Programming for Non-Programmers: An Approach
Using Creative Coding in Higher Education

Teresa Terroso &
uniMAD — ESMAD, Polytechnic of Porto, Portugal

Mario Pinto &
uniMAD — ESMAD, Polytechnic of Porto, Portugal

——— Abstract

Learning how to program can be a cumbersome task even for students who enroll in courses in the
Computer Science field. It is well documented that computer programming courses have high failure
rates and high drop out. Even at the initial stage of computer introduction courses, novice students
often reveal difficulties and strong reactions to this subject. However, computer programming has
been recognized as an essential skill and a necessary element in education in many different areas.
This work reflects on the experience provided by teaching a Creative Programming course, being
held as part of a Master’s degree curriculum in School of Media Arts and Design (ESMAD), at
Polytechnic of Porto (P.PORTO), in Portugal. The students’ background is not uniform, therefore
pedagogical learning strategies had to be adapted to these multidisciplinary backgrounds to foster
student attention and interest, as well as being able to achieve the goals of teaching the fundamentals
of computer programming. This article reflects on the strategies to teach programming for non-
informatics: drifting from the traditional functional way, like developing a program or product
to solve a problem, to the usage of creative coding and generate interactive animations, while
simultaneously achieving the ambitious goals of learning programming concepts and paradigms.

2012 ACM Subject Classification Computing methodologies; Applied computing — Computer-
managed instruction

Keywords and phrases creative coding, programming learning, teaching methodologies, higher
education, visual applications, interactive graphics, open-source tools

Digital Object Identifier 10.4230/0ASIcs.ICPEC.2022.13

1 Introduction

It is well known that many students have difficulties in learning computer programming since
it is a complex activity, requires a lot of practice, and traditional teaching approaches have
not been able to respond effectively [12, 4, 1, 10].

Different reasons are enumerated and can be arranged into five major groups: teach-
ing methodologies (non-personalized methods, static materials for dynamic programming
concepts, more focus on teaching a programming language rather than promoting problem-
solving), study methods (rather than practice intensively, students focus on reading books or
watching tutorials and memorize formulas or procedures), student’s abilities (generic lack of
problem understanding, relating knowledge and infer a solution), the nature of programming
(abstract concepts and complex syntactic details of many programming languages) and
psychological effects (usually taught at the beginning of a higher education course and
negative connotation associated with programming).

The high dropout and failure rates in introductory programming courses are a universal
problem that motivated many researchers to propose methodologies and tools to help students:
game design and development, programmable physical /tangible tools, project-based learning,
gamification, automatic code evaluation systems, and so on [7, 10].

© Teresa Terroso and Méario Pinto;

37 licensed under Creative Commons License CC-BY 4.0
Third International Computer Programming Education Conference (ICPEC 2022).
Editors: Alberto Simdes and Joao Carlos Silva; Article No. 13; pp. 13:1-13:8

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:teresaterroso@esmad.ipp.pt
https://orcid.org/0000-0003-0224-8301
mailto:mariopinto@esmad.ipp.pt
https://orcid.org/0000-0002-6734-5797
https://doi.org/10.4230/OASIcs.ICPEC.2022.13
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

13:2

Programming for Non-Programmers

Although these approaches may motivate students to learn to program, most are oriented
to computer science programs and thus special attention must be taken to students with
different academic profiles and/or professional backgrounds. Creative coding as been already
discussed in some works as an additional approach concerning computer science education,
therefore this work contributes to the topic by providing further data supporting that it can
be an additional path in teaching the basics of computer programming.

2 Creative coding

Creative and problem-solving competencies are part of the so-called 21st-century skills and
are considered crucial to succeed nowadays [14]. Everyone, not just students who major in
computer science, can benefit from thinking like a computer scientist.

As stated in [3], creativity is “the tendency to generate or recognize ideas, alternatives,
or possibilities that may be useful in solving problems, communicating with others, and
entertaining ourselves and others”. By extension, creative coding can be understood as a
type of programming where students can use the computer to produce visual animations to
self-express themselves rather than focus on functionality. As learning computer programming
often emphasizes technical detail over creative potential, creative coding supports increasing
fluency with computational thinking, build upon creativity, imagination, and students’
personal interests. According to [8], computer technology “is not a tool; it is a new material
for expression”. This intersection between arts and technology has received attention in both
professional and educational fields [9, 6]. New art forms are being developed through the
medium of code daily, and the creative coding community is growing rapidly.

Creative coding, as a programming practice geared towards artistic content production,
has already been found effective in learning computer programming [5, 15, 2]. This work can
be placed together within diverse efforts for introducing programming in an artistic manner
to students, beyond the engineering perspective.

