will be presented to the student.

A test script is code that can be run automatically to perform a test on a user interface.
The code will typically do the following one or more times: (1) Identify input elements in
the UI, (2) Simulate user input, (3) Identify output elements, (4) Assert that output value is
equal to expected value, and (5) Write the result of the test to a log.

ICPEC 2022

10:6 WebPuppet – A Tiny Automated Web UI Testing Tool

The engine uses Puppeteer to simulate user actions. Puppeteer is a Node library that
provides a high-level API to control headless Chrome or Chromium browsers over the
DevTools Protocol. It can also be configured to use full (non-headless) Chrome or Chromium.

In Table 1, we present some of the functions of the WebPuppet engine.

Table 1 WebPuppet engine functions.

Function Description

TestScenario loadTestScenario(JSON scenario) Creates a new test scenario
based on a WebPuppet DSL scenario

TestCase TestScenario.getTestCase(int id) Get a test cased based on a given id
List<Test> TestCase.getTests() Obtains the tests of a specific test case
Object TestScenario.run() Execute all test cases automatically

and returns a JSON object with the feedback

In this moment, only the first and the last functions are implemented. This means that
currently the test scenario must be created manually.

4 UI testing scenario

This section presents a typical test scenario of the login function on a website. In this
scenario, we can do the following:
1. Load the website homepage
2. Locate the “username” and “password” text-boxes and the “submit” button in the home

screen;
3. Type the username “ricardo” and password “12345”
4. identify the “submit” button and click it
5. Wait and locate the title of the Welcome screen that appears after login
6. Read the title of the Welcome screen.
7. Assert that the title text is “Welcome ricardo”.
8. If title text is as expected, record that the test passed. Otherwise, record that the test

failed.

It is important to distinguish two important parts of the test scenario:
The simulation part of the script (steps 1, 3 and 4) are responsible for simulating the
user’s behavior;
The validation part of the script (steps 2, 5–8) are responsible for checking, after we
simulated some user behavior, if the system worked properly.

This scenario should be defined through the DSL mentioned in the previous section.
Listing 4 presents a snippet of a test instance, more precisely, the fulfilment of the login form
with specific data and the verification, after submission, of the authenticated user name. If
the verification is not successful, the student receives automatic feedback based on the value
of the error property.

R. Queirós 10:7

Listing 4 Test instance.
{

"id": "3",
" description ": "Fill the login form elements

and inspect the name of the logged user",
" depends ": "1",
"tests ": [{

"id": "1",
" selector ": "# username ",
" action ": "FILL",
"value ": " ricardo "

}, {
"id": "2",
" selector ": "# password ",
" action ": "FILL",
"value ": "12345"

}, {
"id": "3",
" selector ": "# loginbtn ",
" action ": "CLICK",
"value ": "new"
}, {

"id": "4",
" selector ": ". usertext ",
" action ": "GET",
" operator ": "=",
"value ": " Ricardo Queiros ",
"error ": " authentication failed "
}

]
}

Using these basic elements of GUI automation, simulation and validation, allows testing
even in very complex multi-step operations. In complex test scripts these elements will repeat
themselves several times, each time for a different part of the user’s workflow.

5 Conclusion

This article introduces an automated UI testing tool called WebPuppet. The purpose of
the tool is not to compete with existing ones, but to simplify the testing process as much
as possible and orient it towards a more pedagogical nature by defining a simple feedback
system for each of the tests.

The tool can be easily integrated in learning environments where students are challenged
to create Web applications and used to test their solutions. This way, the tool can relief the
burden of manual evaluation of each Web application bu the teacher.

Right now the tool is in beta stage, but it can already be installed and used as an npm
package (the package manager for the Node JavaScript platform). As future work it is
intended:

to allow the automatic creation of the test scenario through an API;
to support the task recording feature in the browser.

ICPEC 2022

10:8 WebPuppet – A Tiny Automated Web UI Testing Tool

References
1 Tsung-Hsiang Chang, Tom Yeh, and Robert C. Miller. Gui testing using computer vision.

In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI
’10, pages 1535–1544, New York, NY, USA, 2010. Association for Computing Machinery.
doi:10.1145/1753326.1753555.

2 Marco Primo and José Paulo Leal. Matching User Interfaces to Assess Simple Web Applications.
In Pedro Rangel Henriques, Filipe Portela, Ricardo Queirós, and Alberto Simões, editors,
Second International Computer Programming Education Conference (ICPEC 2021), volume 91
of Open Access Series in Informatics (OASIcs), pages 7:1–7:6, Dagstuhl, Germany, 2021.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/OASIcs.ICPEC.2021.7.

3 Gaurav Varshney, Manoj Misra, and Pradeep K. Atrey. A survey and classification of web
phishing detection schemes. Security and Communication Networks, 9(18):6266–6284, 2016.
doi:10.1002/sec.1674.

4 Jiří Štěpánek and Monika Šimková. Comparing web pages in terms of inner structure. Procedia
- Social and Behavioral Sciences, 83:458–462, 2013. 2nd World Conference on Educational
Technology Research. doi:10.1016/j.sbspro.2013.06.090.

https://doi.org/10.1145/1753326.1753555
https://doi.org/10.4230/OASIcs.ICPEC.2021.7
https://doi.org/10.1002/sec.1674
https://doi.org/10.1016/j.sbspro.2013.06.090

Learning Computer Programming: A Gamified
Approach
Mário Pinto !

uniMAD – ESMAD, Polytechnic of Porto, Portugal

Teresa Terroso !

uniMAD – ESMAD, Polytechnic of Porto, Portugal

Abstract
Learning computer programming is a difficult task for most students who start learning in this field.
In fact, many students refer that learning computer programming is an arduous and difficult task,
presenting some fear in addressing these issues. However, the main challenge for beginners is not in
the language or syntax, but in devising a solution to solve the proposed problem. On the other hand,
the younger audience is used to clicking on an icon and seeing an application with an appealing
interface! Thus, students are often discouraged when, in a classroom, they have to implement an
algorithm to classify numbers or sequences of characters and print them, sometimes in unappealing
development environments. The lack of immediate feedback on the solution proposed by the student
is another aspect that promotes some demotivation, as students often have no real idea of where
they went wrong and how they can improve the solution they present.
This paper describes the introduction of gamification elements in an introductory programming
course, based on a conceptual framework proposed by Piteira. The main objective is to motivate and
involve students in the learning process, through the introduction of strategies based on gamification
(such as challenges, progression and levels), as well as strategies such as problem-based learning,
seeking to make teaching programming more attractive and appealing to students. The paper
describes a case study carried out in the course of algorithms and data structures in School of Media
Arts and Design, at Polytechnic of Porto, in Portugal.

2012 ACM Subject Classification Computing methodologies; Applied computing → Computer-
managed instruction

Keywords and phrases programming learning, teaching methodologies, teaching-learning, higher
education, gamification

Digital Object Identifier 10.4230/OASIcs.ICPEC.2022.11

1 Introduction

Learning to program is often a difficult process to which traditional teaching approaches have
not been able to respond effectively [15, 5, 7, 10]. Introduction to programming courses or
disciplines have, with some frequency, failure rates above 50%, according to several studies.
This reality also occurs in higher education institutions, in courses and areas of computer
science and Web development. Numerous studies have been carried out on this reality, and
point to some causes, such as [8, 12, 7]:

Difficulties in interpreting and understanding the proposed problems, often leading
students to start solving a problem without fully understanding it;
Difficulties in solving logical and concrete problems, in the form of algorithms;
Difficulties in capturing students’ attention and interest in learning the fundamentals of
programming, with learning often oriented towards solving more or less abstract problems
and using unappealing interfaces.

Teaching programming can also be difficult, because learning programming requires
much more than acquiring technical knowledge and skills. Students should learn about
programming structures, logic, and syntax of the language used. But they must also quickly

© Mário Pinto and Teresa Terroso;
licensed under Creative Commons License CC-BY 4.0

Third International Computer Programming Education Conference (ICPEC 2022).
Editors: Alberto Simões and João Carlos Silva; Article No. 11; pp. 11:1–11:8

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mariopinto@esmad.ipp.pt
https://orcid.org/0000-0002-6734-5797
mailto:teresaterroso@esmad.ipp.pt
https://orcid.org/0000-0003-0224-8301
https://doi.org/10.4230/OASIcs.ICPEC.2022.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

11:2 Learning Computer Programming: A Gamified Approach

begin to build strategies to combine the knowledge acquired in solving problems through
algorithms and their computer coding. The task is not yet complete because the code must
be tested, debugged, and often reworked and optimized. In this context, some programming
learning approaches and strategies tend to be adopted, in order to relieve the difficulties felt
by students, such as [2, 6]:

The introduction of dynamic elements in learning strategies, such as gamification, which
uses game design elements in educational contexts. The introduction of techniques and
strategies that include elements such as missions or challenges, embedded in a learning
narrative, progression mechanisms such as points or levels, relationships that promote
cooperation in the development of a solution and peer evaluation, among others, can help
to increase student involvement and motivation [14];
Automatic code evaluation systems, based on intelligent tutors. These systems allow
students to progress in their learning outside the classroom environment, having automatic
and immediate feedback on the solutions they submit. They also make it possible
to increase students’ degree of autonomy, often providing personalized learning paths
depending on the profile and skills of each student [1];
Systems that use visual representations, animations and simulation of algorithms, seeking
to make learning more dynamic, visual and interactive. These are animation systems
with the purpose of appealing to the potential of the human visual system, contributing
to a better understanding of inherently dynamic concepts, when compared to the textual
format.

These approaches do not, by themselves, solve the difficulties felt in the initial learning of
programming. But when combined with appropriate pedagogical strategies, they can help
to relieve these same difficulties, converting learning into a more accessible and motivating
process for students.

Thus, this paper begins by contextualizing the concept of gamification elements, dis-
tinguishing them into components, mechanics and dynamics, followed by a brief summary
about gamification design frameworks, which can guide us in the process of implementing
a gamified strategy. Section 3 describes the methodology adopted, which is based on a
simplified approach to the 6D framework [16], applied to the teaching context. The following
section presents the results obtained in the curricular unit under study, followed by its
discussion and brief conclusions.

2 Gamification in programming learning

Gamification is the use of typical game elements (such as experience points, badges, progress
indicators, levels or achievements) in other different contexts than games, in order to involve
and motivate users in achieving a specific goal. The gamification of teaching and learning
environments aims to involve and motivate students through the inclusion of elements and
mechanics present in game design. This inclusion makes it possible to reward students for
successful daily tasks, provide instant and personalized feedback, present their progress in
the course, and foster healthy cooperation and competition among students. In this context,
gamification also seeks to involve students in learning activities, making them more fun and
motivating. One of the main challenges in introductory programming education is the need to
capture students’ attention and motivation. Especially the younger audience, is accustomed
to clicking on an icon and see an application with appealing interface popup! Thus, they
become unmotivated when, in a classroom, they are asked to implement an algorithm to
sort numbers or strings, and print them in the console, for instance. Gamification seeks

M. Pinto and T. Terroso 11:3

precisely to address this problem through the implementation of new strategies for the
development of knowledge, often also based on pedagogical approaches such as problem-based
learning. According to some authors, developing a learning project based on gamification
mechanisms, implies the implementation of three conceptual levels [16, 7]: i) components
(such as achievements, badges, levels, points, etc.); ii) mechanisms (such as challenges,
competition, cooperation, rewards, etc.); iii) dynamics (such as emoticons, relationships,
progression status, etc.). Figure 1 shows an overview of game elements addressed for a
gamification project implementation.

Figure 1 Game elements pyramid for gamification [16].

Dynamics encompasses the big picture aspects of a gamified system. At the top of the
pyramid, they are the most high-level conceptual elements in a game or gamified system.
These are factors that absolutely must be considered, even if they don’t enter directly into
the game itself. Some examples of dynamics elements: constraints, emotions, narrative,
progression, and relationships. The second group of elements is the mechanics. These are
the basic processes that drive users to engage with the content and continue to drive the
action forward, such as: challenges, chance, competition, cooperation, feedback, resource
acquisition, rewards, transactions, turns, and win states. Components make up the largest
group of game elements. In many ways the components are a more specific form of either
dynamics and mechanics. These elements are less abstract than the first two categories
and lead to actual tools that can be employed to begin to incorporate gamification in the
environment of interest [10]: points, levels, badges, bonuses, notifications or peer evaluation
of students are some of the elements that we can use at this level of abstraction [4, 9]. Based
on the game elements pyramid for gamification (Figure 1), the gamified strategy adopted
in this project sought to encourage students to progress in their teaching/learning process,
in a more engaging and autonomous way. In this context, a mission was proposed to the
students, based on 3 challenges. The challenges were associated with gamification elements
such as points, content unlocking (according to the progress in challenges) and badges. Peer
evaluation (by students) was also included, with the aim of rewarding those who were most
active in cooperating with their colleagues. Challenges included various mechanisms for
obtaining feedback from student work, such as:

Points: based on user scenarios, points can contribute to other game mechanics, such as
levels or progression. Points can also confer a bonus on the student’s final evaluation.
Points can be earned by completing the proposed challenges. We expected that students
would get engaged to the acquisition of points and on re-taking their study.

ICPEC 2022

11:4 Learning Computer Programming: A Gamified Approach

Levels: in an educational context, levels allow progression and sequence through contents
and activities. Each module activity was designed to a level. Inside the module, students
have sub-levels. Students needed to complete the activities to reach the next. You may
also use levels to unlock content – new problems to solve!
Badges: which are medals that reward users for specific behaviours, are some of the most
visible elements of gamification because they confer status. Badges are most useful for
students who rank high in external motivation.
Peer evaluation of students: The goal is also to introduce some ethics in the process of
student’s assessment, rewarding those who are somehow recognized by their peers with
better performance (be it more skills, greater availability to help colleagues, ability to
cooperate, etc.). It often seeks to encourage cooperation, collaboration and recognition
by your peers.

However, some authors [10, 11] emphasizes that deploying the appropriate mechanics
and components actually comes at the very end of the design process. Several authors
propose different frameworks that help to systematize the programming teaching/learning
process, many of them using gamification elements. This paper does not seek to carry out an
in-depth literature review on the processes of designing a gamified teaching-oriented strategy.
However, in recent years there has been an effort to formalize the process of designing a
gamification strategy, and several gamification design frameworks have emerged, such as MDA
(Mechanics, Dynamics and Aesthetics), Octalysis, GAME (Gather, Act, Measure, Enrich) or
the 6D framework [3, 13]. Piteira [8] in a recent research, proposes a conceptual framework
to implement gamification on courses of computer programming learning. The proposed
framework includes several progression steps, such as: i) knowing the target audience; ii)
Learning goals and learning outcomes; iii) Structure of gamified learning; iv) Identify and
organize the study contents; v) Apply gamification elements appropriate to the context, and
considering the aspects mentioned in the above steps [16, 11].

