
28th International Conference on
Principles and Practice of
Constraint Programming

CP 2022, July 31–August 8, 2022, Haifa, Israel

Edited by

Christine Solnon

LIPIcs – Vo l . 235 – CP 2022 www.dagstuh l .de/ l ip i c s

Editors

Christine Solnon
INSA Lyon, CITI, Inria Chroma, France
christine.solnon@insa-lyon.fr

ACM Classification 2012
Computing methodologies → Artificial intelligence

ISBN 978-3-95977-240-2

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-240-2.

Publication date
July, 2022

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.CP.2022.0

ISBN 978-3-95977-240-2 ISSN 1868-8969 https://www.dagstuhl.de/lipics

mailto:christine.solnon@insa-lyon.fr
https://www.dagstuhl.de/dagpub/978-3-95977-240-2
https://www.dagstuhl.de/dagpub/978-3-95977-240-2
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.CP.2022.0
https://www.dagstuhl.de/dagpub/978-3-95977-240-2
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Reykjavik University, IS and Gran Sasso Science Institute, IT)
Christel Baier (TU Dresden, DE)
Mikolaj Bojanczyk (University of Warsaw, PL)
Roberto Di Cosmo (Inria and Université de Paris, FR)
Faith Ellen (University of Toronto, CA)
Javier Esparza (TU München, DE)
Daniel Král’ (Masaryk University - Brno, CZ)
Meena Mahajan (Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)
Chih-Hao Luke Ong (University of Oxford, GB)
Phillip Rogaway (University of California, Davis, US)
Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Wadern, DE)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

CP 2022

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Christine Solnon . 0:ix

Senior Program Committee
. 0:xi

Program Committee
. 0:xiii

List of Authors
. 0:xv

Invited Talk

All Questions Answered
Donald E. Knuth . 1:1–1:1

Regular Papers

Fixed-Template Promise Model Checking Problems
Kristina Asimi, Libor Barto, and Silvia Butti . 2:1–2:17

Improved Sample Complexity Bounds for Branch-And-Cut
Maria-Florina Balcan, Siddharth Prasad, Tuomas Sandholm, and
Ellen Vitercik . 3:1–3:19

Weisfeiler-Leman Invariant Promise Valued CSPs
Libor Barto and Silvia Butti . 4:1–4:17

Trajectory Optimization for Safe Navigation in Maritime Traffic Using Historical
Data

Chaithanya Basrur, Arambam James Singh, Arunesh Sinha, Akshat Kumar,
and T. K. Satish Kumar . 5:1–5:17

Acquiring Maps of Interrelated Conjectures on Sharp Bounds
Nicolas Beldiceanu, Jovial Cheukam-Ngouonou, Rémi Douence, Ramiz Gindullin,
and Claude-Guy Quimper . 6:1–6:18

Parallel Hybrid Best-First Search
Abdelkader Beldjilali, Pierre Montalbano, David Allouche, George Katsirelos,
and Simon de Givry . 7:1–7:10

Learning MAX-SAT Models from Examples Using Genetic Algorithms and
Knowledge Compilation

Senne Berden, Mohit Kumar, Samuel Kolb, and Tias Guns . 8:1–8:17

Complexity of Minimum-Size Arc-Inconsistency Explanations
Christian Bessiere, Clément Carbonnel, Martin C. Cooper,
and Emmanuel Hebrard . 9:1–9:14

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

A Constraint Programming Approach to Ship Refit Project Scheduling
Raphaël Boudreault, Vanessa Simard, Daniel Lafond, and
Claude-Guy Quimper . 10:1–10:16

On Redundancy in Constraint Satisfaction Problems
Clément Carbonnel . 11:1–11:15

From Crossing-Free Resolution to Max-SAT Resolution
Mohamed Sami Cherif, Djamal Habet, and Matthieu Py . 12:1–12:17

Isomorphisms Between STRIPS Problems and Sub-Problems
Martin C. Cooper, Arnaud Lequen, and Frédéric Maris . 13:1–13:16

Solving the Constrained Single-Row Facility Layout Problem with Decision
Diagrams

Vianney Coppé, Xavier Gillard, and Pierre Schaus . 14:1–14:18

Constraint Acquisition Based on Solution Counting
Christopher Coulombe and Claude-Guy Quimper . 15:1–15:16

Computing Relaxations for the Three-Dimensional Stable Matching Problem
with Cyclic Preferences

Ágnes Cseh, Guillaume Escamocher, and Luis Quesada . 16:1–16:19

DUELMIPs: Optimizing SDN Functionality and Security
Timothy Curry, Gabriel De Pace, Benjamin Fuller, Laurent Michel, and
Yan (Lindsay) Sun . 17:1–17:18

A Framework for Generating Informative Benchmark Instances
Nguyen Dang, Özgür Akgün, Joan Espasa, Ian Miguel, and Peter Nightingale 18:1–18:18

Sequence Variables for Routing Problems
Augustin Delecluse, Pierre Schaus, and Pascal Van Hentenryck 19:1–19:17

CSP Beyond Tractable Constraint Languages
Jan Dreier, Sebastian Ordyniak, and Stefan Szeider . 20:1–20:17

Explaining Propagation for Gini and Spread with Variable Mean
Alexander Ek, Andreas Schutt, Peter J. Stuckey, and Guido Tack 21:1–21:16

Plotting: A Planning Problem with Complex Transitions
Joan Espasa, Ian Miguel, and Mateu Villaret . 22:1–22:17

Nucleus-Satellites Systems of OMDDs for Reducing the Size of Compiled Forms
Hélène Fargier, Jérôme Mengin, and Nicolas Schmidt . 23:1–23:18

Heuristics for MDD Propagation in HADDOCK

Rebecca Gentzel, Laurent Michel, and Willem-Jan van Hoeve . 24:1–24:17

An Auditable Constraint Programming Solver
Stephan Gocht, Ciaran McCreesh, and Jakob Nordström . 25:1–25:18

From Cliques to Colorings and Back Again
Marijn J. H. Heule, Anthony Karahalios, and Willem-Jan van Hoeve 26:1–26:10

On the Enumeration of Frequent High Utility Itemsets: A Symbolic AI Approach
Amel Hidouri , Said Jabbour, and Badran Raddaoui . 27:1–27:17

Contents 0:vii

Understanding How People Approach Constraint Modelling and Solving
Ruth Hoffmann, Xu Zhu, Özgür Akgün, and Miguel A. Nacenta 28:1–28:18

Learning Constraint Programming Models from Data Using
Generate-And-Aggregate

Mohit Kumar, Samuel Kolb, and Tias Guns . 29:1–29:16

Combining Reinforcement Learning and Constraint Programming for
Sequence-Generation Tasks with Hard Constraints

Daphné Lafleur, Sarath Chandar, and Gilles Pesant . 30:1–30:16

Exploiting Functional Constraints in Automatic Dominance Breaking for
Constraint Optimization

Jimmy H. M. Lee and Allen Z. Zhong . 31:1–31:17

A Portfolio-Based Approach to Select Efficient Variable Ordering Heuristics for
Constraint Satisfaction Problems

Hongbo Li, Yaling Wu, Minghao Yin, and Zhanshan Li . 32:1–32:10

Large Neighborhood Search for Robust Solutions for Constraint Satisfaction
Problems with Ordered Domains

Jheisson López, Alejandro Arbelaez, and Laura Climent . 33:1–33:16

Scheduling the Equipment Maintenance of an Electric Power Transmission
Network Using Constraint Programming

Louis Popovic, Alain Côté, Mohamed Gaha, Franklin Nguewouo, and
Quentin Cappart . 34:1–34:15

Peel-And-Bound: Generating Stronger Relaxed Bounds with Multivalued
Decision Diagrams

Isaac Rudich, Quentin Cappart, and Louis-Martin Rousseau . 35:1–35:20

On Quantitative Testing of Samplers
Mate Soos, Priyanka Golia, Sourav Chakraborty, and Kuldeep S. Meel 36:1–36:16

Structured Set Variable Domains in Bayesian Network Structure Learning
Fulya Trösser, Simon de Givry, and George Katsirelos . 37:1–37:9

Selecting SAT Encodings for Pseudo-Boolean and Linear Integer Constraints
Felix Ulrich-Oltean, Peter Nightingale, and James Alfred Walker 38:1–38:17

Completeness Matters: Towards Efficient Caching in Tree-Based Synchronous
Backtracking Search for DCOPs

Jie Wang, Dingding Chen, Ziyu Chen, Xiangshuang Liu, and Junsong Gao 39:1–39:17

CNF Encodings of Binary Constraint Trees
Ruiwei Wang and Roland H. C. Yap . 40:1–40:19

Modeling and Solving Parallel Machine Scheduling with Contamination
Constraints in the Agricultural Industry

Felix Winter, Sebastian Meiswinkel, Nysret Musliu, and Daniel Walkiewicz 41:1–41:18

CP 2022

Preface

This volume contains the proceedings of the 28th International Conference on Principles and
Practice of Constraint Programming (CP 2022), which was held in Haifa, Israel, August 1-5,
2022. Detailed information about the conference are available at https://cp2022.a4cp.org.
CP 2022 was part of the Federated Logic Conference (FLoC) which is held every four years and
brings together several leading international conferences related to logic for computer science.
FLoC 2022 included 12 conferences, and CP was colocated with the 25th International
Conference on Theory and Applications of Satisfiability Testing (SAT 2022) and the 38th
International Conference on Logic Programming (ICLP 2022), among other conferences.

Held annually, CP is the premier international conference on constraint programming.
As is customary for CP, papers could be submitted to multiple tracks. A first technical track
was concerned with all aspects of computing with constraints, including theory, algorithms,
environments, languages, models, and systems. A second track, chaired by Helmut Simonis
(University College Cork), was dedicated to applications of CP. The last three tracks were
dedicated to interdisciplinary research at the intersection between constraint programming
and other directly related fields: a Machine Learning track, chaired by Andrea Lodi (Cornell
Tech), an Operations Research track, chaired by Sophie Demassey (Mines ParisTech), and a
Trustworthy Decision Making track, co-chaired by Nadjib Lazaar (LIRMM), Pierre Marquis
(Université d’Artois), and Barry O’Sullivan (University College Cork).

78 papers have been submitted to these tracks, and 40 of them have been accepted.
Each paper has been reviewed by at least three members of the program committee. We
considered a double blind reviewing process, meaning that authors and reviewers were
anonymous to each other. Authors had the opportunity to answer reviewers and clarify
possible misunderstandings through a rebuttal phase. For each paper, a senior program
committee member was in charge of conducting a discussion with reviewers to find a consensus,
and of writing a meta-review that summarised pros and cons. Finally, virtual meetings were
organised between meta-reviewers, track chairs, and the program chair to agree on final
decisions.

Four papers that had an average score greater than or equal to 2 (possible scores ranged
from 3, corresponding to a strong accept, to −3, corresponding to a strong reject) were
nominated by at least one program committee member for receiving a best paper award:

Selecting SAT Encodings for Pseudo-Boolean and Linear Integer Constraints, from Felix
Ulrich-Oltean, Peter Nightingale and James Alfred Walker;
A Constraint Programming Approach to Ship Refit Project Scheduling, from Raphaël
Boudreault, Vanessa Simard, Daniel Lafond and Claude-Guy Quimper;
Exploiting Functional Constraints in Generating Dominance Breaking Nogoods for Con-
straint Optimization, from Jimmy H. M. Lee and Allen Z. Zhong;
Peel-and-Bound: Generating Stronger Relaxed Bounds with Multivalued Decision Dia-
grams, from Isaac Rudich, Quentin Cappart and Louis-Martin Rousseau.

The best two of them have been selected by a vote of senior PC members: the best paper
prize was awarded to Isaac Rudich, Quentin Cappart and Louis-Martin Rousseau, and the
best student paper prize was awarded to Jimmy H. M. Lee and Allen Z. Zhong.

We had the great honour and pleasure to have an invited talk given by Donald E. Knuth
(Stanford University), whose next fascicle of The Art of Computer Programming is intended
to be a solid introduction to techniques for solving Constraint Satisfaction Problems. An

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://cp2022.a4cp.org
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:x Preface

abstract of this talk is included in these proceedings. There was also two plenary FLoC
invited speakers: Catuscia Palamidessi (INRIA Saclay, France), and Orna Kupferman
(Hebrew University of Jerusalem, Israel).

Besides the paper tracks and invited talks, CP also had many other events, handled by
special chairs: Ciaran McCreesh (University of Glasgow) organised the three workshops on
the first day of the conference; Clément Carbonnel (LIRMM) selected tutorials for the main
conference; Hélène Verhaeghe (Polytechnique Montréal) organised the Doctoral Program;
Andrea Rendl (Satalia) organised a special event on diversity, equity, and inclusion; Eugene
Freuder organised a CP App competition; Jason Nguyen, Peter J. Stuckey and Guido Tack
(Monash University) organised the MiniZinc challenge; and Gilles Audemard, Christophe
Lecoutre, and Emmanuel Lonca (Université d’Artois) organised the XCSP3 competition
(both MiniZinc and XCSP3 competitions were part of the FLoC Olympic Games).

Many people have contributed to make this conference such a success, and I am grateful
to all of them. First of all, I wish to thank all authors for their submission of high-quality
scientific work, thus providing the material from which the conference is made. I am also very
grateful to all chairs, who managed dedicated tracks and special events, to the senior Program
Committee members who conducted numerous discussions with reviewers to reach consensual
decisions, among other things, and to the Program Committee members who wrote 243
high-quality reviews and participated to numerous discussions. I would also like to thank the
Association for Constraint Programming (ACP) for its trust and its very helpful organisation
support, with a more specific thank to the ACP president, J. Christopher Beck (University
of Toronto), and the ACP conference coordinator, Emmanuel Hebrard (LAAS-CNRS).

Finally, the conference would not have been possible without the great job done by all
the people involved in the local organisation chaired by Alexandra Silva (Cornell University).
I heavily relied on Roie Zivan (Ben Gurion University) and Ferdinando Fioretto (Syracuse
University) for making the many necessary arrangements related to the CP 2022 program
and to speedily announce program updates on the conference website.

May 2022, Lyon, France Christine Solnon

Senior Program Committee

André Ciré University of Toronto
David Cohen Oxford University
Sophie Demassey CMA research lab
Ferdinando Fioretto Syracuse University
Pierre Flener Uppsala University
Maria Garcia de la Banda Monash University
Ian Gent University of St. Andrews
Emmanuel Hebrard LAAS-CNRS
Zeynep Kiziltan University of Bologna
Christophe Lecoutre Université d’Artois
Andrea Lodi Cornell Tech
Ines Lynce University of Lisboa
Barry O’Sullivan University College Cork
Pierre Schaus UCLouvain
Helmut Simonis Insight Centre for Data Analytics
Charlotte Truchet University de Nantes
Willem Van Hoeve Carnegie Mellon University
Roland Yap National University of Singapore

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Program Committee

Gilles Audemard CRIL
Sebastien Bardin CEA LIST
Chris Beck University of Toronto
Nicolas Beldiceanu IMT Atlantique
Jeremias Berg University of Helsinki
David Bergman University of Connecticut
Armin Biere Albert-Ludwigs-University
Clément Carbonnel CNRS
Mats Carlsson RISE Research Institutes of Sweden
Martin Cooper IRIT - Universite Paul Sabatier
Thi-Bich-Hanh Dao University of Orleans
Simon de Givry INRA - MIAT
Guillaume Derval Liège Université
Agostino Dovier Univ. di UDINE
Catherine Dubois ENSIIE-Samovar
Jean-Guillaume Fages COSLING S.A.S
Maria Andreina Francisco Rodriguez Uppsala University
Xavier Gillard Université Catholique de Louvain
Arnaud Gotlieb Simula Research Laboratory
Tias Guns Vrije Universiteit Brussel
John Hooker Carnegie Mellon University
Marie-José Huguet LAAS-CNRS Université de Toulouse
Alexey Ignatiev Monash University
Mikolas Janota Czech Technical University in Prague
Christopher Jefferson University of St. Andrews
Serdar Kadioglu Brown University
Roger Kameugne University of Maroua
George Katsirelos MIA Paris INRAE AgroParisTech
Lars Kotthoff University of Wyoming
T. K. Satish Kumar University of Southern California
Jean Marie Lagniez CRIL
Nadjib Lazaar UM2-LIRMM
Chu-Min Li Université de Picardie Jules Verne
Arnaud Malapert Université Côte d’Azur CNRS I3S
Felip Manyà IIIA-CSIC
Pierre Marquis CRIL U. Artois & CNRS
Ciaran McCreesh University of Glasgow
Laurent Michel University of Connecticut
Ian Miguel University of St Andrews
Michela Milano DISI Universita’ di Bologna
Samba Ndojh Ndiaye Liris
Peter Nightingale University of York
Justin Pearson Uppsala University
Laurent Perron Google France
Gilles Pesant Polytechnique Montréal

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xiv Program Committee

Andreas Podelski University of Freiburg
Enrico Pontelli New Mexico State University
Cédric Pralet ONERA Toulouse
Charles Prud’Homme IMT Atlantique LS2N
Claude-Guy Quimper Laval University
Louis-Martin Rousseau Polytechnique Montréal
Michel Rueher Université Côte d’Azur CNRS I3S
Domenico Salvagnin University of Padova
Alexander Schiendorfer Technische Hochschule Ingolstadt
Francesca Rossi IBM Research
Thomas Schiex INRAE
Andreas Schutt CSIRO and The University of Melbourne
Mohamed Siala INSA Toulouse & LAAS-CNRS
Laurent Simon Labri Bordeaux Institute of Technology
Gilles Simonin Institut Mines Telecom - Atlantique
Helge Spieker Simula Research Laboratory
Kostas Stergiou University of Western Macedonia
Peter J. Stuckey Monash University
Guido Tack Monash University
Cyril Terrioux LIS - UMR CNRS 7020 - Aix-Marseille Université
Gilles Trombettoni LIRMM University of Montpellier
Peter van Beek University of Waterloo
Hélène Verhaeghe Polytechnique Montréal
Petr Vilím IBM Czech
Philippe Vismara SupAgro - MISTEA / LIRMM
Neng-Fa Zhou CUNY Brooklyn College and Graduate Center

List of Authors

Özgür Akgün (18, 28)
School of Computer Science,
University of St Andrews, UK

David Allouche (7)
Université Fédérale de Toulouse, ANITI,
INRAE, UR 875, 31326 Toulouse, France

Alejandro Arbelaez (33)
Department of Computer Engineering,
Autonomous University of Madrid, Spain

Kristina Asimi (2)
Department of Algebra, Faculty of Mathematics
and Physics, Charles University, Prague,
Czechia

Maria-Florina Balcan (3)
Computer Science and Machine Learning
Departments, Carnegie Mellon University,
Pittsburgh, PA, USA

Libor Barto (2, 4)
Department of Algebra, Faculty of Mathematics
and Physics, Charles University, Prague,
Czechia

Chaithanya Basrur (5)
Singapore Management University, Singapore

Nicolas Beldiceanu (6)
IMT Atlantique, LS2N (TASC), Nantes, France

Abdelkader Beldjilali (7)
Université Fédérale de Toulouse, INRAE, UR
875, 31326 Toulouse, France

Senne Berden (8)
Declarative Languages and Artificial Intelligence,
KU Leuven, Belgium

Christian Bessiere (9)
CNRS, University of Montpellier, France

Raphaël Boudreault (10)
Thales Digital Solutions, Québec, Canada

Silvia Butti (2, 4)
Department of Information and Communication
Technologies, Universitat Pompeu Fabra,
Barcelona, Spain

Quentin Cappart (34, 35)
Computer Engineering and Software Engineering
Department, Polytechnique Montréal, Canada

Clément Carbonnel (9, 11)
CNRS, University of Montpellier, France

Sourav Chakraborty (36)
Indian Statistical Institute Kolkata, India

Sarath Chandar (30)
Polytechnique Montréal, Canada;
Quebec Artificial Intelligence Institute (Mila),
Canada;
Canada CIFAR AI Chair, Toronto, Canada

Dingding Chen (39)
College of Computer Science,
Chongqing University, China

Ziyu Chen (39)
College of Computer Science,
Chongqing University, China

Mohamed Sami Cherif (12)
Aix-Marseille Univ, Université de Toulon, CNRS,
LIS, France

Jovial Cheukam-Ngouonou (6)
IMT Atlantique, LS2N (TASC), Nantes, France;
Université Laval, Québec, Canada

Laura Climent (33)
Department of Computer Engineering,
Autonomous University of Madrid, Spain

Martin C. Cooper (9, 13)
IRIT, University of Toulouse, France

Vianney Coppé (14)
UCLouvain, Louvain-la-Neuve, Belgium

Christopher Coulombe (15)
Université Laval, Québec, Canada

Ágnes Cseh (16)
Institute of Economics, Centre for Economic and
Regional Studies, Budapest, Hungary

Timothy Curry (17)
University of Connecticut, Storrs, CT, USA

Alain Côté (34)
IREQ, Varennes, Canada

Nguyen Dang (18)
School of Computer Science,
University of St Andrews, UK

Simon de Givry (7, 37)
Université Fédérale de Toulouse, ANITI,
INRAE, UR 875, 31326 Toulouse, France

Gabriel De Pace (17)
University of Rhode Island, Kingston, RI, USA

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-9519-938X
https://doi.org/10.4230/LIPIcs.CP.2022.18
https://doi.org/10.4230/LIPIcs.CP.2022.28
https://doi.org/10.4230/LIPIcs.CP.2022.7
https://orcid.org/0000-0003-1622-5645
https://doi.org/10.4230/LIPIcs.CP.2022.33
https://doi.org/10.4230/LIPIcs.CP.2022.2
https://doi.org/10.4230/LIPIcs.CP.2022.3
https://orcid.org/0000-0002-8481-6458
https://doi.org/10.4230/LIPIcs.CP.2022.2
https://doi.org/10.4230/LIPIcs.CP.2022.4
https://doi.org/10.4230/LIPIcs.CP.2022.5
https://doi.org/10.4230/LIPIcs.CP.2022.6
https://doi.org/10.4230/LIPIcs.CP.2022.7
https://orcid.org/0000-0002-6473-5757
https://doi.org/10.4230/LIPIcs.CP.2022.8
https://orcid.org/0000-0003-4059-6403
https://doi.org/10.4230/LIPIcs.CP.2022.9
https://orcid.org/0000-0002-5602-7515
https://doi.org/10.4230/LIPIcs.CP.2022.10
https://orcid.org/0000-0002-0171-2021
https://doi.org/10.4230/LIPIcs.CP.2022.2
https://doi.org/10.4230/LIPIcs.CP.2022.4
https://doi.org/10.4230/LIPIcs.CP.2022.34
https://doi.org/10.4230/LIPIcs.CP.2022.35
https://orcid.org/0000-0003-2312-2687
https://doi.org/10.4230/LIPIcs.CP.2022.9
https://doi.org/10.4230/LIPIcs.CP.2022.11
https://doi.org/10.4230/LIPIcs.CP.2022.36
https://orcid.org/0000-0002-9678-2830
https://doi.org/10.4230/LIPIcs.CP.2022.30
https://doi.org/10.4230/LIPIcs.CP.2022.39
https://doi.org/10.4230/LIPIcs.CP.2022.39
https://orcid.org/0000-0003-4646-9982
https://doi.org/10.4230/LIPIcs.CP.2022.12
https://doi.org/10.4230/LIPIcs.CP.2022.6
https://orcid.org/0000-0001-9453-5150
https://doi.org/10.4230/LIPIcs.CP.2022.33
https://orcid.org/0000-0003-4853-053X
https://doi.org/10.4230/LIPIcs.CP.2022.9
https://doi.org/10.4230/LIPIcs.CP.2022.13
https://orcid.org/0000-0001-5050-0001
https://doi.org/10.4230/LIPIcs.CP.2022.14
https://doi.org/10.4230/LIPIcs.CP.2022.15
https://orcid.org/0000-0003-4991-2599
https://doi.org/10.4230/LIPIcs.CP.2022.16
https://doi.org/10.4230/LIPIcs.CP.2022.17
https://doi.org/10.4230/LIPIcs.CP.2022.34
https://orcid.org/0000-0002-2693-6953
https://doi.org/10.4230/LIPIcs.CP.2022.18
https://orcid.org/0000-0002-2242-0458
https://doi.org/10.4230/LIPIcs.CP.2022.7
https://doi.org/10.4230/LIPIcs.CP.2022.37
https://doi.org/10.4230/LIPIcs.CP.2022.17
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xvi Authors

Augustin Delecluse (19)
TRAIL, ICTEAM, UCLouvain,
Louvain-la-Neuve, Belgium

Rémi Douence (6)
IMT Atlantique, LS2N, Inria, (Gallinette),
Nantes, France

Jan Dreier (20)
Algorithms and Complexity Group,
TU Wien, Austria

Alexander Ek (21)
Dept. of Data Science & AI, Monash University,
Melbourne, Australia;
CSIRO Data61, Melbourne, Australia

Guillaume Escamocher (16)
Insight Centre for Data Analytics, School of
Computer Science and Information Technology,
University College Cork, Ireland

Joan Espasa (18, 22)
School of Computer Science,
University of St Andrews, UK

Hélène Fargier (23)
IRIT, Université de Toulouse, CNRS,
Toulouse INP, UT3, France

Benjamin Fuller (17)
University of Connecticut, Storrs, CT, USA

Mohamed Gaha (34)
IREQ, Varennes, Canada

Junsong Gao (39)
College of Computer Science, Chongqing
University, China

Rebecca Gentzel (24)
University of Connecticut, Storrs, CT, USA

Xavier Gillard (14)
UCLouvain, Louvain-la-Neuve, Belgium

Ramiz Gindullin (6)
IMT Atlantique, LS2N (TASC), Nantes, France

Stephan Gocht (25)
Lund University, Sweden;
University of Copenhagen, Denmark

Priyanka Golia (36)
Indian Institute of Technology Kanpur, India;
National University of Singapore, Singapore

Tias Guns (8, 29)
Declarative Languages and Artificial Intelligence,
KU Leuven, Belgium

Djamal Habet (12)
Aix-Marseille Univ, Université de Toulon, CNRS,
LIS, France

Emmanuel Hebrard (9)
LAAS CNRS, Toulouse, France

Marijn J. H. Heule (26)
Carnegie Mellon University,
Pittsburgh, PA, USA

Amel Hidouri (27)
CRIL – CNRS UMR 8188,
University of Artois, France;
LARODEC, University of Tunis, Tunisia

Ruth Hoffmann (28)
School of Computer Science,
University of St Andrews, UK

Said Jabbour (27)
CRIL – CNRS UMR 8188,
University of Artois, France

Anthony Karahalios (26)
Carnegie Mellon University,
Pittsburgh, PA, USA

George Katsirelos (7, 37)
Université Fédérale de Toulouse, ANITI, INRAE,
MIA Paris, AgroParisTech, 75231 Paris, France

Donald E. Knuth (1)
Stanford University, CA, USA

Samuel Kolb (8, 29)
Declarative Languages and Artificial Intelligence,
KU Leuven, Belgium

Akshat Kumar (5)
Singapore Management University, Singapore

Mohit Kumar (8, 29)
Declarative Languages and Artificial Intelligence,
KU Leuven, Belgium

T. K. Satish Kumar (5)
University of Southern California,
Los Angeles, CA, USA

Daphné Lafleur (30)
Polytechnique Montréal, Canada;
Quebec Artificial Intelligence Institute (Mila),
Canada

Daniel Lafond (10)
Thales Digital Solutions, Québec, Canada

Jimmy H. M. Lee (31)
Department of Computer Science and
Engineering, The Chinese University of Hong
Kong, Shatin, China

https://orcid.org/0000-0001-6285-6515
https://doi.org/10.4230/LIPIcs.CP.2022.19
https://doi.org/10.4230/LIPIcs.CP.2022.6
https://orcid.org/0000-0002-2662-5303
https://doi.org/10.4230/LIPIcs.CP.2022.20
https://orcid.org/0000-0002-8744-4805
https://doi.org/10.4230/LIPIcs.CP.2022.21
https://orcid.org/0000-0001-9029-5671
https://doi.org/10.4230/LIPIcs.CP.2022.16
https://orcid.org/0000-0002-9021-3047
https://doi.org/10.4230/LIPIcs.CP.2022.18
https://doi.org/10.4230/LIPIcs.CP.2022.22
https://doi.org/10.4230/LIPIcs.CP.2022.23
https://doi.org/10.4230/LIPIcs.CP.2022.17
https://doi.org/10.4230/LIPIcs.CP.2022.34
https://doi.org/10.4230/LIPIcs.CP.2022.39
https://doi.org/10.4230/LIPIcs.CP.2022.24
https://orcid.org/0000-0002-4493-6041
https://doi.org/10.4230/LIPIcs.CP.2022.14
https://doi.org/10.4230/LIPIcs.CP.2022.6
https://orcid.org/0000-0002-5459-3134
https://doi.org/10.4230/LIPIcs.CP.2022.25
https://doi.org/10.4230/LIPIcs.CP.2022.36
https://orcid.org/0000-0002-2156-2155
https://doi.org/10.4230/LIPIcs.CP.2022.8
https://doi.org/10.4230/LIPIcs.CP.2022.29
https://doi.org/10.4230/LIPIcs.CP.2022.12
https://orcid.org/0000-0003-3131-0709
https://doi.org/10.4230/LIPIcs.CP.2022.9
https://doi.org/10.4230/LIPIcs.CP.2022.26
https://doi.org/10.4230/LIPIcs.CP.2022.27
https://orcid.org/0000-0002-1011-5894
https://doi.org/10.4230/LIPIcs.CP.2022.28
https://doi.org/10.4230/LIPIcs.CP.2022.27
https://orcid.org/0000-0001-9479-4080
https://doi.org/10.4230/LIPIcs.CP.2022.26
https://orcid.org/0000-0002-3727-6698
https://doi.org/10.4230/LIPIcs.CP.2022.7
https://doi.org/10.4230/LIPIcs.CP.2022.37
https://doi.org/10.4230/LIPIcs.CP.2022.1
https://orcid.org/0000-0002-7803-2198
https://doi.org/10.4230/LIPIcs.CP.2022.8
https://doi.org/10.4230/LIPIcs.CP.2022.29
https://doi.org/10.4230/LIPIcs.CP.2022.5
https://orcid.org/0000-0002-7202-1818
https://doi.org/10.4230/LIPIcs.CP.2022.8
https://doi.org/10.4230/LIPIcs.CP.2022.29
https://doi.org/10.4230/LIPIcs.CP.2022.5
https://orcid.org/0000-0002-7225-7660
https://doi.org/10.4230/LIPIcs.CP.2022.30
https://orcid.org/0000-0002-1669-353X
https://doi.org/10.4230/LIPIcs.CP.2022.10
https://orcid.org/0000-0001-9526-5850
https://doi.org/10.4230/LIPIcs.CP.2022.31

Authors 0:xvii

Arnaud Lequen (13)
IRIT, University of Toulouse, France

Hongbo Li (32)
School of Information Science and Technology,
Northeast Normal University, Changchun, China