This work reflects on the findings from teaching a one semester-long Creative Programming
course, taught on the first year of a Master degree in Interactive Media and Systems at
ESMAD, P.PORTO. The main goal of this course is to teach the elementary concepts
of computer programming applied to the different contexts of multimedia digital arts, by
presenting a creative programming language as a tool for artistic expression. At the end
students should be able to design and produce programs for the generation of audiovisual
content for performances, multimedia installations, or web applications. Most of its students
do not have an inherent affinity towards programming. As a course in a master degree, the
classes are composed by students with very different educational or professional backgrounds:
from artists to designers, from physiotherapists to multimedia students. Traditional ways of
teaching programming (lectures combined with exercises, assessed by only one project and a
final exam) had been tried, but students found that it was hard for them to build the link
between theory and practice. Students are often eager to put the just learned knowledge
into practice, if not immediately, at least as quickly as possible. Most of them have passion
in visual designs so, they would like to see immediately their creations “move”. The followed
approach focused less on manipulating and interacting with numerical or text data but more
on digital animations (from building graphics, to audio or video manipulation), that have
been found to be at their interests as young adults and also making them more amenable to
a heterogeneous environment audience.

To attend the course no programming experience is required. However, students should
be comfortable using a computer, to perform simple tasks like installing applications and
working with files. Within the efforts of creating and expressing themselves through digital



T. Terroso and M. Pinto

media are the building blocks for introducing the essentials of programming. Over the
semester, with a total of 30 contact hours, students develop a portfolio of digital animations
using P5.js (an interpretation of Processing written in JavaScript) and employing basic
computing structures typically taught in traditional Computer Science courses.

3 pbjs

Different creative tools (like Processing or p5.js) have been integrated into the curriculum
of several education institutes, since they foster experimentation and enable the use of
computation to express ideas with visually engaging sketches or interactive installations. An
extensive list of curated tools and other resources for creative coding can be found in [13]
and table 1 summarizes some of the most found in literature regarding creative coding.

Table 1 Tools for Creative Coding.

Frameworks for desktop development

Language Mainly used for
Processing Java General purpose (IDE for visual arts)
OpenFrameworks C++ General purpose (no IDE, toolkit for creative coding)
Cinder C++ Professional-quality creative coding (uses OpenGL)
Libraries for web development
Language Mainly used for
p5.js JavaScript General purpose (alternative for Processing)

three.js JavaScript 3D graphics (simplifies working with WebGL)
Paper.js JavaScript Vector graphics scripting

In the course presented in this work, the visual programming tool is p5.js, a JavaScript
library, as a web-based alternative to Processing, but with the same goal of making coding
accessible for artists, designers, and overall beginners.

Processing was created in 2001 as a language for teaching art students how to program
and to give an easier way to work with graphics to a more technical audience. P5.js emerged
as a more accessible version, but still adhering to the syntax and conventions of Processing.
Open-source and with a strong community of contributors, p5.js has capitalized on the
web browsers’ features and ubiquity. Compared to plain JavaScript, p5.js provides a more
readable and clean code, making it easier to work with the Canvas HTML element and
implement frame-by-frame animations, Table 2.

Table 2 Code snippets to illustrate some differences between plain JavaScript and p5.js.

Drawing a circle Frame animation
Plain JavaScript p5.js Plain JavaScript p5.js
c.beginPath(); circle(x,y,r); || function draw() { function draw(){
c.arc(x,y,r,0,2*Math.PI); /*some code*/ /*some code*/
c.closePath(); requestAnimationFrame(draw); | }
}
draw();

For students who are learning how to program, p5.js provides encouragement and motiv-
ation with the immediate visual feedback. P5.js adds custom features related to graphics
and interaction and provides easier access to native HTML5 features already supported by

13:3

ICPEC 2022



13:4

Programming for Non-Programmers

the browser. Several libraries extend pb5.js even further, like DOM manipulation, webcam
capture, image/sound processing and so on. Experimenting is made easier as there is an
online editor! available on their website, allowing for a quick start to the library.

Choosing between Processing and p5.js was not difficult, even with the shortlist of
bibliography or online examples. Having to choose between Java (Processing) and JavaScript
(p5.js) as the base programming language, the choice fell towards the latter as its dynamic
language features, and ability to merge functional and object-oriented programming techniques
make it particularly well suited to exploratory creative practice. It has also been identified
as an excellent language for introducing computer science students to programming [11].