3 Methodology Adopted

Recognizing the difficulties that students normally present in learning computer programming,
we tried to define a new approach to improve the success rate of students in this field. Based on
the concepts of the increasingly popular gamification, we tried to introduce some mechanisms
of game design, in the curricular unit of algorithms and data structures.

This curricular unit takes place in 15 weeks, during the 1st semester of the 1st year, of
the degree in technologies and information systems for the web, at Escola Superior de Media
Artes e Design, Polytechnic of Porto. The course was attended by 56 students, and it was
designed to cover the fundamental concepts of programming introduction using the Python
programming language. The course was organized in 5 main modules: i) fundamentals of
programming: data types, variables, operators, simple data structures, basic control structures
(if, while, for, . . .); ii) more complex data structures such as arrays, lists, queues and stacks;
iii) data persistence (files); iv) introduction to GUI programming: basic components (such
as labels, text boxes, buttons, radio buttons, images, timers, etc.), objects properties and
events; v) development of a final project, applying the previous concepts in the development
of an application.

From the first week, the teaching/learning process was oriented towards the exposition
of small theoretical-practical contents, followed by carrying out some practical exercises of
application. However, from the beginning, there were many difficulties in understanding
on the part of the students, as well as some lack of motivation and interest in carrying out

M. Pinto and T. Terroso 11:5

the proposed practical activities. Once the first knowledge assessment test was carried out,
scheduled for week 7 of the course, it was found that only 30 of the 56 students took the
test (about 54% of the students). And among these, only 11 obtained a positive evaluation
(representing about 37% of those who attend the evaluation moment, and only 20% of the
enrolled students). So, considering:

The results obtained, truly discouraging;
The students’ difficulty in assimilating basic programming concepts and applying them
in practice;
The lack of motivation of most students;
The inability to understand and solve the proposed problems.

We tried to introduce new strategies, to respond to the difficulties felt by the students
in this introductory course. The objective was to promote a new approach, based on the
paradigm of gamification learning, as well as strategies such as problem-based learning,
seeking to make teaching more attractive and appealing to students.

In this case study, the framework presented by Piteira at al [8, 9] was adopted, since it is
oriented towards programming learning courses. Furthermore, the framework was applied
with remarkable success by its authors, thus providing an opportunity to confirm the results
obtained in previous studies. According to the process of implementing a gamified strategy,
described in the previous section, a new plan was drawn, organized in the following steps
(Table 1):

At the end of the gamified activity, a questionnaire survey was carried out, in order to
understand the students’ degree satisfaction with this initiative. The main objectives of
the questionnaire focused on understanding the students’ feedback on the gamified activity
carried out, as well as if it was useful to extend this initiative to other modules of the course.
Before the questionnaire was applied, we conducted a pre-test applied to a group of ten
people, with similar characteristics to the final sample, to identify omissions and the level
of understanding of the questions addressed in the questionnaire. The data collection took
place at the end of the activity, between January 3 and 10, 2022. We received 21 responses,
which corresponds to more than 90% of the students who joined this gamified initiative.

4 Results and Discussion

The questionnaire had four questions, with answers based on a likert scale, between 1 and 5,
where 1 meant very little and 5 very much. Table 2 summarizes the answers obtained in
these four questions.

Analyzing the results obtained, and considering the responses classified as levels 4 and 5
on the Likert scale (as much or very much), we can see that most students were satisfied
or very satisfied with the strategy adopted. Around 100% of the respondents considered
that gamification helped them to improve their levels of motivation and involvement in
the teaching/learning process, as well as allowing them to develop skills in programming
more easily.

It should be noted that only 11 students had obtained a positive evaluation in the first
moment of evaluation (representing about 37% of those who attend the evaluation moment,
and only 20% of the enrolled students), which demonstrates the enormous difficulties felt.

It should also be noted that most students found it useful to replicate this teaching and
learning strategy, which incorporates some gamification elements, in other modules of the
discipline.

ICPEC 2022

11:6 Learning Computer Programming: A Gamified Approach

Table 1 Process of implementing a gamified strategy.

Process (step) of
implementing a
gamified strategy

Description

Target Audience

Students enrolled in the discipline of Algorithms and Data Structures.
The joining to this gamified strategy was optional, consisting of a
complementary way to the teaching and learning process previously
defined.

Learning object-
ives

i) Consolidate knowledge about simple data structures, lists and arrays,
as well as data persistence (the first three modules of the course, de-
scribed above); ii) Develop skills related to problem-solving capability;
iii) Develop student autonomy and self-expression.

Structure of gami-
fied learning

The gamified strategy involved conceiving a mission, proposed to stu-
dents, which is composed by 3 challenges. These challenges were or-
ganized into levels (unlockable, once students successfully complete
the previous level), with successively higher degrees of difficulty. Once
students have completed a level, they earned points, which are later
converted into supplementary points in the final assessment of the course
(cumulative points with all other assessment elements initially planned).
They also earned a badge for completing each level. In addition, stu-
dents are also encouraged to collaborate and cooperate with each other,
through participation in internal discussion forums. At the end of the
mission, the students would evaluate their peers, choosing the 3 students
who stood out the most in helping and tutoring their colleagues.

Identify and or-
ganize the study

As mentioned, the mission was organized around 3 challenges: i) the
first consisted of implementing a small rooster game (tic tac toe), a
traditional game. It should consist on 2 players, who playing alternately;
ii) After completing this first level, the second challenge consisted of
adapting the same game, where one of the players is the computer. In
this case, the algorithm should simulate the computer’s movements,
based on principle of playing against the computer; iii) once completed
and submitted this challenge, the third level was unlocked. This level
consisted on adapting the same game, but now the validation criteria
for the assessment of the submitted solution was now focused on the
efficiency with which the game simulated the computer movements. At
this third level, efficiency and code quality were decisive key factors in
awarding solutions. It is important to note that this third level awarded
only the 3 best solutions submitted by students.

Apply gamifica-
tion elements

This initiative is available on moodle between December 20, 2021 and
January 3, 2022. The proposed mission should be completed in this
period, for all those who joined this initiative (remember that it was
not mandatory). One of the goals was to keep students motivated and
involved in the discipline, even during the Christmas break.

5 Conclusion and Future Work

The experience presented in this paper describes the introduction of some gamification
elements in the programming teaching/learning process, namely in an introductory course,
based on a conceptual framework presented by Piteira. The results obtained are clearly
in line with those presented in the study carried out by Piteira [9], confirming that this
approach helped to achieve the desired results, with an increase in student motivation and
involvement. Greater satisfaction, motivation and interest are clearly conclusions that we
can draw from the questionnaires carried out.

M. Pinto and T. Terroso 11:7

Table 2 summary of responses obtained to the questionnaire.

Questionnaire questions 1 2 3 4 5
How satisfied are you with the
gamified strategy adopted? 1 4 16

Does gamification help you to im-
prove your levels of motivation
and engagement with the learn-
ing process?

3 18

Did the challenges proposed
helped you to develop your skills
in programming?

1 5 15

Do you think gamification should
be applied to other course mod-
ules?

4 17

However, further studies would be needed to allow us to compare the results obtained with
those that would have been obtained if we continued the more expository teaching/learning
process, followed by exercises, which was adopted in the first weeks of the course (and until
the first moment of evaluation).

On the other hand, more substantial conclusions also imply a comparison with the results
obtained in previous years, in the same course, as well as an analysis of results over a longer
period of time. That is, it will be necessary to replicate this model in the following academic
years, in order to obtain a data set that allows to perform a trend analysis of results and
thus more informed conclusions.

References
1 Kirsti Ala-Mutka. A survey of automated assessment approaches for programming assignments.

Computer Science Education, 15:83–102, June 2005. doi:10.1080/08993400500150747.
2 Yorah Bosse and Marco Aurelio Gerosa. Why is programming so difficult to learn?: Patterns of

difficulties related to programming learning mid-stage. ACM SIGSOFT Software Engineering
Notes, 41:1–6, January 2017. doi:10.1145/3011286.3011301.

3 Patrick Buckley, Seamus Noonan, Conor Geary, Thomas Mackessy, and Eoghan Nagle. An
empirical study of gamification frameworks. Journal of Organizational and End User Computing,
31:22–38, January 2019. doi:10.4018/JOEUC.2019010102.

4 Darina Dicheva, Christo Dichev, Gennady Agre, and Galia Angelova. Gamification in education:
A systematic mapping study. Educational Technology & Society, 18:75–88, July 2015.

5 Anabela Gomes, Cristiana Areias, Joana Henriques, and Antonio Mendes. Aprendizagem de
programação de computadores: dificuldades e ferramentas de suporte. Revista Portuguesa de
Pedagogia, 42:161–179, July 2008. doi:10.14195/1647-8614_42-2_9.

6 José Paiva, José Leal, and Ricardo Queiros. Authoring Game-Based Programming Challenges to
Improve Students’ Motivation, pages 602–613. Advances in Intelligent Systems and Computing,
Springer, January 2020. doi:10.1007/978-3-030-11932-4_57.

7 M. Pinto. Learning computer programming: The role of gamification. In EDULEARN18
Proceedings, 10th International Conference on Education and New Learning Technologies,
pages 9492–9497. IATED, 2-4 july, 2018 2018. doi:10.21125/edulearn.2018.2263.

8 Martinha Piteira and Carlos Costa. Computer programming and novice programmers. In
Proceedings of the Workshop on Information Systems and Design of Communication, pages
51–53, June 2012. doi:10.1145/2311917.2311927.

ICPEC 2022

https://doi.org/10.1080/08993400500150747
https://doi.org/10.1145/3011286.3011301
https://doi.org/10.4018/JOEUC.2019010102
https://doi.org/10.14195/1647-8614_42-2_9
https://doi.org/10.1007/978-3-030-11932-4_57
https://doi.org/10.21125/edulearn.2018.2263
https://doi.org/10.1145/2311917.2311927

11:8 Learning Computer Programming: A Gamified Approach

9 Martinha Piteira, Carlos Costa, and Manuela Aparicio. A conceptual framework to implement
gamification on online courses of computer programming learning: Implementation. In
Proceedings CISTI 2017, pages 7022–7031, November 2017. doi:10.21125/iceri.2017.1865.

10 Ricardo Queirós, Mário Pinto, and Teresa Terroso. Computer Programming Education in
Portuguese Universities. In Ricardo Queirós, Filipe Portela, Mário Pinto, and Alberto Simões,
editors, First International Computer Programming Education Conference (ICPEC 2020),
volume 81 of OpenAccess Series in Informatics (OASIcs), pages 21:1–21:11, Dagstuhl, Germany,
2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/OASIcs.ICPEC.2020.
21.

11 Ricardo Queiros, Mário Pinto, Alberto Simões, and Filipe Portela. A Primer on Gamification
Standardization, pages 1–13. IGI Global, January 2022. doi:10.4018/978-1-7998-8089-9.
ch001.

12 Jože Rugelj and Maria Lapina. Game design based learning of programming. In proceeding
of International Scientific Conference Innovative Approaches to the Application of Digital
Technologies in Education and Research (SLET-2019), May 2019.

13 Alberto Simões. Using Game Frameworks to Teach Computer Programming, chapter 10, pages
221–236. IGI Global, January 2017. doi:10.4018/978-1-5225-1034-5.ch010.

14 Jakub Swacha and Pawel Baszuro. Gamification-based e-learning platform for computer
programming education. In X World Conference on Computers in Education, June 2013.

15 Christopher Watson and Fred Li. Failure rates in introductory programming revisited. ITICSE
2014 - Proceedings of the 2014 Innovation and Technology in Computer Science Education
Conference, June 2014. doi:10.1145/2591708.2591749.

16 Kevin Werbach and Dan Hunter. For the Win: How Game Thinking can Revolutionize your
Business. Wharton Digital Press, January 2012.

https://doi.org/10.21125/iceri.2017.1865
https://doi.org/10.4230/OASIcs.ICPEC.2020.21
https://doi.org/10.4230/OASIcs.ICPEC.2020.21
https://doi.org/10.4018/978-1-7998-8089-9.ch001
https://doi.org/10.4018/978-1-7998-8089-9.ch001
https://doi.org/10.4018/978-1-5225-1034-5.ch010
https://doi.org/10.1145/2591708.2591749

A Roadmap to Convert Educational Web
Applications into LTI Tools
José Paulo Leal ! Ï

CRACS & INESC Tec LA / Faculty of Sciences, University of Porto, Portugal

Ricardo Queirós ! Ï

CRACS – INESC-Porto LA & uniMAD, ESMAD/P. Porto, Portugal

Pedro Ferreirinha !

Faculty of Sciences, University of Porto, Portugal

Jakub Swacha ! Ï

University of Szczecin, Poland

Abstract
This paper proposes a roadmap to integrate existing educational web applications into the ecosystem
based on a learning management system. To achieve this integration, applications must support the
Learning Tools Interoperability specification in the role of tool provider. The paper starts with an
overview of the evolution of this specification, emphasizing the main features of the current stable
version. Then, it proposes a set of design goals and milestones to guide the adaptation process. The
proposed roadmap was validated with existing applications. This paper reports on the challenges
faced to apply it in these concrete cases.

2012 ACM Subject Classification Applied computing → Computer-managed instruction; Applied
computing → Interactive learning environments; Applied computing → E-learning

Keywords and phrases programming, interoperability, automatic assessment, programming exercises

Digital Object Identifier 10.4230/OASIcs.ICPEC.2022.12

Funding This paper is based on the work done within the FGPE Plus: Learning tools interoperability
for gamified programming education project supported by the European Union’s Erasmus Plus
programme (agreement no. 2020-1-PL01-KA226-HE-095786).

1 Introduction

Learning management systems (LMS) play a pivotal role in the way instruction is delivered in
many schools. These systems manage most of the learning activities in which students must
participate. However, some of these activities may be better handled by other educational
web applications.

For instance, a typical LMS provides automated assessment features but not on specialized
domains such as programming languages. On the other hand, web applications such as
Sololearn, CoderByte, CodeWorkout, CodeWars, CodinGame, HackerRank, and LearnJS
provide this kind of assessment and would benefit from a tighter integration into the LMS
ecosystem.