Zhanshan Li (32)
College of Computer Science and Technology,
Jilin University, Changchun, China

Xiangshuang Liu (39)
College of Computer Science,
Chongqing University, China

Jheisson López (33)
University College Cork, School of Computer
Science, Ireland;
SFI Centre for Research Training in Artificial
Intelligence, Cork, Ireland

Frédéric Maris (13)
IRIT, University of Toulouse, France

Ciaran McCreesh (25)
University of Glasgow, UK

Kuldeep S. Meel (36)
National University of Singapore, Singapore

Sebastian Meiswinkel (41)
MCP Algorithm Factory, MCP GmbH,
Wien, Austria

Jérôme Mengin (23)
IRIT, Université de Toulouse, CNRS,
Toulouse INP, UT3, France

Laurent Michel (17, 24)
University of Connecticut, Storrs, CT, USA

Ian Miguel (18, 22)
School of Computer Science,
University of St Andrews, UK

Pierre Montalbano (7)
Université Fédérale de Toulouse, ANITI,
INRAE, UR 875, 31326 Toulouse, France

Nysret Musliu (41)
Christian Doppler Laboratory for Artificial
Intelligence and Optimization for Planning and
Scheduling, DBAI, TU Wien, Austria

Miguel A. Nacenta (28)
Department of Computer Science,
University of Victoria, Canada

Franklin Nguewouo (34)
Hydro-Québec, Canada

Peter Nightingale (18, 38)
Department of Computer Science,
University of York, UK

Jakob Nordström (25)
University of Copenhagen, Denmark;
Lund University, Sweden

Sebastian Ordyniak (20)
Algorithms and Complexity Group,
University of Leeds, UK

Gilles Pesant (30)
Polytechnique Montréal, Canada

Louis Popovic (34)
Computer Engineering and Software Engineering
Department, Polytechnique Montréal, Canada

Siddharth Prasad (3)
Computer Science Department, Carnegie Mellon
University, Pittsburgh, PA, USA

Matthieu Py (12)
Aix-Marseille Univ, Université de Toulon, CNRS,
LIS, France

Luis Quesada (16)
Insight Centre for Data Analytics, School of
Computer Science and Information Technology,
University College Cork, Ireland

Claude-Guy Quimper (6, 10, 15)
Université Laval, Québec, Canada

Badran Raddaoui (27)
SAMOVAR, Télécom SudParis,
Institut Polytechnique de Paris, France

Louis-Martin Rousseau (35)
Mathematics and Industrial Engineering
Department, Polytechnique Montréal, Canada

Isaac Rudich (35)
Mathematics and Industrial Engineering
Department, Polytechnique Montréal, Canada

Tuomas Sandholm (3)
Computer Science Department, Carnegie Mellon
University, Pittsburgh, PA, USA;
Optimized Markets, Inc., Pittsburgh, PA, USA;
Strategic Machine, Inc., Pittsburgh, PA, USA;
Strategy Robot, Inc., Pittsburgh, PA, USA

Pierre Schaus (14, 19)
UCLouvain, Louvain-la-Neuve, Belgium

Nicolas Schmidt (23)
IRIT, Université de Toulouse, CNRS,
Toulouse INP, UT3, France

CP 2022

https://orcid.org/0000-0003-0339-0967
https://doi.org/10.4230/LIPIcs.CP.2022.13
https://orcid.org/0000-0002-2664-4117
https://doi.org/10.4230/LIPIcs.CP.2022.32
https://doi.org/10.4230/LIPIcs.CP.2022.32
https://doi.org/10.4230/LIPIcs.CP.2022.39
https://orcid.org/0000-0002-8086-4663
https://doi.org/10.4230/LIPIcs.CP.2022.33
https://orcid.org/0000-0002-1084-1669
https://doi.org/10.4230/LIPIcs.CP.2022.13
https://orcid.org/0000-0002-6106-4871
https://doi.org/10.4230/LIPIcs.CP.2022.25
https://doi.org/10.4230/LIPIcs.CP.2022.36
https://doi.org/10.4230/LIPIcs.CP.2022.41
https://doi.org/10.4230/LIPIcs.CP.2022.23
https://doi.org/10.4230/LIPIcs.CP.2022.17
https://doi.org/10.4230/LIPIcs.CP.2022.24
https://orcid.org/0000-0002-6930-2686
https://doi.org/10.4230/LIPIcs.CP.2022.18
https://doi.org/10.4230/LIPIcs.CP.2022.22
https://orcid.org/0000-0001-8126-892X
https://doi.org/10.4230/LIPIcs.CP.2022.7
https://orcid.org/0000-0002-3992-8637
https://doi.org/10.4230/LIPIcs.CP.2022.41
https://orcid.org/0000-0002-9864-9654
https://doi.org/10.4230/LIPIcs.CP.2022.28
https://doi.org/10.4230/LIPIcs.CP.2022.34
https://orcid.org/0000-0002-5052-8634
https://doi.org/10.4230/LIPIcs.CP.2022.18
https://doi.org/10.4230/LIPIcs.CP.2022.38
https://orcid.org/0000-0002-2700-4285
https://doi.org/10.4230/LIPIcs.CP.2022.25
https://orcid.org/0000-0003-1935-651X
https://doi.org/10.4230/LIPIcs.CP.2022.20
https://orcid.org/0000-0001-9797-0780
https://doi.org/10.4230/LIPIcs.CP.2022.30
https://doi.org/10.4230/LIPIcs.CP.2022.34
https://doi.org/10.4230/LIPIcs.CP.2022.3
https://doi.org/10.4230/LIPIcs.CP.2022.12
https://orcid.org/0000-0003-3177-655X
https://doi.org/10.4230/LIPIcs.CP.2022.16
https://doi.org/10.4230/LIPIcs.CP.2022.6
https://doi.org/10.4230/LIPIcs.CP.2022.10
https://doi.org/10.4230/LIPIcs.CP.2022.15
https://doi.org/10.4230/LIPIcs.CP.2022.27
https://doi.org/10.4230/LIPIcs.CP.2022.35
https://doi.org/10.4230/LIPIcs.CP.2022.35
https://doi.org/10.4230/LIPIcs.CP.2022.3
https://orcid.org/0000-0002-3153-8941
https://doi.org/10.4230/LIPIcs.CP.2022.14
https://doi.org/10.4230/LIPIcs.CP.2022.19
https://doi.org/10.4230/LIPIcs.CP.2022.23

0:xviii Authors

Andreas Schutt (21)
CSIRO Data61, Melbourne, Australia

Vanessa Simard (10)
NQB.ai, Québec, Canada

Arambam James Singh (5)
National University of Singapore, Singapore

Arunesh Sinha (5)
Singapore Management University, Singapore

Mate Soos (36)
National University of Singapore, Singapore

Peter J. Stuckey (21)
Dept. of Data Science & AI, Monash University,
Melbourne, Australia

Yan (Lindsay) Sun (17)
University of Rhode Island, Kingston, RI, USA

Stefan Szeider (20)
Algorithms and Complexity Group,
TU Wien, Austria

Guido Tack (21)
Dept. of Data Science & AI, Monash University,
Melbourne, Australia

Fulya Trösser (37)
Université Fédérale de Toulouse, ANITI,
INRAE, UR 875, 31326 Toulouse, France

Felix Ulrich-Oltean (38)
Department of Computer Science,
University of York, UK

Pascal Van Hentenryck (19)
Georgia Institute of Technology,
Atlanta, GA, USA

Willem-Jan van Hoeve (24, 26)
Carnegie Mellon University,
Pittsburgh, PA, USA

Mateu Villaret (22)
Department of Computer Science, Applied
Mathematics and Statistics, University of
Girona, Spain

Ellen Vitercik (3)
Department of Electrical Engineering and
Computer Sciences, University of California
Berkeley, CA, USA

James Alfred Walker (38)
Department of Computer Science,
University of York, UK

Daniel Walkiewicz (41)
MCP Algorithm Factory, MCP GmbH,
Wien, Austria

Jie Wang (39)
College of Computer Science,
Chongqing University, China

Ruiwei Wang (40)
School of Computing, National University of
Singapore, Singapore

Felix Winter (41)
Christian Doppler Laboratory for Artificial
Intelligence and Optimization for Planning and
Scheduling, DBAI, TU Wien, Austria

Yaling Wu (32)
School of Information Science and Technology,
Northeast Normal University, Changchun, China

Roland H. C. Yap (40)
School of Computing, National University of
Singapore, Singapore

Minghao Yin (32)
School of Information Science and Technology,
Northeast Normal University, Changchun, China

Allen Z. Zhong (31)
Department of Computer Science and
Engineering, The Chinese University of Hong
Kong, Shatin, China

Xu Zhu (28)
School of Computer Science,
University of St Andrews, UK

https://orcid.org/0000-0001-5452-4086
https://doi.org/10.4230/LIPIcs.CP.2022.21
https://orcid.org/0000-0001-8861-8902
https://doi.org/10.4230/LIPIcs.CP.2022.10
https://doi.org/10.4230/LIPIcs.CP.2022.5
https://doi.org/10.4230/LIPIcs.CP.2022.5
https://doi.org/10.4230/LIPIcs.CP.2022.36
https://orcid.org/0000-0003-2186-0459
https://doi.org/10.4230/LIPIcs.CP.2022.21
https://doi.org/10.4230/LIPIcs.CP.2022.17
https://orcid.org/0000-0001-8994-1656
https://doi.org/10.4230/LIPIcs.CP.2022.20
https://orcid.org/0000-0003-3357-6498
https://doi.org/10.4230/LIPIcs.CP.2022.21
https://doi.org/10.4230/LIPIcs.CP.2022.37
https://orcid.org/0000-0001-5162-5826
https://doi.org/10.4230/LIPIcs.CP.2022.38
https://orcid.org/0000-0001-7085-9994
https://doi.org/10.4230/LIPIcs.CP.2022.19
https://orcid.org/0000-0002-0023-753X
https://doi.org/10.4230/LIPIcs.CP.2022.24
https://doi.org/10.4230/LIPIcs.CP.2022.26
https://orcid.org/0000-0002-8066-3458
https://doi.org/10.4230/LIPIcs.CP.2022.22
https://doi.org/10.4230/LIPIcs.CP.2022.3
https://orcid.org/0000-0003-2174-7173
https://doi.org/10.4230/LIPIcs.CP.2022.38
https://doi.org/10.4230/LIPIcs.CP.2022.41
https://doi.org/10.4230/LIPIcs.CP.2022.39
https://doi.org/10.4230/LIPIcs.CP.2022.40
https://orcid.org/0000-0002-1012-1258
https://doi.org/10.4230/LIPIcs.CP.2022.41
https://doi.org/10.4230/LIPIcs.CP.2022.32
https://doi.org/10.4230/LIPIcs.CP.2022.40
https://doi.org/10.4230/LIPIcs.CP.2022.32
https://orcid.org/0000-0001-8807-8600
https://doi.org/10.4230/LIPIcs.CP.2022.31
https://orcid.org/0000-0002-2801-3271
https://doi.org/10.4230/LIPIcs.CP.2022.28

All Questions Answered
Donald E. Knuth Ñ

Stanford University, CA, USA

Abstract
During the past two years, the speaker has been drafting Section 7.2.2.3 of The Art of Computer
Programming, which is intended to be a solid introduction to techniques for solving Constraint
Satisfaction Problems. The CP 2022 conference is an excellent opportunity for him to get feedback
from the leading experts on the subject, and so he was delighted to learn that the organizers were
also interested in hearing a few words from him.

Rather than giving a canned lecture, he much prefers to let the audience choose the topics, and
for all questions to be kept a secret from him until the lecture is actually in progress. (He believes
that people often learn more from answers that are spontaneously fumbled than from responses that
are carefully preplanned.)

Questions related to constraints will naturally be quite welcome, but questions on any subject
whatsoever will not be ducked! He’ll try to answer them all as best he can, without spending a great
deal of time on any one topic, unless there is special interest to go into more depth.

Meanwhile he hopes to have drafted some notes for circulation before the conference begins, in
case some attendees might wish to focus some of their questions on expository material related to
his forthcoming book, either during this session or informally afterwards.

Warning: His least favorite questions have the form “What is your favorite X?” If you want to
ask such questions, please try to do it cleverly so that he doesn’t have to choose between different
things that he loves in different ways.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases The Art of Computer Programming

Digital Object Identifier 10.4230/LIPIcs.CP.2022.1

Category Invited Talk

© Donald E. Knuth;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 1; pp. 1:1–1:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://cs.stanford.edu/~knuth/taocp.html
https://doi.org/10.4230/LIPIcs.CP.2022.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Fixed-Template Promise Model Checking Problems
Kristina Asimi #

Department of Algebra, Faculty of Mathematics and Physics,
Charles University, Prague, Czechia

Libor Barto # Ñ

Department of Algebra, Faculty of Mathematics and Physics,
Charles University, Prague, Czechia

Silvia Butti # Ñ

Department of Information and Communication Technologies,
Universitat Pompeu Fabra, Barcelona, Spain

Abstract
The fixed-template constraint satisfaction problem (CSP) can be seen as the problem of deciding
whether a given primitive positive first-order sentence is true in a fixed structure (also called model).
We study a class of problems that generalizes the CSP simultaneously in two directions: we fix a set
L of quantifiers and Boolean connectives, and we specify two versions of each constraint, one strong
and one weak. Given a sentence which only uses symbols from L, the task is to distinguish whether
the sentence is true in the strong sense, or it is false even in the weak sense.

We classify the computational complexity of these problems for the existential positive equality-
free fragment of first-order logic, i.e., L = {∃, ∧, ∨}, and we prove some upper and lower bounds for
the positive equality-free fragment, L = {∃, ∀, ∧, ∨}. The partial results are sufficient, e.g., for all
extensions of the latter fragment.

2012 ACM Subject Classification Theory of computation → Complexity theory and logic

Keywords and phrases Model Checking Problem, First-Order Logic, Promise Constraint Satisfaction
Problem, Multi-Homomorphism

Digital Object Identifier 10.4230/LIPIcs.CP.2022.2

Funding Kristina Asimi and Libor Barto have received funding from the European Research Council
(ERC) under the European Unions Horizon 2020 research and innovation programme (Grant
Agreement No. 771005, CoCoSym). Silvia Butti was supported by a MICCIN grant PID2019-
109137GB-C22 and by a fellowship from “la Caixa” Foundation (ID 100010434). The fellowship code
is LCF/BQ/DI18/11660056. This project has received funding from the European Union’s Horizon
2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No.
713673.

1 Introduction

The fixed-template finite-domain constraint satisfaction problem (CSP) is a framework for
expressing many computational problems such as various versions of logical satisfiability,
graph coloring, and systems of equations, see the survey [3]. A convenient formalization,
that we adopt in this paper, is as follows: a template is a relational structure A, and the
CSP over A is the problem of deciding whether a given {∃,∧}-sentence is true in A. Here, an
{∃,∧}-sentence is a sentence of first-order logic that uses only the relation symbols of A, the
logical connective ∧, and the quantifier ∃. To see that this formalization indeed expresses
constraint satisfaction problems, consider, e.g., the sentence ∃x∃y∃z R(x, y) ∧ S(y, z): this
sentence is true in a structure A if the variables x, y, z can be evaluated so that both atomic
formulas (constraints) are satisfied in A.

© Kristina Asimi, Libor Barto, and Silvia Butti;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 2; pp. 2:1–2:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:asimptota94@gmail.com
mailto:libor.barto@gmail.com
https://www2.karlin.mff.cuni.cz/~barto/
https://orcid.org/0000-0002-8481-6458
mailto:silvia.butti@upf.edu
https://sites.google.com/view/silviabutti/
https://orcid.org/0000-0002-0171-2021
https://doi.org/10.4230/LIPIcs.CP.2022.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Fixed-Template Promise Model Checking Problems

Motivated by recent developments in the area, we study an extension of this framework
in two simultaneous directions. One direction, discussed in Subsection 1.1, is to enable
other choices of permitted quantifiers and connectives. Another direction, discussed in
Subsection 1.2, is to consider two versions of each relation, strong and weak (a so-called
promise problem). Our contributions are then described in Subsection 1.3.

1.1 Model checking problem parametrized by the model

The model checking problem [13] takes as input a structure A (often called a model) and a
sentence ϕ in a specified logic and asks whether A ⊨ ϕ, i.e., whether A satisfies ϕ. We study
the situation where A is a fixed finite relational structure, so the input is simply ϕ, and the
logic is a fragment of the first-order logic obtained by restricting the allowed quantifiers to a
subset L of {∃, ∀,∧,∨,=, ̸=,¬}. Thus, for each A and each of the 27 choices for L, we obtain
a computational problem, which we call the L-Model Checking Problem over A and denote
L-MC(A).

The computational complexity classification of {∃,∧}-MC(A), i.e., CSP over A, has been
a very active research program in the last 20 years, which culminated in the celebrated
dichotomy theorem obtained independently in [6] and [18]: each CSP over A is in P (solvable
in polynomial time) or is NP-complete. For the case L = {∃, ∀,∧}, L-MC(A) is the so called
quantified CSP, another well-studied class of problems, see the survey [16]. It was widely
believed that this class exhibits a P/NP-complete/PSPACE-complete trichotomy [8]. A
recent breakthrough [19] shows that at least three more complexity classes appear within
quantified CSPs, and ongoing work suggests that even 6 is not the final number. In any case,
the full complexity classification of {∃, ∀,∧}-MC(A) is a challenging open problem.

The remaining 27 − 2 choices for L do not need to be considered separately. For instance,
{∃,∧,=}-MC(A) is no harder than {∃,∧}-MC(A) because equalities can be propagated
out in this case, and {∀,∨}-MC(A) is dual to {∃,∧}-MC(A) so we get a P/coNP-complete
dichotomy for free, etc. Moreover, some choices of L, such as L = {∃,∨}, lead to very
simple problems. It turns out [14] (see Subsection 3.3) that, in addition to L = {∃,∧} and
L = {∃, ∀,∧}, only two more fragments need to be considered in order to fully understand
the complexity of L-MC(A), namely L = {∃,∧,∨} and L = {∃, ∀,∧,∨}.

The former fragment was addressed in [14]: except for a simple case solvable in polynomial
time (in fact, L, the logarithmic space), all the remaining problems are NP-complete. The
latter fragment turned out to be more challenging but, after a series of partial results [14, 11,
17] (see also [15, 7]), the full complexity classification was given in [12, 13]: each problem in
this class is in P (even L), or is NP-complete, coNP-complete, or PSPACE-complete. These
results are summarized in Table 1.

Table 1 Known complexity results for L-MC(A).

L-MC(A) Complexity

{∃, ∧}-MC(A) (CSP) dichotomy: P or NP-complete
{∃, ∀, ∧}-MC(A) (QCSP) ≥ 6 classes

{∃, ∧, ∨}-MC(A) dichotomy: L or NP-complete
{∀, ∃, ∧, ∨}-MC(A) tetrachotomy: L, NP-complete, coNP-complete, PSPACE-complete

K. Asimi, L. Barto, and S. Butti 2:3

1.2 Promise model checking problem
The Promise CSP is a recently introduced extension of the CSP framework motivated by
open problems in (in)approximability of satisfiability and coloring problems [1, 5, 2]. The
template consists of two structures A and B of the same signature, where A specifies a strong
form of each relation and B its weak form. The Promise CSP over (A,B) is then the problem
of distinguishing {∃,∧}-sentences that are true in A from those that are not true in B.

For example, by choosing an appropriate template, we obtain the problem of distinguishing
k-colorable graphs from those that are not even l-colorable (where k ≤ l are fixed), a problem
whose complexity is notoriously open.

The generalization of Promise CSP over (A,B) to an arbitrary choice L ⊆ {∃, ∀,∧,∨,=
, ̸=,¬} is referred to as the L-Promise Model Checking Problem over (A,B) and is denoted
L-PMC(A,B). Similarly as in the special case A = B, which is exactly L-MC(A), it is
sufficient to consider only four fragments. A full complexity classification for {∃,∧}-PMC
(i.e., Promise CSP) is much desired but widely open, and {∃, ∀,∧}-PMC is likely even
harder. This work concentrates on the remaining two classes of problems, {∃,∧,∨}-PMC
and {∃, ∀,∧,∨}-PMC.

Our motivation was that these cases might be substantially simpler, as indicated by the
non-promise special case, and at the same time, the investigation could uncover interesting
intermediate problems towards the grand endeavor of understanding the sources of tractability
and hardness in computation. We believe that our findings confirm this hope.

▶ Example 1. Consider structures A and B with a single relation symbol = interpreted as
the equality on a three-element domain in A and as the equality on a two-element domain
in B. For L = {∃, ∀,∧,∨}, both L-MC(A) and L-MC(B) are PSPACE-complete problems,
see [14].

It is not hard to see that every L-sentence true in A is also true in B. In this sense, the
relation in A is stronger than the relation in B. On the other hand, there are L-sentences true
in B that are not true in A, e.g., ϕ = ∀x∃y∀z (z = x) ∨ (z = y). Therefore, L-PMC(A,B)
could potentially be easier than the above non-promise problems – instances such as ϕ need
not be considered (there is no requirement on the algorithm for such inputs). Nevertheless,
the problem remains PSPACE-complete, as shown in Proposition 18.

1.3 Contributions
Theorem 7 and Theorem 13 provide basics for an algebraic approach to {∃,∧,∨}-PMC
and {∃, ∀,∧,∨}-PMC by characterizing definability in terms of compatible functions: multi-
homomorphisms for the {∃,∧,∨} fragment and surjective multi-homomorphisms (smuhoms)
for {∃, ∀,∧,∨}. The proofs can be obtained as relatively straightforward generalizations
of the proofs for MC in [13]; however, we believe that our approach is somewhat more
transparent. In particular, it allows us to easily characterize meaningful templates for these
problems (Propositions 6 and 12).

For {∃,∧,∨}-PMC, we obtain an L/NP-complete dichotomy in Theorem 9. It turns out
that, apart from some simple cases, the problem is NP-complete. Interestingly, there is a
“single reason” for hardness: the NP-hardness of coloring a rainbow colorable hypergraph
from [9].

For {∃, ∀,∧,∨}-PMC, our complexity results are only partial, leaving two gaps for further
investigation. The results are sufficient for full complexity classification of L-PMC(A,B) in
the case that L = {∃, ∀,∧,∨} and one of the structures A, B has a two-element domain,
and also in the case that L ⊋ {∃, ∀,∧,∨}. We also give some examples where our efforts

CP 2022

2:4 Fixed-Template Promise Model Checking Problems

have failed so far. One such example is a particularly interesting {∃, ∀,∧,∨}-PMC over
3-element domains: given a {∃, ∀,∧,∨}-sentence ϕ whose atomic formulas are all of the form
Ri(x), i ∈ {1, 2, 3}, distinguish between the case where ϕ is true when Ri(x) is interpreted
as “x = i”, and the case where ϕ is false when Ri(x) is interpreted as “x ̸= i”.

Our complexity results are summarized in Table 2, the conditions for L = {∃, ∀,∧,∨} are
stated in terms of special surjective multi-homomorphisms of the template, introduced in
Subsection 5.3.

Table 2 Complexity results for L-PMC(A,B).

L-PMC(A,B) Condition Complexity

{∃, ∀, ∧}-PMC(A,B) L/NP-complete∃∀

-smuhom, or

∀

-smuhom and∃

-smuhom and A,B digraphs L

{∃, ∀, ∧, ∨}-PMC(A,B)

∀

-smuhom and

∃

-smuhom NP ∩ coNP

∀

-smuhom, no

∃

-smuhom NP-complete

∃

-smuhom, no

∀

-smuhom coNP-complete
no

∀

-smuhom and no

∃

-smuhom NP-hard and coNP-hard
{∃, ∀, ∧, ∨, =}-PMC(A,B),
{∃, ∀, ∧, ∨, ̸=}-PMC(A,B),
{∃, ∀, ∧, ∨, ¬}-PMC(A,B)

L/PSPACE-complete

2 Preliminaries

Structures. We use a standard model-theoretic terminology, but restrict the generality of
some concepts for the purposes of this paper. A relation of arity n ≥ 1 on a set A is a set of
n-tuples of elements of A, i.e., a subset of An. The complement of a relation S is denoted
S := An \ S. The equality relation on A is denoted =A and the disequality relation ̸=A.
Components of a tuple a are referred to as a1, a2, . . . , i.e., a = (a1, . . . , an).

A signature is a nonempty collection of relation symbols each with an associated arity,
denoted ar(R) for a relation symbol R. A relational structure (also called a model) A in the
signature σ, or simply a structure, consists of a finite set A of size at least two, called the
universe of A, and a nonempty proper relation ∅ ⊊ RA ⊊ Aar(R) for each symbol R in σ,
called the interpretation of R in A. Two structures are called similar if they are in the same
signature. The complement of a relational structure A is obtained by taking complements of
all relations in the structure and is denoted A. A structure over a signature containing a
single binary relation symbol is called a digraph.

We emphasize that the universe of a structure is denoted by the same letter as the
structure, that the universe of every structure in this paper is assumed to be finite and at
least two-element, and that each relation in a structure is assumed to be at least unary,
nonempty and proper. These nonstandard requirements are placed for technical convenience
and do not significantly decrease the generality of our results.

Given two similar structures A and B, a function f from A to B is called a homomorphism
from A to B if f(a) ∈ RB for any a ∈ RA, where f(a) is computed component-wise. We only
work with total functions, that is, f(a) is defined for every a ∈ A.

Multi-homomorphisms. A multi-valued function f from A to B is a mapping from A to
P ̸=∅B, the set of all nonempty subsets of B. It is called surjective if for every b ∈ B, there
exists a ∈ A such that b ∈ f(a). The inverse of a surjective multi-valued function f from
A to B is the multi-valued function from B to A defined by f−1(b) = {a : b ∈ f(a)}. For

K. Asimi, L. Barto, and S. Butti 2:5

a tuple a ∈ An we write f(a) for f(a1) × · · · × f(an). The value max{|f(a)| : a ∈ A} is
referred to as the multiplicity of f ; in particular, multi-valued functions of multiplicity one
are essentially functions. For two multi-valued functions f and f ′ from A to B, we say that
f ′ is contained in f if f ′(a) ⊆ f(a) for each a ∈ A.

Given two similar structures A and B, a multi-valued function f from A to B is called
a multi-homomorphism 1 from A to B if for any R in the signature and any a ∈ RA, we
have f(a) ⊆ RB, i.e., b ∈ RB whenever bi ∈ f(ai) for each i ∈ [ar(R)] = {1, 2, . . . , ar(R)}.
Notice that if f is a multi-homomorphism from A to B, then so is any multi-valued function
contained in f . In particular, if f is a multi-homomorphism from A to B, then any function
g : A → B with g(a) ∈ f(a) for each a ∈ A is a homomorphism from A to B. The converse
does not hold in general, as witnessed by structures A = B with a single binary equality
relation and any multi-valued function of multiplicity greater than one.

The set of all multi-homomorphisms from A to B is denoted by MuHom(A,B) and the
set of all surjective multi-homomorphisms by SMuHom(A,B).

Fragments of first-order logic. Let L ⊆ {∃, ∀,∧,∨,=, ≠,¬} and fix some signature. By an
L-sentence (resp., L-formula) we mean a sentence (resp., formula) of first-order logic that
only uses variables (denoted xi, yi, zi), relation symbols in the signature, and connectives
and quantifiers in L. We refer to this fragment of first-order logic as the L-logic.

The prenex normal form of an L-formula is an equivalent formula that begins with
quantified variables followed by a quantifier-free formula. The prenex normal form can be
computed in logarithmic space and it is an L-formula whenever L does not contain the
negation.

For a structure A in the signature and an L-sentence ϕ, we write A ⊨ ϕ if ϕ is satisfied
in A. More generally, given an L-formula ψ, a tuple of distinct variables (v1, . . . , vn) which
contains every free variable of ψ and a tuple (a1, . . . , an) ∈ An, we write A ⊨ ψ(a1, . . . , an)
if ψ is satisfied when v1, . . . , vn are evaluated as εA(v1) = a1, . . . , εA(vn) = an, respectively.
Notice that variables v1, . . . , vn indeed need to be pairwise distinct, otherwise this notation
would not make sense. The tuple (v1, . . . , vn) is often specified by writing ψ = ψ(v1, . . . , vn).

We say that a relation S ⊆ An is L-definable from A if there exists an L-formula
ψ(v1, . . . , vn) such that, for all (a1, . . . , an) ∈ An, we have (a1, . . . , an) ∈ S if and only if
A ⊨ ψ(a1, . . . , an). In this case, we also say that ψ(v1, . . . , vn) defines S in A.

3 Promise model checking

In this section we define the promise model checking problem restricted to L ⊆ {∃, ∀,∧,∨,=
, ̸=,¬}. We start by briefly discussing the non-promise setting.

3.1 Model checking problem
Let L ⊆ {∃, ∀,∧,∨,=, ̸=,¬} and A be a structure in a signature σ. Recall that the L-Model
Checking Problem over A, denoted L-MC(A), is the problem of deciding whether a given
L-sentence ϕ (in the same signature as A) is true in A.

A simple but important observation sometimes allows us to compare the complexity of
the L-MC problems over two templates A and C with the same universe A = C but possibly
different signatures: If every relation in C is L-definable from A, then L-MC(C) can be
reduced in polynomial-time (even logarithmic space) to L-MC(A). Indeed, the reduction
amounts to replacing atomic formulas of the form R(v) by their definitions.

1 We deviate here from the terminology of [12, 11] because it would not work well in the promise setting.

CP 2022

2:6 Fixed-Template Promise Model Checking Problems

The starting point of the algebraic approach to L-MC is to find a characterization of defin-
ability in terms of certain “compatible functions” or “symmetries” (so called polymorphisms for
L = {∃,∧,=} [3], surjective polymorphisms for L = {∃, ∀,∧,=} [16], multi-endomorphisms
for L = {∃,∧,∨}, surjective multi-endomorphisms for L = {∃, ∀,∧,∨} [13]; see also [4]).
Because such characterizations are central in this paper as well, we now explain the basic
idea for a simple case.

For L = {∃,∧,∨,=}, the appropriate type of compatible function is endomorphism: a
nonempty relation S ⊆ An is L-definable from A if and only if it is invariant under every
endomorphism of A (i.e., a homomorphism from A to itself). The forward direction is
well-known and easy to verify. For the backward direction, assume A = [k] := {1, . . . , k} and
consider the following formula.

ϕ(x1, . . . , xk) :=
∧

R∈σ

∧
r∈RA

R(xr1 , . . . , xrar(R)) (1)

It follows immediately from definitions that, for any structure E in the signature of A,
E ⊨ ϕ(e1, . . . , ek) if and only if the mapping defined by i 7→ ei for each i ∈ [k] is a
homomorphism from A to E. This in particular holds for E = A. By existential quantification
we can then obtain an L-formula defining the closure of any tuple a ∈ An with distinct entries
under endomorphisms of A; e.g., ψ(x1, x3, x2) := (∃x4)(∃x5) . . . (∃xk)ϕ defines the closure of
(1, 3, 2) under endomorphisms. Using = we can also define closures of the remaining tuples
with repeated entries. Finally, S is the union of closures of its members (since it is closed
under endomorphisms of A), so S can be defined by a disjunction of formulas that we have
already found (after appropriately renaming variables).