P5.js follows the concept of sketching as its programming method, where it basically
consists of quickly throwing 2D and 3D graphics for rapid prototyping of a dynamic visual
work, similar to how drawn sketches are created by artists. This contrasts with the standard
and disciplinary approach of software engineering for software development where first
specifications are created, then implemented and evaluated. Despite its easiness to start to
work with, it is a full-featured library capable of rendering stunning graphics and animations,
using a simplified syntax and graphics programming model.

4 Course design

The course presented in this work consists of the following topics, for the total duration of
one semester:

Course Introduction Introduction to Computing: structure, logic, syntax and algorithms.
What is creative computing? Historical context, artistic references and examples.

Drawing primitives 2D and 3D coordinate systems. Simple shapes: points, lines, shapes,
curves, text, images and 3D objects. Drawing and styling.

Control structures Variables and data types, operators, expressions, conditionals and loops.

User interaction Mouse and keyboard events, basic animation.

Functions Procedural abstraction, declaration and invocation of functions, parameters and
return values.

Arrays and Objects Introduction to arrays, lists and indexing. Object-Oriented Program-
ming (OOP): objects and classes.

Mathematics and Physics Basic trigonometry, direction, oscillation, acceleration, inertia
and friction.

Creative coding examples Transformations, iteration and randomization.

Each topic was structured around 1-2 weeks of lectures and exercises, complemented with
creative coding extra-class assignments. Although the textbook contents and topics ordering
follows more or less the same as traditional introductory computer programming courses,
the key concepts are most of the times driven by the assignments themselves or appear as
tools to respond to the students’ wanderings 'what if we would like to...7".

During classes, the explanation of programming concepts is supported using visual
graphics, Figure 1. In experience gained from teaching this course, it was found that using
program visualization techniques helps grab the students’ attention and support learning key
programming concepts. Examples taught in classes serve as entry point to analyze the logic,
decompose the algorithm within, or spotting for patterns or similarities. Exercises usually

! https://editor.p5js.org/


https://editor.p5js.org/

T. Terroso and M. Pinto

have an inspiration as starting point, were students are challenged to experiment and create
something new, or debug to find and fix errors or even to collaborate by working together
to find a solution. Some researches have demonstrated the impact of visual programming
tools in upgrading pass rates and overall improvement when compared with other teaching
interventions to facilitate student learning like taking an intensive preliminary training course
or workshop, [7]. Like many, and from early on, the professors of this course were faced with
problems aroused from the fact that students enter the Master degree with widely different
experience levels with key course topics. If the material is covered too slowly, those with
greater experience get bored and lose interest. If the material is covered too quickly, those
with less experience get lost and feel incompetent. That led them to promote participation
in short introductory programming courses, available for free in various e-learning platforms,
targeting students with little or no background in programming. This intervention is still in
practice today but can be improved since it is not to mandatory and the professors cannot
control the course contents, acting only as curators in the selection of courses.

@000 0 s
D900 00 e o o+ -

=

(X}
@
TMP>CHNC X

FEEEEEN
(X I X )
STE e

[ TX )

..
)
.
0 ®
@0
.
<X 0= X

TTLLL
@
{ ]

EEEEEEE ==
EEEEERE GRS
EEEEEEE"

EEEEEERTSE
EEEEEEE
o@

[ ]

®

. @ e @0
e® O

L ]

<

]
pele)

Figure 1 Examples presented during classes to visually demonstrate key programming concepts
like loops, conditionals and operators. Top to bottom, left to right, from the simplest static sketch
(no loop iterations and no conditionals) to showcasing different variations, by gradually introducing
loops, nested-loops, conditionals, user inputs and animations.

Based on this work experience, the usage of media computation (mostly computer graphics,
but also including image or sound processing), the foundation of creative programming, gave
the students a context in which they already find the computers useful, which combined
with open-ended exercises and assessments provided creative activities and restrained the
stereotypes of computing as boring and anti-social, Figure 2.

Over the course of a semester, students are encouraged to develop further and share
their sketches (in our school’s learning management system or on public websites like
openprocessing.org), so they can learn from each other’s work.

4.1 Assessment

Students are asked to develop two projects during the course. The first project, developed
individually, focus on simple and short 2D animations, using functional programming, where
the theme is set by the professor, Figure 3. The second is a collaborative project with another
course of the master’s degree, Interfaces and Interaction Design, and it is developed in small
groups (2 to 3 students). In this last project, students develop an interactive installation
or application on a topic chosen by them, with a mandatory requirement of using OOP. In

13:5

ICPEC 2022



13:6

Programming for Non-Programmers

Tocando... clica para pausar

Figure 2 Examples of computer art techniques: from left to right, virtual brushes, recursive
structures, sound visualization, pixel art.

this sense, students must develop an intuitive interface (with the input of user information
through a camera or computer user interfaces, like mouse or keyboard) and/or tangible
(through the Arduino micro-controller) for the public to be able to generate and manipulate
audiovisual content. The format of the projects may vary from web applications, to 2D or
3D games or artistic installations, Figure 4.