The Learning Tools Interoperability (LTI) specification [3] provides a standard approach
for this kind of integration. It evolved from a simple mechanism to launch web applications
from the LMS, to support multiple services to securely interchange data with these applica-
tions. LTI is a standard supported by all LMS vendors of reference, and thus maximizes the
payoff of adapting an educational web application.

A practical example can be given using CodeWorkout as an external third-party tool
provider and Canvas as an LTI-compliant LMS acting as a Tool Consumer. Using LTI, it is
easy to seamlessly integrate CodeWorkout as a Canvas Assignment embedded in a Canvas

© José Paulo Leal, Ricardo Queirós, Pedro Ferreirinha, and Jakub Swacha;
licensed under Creative Commons License CC-BY 4.0

Third International Computer Programming Education Conference (ICPEC 2022).
Editors: Alberto Simões and João Carlos Silva; Article No. 12; pp. 12:1–12:12

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zp@dcc.fc.up.pt
https://www.dcc.fc.up.pt/~zp
https://orcid.org/0000-0002-8409-0300
mailto:ricardoqueiros@esmad.ipp.pt
http://www.ricardoqueiros.com
https://orcid.org/0000-0002-1985-6285
mailto:up201805186@edu.fc.up.pt
https://orcid.org/0000-0001-6023-7681
mailto:jakub.swacha@usz.edu.pl
http://iiwz.wneiz.pl/jakubs
https://orcid.org/0000-0002-2214-6989
https://doi.org/10.4230/OASIcs.ICPEC.2022.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

12:2 A Roadmap to Convert Educational Web Applications into LTI Tools

page. This enables students to code the exercises from within Canvas in the same way
that they might do with any Canvas-native assignment, and receive a score in the Canvas
gradebook for doing that assignment.

Despite these advantages, adapting an existing educational web application to support
LTI is far from a painless process. Designing a system from scratch to use this specification is
complex enough. Redesigning an existing system in such as way as to retain all its previous
features and simultaneously take the most from LTI integration is even more challenging.
Moreover, there are several hurdles to consider, from the configuration of the LMS itself to
make it support a given LTI version, to selecting libraries to support the specification on the
web application side.

The remainder of the paper is organized as follows. Section 2 provides a background on
the LTI specification and surveys the best frameworks and libraries to implement it. Section 3
identifies a set of design goals and milestones to guide the adaptation process. Section 4
reports on the use of a selected LTI library to integrate a code playground into an LMS.
Finally, Section 5 summarizes the contributions of this work and points to future directions.

2 State of the Art

Learning platforms have evolved in several dimensions. The interoperability dimension was
one of the dimensions that progressed the most [2]. The first platforms were monolithic and
closed, with all the features provided by internal and proprietary components. In the last
decades, platforms become decentralized as they are built by assembling external components
exposed as services. These services are decoupled from their consumers, and thus can easily
be reused by several learning processes.

These services led to the formalization of initiatives [8] to adapt Service-Oriented Architec-
tures (SOA) to e-learning called e-learning frameworks. The ultimate goal of these initiatives
was to simplify the integration of educational systems, allowing the creation of dynamic
educational ecosystems easily adaptable to any learning domain. They were composed of
open interfaces to numerous reusable services organized into genres or layers and combined
in service usage models. Despite the good intentions, the complexity in formalizing the
specifications of the frameworks undermined the adhesion of the major educational players [6].

In parallel, other interoperability initiatives focused on simplifying the educational
systems’ integration emerged, such as NSDL, POOL, OKI, EduSource, IMS DRI, IMS LTI.
Based on these initiatives, several authors presented works on connecting LMS to external
applications [9, 2, 1].

2.1 IMS Learning Tools Interoperability (LTI) specification
An initiative that stood out was the IMS Learning Tools Interoperability (LTI) specification [3]
defined as a standardized way to integrate third-party content into courses within an LMS or
platform. Without LTI, LMS and content providers would have to rely on custom integrations
with prejudice to interoperability and scalability.

Nowadays, the IMS consortium recommends the adoption of version 1.3. In short, LTI 1.3
uses OAuth2 and signed messages using JSON Web Tokens (JWTs) to securely authenticate
students and pass data between the LMS and the external learning tool.

This version includes LTI Advantage, defined as a package of services that add new
features to enhance the integration of any tool with any LMS in the core of LTI 1.3. The
three LTI Advantage feature services are Names and Role Provisioning Services, Deep Linking,
and Assignment and Grade Services:

J. P. Leal, R. Queirós, P. Ferreirinha, and J. Swacha 12:3

Names and Role Provisioning Services (NRPS): grants the tool access to the list of users
and their roles for a specific context (e.g. a course or group). NRPS allows the external
tool to request a list of members from the context that launched it. Once the tool receives
the membership list, it can read all students and teachers enrolled in the context, even if
they have not yet launched the tool.
Assignment and Grade Services (AGS): allows teachers to sync grades between third-party
tools and their LMS. This service returns numeric scores and teacher comments to an LMS
gradebook. For instance, a teacher can view when a student has started an assignment,
or if it has been completed. The teacher can also receive the status of a grade, even if it
requires manual input from the teacher.
Deep Linking (DL): offers a more streamlined approach to adding LTI links to an LMS.
Deep Linking messages allow external learning tools to appear within an LMS as internal
tools would. With Deep Linking, external learning tools can now allow teachers to
configure specific content or activities within the tool. In LTI 1.1, the whole tool content
had to be exposed, even if the teacher only wanted the class to use a specific resource.
Deep Linking allows teachers to select whichever content they need and share the link to
launch that content with their course. For example, a tool may let a teacher configure a
specific chapter from an e-book when their students select a link, rather than force them
to launch the tool and then navigate to that chapter.

Adopting LTI 1.3 should be a careful decision. For most of the cases, LTI 1.1 is enough in use
cases where a student launches an activity from the LMS, solves it in the external tool and
then a grade is reported back to the LMS grade book. However, the new LTI 1.3 features
could be applied in relevant use-cases. For instance, considering the use of leaderboards:
names and roles obtained from provisioning services could be used to populate leaderboards
with the names of students before they submitted for the first time; deep links could be used
to embed in LMS content leaderboards generated on-the-fly by the tool.

2.2 LTI implementation tools
Given the popularity of LTI and its consequent adoption by the community, it is worth
analyzing the existing options to develop an external application with LTI support and,
thus, benefit from secure integration with an LMS while using the services provided by this
standard.

Currently, there are several frameworks and libraries (from now on, LTI development
tools) to implement a tool provider with preconfigured routes and methods to manage the
LTI 1.3 protocol. By using these frameworks, developers may profit from LTI without needing
to implement all the security and validation requirements and, this way, concentrate on the
tool logic.

The LTI development tools survey was based in the following methodology: firstly, a set
of tools were collected using a “lti” keyword to search on GitHub Lab 1 – a site filter for
GitHub repositories. Then, tools that weren’t update in the last year were discarded. Finally,
the five with more stars were selected. The set of tools is the following: ltijs2, TSUGI3,
LtiLibrary4, ims-lti5 and lti-1-3-php-library6.

1 https://githublab.com/repositories?q=lti
2 https://github.com/Cvmcosta/ltijs
3 https://github.com/tsugiproject/tsugi
4 https://github.com/LtiLibrary/LtiLibrary
5 https://github.com/instructure/ims-lti
6 https://github.com/IMSGlobal/lti-1-3-php-library

ICPEC 2022

https://githublab.com/repositories?q=lti
https://github.com/Cvmcosta/ltijs
https://github.com/tsugiproject/tsugi
https://github.com/LtiLibrary/LtiLibrary
https://github.com/instructure/ims-lti
https://github.com/IMSGlobal/lti-1-3-php-library

12:4 A Roadmap to Convert Educational Web Applications into LTI Tools

The following subsections describe and compare these five LTI development tools. The
analysis, summarized in Table 1, is based on three facets: maturity, specification coverage,
and language binding.

Table 1 Analysis of the major LTI development tools.

Criteria Properties ltijs TSUGI LtiLibrary ims-lti lti-1-3

Maturity

First release date May 19 Jun 17 Nov 16 May 20 Aug 18

Last release date May 21 Mar 22 Mar 22 May 20 Aug 20

Open issues 21 17 7 5 21

Pull requests 1 1 - 2 5

Commits 438 2879 604 246 110

Releases 5 18 14 1 -

Contributors 7 24 13 20 8

Stars 173 287 72 167 84

Forks 29 243 55 105 60

Coverage

LTI 1.0

LTI 1.1 X X X

LTI 1.3 X

LTI 1.3 (DR included) X

Language Bindings

.NET X

JavaScript X

PHP X X

Ruby X

Regarding maturity (based on the tools’ GitHub repositories), although relatively recent,
these tools have been growing with the evolution of the LTI specification. TSUGI and
LtiLibrary are the oldest and more frequently updated, taking into consideration commits
and releases. However, ims-lti, despite being the most recent, is the second most popular,
with a reasonable number of stars. The number of forks of a repository is also relevant.
Forking a repository allows to freely experiment with changing it without affecting the
original project. Thus, this means more people are using the TSUGI code base to start their
projects than any other. The last two tools are those with a lower number of commits and
the oldest last release dates. Nevertheless, the lti-1-3-php-library, created by IMSGlobal, has
the biggest number of open issues, which is revealing of the great community that the IMS
presents.

LTI 1.1 is still the most popular and widespread option. In short, this version defines a
standard way to launch a tool provider (typically an external learning tool) within a tool
consumer (typically an LMS) and attach some user data, authentication data, and service
references. Afterward, the learner uses the external learning tool. Finally, the tool provider
calls a Learning Information Service (LIS) to submit the learner grade back to the LMS.
Nevertheless, the IMSGlobal library has already implemented version 1.3, supporting all
services from LTI Advantage. The ltijs library has the highest coverage level, being the first

J. P. Leal, R. Queirós, P. Ferreirinha, and J. Swacha 12:5

library to implement the new LTI Advantage Dynamic Registration Service, which turns the
LTI Tool registration flow into a fast, completely automatic process. It exposes a registration
endpoint through which platforms can initiate the registration flow.

Finally, most LTI development tools are coded in one of two languages, either PHP or
JavaScript (NodeJS runtime). It was expectable as these are the most popular server-side
languages. The initial unfiltered set included tools coded in other languages, such as Java
and Python, but most of them were in beta state.

3 LTI roadmap – design goals and milestones

This section presents a roadmap to integrate an existing educational web application into a
Learning Management Systems (LMS) using the Learning Tools Interoperability (LTI).

We envisioned the object of this integration process as an existing educational web
application. This application must be able to provide activities to a group of students similar
to a class. It must have structured content to be presented to students as activities. This
content can be either expository (PDFs) or evaluative (automated assessment). Finally, the
outcome of these activities should be reported back to the LMS for integration in a grade
book.

To guide us in the creation of this LTI integration roadmap we considered the following
design goals:

The web application will become an LTI tool provider (TP) that can be launched and
interact with an LTI tool consumer (TC) such as an LMS.
The web application will continue to be usable outside the LTI context, supporting
simultaneously LTI and non-LTI users.
Modifications to the web application user interface will be minimal, desirably none.
Global configurations of TC (ex: skinning, natural language) should be exposed to the
LMS.
When possible, changes made by LTI users in the web tool will be automatically reported
to the TC.
The adaptation process will start with simple and independent tasks and then proceed to
more complex ones that depend on the former.

The adaptation process should profit as much as possible from all LTI features, ranging
from the core features from the early versions of the protocol to those proposed by LTI
Advantage and integrated into the latest version. The core features include launching the
TP in an authenticated session and configuring it from the LMS. The latest features include
the Names and Role Provisioning Services (NRPS), Deep Linking (DL), and Assignment
and Grade Services (AGS).

The proposed roadmap is organized into three consecutive main milestones. Each
milestone is a fully functional and improved version of the web application, providing a
deeper integration into the LMS and building on the previous ones. The first aims at the
core integration between the TP and LMS, with user ids shared by both systems. The second
aims at exposing specific TP content to different LMS activities. Finally, the third milestone
aims at reporting student activity on the TP back to LMS. The following subsections detail
each of these milestones.

ICPEC 2022

12:6 A Roadmap to Convert Educational Web Applications into LTI Tools

3.1 Entrance
The main objective of the first milestone is to enable a smooth transition between the LMS
(e.g. Moodle) and the TP (e.g. Agni). Providing a single-sign-on is a major driving force
behind LTI adoption; this feature is available since version 1.0 of this specification. However,
entering the TP when coming from the LMS involves more than just authentication and
authorization. This milestone is divided into the following sub-milestones.

1. Launch the TP.
2. Expose TP configuration to the LMS.
3. Create an authenticated session.
4. Create users for the activity.

The first sub-milestone is to launch the tool using LTI. This sub-milestone requires
configuring the LMS to support LTI with the tool (more on that in the following section)
and configuring an activity on the LMS. This sub-milestones is concluded when the activity
link is presented on the LMS and, when followed, the tool screen is presented to the user. At
this stage, the TP might simply present a welcome or login screen.

The second sub-milestone is to enable the configuration of the TP using LTI custom
parameters. The TP may have general configurations to expose to the LMS. For instance, the
TP might support different natural languages or some form of user interface customization,
such as setting a background color or a logotype. If these configurations are available they
may be exposed to LMS using LTI custom parameters. This way, the teacher may configure
them when defining the LTI activity on the LMS.

The third sub-milestone is the creation of an authenticated session according to the profile
received via LTI. The relevant profiles are teacher and student and these should be mapped
to profiles available on the tool. At this stage, the student profile can be mapped to a guest
user or generic student. The teacher may be mapped to an administration profile.

Educational systems usually require students to be registered in advance. This registration
is necessary since most of these systems record student progress. Many of these systems
support groups of students like classes. Ideally, a class or similar should be created and
associated with each LTI activity. This class can be automatically created on the first launch
of an LTI activity.

Using NRPS the TP can obtain from the LMS the list of users and their profiles. With
this approach, all users can be created in batch at the first launch, typically when the teacher
tests the activity. In subsequent LTI launches the authorization is reduced to checking if the
student was already created.

Students may enroll later in the course after the activity is configured and the class
populated on the TP. Hence, if the student is missing during authorization, the process
described in the previous paragraph will have to be repeated.