Notice that this construction would not work without the equality in L because of tuples
with repeated entries. This is the reason why we need to work with multi-valued functions
for the equality-free logics that we deal with in this paper.

3.2 Promise model checking problem
Let L ⊆ {∃, ∀,∧,∨,=, ̸=,¬}. The L-Promise Model Checking Problem over a pair of similar
structures (A,B) is the problem of distinguishing L-sentences ϕ that are true in A from those
that are not true in B. This problem makes sense only if every L-sentence that is true in A
is also true in B; we call such pairs L-PMC templates.

▶ Definition 2. A pair of similar structures (A,B) is called an L-PMC template if A ⊨ ϕ
implies B ⊨ ϕ for every L-sentence ϕ in the signature of A and B.

Given an L-PMC template (A,B), the L-Promise Model Checking Problem over (A,B),
denoted L-PMC(A,B), is the following problem.

Input: an L-sentence ϕ in the signature of A and B;
Output: Yes if A ⊨ ϕ; No if B ̸⊨ ϕ.

The definition of a template guarantees that the sets of Yes-instances and No-instances
are disjoint. However, their union need not be the whole set of L-sentences; an algorithm
for L-PMC is only required to produce correct outputs for Yes-instances and No-instances.
Alternatively, we are promised that the input sentence is a Yes-instance or a No-instance. The
complexity-theoretic notions (such as membership in NP, NP-completeness, reductions) can
be adjusted naturally for the promise setting. We write L-PMC(C,D) ≤ L-PMC(A,B) if the
former problem can be reduced to the latter problem by a logarithmic space reduction, that
is, a logarithmic space transformation that maps each Yes-instance ϕ of L-PMC(C,D) to a
Yes-instance ψ of L-PMC(A,B) (equivalently, C ⊨ ϕ must imply A ⊨ ψ) and No-instances to
No-instances (equivalently, B ⊨ ψ must imply D ⊨ ϕ).

K. Asimi, L. Barto, and S. Butti 2:7

An appropriate adjustment of definability for the promise setting is as follows. Note that
we do not allow the negation in L, otherwise the concept would need to be defined differently
because of the inclusions in the definition.

▶ Definition 3. Assume ¬ ̸∈ L and let (A,B) be a pair of similar structures. We say
that a pair of relations (S, T), where S ⊆ An and T ⊆ Bn, is promise-L-definable (or
p-L-definable) from (A,B) if there exist relations S′ and T ′ and an L-formula ψ(v1, . . . , vn)
such that S ⊆ S′, T ′ ⊆ T , ψ(v1, . . . , vn) defines S′ in A, and ψ(v1, . . . , vn) defines T ′ in B.

We say that an L-PMC template (C,D) is p-L-definable from (A,B) (the signatures can
differ) if (QC, QD) is p-L-definable from (A,B) for each relation symbol Q in the signature
of C and D.

▶ Theorem 4. Assume ¬ ̸∈ L. If (A,B) and (C,D) are L-PMC templates such that (C,D)
is p-L-definable from (A,B), then L-PMC(C,D) ≤ L-PMC(A,B).

Proof. The reduction is to replace each atomic Q(v) by the corresponding formula ψ from
Definition 3. For correctness of this reduction, observe that an L-sentence which is true in a
structure E remains true when we add tuples to the relations of E (since L does not contain
¬). ◀

3.3 Interesting fragments
We now explain why only four fragments of first-order logic need to be considered in order
to fully understand the problems L-PMC(A,B). Observe first that if L does not contain
any connective (∧,∨), or L does not contain any quantifier (∃, ∀), or L ⊆ {∃,∨}, then each
L-PMC is in L, the logarithmic space. (In some of these cases we do not even have any valid
inputs in our definition of structures.)

Secondly, notice that (L ∪ {=})-PMC(A,B) is essentially the same as L-PMC(A′,B′),
where A′ and B′ are obtained from the original structures by adding a fresh binary symbol
Q to the signature and setting QA′ to =A and QB′ to =B. The disequality is dealt with
analogously, thus we can and shall restrict to fragments with L ⊆ {∃, ∀,∧,∨,¬}.

Next, we deal with the negation. If ¬ is in L, and L contains a quantifier and a connective,
then it is enough to consider the case L = {∃, ∀,∧,∨,¬} since the remaining quantifier and
connective can be expressed using negation. Moreover, the complements of relations can also
be expressed, so we may assume that each template (A,B) is closed under complementation,
meaning that for every symbol R in the signature, we have a symbol R interpreted as
R

A = RA, RB = RB. But then ¬ is no longer necessary since we can propagate the negations
inwards in an input sentence. We are down to L ⊆ {∃, ∀,∧,∨}.

Finally, note that E ⊨ ¬ϕ, where ϕ is an L-sentence, is equivalent to E ⊨ ϕ′ where ϕ′

is an L′-sentence and L′ is obtained from L by swapping ∀ ↔ ∃ and ∨ ↔ ∧ (ϕ′ can be,
again, computed from ¬ϕ by inward propagation). It follows that ϕ 7→ ϕ′ transforms every
Yes-instance (resp., No-instance) of L-PMC(A,B) to a No-instance (resp., Yes-instance) of
L′-PMC(B,A), and a similar “dual” reduction works in the opposite direction. Therefore, the
latter PMC has the “dual” complexity to the former PMC, e.g., if the former is NP-complete,
then the latter is coNP-complete; and if the former is PSPACE-complete, then the latter is
PSPACE-complete as well. We will refer to this reasoning as the duality argument.

Eliminating one of the logic fragments from each of the “dual” pairs, we are left with
only four fragments: L = {∃,∧} (whose L-PMC is Promise CSP), L = {∃, ∀,∧} (Promise
Quantified CSP), L = {∃,∧,∨}, and L = {∃, ∀,∧,∨}. We investigate the last two separately
in the next two sections.

CP 2022

2:8 Fixed-Template Promise Model Checking Problems

4 Existential positive fragment

This section concerns the existential positive equality-free logic, that is, the L-logic with
L = {∃,∧,∨}. We fix this L for the entire section.

4.1 Characterization of templates and p-L-definability
We start by characterizing L-PMC templates. One direction of the characterization follows
from the discussion below (1), the other one from the following observation.

▶ Lemma 5. Let f be a multi-homomorphism from A to B, let ϕ(x1, . . . , xn) be a quantifier-
free L-formula in the same signature, and let a ∈ An, b ∈ Bn. If A ⊨ ϕ(a) and b ∈ f(a),
then B ⊨ ϕ(b).

Proof. The claim holds for atomic formulas by definition of multi-homomorphisms. The
proof is then finished by induction on the complexity of ϕ; both ∨ and ∧ are dealt with in a
straightforward way. ◀

▶ Proposition 6. A pair (A,B) of similar structures is an L-PMC template if and only if
there exists a homomorphism from A to B.

Proof. Suppose that there exists a homomorphism from A to B and A ⊨ ϕ, where ϕ =
∃x1∃x2 . . . ∃xnϕ

′(x1, . . . , xn) is in prenex normal form. Then we have A ⊨ ϕ′(a) for some
a ∈ An, therefore B ⊨ ϕ′(f(a)) by Lemma 5, and it follows that B ⊨ ϕ.

For the forward implication, observe that the sentence obtained from the formula (1) by
existentially quantifying all the variables is true in A (as there exists a homomorphism from
A to A – the identity), so it must be true in B, giving us a homomorphism from A to B. ◀

Note that this characterization would remain the same if we add = to L (and/or remove
∨). For the following characterization of promise definability, the absence of the equality
relation does make a difference, which is why we need to use multi-homomorphisms instead
of homomorphisms.

▶ Theorem 7. Let (A,B) and (C,D) be L-PMC templates such that A = C and B = D.
Then (C,D) is p-L-definable from (A,B) if and only if MuHom(A,B) ⊆ MuHom(C,D).
Moreover, in such a case, L-PMC(C,D) ≤ L-PMC(A,B).

Proof. It is enough to verify the equivalence, since then the second claim follows from
Theorem 4. To prove the forward implication, assume that (C,D) is p-L-definable from
(A,B), let f ∈ MuHom(A,B), and let Q be a symbol in the signature of C and D. To show
that f(a) ⊆ QD for any a ∈ QC we apply Lemma 5 as follows. We have A ⊨ ψ(a), where
ψ(x) = ∃y1∃y2 . . . ∃ymψ

′(x,y) is a formula from Definition 3, turned into prenex normal form.
Then A ⊨ ψ′(a, a′) for some a′ ∈ Am, thus B ⊨ ψ′(b,b′) for any b ∈ f(a) and b′ ∈ f(a′) by
Lemma 5. Therefore, B ⊨ ψ(b) and, finally, b ∈ QD, as required.

For the backward implication, assume that MuHom(A,B) ⊆ MuHom(C,D), denote σ the
signature of A and B, and consider an n-ary relational symbol Q in the signature of C and
D. To prove the claim, we need to find a formula ψ(x1, . . . , xn) that defines, in A, a relation
containing QC and, in B, a relation contained in QD.

For simplicity, assume A = [k] and consider the formula

ϕ(x1,1, . . . , x1,n, x2,1, . . . , x2,n, . . . , xk,n) :=
∧

R∈σ

∧
r∈RA

∧
j∈[n]ar(R)

R(xr1,j1 , . . . , xrar(R),jar(R)) (2)

K. Asimi, L. Barto, and S. Butti 2:9

It follows immediately from definitions that, for any structure E in the signature σ, we
have E ⊨ ϕ(e1,1, . . . , ek,n) if and only if the mapping i 7→ {ei,1, . . . , ei,n}, 1 ≤ i ≤ k is a
multi-homomorphism from A to E. Therefore, for any a ∈ An, the formula τa(x1, . . . , xn),
obtained from ϕ by renaming xai,i to xi and existentially quantifying the remaining variables,
defines in E the union of f(a) over f ∈ MuHom(A,E) of multiplicity at most n. This relation
is clearly equal to the union of f(a) over all f ∈ MuHom(A,E). The sought after formula
ψ is then the disjunction of τa over all a ∈ QC: it defines in A a relation containing QC

(because of the identity “multi”-homomorphism A → A) and, in B, a relation contained in
QD (because every multi-homomorphism from A to B is a multi-homomorphism from C to
D, whence f(a) ⊆ QD for any a ∈ QC and any f ∈ MuHom(A,B)). ◀

4.2 Complexity classification
Since L-PMC(A,B) reduces to L-MC(A) (or L-MC(B)) by the trivial reduction which does
not change the input, and the latter problem is clearly in NP, then the former problem
is in NP as well. Theorem 9 shows that L-PMC(A,B) is NP-hard in all the “nontrivial”
cases, as in the non-promise setting. However, our proof of hardness requires (in addition to
Theorem 7) a much more involved hardness result than in the non-promise case: NP-hardness
of c-coloring rainbow k-colorable 2k-uniform hypergraphs from [9] (here c, k ≥ 2).

To state the result in our formalism, we introduce the n-ary “rainbow coloring” and
“not-all-equal” relations on a set D as follows.

Rbn
D = {d ∈ Dn : {d1, d2, . . . , dn} = D}, NAEn

D = {d ∈ Dn : ¬(d1 = d2 = · · · = dn)}

In the statement of Theorem 8 and further, we use (A;S1, . . . , Sk) to denote a structure with
universe A and relations S1, . . . , Sk.

▶ Theorem 8 (Corollary 1.2 in [9]). For any A and B of size at least 2, the problem
{∃,∧}-PMC((A; Rb2|A|

A), (B; NAE2|A|
B)) is NP-complete.

Given this hardness result, the complexity classification is a simple consequence of
Theorem 7.

▶ Theorem 9 (L = {∃,∧,∨}). Let (A,B) be an L-PMC template. If there is a constant
homomorphism from A to B, then L-PMC(A,B) is in L (in fact, decidable in constant time),
otherwise L-PMC(A,B) is NP-complete.

Proof. If there exists a constant homomorphism f : A → B, say with image {b}, then all the
relations RB in B contain the constant tuple (b, b, . . . , b). It follows that every input sentence
is satisfied in B by evaluating the existentially quantified variables to b; therefore, Yes is
always a correct output.

If there is no constant homomorphism A → B, we observe that no multi-homomorphism
from A to B contains a constant homomorphism (as the set of multi-homomorphisms of a
PMC template is closed under containment). It follows that the image of any “rainbow”
tuple of A under any multi-homomorphism from A to B does not contain any constant tuple,
and so any multi-homomorphism from A to B is a multi-homomorphism from (A; Rb2|A|

A) to
(B; NAE2|A|

B). The reduction from Theorem 7 and the hardness from Theorem 8 conclude
the proof. ◀

5 Positive fragment

We now turn our attention to the more complex case – the positive equality-free logic, that
is, the L-logic with L = {∃, ∀,∧,∨}. We again fix this L for the entire section.

CP 2022

2:10 Fixed-Template Promise Model Checking Problems

5.1 Witnesses for quantified formulas
It will be convenient to work with L-formulas of the special form

ϕ(x1, . . . , xn) = ∀y1∃z1∀y2∃z2 . . . ∀ym∃zm ϕ′(x,y, z), (3)

where ϕ′ is quantifier-free. Note that each formula is equivalent to a formula in this form (by
transforming to prenex normal form and adding dummy quantification as needed) and the
conversion can be done in logarithmic space.

Observe that for a structure A and a tuple a ∈ An, we have A ⊨ ϕ(a) if and only if there
exist functions α1 : A → A, α2 : A2 → A, . . . , αm : Am → A which give us evaluations of
the existentially quantified variables given the value of the previous universally quantified
variables, i.e., these functions satisfy A ⊨ ϕ′(a, c, α1(c1), α2(c1, c2), . . . , αm(c1, . . . , cm)) for
every c ∈ Am. We call such functions witnesses for A ⊨ ϕ(a).

We state a simple consequence of this viewpoint, a version of Lemma 5.

▶ Lemma 10. Let f be a surjective multi-homomorphism from A to B, let ϕ(x1, . . . , xn) be
an L-formula in the same signature as A and B, and let a ∈ An, b ∈ Bn. If A ⊨ ϕ(a) and
b ∈ f(a), then B ⊨ ϕ(b).

In particular, if there exists a surjective multi-homomorphism from A to B, and ϕ is an
L-sentence such that A ⊨ ϕ, then B ⊨ ϕ.

Proof. The claim holds for quantifier-free L-formulas by Lemma 5.
Next, we assume that ϕ is of the form (3) and select witnesses α1, . . . , αm for A ⊨ ϕ(a).

Let g : B → A be any function such that b ∈ f(g(b)) for every b ∈ B, which exists
as f is surjective. We claim that any functions β1, . . . , βm such that βi(b1, . . . , bi) ∈
f(αi(g(b1), . . . , g(bi))) for every i ∈ [m], are witnesses for B ⊨ ϕ(b). Indeed, for all d ∈ Bm,
we have A ⊨ ϕ′(a, g(d), α1(g(d1)), . . . , αm(g(d1), . . . , g(dm))), and also b ∈ f(a), d ∈ f(g(d)),
and βi(d1, . . . , di) ∈ f(αi(g(d1), . . . , g(di))) (by the assumption, choice of g, and choice of βi,
respectively); therefore, B ⊨ ϕ′(b,d, β1(d1), . . . , βm(d1, . . . , dm)) by the first paragraph. ◀

5.2 Characterization of templates and p-L-definability
Unlike in the existential case, both characterizations require surjective and multi-valued
functions. The core of these characterizations is an adjustment of (2) for surjective homo-
morphisms.

▶ Lemma 11. Let A be a structure with A = [k] and m,n be arbitrary positive integers.
Then there exists a formula ϕ(x1,1, . . . , x1,n, x2,1, . . . , . . . , xk,n) such that, for any structure
E similar to A with |E| ≤ m, we have E ⊨ ϕ(e1,1, . . . , ek,n) if and only if the mapping
i 7→ {ei,1, . . . , ei,n}, i ∈ [k] is contained in a surjective multi-homomorphism from A to E.

Proof. For every function h from [m] to [k] we take a formula ϕh(x1,1, . . . , xk,n, z1, . . . , zm)
such that, for any structure E in the signature of A, we have E ⊨ ϕh(e1,1, . . . , ek,n, e

′
1, . . . , e

′
m)

if and only if the mapping i 7→ {ei,1, . . . , ei,n}∪
⋃

h(l)=i e
′
l, 1 ≤ i ≤ k, is a multi-homomorphism

from A to E. Such a formula can be obtained by directly translating the definition of a
multi-homomorphism into the language of logic, similarly to (2).

We claim that the formula ϕ obtained by taking the disjunction of ϕh over all h : [m] → [k]
and universally quantifying the variables z1, . . . , zm satisfies the requirement of the lemma,
provided |E| ≤ m. Indeed, on the one hand, if E ⊨ ϕ(e1,1, . . . , ek,n), then for every evaluation
of the z variables, some ϕh must be satisfied. We choose any evaluation that covers the
whole set E (which is possible since |E| ≤ m) and the satisfied disjunct ϕh then gives us

K. Asimi, L. Barto, and S. Butti 2:11

the required surjective multi-homomorphism from A to E (by the choice of ϕh). On the
other hand, if i 7→ {ei,1, . . . , ei,n} is contained in a surjective multi-homomorphism f , then
for any evaluation εE(z1), . . . , εE(zm) of the universally quantified variables, a disjunct
ϕh is satisfied whenever εE(zl) ∈ f(h(l)) for every l ∈ [m]. Such an h exists since f is
surjective. ◀

▶ Proposition 12. A pair (A,B) of similar structures is an L-PMC template if and only if
there exists a surjective multi-homomorphism from A to B.

Proof. For the forward implication, consider the sentence obtained by existentially quan-
tifying all the variables in the formula ϕ provided by Lemma 11 (with m ≥ |A|, |B|). This
sentence is true in A (as there exists a surjective multi-homomorphism from A to A – the
identity), so it must be true in B, giving us a surjective multi-homomorphism from A to B.
The backward implication follows from Lemma 10. ◀

An example which shows that one cannot replace in Proposition 12 “surjective multi-
homomorphism” by “(multi-)homomorphism” is the input formula φ = ∀x∃yR(x, y) (“there
are no sinks”) for a template where A is a digraph with no sinks and B is, say, A plus an
isolated vertex.

The following characterization of promise definability is also a straightforward consequence
of Lemmata 10 and 11.

▶ Theorem 13. Let (A,B) and (C,D) be L-PMC templates such that A = C and B = D.
Then (C,D) is p-L-definable from (A,B) if and only if SMuHom(A,B) ⊆ SMuHom(C,D).
Moreover, in such a case, L-PMC(C,D) ≤ L-PMC(A,B).

Proof. The theorem is proved in the same way as Theorem 7; using Lemma 10 instead of
Lemma 5 for the forward implication, and the formula provided by Lemma 11 instead of (2)
for the backward implication. ◀

5.3 Membership
Clearly, every L-MC, as well as L-PMC, is in PSPACE. We now give a generalization of the
remaining membership results from [12] using an appropriate generalization of “A-shops”
and “E-shops” from that paper. We say that a surjective multi-homomorphism f from A
to B is an

∀

-smuhom if there exists a∗ ∈ A such that f(a∗) = B. We also say that (A,B)
admits an

∀

-smuhom in such a case. We call f an

∃

-smuhom if f−1(b∗) = A for some b∗ ∈ B.
Finally, we call f an

∃∀

-smuhom if it is simultaneously an

∀

-smuhom and an

∃

-smuhom.
An additional simple reduction will be useful in the proof of the membership result

(Theorem 15) and later as well. We say that an L-PMC template (C,D) is a relaxation
of an L-PMC template (A,B) if (C,A) and (B,D) are L-PMC templates. Recall that, by
Proposition 12, the property is equivalent to the existence of surjective multi-homomorphisms
from C to A and from B to D.

▶ Proposition 14. Let (A,B) and (C,D) be L-PMC templates. If (C,D) is a relaxation of
(A,B), then L-PMC(C,D) ≤ L-PMC(A,B).

Proof. The trivial reduction, which does not change the input, works. Indeed, Yes-instances
of L-PMC(C,D) are Yes-instances of L-PMC(A,B) since (C,A) is an L-PMC template, and
No-instances of L-PMC(C,D) are No-instances of L-PMC(A,B) since (B,D) is an L-PMC
template. ◀

CP 2022

2:12 Fixed-Template Promise Model Checking Problems

▶ Theorem 15. Let (A,B) be an L-PMC template. Then the following holds.
1. If (A,B) admits an

∀

-smuhom, then L-PMC(A,B) is in NP.
2. If (A,B) admits an

∃

-smuhom, then L-PMC(A,B) is in coNP.
3. If (A,B) admits an

∃∀

-smuhom, then L-PMC(A,B) is in L.

Proof. For the first item, let f be an

∀

-smuhom from A to B with f(a∗) = B, and consider
an input ϕ in the special form (3), i.e., ϕ = ∀y1∃z1∀y2∃z2 . . . ∀ym∃zm ϕ′(y, z), where ϕ′ is
quantifier-free. We answer Yes if there exists a ∈ Am such that A ⊨ ϕ′(a∗, a∗, . . . , a∗, a); this
can be clearly decided in NP. It is clear that the answer is Yes whenever ϕ is a Yes-instance
of L-PMC(A,B). On the other hand, if A ⊨ ϕ′(a∗, . . . , a∗, a), then any functions β1 : B → B,
. . . , βm : Bm → B such that βi(b1, . . . , bi) ∈ f(ai) (for all i ∈ [m] and b1, . . . , bm ∈ B)
provide witnesses for B ⊨ ϕ by Lemma 5. Therefore, if ϕ is a No-instance, then the answer is
No, as needed.

The second item follows by the duality argument.
In the case A = B, the third item can be proved in an analogous way (by eliminating

both quantifiers instead of just one), see Corollary 9 in [12]. For the general case, we
will construct C such that there is an

∃∀

-smuhom from C to C and there are surjective
multi-homomorphisms from A to C and from C to B. Then (A,B) will be a relaxation
of (C,C) by Proposition 12, and then membership of L-PMC(A,B) in L will follow from
Proposition 14 and the mentioned Corollary 9 in [12]. Let f be an

∃∀

-smuhom from A to
B with f(a∗) = B and f−1(b∗) = A, and define a surjective multi-valued function f ′ from
A to B by f ′(a∗) = B and f ′(a) = {b∗} if a ̸= a∗. Note that f ′ is contained in f , so f ′ is
a surjective multi-homomorphism from A to B. We define C as the “image” of A under f ′,
that is, C = B and RC = ∪a∈RAf ′(a) for each relation symbol R. Clearly, f ′ is a surjective
multi-homomorphism from A to C and the identity is a surjective homomorphism from C to
B. It remains to find an

∃∀
-smuhom from C to C. We claim that g defined by g(b∗) = {b∗}

and g(c) = C for c ̸= b∗ is such an

∃∀

-smuhom. Indeed, if c ∈ RC, then c ∈ f ′(a) for some
a ∈ RA. By the definition of f ′, we necessarily have ai = a∗ whenever ci ≠ b∗; therefore,
f ′(a) ⊇ g(c). But f ′(a) ⊆ RC as f ′ ∈ SMuHom(A,C), and we are done. ◀

These membership results together with the (more involved) hardness results were
sufficient for the tetrachotomy in [12]. One problem with generalizing this tetrachotomy is
that, unlike in the non-promise setting, an L-PMC template can admit an

∀

-smuhom and
an

∃

-smuhom, but no

∃∀

-smuhom. However, such a situation cannot happen for digraphs.

▶ Proposition 16. Let (A,B) be an L-PMC template such that A and B are digraphs. If
(A,B) admits an

∀

-smuhom and an

∃

-smuhom, then it admits an

∃∀

-smuhom.

Proof. See Appendix A. ◀

5.4 Hardness
As a consequence of Theorems 8 and 13, we obtain the following hardness result.

▶ Theorem 17. Let (A,B) be an L-PMC template.
1. If there is no

∃

-smuhom from A to B, then L-PMC(A,B) is NP-hard.
2. If there is no

∀

-smuhom from A to B, then L-PMC(A,B) is coNP-hard.

Proof. If there exists no

∃

-smuhom from A to B, then SMuHom(A,B) is contained in
SMuHom((A; Rb2|A|

A), (B; NAE2|A|
B)). Theorem 8 and Theorem 13 then imply the first item.

The second item follows by the duality argument. ◀

K. Asimi, L. Barto, and S. Butti 2:13

In the non-promise setting, the absence of

∀

-smuhoms and

∃

-smuhoms is sufficient for
PSPACE-hardness [12, 13]. This most involved part of the tetrachotomy result seems much
more challenging in the promise setting and we do not have strong reasons to believe that
templates without

∀

-smuhoms and

∃

-smuhoms are necessarily PSPACE-hard. Nevertheless,
we are able to prove some additional hardness results which will cover all the extensions of L.

▶ Proposition 18. L-PMC((A; =A), (B; =B)) is PSPACE-hard for any A, B such that
|A| ≥ |B| ≥ 2.

Note here that surjective multi-homomorphisms from (A; =A) to (B; =B) are exactly the
surjective multi-valued functions from A to B of multiplicity one. In particular, if |A| < |B|,
then ((A; =A), (B; =B)) is not an L-PMC template.

Proof. We start by noticing that the template ((A; =A), ([2]; =[2])) is a relaxation of (A,B) :=
((A; =A), (B; =B)). So by Proposition 14, it is enough to prove the claim in the case B = [2].
For simplicity, we assume that A = [k] (k ≥ 2). We prove the PSPACE-hardness by a
reduction from L-MC(B), a PSPACE-hard problem by, e.g., [14]. Consider an input ϕ to
L-MC(B) in the special form (3), i.e., ϕ = ∀y1∃z1∀y2∃z2 . . . ∀ym∃zm ϕ′(y, z), where ϕ′ is
quantifier-free. We need to find a log-space computable formula ψ such that B ⊨ ϕ implies
A ⊨ ψ (so that Yes-instances of MC(B) are transformed to Yes-instances of L-PMC(A,B))
and B ⊨ ψ implies B ⊨ ϕ (so that No-instances are transformed to No-instances).

The rough idea to construct ψ is to reinterpret the values in A = [k] as values in B = [2]
via a mapping A → B. We set

ψ = ∀x1∀x2 ∃x3∃x4 . . . ∃xk (x1 = x2) ∨
∧

f :A→B

ρf , where (4)

ρf = (∀y′
1∃z1 . . . ∀y′

m∃zm) (∃y1 . . . ∃ym)
(

m∧
i=1

σ[f, y′
i, yi]

)
∧ ϕ′(y, z) (5)

σ[f, y′
i, yi] =

∨
a∈A

(
(y′

i = xa) ∧ (yi = xf(a))
)

(6)

Observe first that ψ can be constructed from ϕ in logarithmic space.
Next, we verify that B ⊨ ψ implies B ⊨ ϕ. So, we suppose B ⊨ ψ and aim to find

witnesses β1, . . . , βm for B ⊨ ϕ; to this end, let c be some tuple in Bm that corresponds to
evaluations of universally quantified variables in ϕ. We evaluate the variables x1 and x2 in
ψ as εB(x1) = 1 and εB(x2) = 2, and pick an evaluation εB(x3), . . . , εB(xk) making ψ true
in B. Set f(a) = εB(xa), a ∈ A. The first disjunct of (4) is not satisfied, so ρf is satisfied
with this choice of εB. When it is the turn to evaluate y′

i, we set εB(y′
i) = ci and define

βi(c1, . . . , ci) = εB(zi), where εB(zi) is a satisfactory evaluation of zi. Inspecting the definition
(6), we see that y1, . . . , ym are necessarily evaluated as εB(y1) = c1, . . . , εB(ym) = cm:
indeed, if a disjunct (y′

i = xa) ∧ (yi = xf(a)) is satisfied, then ci = εB(y′
i) = εB(xa) and

εB(yi) = εB(xf(a)) = εB(xεB(xa)) = εB(xa); in particular, εB(yi) = ci. Therefore, the
conjunct ϕ′(y, z) in (5) ensures B ⊨ ϕ′(c, β1(c1), . . . , βm(c1, . . . , cm)). As c was chosen
arbitrarily, we get that β1, . . . , βm are witnesses for B ⊨ ϕ, as required.

We now suppose that β1, . . . , βm are witnesses for B ⊨ ϕ, and aim to show that A ⊨ ψ.
Because of the first disjunct of (4), it is enough to consider only evaluations of x1 and x2
with εA(x1) ̸= εA(x2). Since any bijection, regarded as a surjective multi-homomorphism
from A to A of multiplicity one, preserves L-formulas (in the sense of Lemma 10), then we

CP 2022

2:14 Fixed-Template Promise Model Checking Problems

can as well assume that εA(x1) = 1 and εA(x2) = 2. We evaluate the remaining x variables
as εA(xa) = a, a = 3, 4, . . . , k. We take a function f : A → B and argue that ρf is satisfied
in A. Given a selection of εA(y′

i), we evaluate zi as εA(zi) = βi(f(εA(y′
1)), . . . , f(εA(y′

i))),
and we define the evaluation of the remaining variables by εA(yi) = f(εA(y′

i)). With these
choices, each σ[f, y′

i, yi] is satisfied because of the disjunct a = εA(y′
i) in (6). The second

conjunct in (5), ϕ′(y, z), is also satisfied: we know B ⊨ ϕ′(c, β1(c1), . . . , βm(c1, . . . , cm))
in particular for c1 = f(εA(y′

1)), . . . , cm = f(εA(y′
m)) and, with this c, it is apparent

from the choice of evaluations that B ⊨ ϕ′(c, β1(c1), . . . , βm(c1, . . . , cm)) is equivalent to
A ⊨ ϕ′(εA(y1), . . . , εA(ym), εA(z1), . . . , εA(zm)). The proof of A ⊨ ψ is concluded. ◀

It follows that {∃, ∀,∧,∨,=}-PMC over any template is PSPACE-hard and so is, by the
duality argument, {∃, ∀,∧,∨, ̸=}-PMC. The next proposition implies PSPACE-hardness for
{∃, ∀,∧,∨,¬}-PMC.

▶ Proposition 19. Let (A,B) be an L-PMC template which is closed under complementation.
Then L-PMC(A,B) is PSPACE-hard.

Proof. Suppose that (A,B) is closed under complementation. We define an equivalence
relation ∼A on A by considering two elements equivalent if they play the same role in every
relation of A. Formally, a ∼ a′ if for every symbol R from the signature, every coordinate
i ∈ [ar(R)], and every c, c′ ∈ Aar(R), if ci = a, c′

i = a′, cj = c′
j for all j ∈ [ar(R)] \ {i}, and

c ∈ RA, then c′ ∈ RA. We define an equivalence relation ∼B on B analogously. Notice
that ∼A (resp., ∼B) is indeed an equivalence relation; let m and n denote the number of
equivalence classes of ∼A and ∼B , respectively.