3 .: m |RAD
ol =
(™) 1A|C) MV

Figure 3 Project 1 example: creation of an animated logotype for one of our school’s annual
event, the Mad Game Jam.

Piano
Vlrku?l

Figure 4 Work examples for Project 2: from left to right, 3D game (player controlled by body
movement), virtual piano (audio and visuals controlled by hand movement), web music player
(visuals controlled by sound samples).

Assessment of the students includes traditional instruments such as critiques and present-
ations. The critique process comes out of the classroom, where student work is assessed
primarily through discussions including both technical aspects of the projects, such as a
review of the source code, and also basic aesthetic issues. During final presentations, students
are asked to perform auto- and hetero-evaluations.



T. Terroso and M. Pinto

5 Preliminary results

In the past three editions of this course, from a total of 39 enrolled students, only 6 dropped-
out. From the remaining 33 students, only 4 (little more than 12%) had some previous
knowledge about computer programming. All students were asked to answer a small survey
about their findings, but only the students that completed the course answered, gathering
a total of 16 responses (about 48%). No extensive statistical data analysis is presented in
time for this work, since the surveys have suffered some alterations from year to year and
the sample size is relatively small. However, some observations can be pointed out from the
students’ answers:

Course rating Students’ were asked to grade the course on a 1 to 5 scale, with 1 as “it
did not meet my expectations at all”, 3 equals “it met my expectations” and 5 as “it
exceeded all my expectations”. The average rating was 3.75, having increased when the
course assessment has shifted from individual tests (with theoretical questions and small
practical exercises) and one group project, to two projects (one individual and the other
developed in small groups).

Main strengths Some of the students’ answers included “Learn to make generative art, and
give yourself freedom with code”, “Learning creative programming allowed me to start
exploring areas that I had no knowledge of until now” and “I found myself entertained
with some of the homework exercises because it was fun”. 78% of students responded
very favorably to the context of art when learning how to program and 43% of those
claimed to spend extra time on assignments because they enjoyed it. Not so significantly,
but a few students stated that the course instilled in them the desire to further explore
the area of programming.

Main weaknesses A significant percentage of students (around 87%) pointed out the reduced
in-class time to consolidate concepts and a few would have liked to explore some topics
more in-depth. 24% of the respondents, even with the online course taken at the beginning,
still struggled with the programming basics and “ended up confusing everything”.

6 Conclusion and Future Work

The work presented in this paper reflects the usage of creative coding in Higher Education, as
a way to overcome the difficulties of learning how to program, especially in classes that have
different learning backgrounds, therefore fostering their interest and demystifying some of the
negative connotations associated with programming. Creative coding can act as an approach
to minimize the issues of code illiteracy and provide the tools for empowerment in this digital
era. As a way to create art through code, creative coding can also be understood as a path
for learning programming through creative projects. Therefore, it can be encouraged as
a teaching tool, as a new way for exploration, computational reasoning development, and
critical reflection about programming. The authors will continue to explore the opportunity
to refine the course design and develop course materials (e.g. using the power of visual
environments, that rather than just showing code structure and results, can offer dynamic
data behavior) and accumulate student feedback, so that this work findings can be better
substantiated and compared with other teaching interventions to facilitate student’s learning
in introductory programming courses.

13:7

ICPEC 2022



13:8

Programming for Non-Programmers

—— References

1

10

11

12

13

14

15

Yorah Bosse and Marco Aurelio Gerosa. Why is programming so difficult to learn?: Patterns of
difficulties related to programming learning mid-stage. ACM SIGSOFT Software Engineering
Notes, 41:1-6, January 2017. doi:10.1145/3011286.3011301.

Vincenzo Fragapane and Bernhard Standl. Work in progress: Creative coding and computer
science education — from approach to concept. In 2021 IEEE Global Engineering Education
Conference (EDUCON), pages 1233-1236, 2021. doi:10.1109/EDUCON46332.2021.9453951.
R.E. Franken. Human Motivation. Brooks/Cole Publishing Company, 1994. URL: https:
//books.google.pt/books?id=hfWEAAAACAAJ.