3.2 Content
The main objective of the second milestone is to launch the TP with a specific content. For
instance, in a TP with many exercises, the teacher may need to specify a few for a particular
LTI activity. This kind of launch opens the TP in any part of it, which gives the possibility
of skipping a login screen or showing a restrictive single small part. This can be achieved by
configuring the TP activity on the LMS using two different approaches:
1. LTI custom parameter.
2. Deep Linking (DL).

J. P. Leal, R. Queirós, P. Ferreirinha, and J. Swacha 12:7

An LTI custom parameter can be used on the activity configuration to specify the content
to present to the students. The drawback of this approach is that it requires the teacher to
know the parameter name and the content identifier, usually a pathname. If the TP hosts
more than a few individual contents, this approach may be too cumbersome.

The alternative is to use Deep Linking to provide a content selector to the teacher when
she configures the LTI activity on the LMS. Although integrated on the LMS, the content
selector is created by the TP, reflecting its current content. Thus, if the content has many
items, it can be organized using a tree widget, for instance. Alternatively or complementary,
an incremental search field can be added to facilitate the selection process.

In general, DL is preferable to custom parameters to select content items. However,
custom parameters may have other uses in content selection. For instance, a custom parameter
may be used to disable navigation on the TP. Using such a configuration, after an LTI launch
on specific content, students will be unable to navigate different to other content on that
instance.

3.3 Feedback

The main objective of the third and final milestone is to send feedback from the TP back
to the LMS. It is an important facet of LTI integration since it allows the instructor to
consolidate grades in the LMS, but can be exploited also for other purposes. This milestone
is divided into the following sub-milestones:
1. Reporting activity grades.
2. Reporting other information.

One of the tools in an LMS is a gradebook – a sort of table where each row refers to
a student and each column refers to an activity. The teacher may use this gradebook to
manage student grades in a course and grades from LTI activities may be automatically
filled in by the TP.

When an LTI activity is created in the LMS, a column for that activity is automatically
added to the gradebook. This column has two components: a grade and a description. The
grade is a non negative number within a certain range (e.g. 0 to 100) – and the description
is a string of characters. Both these values may be null. Using AGS, other similar columns
may be added to the gradebook for the same activity.

The objective of the first sub-milestone is to use the automatic column and fill it with the
grade of each student that completes the activity. Using AGS, the TP should automatically
report grades as soon as the students complete the activity, without requiring any action
from the teacher.

The second sub-milestone requires the creation of other columns in the gradebook. These
columns may be used to report data besides grades. For instance, the TP may manage
HTTP sessions associated with each student and use them to compute the time they spent
on the activity. This data may be reported in a new column using the numeric value for the
accumulated time and the descriptive text to inform if the student is currently solving the
activity.

Although the AGS was designed to reporting student related information and in particular
grades, it be also exploited as a general mechanism to return data to the tool consumer.
This use may be relevant if the tool consumer is not an LMS but another TP, using the LTI
link to integrate this third system with a common single-sign-on domain. In this case the
tool consumer will need to implement an AGS to receive the data reported by the TP.

ICPEC 2022

12:8 A Roadmap to Convert Educational Web Applications into LTI Tools

4 LTI Adaptation Example

To validate the proposed roadmap the authors applied it in two different contexts. One
is a JavaScript web playground named Agni (previously called LearnJS [5]). The other
is a programming exercise authoring tool named FGPE AuthorKit [4]. Subsection 4.1
describes the required LMS and external tools configurations, similar in both cases. Then,
Subsection 4.2 describes implementation details specific to Agni, and Subsection 4.3 those
related to FGPE AuthorKit.

4.1 Configuration
This subsection details the configurations needed to support the integration of a tool consumer
(LMS) with a tool provider.

4.1.1 Tool Consumer (LMS)
The first milestone of the roadmap requires launching the TP from the LMS. To fulfill this
objective is necessary to configure an LTI activity on the LMS.

Moodle was the LMS selected for testing the integration of both applications. These
applications have in common the implementation language, and both rely on the same
integration library – ltijs – introduced in Subsection 2.2. Hence, the initial configuration of
both applications as TP in Moodle is very similar and requires the following steps:
1. Create a tool configuration.
2. Set the tool’s public key in the configuration.
3. Define the redirection URL(s).

The initial step is to set the tool type LTI 1.3 and obtain a client ID to register the
platform in ltijs. After the platform registration, the tool generates a public key for the hand-
shaking process, to be entered in the Public Key of the external tool configuration. Finally,
all the URL(s) that are processed inside the context must be entered in the Redirection
URL(s). URLs must be registered for security reasons, so that the LMS recognizes all the
possible redirections inside its context.

4.1.2 Tool Provider (external tool)
To implement LTI in the tool provider, the ltijs library was the obvious choice due to its
full support for the v1.3 specification, including the dynamic registration service. Also both
external tools have Node.js – a JavaScript runtime built on Chrome’s V8 JavaScript engine –
as back-end, which perfectly suits the use of ltijs.

The first step is to install the library npm package and, since this package natively uses
mongoDB by default to store and manage the server data, it is also necessary to install it.

After basic installation, it is necessary to set up ltijs into the external tool in multiple
steps. Most of them can be mapped to specific methods of the ltijs library, namely:

setup – to configure the database and additional parameters (routes for the reserved
endpoints used by ltijs). After the lti.setup() method is called, the lti object gives
you access to various functionalities to help you create your LTI Provider. The lti.app
object is an instance of the underlying Express server, through this object you can create
routes just like you would when using regular Express.
deploy – opens a connection to the configured database and starts the Express server.

J. P. Leal, R. Queirós, P. Ferreirinha, and J. Swacha 12:9

register – registers the platform on the tool. Platform manipulation methods require a
connection to the database, so they can only be used after the deploy method. A LTI
tool works in conjunction with an LTI ready platform (Moodle), so in order for Moodle
to display the external tool first page, it needs to first be registered in the tool itself. This
way, the tool is able to generate a public key used by Moodle for further connections.

Ltijs behavior is configured through callbacks. For instance, the onConnect callback
is called whenever a successful launch request arrives at the main app URL, or the
onDeepLinking callback is called when a successful deep linking request is received.

Every launch generates an IdToken that the tool uses to retrieve information about the
user and the general context of the launch. The valid idToken is then separated into two
parts:

idtoken – contains the platform and user information that is context independent (e.g.,
platform name, user name and email);
contexttoken – contain the context specific information (e.g. activity name, platform
endpoints)

Both are stored in the database and passed along to the next route handler inside of a
response.locals object.

Ltijs needs the correct idtoken and contexttoken when a tool makes a request. The
authentication protocol relies on two items, a session cookie, and a ltik token. At the
end of a successful launch, ltijs: 1) redirects the request to the desired endpoint; 2) sets
a signed session cookie containing the platformCode and userId information; 3) sends a
ltik JWT token containing the same platform and user information, with additional context
information as a query parameter to the endpoint. When the tool receives a request, it
attempts to validate it by matching the information received through the session cookie with
the information contained in the ltik token. It is important to notice that the ltik token
must be passed to the tool through either query parameters, body parameters, or as an
Authorization header (bearer or LTIK-AUTH-V1).

4.2 Agni Web Playground
Agni (formerly LearnJS) is a Web playground that enables anyone to practice the JavaScript
language [7]. In the playground, students access PDFs and videos on different topics, and
solve exercises related to those topics with automatic feedback on their resolutions. The
playground has two main components: 1) an editor where students code their solutions in
an interactive environment and 2) an evaluator to assess students’ code based on static and
dynamic analyzers. Figure 1 shows the front-end GUI of the playground.

The following subsections discusses three Agni features aligned with the milestones
presented at Section 3. The features are exercise sheet launching, leaderboard generation,
and score submission.

4.2.1 Entrance – Leaderboard generation
In Agni, every successful launch from the platform to the tool should present two sections:
the exercise sheet, so that the student can solve the exercises and a leaderboard with the
current state of participant progress.

After a first successfully launch, NRPS is used to automatically create all the platform’s
users (referred to as members) and their roles within the context of the course where the
LTI activity belongs. All members of a platform within the context can be retrieved simply
by calling the getMembers method as shown in Listing 1.

ICPEC 2022

12:10 A Roadmap to Convert Educational Web Applications into LTI Tools

Figure 1 Agni playground User Interface.

Listing 1 Members route.
lti.app.get (’/ members ’, async (req , res) => {

// Gets context members
const members = await lti. NamesAndRoles . getMembers (res. locals .token)
res.send(members)

})

With this approach Agni, could present a leaderboard with the names of students (and
respective scores) even before they submitted for the first time.

Despite its popularity, presenting leaderboards also has disadvantages, in particular,
it can frustrate all those who recurrently remain in the lower places. Therefore, its use
should be restricted, either through the creation of partial rankings or through the use of a
boolean custom parameter called show_leaderboard which, when set to true, displays the
leaderboard, otherwise it inhibits its visualization.

4.2.2 Content – Exercise sheet launching
Agni is a code playground targeted at JavaScript and organized into modules for different
topics such as variables, data types, and arrays. Each module has two kinds of resources:
expositive, such as videos and PDFs; and evaluative, such as exercise sheets. An exercise
sheet contains a set of exercises of different types (e.g. blank sheet, buggy code, quiz).

To configure an exercise sheet in Moodle, the teacher should add an external LTI
tool activity (Agni). On the form, press the “select content” button, which will call the
onDeepLinking callback so that the tool can display a resource selection view. This view with
the list of existing exercise sheets did not exist, so it was one of the first challenges to overcome.
After selecting the desired sheet, the tool creates a deep linking request message and sends it
to the platform, through the createDeepLinkingMessage method. Subsequently, when the
activity is started in Moodle, the respective exercise sheet is displayed.

Another challenge was controlling the Agni UI, because when launching a specific exercise
sheet, nothing prevented the student from selecting the other sheets. For this, a boolean
custom parameter called deactivate_ui was added. If set to true, the student will only be
able to access the associated sheet. Otherwise, they will have access to all the exercise sheets.

J. P. Leal, R. Queirós, P. Ferreirinha, and J. Swacha 12:11

4.2.3 Feedback – Scores submission

During the problem solving process, the student’s performance score is automatically sent
to the Moodle gradebook. In this way, teachers are able to monitor the progress of their
students in real time.

Using the Grading Service it is possible to submit grades from Agni to Moodle (with
the submitScore method), get grades from Moodle (getScores method) and even man-
age Moodle gradebook columns (getLineItems, createLineItem and deleteLineItems
methods).

The hardest challenge was to decide at which moment the score should be sent to the
platform, since the Agni UI does not have a button to send grades. To overcome this difficulty,
it was decided that whenever a student, after submitting his solution for evaluation, leaves
the exercise back to the list of exercises, his score is automatically submitted into Moodle
gradebook.

4.3 Authorkit

AuthorKit is a programming exercise authoring tool [4]. It is a web application where authors
can create programming challenges that can later be retrieved as learning objects by other
components of an e-learning environment, such as automated assessment systems. In a strict
sense, AuthroKit is not the kind of web application envisioned by the proposed roadmap,
since it is not targeted at students. However, by using LTI it can benefit from single-sign-on
and use AGS to report data back to the calling system.

As the tool itself does not provide a numeric feedback nor is this feedback relevant in the
context of having students and calculating their grade. This was done out of interest for how
such a tool could be used in the LTI context, this implementation uses the fact that every
grade has a description, and as such, provides the key generated by the tool as a description
for a null grade. This key can then be seen through the LMS interface.

AuthorKit is initially set up by a login screen, the objective is to send through an LTI
parameter informing that this launch is indeed an LTI one, skipping the login screen and
entering the corresponding account from the TC. Afterwards, it is possible to create a
programming exercise through the TP content in the TC, resulting in the exercise key as
feedback.

5 Conclusion

This paper proposes a roadmap to integrate existing educational web applications into the
ecosystem created by a learning management system. To achieve this integration applications
must support the Learning Tools Interoperability specification in the role of tool provider.
The proposed roadmap was validated with existing applications. This paper reports on
the challenges faced to apply it in these concrete cases. As future work it is intended to
implement all the services of LTI Advantage in a gamified programming learning environment
that is an integral part of an ecosystem to facilitate the teaching of programming and that
has been worked on in the context of a European project called FGPE Plus: Learning tools
interoperability for gamified programming education (FGPE+)7.

7 https://fgpeplus.usz.edu.pl/

ICPEC 2022

https://fgpeplus.usz.edu.pl/

12:12 A Roadmap to Convert Educational Web Applications into LTI Tools

References
1 Marc Alier, María José Casany, Ariadna Llorens, Jesús Alcober, and Joana d’Arc Prat. Atenea

exams, an ims lti application to solve scalability problems: A study case. Applied Sciences,
11(1):80, 2020.

2 Claudia-Melania Chituc and Marc Rittberger. Understanding the importance of interoperability
standards in the classroom of the future. In IECON 2019 – 45th Annual Conference of the
IEEE Industrial Electronics Society, volume 1, pages 6801–6806, 2019. doi:10.1109/IECON.
2019.8927631.

3 IMS Global Learning Consortium. Learning tools interoperability core specification, 2019.
accessed on 14 Apr 2022. URL: http://www.imsglobal.org/spec/lti/v1p3/.

4 José Carlos Paiva, Ricardo Queirós, José Paulo Leal, and Jakub Swacha. Fgpe authorkit – a
tool for authoring gamified programming educational content. In Proceedings of the 2020 ACM
Conference on Innovation and Technology in Computer Science Education, pages 564–564,
2020.

5 Ricardo Queirós. Learnjs – a javascript learning playground (short paper). In 7th Symposium on
Languages, Applications and Technologies (SLATE 2018). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2018.

6 Ricardo Queirós and José Paulo Leal. Ensemble – an e-learning framework. J. Univers.
Comput. Sci., 19(14):2127–2149, 2013. doi:10.3217/jucs-019-14-2127.

7 Ricardo Queirós and José Paulo Leal. Fostering students-driven learning of computer program-
ming with an ensemble of e-learning tools. In Álvaro Rocha, Hojjat Adeli, Luís Paulo
Reis, and Sandra Costanzo, editors, Trends and Advances in Information Systems and
Technologies – Volume 2 [WorldCIST’18, Naples, Italy, March 27-29, 2018], volume 746
of Advances in Intelligent Systems and Computing, pages 289–298. Springer, 2018. doi:
10.1007/978-3-319-77712-2_28.

8 Ricardo Queirós and José Paulo Leal. Elearning frameworks: A survey. In INTED2010
Proceedings, 4th International Technology, Education and Development Conference, pages
1345–1354. IATED, 8-10 march, 2010 2010.