Observe that m,n ≥ 2. Indeed, otherwise any nonempty relation in the corresponding
template contains all the tuples, and we do not allow such structures in this paper.

Let C = (A; ∼A) and D = (B; ∼B). We claim that every surjective multi-homomorphism
f from A to B preserves ∼, i.e., is a surjective multi-homomorphism from C to D. Consider
a, a′ ∈ A, and b, b′ ∈ B such that a ∼A a′, b ∈ f(a), and b′ ∈ f(a′). In order to prove b ∼B b′,
take arbitrary R, i, d, d′ such that di = b, d′

i = b′, dj = d′
j for all j ̸= i, and d ∈ RB. Let

c, c′ ∈ Aar(R) be tuples such that ci = a, c′
i = a′, and cj = c′

j ∈ f−1(dj) for all j ̸= i (which
exist as f is surjective). If c ̸∈ RA, then c ∈ R

A and, consequently, d ∈ f(c) ⊆ R
B (as f is

a surjective multi-homomorphism from A to B), a contradiction with d ∈ RB. Therefore,
c ∈ RA and also c′ ∈ RA as a ∼A a′. Now d′ ∈ f(c′) ⊆ RB, and b ∼B b′ follows.

By Theorem 13, L-PMC(C,D) ≤ L-PMC(A,B). Since there exists a surjective multi-
valued function from A to B that preserves ∼ (namely, any f ∈ SMuHom(A,B)), we also
know that m ≥ n. The template (E,F) := (([m]; =[m]), ([n]; =[n])) is a relaxation of (C,D),
because there exists a surjective multi-homomorphism from E to C (a multi-valued function
that maps i to the i-th equivalence class of ∼A under an arbitrary linear ordering of classes)
and a surjective multi-homomorphism from D to F (a “multi”-valued function that maps
every element in the i-th equivalence class of ∼B to {i}). By Proposition 14, L-PMC(E,F) ≤
L-PMC(C,D); therefore, L-PMC(E,F) ≤ L-PMC(A,B). The former L-PMC is PSPACE-
hard by Proposition 18, so L-PMC(A,B) is PSPACE-hard, too. ◀

5.5 Summary and examples
The claims stated in Table 2 are now immediate consequences of the obtained results. Note
that the claims remain true without the imposed restrictions on structures (i.e., we can allow
singleton universes, nullary relations, etc.); the only nontrivial ingredient is the L-membership
of the Boolean Sentence Value Problem [10].

K. Asimi, L. Barto, and S. Butti 2:15

We observe that the results imply a complete complexity classification in the case that
one of the two template structures is Boolean, i.e., has a two-element universe.

▶ Corollary 20 (L = {∃, ∀,∧,∨}). Let (A,B) be an L-PMC template.
1. If B is Boolean, then L-PMC(A,B) is in L, or is NP-complete, or PSPACE-complete.
2. If A is Boolean, then L-PMC(A,B) is in L, or is coNP-complete, or PSPACE-complete.
3. If A and B are Boolean, then L-PMC(A,B) is in L, or is PSPACE-complete.

Proof. If B is Boolean, then every

∃

-smuhom (from A to B) is an

∃∀

-smuhom. Moreover, if
there is no

∀

-smuhom, then every surjective multi-homomorphism is of multiplicity one, so it
is also a multi-homomorphism from (A; =A) to (B; =B). The first item now follows from
Proposition 18 and Theorem 13. The other items are easy as well. ◀

There are two wide gaps left for further investigation. First, it is unclear what the
complexity is for the L-PMC over templates that admit both an

∀

-smuhom and an

∃

-smuhom,
but no

∃∀

-smuhom. While there is no such a digraph template, there are examples with one
ternary or two binary relations, e.g., the following. We use ij as a shortcut for the pair (i, j).

A = ([3]; {(1, 2, 3)}), B = ([3]; {1, 2, 3} × {2} × {3} ∪ {1, 2} × {2} × {2, 3})
A = ([3]; {12}, {13}), B = ([3]; {12, 22, 32}, {12, 13, 22, 23, 33})

The second gap is between simultaneous NP- and coNP-hardness, and PSPACE-hardness,
when the template admits neither an

∀

-smuhom nor an

∃

-smuhom. Examples with unknown
complexity include the following.

A = ([3]; {(1, 2, 3)}), B = ([3]; {2, 3} × {1, 3} × {1, 2})
A = ([3]; {(1, 2, 3)}), B = ([3]; {1, 2} × {1, 2} × {3} ∪ {1, 3} × {2} × {2})
A = ([4]; {12, 34}), B = ([4]; {12, 13, 14, 23, 24, 34, 32})

In an ongoing work, we have developed some more general PSPACE-hardness criteria, but
the examples above remain elusive. The following equivalent unary version of the first
example is an especially interesting template, whose L-PMC is the problem described in the
introduction.

A = ([3]; {1}, {2}, {3}), B = ([3]; {2, 3}, {1, 3}, {1, 2})

6 Conclusion

We gave a full complexity classification of {∃,∧,∨}-PMC, initiated an algebraic approach
to {∃, ∀,∧,∨}-PMC, and applied it to provide several complexity results about this class of
problems.

An interesting concrete problem, whose complexity is currently open, is the {∃, ∀,∧,∨}-
PMC over the unary template above. As for the theory-building, the next natural step is
to capture more complex reductions by means of surjective multi-homomorphisms; namely,
the analogue of pp-constructions, which proved to be so useful in the theory of (Promise)
CSPs [3, 2]. It may be also helpful to characterize and study the sets of surjective multi-
homomorphisms in the spirit of [15, 7].

CP 2022

2:16 Fixed-Template Promise Model Checking Problems

References
1 Per Austrin, Venkatesan Guruswami, and Johan Håstad. (2 + ϵ)-Sat is NP-hard. SIAM J.

Comput., 46(5):1554–1573, 2017. doi:10.1137/15M1006507.
2 Libor Barto, Jakub Bulín, Andrei A. Krokhin, and Jakub Opršal. Algebraic approach to

promise constraint satisfaction. J. ACM, 68(4):28:1–28:66, 2021. doi:10.1145/3457606.
3 Libor Barto, Andrei Krokhin, and Ross Willard. Polymorphisms, and How to Use Them. In

Andrei Krokhin and Stanislav Živný, editors, The Constraint Satisfaction Problem: Complexity
and Approximability, volume 7 of Dagstuhl Follow-Ups, pages 1–44. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany, 2017. doi:10.4230/DFU.Vol7.15301.1.

4 Ferdinand Börner. Basics of Galois Connections. In Nadia Creignou, Phokion G. Kolaitis,
and Heribert Vollmer, editors, Complexity of Constraints - An Overview of Current Research
Themes [Result of a Dagstuhl Seminar], volume 5250 of Lecture Notes in Computer Science,
pages 38–67. Springer, 2008. doi:10.1007/978-3-540-92800-3_3.

5 Joshua Brakensiek and Venkatesan Guruswami. Promise Constraint Satisfaction: Structure
Theory and a Symmetric Boolean Dichotomy. In Proceedings of the Twenty-Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA’18, pages 1782–1801, Philadelphia, PA, USA,
2018. Society for Industrial and Applied Mathematics. doi:10.1137/1.9781611975031.117.

6 A. A. Bulatov. A dichotomy theorem for nonuniform CSPs. In 2017 IEEE 58th Annual
Symposium on Foundations of Computer Science (FOCS), pages 319–330, October 2017.
doi:10.1109/FOCS.2017.37.

7 Catarina Carvalho and Barnaby Martin. The lattice and semigroup structure of mul-
tipermutations. International Journal of Algebra and Computation, 0(0):1–25, 2021. doi:
10.1142/S0218196722500096.

8 Hubie Chen. Meditations on quantified constraint satisfaction. In Robert L. Constable and
Alexandra Silva, editors, Logic and Program Semantics - Essays Dedicated to Dexter Kozen on
the Occasion of His 60th Birthday, volume 7230 of Lecture Notes in Computer Science, pages
35–49. Springer, 2012. doi:10.1007/978-3-642-29485-3_4.

9 Venkatesan Guruswami and Euiwoong Lee. Strong inapproximability results on bal-
anced rainbow-colorable hypergraphs. Comb., 38(3):547–599, 2018. doi:10.1007/
s00493-016-3383-0.

10 Nancy Lynch. Log space recognition and translation of parenthesis languages. J. ACM,
24(4):583–590, October 1977. doi:10.1145/322033.322037.

11 Florent Madelaine and Barnaby Martin. The complexity of positive first-order logic without
equality. ACM Trans. Comput. Logic, 13(1), January 2012. doi:10.1145/2071368.2071373.

12 Florent R. Madelaine and Barnaby Martin. A tetrachotomy for positive first-order logic
without equality. In Proceedings of the 26th Annual IEEE Symposium on Logic in Computer
Science, LICS 2011, June 21-24, 2011, Toronto, Ontario, Canada, pages 311–320. IEEE
Computer Society, 2011. doi:10.1109/LICS.2011.27.

13 Florent R. Madelaine and Barnaby Martin. On the complexity of the model checking problem.
SIAM J. Comput., 47(3):769–797, 2018. doi:10.1137/140965715.

14 Barnaby Martin. First-order model checking problems parameterized by the model. In
Arnold Beckmann, Costas Dimitracopoulos, and Benedikt Löwe, editors, Logic and Theory
of Algorithms, 4th Conference on Computability in Europe, CiE 2008, Athens, Greece, June
15-20, 2008, Proceedings, volume 5028 of Lecture Notes in Computer Science, pages 417–427.
Springer, 2008. doi:10.1007/978-3-540-69407-6_45.

15 Barnaby Martin. The lattice structure of sets of surjective hyper-operations. In David Cohen,
editor, Principles and Practice of Constraint Programming - CP 2010 - 16th International
Conference, CP 2010, St. Andrews, Scotland, UK, September 6-10, 2010. Proceedings, volume
6308 of Lecture Notes in Computer Science, pages 368–382. Springer, 2010. doi:10.1007/
978-3-642-15396-9_31.

16 Barnaby Martin. Quantified Constraints in Twenty Seventeen. In Andrei Krokhin and Stanislav
Živný, editors, The Constraint Satisfaction Problem: Complexity and Approximability, volume 7
of Dagstuhl Follow-Ups, pages 327–346. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, 2017. doi:10.4230/DFU.Vol7.15301.327.

https://doi.org/10.1137/15M1006507
https://doi.org/10.1145/3457606
https://doi.org/10.4230/DFU.Vol7.15301.1
https://doi.org/10.1007/978-3-540-92800-3_3
https://doi.org/10.1137/1.9781611975031.117
https://doi.org/10.1109/FOCS.2017.37
https://doi.org/10.1142/S0218196722500096
https://doi.org/10.1142/S0218196722500096
https://doi.org/10.1007/978-3-642-29485-3_4
https://doi.org/10.1007/s00493-016-3383-0
https://doi.org/10.1007/s00493-016-3383-0
https://doi.org/10.1145/322033.322037
https://doi.org/10.1145/2071368.2071373
https://doi.org/10.1109/LICS.2011.27
https://doi.org/10.1137/140965715
https://doi.org/10.1007/978-3-540-69407-6_45
https://doi.org/10.1007/978-3-642-15396-9_31
https://doi.org/10.1007/978-3-642-15396-9_31
https://doi.org/10.4230/DFU.Vol7.15301.327

K. Asimi, L. Barto, and S. Butti 2:17

17 Barnaby Martin and Jos Martin. The complexity of positive first-order logic without equality
II: the four-element case. In Anuj Dawar and Helmut Veith, editors, Computer Science Logic,
24th International Workshop, CSL 2010, 19th Annual Conference of the EACSL, Brno, Czech
Republic, August 23-27, 2010. Proceedings, volume 6247 of Lecture Notes in Computer Science,
pages 426–438. Springer, 2010. doi:10.1007/978-3-642-15205-4_33.

18 Dmitriy Zhuk. A proof of the CSP dichotomy conjecture. J. ACM, 67(5):30:1–30:78, August
2020. doi:10.1145/3402029.

19 Dmitriy Zhuk and Barnaby Martin. QCSP monsters and the demise of the chen conjecture.
In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia
Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 91–104. ACM, 2020.
doi:10.1145/3357713.3384232.

A Proof of Proposition 16

Proof. Denote by R the unique binary symbol in the signature. Let f be an

∀

-smuhom from
A to B with f(a∗) = B and let g be an

∃

-smuhom from A to B with g−1(b∗) = A.
If a∗ is isolated in A (i.e., (a, a∗), (a∗, a) /∈ RA for every a ∈ A), then we define a surjective

multi-valued function h by h(a∗) = B and h(a) = {b∗} for every a ̸= a∗. It is a multi-
homomorphism from A to B since for any (a, a′) ∈ RA, we have h(a, a′) = {(b∗, b∗)}, which
is contained in RB because RA is nonempty, so g(RA) ∋ (b∗, b∗).

Suppose next that there is an edge (a1, a
∗) ∈ RA but a∗ has no outgoing edges in A.

Let b1 be an arbitrary element from f(a1) and define h by h(a∗) = B and h(a) = {b1} for
every a ̸= a∗. To verify that h ∈ SMuHom(A,B), consider an edge (a, a′) ∈ RA. As a∗ has
no outgoing edges in A, we get a ̸= a∗, so h(a) = {b1}. Now h(a, a′) ⊆ {b1} × B, which is
contained in RB because RB ⊇ f(a1, a

∗) ⊇ {b1} ×B.
If a∗ has an outgoing edge (a∗, a1) ∈ RA but no incoming edges, we proceed similarly,

defining h(a∗) = B and h(a) = {b1} for all a ̸= a∗, where b1 is an arbitrary element from
f(a1).

Finally, suppose that (a1, a
∗) ∈ RA and (a∗, a2) ∈ RA for some a1, a2 ∈ A. If there is

an element a3 ∈ A with no outgoing (resp., incoming) edges, define h by h(a3) = B and
h(a) = {b′} for all a ̸= a3, where b′ is an arbitrary element from f(a1) (resp., f(a2)). If there
is no such element a3, then we define h(a∗) = B and h(a) = {b∗} for all a ̸= a∗. Since g is
surjective, and every a ∈ A has both an incoming and an outgoing edge, then (b, b∗) ∈ RB

and (b∗, b) ∈ RB for all b ∈ B, therefore, h ∈ SMuHom(A,B).
The proof of Proposition 16 is concluded. ◀

CP 2022

https://doi.org/10.1007/978-3-642-15205-4_33
https://doi.org/10.1145/3402029
https://doi.org/10.1145/3357713.3384232

Improved Sample Complexity Bounds for
Branch-And-Cut
Maria-Florina Balcan #

Computer Science and Machine Learning Departments,
Carnegie Mellon University, Pittsburgh, PA, USA

Siddharth Prasad #

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA

Tuomas Sandholm #

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA
Optimized Markets, Inc., Pittsburgh, PA, USA
Strategic Machine, Inc., Pittsburgh, PA, USA
Strategy Robot, Inc., Pittsburgh, PA, USA

Ellen Vitercik #

Department of Electrical Engineering and Computer Sciences,
University of California Berkeley, CA, USA

Abstract
The branch-and-cut algorithm for integer programming has a wide variety of tunable parameters that
have a huge impact on its performance, but which are challenging to tune by hand. An increasingly
popular approach is to use machine learning to configure these parameters based on a training set
of integer programs from the application domain. We bound how large the training set should be
to ensure that for any configuration, its average performance over the training set is close to its
expected future performance. Our guarantees apply to parameters that control the most important
aspects of branch-and-cut: node selection, branching constraint selection, and cut selection, and are
sharper and more general than those from prior research.

2012 ACM Subject Classification Theory of computation → Integer programming; Theory of
computation → Sample complexity and generalization bounds

Keywords and phrases Automated algorithm configuration, integer programming, machine learn-
ing theory, tree search, branch-and-bound, branch-and-cut, cutting planes, sample complexity,
generalization guarantees, data-driven algorithm design

Digital Object Identifier 10.4230/LIPIcs.CP.2022.3

Funding This material is based on work supported by the National Science Foundation under grants
CCF-1733556, CCF-1910321, IIS-1901403, and SES-1919453, the ARO under award W911NF2010081,
the Defense Advanced Research Projects Agency under cooperative agreement HR00112020003,
a Simons Investigator Award, an AWS Machine Learning Research Award, an Amazon Research
Award, a Bloomberg Research Grant, and a Microsoft Research Faculty Fellowship.

1 Introduction

Branch-and-cut (B&C) is a powerful algorithmic paradigm that is the backbone of all modern
integer programming (IP) solvers. The main components of B&C can be tuned and tweaked
in a myriad of ways. The fastest commercial IP solvers like CPLEX and Gurobi employ an
array of heuristics to make decisions at every stage of B&C to reduce the solving time as
much as possible, and give the user freedom to tune the multitude of parameters influencing
the search through the space of feasible solutions. However, tuning the parameters that
control B&C in a principled way is an inexact science with little to no formal mathematical
guidelines. A rapidly growing line of work studies machine-learning approaches to speeding

© Maria-Florina Balcan, Siddharth Prasad, Tuomas Sandholm, and Ellen Vitercik;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 3; pp. 3:1–3:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ninamf@cs.cmu.edu
mailto:sprasad2@cs.cmu.edu
mailto:sandholm@cs.cmu.edu
mailto:vitercik@berkeley.edu
https://doi.org/10.4230/LIPIcs.CP.2022.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Improved Sample Complexity Bounds for Branch-And-Cut

up the various aspects of B&C – in particular investigating whether high-performing B&C
parameter configurations can be learned from a training set of typical IPs from the particular
application at hand [2, 22, 37, 42, 25, 32, 27, 43, 29]. Complementing the substantial number
of experimental approaches using machine learning for B&C, a recent generalization theory
has developed in parallel that aims to provide a rigorous theoretical foundation for how well
any B&C configuration learned from training IP data will perform on new unseen IPs [7, 9].
In particular, this line of theoretical research provides sample complexity guarantees that
bound how large the training set should be to ensure that no matter how the parameters
are configured (i.e., using any approach from prior research), the average performance of
branch-and-cut over the training set is close to its expected future performance. Sample
complexity bounds are important because with too small a training set, learning is impossible:
a configuration may have strong average performance over the training set but terrible
expected performance on future IPs. If the training set is too small, then no matter how the
parameters are tuned, the resulting configuration will not have reliably better performance
than any default configuration. State-of-the-art parameter tuning methods have historically
come without any provable guarantees, and our results fill in that gap for a wide array of
tunable B&C parameters. In this paper, we expand and improve upon the existing theory to
develop a wider and sharper handle on the learnability of the key components of B&C.

1.1 Summary of main contributions
Our main contribution is a formalization of a general model of tree search, presented in
Section 2.1, that allows us to improve and generalize prior results on the sample complexity
of tuning B&C. In this model, the algorithm repeatedly chooses a leaf node of the search
tree, performs a series of actions (for example, a cutting plane to apply and a constraint to
branch on), and adds children to that leaf in the search tree. The algorithm will also fathom
nodes when applicable. The node and action selection are governed by scoring rules, which
assign a real-valued score to each node and possible action. For example, a node-selection
scoring rule might equal the objective value of the node’s LP relaxation. We focus on general
tree search with path-wise scoring rules. At a high level, a score of a node or action is
path-wise if its value only depends on information contained along the path between the
root and that node, as is often the case in B&C. Many commonly used scoring rules are
path-wise including the efficacy [4], objective parallelism [1], directed cutoff distance [15],
and integral support [41] scoring rules, all used for cut selection by the leading open-souce
solver SCIP [15]; the best-bound scoring rule for node selection; and the linear, product, and
most-fractional scoring rules for variable selection using strong branching [1]. In Section 4,
we show how this general model of tree search captures a wide array of B&C components,
including node selection, general branching constraint selection, and cutting plane selection,
simultaneously. We also provide experimental evidence that, in the case of cutting plane
selection, the data-dependent tuning suggested by our model can lead to dramatic reductions
in the number of nodes expanded by B&C.

In Section 3, we prove our main structural result: for any IP, the tree search parameter
space can be partitioned into a finite number of regions such that in any one region, the
resulting search tree is fixed. This is in spite of the fact that the B&C search tree can be an
extremely unstable function of its parameters, with minuscule changes leading to exponentially
better or worse performance [7, 9]. By analyzing the complexity of this partition, we prove
our sample complexity bound. In particular, we relate the complexity of the partition to
the pseudo-dimension of the set of functions that measure the performance of B&C as a
function of the input IP. Pseudo-dimension (defined in Section 3) is a combinatorial notion

M.-F. Balcan, S. Prasad, T. Sandholm, and E. Vitercik 3:3

from machine learning theory that measures the intrinsic complexity of a set of functions. At
a high level, it measures how well a set of functions are able match complex patterns. Classic
results from learning theory then allow us to translate our pseudo-dimension bound into a
sample complexity guarantee [3], capturing the intuition that the more complex patterns
one can fit (i.e., the larger the pseudo-dimension is), the more samples needed to generalize.
The sample complexity bound grows linearly with the pseudo-dimension, so ideally, the
pseudo-dimension will be polynomial in the size of the problem.

We show that the pseudo-dimension is only polynomial in the depth of the tree (which is,
for example, at most the number of variables in the case of binary integer programming). By
contrast, we might naïvely expect the pseudo-dimension to grow linearly with the number of
arithmetic operations required to compute the B&C tree (as in Theorem 8.4 by Anthony and
Bartlett [3]), which is exponential in the depth of the tree. In fact, our bound is exponentially
smaller than the pseudo-dimension bound of prior research by Balcan et al. [9], which grows
linearly with the total number of nodes in the tree. Their results apply to any type of scoring
rule, path-wise or otherwise. By taking advantage of the path-wise structure, we are able to
reason inductively over the depth of the tree, leading to our exponentially improved bound.
Our results recover those of Balcan et al. [7], who only studied path-wise scoring rules for
single-variable selection for branching. In contrast, we are able to handle many more of the
critical components of tree search: node selection, general branching constraint selection,
and cutting plane selection.

1.2 Additional related research
A growing body of research has studied how machine learning can be used to speed up the
time it takes to solve integer programs, primarily from an empirical perspective, whereas we
study this problem from a theoretical perspective. This line of research has included general
parameter tuning procedures [25, 27, 24, 37], which are not restricted to any one aspect of
B&C. Researchers have also honed in on specific aspects of tree search and worked towards
improving those using machine learning. These include variable selection [29, 2, 13, 7, 16, 19],
general branching constraint selection [44], cut selection [37, 39, 23, 9], node selection [36, 21],
and heuristic scheduling [30, 10]. Machine learning approaches to large neighborhood search
have also been used to speed up solver runtimes [38].

This paper contributes to a line of research that provides sample complexity guarantees for
algorithm configuration, often by using structure exhibited by the algorithm’s performance
as a function of its parameters [20, 8, 7, 6, 9, 5]. This line of research has studied algorithms
for clustering [8], computational biology [6], and integer programming [7, 9], among other
computational problems. The main contribution of this paper is to provide a sharp yet
general analysis of the performance of tree search as a function of its parameters.

A related line of research provides algorithm configuration procedures with provable
guarantees that are agnostic to the specific algorithm that is being configured [31, 40] and are
particularly well-suited for algorithms with a finite number of possible configurations (though
they can be applied to algorithms with infinite parameter spaces by randomly sampling a
finite set of configurations).

2 Main tree search model

In this section we present our general tree search model and situate it within the framework
of sample complexity. Balcan et al. [9] studied the sample complexity of a much more
general formulation of a tunable search algorithm without any inherent tree structure. Our
formulation explicitly builds a tree.

CP 2022

3:4 Improved Sample Complexity Bounds for Branch-And-Cut

Algorithm 1 Tree search.

Input: Root node Q, depth limit ∆
1: Initialize T = Q.
2: while T contains an unfathomed leaf do
3: Select a leaf Q of T that maximizes nscore(T , Q).
4: if depth(Q) = ∆ or fathom(T , Q, None) then
5: Fathom Q.
6: else
7: Select an action A ∈ actions(T , Q) that maximizes ascore(T , Q, A).
8: if fathom(T , Q, A) then
9: Fathom Q.

10: else if children(T , Q, A) = ∅ then
11: Fathom Q.
12: else
13: Add all nodes in children(T , Q, A) to T as children of Q.

2.1 General model of tree search

Tree search starts with a root node. In each round of tree search, a leaf node Q is selected.
At this node, one of three things may occur: (1) Q is fathomed, meaning it is never visited
again, (2) some action is taken at Q, and then it is fathomed, or (3) some action is taken
at Q, and then some number of children nodes of Q are added to the tree. (For example,
an action might represent a decision about which variable to branch on.) This process
repeats until the tree has no unfathomed leaves. More formally, there are functions actions,
children, and fathom prescribing how the search proceeds. Given a partial tree T and a
leaf Q of T , actions(T , Q) outputs a set of actions available at Q. Given a partial tree
T , a leaf Q of T , and an action A ∈ actions(T , Q), fathom(T , Q, A) ∈ {true, false}
is a Boolean function used to determine when to fathom a leaf Q of T given that action
A ∈ actions(T , Q) ∪ {None} was taken at Q, and children(T , Q, A) outputs a (potentially
empty) list of nodes representing the children of Q to be added to the search tree given that
action A was taken at Q. Finally, nscore(T , Q) is a node-selection score that outputs a
real-valued score for each leaf of T , and ascore(T , Q, A) is an action-selection score that
outputs a real-valued score for each action A ∈ actions(T , Q). These scores are heuristics
that are meant to indicate the quality of exploring a node or performing an action.

Many aspects of B&C are governed by scoring rules [1]. For example, commonly used
scoring rules for cutting plance selection include efficacy [4], which is the perpendicular
distance from the current LP solution to the cutting plane; parallelism [1], which measures
the angle between the objective and the normal vector to the cutting plane; and directed
cutoff [15], which is the distance from the current LP solution to the cutting plane along
the direction of the line segment connecting the LP solution to the current best incumbent
integer solution For node selection, under the commonly used best-first node selection policy,
nscore(T , Q) equals the objective value of the LP relaxation of the IP represented by the
node Q. Finally, for variable selection, popular scoring rules include a maximum change in
LP objective value after branching on the variable (where the maximum is taken over the two
resulting children), the minimum change in the LP objective value, linear combinations of
these two values, and the product of these two values [1]. Algorithm 1 is a formal description
of tree search using these functions.

M.-F. Balcan, S. Prasad, T. Sandholm, and E. Vitercik 3:5

The key condition that enables us to derive stronger sample complexity bounds compared
to prior research is the notion of a path-wise function, which was also used in prior research
but only in the context of variable selection [7].

▶ Definition 1 (Path-wise functions). A function f on tree-leaf pairs is path-wise if for all T
and Q ∈ T , f(T , Q) = f(TQ, Q), where TQ is the path from the root of T to Q. A function
g on tree-leaf-action triples is path-wise if for all A, fA(T , Q) := g(T , Q, A) is path-wise.

We assume that actions, ascore, nscore and children are path-wise, though fathom
is not necessarily path-wise.

Many commonly-used scoring rules are path-wise. For example, scoring rules are often
functions of the LP relaxation of the IP represented by a given node, and these scoring rules
are path-wise. Specific examples include the efficacy, objective parallelism, directed cutoff
distance, and integral support scoring rules used for cut selection; the best-bound scoring
rule for node selection; and the linear, product, and most-fractional scoring rules for variable
selection using strong branching. A point of clarification: the pathwise assumption is with
respect to the numerical scores assigned to actions/nodes. The actual act of, for example,
node selection, can depend on the entire tree. For example, consider the best-bound node
selection rule in branch-and-cut, which chooses the node with the best LP estimate. Here,
the scoring rule, which is the LP objective value itself, is pathwise, but ultimately the node
that is selected depends on the LP bounds at every unexplored node of the tree. This is fine
for our analysis. Similarly, the decision to fathom a node based on LP bounds is a decision
that depends on the entire tree built so far, which is also captured by our analysis.

No one scoring rule is optimal across all application domains, and prior research on
variable selection has shown that it can be advantageous to adapt the scoring rule to the
application domain at hand [7]. To this end, Algorithm 1 can be tuned by two parameters
µ ∈ [0, 1] and λ ∈ [0, 1] that control action selection and node selection, respectively. Given
two fixed path-wise action-selection scores ascore1 and ascore2, we define a new score by

ascoreµ(T , Q) = µ · ascore1(T , Q) + (1 − µ) · ascore2(T , Q).

Similarly, given two path-wise node-selection scores nscore1 and nscore2, we define

nscoreλ(T , Q, A) = λ · nscore1(T , Q, A) + (1 − λ) · nscore2(T , Q, A).

Then, if nscoreλ and ascoreµ are used as the scores in Algorithm 1, we can view the
behavior of tree search as a function of µ and λ. The choice to use a convex combination of
scores is not new: prior research has shown that this idea can lead to dramatic improvements
in the case of single-variable branching [7]. Furthermore, the leading open source solver
SCIP uses a hard-coded weighted sum of scoring rules to select cutting planes. More broadly,
interpolating between two scores is a commonly-studied modeling choice in other machine
learning topics such as clustering [8].

Finally, we assume there exists b, k ∈ N such that |actions(T , Q)| ≤ b for any Q ∈ T ,
and |children(T , Q, A)| ≤ k for all Q, A.

2.2 Problem formulation
We now define the notion of a sample complexity bound more formally. Let Q denote
the domain of possible input root nodes Q to Algorithm 1 (for example, the set of all
IPs with n variables and m constraints). As is common in prior research on algorithm
configuration [22, 37, 42, 25, 32, 27, 43], we assume there is some unknown distribution D

CP 2022

3:6 Improved Sample Complexity Bounds for Branch-And-Cut

over Q. In the IP setting, D could represent, for example, typical scheduling IP instances
solved by an airline company. The sample complexity of a class of real valued functions
F = {f : Q → R} is the minimum number of independent samples required from D so that
with high probability over the samples, the empirical value of f on the samples is a good
approximation of the expected value of f over D, uniformly over all f ∈ F . Formally, given
an error parameter ε and confidence parameter δ, the sample complexity NF (ε, δ) is the
minimum N0 ∈ N such that for any N ≥ N0,

Pr
Q1,...,QN ∼D

(
sup
f∈F

∣∣∣∣∣ 1
N

N∑
i=1

f(Qi) − E
Q∼D

[f(Q)]

∣∣∣∣∣ ≤ ε

)
≥ 1 − δ

for all distributions D supported on Q. Equivalently, our results bound the error εF (N, δ)
between the empirical value of any f ∈ F and its true expected value in terms of the number
of training samples N and the confidence parameter δ. NF (ε, δ) is the number of samples
required to achieve a prescribed error bound ε, while εF (N, δ) provides an error bound for
any number N of samples at hand. We provide bounds on NF (ε, δ) and εF (N, δ) in terms of
a common learning-theoretic measure of intrinsic complexity of F called pseudo-dimension,
which is detailed in Section 3.