Anabela Gomes, Cristiana Areias, Joana Henriques, and Antonio Mendes. Aprendizagem de
programacédo de computadores: dificuldades e ferramentas de suporte. Revista Portuguesa de
Pedagogia, 42:161-179, July 2008. doi:10.14195/1647-8614_42-2_9.

Ira Greenberg, Deepak Kumar, and Dianna Xu. Creative coding and visual portfolios for csl.
In Proceedings of the 43rd ACM Technical Symposium on Computer Science Education, pages
247-252, 2012. doi:10.1145/2157136.2157214.

Edmund Harcourt. Exploring the intersection between art and technology, May 2021. URL:
https://hackernoon.com/exploring-the-intersection-between-art-and-technology-
enls34fd.

Arto Hellas, Jonne Airaksinen, and Christopher Watson. A systematic review of approaches for
teaching introductory programming and their influence on success. ICER 2014 - Proceedings
of the 10th Annual International Conference on International Computing Education Research,
July 2014. doi:10.1145/2632320.2632349.

J. Maeda, R. Burns, Thames, Hudson, and Massachusetts Institute of Technology. Media Labor-
atory. Creative Code. Thames & Hudson, 2004. URL: https://books.google.pt/books?id=
VeO6GWAACAAJ.

Kylie Peppler and Yasmin Kafai. Creative coding: Programming for personal expression. In
8th International Conference on Computer Supported Collaborative Learning (CSCL), pages
7678, June 2009.

Ricardo Queirés, Mario Pinto, and Teresa Terroso. Computer Programming Education in
Portuguese Universities. In Ricardo Queirds, Filipe Portela, Mario Pinto, and Alberto Simoes,
editors, First International Computer Programming Education Conference (ICPEC 2020),
volume 81 of OpenAccess Series in Informatics (OASIcs), pages 21:1-21:11, Dagstuhl, Germany,
2020. Schloss Dagstuhl-Leibniz-Zentrum fir Informatik. doi:10.4230/0ASIcs.ICPEC.2020.
21.

John Resig. Javascript as a first language, December 2011. URL: https://johnresig.com/
blog/javascript-as-a-first-language/.

Anthony Robins, Janet Rountree, and Nathan Rountree. Learning and teaching programming:
A review and discussion. Computer Science Education, 13(2):137-172, 2003. doi:10.1076/
csed.13.2.137.14200.

Terkelg. Awesome creative coding. URL: https://github.com/terkelg/awesome-creative-
coding.

Joke Voogt and Natalie Pareja Roblin. A comparative analysis of international frameworks for
21st century competences: Implications for national curriculum policies. Journal of Curriculum
Studies, 44(3):299-321, 2012. doi:10.1080/00220272.2012.668938.

Zoe J. Wood, Paul Muhl, and Katelyn Hicks. Computational art: Introducing high school
students to computing via art. In Proceedings of the 47th ACM Technical Symposium on
Computing Science Education, SIGCSE ’16, pages 261-266, New York, NY, USA, 2016.
Association for Computing Machinery. doi:10.1145/2839509.2844614.


https://doi.org/10.1145/3011286.3011301
https://doi.org/10.1109/EDUCON46332.2021.9453951
https://books.google.pt/books?id=hfW6AAAACAAJ
https://books.google.pt/books?id=hfW6AAAACAAJ
https://doi.org/10.14195/1647-8614_42-2_9
https://doi.org/10.1145/2157136.2157214
https://hackernoon.com/exploring-the-intersection-between-art-and-technology-en1s34fd
https://hackernoon.com/exploring-the-intersection-between-art-and-technology-en1s34fd
https://doi.org/10.1145/2632320.2632349
https://books.google.pt/books?id=VeO6GwAACAAJ
https://books.google.pt/books?id=VeO6GwAACAAJ
https://doi.org/10.4230/OASIcs.ICPEC.2020.21
https://doi.org/10.4230/OASIcs.ICPEC.2020.21
https://johnresig.com/blog/javascript-as-a-first-language/
https://johnresig.com/blog/javascript-as-a-first-language/
https://doi.org/10.1076/csed.13.2.137.14200
https://doi.org/10.1076/csed.13.2.137.14200
https://github.com/terkelg/awesome-creative-coding
https://github.com/terkelg/awesome-creative-coding
https://doi.org/10.1080/00220272.2012.668938
https://doi.org/10.1145/2839509.2844614

	1 Introduction
	2 Creative coding
	3 p5.js
	4 Course design
	4.1 Assessment

	5 Preliminary results
	6 Conclusion and Future Work