9 G. Tuparov and D. Tuparova. Approaches for integration of educational computer games
in e-learning environments. In 2018 41st International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO), pages 0772–0776,
2018. doi:10.23919/MIPRO.2018.8400143.

https://doi.org/10.1109/IECON.2019.8927631
https://doi.org/10.1109/IECON.2019.8927631
http://www.imsglobal.org/spec/lti/v1p3/
https://doi.org/10.3217/jucs-019-14-2127
https://doi.org/10.1007/978-3-319-77712-2_28
https://doi.org/10.1007/978-3-319-77712-2_28
https://doi.org/10.23919/MIPRO.2018.8400143

Programming for Non-Programmers: An Approach
Using Creative Coding in Higher Education
Teresa Terroso #

uniMAD – ESMAD, Polytechnic of Porto, Portugal

Mário Pinto #

uniMAD – ESMAD, Polytechnic of Porto, Portugal

Abstract
Learning how to program can be a cumbersome task even for students who enroll in courses in the
Computer Science field. It is well documented that computer programming courses have high failure
rates and high drop out. Even at the initial stage of computer introduction courses, novice students
often reveal difficulties and strong reactions to this subject. However, computer programming has
been recognized as an essential skill and a necessary element in education in many different areas.
This work reflects on the experience provided by teaching a Creative Programming course, being
held as part of a Master’s degree curriculum in School of Media Arts and Design (ESMAD), at
Polytechnic of Porto (P.PORTO), in Portugal. The students’ background is not uniform, therefore
pedagogical learning strategies had to be adapted to these multidisciplinary backgrounds to foster
student attention and interest, as well as being able to achieve the goals of teaching the fundamentals
of computer programming. This article reflects on the strategies to teach programming for non-
informatics: drifting from the traditional functional way, like developing a program or product
to solve a problem, to the usage of creative coding and generate interactive animations, while
simultaneously achieving the ambitious goals of learning programming concepts and paradigms.

2012 ACM Subject Classification Computing methodologies; Applied computing → Computer-
managed instruction

Keywords and phrases creative coding, programming learning, teaching methodologies, higher
education, visual applications, interactive graphics, open-source tools

Digital Object Identifier 10.4230/OASIcs.ICPEC.2022.13

1 Introduction

It is well known that many students have difficulties in learning computer programming since
it is a complex activity, requires a lot of practice, and traditional teaching approaches have
not been able to respond effectively [12, 4, 1, 10].

Different reasons are enumerated and can be arranged into five major groups: teach-
ing methodologies (non-personalized methods, static materials for dynamic programming
concepts, more focus on teaching a programming language rather than promoting problem-
solving), study methods (rather than practice intensively, students focus on reading books or
watching tutorials and memorize formulas or procedures), student’s abilities (generic lack of
problem understanding, relating knowledge and infer a solution), the nature of programming
(abstract concepts and complex syntactic details of many programming languages) and
psychological effects (usually taught at the beginning of a higher education course and
negative connotation associated with programming).

The high dropout and failure rates in introductory programming courses are a universal
problem that motivated many researchers to propose methodologies and tools to help students:
game design and development, programmable physical/tangible tools, project-based learning,
gamification, automatic code evaluation systems, and so on [7, 10].

© Teresa Terroso and Mário Pinto;
licensed under Creative Commons License CC-BY 4.0

Third International Computer Programming Education Conference (ICPEC 2022).
Editors: Alberto Simões and João Carlos Silva; Article No. 13; pp. 13:1–13:8

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:teresaterroso@esmad.ipp.pt
https://orcid.org/0000-0003-0224-8301
mailto:mariopinto@esmad.ipp.pt
https://orcid.org/0000-0002-6734-5797
https://doi.org/10.4230/OASIcs.ICPEC.2022.13
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

13:2 Programming for Non-Programmers

Although these approaches may motivate students to learn to program, most are oriented
to computer science programs and thus special attention must be taken to students with
different academic profiles and/or professional backgrounds. Creative coding as been already
discussed in some works as an additional approach concerning computer science education,
therefore this work contributes to the topic by providing further data supporting that it can
be an additional path in teaching the basics of computer programming.

2 Creative coding

Creative and problem-solving competencies are part of the so-called 21st-century skills and
are considered crucial to succeed nowadays [14]. Everyone, not just students who major in
computer science, can benefit from thinking like a computer scientist.

As stated in [3], creativity is “the tendency to generate or recognize ideas, alternatives,
or possibilities that may be useful in solving problems, communicating with others, and
entertaining ourselves and others”. By extension, creative coding can be understood as a
type of programming where students can use the computer to produce visual animations to
self-express themselves rather than focus on functionality. As learning computer programming
often emphasizes technical detail over creative potential, creative coding supports increasing
fluency with computational thinking, build upon creativity, imagination, and students’
personal interests. According to [8], computer technology “is not a tool; it is a new material
for expression”. This intersection between arts and technology has received attention in both
professional and educational fields [9, 6]. New art forms are being developed through the
medium of code daily, and the creative coding community is growing rapidly.

Creative coding, as a programming practice geared towards artistic content production,
has already been found effective in learning computer programming [5, 15, 2]. This work can
be placed together within diverse efforts for introducing programming in an artistic manner
to students, beyond the engineering perspective.

This work reflects on the findings from teaching a one semester-long Creative Programming
course, taught on the first year of a Master degree in Interactive Media and Systems at
ESMAD, P.PORTO. The main goal of this course is to teach the elementary concepts
of computer programming applied to the different contexts of multimedia digital arts, by
presenting a creative programming language as a tool for artistic expression. At the end
students should be able to design and produce programs for the generation of audiovisual
content for performances, multimedia installations, or web applications. Most of its students
do not have an inherent affinity towards programming. As a course in a master degree, the
classes are composed by students with very different educational or professional backgrounds:
from artists to designers, from physiotherapists to multimedia students. Traditional ways of
teaching programming (lectures combined with exercises, assessed by only one project and a
final exam) had been tried, but students found that it was hard for them to build the link
between theory and practice. Students are often eager to put the just learned knowledge
into practice, if not immediately, at least as quickly as possible. Most of them have passion
in visual designs so, they would like to see immediately their creations “move”. The followed
approach focused less on manipulating and interacting with numerical or text data but more
on digital animations (from building graphics, to audio or video manipulation), that have
been found to be at their interests as young adults and also making them more amenable to
a heterogeneous environment audience.

To attend the course no programming experience is required. However, students should
be comfortable using a computer, to perform simple tasks like installing applications and
working with files. Within the efforts of creating and expressing themselves through digital

T. Terroso and M. Pinto 13:3

media are the building blocks for introducing the essentials of programming. Over the
semester, with a total of 30 contact hours, students develop a portfolio of digital animations
using P5.js (an interpretation of Processing written in JavaScript) and employing basic
computing structures typically taught in traditional Computer Science courses.

3 p5.js

Different creative tools (like Processing or p5.js) have been integrated into the curriculum
of several education institutes, since they foster experimentation and enable the use of
computation to express ideas with visually engaging sketches or interactive installations. An
extensive list of curated tools and other resources for creative coding can be found in [13]
and table 1 summarizes some of the most found in literature regarding creative coding.

Table 1 Tools for Creative Coding.

Frameworks for desktop development
Language Mainly used for

Processing Java General purpose (IDE for visual arts)
OpenFrameworks C++ General purpose (no IDE, toolkit for creative coding)

Cinder C++ Professional-quality creative coding (uses OpenGL)
Libraries for web development

Language Mainly used for
p5.js JavaScript General purpose (alternative for Processing)

three.js JavaScript 3D graphics (simplifies working with WebGL)
Paper.js JavaScript Vector graphics scripting

In the course presented in this work, the visual programming tool is p5.js, a JavaScript
library, as a web-based alternative to Processing, but with the same goal of making coding
accessible for artists, designers, and overall beginners.

Processing was created in 2001 as a language for teaching art students how to program
and to give an easier way to work with graphics to a more technical audience. P5.js emerged
as a more accessible version, but still adhering to the syntax and conventions of Processing.
Open-source and with a strong community of contributors, p5.js has capitalized on the
web browsers’ features and ubiquity. Compared to plain JavaScript, p5.js provides a more
readable and clean code, making it easier to work with the Canvas HTML element and
implement frame-by-frame animations, Table 2.

Table 2 Code snippets to illustrate some differences between plain JavaScript and p5.js.

Drawing a circle Frame animation
Plain JavaScript p5.js Plain JavaScript p5.js
c.beginPath(); circle(x,y,r); function draw() { function draw(){
c.arc(x,y,r,0,2*Math.PI); /*some code*/ /*some code*/
c.closePath(); requestAnimationFrame(draw); }

}
draw();

For students who are learning how to program, p5.js provides encouragement and motiv-
ation with the immediate visual feedback. P5.js adds custom features related to graphics
and interaction and provides easier access to native HTML5 features already supported by

ICPEC 2022

13:4 Programming for Non-Programmers

the browser. Several libraries extend p5.js even further, like DOM manipulation, webcam
capture, image/sound processing and so on. Experimenting is made easier as there is an
online editor1 available on their website, allowing for a quick start to the library.

Choosing between Processing and p5.js was not difficult, even with the shortlist of
bibliography or online examples. Having to choose between Java (Processing) and JavaScript
(p5.js) as the base programming language, the choice fell towards the latter as its dynamic
language features, and ability to merge functional and object-oriented programming techniques
make it particularly well suited to exploratory creative practice. It has also been identified
as an excellent language for introducing computer science students to programming [11].

P5.js follows the concept of sketching as its programming method, where it basically
consists of quickly throwing 2D and 3D graphics for rapid prototyping of a dynamic visual
work, similar to how drawn sketches are created by artists. This contrasts with the standard
and disciplinary approach of software engineering for software development where first
specifications are created, then implemented and evaluated. Despite its easiness to start to
work with, it is a full-featured library capable of rendering stunning graphics and animations,
using a simplified syntax and graphics programming model.

4 Course design

The course presented in this work consists of the following topics, for the total duration of
one semester:

Course Introduction Introduction to Computing: structure, logic, syntax and algorithms.
What is creative computing? Historical context, artistic references and examples.

Drawing primitives 2D and 3D coordinate systems. Simple shapes: points, lines, shapes,
curves, text, images and 3D objects. Drawing and styling.

Control structures Variables and data types, operators, expressions, conditionals and loops.
User interaction Mouse and keyboard events, basic animation.
Functions Procedural abstraction, declaration and invocation of functions, parameters and

return values.
Arrays and Objects Introduction to arrays, lists and indexing. Object-Oriented Program-

ming (OOP): objects and classes.
Mathematics and Physics Basic trigonometry, direction, oscillation, acceleration, inertia

and friction.
Creative coding examples Transformations, iteration and randomization.

Each topic was structured around 1-2 weeks of lectures and exercises, complemented with
creative coding extra-class assignments. Although the textbook contents and topics ordering
follows more or less the same as traditional introductory computer programming courses,
the key concepts are most of the times driven by the assignments themselves or appear as
tools to respond to the students’ wanderings ’what if we would like to...?’.

During classes, the explanation of programming concepts is supported using visual
graphics, Figure 1. In experience gained from teaching this course, it was found that using
program visualization techniques helps grab the students’ attention and support learning key
programming concepts. Examples taught in classes serve as entry point to analyze the logic,
decompose the algorithm within, or spotting for patterns or similarities. Exercises usually

1 https://editor.p5js.org/

https://editor.p5js.org/

T. Terroso and M. Pinto 13:5

have an inspiration as starting point, were students are challenged to experiment and create
something new, or debug to find and fix errors or even to collaborate by working together
to find a solution. Some researches have demonstrated the impact of visual programming
tools in upgrading pass rates and overall improvement when compared with other teaching
interventions to facilitate student learning like taking an intensive preliminary training course
or workshop, [7]. Like many, and from early on, the professors of this course were faced with
problems aroused from the fact that students enter the Master degree with widely different
experience levels with key course topics. If the material is covered too slowly, those with
greater experience get bored and lose interest. If the material is covered too quickly, those
with less experience get lost and feel incompetent. That led them to promote participation
in short introductory programming courses, available for free in various e-learning platforms,
targeting students with little or no background in programming. This intervention is still in
practice today but can be improved since it is not to mandatory and the professors cannot
control the course contents, acting only as curators in the selection of courses.

Figure 1 Examples presented during classes to visually demonstrate key programming concepts
like loops, conditionals and operators. Top to bottom, left to right, from the simplest static sketch
(no loop iterations and no conditionals) to showcasing different variations, by gradually introducing
loops, nested-loops, conditionals, user inputs and animations.

Based on this work experience, the usage of media computation (mostly computer graphics,
but also including image or sound processing), the foundation of creative programming, gave
the students a context in which they already find the computers useful, which combined
with open-ended exercises and assessments provided creative activities and restrained the
stereotypes of computing as boring and anti-social, Figure 2.

Over the course of a semester, students are encouraged to develop further and share
their sketches (in our school’s learning management system or on public websites like
openprocessing.org), so they can learn from each other’s work.

4.1 Assessment
Students are asked to develop two projects during the course. The first project, developed
individually, focus on simple and short 2D animations, using functional programming, where
the theme is set by the professor, Figure 3. The second is a collaborative project with another
course of the master’s degree, Interfaces and Interaction Design, and it is developed in small
groups (2 to 3 students). In this last project, students develop an interactive installation
or application on a topic chosen by them, with a mandatory requirement of using OOP. In

ICPEC 2022

13:6 Programming for Non-Programmers

Figure 2 Examples of computer art techniques: from left to right, virtual brushes, recursive
structures, sound visualization, pixel art.

this sense, students must develop an intuitive interface (with the input of user information
through a camera or computer user interfaces, like mouse or keyboard) and/or tangible
(through the Arduino micro-controller) for the public to be able to generate and manipulate
audiovisual content. The format of the projects may vary from web applications, to 2D or
3D games or artistic installations, Figure 4.

Figure 3 Project 1 example: creation of an animated logotype for one of our school’s annual
event, the Mad Game Jam.

Figure 4 Work examples for Project 2: from left to right, 3D game (player controlled by body
movement), virtual piano (audio and visuals controlled by hand movement), web music player
(visuals controlled by sound samples).

Assessment of the students includes traditional instruments such as critiques and present-
ations. The critique process comes out of the classroom, where student work is assessed
primarily through discussions including both technical aspects of the projects, such as a
review of the source code, and also basic aesthetic issues. During final presentations, students
are asked to perform auto- and hetero-evaluations.