In the context of Algorithm 1, we study families of tree-constant cost functions. A
cost function cost : Q → R is tree constant if cost(Q) only depends on the tree built
by Algorithm 1 on input Q (an example is tree size). Let costµ,λ(Q) denote this cost
when Algorithm 1 is run using the scores ascoreµ = µ · ascore1 + (1 − µ) · ascore2
and nscoreλ = λ · nscore1 + (1 − λ) · nscore2. We study the sample complexity of
F = {costµ,λ : µ, λ ∈ [0, 1]}. We emphasize that we primarily interpret tree-constant
functions as proxies for run-time. In the context of integer programming, tree size is one such
measure. A strength of these guarantees is that they apply no matter how the parameters
are tuned: optimally or suboptimally, manually or automatically. For any configuration,
these guarantees bound the difference between average performance over the training set
and expected future performance on unseen IPs.

3 Generalization guarantees for tree search

In order to derive our sample complexity guarantees, we first prove a key structural property:
the behavior of Algorithm 1 is piecewise constant as a function of the node-selection score
parameter λ and the action-selection score parameter µ. We give a high-level outline of our
approach. We first assume that the conditional checks fathom(T , Q, ·) = true (lines 4 and 8)
are suppressed. Let A′ denote Algorithm 1 without these checks (so A′ fathoms a node if
and only if the depth limit is reached or if the node has no children). The behavior of A′ as
a function of µ and λ can be shown to be piecewise constant using the same argument as in
Claim 3.4 of Balcan et al. [7]. Given this, our first main technical contribution (Lemma 2) is a
generalization of Claim 3.5 of Balcan et al. [7] that relates the behavior of A′ to Algorithm 1.
The argument in Balcan et al. [7] is specific to branching, but we are able to prove our result
in a much more general setting. Our second main technical contribution (Lemma 4) is to
establish piecewise structure when the node-selection score is controlled by λ ∈ [0, 1]. The
main reason for this auxiliary step of analyzing A′ is due to the fact that fathom is not
necessarily a path-wise function, and can depend on the state of the entire tree.

▶ Lemma 2. Fix µ ∈ [0, 1]. Let T and T ′ be the trees built by Algorithm 1 and A′,
respectively, using the action-selection score µ · ascore1 + (1 − µ) · ascore2. Let Q be any
node in T , and let TQ be the path from the root of T to Q. Then, TQ is a rooted subtree of
T ′, no matter what node selection policy is used.

M.-F. Balcan, S. Prasad, T. Sandholm, and E. Vitercik 3:7

Proof. Let t denote the length of the path TQ. Let TQ be comprised of the sequence
of nodes (Q1, . . . , Qt) such that Q1 is the root of T , Qt = Q, and for each τ , Qτ+1 ∈
children(TQτ

, Qτ , Aτ) where Aτ ∈ actions(TQτ
, Qτ) is the action selected by Algorithm 1

at node Qτ . We show that (Q1, . . . , Qt) is a rooted path in T ′ as well.
Suppose for the sake of contradiction that this is not the case. Let τ ∈ {2, . . . , t} be the

minimal index such that (Q1, . . . , Qτ−1) is a rooted path in T ′, but there is no edge in T ′

from Qτ−1 to node Qτ . There are two possible cases:
Case 1. Qτ−1 was fathomed by A′. This case is trivially not possible since whenever

A′ fathoms a node, so does Algorithm 1 (recall A′ was defined by suppressing fathoming
conditions of Algorithm 1).

Case 2. Qτ /∈ children(T ′, Qτ−1, A′
τ−1) where A′

τ−1 is the action taken by A′ at node
Qτ−1. In this case, if children(T ′, Qτ−1, A′

τ−1) = ∅, then Qτ−1 would be fathomed by A′,
which cannot happen by the first case. Otherwise, if children(T ′, Qτ−1, A′

τ−1) ̸= ∅, we show
that we arrive at a contradiction due to the fact that the scoring rules, action-set functions,
and children functions are all path-wise. Let A′

τ−1 denote the action taken by A′ at Qτ−1,
and let Aτ−1 denote the action taken by Algorithm 1 at Qτ−1. Since actions is path-wise,

actions(T , Qτ−1) = actions(TQτ−1 , Qτ−1) = actions(T ′, Qτ−1).

Since ascore1 and ascore2 are path-wise, we have

µ · ascore1(T ,Qτ−1, A) + (1 − µ) · ascore2(T , Qτ−1, A)
= µ · ascore1(TQτ−1 , Qτ−1, A) + (1 − µ) · ascore2(TQτ−1 , Qτ−1, A)
= µ · ascore1(T ′, Qτ−1, A) + (1 − µ) · ascore2(T ′, Qτ−1, A).

for all actions A ∈ actions(TQτ−1 , Qτ−1). Therefore Algorithm 1 and A′ choose the same
action at node Qt−1, that is, Aτ−1 = A′

τ−1. Finally, since children is path-wise, we have

children(T , Qτ−1, Aτ−1) = children(TQτ−1 , Qτ−1, Aτ−1) = children(T ′, Qτ−1, Aτ−1).

Since Qτ ∈ children(T , Qτ−1, Aτ−1), this is a contradiction, which completes the proof. ◀

We use the following generalization of Claim 3.4 of Balcan et al. [7] that shows the
behavior of A′ is piecewise constant. While their argument only applies to single-variable
branching, our key insight is that the same reasoning can be readily adapted to handle any
actions (including general branching constraints and cutting planes). The structure of our
proof (which we defer to the appendix) is identical, but is modified to work in our more
general setting. This style of analysis is similar in spirit to [34].

▶ Lemma 3. Let ascore1 and ascore2 be two path-wise action-selection scores. Fix the
input root node Q. There are T ≤ k∆(∆−1)/2b∆ subintervals I1, . . . , IT partitioning [0, 1]
where for any subinterval It, the action-selection score µ · ascore1 + (1 − µ) · ascore2 results
in the same tree built by A′ for all µ ∈ It, no matter what node selection policy is used.

We now prove our main structural result for Algorithm 1.

▶ Lemma 4. Let ascore1 and ascore2 be path-wise action-selection scores and let nscore1
and nscore2 be path-wise node-selection scores. Fix the input root node Q. There are
T ≤ k∆(9+∆)b∆ rectangles partitioning [0, 1]2 such that for any rectangle Rt, the node-selection
score λ·nscore1+(1−λ)·nscore2 and the action-selection score µ·ascore1+(1−µ)·ascore2
result in the same tree built by Algorithm 1 for all (µ, λ) ∈ Rt.

CP 2022

3:8 Improved Sample Complexity Bounds for Branch-And-Cut

Proof. By Lemma 3, there is a partition of [0, 1] into subintervals I1∪· · ·∪IT such that for all µ

within a given subinterval, the tree built by A′ is invariant (independent of the node-selection
score). Fix a subinterval It of this partition. Let T denote the tree built by Algorithm 1.
For each node Q ∈ T , let TQ denote the path from the root to Q in T . Since nscore1 is
path-wise, for any tree T ′ containing TQ as a rooted path, nscore1(T ′, Q) = nscore1(TQ, Q).
The same holds for nscore2. For every pair of nodes Q1, Q2 ∈ T , let λ(Q1, Q2) ∈ [0, 1]
denote the unique solution to

λ · nscore1(TQ1 , Q1) + (1 − λ) · nscore2(TQ1 , Q1)
= λ · nscore1(TQ2 , Q2) + (1 − λ) · nscore2(TQ2 , Q2),

if it exists (if there are either (1) no solutions or (2) infinitely many solutions, set λ(Q1, Q2) =
0). The thresholds λ(Q1, Q2) for every pair of nodes Q1, Q2 ∈ T partition [0, 1] into
subintervals such that for all λ within a given subinterval, the total order over the nodes of
T induced by nscoreλ is invariant. In particular, this means that the node selected by each
iteration of Algorithm 1 is invariant. Let J1 ∪ · · · ∪ JS denote these subintervals induced by
the thresholds over all subinterval It ∈ {I1, . . . , IT } established in Lemma 3.

We now show that this implies that the tree built by Algorithm 1 is invariant over all (µ, λ)
within a given rectangle It × Js. Fix some rectangle It × Js. We proceed by induction on the
iterations (of the while loop) of Algorithm 1. For the base case (iteration 0, before entering
the while loop), the tree consists of only the root, so the hypothesis trivially holds. Now,
suppose the statement holds up until the jth iteration, for some j. We analyze each line of
Algorithm 1 to show that the behavior of the j+1st iteration is independent of (µ, λ) ∈ It ×Js.
First, since Js determines the node selected at each iteration (as argued above), the node
selected on the j + 1st iteration (line 3) is fixed, independent of (µ, λ) ∈ It × Js. Denote this
node by Q. Thus, whether depth(Q) = ∆ is independent of (µ, λ) ∈ It × Js, and similarly
whether fathom(T , Q, None) = true is independent of (µ, λ) ∈ It × Js (line 4). This implies
that whether or not Q is fathomed at this stage is independent of (µ, λ) ∈ It × Js. If Q was
fathomed, we are done. Otherwise, we argue that the action selected at line 7 is invariant
over (µ, λ) ∈ It × Js. By Lemma 3, A′ builds the same tree for all µ ∈ It. Let TQ denote
the path from the root to Q in this tree. By Lemma 2, TQ is the path from the root to Q

in the tree built by Algorithm 1 as well. The action selected at Q by A′ is invariant over
µ ∈ It (by Lemma 3). Therefore, since actions, ascore1, and ascore2 are path-wise, the
action A selected by Algorithm 1 at Q is invariant over µ ∈ It. Finally, fathom(T , Q, A) and
children(T , Q, A) are completely determined, so the execution of the remaining conditional
statement (line 8 to line 13) is invariant over (µ, λ) ∈ It × Js. Thus, the entire iteration of
Algorithm 1 is invariant over (µ, λ) ∈ It × Js, which completes the induction.

Finally, we count the total number of rectangles in our partition of [0, 1]2. For each
interval It in the partition established in Lemma 3, we obtained a partition of It × [0, 1] into
rectangles induced by at most

(|T |
2
)

thresholds, which consists of at most at most

1 +
(

(k∆+1 − 1)/(k − 1)
2

)
≤ 1 +

(
k∆+1 − 1

k − 1

)2

≤ k5∆

subintervals. Accounting for every interval It ∈ {I1, . . . , IT } in the partition from Lemma 3,
we get a total of Tk5∆ ≤ k∆(9+∆)/2b∆ rectangles, as desired. ◀

We now derive generalization guarantees for the collection F = {costµ,λ : (µ, λ) ∈ [0, 1]2}
where cost is any tree-constant function, such as tree size. We do this by bounding the
pseudo-dimension of F , which is a combinatorial measure of intrinsic complexity of a class of

M.-F. Balcan, S. Prasad, T. Sandholm, and E. Vitercik 3:9

real valued functions. The pseudo-dimension of F , denoted by Pdim(F), is the largest positive
integer N such that there exist N nodes Q1, . . . , QN ∈ Q and N thresholds r1, . . . , rN ∈ R
such that |{(sign(f(Q1) − r1), . . . , sign(f(QN) − rN)) : f ∈ F}| = 2N . A well-known result
in learning theory [3] states that if functions in F have bounded range [−H, H], then

NF (ε, δ) = O

(
H2

ε2 (Pdim(F) + ln(1/δ))
)

and εF (N, δ) = O

(
H

√
Pdim(F) + ln(1/δ)

N

)
.

When each function in F maps to {0, 1}, the pseudo-dimension is more commonly referred
to as the VC dimension.

Bounding the pseudo-dimension is a simple instantiation of the general framework provided
by Balcan et al. [6] with the piecewise structure established in Lemma 4. Balcan et al.’s [6]
main result gives pseudo-dimension bounds for families of piecewise structured functions
in terms of the VC dimension of the class of 0/1 classifiers defining the boundaries of the
functions, the number of classifiers defining the boundaries, and the pseudo-dimension of
the family of functions when restricted to each piece. (Strictly, this result is in terms of the
dual classes of the boundary and piece functions. However, since the dual class of all linear
separators is the set of all linear separators, we omit this detail for simplicity.)

▶ Theorem 5. Let cost(Q) be any tree-constant cost function, and let costµ,λ(Q) be the
cost of the tree built by Algorithm 1 on input root node Q using action-selection score
parameterized by µ and node-selection score parameterized by λ. Then, Pdim({costµ,λ}) =
O(∆2 log k + ∆ log b).

Proof. By Lemma 4, there are at most T = k∆(9+∆)b∆ rectangles partitioning [0, 1]2 such
that for a fixed input node Q, costµ,λ(Q) is constant over each rectangle as a function
of µ, λ. These T rectangles can be defined by T thresholds on [0, 1] corresponding to µ

and T thresholds on [0, 1] corresponding to λ. Thus, the T rectangles can be identified by
T 2 = k2∆(9+∆)b2∆ linear separators in R2. The VC dimension of linear separators in R2 is
O(1). The pseudo-dimension of the set of constant functions is also O(1). Plugging these
quantities into the main theorem of Balcan et al. [6] yields the theorem statement. ◀

3.1 Multiple actions
Theorem 5 can be easily generalized to the case where there are multiple actions of different
types taken at each node of Algorithm 1. Specifically, there are now d path-wise action-set
functions actions1, . . . , actionsd, and at line 7 of Algorithm 1 we take one action of each
type, that is, we select action A1 ∈ actions1(T , Q), A2 ∈ actions2(T , Q), and so on. The
functions fathom and children then depend on all d actions taken at node Q. We assume
that there are two scoring rules ascorei

1 and ascorei
2 for each action type i = 1, . . . , d.

Algorithm 1 can then be parameterized by (µ, λ), where µ ∈ Rd is a vector of parameters
controlling each action, so the ith action is selected to maximize µi ·ascorei

1+(1−µi)·ascorei
2.

Then, as long as d = O(1), we get the same pseudo-dimension bound. We assume b is a
uniform upper bound on the size of actionsi for any i. The proof is nearly identical, and
we defer it to the appendix (which also contains more details on the multiple-action setup).

▶ Theorem 6. Let cost(Q) be any tree-constant cost function, and let costµ,λ(Q) be the
cost of the tree built by Algorithm 1 on input root node Q using action-selection scores
parameterized by µ ∈ Rd, where d = O(1), and node-selection score parameterized by λ.
Then, Pdim({costµ,λ}) = O(∆2 log k + ∆ log b).

CP 2022

3:10 Improved Sample Complexity Bounds for Branch-And-Cut

4 Branch-and-cut for integer programming

We now instantiate our main results with the three main components of the B&C algorithm:
branching, cutting planes, and node selection, used to solve IPs max{cT x : Ax ≤ b, x ≥
0, x ∈ Zn} where c ∈ Rn, A ∈ Zm×n, b ∈ Zm. The function fathom(T , Q, A) outputs true
if after having taken action A the LP relaxation at Q is integral, infeasible, or worse than
the best integral solution found so far in T . The function children(T , Q, A) outputs the
two subproblems generated by the branching procedure on the IP at Q after having taken
action A. For simplicity we refer only to IPs, but everything in our discussion applies to
mixed IPs as well. In our model of tree search, node selection is controlled by λ. Cutting
planes and branching are types of actions and controlled by µ.

4.1 Branching
In this section, we provide guarantees for branching. Throughout this section we assume
∆ = O(n), as is the case with single-variable branching.

4.1.1 Multivariable branching constraints
It is well known that allowing for more general generation of branching constraints can result
in smaller B&C trees. Gilpin and Sandholm [17] studied multivariable branches of the form∑

i∈S x[i] ≤
⌊∑

i∈S x∗
LP[i]

⌋
,
∑

i∈S x[i] ≥
⌈∑

i∈S x∗
LP[i]

⌉
where S is a subset of the integer vari-

ables such that
∑

i∈S x∗
LP[i] /∈ Z. Here, actions(T , Q) = 2[n], so, Pdim({costµ,λ}) = O(n2).

So our sample complexity bound for multivariable branching constraints is, surprisingly, only
a constant factor worse than the bound for single-variable branching constraints.

We give a simple example where B&C using only single variable branches builds a tree of
exponential size, while a single branch on the entire set of variables at the root yields two
infeasible subproblems (and a B&C tree of size 3).

▶ Theorem 7. For any n, there is an IP with two constraints and n variables such that
with only single variable branches, B&C builds a tree of size 2(n−1)/2, while with a suitable
multivariable branch, B&C builds a tree of size three.

Proof. Let n be an odd positive integer. Consider the infeasible IP max{
∑n

i=1 x[i] :
2
∑n

i=1 x[i] = n, x ∈ {0, 1}n}. Jeroslow [26] proved that with only single-variable branches,
B&C builds a tree with 2(n−1)/2 nodes to determine infeasibility. However, with a suitable
multivariable branch, B&C will build a tree of constant size. The optimal solution to the LP
relaxation of the IP is attained when all variables are set to 1/2. A multivariable branch
on all n variables produces the two subproblems with constraints

∑n
i=1 x[i] ≤ ⌊n/2⌋ and∑n

i=1 x[i] ≥ ⌈n/2⌉, respectively. Since n is odd, ⌊n/2⌋ < n/2 and ⌈n/2⌉ > n/2, so the LP
relaxations of both subproblems are infeasible. Thus, B&C builds a tree with three nodes. ◀

Yang et al. [45] provide more examples of situations where multivariable branching yields
dramatic improvements in tree size over single variable branching. They also perform a
computational evaluation of a few different strategies for generating multivariable branching
constraints. Yang et al. [44] explore gradient-boosting for learning to mimic strong branching
for multiple variables.

4.1.2 Branching on general disjunctions
Branching constraints can be even more general than multivariable branches. Given any
integer vector π ∈ Zn and any integer π0 ∈ Z (jointly referred to as a disjunction), the
constraints πT x ≤ π0 or πT x ≥ π0 + 1 represent a valid partition of the feasible region

M.-F. Balcan, S. Prasad, T. Sandholm, and E. Vitercik 3:11

into subproblems. Owen and Mehrotra [35] ran the first experiments demonstrating that
branching on general disjunctions can lead to significantly smaller tree sizes. Subsequent
works have posed different heuristics to select disjunctions to branch on [14, 33].

In practice it is known that additional IP constraints should not have coefficients that
are too large. If C is a bound on the magnitude of the coefficient of any disjunction, then
actions(T , Q) = {−C, . . . , C}n+1, so Pdim({costµ,λ}) = O(n2 log C). Karamanov and
Cornuéjols [28] conduct a computational evaluation of disjunctions derived from Gomory
mixed-integer cuts. In this setting, actions(T , Q) is the set of m or fewer disjunctions
corresponding to the m or fewer Gomory mixed-integer cuts derived from the simplex tableau
from solving the LP relaxation of Q. In this case, Pdim({costµ,λ}) = O(n2 + n log m).

4.2 Cutting planes

The action set can also correspond to cutting planes used to refine the feasible region of the
IP at any stage of B&C. Here, actions(T , Q) is any set of cutting planes derived solely using
the path from the root to the IP at Q. Examples include the set of Chvátal-Gomory (CG)
derived from the simplex tableau [18], and various combinatorial families of cutting planes
such as clique cuts, odd-hole cuts, and cover cuts. The set actions(T , Q) can also consist of
sequences of cutting planes, representing adding several cutting planes to the IP in waves.
For example, the set of all sequences of w CG cuts generated from the simplex tableau for
an IP with m constraints has size at most mw (regardless of whether the LP is resolved after
each cut). The number of such cutting planes provided by the LP tableau at any node in the
tree is at most O(m + nw) (the original IP has m constraints, and after at most n branches
there are an additional n branching constraints and at most nw cutting planes), which means
that |actions(T , Q)| ≤ O(m + nw)w. Thus, Pdim({costµ,λ}) = O(n2 + nw log(m + nw)).

We can also handle arbitrary CG cuts (not just ones from the LP tableau). Balcan et al. [9]
proved that given an IP with feasible region {x ∈ Zn : Ax ≤ b, x ≥ 0}, even though there
are infinitely many CG cut parameters, there are effectively only O(w2w ∥A∥1,1 + 2w ∥b∥1 +
nw)1+mw distinct sequences of cutting planes that w CG cut parameters can produce. At any
node in the B&C tree, the number of constraints is at most O(m + nw). So, on the domain
of IPs with ∥A∥1,1 ≤ α and ∥b∥1 ≤ β, |actions(T , Q)| ≤ O(w2wα + 2wβ + nw)1+w·O(m+nw).
Thus, Pdim({costµ,λ}) = O(n2w3m log(α + β + n)).

4.2.1 Experiments on cover cuts for the multiple knapsack problem

In this section, we demonstrate via experiments that tuning a convex combination of scoring
rules to select cuts can lead to dramatically smaller branch-and-cut trees when done in a
data-dependent manner. We study the classical NP-hard multiple knapsack problem: given
a set N of items where each item i ∈ N has a value pi ≥ 0 and a weight wi ≥ 0, and
a set K of knapsacks where each knapsack k ∈ K has a capacity Wk ≥ 0, the goal is to
find a feasible packing of the items into the knapsacks of maximum value. We assume,
without loss of generality, that the items are labeled in descending order of weight, that is,
w1 ≥ w2 ≥ · · · ≥ w|N |. This problem can be formulated as the following binary IP:

maximize
∑

i∈N

∑
k∈K pixk,i

subject to
∑

i∈N wixk,i ≤ Wk ∀ k ∈ K∑
k∈K xk,i ≤ 1 ∀ i ∈ N

xk,i ∈ {0, 1} ∀ i ∈ N, k ∈ K

CP 2022

3:12 Improved Sample Complexity Bounds for Branch-And-Cut

(a) µ · E + (1 − µ) · P. (b) µ · E + (1 − µ) · D. (c) µ · D + (1 − µ) · P.

Figure 1 Chvátal distribution with 35 items and 2 knapsacks.

(a) µ · E + (1 − µ) · P. (b) µ · E + (1 − µ) · D. (c) µ · D + (1 − µ) · P.

Figure 2 Chvátal distribution with 35 items and 3 knapsacks.

A subset C ⊆ N of items is called a cover for knapsack k ∈ K if
∑

i∈C wi > Wk. If C is
a cover, no feasible solution can have xk,i = 1 for all i ∈ C, so

∑
i∈C xk,i ≤ |C| − 1 is a

valid constraint – called a cover cut. When C is minimal (that is, C \ {i} is not a cover
for every i ∈ C), such cover cuts help tighten the knapsack IP by cutting off fractional LP
solutions. We generate (a subset of all) cover cuts for each knapsack k as follows: for each
i ∈ N , let j > i be minimal such that C = {i, i + 1, . . . , j} is a cover for k (if such a j

exists). Since wi ≥ wj for j > i, C is a minimal cover, and moreover the extended cover cut∑j
i=1 xi ≤ |C|−1 is valid and dominates the minimal cover cut

∑
i∈C xi ≤ |C|−1. Extended

cover cuts generated from minimal covers are known to be facet defining for the integer hull
under certain natural conditions [12].

We investigate the relationship between three scoring rules for cutting planes. The first is
efficacy (E), which is the perpendicular distance from the current LP solution to the cutting
plane. The second is parallelism (P), which measures the angle between the objective and
the normal vector to the cutting plane. The third is directed cutoff (D), which is the distance
from the current LP solution to the cutting plane along the direction of the line segment
connecting the LP solution to the current best incumbent integer solution. More details,
including explicit formulas, can be found in [9] and references therein.

We consider two specific instances of the multiple knapsack problem, which are loosely
based on a class of knapsack problems introduced by Chvátal that are difficult to solve
with vanilla branch-and-bound [11, 45]. In the first, pi = wi for all i ∈ N , and Wk =
⌊(
∑

i∈N wi)/2|K|⌋ + (k − 1) for each k = 1, . . . , |K|. In the second, pi = w|N |−i+1, so the
most valuable item is the lightest and the least valuable item is the heaviest, and Wk is
defined as in the first type. We call the first class of problems Chvátal instances and the
second class reverse Chvátal instances. For a given N, K, we generate (reverse) Chvátal
instances by drawing each weight independently as wi = ⌊zi⌋, where zi ∼ N (50, 2), and
sorting the items by weight in descending order.

M.-F. Balcan, S. Prasad, T. Sandholm, and E. Vitercik 3:13

(a) µ · E + (1 − µ) · P. (b) µ · E + (1 − µ) · D. (c) µ · D + (1 − µ) · P.

Figure 3 Reverse Chvátal distribution with 100 items and 10 knapsacks.

(a) µ · E + (1 − µ) · P. (b) µ · E + (1 − µ) · D. (c) µ · D + (1 − µ) · P.

Figure 4 Reverse Chvátal distribution with 100 items and 15 knapsacks.

In our experiments, we add (whenever possible) two extended cover cuts obtained in the
aforementioned manner at every node of the B&C tree. The two cuts chosen are the two
with the highest score µ · ascore1 + (1 − µ) · ascore2 among all extended cover cuts that are
violated by the current LP optimum, where ascore1, ascore2 ∈ {E, D, P}. Figures 1-4 display
the average tree size over 1000 samples for different Chvátal and reverse Chvátal distributions
as a function of µ, where the domain [0, 1] of µ is discretized in increments of 0.01. We ran
our experiments using the Python API of CPLEX 12.10 with default cut generation turned
off. All other aspects of B&C (e.g. variable and node selection) are controlled by the default
settings of CPLEX. The key takeaway of our plots is that tuning a convex combination of
scoring rules can lead to significant savings in B&C tree size, and that this tuning must be
done with the IP distribution in mind. No single parameter produces small trees for all the
distributions we considered, and in fact a µ that minimizes tree size for one distribution can
result in the largest trees for another (as in Figures 2b and 4b, for example). Furthermore,
many of the plots display discernible trends (and in some cases are quite smooth), suggesting
that the number of samples required to avoid overfitting in practice can be significantly
smaller than our theoretical bounds.

4.3 Improved bounds for branch-and-cut
To allow node selection, branching, and cutting-plane selection to be tuned simultaneously,
we apply Theorem 6. This allows us to bound the pseudo-dimension of the family of functions
{costµ1,µ2,λ}, where µ1 controls branching, µ2 controls cutting-plane selection, and λ controls
node selection. Let actions1(T , Q) denote the set of branching actions available at Q, and
let actions2(T , Q) denote the set of cutting planes available at Q. Let b1, b2 ∈ N be such
that actions1(T , Q) ≤ b1 and actions2(T , Q) ≤ b2 for all T and all Q ∈ T . Fix two
branching scores ascore1

1, ascore1
2, fix two cutting-plane selection scores ascore2

1, ascore2
2,

and fix two node-selection scores nscore1, nscore2.

CP 2022

3:14 Improved Sample Complexity Bounds for Branch-And-Cut

▶ Theorem 8. Let cost(Q) be any tree-constant cost function, and let costµ1,µ2,λ be the cost
of the tree built by B&C using branching score µ1 · ascore1

1 + (1 − µ1) · ascore1
2, cutting-plane

selection score µ2 · ascore2
1 + (1 − µ2) · ascore2

2, and node-selection score λ · nscore1 + (1 −
λ) · nscore2. Then, with ∆ = O(n), Pdim({costµ1,µ2,λ}) = O(n2 + n log(b1 + b2)).

4.3.1 Comparison to existing bounds
Balcan et al. [9] give a pseudo-dimension bound for tree search with a linear dependence
on a cap κ on the number of nodes allowed in any tree. Their pseudo-dimension bound in
our setting is Pdim({costµ1,µ2,λ}) = O(κ log κ + κ log b1 + κ log b2). While κ is treated as
a constant, it can be a prohibitively large quantity. In fact, without explicitly enforcing a
limit on the number of nodes expanded by B&C, Balcan et al. [9] obtain a pseudo-dimension
bound of O(2n(log b1 + log b2)). Balcan et al. [7] use the path-wise property to prove that
Pdim({costµ}) = O(n2) for single-variable branching, but for the case where branching is
the only tunable component of B&C (and node selection is fixed).

5 Conclusions and future research

We presented a general model of tree search and proved sample complexity guarantees
for this model that improve and generalize upon the recent sample complexity theory for
configuring branch-and-cut. There are many interesting and open directions for future
research. One compelling open question is to obtain pseudo-dimension bounds when action
sets are infinite. Balcan et al. [9] alluded to this question in the case of cutting planes, and
neither the techniques of their work nor the techniques of the present work can handle, for
example, important infinite cutting-plane families such as the class of Gomory mixed-integer
cuts, or the infinitely many valid disjunctions that could be branched on. Beyond integer
programming, our model of tree search could potentially be applied to completely different
problem domains that exhibit tree structure. Another direction is to extend our results to
convex combinations of ℓ > 2 scoring rules µ1score1 + . . . µℓscoreℓ, as Balcan et al. [7] do in
the special case of single-variable branching. However, their pseudo-dimension bound grows
exponentially in the number of variables n in that special case; developing techniques that
lead to a polynomial dependence on n remains a challenging open question.

References
1 Tobias Achterberg. Constraint Integer Programming. PhD thesis, Technische Universität

Berlin, 2007.
2 Alejandro Marcos Alvarez, Quentin Louveaux, and Louis Wehenkel. A machine learning-based

approximation of strong branching. INFORMS Journal on Computing, 29(1):185–195, 2017.
3 Martin Anthony and Peter Bartlett. Neural Network Learning: Theoretical Foundations.

Cambridge University Press, 2009.
4 Egon Balas, Sebastián Ceria, and Gérard Cornuéjols. Mixed 0-1 programming by lift-and-

project in a branch-and-cut framework. Management Science, 42(9):1229–1246, 1996.
5 Maria-Florina Balcan. Data-driven algorithm design. In Tim Roughgarden, editor, Beyond

Worst Case Analysis of Algorithms. Cambridge University Press, 2020.
6 Maria-Florina Balcan, Dan DeBlasio, Travis Dick, Carl Kingsford, Tuomas Sandholm, and

Ellen Vitercik. How much data is sufficient to learn high-performing algorithms? Generalization
guarantees for data-driven algorithm design. In Annual Symposium on Theory of Computing
(STOC), 2021.

M.-F. Balcan, S. Prasad, T. Sandholm, and E. Vitercik 3:15

7 Maria-Florina Balcan, Travis Dick, Tuomas Sandholm, and Ellen Vitercik. Learning to branch.
In International Conference on Machine Learning (ICML), 2018.

8 Maria-Florina Balcan, Vaishnavh Nagarajan, Ellen Vitercik, and Colin White. Learning-
theoretic foundations of algorithm configuration for combinatorial partitioning problems. In
Conference on Learning Theory (COLT), 2017.

9 Maria-Florina Balcan, Siddharth Prasad, Tuomas Sandholm, and Ellen Vitercik. Sample
complexity of tree search configuration: Cutting planes and beyond. In Annual Conference on
Neural Information Processing Systems (NeurIPS), 2021.

10 Antonia Chmiela, Elias B Khalil, Ambros Gleixner, Andrea Lodi, and Sebastian Pokutta.
Learning to schedule heuristics in branch-and-bound. In Annual Conference on Neural
Information Processing Systems (NeurIPS), 2021.

11 Vasek Chvátal. Hard knapsack problems. Operations Research, 28(6):1402–1411, 1980.
12 Michele Conforti, Gérard Cornuéjols, Giacomo Zambelli, et al. Integer programming, volume

271. Springer, 2014.
13 Giovanni Di Liberto, Serdar Kadioglu, Kevin Leo, and Yuri Malitsky. Dash: Dynamic approach

for switching heuristics. European Journal of Operational Research, 248(3):943–953, 2016.
14 Matteo Fischetti and Andrea Lodi. Local branching. Mathematical Programming, 98:23–47,

2002.
15 Gerald Gamrath, Daniel Anderson, Ksenia Bestuzheva, Wei-Kun Chen, Leon Eifler, Maxime

Gasse, Patrick Gemander, Ambros Gleixner, Leona Gottwald, Katrin Halbig, Gregor Hendel,
Christopher Hojny, Thorsten Koch, Pierre Le Bodic, Stephen J. Maher, Frederic Matter,
Matthias Miltenberger, Erik Mühmer, Benjamin Müller, Marc E. Pfetsch, Franziska Schlösser,
Felipe Serrano, Yuji Shinano, Christine Tawfik, Stefan Vigerske, Fabian Wegscheider, Dieter
Weninger, and Jakob Witzig. The SCIP Optimization Suite 7.0. Technical report, Optimization
Online, March 2020. URL: http://www.optimization-online.org/DB_HTML/2020/03/7705.
html.

16 Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact
combinatorial optimization with graph convolutional neural networks. In Annual Conference
on Neural Information Processing Systems (NeurIPS), pages 15554–15566, 2019.

17 Andrew Gilpin and Tuomas Sandholm. Information-theoretic approaches to branching in
search. Discrete Optimization, 8(2):147–159, 2011. Early version in IJCAI-07.

18 Ralph E. Gomory. Outline of an algorithm for integer solutions to linear programs. Bulletin
of the American Mathematical Society, 64(5):275–278, 1958.

19 Prateek Gupta, Maxime Gasse, Elias B Khalil, M Pawan Kumar, Andrea Lodi, and Yoshua
Bengio. Hybrid models for learning to branch. In Annual Conference on Neural Information
Processing Systems (NeurIPS), 2020.

20 Rishi Gupta and Tim Roughgarden. A PAC approach to application-specific algorithm
selection. SIAM Journal on Computing, 46(3):992–1017, 2017.

21 He He, Hal Daume III, and Jason M Eisner. Learning to search in branch and bound algorithms.
In Annual Conference on Neural Information Processing Systems (NeurIPS), 2014.

22 Eric Horvitz, Yongshao Ruan, Carla Gomez, Henry Kautz, Bart Selman, and Max Chickering.
A Bayesian approach to tackling hard computational problems. In Proceedings of the Conference
on Uncertainty in Artificial Intelligence (UAI), 2001.

23 Zeren Huang, Kerong Wang, Furui Liu, Hui-ling Zhen, Weinan Zhang, Mingxuan Yuan, Jianye
Hao, Yong Yu, and Jun Wang. Learning to select cuts for efficient mixed-integer programming.
arXiv preprint, 2021. arXiv:2105.13645.

24 Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. Sequential model-based optimization
for general algorithm configuration. In International Conference on Learning and Intelligent
Optimization (LION), pages 507–523, 2011.

25 Frank Hutter, Holger H Hoos, Kevin Leyton-Brown, and Thomas Stützle. ParamILS: An
automatic algorithm configuration framework. Journal of Artificial Intelligence Research,
36(1):267–306, 2009.

CP 2022

http://www.optimization-online.org/DB_HTML/2020/03/7705.html
http://www.optimization-online.org/DB_HTML/2020/03/7705.html
http://arxiv.org/abs/2105.13645

3:16 Improved Sample Complexity Bounds for Branch-And-Cut

26 Robert G Jeroslow. Trivial integer programs unsolvable by branch-and-bound. Mathematical
Programming, 6(1):105–109, 1974.

27 Serdar Kadioglu, Yuri Malitsky, Meinolf Sellmann, and Kevin Tierney. ISAC—instance-specific
algorithm configuration. In European Conference on Artificial Intelligence (ECAI), 2010.

28 Miroslav Karamanov and Gérard Cornuéjols. Branching on general disjunctions. Mathematical
Programming, 128(1-2):403–436, 2011.

29 Elias Khalil, Pierre Le Bodic, Le Song, George Nemhauser, and Bistra Dilkina. Learning to
branch in mixed integer programming. In AAAI Conference on Artificial Intelligence, 2016.

30 Elias Khalil, Bistra Dilkina, George Nemhauser, Shabbir Ahmed, and Yufen Shao. Learning
to run heuristics in tree search. In International Joint Conference on Artificial Intelligence
(IJCAI), 2017.

31 Robert Kleinberg, Kevin Leyton-Brown, and Brendan Lucier. Efficiency through procrastina-
tion: Approximately optimal algorithm configuration with runtime guarantees. In International
Joint Conference on Artificial Intelligence (IJCAI), 2017.

32 Kevin Leyton-Brown, Eugene Nudelman, and Yoav Shoham. Empirical hardness models:
Methodology and a case study on combinatorial auctions. Journal of the ACM, 56(4):1–52,
2009.

33 Ashutosh Mahajan and Theodore K Ralphs. Experiments with branching using general
disjunctions. In Operations Research and Cyber-Infrastructure, pages 101–118. Springer, 2009.

34 Nimrod Megiddo. Combinatorial optimization with rational objective functions. Mathematics
of Operations Research, pages 414–424, 1979.

35 Jonathan H. Owen and Sanjay Mehrotra. Experimental results on using general disjunctions
in branch-and-bound for general-integer linear programs. Computational Optimization and
Applications, 20(2):159–170, November 2001.

36 Ashish Sabharwal, Horst Samulowitz, and Chandra Reddy. Guiding combinatorial optimization
with UCT. In International Conference on AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems. Springer, 2012.

37 Tuomas Sandholm. Very-large-scale generalized combinatorial multi-attribute auctions: Lessons
from conducting $60 billion of sourcing. In Zvika Neeman, Alvin Roth, and Nir Vulkan, editors,
Handbook of Market Design. Oxford University Press, 2013.

38 Jialin Song, Ravi Lanka, Yisong Yue, and Bistra Dilkina. A general large neighborhood
search framework for solving integer programs. In Annual Conference on Neural Information
Processing Systems (NeurIPS), 2020.

39 Yunhao Tang, Shipra Agrawal, and Yuri Faenza. Reinforcement learning for integer program-
ming: Learning to cut. International Conference on Machine Learning (ICML), 2020.

40 Gellért Weisz, András György, and Csaba Szepesvári. LeapsAndBounds: A method for
approximately optimal algorithm configuration. In International Conference on Machine
Learning (ICML), 2018.

41 Franz Wesselmann and Uwe Suhl. Implementing cutting plane management and selection
techniques. Technical report, University of Paderborn, 2012.

42 Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Satzilla: portfolio-based
algorithm selection for SAT. Journal of Artificial Intelligence Research, 32(1):565–606, 2008.

43 Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Hydra-MIP: Automated
algorithm configuration and selection for mixed integer programming. In RCRA workshop on
Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion at
the International Joint Conference on Artificial Intelligence (IJCAI), 2011.

44 Yu Yang, Natashia Boland, Bistra Dilkina, and Martin Savelsbergh. Learning generalized
strong branching for set covering, set packing, and 0-1 knapsack problems. Technical report,
Technical Report, 2020., 2020.

45 Yu Yang, Natashia Boland, and Martin Savelsbergh. Multivariable branching: A 0-1 knapsack
problem case study. INFORMS Journal on Computing, 2021.

M.-F. Balcan, S. Prasad, T. Sandholm, and E. Vitercik 3:17

A Analysis of A′

Proof of Lemma 3. Let T denote the tree built by A′. For i ∈ [∆], let T [i] denote the
restriction of T to nodes of depth at most i. Let ascoreµ = µ · ascore1 + (1 − µ) · ascore2.
We prove the lemma by induction on i. In particular, we show that for each i ∈ [∆], there
are ki(i−1)/2bi subintervals partitioning [0, 1] such that T [i] is invariant over all µ within any
given subinterval. Since T [∆] = T , this implies the lemma statement. The base case of i = 1
is trivial since T [1] consists of only the root.

Now, suppose the statement holds for some i ∈ {1, . . . , ∆ − 1}. That is, there are
T ≤ ki(i−1)/2bi disjoint intervals I1 ∪ · · · ∪ IT = [0, 1] such that T [i] is invariant over all µ

within any given subinterval (our inductive hypothesis). Fix one of these subintervals It. We
subdivide It into subintervals such that T [i + 1] is invariant within each one of these smaller
subintervals. Let Q be any leaf of T [i], and for µ ∈ It let Tµ denote the state of the tree
using ascoreµ at the point that Q is selected. Since i < ∆, Q is not fathomed at line 4,
regardless of µ. Next, since actions is path-wise, the actions available at Q depend only on
the path TQ from the root of T to Q, which, by the inductive hypothesis, is invariant over
all µ ∈ It. That is, actions(Tµ, Q) = actions(TQ, Q) for all µ ∈ It. Then, ascoreµ with
parameter µ will select action A ∈ actions(TQ, Q) if and only if

A = argmax
A0∈actions(TQ,Q)

µ · ascore1(Tµ, Q, A0) + (1 − µ) · ascore2(Tµ, Q, A0)

= argmax
A0∈actions(TQ,Q)

µ · ascore1(TQ, Q, A0) + (1 − µ) · ascore2(TQ, Q, A0),

where the second equality follows from the fact that ascore1 and ascore2 are path-wise.
Thus, for a fixed A0, ascoreµ is linear in µ, so for each A0 there is at most one subinterval
of [0, 1] such that for all µ in that subinterval, A0 maximizes ascoreµ. Thus, each leaf
of T [i] contributes at most b subintervals such that for µ within a given subinterval, the
action selected at each leaf of T [i] is invariant. T [i] consists of at most ki leaves, so this is a
total of at most kib subintervals. Now, since the action A selected at each leaf Q of T [i] is
invariant, the set of children children(Tµ, Q, A) = children(TQ, Q, A) of Q added to the
tree is also invariant, using the fact that children is path-wise. This shows that within
every subinterval, T [i + 1] is invariant. The total number of subintervals is, by the induction
hypothesis, at most ki(i−1)/2bi · kib = k(i+1)i/2bi+1, as desired. ◀

B Multiple actions

Let actions1, . . . , actionsd be path-wise. The multi-action version of Algorithm 1 is given
by Algorithm 2. There are two scoring rules ascorei

1 and ascorei
2 for each action type i ∈ [d].

Algorithm 2 can then be parameterized by (µ, λ), where µ ∈ Rd is a vector of parameters
controlling each action: the ith action is selected to maximize µi ·ascorei

1 +(1−µi) ·ascorei
2.

As before, we assume there are b, k ∈ N such that |actionsi(T , Q)| ≤ b for any i and any
Q ∈ T , and |children(T , Q, A1, . . . , Ad)| ≤ k for all Q, A1, . . . , Ad.

Let A′, as in the single-action setting, be Algorithm 2 with the evaluations of fathom on
line 4 and line 8 suppressed. Then, we may prove a slight generalization of lemma 3.

▶ Lemma 9. Let ascorei
1 and ascorei

2 be two path-wise action-selection scores, for each
i ∈ {1, . . . , d}. Fix the input root node Q. There are T ≤ kd∆(∆−1)/2bd∆ boxes of the form
Rt = I1 × · · · × Id partitioning [0, 1]d where for any box Rt, the action-selection scores
µi · ascorei

1 + (1 − µi) · ascorei
2 results in the same tree built by A′ for all µ ∈ Rt, no matter

what node selection policy is used.

CP 2022

3:18 Improved Sample Complexity Bounds for Branch-And-Cut

Algorithm 2 Tree search with multiple actions.

Input: Root node Q, depth limit ∆
1: Initialize T = Q.
2: while T contains an unfathomed leaf do
3: Select a leaf Q of T that maximizes nscore(T , Q).
4: if depth(Q) = ∆ or fathom(T , Q, None, . . . , None) then
5: Fathom Q.
6: else
7: For i = 1, . . . , d, select Ai ∈ actionsi(T , Q) that maximizes ascorei(T , Q, Ai).
8: if fathom(T , Q, A1, . . . , Ad) then
9: Fathom Q.

10: else if children(T , Q, A1, . . . , Ad) = ∅ then
11: Fathom Q.
12: else
13: Add all nodes in children(T , Q, A1, . . . , Ad) to T as children of Q.

Proof. Let T denote the tree built by A′. For i ∈ [∆], let T [i] denote the restriction of T
to nodes of depth at most i. Let ascorei

µi
= µi · ascorei

1 + (1 − µi) · ascorei
2. We prove the

lemma by induction on i. In particular, we show that for each i ∈ [∆], there are kdi(i−1)/2bdi

boxes partitioning [0, 1]d such that T [i] is invariant over all µ within any given box. Since
T [∆] = T , this implies the lemma statement. The base case of i = 1 is trivial since T [1]
consists of only the root, regardless of µ ∈ [0, 1]d.

Now, suppose the statement holds for some i ∈ {1, . . . , ∆ − 1}. That is, there are
T ≤ kdi(i−1)/2bdi disjoint boxes R1 ∪ · · · ∪ IR = [0, 1]d such that T [i] is invariant over all µ

within any given boxes (our inductive hypothesis). Fix one of these boxes Rt. We subdivide
Rt into sub-boxes such that T [i + 1] is invariant within each one of these smaller boxes. Let
Q be any leaf of T [i], and for µ ∈ Rt let Tµ denote the state of the tree using ascorei

µi
for

each i at the point that Q is selected. Since i < ∆, Q is not fathomed at line 4, regardless
of µ. Next, since actionsi is path-wise for each i, the actions available at Q depend only
on the path TQ from the root of T to Q, which, by the inductive hypothesis, is invariant
over all µ ∈ Rt. That is, for all i actionsi(Tµ, Q) = actionsi(TQ, Q) for all µ ∈ Rt. Then,
ascorei

µi
will select action Ai ∈ actionsi(TQ, Q) if and only if

Ai = argmax
A0∈actionsi(TQ,Q)

µ · ascorei
1(Tµ, Q, A0) + (1 − µi) · ascorei

2(Tµ, Q, A0)

= argmax
A0∈actionsi(TQ,Q)

µi · ascorei
1(TQ, Q, A0) + (1 − µi) · ascorei

2(TQ, Q, A0),

where the second equality follows from the fact that ascorei
1 and ascorei

2 are path-wise.
Thus, for a fixed A0, ascorei

µi
is linear in µi, so for each A0 there is at most one subinterval of

[0, 1] such that for all µi in that subinterval, A0 maximizes ascorei
µi

. Thus, each leaf of T [i]
contributes at most b subintervals such that for µi within a given subinterval, the action of type
i selected at each leaf of T [i] is invariant. T [i] consists of at most ki leaves, so this is a total of
at most kib subintervals. Writing Rt = I1×· · · Id, we have established that for each i, there are
kib subintervals partitioning Ii into subintervals such that as µi varies over each subinterval,
the action of type i selected at every leaf of T [i] is invariant. These subintervals partition Rt

into at most (kib)d boxes. As before, since the actions selected at each leaf Q of T [i] are
invariant, the set of children children(Tµ, Q, A1, . . . , Ad) = children(TQ, Q, A1, . . . , Ad) of

M.-F. Balcan, S. Prasad, T. Sandholm, and E. Vitercik 3:19

Q added to the tree is also invariant, using the fact that children is path-wise. Therefore,
within every sub-box of Rt, T [i+1] is invariant. The total number of boxes over each possible
Rt is, by the induction hypothesis, at most kdi(i−1)/2bdi · kdibd = kd(i+1)i/2bd(i+1). ◀

The proof of Lemma 2 is identical in the multi-action setting. The proof of Lemma 4
is also identical: here, we fix a box R in the partition established in Lemma 9, and get
an identical partition of R × [0, 1] such that the behavior of Algorithm 2 is invariant as λ

varies in each subinterval of [0, 1]. The number of boxes in the final partition of [0, 1]d+1 is
kd∆(∆−1)/2bd∆ · k5∆ ≤ kd∆(9+∆)bd∆. Our main pseudo-dimension bound for the multi-action
setting follows from the same argument that exploits the framework of Balcan et al. [6].

▶ Theorem 10. Let cost(Q) be any tree-constant cost function, and let costµ,λ(Q) be
the cost of the tree built by Algorithm 1 on input root node Q using action-selection scores
parameterized by µ ∈ Rd, where d = O(1), and node-selection score parameterized by λ.
Then, Pdim({costµ,λ}) = O(d∆2 log k + d∆ log b).

When d = O(1) we get the same pseudo-dimension bound as in the single-action setting:
Pdim({costµ,λ}) = O(∆2 log k + ∆ log b), which is the statement of Theorem 6.

CP 2022

Weisfeiler-Leman Invariant Promise Valued CSPs
Libor Barto # Ñ

Department of Algebra, Faculty of Mathematics and Physics,
Charles University, Prague, Czechia

Silvia Butti # Ñ

Department of Information and Communication Technologies,
Universitat Pompeu Fabra, Barcelona, Spain

Abstract
In a recent line of work, Butti and Dalmau have shown that a fixed-template Constraint Satisfaction
Problem is solvable by a certain natural linear programming relaxation (equivalent to the basic
linear programming relaxation) if and only if it is solvable on a certain distributed network, and
this happens if and only if its set of Yes instances is closed under Weisfeiler-Leman equivalence. We
generalize this result to the much broader framework of fixed-template Promise Valued Constraint
Satisfaction Problems. Moreover, we show that two commonly used linear programming relaxations
are no longer equivalent in this broader framework.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming

Keywords and phrases Promise Valued Constraint Satisfaction Problem, Linear programming
relaxation, Distributed algorithms, Symmetric fractional polymorphisms, Color refinement algorithm

Digital Object Identifier 10.4230/LIPIcs.CP.2022.4

Related Version Full Version: https://arxiv.org/abs/2205.04805

Funding Libor Barto: Libor Barto has received funding from the European Research Council (ERC)
under the European Unions Horizon 2020 research and innovation programme (Grant Agreement
No. 771005, CoCoSym).
Silvia Butti: Silvia Butti was supported by a MICCIN grant PID2019-109137GB-C22 and by a fellow-
ship from “la Caixa” Foundation (ID 100010434). The fellowship code is LCF/BQ/DI18/11660056.
This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie grant agreement No. 713673.

Acknowledgements The authors are grateful to Victor Dalmau for his valuable comments.

1 Introduction

The Constraint Satisfaction Problem (CSP) is the problem of deciding whether there is an
assignment of values from some domain A to a given set of variables, subject to constraints
on the combinations of values which can be assigned simultaneously to certain specified
subsets of variables; the allowed combinations of values are specified by relations on A.

Many important computational problems, including various versions of logical satisfiability,
graph coloring, and systems of equations, can be obtained by fixing a finite domain and
restricting the set of allowed relations [7, 13]. The restrictions can be specified by fixing a
relational structure A, called a template. The CSP over A is then the CSP restricted to
instances that use only relations in A. For example, if A consists of a single binary relation
RA ⊆ A2, an instance of the CSP over A is, e.g.,

R(x1, x2), R(x3, x1), R(x2, x4), R(x3, x3). (1)

The goal is to decide whether there exists an assignment h : {x1, x2, . . . } → A that satisfies
all the constraints, that is, (h(x1), h(x2)) ∈ RA, (h(x3), h(x1)) ∈ RA, etc. (see Section 2 for
formal definitions). For instance, if RA is the disequality relation ̸= on A, then the CSP
over A is essentially the Graph |A|-Coloring Problem.

© Libor Barto and Silvia Butti;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 4; pp. 4:1–4:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:libor.barto@gmail.com
https://www2.karlin.mff.cuni.cz/~barto/
https://orcid.org/0000-0002-8481-6458
mailto:silvia.butti@upf.edu
https://sites.google.com/view/silviabutti/
https://orcid.org/0000-0002-0171-2021
https://doi.org/10.4230/LIPIcs.CP.2022.4
https://arxiv.org/abs/2205.04805
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Weisfeiler-Leman Invariant Promise Valued CSPs

This paper deals with CSPs over fixed templates with finite domains. In particular, the
phrase “a CSP” in the following discussion means the CSP over some template.

The (finite-domain, fixed-template) CSP has been a very active research area in the last 20
years, fueled by the tight connection between the complexity of a CSP and the polymorphisms
of its template – these are multivariate functions on the domain that preserve all relations
in the template (see [2]). The highlight in the area is the dichotomy theorem [3, 27]: every
CSP is either solvable in polynomial time or NP-complete (assuming P is not NP); moreover,
the polynomial cases are characterized by means of polymorphisms. Other major results
include characterizations of applicability of fundamental algorithms, e.g., certain convex
relaxations (see [11, 24]).

A natural linear programming relaxation, which is central in this paper, can be obtained
by formulating a CSP instance as a feasibility problem for a zero-one integer program
and then relaxing the requirement that each variable p is in {0, 1} to p ∈ [0, 1]. In fact,
there are two widely used relaxations of this form, the Basic Linear Programming (BLP)
relaxation (see [14]) and a slightly stronger relaxation, which we denote by SA1 to highlight
its connection to the Sherali-Adams hierarchy [21] for CSPs (see [5]). The difference between
the two relaxations is only in how they address repeated variables in a constraint. It turns
out that both relaxations (correctly) decide the same CSPs [5] in the sense that, for any
template A, all instances of the CSP over A are decided by the SA1 relaxation if and only
if they are decided by BLP.1 Moreover, this happens if and only if the template admits
symmetric polymorphisms of all arities [16] (see also [1]).

The class of CSPs decided by BLP (SA1) has reappeared recently in [4], where it was
shown that it coincides with the class of CSPs which can be solved on a distributed network.
The distributed set-up here is based on the DCSP framework of Yooko et al. [26]; informally,
each constraint and each variable is controlled by an agent; the communication is only
between a constraint and a variable that participates in it; and the agents are anonymous,
they communicate in synchronous rounds, and they all run the same deterministic algorithm.

The papers [4, 5] contribute another interesting characterization, by means of an equival-
ence akin to the 1-dimensional Weisfeiler-Leman graph isomorphism test [17]. For two CSP
instances I, J we write I ≡1 J if, very roughly, they cannot be distinguished by considering
their local structure around variables (number and type of constraints they participate in,
number and type of constraints their adjacent variables participate in, and so on). Now the
equivalent conditions discussed above are also equivalent to the CSP being invariant under
≡1. Altogether, we have the following theorem, which witnesses the significance of this class
of CSPs.

▶ Theorem 1 ([4, 5, 16]). The following are equivalent for the CSP over a finite structure A.
(i) There exists a distributed algorithm that solves CSP(A). Moreover, in such a case,

there is a polynomial-time distributed algorithm that solves CSP(A).
(ii) If two instances of CSP(A) are ≡1-equivalent, then they are either both Yes instances

or both No instances.
(iii) SA1 decides CSP(A).
(iv) BLP decides CSP(A).
(v) A has symmetric polymorphisms of every arity.

Our main result generalizes Theorem 1 to a much broader setting, which we introduce next.

1 We remark that in the literature the difference between the two relaxations is sometimes neglected,
which occasionally leads to unjustified or slightly incorrect claims.

L. Barto and S. Butti 4:3

1.1 Promise Valued CSP

The framework of Valued CSP (VCSP) generalizes CSP as follows. Instead of relations we
consider valued relations (also known as cost functions) – mappings that assign to tuples
rational or positive infinite costs. Returning to the example above, RA is now a mapping
from A2 to Q ∪ {∞} instead of a subset of A2. The objective of the search version of the
VCSP over A is to minimize a sum, e.g.,

R(x1, x2) + R(x3, x1) + R(x2, x4) + R(x3, x3), (2)

that is, to find an assignment h such that RA(h(x1), h(x2)) + RA(h(x3), h(x1)) + . . . is
minimal. In the decision version, which we consider in this paper, the instance is such a sum
together with a rational number τ and we aim to decide whether the minimum is at most τ .

Notice that (the decision version of) VCSP indeed generalizes CSP since relations can
be modelled by {0, ∞}-valued relations. On the other hand, MaxCSP – where the aim
is to maximize the number of satisfied constraints given a CSP instance – is exactly the
VCSP over {0, 1}-valued relational structures. The VCSP framework also includes many
problems of a mixed optimization and combinatorial nature, such as the Vertex Cover
Problem (see [14]). The VCSP area is also well developed; for instance, the approach via an
appropriate generalization of polymorphisms still works (see [14]), a dichotomy theorem is
available [10], and the equivalence of (iv) and (v) in Theorem 1 can be lifted as well [11].

The more recent framework of Promise CSP (PCSP) generalizes CSP in a different
direction. Here the relations are “crisp” but the template is a pair of structures (A, B) of the
same signature. Intuitively, RA is a “strict” form of R and RB is its “relaxed” form. The
PCSP over (A, B) is the problem of distinguishing instances solvable in A from those which
are not solvable in B. Note that the problem only makes sense if every instance solvable in
A is also solvable in B (this is equivalent to A being homomorphic to B). A well-known
family of PCSP examples is the problem of distinguishing k-colorable graphs from those that
are not even l-colorable for fixed l ≥ k; see [1] for further examples. A complete complexity
classification for PCSPs seems currently far away. Nevertheless, the algebraic approach via
polymorphism works, and the equivalence of (iv) and (v) in Theorem 1 also remains valid [1].

Finally, the Promise Valued CSP (PVCSP) combines both generalizations. A template is
a pair of valued structures of the same signature and the problem is, given a sum such as (2)
and a rational number τ , to distinguish sums whose minimum computed in A is at most τ

from those whose minimum in B is greater than τ . Again, the problem only makes sense if
the template satisfies certain properties. An exact characterization of when this happens,
Proposition 5, is one of the minor contributions of this paper.

We believe that the PVCSP is an extremely promising research direction for two reasons.
First, it is very broad: it includes, for example, all constant factor approximation problems
for MaxCSP (both the version where the aim is to approximately maximize the number
of satisfied constraints, see Example 2; and the version where the aim is to approximately
minimize the number of unsatisfied constraints). Second, the approach via generalized
polymorphisms, so successful in the above special cases, is still available [9] (the work is not
yet published). The only published work on PVCSP that we are aware of is [25] where the
authors, among other results, generalize (iv) ⇐⇒ (v) in Theorem 1 to the PVCSP setting
and even consider the more general infinite-domain case.

CP 2022

4:4 Weisfeiler-Leman Invariant Promise Valued CSPs

1.2 Contributions
Our main result, Theorem 8, lifts the equivalence of (i), (ii), and (iii) in Theorem 1 to the
PVCSP framework.

The generalization of implication (i) ⇒ (ii) for connected input valued structures follows
easily from the nature of the message passing systems we deal with. General, possibly
disconnected input valued structures require an additional argument.2 For the implication
(ii) ⇒ (iii) we employ the approach of [5] and, in a sense, “decompose” a solution to the
SA1 relaxation of a PVCSP into three components. One component is a kind of morphism,
called here a dual fractional homomorphism, which appeared before in the context of VCSPs
with left-hand side (i.e., structural) restrictions [6].3 The decomposition theorem, stated as
Theorem 7, might be of independent interest. We also point out that our construction for this
decomposition is much simpler than the construction used in [5] for the less general setting.
The distributed algorithm that we design to prove (iii) ⇒ (i) is completely different from the
one used for the CSP in [4]. The original algorithm relied on a deep theorem from the algebraic
CSP theory [12] about the strength of a certain local propagation algorithm and designed
a distributed version of that algorithm. This approach is no longer applicable, even in the
(non-valued) PCSP setting. However, we show that a substantially more straightforward and
simple idea of directly computing an adjusted form of SA1 works even in the most general
PVCSP framework.

Surprisingly, the implication (iii) ⇒ (iv) is no longer true for PVCSPs: in Example 9 we
present a PVCSP template that is decided by SA1 but not decided by BLP. The converse
implication remains valid since SA1 is a stronger relaxation than BLP.

Recall that the equivalence of (iv) and (v) still holds for PVCSPs [25]; we give a
streamlined presentation of the proof using Proposition 5. We also mention, in Example 4,
some (P)(V)CSPs that satisfy these conditions, and thus also satisfy the equivalent statements
in the main result.

2 Preliminaries

For a tuple a ∈ Ak, let a[i] denote the ith entry of a. We say that a has a repetition if
there exist i ̸= j ∈ [k] such that a[i] = a[j]. We use double curly brackets {{. . . }} to denote
multisets. For a non-negative integer n, n · {{. . . }} stands for the multiset obtained by
multiplying the multiplicity of each element in the original multiset by n. Slightly abusing
the notation, the set and the multiset of entries of a tuple a is denoted by {a} and {{a}},
respectively.

We denote by Q≥0 the set of non-negative rational numbers and by Q∞ the set Q∪ {∞},
where ∞ is an additional symbol interpreted as a positive infinity. We set 0 · ∞ = 0 and
c · ∞ = ∞ for c > 0.

2.1 CSP and PCSP
We present the CSP and PCSP as homomorphism problems. The difference from the
presentation in the introduction is merely formal.

2 This subtle issue was not properly handled in [4]. The present paper thus also fills in a gap in the proof
of Theorem 1.

3 [6] uses the terminology “inverse fractional homomorphism”, however we feel that “dual” might better
fit the meaning of this concept.

L. Barto and S. Butti 4:5

A signature σ is a finite collection of relation symbols, each with an associated arity. We
shall use ar(R) to denote the arity of a relation symbol R. Given a set A and a positive
integer k, a k-ary relation on A is a subset of Ak. A (relational) structure A in the signature
σ, or simply a σ-structure, consists of a finite set A called the universe of A, and a relation
RA on A of arity ar(R) for each R ∈ σ. Notice that the universe of every structure in this
paper is assumed to be finite. Two structures are similar if they have the same signature.

Let I, A be σ-structures. A homomorphism from I to A is a map h : I → A such that
for every R ∈ σ and every tuple v ∈ RI it holds that h(v) ∈ RA, where h is applied to v
component-wise. If there exists a homomorphism from I to A we say that I is homomorphic
to A.

For a relational σ-structure A, the CSP over A, denoted CSP(A), is the problem of
deciding whether an input σ-structure I is homomorphic to A. The structure A is also
referred to as a template in this context. The translation of the presented definition of
CSP(A) to the formalism used in the introduction is given by defining the set of constraints
CI as the set of formal expressions of the form R(v) where R ∈ σ and v ∈ RI.

Given two σ-structures A and B, the Promise CSP over (A, B), denoted PCSP(A, B),
is defined as follows: given a σ-structure I, output Yes if I is homomorphic to A, and output
No if I is not homomorphic to B.4 This problem makes sense iff the sets of Yes and No
instances are disjoint. It is easy to see that this happens exactly when A is homomorphic to
B. Such pairs of structures (A, B) are called PCSP templates.

2.2 PVCSP
We formalize PVCSPs in a similar way to PCSPs. The difference from the presentation in
the introduction is slightly more substantial, as we shall briefly discuss later.