T. Terroso and M. Pinto 13:7

5 Preliminary results

In the past three editions of this course, from a total of 39 enrolled students, only 6 dropped-
out. From the remaining 33 students, only 4 (little more than 12%) had some previous
knowledge about computer programming. All students were asked to answer a small survey
about their findings, but only the students that completed the course answered, gathering
a total of 16 responses (about 48%). No extensive statistical data analysis is presented in
time for this work, since the surveys have suffered some alterations from year to year and
the sample size is relatively small. However, some observations can be pointed out from the
students’ answers:

Course rating Students’ were asked to grade the course on a 1 to 5 scale, with 1 as “it
did not meet my expectations at all”, 3 equals “it met my expectations” and 5 as “it
exceeded all my expectations”. The average rating was 3.75, having increased when the
course assessment has shifted from individual tests (with theoretical questions and small
practical exercises) and one group project, to two projects (one individual and the other
developed in small groups).

Main strengths Some of the students’ answers included “Learn to make generative art, and
give yourself freedom with code”, “Learning creative programming allowed me to start
exploring areas that I had no knowledge of until now” and “I found myself entertained
with some of the homework exercises because it was fun”. 78% of students responded
very favorably to the context of art when learning how to program and 43% of those
claimed to spend extra time on assignments because they enjoyed it. Not so significantly,
but a few students stated that the course instilled in them the desire to further explore
the area of programming.

Main weaknesses A significant percentage of students (around 87%) pointed out the reduced
in-class time to consolidate concepts and a few would have liked to explore some topics
more in-depth. 24% of the respondents, even with the online course taken at the beginning,
still struggled with the programming basics and “ended up confusing everything”.

6 Conclusion and Future Work

The work presented in this paper reflects the usage of creative coding in Higher Education, as
a way to overcome the difficulties of learning how to program, especially in classes that have
different learning backgrounds, therefore fostering their interest and demystifying some of the
negative connotations associated with programming. Creative coding can act as an approach
to minimize the issues of code illiteracy and provide the tools for empowerment in this digital
era. As a way to create art through code, creative coding can also be understood as a path
for learning programming through creative projects. Therefore, it can be encouraged as
a teaching tool, as a new way for exploration, computational reasoning development, and
critical reflection about programming. The authors will continue to explore the opportunity
to refine the course design and develop course materials (e.g. using the power of visual
environments, that rather than just showing code structure and results, can offer dynamic
data behavior) and accumulate student feedback, so that this work findings can be better
substantiated and compared with other teaching interventions to facilitate student’s learning
in introductory programming courses.

ICPEC 2022

13:8 Programming for Non-Programmers

References
1 Yorah Bosse and Marco Aurelio Gerosa. Why is programming so difficult to learn?: Patterns of

difficulties related to programming learning mid-stage. ACM SIGSOFT Software Engineering
Notes, 41:1–6, January 2017. doi:10.1145/3011286.3011301.

2 Vincenzo Fragapane and Bernhard Standl. Work in progress: Creative coding and computer
science education – from approach to concept. In 2021 IEEE Global Engineering Education
Conference (EDUCON), pages 1233–1236, 2021. doi:10.1109/EDUCON46332.2021.9453951.

3 R.E. Franken. Human Motivation. Brooks/Cole Publishing Company, 1994. URL: https:
//books.google.pt/books?id=hfW6AAAACAAJ.

4 Anabela Gomes, Cristiana Areias, Joana Henriques, and Antonio Mendes. Aprendizagem de
programação de computadores: dificuldades e ferramentas de suporte. Revista Portuguesa de
Pedagogia, 42:161–179, July 2008. doi:10.14195/1647-8614_42-2_9.

5 Ira Greenberg, Deepak Kumar, and Dianna Xu. Creative coding and visual portfolios for cs1.
In Proceedings of the 43rd ACM Technical Symposium on Computer Science Education, pages
247–252, 2012. doi:10.1145/2157136.2157214.

6 Edmund Harcourt. Exploring the intersection between art and technology, May 2021. URL:
https://hackernoon.com/exploring-the-intersection-between-art-and-technology-
en1s34fd.

7 Arto Hellas, Jonne Airaksinen, and Christopher Watson. A systematic review of approaches for
teaching introductory programming and their influence on success. ICER 2014 - Proceedings
of the 10th Annual International Conference on International Computing Education Research,
July 2014. doi:10.1145/2632320.2632349.

8 J. Maeda, R. Burns, Thames, Hudson, and Massachusetts Institute of Technology. Media Labor-
atory. Creative Code. Thames & Hudson, 2004. URL: https://books.google.pt/books?id=
VeO6GwAACAAJ.

9 Kylie Peppler and Yasmin Kafai. Creative coding: Programming for personal expression. In
8th International Conference on Computer Supported Collaborative Learning (CSCL), pages
76–78, June 2009.

10 Ricardo Queirós, Mário Pinto, and Teresa Terroso. Computer Programming Education in
Portuguese Universities. In Ricardo Queirós, Filipe Portela, Mário Pinto, and Alberto Simões,
editors, First International Computer Programming Education Conference (ICPEC 2020),
volume 81 of OpenAccess Series in Informatics (OASIcs), pages 21:1–21:11, Dagstuhl, Germany,
2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/OASIcs.ICPEC.2020.
21.

11 John Resig. Javascript as a first language, December 2011. URL: https://johnresig.com/
blog/javascript-as-a-first-language/.

12 Anthony Robins, Janet Rountree, and Nathan Rountree. Learning and teaching programming:
A review and discussion. Computer Science Education, 13(2):137–172, 2003. doi:10.1076/
csed.13.2.137.14200.

13 Terkelg. Awesome creative coding. URL: https://github.com/terkelg/awesome-creative-
coding.

14 Joke Voogt and Natalie Pareja Roblin. A comparative analysis of international frameworks for
21st century competences: Implications for national curriculum policies. Journal of Curriculum
Studies, 44(3):299–321, 2012. doi:10.1080/00220272.2012.668938.

15 Zoe J. Wood, Paul Muhl, and Katelyn Hicks. Computational art: Introducing high school
students to computing via art. In Proceedings of the 47th ACM Technical Symposium on
Computing Science Education, SIGCSE ’16, pages 261–266, New York, NY, USA, 2016.
Association for Computing Machinery. doi:10.1145/2839509.2844614.

https://doi.org/10.1145/3011286.3011301
https://doi.org/10.1109/EDUCON46332.2021.9453951
https://books.google.pt/books?id=hfW6AAAACAAJ
https://books.google.pt/books?id=hfW6AAAACAAJ
https://doi.org/10.14195/1647-8614_42-2_9
https://doi.org/10.1145/2157136.2157214
https://hackernoon.com/exploring-the-intersection-between-art-and-technology-en1s34fd
https://hackernoon.com/exploring-the-intersection-between-art-and-technology-en1s34fd
https://doi.org/10.1145/2632320.2632349
https://books.google.pt/books?id=VeO6GwAACAAJ
https://books.google.pt/books?id=VeO6GwAACAAJ
https://doi.org/10.4230/OASIcs.ICPEC.2020.21
https://doi.org/10.4230/OASIcs.ICPEC.2020.21
https://johnresig.com/blog/javascript-as-a-first-language/
https://johnresig.com/blog/javascript-as-a-first-language/
https://doi.org/10.1076/csed.13.2.137.14200
https://doi.org/10.1076/csed.13.2.137.14200
https://github.com/terkelg/awesome-creative-coding
https://github.com/terkelg/awesome-creative-coding
https://doi.org/10.1080/00220272.2012.668938
https://doi.org/10.1145/2839509.2844614

Program Comprehension and Quality Experiments
in Programming Education
Maria Medvidova ! Ï

Department of Computers and Informatics, Technical University of Kosice, Slovakia

Jaroslav Porubän ! Ï

Department of Computers and Informatics, Technical University of Kosice, Slovakia

Abstract
The paper deals with the design of a new experimental method designed to measure the understanding
of the code of subjects who do not know any programming language in connection with the
implementation of empirical and analytical study. The aim of this work is the analysis of
students’ knowledge before and after the course Basics of Algorithmization and Programming
at Technical University in Kosice, Slovakia, and the subsequent static analysis of their codes from
one of the assignments. The theoretical part provides a look at the various models and ways to
measure program comprehension, code quality metrics, examines the most common analysis tools,
suggests recommendations for improving comprehensibility, and provides a closer look at program
comprehension issues in the teaching context.

2012 ACM Subject Classification General and reference → Surveys and overviews

Keywords and phrases Program comprehension, static code analysis, empirical software engineering,
code as a story, students

Digital Object Identifier 10.4230/OASIcs.ICPEC.2022.14

Funding This work was supported by project VEGA No. 1/0630/22: Lowering Programmers’
Cognitive Load Using Context-Dependent Dialogs.

1 Summary of basic information about the program comprehension

During software development and maintenance, developers spend a significant amount of
time in the process of understanding the program [12]. Studies suggest that understanding
the code is a major maintenance activity because it absorbs approximately 50 percent of the
cost. Problems in understanding the code are known from the time of the first developed
software. The partial goal of this work is to observe these challenges from the student’s point
of view. As software engineering teaching expands, computer science teachers are encouraged
to help students develop their understanding. Today we know that even if a programmer
puts together valuable code, he may not understand it. Precisely because of this, our work
is devoted to evaluating the level of understanding of code as an important part in the life
of a developer [2]. We gradually analyze their ability to understand from the beginning to
the end of the semester using a new empirical story method that we have developed for
this purpose only, as most current studies unfortunately focus only on professionals due
to the need to maintain existing software and lack student studies. In our research, we
focus on various metrics that we can use to quantify code quality. We are thus preparing
a unique opportunity to observe the development of participants in the subject Basics of
Algorithmization and Programming, which we can later use in the evaluation of students and
their codes representing potential security risks in the event of poor program implementation.
Thanks to this measurement, we monitor the improvement or deterioration of potential
students who may have difficulty mastering this subject in the future, and we can thus set
preventive steps for the successful completion of the course [9]. In the first part, we cannot
generalize their knowledge in a specific programming language, as everyone underwent a

© Maria Medvidova and Jaroslav Porubän;
licensed under Creative Commons License CC-BY 4.0

Third International Computer Programming Education Conference (ICPEC 2022).
Editors: Alberto Simões and João Carlos Silva; Article No. 14; pp. 14:1–14:12

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:maria.medvidova@gmail.com
http://www.tuke.sk
mailto:jaroslav.poruban@tuke.sk
http://www.tuke.sk
https://orcid.org/0000-0001-9706-2897
https://doi.org/10.4230/OASIcs.ICPEC.2022.14
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

14:2 Program Comprehension and Quality Experiments in Programming Education

different teaching in high school. Therefore, there will be general questions in order to
determine the level of the student’s understanding of the code using the proposed “code
as a story” method. To measure understanding in the second stage, we decided to use the
“understand code” protocol. Subsequently, we evaluate the level in understanding the program
before and after completing the course. In both sections, the participant was measured from
the time the question was displayed until they were answered using a programmed form
using Google Apps Script.

1.1 Models of understanding of program
Models are created using theories based on empirical studies by programmers who perform
tasks that require them to read and understand the program.The differences between human
understanding models lie in the terminology that describes the content of the knowledge
base and each approach to the process of assimilation.

Top-down model: The process begins with a hypothesis about the general nature of the
program. This initial hypothesis is then refined hierarchically by creating sub-hypotheses.
Sub-hypotheses are refined and evaluated in depth first [1].
Bottom-up model: Bottom-up program understanding theories assume that programmers
first read code statements and then mentally divide or group these statements into
higher-level abstractions [10].
Cognitive model: The basic structure of cognitive models consists of four components.
Target system, which is to be understood. The second component is the knowledge
base, which represents the previous experience of the person. The third component is
a mental model that shows the current state of understanding. The last component is
an assimilation process that interacts with the other three components and updates the
state of understanding [4].

1.2 Complications in understanding the program
In this section, we examine the scientific understanding of code odors. A clear example from
the studies we are discussing is that long methods are particularly problematic. They make
it harder for developers to understand what’s going on and make changes, are more prone to
error, and require more effort to change. The code smells like “blob class” and “spaghetti
code”, which are clearly related to it.

1.2.1 Code smells
The term “odor code” was popularized by Martin Fowler. Any symptom in the code that
indicates a deeper problem can be considered “odors” in the code. This problem often cannot
be seen right away, but can be uncovered if the code is thoroughly analyzed. Code smells
are not program errors. They only show software design issues that make it difficult to
understand the code and then make it difficult to develop or extend it. Code smells also
increase the likelihood of future errors in this software. The presence of odors in the code is
a sign of poor code quality. There are many potential odors. The most common code smells
and thus the causes of poor code level in terms of understanding include:

Duplicate code: If you see the same code structure in multiple places, you can be sure
that your program will be better if you find a way to unify them.
Shotgun Surgery: Occurs when one change requires adjustments in many classes.

M. Medvidova and J. Porubän 14:3

Feature Envy: This is code smell that describes when an object accesses another object’s
fields to perform an operation, instead of just telling the object what to do.
Middle Man: Occurs when a function has too much delegation to other functions and
methods and does almost nothing else because the work gradually moves to other methods.
Extremely short identifiers: The name of a variable should reflect its function, unless the
function is obvious.
Too complex conditions: Extensive nested conditions tend to grow more and more
complicated over time as developers constantly add conditions and more levels. The
deeper the nesting, the more time it will eventually take to remodel.
Spaghetti code: The nested if, for, do, while, switch, and try statements are a key
component in creating what is known as “spaghetti code.” Such code is difficult to read,
refactor and therefore maintained.
Unnecessary comments: Unused code should be deleted and, if necessary, retrieved from
the source check history.
Dead code: These are methods and classes that are no longer used.

1.2.2 Technical debt
The technical code debt is an insufficient and misspelled code that violates best practices
and coding rules.Technical debt is like a collection of code odors along with bad architectural
decisions. Resolving a technical debt usually takes longer. It is most often increased by
adding another method to an already too long class, copying and pasting an existing class or
method, but with a different name. But whatever the cause, technical debt will inevitably
cause more work in the future by not introducing better solutions now. That’s why Ward
Cunningham coined the term “debt.” The more you pay, the more interest you pay [3]. And
in this analogy, refactoring is the process of paying off this debt.