A k-ary valued relation on A is a function R : Ak → Q∞. A valued σ-structure A consists
of a finite universe A, together with a valued relation RA of arity ar(R) on A for each R ∈ σ.
Valued structures are sometimes referred to as general-valued in the literature [11, 24] to
emphasize that relations in A may take non-finite values. A σ-structure A is said to be
non-negative finite-valued if for every R ∈ σ, the range of RA is contained in Q≥0.

Let I, A be valued σ-structures, where I is non-negative finite-valued. The value of a
map h : I → A for (I, A), and the optimum value for (I, A) are given by

Val(I, A, h) =
∑
R∈σ

∑
v∈Iar(R)

RI(v)RA(h(v)), Opt(I, A) = min
h:I→A

Val(I, A, h).

For two valued σ-structures A and B, the Promise Valued CSP over (A, B) [9, 25], denoted
PVCSP(A, B), is defined as follows: given a pair (I, τ), where I is a non-negative finite-
valued σ-structure and τ ∈ Q is a threshold, output Yes if Opt(I, A) ≤ τ , and output No if
Opt(I, B) > τ . We call (A, B) a PVCSP template if the sets of Yes and No instances are
disjoint. We show in Proposition 5 that this least restrictive meaningful requirement on a
PVCSP template coincides with the choice taken in [25].

Notice that the values of R have a different intended meaning in the template valued
structures A, B and in the input valued structure I. For the template, RA(a) and RB(b)
should be understood as the cost of a and b: we wish an assignment h to map tuples of
variables to tuples of domain elements that are as cheap as possible (and, in fact, RA or RB

4 We do not impose any requirements on the algorithm in the case that I is neither a Yes instance nor a
No instance. Alternatively, we are promised that the input is a Yes instance or a No instance.

CP 2022

4:6 Weisfeiler-Leman Invariant Promise Valued CSPs

is often referred to as a cost function). On the other hand, RI(v) is the weight of the tuple
of variables v: we need to be more concerned about heavy tuples of variables, while we may
ignore the tuples of zero weight (recall that 0 · ∞ = 0). As an example, observe that the
PCSP over a pair of structures (A′, B′) is essentially the same problem as the PVCSP over
the pair of {0, ∞}-valued structures (A, B), where tuples in the latter template are given
zero cost iff they belong to the corresponding relations in the former template; while to an
instance I′ of the PCSP corresponds a non-negative finite-valued structure I where the cost
of a tuple is zero iff the tuple does not belong to the corresponding relation in I′ (and costs of
the remaining tuples are arbitrary positive rationals), together with any threshold τ ∈ Q≥0.

For a PVCSP input valued σ-structure I we define the set of constraints CI as the set of
formal expressions of the form R(v) where R ∈ σ, v ∈ Iar(R), and RI(v) > 0; the value RI(v)
is the weight of the constraint. This almost translates the presented definition of PVCSP
to the version from the introduction: weights of constraints can be emulated by repeating
constraints in (2) (and modifying the threshold τ if necessary). However, the repetition can
cause an exponential blow up of the instance size. Nevertheless, this difference between the
two formalisms is inessential for our purposes.

We say that a valued relation RI has no repetitions if RI(v) = 0 whenever v has a
repetition. Similarly, we say that an input valued structure I has no repetitions if none of its
valued relations has a repetition.

▶ Example 2. As mentioned in the introduction, the PVCSP framework can be used to
model constant factor approximation problems for MaxCSP. More concretely, suppose that
we want to find a c-approximation for CSP(A) for some (non-valued) σ-structure A and some
c < 1. One can model this problem as PVCSP(A′, B′) where A′ = B′ = A and for all R ∈ σ

and a ∈ Aar(R), RA′(a) = −1 if a ∈ RA and RA′(a) = 0 otherwise; and RB′(a) = 1
c RA′(a).

Given an instance I of CSP(A) and a parameter 0 < β ≤ 1, we turn it into an instance
(I′, −βm) of PVCSP(A′, B′) in a natural way, where I′ is a 0-1 valued structure and m is
the number of constraints in I′. Then, Opt(I′, A′) ≤ −βm if a β-fraction of all constraints of
I can be satisfied in A, and Opt(I′, B′) > −βm if not even a cβ-fraction of the constraints
of I can be satisfied in A.

2.3 Linear programming relaxations
Given two valued σ-structures I and A where I is non-negative finite-valued, the systems
of inequalities BLP(I, A) and SA1(I, A) contain a variable pv(a) for every v ∈ I and every
a ∈ A, and a variable pR(v)(a) for every R(v) ∈ CI and every a ∈ Aar(R). BLP(I, A) is the
following linear program.

OptBLP(I, A) := min
∑

R(v)∈CI

∑
a∈Aar(R)

pR(v)(a)RI(v)RA(a)

subject to:

pR(v)(a) ≥ 0 R(v) ∈ CI, a ∈ Aar(R)∑
a∈A

pv(a) = 1 v ∈ I

pv(a) =
∑

a∈Aar(R),a[i]=a

pR(v)(a) a ∈ A, R(v) ∈ CI, i ∈ [ar(R)] s.t. v[i] = v

pR(v)(a) = 0 R(v) ∈ CI, a ∈ Aar(R) s.t. RA(a) = ∞

(⋆)

(3)

(4)

(5)

(6)

L. Barto and S. Butti 4:7

As for the program SA1(I, A), the objective function, denoted OptSA1
(I, A), is given by

the same objective function as in BLP(I, A). The variables are subject to all the constraints
in BLP(I, A), but in addition, they are also subject to the following constraint.

pR(v)(a) = 0 R(v) ∈ CI, a ∈ Aar(R)

∃i, j ∈ [ar(R)] such that v[i] = v[j] and a[i] ̸= a[j]
(7)

Notice that in general OptBLP(I, A) ≤ OptSA1
(I, A). Moreover, in the particular case where

I has no repetitions, BLP and SA1 are the same linear program and so OptBLP(I, A) =
OptSA1

(I, A).
For a linear program L ∈ {BLP, SA1} we say that L(I, A) is feasible if there exists a

rational solution to the system L(I, A). Notice that then (⋆) makes sense since RA(a) = ∞
implies pR(v) = 0 and 0 · ∞ = 0 (formally, one should skip these summands in (⋆)). If the
linear program is infeasible, then we set OptL(I, A) = ∞.

The LP constraints (3)–(5) ensure that, for each R(v) ∈ CI, the values of pR(v)(a) form
a probability distribution on Aar(R) (which is additionally consistent with pv(a)’s). The
inner sum in (⋆) is equal to the expected “cost” of the constraint R(v) with weight RI(v)
when v is evaluated according to this distribution. From this observation it is apparent that
OptL(I, A) ≤ Opt(I, A). We say that L decides PVCSP(A, B) if, for every input structure I,
we have Opt(I, B) ≤ OptL(I, A). Note that in such a case the algorithm for PVCSP(A, B)
that answers Yes iff OptL(I, A) ≤ τ (where τ is the input threshold) is correct, so the
definition makes sense.5

2.4 Polymorphisms
An n-ary polymorphism of a pair of similar structures (A, B) is an n-ary operation f : An → B

such that for every relation symbol R in the signature of A and B, the coordinate-wise
application of f to any list of n tuples from RA results in a tuple in RB. Note that a
unary polymorphism of (A, B) is just a homomorphism from A to B. An n-ary operation
f : An → B is said to be symmetric if for every a1, . . . , an ∈ A and every permutation ρ on
[n] we have that f(a1, . . . , an) = f(aρ(1), . . . , aρ(n)).

An n-ary fractional polymorphism [25] of two valued σ-structures (A, B) is a probability
distribution ω on the set BAn := {f : An → B} such that for every R ∈ σ and every list of
n tuples a1, . . . , an ∈ Aar(R) we have that

∑
f∈BAn

ω(f)RB(f(a1, . . . , an)) ≤ 1
n

n∑
i=1

RA(ai)

where f is applied to a1, . . . , an ∈ Aar(R) component-wise.6
The support of ω is the set of functions f : An → B such that ω(f) > 0. We say that ω

is symmetric if every operation in its support if symmetric.

5 We remark that in [5], the feasibility of the program SA1(I, A) was alternatively phrased as the existence
of a “fractional homomorphism” from I to A, to stress that the linear system SA1(I, A) is a (fractional)
relaxation of homomorphism in the same way as the equivalence relation ≡1 defined below is a relaxation
of isomorphism. Nonetheless, in this paper we avoid this terminology as it clashes with the notion of
fractional homomorphism defined in Section 3 as a unary fractional polymorphism.

6 We use here a simpler concept than fractional polymorphism as defined in [25], which will be sufficient
for our purposes.

CP 2022

4:8 Weisfeiler-Leman Invariant Promise Valued CSPs

The following theorem was proved in [25]; we provide a somewhat streamlined argument
in the spirit of [1] in Section 3.

▶ Theorem 3. Let (A, B) be a promise valued template of signature σ. Then the following
are equivalent.
(iv) BLP decides PVCSP(A, B);
(v) (A, B) has symmetric fractional polymorphisms of every arity.

▶ Example 4. A CSP that can be decided by BLP is e.g. the Horn-3-Sat, where the
template has domain {true, false} and two relations defined by ¬x ∨ ¬y ∨ ¬z and ¬x ∨ ¬y ∨ z.
A well-known class of templates with BLP-decidable VCSPs are those that contain only
submodular valued relations (see [14]). Finally, the 2-approximation of the Vertex Cover
problem [14] is a PVCSP decidable by BLP. In all the mentioned examples, it is not hard to
find symmetric (fractional) polymorphisms of every arity.

2.5 Graph of an input, iterated degree, distributed model
We represent an input σ-structure I to a PVCSP as a labeled bipartite graph GI, also known
as the factor graph of I in the non-valued setting [8]. This representation allows us to define
iterated degrees of variables and constraints as well as our distributed model.

GI has one vertex for each constraint R(v) ∈ CI, labeled (R, q) where q = RI(v) (> 0),
and one vertex for each variable, with empty label. Vertex v ∈ I is adjacent to a vertex
R(v) ∈ CI if v ∈ {v}; the edge is labeled S = {i : v[i] = v}. The label of a vertex x is
denoted ℓx, the label of an edge {x, y} is denoted ℓ{x,y}.

We call I connected if GI is. Similarly, we say that I′ is a connected component of I if
GI′ is a connected component of GI.

The kth iterated degree of a vertex x, where x is a variable or a constraint, is defined
inductively by δI

0(x) = ℓx, and δI
k+1(x) = {{(ℓ{x,y}, δI

k(y)) | y is adjacent to x in GI}}. The
iterated degree of a vertex x is defined as δI(x) = (δI

0(x), δI
1(x), δI

2(x), . . .). For vertices x

and y we write x ≡1 y if they have the same iterated degrees. Note that the iterated
degrees are analogues of colors in the 1-dimensional Weisfeiler-Leman color refinement
algorithm [17] for graph isomorphism test. The iterated degree sequence of I is defined as
δ(I) = {{δI(x) | x ∈ I ∪ CI}}; for two σ-structures I, J, we write I ≡1 J if they have the same
iterated degrees sequence.7 Notice that in order to prove that I ≡1 J it is sufficient to show
that {{δI(x) | x ∈ I}} = {{δJ(x) | x ∈ J}}.

The computational model for solving PVCSP(A, B) on a distributed network is as follows.
An input valued structure I is represented as a bipartite message passing network designed as
GI: we have an agent α(x) for every vertex x ∈ I ∪CI and the communication channels exactly
correspond to edges in GI and have the same labels. Every agent in the network knows
only the template, the threshold, the number of variables (|I|), the number of constraints
(|CI|), and the labels of their controlled variable and of the adjacent channels. The agents are
anonymous, they all run the same deterministic algorithm, and the communication proceeds
in synchronous rounds. For a more detailed discussion on the distributed set-up, we refer the
reader to [4].

We say that a distributed algorithm solves an instance (I, τ) of PVCSP(A, B) if the
algorithm terminates and the terminating state of every process is Yes if (I, τ) is a Yes
instance of PVCSP(A, B), and No if (I, τ) is a No instance of PVCSP(A, B). We say

7 The degree sequence is often defined to be a list. However, when looking at iterated degree it is
common [18, 19] and more practical to use multisets instead of lists, while maintaining the terminology
sequence to highlight that we are dealing with a generalisation of the classical concept of degree sequence.

L. Barto and S. Butti 4:9

that a distributed algorithm solves PVCSP(A, B) if it solves every connected instance of
PVCSP(A, B) (note here that it makes little sense to run a distributed algorithm on a
disconnected network).

3 Fractional homomorphisms and SA1

We start by stating the characterization of PVCSP templates in terms of fractional homo-
morphisms. The result will also be useful in the proof of Theorem 3.

A fractional homomorphism [22, 25] from A to B is a unary fractional polymorphism of
(A, B), or equivalently, a probability distribution µ over BA such that for every R ∈ σ and
every a ∈ Aar(R) we have that∑

f∈BA

µ(f)RB(f(a)) ≤ RA(a). (8)

If there exists a fractional homomorphism from A to B, we say that A is fractionally
homomorphic to B and we write A →f B.

The implication (1) ⇒ (2) in the following proposition is a well-known and easy calcula-
tion (see e.g. [22]). The converse implication appears to be new, although the proof technique
via Farkas’ Lemma [20] is standard in the VCSP area.

▶ Proposition 5. For any two valued σ-structures A and B, the following are equivalent.
1. There exists a fractional homomorphism from A to B.
2. For all non-negative finite-valued σ-structures I, Opt(I, B) ≤ Opt(I, A).

Proof. (1) ⇒ (2) Let µ be a fractional homomorphism from A to B, let g : I → A be such
that Opt(I, A) = Val(I, A, g), and let f ∈ BA be some map that minimizes Val(I, B, f ◦ g).
Then

Opt(I, B) ≤ Val(I, B, f ◦ g) ≤
∑

f ′∈BA

µ(f ′) Val(I, B, f ′ ◦ g)

=
∑
R∈σ

∑
v∈Iar(R)

RI(v)
∑

f ′∈BA

µ(f ′)RB(f ′ ◦ g(v))

≤
∑
R∈σ

∑
v∈Iar(R)

RI(v)RA(g(v)) = Val(I, A, g) = Opt(I, A).

(2) ⇒ (1). The idea for this proof is to assume that there is no fractional homomorphism
from A to B, formulate this fact as infeasibility of a system of linear inequalities, and then
use a version of Farkas’ Lemma to find I with Opt(I, B) > Opt(I, A).

The existence of a fractional homomorphism from A to B can be reformulated as the
following system of linear inequalities, where there is a rational-valued variable µf for every
f ∈ BA.

variables: µf for all f ∈ BA

constraints:
∑

f∈BA

µf RB(f(a)) ≤ RA(a) for all R ∈ σ and a ∈ Aar(R)

∑
f∈BA

µf ≥ 1

µf ≥ 0 for all f ∈ BA.

(9)

CP 2022

4:10 Weisfeiler-Leman Invariant Promise Valued CSPs

If there is no fractional homomorphism from A to B, this system is infeasible.
We now deal with infinite coefficients. Define BA

<∞ = {f ∈ BA : ∀R ∈ σ, ∀a ∈
Aar(R), RA(a) < ∞ implies RB(f(a)) < ∞}. Now consider the new linear system ob-
tained from the above by first removing all the inequalities in (9) where RA(a) = ∞ (since
these inequalities are always satisfied), and second, by removing the variable µf for all
f ∈ BA \ BA

<∞ and changing (9) so that the sums run over BA
<∞ only (since we need to have

µf = 0 for f ∈ BA \ BA
<∞ in any feasible solution). Clearly, the system of linear inequalities

resulting from this procedure remains infeasible and does not contain infinite coefficients.
This system of linear inequalities can be rewritten in matrix form as M f ≤ a subject

to f ≥ 0, where f ∈ QBA
<∞

≥ is the vector of unknowns, and M is a real-valued matrix. By
Farkas’ Lemma, the system of inequalities MT y ≥ 0 subject to aT y < 0 and y ≥ 0 is feasible.
Explicitly, the latter system is the following.

variables: y, xR,a for every R ∈ σ and a ∈ Aar(R) with RA(a) < ∞

constraints:
∑
R∈σ

∑
a∈Aar(R)

RA(a)<∞

xR,aRB(f(a)) ≥ y for all f ∈ BA
<∞

∑
R∈σ

∑
a∈Aar(R)

RA(a)<∞

xR,aRA(a) < y

xR,a ≥ 0 for all R ∈ σ, a ∈ Aar(R)

y ≥ 0.

(10)

Eliminating y, and adding trivially satisfied constraints to (10) for all f ∈ BA \ BA
<∞, we

get that the following system is feasible.

variables: xR,a for every R ∈ σ and a ∈ Aar(R) with RA(a) < ∞

constraints:
∑
R∈σ

∑
a∈Aar(R)

RA(a)<∞

xR,aRB(f(a)) >
∑
R∈σ

∑
a∈Aar(R)

RA(a)<∞

xR,aRA(a) for all f ∈ BA

xR,a ≥ 0 for all R ∈ σ, a ∈ Aar(R)

(11)

Let xR,a for R ∈ σ, a ∈ Ar be a feasible solution to (11), and consider the structure I
with domain I = A and relations given by RI(a) = xR,a for a ∈ Aar(R) with RA(a) < ∞
and RI(a) = 0 whenever RA(a) = ∞. Notice that I is non-negative finite-valued, that the
right-hand side in the first inequality is equal to Val(I, A, id), (where id denotes the identity
function) and that the left-hand side is equal to Val(I, B, f). Therefore Opt(I, B) > Opt(I, A),
as required. ◀

Sketch of proof of Theorem 3. For an integer m ≥ 1, let LPm(A) be the structure whose
universe consists of A-multisets of size m and whose valued relations are defined by the
following formula where R ∈ σ and s1, . . . , sr are from the universe.

RLPm(A)(s1, . . . , sr) := 1
m

min
t1,...,tr∈Am

{{ti}}=si

m∑
i=1

RA(t1[i], . . . , tr[i]).

Variants of such structures have been defined in the literature both for (P)CSP [16, 1] and
for VCSP [22, 25]. These papers also explicitly or implicitly observe the following properties.

L. Barto and S. Butti 4:11

1. OptBLP(I, A) = minm≥1 Opt(I, LPm(A)) for all non-negative finite-valued I.
2. For all m ≥ 1, LPm(A) →f B if and only if (A, B) has an m-ary symmetric fractional

polymorphism.

The proof can be now finished using Proposition 5. For (iv) ⇒ (v) suppose that (A, B)
does not have a symmetric polymorphism of some arity m. Then, there is no fractional
homomorphism from LPm(A) to B. It follows from Proposition 5 that there exists some
structure I such that Opt(I, B) > Opt(I, LPm(A)) ≥ OptBLP(I, A). Hence, BLP does
not decide PVCSP(A, B). On the other hand, for (v) ⇒ (iv), assume that (A, B) has
symmetric fractional polymorphisms of every arity. Let m ≥ 1 be such that Opt(I, LPm(A))
is minimal. We know that LPm(A) is fractionally homomorphic to B and therefore for
all finite-valued structures I, Opt(I, B) ≤ Opt(I, LPm(A)) = OptBLP(I, A). Hence, BLP
decides PVCSP(A, B). ◀

The decomposition theorem mentioned in the introduction uses a concept that is “dual”
to fractional homomorphism, as suggested by the following Proposition 6. Here we only
present the proof of the implication that is needed for the decomposition theorem. The proof
of the other implication uses techniques similar to the ones deployed in Proposition 5, and
we refer the reader to [6] for the details.

We define a dual fractional homomorphism from I to J (I →df J) to be a probability
distribution η over JI such that for every R ∈ σ and every u ∈ Jar(R) we have that

RJ(u) ≥
∑

f∈JI

η(f)
∑

v∈Iar(R)

u=f(v)

RI(v). (12)

▶ Proposition 6. For any two non-negative finite-valued σ-structures I and J, the following
are equivalent.
1. There exists a dual fractional homomorphism from I to J.
2. For all valued σ-structures A, Opt(I, A) ≤ Opt(J, A).

Proof. (1) ⇒ (2). Let η be a dual fractional homomorphism from I to J, and g : J → A be
such that Opt(J, A) = Val(J, A, g). Then

Opt(J,A) =
∑
R∈σ

∑
u∈Jar(R)

RJ(u)RA(g(u))

≥
∑
R∈σ

∑
u∈Jar(R)

∑
f∈JI

η(f)
∑

v∈Iar(R)

u=f(v)

RI(v)RA(g ◦ f(v)) =
∑

f∈JI

η(f) Val(I, A, g ◦ f),

which implies that there exists some function f ′ : I → J such that Val(I, A, g ◦ f ′) ≤
Opt(J, A), hence Opt(I, A) ≤ Opt(J, A) as required. Notice that this holds regardless of
whether A is finite-valued or general-valued. ◀

4 The decomposition theorem

In this section we state and prove the decomposition theorem. This provides a connection
between the combinatorial and the LP-based characterizations of the class of PVCSP
templates that are the subject of our main result, and thus is a fundamental step in
the proof of Theorem 8, namely the implication (ii) ⇒ (iii). We refer to [5] for a more
detailed discussion about (a weaker form of) this result.

CP 2022

4:12 Weisfeiler-Leman Invariant Promise Valued CSPs

▶ Theorem 7. Let I, A be a pair of similar valued structures, where I is non-negative and
finite-valued. Then there exist non-negative finite-valued structures Y1, Y2 such that

1. I →df Y1,

2. Y1 ≡1 Y2, and

3. Opt(Y2, A) ≤ OptSA1
(I, A).

Proof. If SA1(I, A) is not feasible, then we can take Y1 = Y2 = I, and the statement follows
trivially, so from now on we shall assume that SA1(I, A) is feasible. Let pv(a), pR(v)(a) form
an optimal solution of SA1(I, A) and let m > 0 be an integer such that all the values mpv(a)
and mpR(v)(a) are integers. Note that these integers are non-negative by (3) and (5).

We define the universe of both valued structures Y1 and Y2 as Y1 = Y2 = [m] × I.
The valued structure Y1 is simply a “scaled disjoint union” of m copies of I: we set
RY1((k, v[1]), (k, v[2]), . . . , (k, v[ar(R)])) = 1/m · RI(v) for every k ∈ [m], v ∈ Iar(R), and
the weight of the remaining tuples is set to 0. Observe that I →df Y1 by the dual fractional
homomorphism given by the uniform distribution over fk, k ∈ [m], where fk : I → Y1 is
defined by fk(v) = (k, v) for all v ∈ I. Also notice that the iterated degree of each (k, v)
is obtained from the iterated degree of v by scaling down each constraint label (R, q) to
(R, q/m).

The structure Y2 is a “twisted” version of Y1 (the construction is a version of the twisted
product from [15]). For every v ∈ I, fix a tuple pv ∈ Am in which a ∈ A appears exactly
mpv(a) times – note that this is possible since the mpv(a) sum up to m by (4). We define
h : Y2 → A by h(k, v) = pv[k] for all k ∈ [m] and v ∈ I. The structure Y2 is constructed
so that the value of h for (Y2, A) is OptSA1

(I, A), as follows. For every R(v) ∈ CI, denote
r = ar(R), and consider an m × r matrix Q that has, for each a ∈ Ar, exactly mpR(v)(a)
rows equal to a. Note that the ith column contains a ∈ A exactly mpv[i](a) times by (5), in
other words, the multiset of elements of this columns is equal to {{pv[i]}}; in particular, Q

indeed has m rows. Moreover, if v[i] = v[j], then the columns i and j are identical by (7). It
follows that there are permutations ρ1, . . . , ρr : [m] → [m] such that

for every k ∈ [m], the kth row of Q is equal to (pv[1][ρ1(k)], pv[2][ρ2(k)], . . . , pv[r][ρr(k)]);

for every i, j ∈ [r], if v[i] = v[j] then ρi = ρj .
We set RY2((ρ1(k), v[1]), (ρ2(k), v[2]), . . . , (ρr(k), v[r])) = 1/m · RI(v) for every k ∈ [m].
After running through all R(v) ∈ CI we set the remaining weights to 0. The weights of those
tuples that correspond to R(v) were selected so that their contribution to Val(Y2, A, h) is
equal to the inner sum in the SA1 objective function (⋆); therefore, the total value of h is
equal to OptSA1

(I, A). It follows that Opt(Y2, A) ≤ OptSA1
(I, A). Moreover, the iterated

degree of a pair (k, v) in Y2 is the same as in Y1 (note here that the second item above
guarantees that repeated entries are handled correctly). It follows that Y1 ≡1 Y2, and the
proof is concluded. ◀

The dual fractional homomorphism I →df Y1, the equivalence Y1 ≡1 Y2, and assignments
Y2 → A that witness that Opt(Y2, A) ≤ OptSA1

(I, A) from the proof of Theorem 7 can all
be naturally associated with rational matrices (of dimensions I × Y1, Y1 × Y2, and Y2 × A,
respectively). It can be calculated that the product of these matrices is a matrix associated
to a solution to the SA1(I, A) linear program. This is why we regard Theorem 7 as a
decomposition theorem.

L. Barto and S. Butti 4:13

5 Main result

We are ready to prove the main result. The appropriate generalization of invariance under ≡1
(item (ii) in Theorem 1) is that if I ≡1 J and τ ∈ Q, then it cannot happen that (I, τ) is a
Yes-instance while (J, τ) is a No-instance. Item (ii) in the following theorem is a reformulation
of this requirement.

▶ Theorem 8. Let (A, B) be a promise valued template of signature σ. Then the following
are equivalent.

(i) There exists a distributed algorithm that solves PVCSP(A, B). Moreover, in such a
case, there is a polynomial-time distributed algorithm that solves PVCSP(A, B).

(ii) For all finite-valued σ-structures I, J, if I ≡1 J then Opt(J, B) ≤ Opt(I, A).
(iii) SA1 decides PVCSP(A, B).

Proof. (i) ⇒ (ii). From the nature of the distributed model, it follows that agents with
the same iterated degree will be in the same state at any time during the execution of any
distributed algorithm. Therefore, if (i) holds and I ≡1 J are connected, then a terminating
distributed algorithm will report the same decision when run on input (I, τ) or (J, τ) (see
Proposition 2.2 and Corollary 2.3 in [4]), so by setting τ = Opt(I, A) we obtain that (ii)
holds for all connected I, J. We now show how (ii) in its full generality follows from (ii)
restricted to connected I and J.

Let us call two finite-valued σ-structures I and J weakly congruent if |J | · δ(I) = |I| · δ(J).
We claim that Opt(J, B)/|J | ≤ Opt(I, A)/|I| whenever I and J are weakly congruent and
connected. The claim clearly holds when |I| = 1 or |J | = 1, so assume |I|, |J | ≥ 2. For
any positive integer k, we define connected finite-valued σ-structures I′(k) and I(k) (and
similarly J′(k), J(k)) as follows. Let I = {v0, v1, . . . , v|I|−1} and let the universe of I′(k) be
{0, 1, . . . , k − 1} × I. Let η be the probability distribution over the mappings I → I(k)

assigning probability 1/2k to each of the 2k mappings fj , f ′
j , j ∈ {0, 1, . . . , k − 1}, where

fj(vi) = (j, vi) and f ′
j(vi) = (i + j mod k, vi) for each vi ∈ I. We define the weights in

I′(k) in the unique way so that (12) holds for η with equality instead of inequality. Then η

is a dual fractional homomorphism from I to I′(k), and the probability distribution which
assigns probability 1 to the projection onto I is a dual fractional homomorphism in the
opposite direction. By Proposition 6, Opt(I, C) = Opt(I′(k), C) for any valued σ-structure
C. Finally, let I(k) be the valued σ-structure obtained from I′(k) by multiplying weights by
2k; clearly, Opt(I(k), C) = 2k Opt(I′(k), C) for any C. It follows from the construction that
I(k) is connected. Moreover, if k is large enough (k ≥ |I| suffices), then the iterated degree of
(j, vi) in I(k) is obtained from the iterated degree of vi in I by multiplying all the variable
multisets in each of the elements of δI(vi) by 2 (in each inductive step in the definition
of iterated degree). It follows that, for all k′, the valued structures J(k′|I|) and I(k′|J|) are
connected and, when k′ is large enough, have the same iterated degree. By item (ii) for
connected valued structures, we get Opt(J(k′|I|), B) ≤ Opt(I(k′|J|), A) and the claim follows
using the equalities above and rearranging.

Before finishing the proof, notice a simple consequence of the definition of iterated degrees.
For a “variable vertex” x of GI, a label S, and a “constraint vertex” y such that x and y

are adjacent in GI, denote x[S, y] = {y′ | δ(y′) = δ(y), ℓ{x,y′} = S}. Observe that if there
exists an edge between x and y labeled S, then {x′[S, y] | δ(x′) = δ(x)} is a collection of
mutually disjoint sets of equal size, which cover {y′ | δ(y) = δ(y′)}; and, moreover, the same
claim holds when x′ and y′ are restricted to the connected component containing x (or y).
It follows that for a component I′ of I and a component J′ of J, where I ≡1 J, either the
iterated degrees δ(I′) and δ(J′) are disjoint, or I′ and J′ are weakly congruent.

CP 2022

4:14 Weisfeiler-Leman Invariant Promise Valued CSPs

This observations allows us to finish the proof as follows. Let I and J be finite-valued
σ-structures such that I ≡1 J and let n = |I| = |J |. Then there are sequences (I1, . . . , In) and
(J1, . . . , Jn) such that the first (resp., second) sequence contains each connected component
I′ of I (resp., J′ of J) exactly |I ′| times (resp., |J ′| times), and Ii and Ji are weakly congruent
for every i ∈ [n]. From the claim above, we get Opt(Ji, B)/|Ji| ≤ Opt(Ii, A)/|Ii| for every
i ∈ [n]. Summing up these inequalities and observing that Opt(I, A) is equal to the sum of
Opt(I′, A) over all connected components I′ of I (and similarly for J), item (ii) now follows.