1.3 Code comprehension measurement concepts
In most software engineering processes, a complete understanding of the entire program is
unnecessary and often impossible. Change requests are often formulated in terms of domain
concepts, such as “Add the ability to save a trusted device to the authorization system.” An
important task is then to understand where and how the relevant terms are implemented in
the code. We know many protocols designed to measure it, the most well-known are think
out loud protocol, remember, understand the code.

1.4 Approaches to improve the comprehensibility of existing code
There are a number of factors that can be helpful in improving the accuracy, correctness,
completeness, and simplicity that a program can understand. In this subsection, we list the
most common ones.

Syntax highlighting: The function displays text, especially source code, in different
colors and fonts depending on the category of expressions. It is commonly used to
highlight different code constructs using different colors and fonts for different identifiers.
Although this is a very basic approach, it undoubtedly contributes greatly to improving
comprehensibility.
Expertise in the domain: Many empirical studies have shown that expertise is important
in building fast and accurate comprehensibility. Well-founded knowledge of the problem
domain, troubleshooting, and programming languages make it easier to understand the
program [6].

ICPEC 2022

14:4 Program Comprehension and Quality Experiments in Programming Education

Cross-references: Support is used to provide a link between an identifier definition and
its use in different places in the source code.
Annotations and comments: Annotation is another way to help a programmer easily
understand code. These are virtually added comments that did not originally exist in the
code, but are often more useful.

1.5 Tools helping to understand programs
In the early days of programming, source code was often written using a standard editor such
as Emacs or Vi. However, as the complexity of the programs grew, the standard text editor
was no longer enough, so the need for integrated development environments grew rapidly.
The area of program understanding research has resulted in many different tools that help in
understanding the program, and in this subsection we discuss the features of the tools that
support program understanding. The tools for understanding the program can be roughly
categorized according to three categories:

extraction,
analysis and
presentation.

Extraction tools include analyzers and data collection tools. Analytical tools perform
static and dynamic analyzes to support activities such as clustering, concept assignment,
feature identification, transformations, domain analysis, division, and metric calculations.
Presentation tools include code editors, browsers, hypertext, and visualizations.

It is best to use the integrated development environment (IDE) and its built-in application
add-ins, which combine common development tools into a single graphical user interface and
provide these features. However, if that’s not enough, we provide a brief overview of the
tools that help to understand. Rigi supports multiple views, cross-references, and bottom-up
comprehension queries. Reflection tool supports a top-down approach by generating and
validating hypotheses and helping to bridge the gap between source code and high-level
models.The Bauhaus tool has features to support clustering and concept analysis for software
architecture, software maintenance and program understanding. And Codecrawler is a search
tool specifically designed for use to search for source code. We can classify the mentioned
tools mainly in the category of analysis but also partially in the extraction.

2 Student and understanding of code

As the teaching of computer science expands, computer science teachers are encouraged to
help students develop an accurate understanding. Introductory programming courses are
challenging for students, and novices often show misconceptions that hamper their ability
to learn and make progress. Students should test and analyze their code to identify and
correct problems [8]. Here are some of the methods used to improve teaching: work by
learning and learning by example, live coding, gameplay and gamification, mentor support,
peer mentoring and programming, information and demonstration of bad practices leading
to technical debt [7].

We think that the key knowledge for a beginning student to learn to program is the ability
to solve programs, math skills, abstraction and creativity. A good knowledge of English
also forms a solid foundation, due to the great support of the community in the English
language, available material also in the form of videos, courses, forums but also English
keywords in programming languages. Beginning programmers have trouble understanding

M. Medvidova and J. Porubän 14:5

abstract concepts as real-life equivalents, the syntactic side of the language, and the actual
execution and debugging of the program. On the other hand, the main challenge for teachers
is to maintain motivation, relationship and choice of the right tools and language [11]. We
will need more new professionals in the field than will be produced next year. The need for
individuals in the field of informatics is expected to increase faster than the average of all
professions.

3 Source code analysis

Code quality is important because it affects the overall quality of the software. And quality
affects the extent to which your code base is secure, seamless, and reliable. When the code
is of low quality, it can pose security risks. If the software fails due to a security breach or
security flaw, the consequences can be catastrophic or even fatal, so high quality should be
the goal of the entire development process.

3.1 Most used code metrics

There is no specific way to measure code quality, but there are several metrics that can be
used to quantify code quality. Different teams may use different definitions and metrics based
on the context of their area [6]. Code that is considered good can mean one thing to a car
developer. And for a web application developer, that might mean something else. For this
reason, we explain what code quality is, how to improve code quality, what important code
quality metrics are, and how code quality tools can help, but we don’t list just one specific
procedure or metric. The chapter introduces the more well-known metrics used and their
value.

The most widely used and discussed metric for estimating project scope is the number of
lines of source code, referred to as LOC. It is currently used as a basis for other metrics and
is used to evaluate the size of a software system or the effort in writing code, but it depends
significantly on the programming language used. The basic premise is that the larger the
software system, the more difficult it will be to understand and maintain it. LOC is a size
metric, another simple alternative may be the number of functions. Halstead’s metrics link
metrics calculated from the line count and syntax elements of the program’s source code.

In addition to indicators for evaluating the volume of work on a project, indicators for
assessing its complexity are also very important for obtaining objective estimates for a project.
As a rule, these indicators cannot be calculated at the earliest stages of project work, as they
require at least a detailed design.

Cyclomatic complexity measures the number of linearly independent paths through the
program source code and is calculated using a program flow control graph. The graph nodes
correspond to the indivisible groups of program commands, and the leading edge connects
the two nodes if the second command could be executed immediately after the first command.
It can also be applied to individual functions, modules, methods or classes within a program.

Control flow metrics are a separate group of software metrics. These are based on the
assumption that the more complicated the management flow, the more complex the program.
The best known is the Chepin metric. The calculation is performed by analyzing the nature of
the use of variables from the input-output list and serves to determine the degree of difficulty
in understanding programs based on input and output data. The calculated weightings are
used to express the different effects on the complexity of each functional group’s program.

ICPEC 2022

14:6 Program Comprehension and Quality Experiments in Programming Education

3.2 Static code analysis
Static analysis is best described as a debugging method by automatically examining the
source code before running the program. The popularity of software quality analysis tools
has increased over the years, with special attention paid to tools that calculate technical
debt based on a set of rules, detect code odors, and usually also provide an estimate of the
time required to correct technical debt. Of course, this can also be achieved by manual code
checking. However, using automated tools is much more efficient.

There are many static analyzers on the market. Examples of some tools are CodeScene,
Clang Static Analyzer, SonarQube, DeepSource, OCLint, Embold, Klocwork, Coverity Scan,
Fortify Static Code Analyzer. Based on the above list of synthetic analyzers, SonarQube was
selected for research. It is suitable for evaluating programs taking into account the desired
metrics to be evaluated in this work at the same time is efficient and easy to use.It has a
paid and unpaid version, which we used for our needs.

4 Study design

In designing the empirical study, we identified the key variables to be measured during the
study, the appropriate subject population for the study, and the reference tasks [5]. These
steps will be described in more detail in this section. We used the most suitable tool selected
in 3.2 and then evaluated all the collected data.

4.1 Division of the study
The study is divided into empirical and analytical parts using different methods. In the
analytics, student codes will be examined and measured using quality metrics for one and
the same task. The course of research will be divided into 2 main parts, namely the data
collection before and after the introductory course. With regard to the above division,
research questions will also differ. In the first part, we cannot generalize students’ knowledge
of a specific programming language, as everyone underwent a different teaching in high school.
Therefore, there will be general questions in order to determine the level of the student’s
understanding of the code using the proposed code as a story method. In both stages, the
participant will be measured the time from the display of the question to his answer using
the programmed form in Google Apps Script. The second part of the study will be carried
out after the completion of Basics of Algorithmization and Programming course, so it is
assumed that students’ knowledge should be unified. In this introductory course, the aim is
to acquire basic knowledge and skills of programs in procedural language C. Questions will
therefore use programming language C.

4.2 Studied population
One of the goals of our study is to find out how students perform activities related to
understanding the program. The research was focused on full-time students of the introductory
course Fundamentals of Algorithmization and Programming at the Technical University in
Kosice in the academic year 2021/2022, who were given the opportunity to answer questions
electronically at the beginning and end of the course. The majority of participants are
18-20 years of Slovak nationality with a predominant male gender. The course has more
than 400 participants every year. Although everyone was contacted, in the first stage, the
form was completed by only 27 students. In the second stage, only the participants of
the first were contacted, but we received feedback from the survey from 7 students. The

M. Medvidova and J. Porubän 14:7

researched codes are available from 19 students participating in the first series of studies. In
the study, the response rate was 7 percent in the first and 26 percent in the second phase of
the questionnaire, so the number of people who responded to the survey was divided by the
number of people in the sample. We attribute the low level of response to the lack of interest
of students in the researched topic and no obligation to fill in the questionnaire.

4.3 Research questions
The purpose of this study is to examine the relationship of understanding the code of
early programmers before and after the introductory course and the correlation of study
performance in programming among first-year students of the Technical University who
attended the Basics of Algorithmization and Programming. In view of the above objectives,
we have identified the following research questions:
1. What are the students’ abilities in understanding the programs?
2. Is there a difference in students’ understanding of the code before and after the introductory

course?
3. Are there any relationships between the ability to understand the code and the learning

performance in the introductory programming course?

4.4 Proposed experimental method “code as a story” and
demonstration of its use in research

When designing the study, we solved one fundamental problem, and that was how to examine
the understanding of code in a group with different knowledge. First-year students come
with different academic training. Some have not even encountered programming yet. An
experimental method has been proposed in which the code is presented as a story. It focuses
on comprehension of the text, memorization, attention and detail. The text was categorized
on the basis of programming properties and relationships to individual groups and represented
as a text game called “Peter’s Friday”. The identified categories were condition (problem
with nested if-else-if, switch logic problem), cycle (for cycle, while - do cycle), bits operations
(AND, OR), fields and pointers. The “code as a story” method used is based on using
real-life situations or their simulations in connection with programming turns and focusing
the content of the story on the researched population.

The whole story begins with the student’s introduction to the story and the first question
whether the main character Peter will take an umbrella when the logical condition is
formulated: “ in the weather at the FM station they said that it would be rainless in the
afternoon or my mother warned me that it would rain all day from nine, I will take the
umbrella anyway ”. This part is focused on bit operations AND and OR, the student must
be aware of this and correctly evaluate the statement. When evaluating the whole expression,
it is found that the statement takes the value 1 and therefore the correct answer should be
YES.

The problem with the nested condition “if-else-if” where the goal is for the student to
correctly identify two situations that are “game changer” and evaluate what outputs can
arise from situation. It can help students to compile a flowchart to find out that there can
be only 2 situations. The third question falls into the category of pointers that we simulated
with a finger pointing situation. The array category is represented by the fourth part of
the story. Specifically, it focuses on going through them from beginning to end and vice
versa and thus the sequence of elements in the field. In our story, the field represents a dryer
and things hung on it. The student must be aware of the sequence of things on the dryer
(sequence of elements in the field) and based on that determine whether the chosen things
are correct.

ICPEC 2022

14:8 Program Comprehension and Quality Experiments in Programming Education

The fifth task is focused on understanding the main condition of the cycle. The logic of
this snippet can also be understood as a while-do loop. There is a catch there, the condition
states “yellow building on the right”, while the text ends that Peter saw “yellow building on
the left”. The next passage contains a reference to the SWITCH construct. So the condition
can be understood, depending on what beer I order, I pay so much for three pieces. The
story states that Peter ordered a dark beer, which means that the correct answer is 7.5
euros. The last question and its text bridge to the “for” cycle, where we know the exact
number of repetitions in advance and also to remember the information about the price
of the product mentioned in the previous question. Determines whether the student can
identify the specified number of repetitions.

4.5 Data collection
We decided to conduct the research online using a form, taking into account culminating
wave of the COVID pandemic at the time of the research. A questionnaire programmed
with Google Apps Script was used. It was advisable to have the time of each student’s
response recorded, and no free software met this condition. Completing the questionnaire
online was quick, easy, participants just needed to write the answers in the appropriate field.
The answers were automatically stored in a clear table in a file, which was then used to
evaluate the research. In the report, we simply see the time needed to understand each task.
Significant differences were excluded from the responses examined. Based on time, we ruled
out answers to one question in less than 10 seconds and longer than 30 minutes.

5 Summary of results

An important step in the survey was to map the current state of knowledge of students’ code
with the intention of subsequent analysis of their codes for the same assignment. In this part,
the collected data from the empirical and analytical part are represented.

5.1 Evaluation of questionnaire research
The total number of participants was 27, the first part deals with the evaluation of their
understanding of the program using the story structure of the code and then, the second
paragraph, evaluates the data from the form with the same categories submitted in C.

5.1.1 The first series before completing the course
The questionnaire was filled in on 26.10. - 16.11.2021. After analyzing the first ten answers,
we decided to ask question number 2 differently, because we found that the analysis focused
on the knowledge of determining the probability and not the “if-else-if” condition. A modified
version of this question finds out the number of different paths, the original wanted to know
the percentage of probability of the described situation. Following the change in wording
helped to increase the success by 6 times. Questions from the field categories, the “switch”
and the “loop for” have the most correct answers, while the least from the “while-do” and
pointers have the most correct answers. Students answered the longest question in part of
the fields, averaging 305 seconds, which is about 5 minutes, and the shortest, only an average
of 46 seconds, a question from the “for cycle” category. For a better idea of what story form
of the questionnaire looked like, we offer a sample question. The logic of this passage can
be understood as a while-do loop with a focus on understanding the main condition of the

M. Medvidova and J. Porubän 14:9

loop. There is also a catch, the condition states “yellow building on the right”, while the text
ends that Peter saw “yellow building on the left”. Thus, the condition for ending the cycle
was not met and main character of story, Peter, had to continue straight on, still moving
10 meters, and so the student has to identify whether the specified minimum number of
cycle repetitions is correct or not. According to story example below, the correct answer is
yes, Peter walked more than 65 meters. It is necessary to think that the questionnaire was
designed to gradually introduce the student to the story and therefore, this sample is torn
from the story.

When he finally manages to find one of his T-shirts, he sets off. He and his friend
Michael have long ago agreed that they will go for a beer, but since Michael did not
remember the exact name of the company they were going to, he only gave Peter a
description of the route and the name of the stop he is to get off: “When you leave
the stop straight until you find the yellow building on the right and then immediately
turn left.” Each building is exactly ten meters away from the next, and the distance
between the stop and the first building is exactly ten meters. Pete walked past the
five buildings and began to doubt that Michael was really remembering the way when
he suddenly noticed the first yellow building on the left. After a while, he finally got
to the business Michael was telling him about, and he looked angrily at the distance
traveled on his watch. Did Peter walk more than 65 meters from the stop until he
finally found the yellow building? (Yes/No)

The research shows the expected results. Simpler concepts such as fields or cycles have
a success rate of 80 percent or more with a smaller average response time. On the other
hand, the concept of pointers or bit operations has a success rate of 60 percent or less with
an average time of 100 seconds or more. A total of five students out of 27 answered all the
questions correctly. The relatively simple concept of “if-else-if” remains an unexpected result,
where the observed increase in success from 10 percent to more than 60 percent is still a
relatively small ratio, and its value ranks among the less frequently answered categories of
questions.

Data from the point of view of individual questions were evaluated above. Figure no. 1
shows the success rate of each student and the total response time. Significant differences in
overall time are visible and it cannot be said unequivocally that completion time plays a
role in success. The best results using the experimental method are shown by students s13
and s17, who completed the form in 10 minutes and at the same time achieved 100 percent
success.

5.1.2 The second series after completing the course
The second series was attended by 7 students, namely students with numbers s2, s9, s10,
s13, s18, s25 and s26. The form was filled in on 03.02. - 14.02.2022. The percentage of
correct answers was 100 percent only for a question from the field category and, conversely,
the success rate of 70 percent was achieved by questions from the categories of both cycles.
Students answered the longest question in the section of cycles and the switch, namely an
average of 2.5 minutes and the shortest, only an average of 48 seconds to a question from
the category of the cycle “if-else-if”.

The average time to complete the questionnaire is around 10 minutes, up to a significantly
higher value of student s25 with a completion time of 28 minutes. Students s9, s13 and s17,
who completed the form in 9 minutes and achieved 100 percent success, show the best results
using the C code output method. Students with these numbers also achieved 100 percent

ICPEC 2022

14:10 Program Comprehension and Quality Experiments in Programming Education

Figure 1 The success rate of each student and the total time to respond.

success in the first stage. The student with the number s2 with 57 percent achieved the
lowest success rate from the monitored sample. The participant with serial numbers s25 has
the worst ratio between the length of answers and the overall success rate. Below is a sample
code in one of the questions and we want from students to enter the output of the program.

int main (){
int a = 6;
int b = -1;
while (b < 2) {

if (a <= 10) {
a = a + 4;

}
else {

a = a - 10;
}
printf ("%d, ", a);
b = b + 1;

}
return 0;

}

5.2 Static analysis of student code quality
An analysis of the codes of the students involved in the research was performed on submitted
codes from one of the assignments, so they all wrote program for the same problem. The
results show that student s12 achieved the highest cognitive complexity 48 and the lowest
student s25 only 18. Student s21 had the highest cyclomatic complexity and the lowest
again s25. Except for students s16 and s24, they all have a cognitive complexity higher than
cyclomatic. In the examined sample, the average cognitive complexity was 34 and cyclomatic
30.Student s11 has the highest number of comments 34.4 percent. Of course, there are also
students like s24, s5 and s4 who have no comments. Although student s13 has only 129 lines,
his number of logical lines is 108, which is the smallest difference between the values. The
lowest number of LOCs is s25, which may be why it achieved the lowest cyclomatic and
cognitive complexity.

M. Medvidova and J. Porubän 14:11

Regarding the number of errors, we observe only four students who recorded 1 to 3 errors.
These were errors performing arithmetic and logical operations with uninitialized variables.
The number of odors in the code is interesting. Student s11 has the highest number, namely
29, and participant s3 has the lowest number of odors 3. This is a significant disparity
between students. Student s3 performed best with 0 errors, odors 6 and the lowest technical
debt 0.7 percent. Given the achieved LOCs numbers, we observe a very high incidence
of odors on disproportionately small programs. The technical debt ranges from 30 to 150
minutes. All students achieve very well the results of technical debt repair within 1 or 2
hours.

Based on these data, we can evaluate that students in the first year of the introductory
course of the Technical University best understand the logical turnover of fields, switches
and bit operation evaluation, on the contrary, they understand the cycle and pointer the
least. The students who did the worst in the form sections (s2, s10, s18, s15 and s22) did
not fulfill the selected assignment from the course and therefore we could not examine their
codes, which they never submitted. It is also possible to note that the nominees had one of
the worst successes in the experimental method and the results were confirmed after the end
of the course using a validated C output determination procedure. Comparing static code
analysis with success in measuring code comprehension yields interesting data. We believe
that if the students who did the worst in the empirical part submitted the assignments, they
would be evaluated poorly in code quality and we can also say that the ability to program
the assignment may be related to understanding results, as the worst participants by research
did not submit the assignment. Furthermore, students with numbers s1, s11, s14 and s25,
whose codes also have a high degree of complexity, errors and technical debt ratio, show the
worst results of the submitted assignments in the odor number metric. These participants
have an average ability to understand the code.

6 Conclusion

An experimental “code as a story” method was designed and used, and data from 27 students
from two stages of research were processed. Finally, 19 student assignments underwent a static
analysis. The biggest problem was the low turnout, but mapping this process provided some
interesting insights. Research shows that more than half of students incorrectly answered
one or more questions about the implementation of basic programs and the associated
understanding of the code. There is a slight improvement for participants who have also
completed the second stage of the forms after completing the course. Less than half of the
students were able to answer trivial questions, and in interviews with them we found out
that they knew the programming terms used to program the assignment, but had trouble
determining the output of the program shown, so they did not understand the code. In static
code analysis, we observe a correlation in bad results and non-submission. With average and
above-average results in the empirical part, students have a lot of odors in the code. In 68
percent of students, 10 or more odors were identified, which is an average of LOC 137 for
every 10 lines of code. The most common odors were spaghetti code, empty-body functions
and methods, never used but defined variables, extremely short naming. The highest number
of odors was 29 and the lowest 3. This is a significant disparity between students. We observe
the appropriate use of the acquired knowledge in the possibility of improving the teaching of
introductory programming courses. The path is in the integration of coding standards when
passing mandatory fields. Using a coding standard is one of the best ways to ensure good
code quality. The coding standard ensures that everyone uses the right style. It improves

ICPEC 2022

14:12 Program Comprehension and Quality Experiments in Programming Education

consistency and readability, and this is the key to reducing complexity and improving quality.
We recommend that students complete a text story in the first days of study to identify
weaker course participants and then draw more attention to their shortcomings in order to
avoid failure in the exam or credit in this subject. We see an opportunity to continue our
studies, but a larger sample of students will be needed.

References
1 Rodney A Brooks. Planning collision-free motions for pick-and-place operations. The

International Journal of Robotics Research, 2(4):19–44, 1983.
2 Malcolm Corney, Donna Teague, Alireza Ahadi, and Raymond Lister. Some empirical results

for neo-piagetian reasoning in novice programmers and the relationship to code explanation
questions. In Proceedings of the fourteenth australasian computing education conference, volume
123, pages 77–86, 2012.

3 Rosemary T Cunningham. The effects of debt burden on economic growth in heavily indebted
developing nations. Journal of economic development, 18(1):115–126, 1993.

4 Françoise Détienne. Software design–cognitive aspect. Springer Science & Business Media,
2001.

5 Massimiliano Di Penta, RE Kurt Stirewalt, and Eileen Kraemer. Designing your next empirical
study on program comprehension. In 15th IEEE International Conference on Program
Comprehension (ICPC’07), pages 281–285. IEEE, 2007.

6 Amy J Ko and Bob Uttl. Individual differences in program comprehension strategies
in unfamiliar programming systems. In 11th IEEE International Workshop on Program
Comprehension, 2003., pages 175–184. IEEE, 2003.

7 Raymond Lister, Elizabeth S Adams, Sue Fitzgerald, William Fone, John Hamer, Morten
Lindholm, Robert McCartney, Jan Erik Moström, Kate Sanders, Otto Seppälä, et al. A
multi-national study of reading and tracing skills in novice programmers. ACM SIGCSE
Bulletin, 36(4):119–150, 2004.

8 Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne Hagan, Yifat
Ben-David Kolikant, Cary Laxer, Lynda Thomas, Ian Utting, and Tadeusz Wilusz. A multi-
national, multi-institutional study of assessment of programming skills of first-year cs students.
In Working group reports from ITiCSE on Innovation and technology in computer science
education, pages 125–180. ACM, 2001.

9 Rodrigo Pessoa Medeiros, Geber Lisboa Ramalho, and Taciana Pontual Falcão. A systematic
literature review on teaching and learning introductory programming in higher education.
IEEE Transactions on Education, 62(2):77–90, 2018.

10 Nancy Pennington. Stimulus structures and mental representations in expert comprehension
of computer programs. Cognitive psychology, 19(3):295–341, 1987.

11 Yizhou Qian and James D Lehman. Correlates of success in introductory programming: A
study with middle school students. Journal of Education and Learning, 5(2):73–83, 2016.

12 Elliot Soloway and Kate Ehrlich. Empirical studies of programming knowledge. IEEE
Transactions on software engineering, 5:595–609, 1984.

	p000-Frontmatter
	Preface

	p001-CostaNeto
	1 Introduction
	2 Background and Previous Work
	2.1 Lecture and Preliminary Study

	3 Value-Focused Thinking
	3.1 Definition of Values
	3.2 Gathering of Objectives
	3.3 Construction of Alternatives

	4 Application of Value-Focused Thinking
	4.1 Values and Context
	4.2 Objectives
	4.3 Alternatives

	5 Structure of the Survey
	5.1 Personal Data
	5.2 Background and Projections in Computer Programming
	5.3 Affinity to Different Programming Language Characteristics
	5.4 Expected Statistical Results
	5.5 Feedback and Validation

	6 Conclusion

	p002-Alfredo
	1 Introduction
	2 Related work
	3 Control-flow analysis
	4 Sprinter
	5 Conclusions

	p003-Dewes
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Literature Review
	3.2 Expert-Interviews
	3.3 Role Research
	3.4 Game Research
	3.5 Skillset Mapping

	4 Results
	4.1 Ontology
	4.2 Industrial Role and IT security Skill Collection
	4.3 Game Collection
	4.4 Game/Role Mapping

	5 Discussion
	5.1 Discussion on Literature Review
	5.2 Discussion on Ontology
	5.3 Discussion on the Mapping Process

	6 Conclusion
	A Appendix

	p004-Rodrigues
	1 Introduction
	2 Previous Studies
	3 Research Questions
	4 Method
	4.1 Search Strategy
	4.2 Database
	4.3 Selection Criteria
	4.3.1 Inclusion Criteria
	4.3.2 Exclusion Criteria
	4.3.3 Selecting Studies
	4.3.4 Data Classification

	5 Results
	5.1 Identity of the Introductory Programming discipline (Q1)
	5.2 Technical and Social Skills (Q2)
	5.3 Methodologies, Tools, Languages and Programming Paradigms(Q3)

	6 Conclusion
	7 Limitation of Our Systematic Review

	p005-Bayzid
	p006-Zhao
	1 Introduction
	2 Related work
	3 Method
	4 Game design
	4.1 Baseline – the Game prototype
	4.2 First design iteration
	4.2.1 Digital platform
	4.2.2 Player-vs-environment game mode
	4.2.3 Attack scenarios
	4.2.4 Evaluation of first design iteration

	4.3 Second design iteration
	4.3.1 Design changes in second design iteration
	4.3.2 Evaluation of second design iteration

	5 Result and analysis
	5.1 Growth of success rate
	5.2 Average number of attempts and duration to complete each scenario

	6 Conclusion and future work

	p007-Szydlowska
	1 Introduction
	2 Background and Related Work
	3 Challenging Topics in an Introductory Python course
	3.1 Structure and Contents of the Exercise Set
	3.2 Topics' Difficulty According to Students' Effort and Progress

	4 Discussion
	5 Conclusion

	p008-Hak
	1 Introduction
	2 Background
	3 Course Structure
	3.1 EMIS Scope
	3.2 DEDMS Curricular Unit

	4 Results
	4.1 Materials and Methods
	4.2 Findings

	5 Conclusion

	p009-Carrillo
	1 Introduction
	2 Related work
	3 JuezLTI
	3.1 General overview
	3.2 Exercise resolution
	3.3 Evaluation
	3.4 Feedback
	3.5 Interoperability

	4 Conclusion

	p010-Queiros
	1 Introduction
	2 UI testing approaches
	2.1 Manual testing
	2.2 Record-and-Playback Testing
	2.3 Keyword/Data-Driven Testing

	3 WebPuppet
	3.1 The Editor
	3.2 The Engine

	4 UI testing scenario
	5 Conclusion

	p011-Pinto
	1 Introduction
	2 Gamification in programming learning
	3 Methodology Adopted
	4 Results and Discussion
	5 Conclusion and Future Work

	p012-Leal
	1 Introduction
	2 State of the Art
	2.1 IMS Learning Tools Interoperability (LTI) specification
	2.2 LTI implementation tools

	3 LTI roadmap – design goals and milestones
	3.1 Entrance
	3.2 Content
	3.3 Feedback

	4 LTI Adaptation Example
	4.1 Configuration
	4.1.1 Tool Consumer (LMS)
	4.1.2 Tool Provider (external tool)

	4.2 Agni Web Playground
	4.2.1 Entrance – Leaderboard generation
	4.2.2 Content – Exercise sheet launching
	4.2.3 Feedback – Scores submission

	4.3 Authorkit

	5 Conclusion

	p013-Terroso
	1 Introduction
	2 Creative coding
	3 p5.js
	4 Course design
	4.1 Assessment

	5 Preliminary results
	6 Conclusion and Future Work

	p014-Medvidova
	1 Summary of basic information about the program comprehension
	1.1 Models of understanding of program
	1.2 Complications in understanding the program
	1.2.1 Code smells
	1.2.2 Technical debt

	1.3 Code comprehension measurement concepts
	1.4 Approaches to improve the comprehensibility of existing code
	1.5 Tools helping to understand programs

	2 Student and understanding of code
	3 Source code analysis
	3.1 Most used code metrics
	3.2 Static code analysis

	4 Study design
	4.1 Division of the study
	4.2 Studied population
	4.3 Research questions
	4.4 Proposed experimental method ``code as a story'' and demonstration of its use in research
	4.5 Data collection

	5 Summary of results
	5.1 Evaluation of questionnaire research
	5.1.1 The first series before completing the course
	5.1.2 The second series after completing the course

	5.2 Static analysis of student code quality

	6 Conclusion