(ii) ⇒ (iii). We need to show that for every non-negative finite-valued σ-structure I,
Opt(I, B) ≤ OptSA1

(I, A). Let Y1, Y2 be the structures obtained from Theorem 7, i.e.,
Y1 ≡1 Y2, Opt(Y2, A) ≤ OptSA1

(I, A), and there is a dual fractional homomorphism from
I to Y1. Then, by (ii) we have that Opt(Y1, B) ≤ OptSA1

(I, A), and by Proposition 6,
Opt(I, B) ≤ OptSA1

(I, A) too, as required.
(iii) ⇒ (i). From Theorem 3.2 in [4] (adapted to the valued setting), if OptSA1

(I, A) < ∞,
then there is a solution to the linear program that assigns the same value to every class of
variables and constraints of I that have the same iterated degree.8 This allows us to reduce
the linear program as follows. Let I/≡1 and CI/≡1 denote the sets of equivalence classes of
variables and constraints, respectively, under the equivalence ≡1. The new linear program,
denoted SA1

≡(I, A), contains one variable p[v](a) for every class [v] ∈ I/≡1 and one variable
p[R(v)](a) for every class [R(v)] ∈ CI/≡1. The variables of the new program SA1

≡(I, A) are
subject to the same constraints as in SA1(I, A), except they use the new reduced set of
variables. The new objective function is

OptSA1
≡(I, A) := min

∑
[R(v)]∈CI/≡1

k[R(v)]
∑

a∈Aar(R)

p[R(v)](a)RI(v)RA(a), (13)

where k[R(v)] = |[R(v)]| is the number of constraints equivalent to R(v). By the above dis-
cussion, we have OptSA1

≡(I, A) = OptSA1
(I, A). Therefore, since SA1 decides PVCSP(A, B),

so does SA1
≡. (We remark here that two input structures with the same iterated degree have

the same reduced SA1
≡ up to renaming of variables; this can be used e.g. to show that (iii)

implies (ii).)
In order to show that (iii) implies (i), assume that I is a connected input structure. We

show that every agent in the distributed network can obtain the reduced linear program of
SA1

≡ via a polynomial-time distributed algorithm. As SA1
≡ decides PVCSP(A, B), this will

conclude the proof.
The agents can calculate their iterated degree (or, rather, a finite and effectively com-

putable representation thereof) in polynomial time using a simple distributed version of the
color refinement algorithm. Each agent α(x), x ∈ I ∪ CI can then use the representation
of the iterated degree as an identifier, see [4, Lemma 4.8.] for a more detailed discussion.
Every agent can obtain sufficient information from its neighbours to compute the equations
in (4), (5), (6) and (7) that constrain its relevant LP variables of the reduced system (and
use the identifiers to name the LP variables), and can subsequently broadcast these along
the network. We are left to show that every agent can also compute the objective function
of SA1

≡(I, A). In fact, it is sufficient that every agent α(R(v)) computes the summand
of OptSA1

≡(I, A) that corresponds to [R(v)] and then broadcasts it in order to obtain the
complete objective function. The only nontrivial piece of information to compute is the value
of the coefficients k[R(v)].

8 We remark here that this theorem also has a substantially simpler proof – it is enough to observe that
averaging over variables and constraints with the same iterated degrees does not increase the objective
function.

L. Barto and S. Butti 4:15

By the observation made in the proof of (i) ⇒ (ii), for each R(v) ∈ CI, a participating
variable v ∈ {v}, and S = ℓ{v,R(v)}, the coefficient k[R(v)] is equal to the number of S-labeled
edges from v into members of [R(v)] (denoted v[S, R(v)] above) multiplied by the size of [v].
The former value can be computed by α(v), so α(v) can compute the ratio k[R(v1)] : k[R(v2)]
for any two constraints R(v1), R(v2) that v participates in. After broadcasting all these
ratios, each agent can compute the ratios between any two k[R(v)] and, since the sum of these
coefficients is |CI| (which is known to the agents), they can compute the coefficients. ◀

Clearly, the implication (iv) ⇒ (iii) in Theorem 1 remains true for PVCSP (so the equivalent
statements in Theorem 8 are satisfied in, e.g., the PVCSPs in Example 4). The following
example shows that, unlike for PCSPs, the converse implication does not hold in general: we
provide an example of a PVCSP template that is decided by SA1 but not by BLP.

▶ Example 9. Let A, B be σ-structures where σ contains a single binary relation symbol R.
Let A = B = {0, 1}, RA(a, a) = RB(a, a) = 3 for a ∈ {0, 1}, and RA(a, b) = 2, RB(a, b) = 0
for a ≠ b ∈ {0, 1}. The probability distribution which assigns probability 1 to the identity
function is a fractional homomorphism, and so (A, B) is a PVCSP template.

We claim that BLP does not decide PVCSP(A, B). Indeed, let I be the PVCSP input
structure given by I = {v} and RI(v, v) = 1. Then, there is a feasible solution to BLP(I, A)
given by pv(a) = 1/2 for a ∈ {0, 1} and pR(v,v)(a, a) = 0, pR(v,v)(a, b) = 1/2 for a ̸= b ∈ {0, 1}.
This solution witnesses that OptBLP(I, A) ≤ 2, however, it is easy to see that Opt(I, B) = 3
and so BLP does not decide PVCSP(A, B).

On the other hand, we show that Opt(I, B) ≤ OptSA1
(I, A) for any input valued structure

I. Let Vl(I) =
∑

v∈I RI(v, v) and Ve(I) =
∑

u̸=v RI(u, v) be the total weight of the constraints
in I with and without repetitions, respectively. We choose an assignment h : I → B at
random: each h(v) is chosen independently and uniformly (both 0 and 1 with probability
1/2). The expected value of Val(I, B, h) is 3Vl(I) + 3/2Ve(I), which implies that Opt(I, B) ≤
3Vl(I) + 3/2Ve(I). As for SA1, we know that any feasible solution must have p(v,v)(a, b) = 0
whenever a ̸= b. Therefore, we get

OptSA1
(I, A) = min

[∑
v∈I

∑
a∈A

pR(v,v)(a, a)RI(v, v)RA(a, a)+

∑
u̸=v∈I

∑
a,b∈A

pR(u,v)(a, b)RI(u, v)RA(a, b)
]

≥ 3Vl(I) + 2Ve(I) > Opt(I, B).

6 Conclusion

We have shown that solvability of a PVCSP by the SA1 relaxation is equivalent to invariance
under the Weisfeiler-Leman-like equivalence ≡1, and also to solvability in a natural distributed
model. The distributed algorithm for the narrower CSP setting from [4] worked also for
the search version of the problem, but this is unfortunately not the case for the algorithm
presented in this paper. Is there an algorithm solving the search version of PVCSP(A, B)
whenever the PVCSP is solvable by SA1? Note that in the search version an instance consists
only of I and the goal is to find an assignment h : I → B such that Val(I, B, h) ≤ Opt(I, A).

Another open problem emerges from Example 9 which shows that BLP and SA1 are not
equivalent for PVCSPs. It follows from [5] that BLP and SA1 are equivalent for PCSPs
and from [23] that they are also equivalent for finite-valued VCSPs. Are these relaxations
equivalent for general-valued VCSPs?

CP 2022

4:16 Weisfeiler-Leman Invariant Promise Valued CSPs

References
1 Libor Barto, Jakub Bulín, Andrei A. Krokhin, and Jakub Opršal. Algebraic approach to

promise constraint satisfaction. J. ACM, 68(4):28:1–28:66, 2021. doi:10.1145/3457606.
2 Libor Barto, Andrei Krokhin, and Ross Willard. Polymorphisms, and How to Use Them. In

Andrei Krokhin and Stanislav Živný, editors, The Constraint Satisfaction Problem: Complexity
and Approximability, volume 7 of Dagstuhl Follow-Ups, pages 1–44. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany, 2017. doi:10.4230/DFU.Vol7.15301.1.

3 A. A. Bulatov. A dichotomy theorem for nonuniform CSPs. In 2017 IEEE 58th Annual
Symposium on Foundations of Computer Science (FOCS), pages 319–330, October 2017.
doi:10.1109/FOCS.2017.37.

4 Silvia Butti and Victor Dalmau. The complexity of the distributed constraint satisfaction
problem. In Markus Bläser and Benjamin Monmege, editors, 38th International Symposium
on Theoretical Aspects of Computer Science, STACS 2021, March 16-19, 2021, Saarbrücken,
Germany (Virtual Conference), volume 187 of LIPIcs, pages 20:1–20:18. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.STACS.2021.20.

5 Silvia Butti and Víctor Dalmau. Fractional Homomorphism, Weisfeiler-Leman Invariance,
and the Sherali-Adams Hierarchy for the Constraint Satisfaction Problem. In Filippo Bonchi
and Simon J. Puglisi, editors, 46th International Symposium on Mathematical Foundations
of Computer Science, MFCS 2021, August 23-27, 2021, Tallinn, Estonia, volume 202 of
LIPIcs, pages 27:1–27:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:
10.4230/LIPIcs.MFCS.2021.27.

6 Clément Carbonnel, Miguel Romero, and Stanislav Živný. The complexity of general-valued
constraint satisfaction problems seen from the other side. SIAM Journal on Computing,
51(1):19–69, 2022. doi:10.1137/19M1250121.

7 Tomás Feder and Moshe Y Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: A study through datalog and group theory. SIAM Journal on
Computing, 28(1):57–104, 1998.

8 Ferdinando Fioretto, Enrico Pontelli, and William Yeoh. Distributed constraint optimization
problems and applications: A survey. J. Artif. Int. Res., 61(1):623–698, January 2018.

9 Alexander Kazda. Minion homomorphisms give reductions between promise valued CSPs,
2021. In preparation.

10 Vladimir Kolmogorov, Andrei A. Krokhin, and Michal Rolínek. The complexity of general-
valued CSPs. SIAM J. Comput., 46(3):1087–1110, 2017. doi:10.1137/16M1091836.

11 Vladimir Kolmogorov, Johan Thapper, and Stanislav Živný. The power of linear programming
for general-valued CSPs. SIAM J. Comput., 44(1):1–36, 2015. doi:10.1137/130945648.

12 Marcin Kozik. Solving CSPs Using Weak Local Consistency. SIAM Journal on Computing,
50(4):1263–1286, 2021. doi:10.1137/18M117577X.

13 Andrei Krokhin and Stanislav Živný. The Constraint Satisfaction Problem: Complexity and
Approximability, volume 7. Schloss Dagstuhl, 2017.

14 Andrei Krokhin and Stanislav Živný. The Complexity of Valued CSPs. In Andrei Krokhin and
Stanislav Živný, editors, The Constraint Satisfaction Problem: Complexity and Approximability,
volume 7 of Dagstuhl Follow-Ups, pages 233–266. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, Dagstuhl, Germany, 2017. doi:10.4230/DFU.Vol7.15301.233.

15 Gábor Kun. Constraints, MMSNP and expander relational structures. Comb., 33(3):335–347,
2013. doi:10.1007/s00493-013-2405-4.

16 Gabor Kun, Ryan O’Donnell, Suguru Tamaki, Yuichi Yoshida, and Yuan Zhou. Linear
programming, width-1 CSPs, and robust satisfaction. In Proceedings of the 3rd Innovations
in Theoretical Computer Science Conference, ITCS ’12, pages 484–495, New York, NY, USA,
2012. Association for Computing Machinery. doi:10.1145/2090236.2090274.

17 AA Leman and B Weisfeiler. A reduction of a graph to a canonical form and an algebra arising
during this reduction. Nauchno-Technicheskaya Informatsiya, 2(9):12–16, 1968.

https://doi.org/10.1145/3457606
https://doi.org/10.4230/DFU.Vol7.15301.1
https://doi.org/10.1109/FOCS.2017.37
https://doi.org/10.4230/LIPIcs.STACS.2021.20
https://doi.org/10.4230/LIPIcs.MFCS.2021.27
https://doi.org/10.4230/LIPIcs.MFCS.2021.27
https://doi.org/10.1137/19M1250121
https://doi.org/10.1137/16M1091836
https://doi.org/10.1137/130945648
https://doi.org/10.1137/18M117577X
https://doi.org/10.4230/DFU.Vol7.15301.233
https://doi.org/10.1007/s00493-013-2405-4
https://doi.org/10.1145/2090236.2090274

L. Barto and S. Butti 4:17

18 Motakuri V. Ramana, Edward R. Scheinerman, and Daniel Ullman. Fractional isomorphism of
graphs. Discrete Mathematics, 132(1):247–265, 1994. doi:10.1016/0012-365X(94)90241-0.

19 Edward R Scheinerman and Daniel H Ullman. Fractional graph theory: a rational approach to
the theory of graphs. Courier Corporation, 2011.

20 Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons, Inc.,
USA, 1986.

21 Hanif D. Sherali and Warren P. Adams. A hierarchy of relaxations between the continuous
and convex hull representations for zero-one programming problems. SIAM J. Discret. Math.,
3(3):411–430, 1990. doi:10.1137/0403036.

22 Johan Thapper and Stanislav Živný. The power of linear programming for valued CSPs.
In 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, New
Brunswick, NJ, USA, October 20-23, 2012, pages 669–678. IEEE Computer Society, 2012.
doi:10.1109/FOCS.2012.25.

23 Johan Thapper and Stanislav Živný. The complexity of finite-valued CSPs. J. ACM, 63(4):37:1–
37:33, 2016. doi:10.1145/2974019.

24 Johan Thapper and Stanislav Živný. The Power of Sherali-Adams Relaxations for General-
Valued CSPs. SIAM J. Comput., 46(4):1241–1279, 2017. doi:10.1137/16M1079245.

25 Caterina Viola and Stanislav Živný. The combined basic LP and affine IP relaxation for
promise VCSPs on infinite domains. ACM Trans. Algorithms, 17(3):21:1–21:23, 2021. doi:
10.1145/3458041.

26 Makoto Yokoo, Toru Ishida, Edmund H Durfee, and Kazuhiro Kuwabara. Distributed constraint
satisfaction for formalizing distributed problem solving. In [1992] Proceedings of the 12th
International Conference on Distributed Computing Systems, pages 614–621. IEEE, 1992.

27 Dmitriy Zhuk. A proof of the CSP dichotomy conjecture. J. ACM, 67(5):30:1–30:78, August
2020. doi:10.1145/3402029.

CP 2022

https://doi.org/10.1016/0012-365X(94)90241-0
https://doi.org/10.1137/0403036
https://doi.org/10.1109/FOCS.2012.25
https://doi.org/10.1145/2974019
https://doi.org/10.1137/16M1079245
https://doi.org/10.1145/3458041
https://doi.org/10.1145/3458041
https://doi.org/10.1145/3402029

Trajectory Optimization for Safe Navigation in
Maritime Traffic Using Historical Data
Chaithanya Basrur #

Singapore Management University, Singapore

Arambam James Singh #

National University of Singapore, Singapore

Arunesh Sinha #

Singapore Management University, Singapore

Akshat Kumar #

Singapore Management University, Singapore

T. K. Satish Kumar #

University of Southern California, Los Angeles, CA, USA

Abstract
Increasing maritime trade often results in congestion in busy ports, thereby necessitating planning
methods to avoid close quarter risky situations among vessels. Rapid digitization and automation
of port operations and vessel navigation provide unique opportunities for significantly improving
navigation safety. Our key contributions are as follows. First, given a set of future candidate
trajectories for vessels in a traffic hotspot zone, we develop a multiagent trajectory optimization
method to choose trajectories that result in the best overall close quarter risk reduction. Our novel
MILP-based optimization method is more than an order-of-magnitude faster than a standard MILP
for this problem, and runs in near real-time. Second, although automation has improved in maritime
operations, current vessel traffic systems (in our case study of a busy Asian port) predict only a single
future trajectory of a vessel based on linear extrapolation. Therefore, using historical data we learn
a generative model that predicts multiple possible future trajectories of each vessel in a given traffic
hotspot, reflecting past vessel movement patterns, and integrate it with our trajectory optimizer.
Third, we validate our trajectory optimization and generative model extensively using a real world
maritime traffic dataset containing 6 million Automated Identification System (AIS) data records
detailing vessel movements over 1.5 years from one of the world’s busiest ports, demonstrating
effective risk reduction.

2012 ACM Subject Classification Computing methodologies → Multi-agent planning

Keywords and phrases Multi-Agent Path Coordination, Maritime Traffic Control

Digital Object Identifier 10.4230/LIPIcs.CP.2022.5

Supplementary Material
Audiovisual (Videos and Appendix): https://github.com/rlr-smu/TrajOpt

Funding This research/project is supported by the National Research Foundation Singapore and DSO
National Laboratories under the AI Singapore Programme (AISG Award No: AISG2-RP-2020-016).

1 Introduction

Increasing maritime vessel traffic in some of the busiest ports of world such as Tokyo bay
and Singapore creates traffic hotspots and increases the risk of closer quarter near-miss
situations [17]. Recently, disruptions in global supply chains, and adverse weather events
have further endangered the navigational safety by causing unexpected traffic spikes in busy
waterways such as Singapore’s port [31]. Vessel collisions endanger not only human lives,

© Chaithanya Basrur, Arambam James Singh, Arunesh Sinha, Akshat Kumar, and T. K. Satish Kumar;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 5; pp. 5:1–5:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:csbasrur@smu.edu.sg
mailto:jamesa@nus.edu.sg
mailto:aruneshs@smu.edu.sg
mailto:akshatkumar@smu.edu.sg
mailto:tkskwork@gmail.com
https://doi.org/10.4230/LIPIcs.CP.2022.5
https://github.com/rlr-smu/TrajOpt
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Traj. Opt. for Safe Nav. in Maritime Traf. Using Hist. Data

(a) (b)

Figure 1 (a) Electronic navigation chart(ENC) of Singapore strait. ENC is used by vessels for
navigation through the strait. Traffic separation scheme (TSS) are the sea lanes through which
vessels enter and leave the strait. (b) Enlarged view of planning region from ENC, an instance of a
congested scenario in this region is shown. Green and red line denote first 10-step and next 10-step
trajectories from historical data respectively. This is the most congested region in the whole strait
because many vessels enter and come out of the port through this junction point.

but also endanger the environment by causing oil spills [20]. Therefore, our goal in this work
is to study and develop maritime traffic coordination techniques to mitigate close quarter
risky situations that may develop in near future, and improve safety of navigation.

Current model of operations, automation in maritime traffic. Most busy ports, such as
Singapore’s, have a vessel traffic information system (VTIS) that is manned by port watch
operators [19]. Operators keep a close watch over the vessel traffic 24x7 via radars and
other sensors, and take action if a risky navigation situation is about to develop in the near
future (e.g. in the next 10-15 mins). A key challenge is how to proactively advise involved
vessels in a traffic hotspot to avoid the close quarter situation. Based on our discussions with
Singapore’s port authority and our physical observation of their VTIS control center, watch
operators’ traffic monitoring software predicts how vessels would move over the next 10-15
mins by linearly extrapolating their course. And if this linear prediction based trajectories
suggest a close-quarter situation developing in the next 10-15 mins, it alerts the watch
operator. However, it is left to the watch operator to decide how to advise vessels (e.g.,
to alter course) to avoid such a close quarter situation. This lack of automated trajectory
optimization support creates high cognitive burden for watch operators, and is prone to
human error. Therefore, our automated trajectory optimization tool can act as a decision
support system for improved safety of maritime navigation.

In addition to improving current VTIS operations, developing automated trajectory
optimization methods would also be highly impactful for the future of maritime traffic.
E-Navigation [12] introduced by International Maritime Organisation (IMO) aims to improve
maritime industry operations by digitizing both vessel navigation and port-based operations
including digitizing communications between vessels and VTIS. Such digitization can further
enable the usage of automated tools for improved safety of navigation. There are also recent
advancements in the space of autonomous ships that have the potential to improve safety in
navigation and also reduce costs to the industry [8, 24, 23]. Maritime Autonomous Surface
Ships (MASS) [21] is an initiative by the IMO which provides regulations and guidelines on
the advancement of technologies in this space. An example use-case of our tool would be

C. Basrur, A. J. Singh, A. Sinha, A. Kumar, and T. K. S. Kumar 5:3

(autonomous) vessels, which are in a traffic hotspot, propose a set of candidate trajectories
which they can take in the near future and transmit it to the port authority. Using our
trajectory optimization tool, the port authority can then advise vessels to take the least-risky
trajectory.

Electronic navigation chart and planning region. Figure 1a shows the electronic navigation
chart of Singapore strait. The traffic separation scheme (TSS) are the sea lanes through
which vessels enter and leave the strait. Each smaller polygon represents a sea zone. Other
areas of interests are marked in different colors such as anchorages, landmass among others.
Our area of focus (or planning region) highlighted in dotted square is a typical hotspot region.
In this region, vessels enter port waters (in pink color) towards berths, outgoing vessels from
berths enter TSS, and some vessels transit through the TSS. As a result, this planning region
experiences heavy cross traffic with vessels often navigating across traffic separation areas to
avoid hotspots.

Figure 1b shows a collection of real historical trajectories for different vessels (tankers
and cargos). Each dot in a trajectory shows the corresponding vessel position 1 minute apart.
Red circles highlight those locations where vessels are in a close quarter situation (distance
between them is less than 500 meters).

Generative trajectory modeling using historical data. Our trajectory optimization tool
requires a candidate set of possible future trajectory for each vessel involved in a hotspot
region. In the future with increased automation, vessels themselves can digitally compute
a number of feasible trajectories they can follow in the near future (next 10-15 mins) and
transmit them to the port authority. There are existing tools such as ECDIS [13] for vessel
route planning. However, the current vessel-port operations are unable to provide such
information. Similarly, current VTIS (such as Singapore port’s) predicts only a single
trajectory based on linear extrapolation.

To address this, we develop a generative model takes as input the past 10 minute trajectory
of each vessel in a specific hotspot area (‘time=1:10’), and then predicts a number of possible
trajectories for each vessel for the next 10 minutes (‘time=11:20’). Our generative model
is trained on a large historical dataset, which implies that generated future trajectories
are feasible (that is, they do not involve unrealistic manoeuvres such as taking U-turns, or
making vessels fully stop). Instead of vessels deciding independently their future trajectory
(‘time=11:20’), our trajectory optimization module can pick safest possible trajectories,
among the ones generated by our generative model, to decrease the risk by maximizing the
closest point of approach (CPA) between any two vessels. Note that all the information
required for this system is available with the port authority as they monitor movements
of all vessels, and based on our optimization tool, can advise vessels to follow a particular
trajectory. As traffic is dynamic, another property our tool must have is to produce results
in near real-time, and be able to run on a rolling horizon basis.

Contributions. Our key contributions are as follows. First, given a set of candidate future
trajectories of vessels in a hotspot region, we develop a mixed-integer linear programming
(MILP) based optimization method that can optimize over all possible combinations of
future vessel trajectories to minimize the risk of close quarter situations developing. Second,
using historical data of vessel movements in Singapore strait, one of busiest port in the
world, we learn a deep conditional generative model based on LSTM [11] that can predict
multiple possible future trajectories of vessels in a traffic hotspot region. Empirically, our

CP 2022

5:4 Traj. Opt. for Safe Nav. in Maritime Traf. Using Hist. Data

generative model is trained and evaluated on a real world historical data containing 6 million
data points (AIS records detailing vessel traffic data) over 1.5 years. We extensively test
several properties of our generative model, such as its ability to generate realistic and diverse
trajectories, and show that our method is significantly superior to another generative model
called social GAN [10]. We also show that our novel MILP-based trajectory optimization
method is more than an order-of-magnitude faster than a standard MILP model for this
problem, and can provide solutions in near real-time, a key requirement for the solver.

Generative modeling. The learning of probability distributions from data and ability to
sample from them is a fundamental learning task known as generative modelling. Within
generative models, a prominent sub-class are techniques that do not explicitly learn the
probability distribution (or density) function but are able to generate samples from it.
These include the classical Markov chain Monte Carlo methods [3] as well as modern
Generative Adversarial Networks [9] (GANs). GAN-based models have also been used for
generative trajectory modeling of pedestrians [10, 2, 15]. However, vessel traffic has movement
characteristics which are unlike pedestrians’ (such no sharp or uturns, prediction over longer
time duration among others). Our proposed generative model is also computationally efficient
than previous approaches such as SocialGAN [10] which take much longer to train, and often
produce worse predictions as we show empirically.

Multi-agent path finding (MAPF). Given a set of agents with unique start and goal
locations in a shared environment, the MAPF problem [28] is to find collision-free paths for
all agents from their respective start locations to their respective goal locations. MAPF has
many real-world applications, including in video games [25], automated warehousing [32],
multi-drone delivery [5], and aircraft-towing vehicles [18]. Solving the MAPF problem
optimally for either the minimum sum-of-costs or the minimum makespan is NP-hard [34, 16].
Although many MAPF solvers exist, they are not directly applicable in our problem domain
for the following reasons. First, MAPF solvers require a discrete search space. They discretize
continuous spaces even when they use motion primitives and thereby generate only piecewise
smooth paths uncharacteristic of trajectories in our problem domain. Second, MAPF solvers
don’t constrain branching decisions at intermediate locations and therefore don’t reason about
historical data required for capturing the complex kinodynamic constraints on trajectories in
our problem domain. Third, MAPF solvers are typically interested in avoiding collisions as
hard constraints rather than optimizing close quarter risk reduction.

Maritime traffic optimization. Previous works [27, 26] have proposed a reinforcement
learning based approach to address the maritime traffic control problem. Their main focus
is to optimize the traffic for the entire Singapore Strait. Whereas, our focus is more on
the micro-level traffic optimization, that is, minimizing the close quarter incidents in the
near future. [1, 4, 35, 29] have also addressed the traffic control problem at the micro-level.
However the solution methodologies in these approaches do not model the uncertainty in the
maritime environment, which is an important real world feature. In this work, we capture
the uncertainty in vessel movements using our proposed generative model.

2 Problem Formulation and Statement

We tackle the problem of recommending seafaring vessels a navigation route in and around
congested ports (e.g., the planning region in figure 1a). The increasing number of vessels over
the years has led to an increase in the frequency of collisions and close quarter situations.

C. Basrur, A. J. Singh, A. Sinha, A. Kumar, and T. K. S. Kumar 5:5

Thus, the need of the hour is some intervention from a central port authority to encourage
safe navigation around crowded ports. We envision a route recommendation system that
suggest routes to vessels involved in a traffic hotspot. A number of competing considerations
need to be taken into account for such a system: the recommendations should follow typical
paths traversed historically, the path suggested must be easy to execute by the vessel, and
achieve a global objective of minimizing the close-quarter risk among vessels.

Problem Statement. To specify the problem formally, we consider a planning horizon H

and planning area Z; a polygon in sea space. The planning area is typically the port area
prone to traffic hotspots, such as where vessels either enter the port waters for berthing and
anchoring or pass through to open seas. Vessels enter and leave Z during the planning period
H . At a planning epoch t, we observe a snapshot of the whole planning region which includes
information such as, total number of vessels M and their previous trajectories until time t. We
use [M] as a shorthand for {1, . . . , M}. v ∈ [M] denotes a vessel, τprv

v = ⟨lt, lt−1, . . . , lt−(n−1)⟩
denotes the past n-step trajectory of vessel v at time t, where lt = (xt, yt) is the location on
2d plane. We also assume that time is discretized (e.g., 30 second intervals). The objective of
a maritime traffic controller is to recommend future m-steps trajectories τ rec

v for each vessel
v so that it minimizes a risk function risk(τ rec

1 , τ rec
2 , . . . , τ rec

M) given by

risk(τ rec
1 , . . . , τ rec

M)= − min
v,v′∈[M],v ̸=v′

{
dist(τ rec

v , τ rec
v′)

}
(1)

where the function dist provides the closest distance between the two input trajectories.
Thus, in words, the risk measures the negative of the closest point of approach between any
two vessels for the recommended trajectories. Minimizing the risk means maximizing the
closest point of approach (CPA), which is a standard notion for maritime safety [6].

3 Approach

Our approach to solve the trajectory recommendation problem has two parts. First, given
a set of candidate future trajectories for each vessel in a hotspot area, we develop an
optimization method that selects trajectories to minimize the risk. Second, we develop a
trajectory generation model that generates multiple plausible trajectories for each vessel that
can be recommended.

3.1 Vessel Trajectory Optimization
We first formulate the path planning problem as a trajectory optimization problem. Suppose
that {τ1

v , τ2
v , . . . τK

v } are the K future plausible trajectories for a vessel v. There are multiple
ways in which such future trajectories can be collected – vessels themselves send future
possible trajectories they can follow (e.g., using route planning tools such as ECDIS as noted
in Section 1), VTIS can use their own prediction methods, or as in our case, trajectory
generation module can be used (described in next sub-section). Importantly, our trajectory
optimization method is not dependent on the manner in which such future trajectories are
collected.

Let xk
v be a binary decision variable that denotes whether the trajectory k is selected as

the recommendation. Thus, a natural constraint is
∑K

k=1 xk
v = 1, ∀v ∈ [M] which enforces

that only one trajectory is selected per vessel.

CP 2022

5:6 Traj. Opt. for Safe Nav. in Maritime Traf. Using Hist. Data

Table 1 RiskOPT: Mixed-integer non-linear program for trajectory optimization.

max
x

min
v∈[M],v′∈[M],v ̸=v′

{ ∑
k∈[K],k′∈[K]

xk
vxk′

v′ dist(τ k
v , τk′

v′)

}

subject to
K∑

k=1

xk
v = 1, ∀v ∈ [M]

xk
v ∈ {0, 1} ∀v ∈ [M], k ∈ [K]

We re-write the risk in terms of all the binary variables xk
v ’s. Let x denote all the binary

variables for all vessels. For defining risk(x) only those trajectories must be considered that
are selected, which we enforce by the bilinear term xk

vxk′

v′ below:

− min
v∈[M],v′∈[M],v ̸=v′

{ ∑
k∈[K],k′∈[K]

xk
vxk′

v′ dist(τk
v , τk′

v′)
}

(2)

We want to minimize risk, which given the negative sign in risk becomes the integer bilinear
optimization problem RiskOPT in Table 1.

Naive Formulation. The problem RiskOPT is non-linear because of the bilinear terms. A
naive and standard way of removing the bilinearity is to introduce additional continuous
variables zk,k′,v,v′ = xk

vxk′

v′ and constraints zk,k′,v,v′ ≥ xk
v + xk′

v′ − 1 and zk,k′,v,v′ ≤ xk
v and

zk,k′,v,v′ ≤ xk′

v′ . It can be readily checked that this re-formulation is equivalent to the
original one. This reformulation uses K2M2 extra variables and 3K2M2 extra constraints
over the original bilinear formulation. However, our planning needs to be almost real time
(solve within one minute) and as observed in experiments, this naive reformulation does not
meet this requirement. Hence, we present a more compact reformulation that is orders of
magnitude faster than the naive one.

Improved Formulation. Observe that the key part of expression (2) can be re-written as:∑
k∈[K]

xk
v

(∑
k′∈[K]

xk′

v′ dist(τk
v , τk′

v′)
)

(3)

We use the shorthand:

fk,v(xv′) =
∑

k′∈[K]

xk′

v′ dist(τk
v , τk′

v′).

Here xv′ = ⟨x1
v′ , . . . , xK

v′ ⟩ is the vector of variables for vessel v′. Note that fk,v(xv′) is linear
in xv′ . The expression (3) now simplifies to:∑

k∈[K]

xk
vfk,v(xv′) (4)

We now replace xk
vfk,v(xv′) with a real valued variable zk,v,v′ to get a reformulation of (4) as:∑

k∈[K]

zk,v,v′ =
∑

k∈[K]

xk
vfk,v(xv′).

C. Basrur, A. J. Singh, A. Sinha, A. Kumar, and T. K. S. Kumar 5:7

Table 2 CompactRiskOPT: Compact Mixed-integer linear program for trajectory optimization.

max
x,z,y

y

subject to
K∑

k=1

xk
v = 1, ∀v ∈ [M]

Constraint set from Eq. 7
Constraint set from Eq. 5
Constraint set from Eq. 6

xk
v ∈ {0, 1} ∀v ∈ [M], k ∈ [K]

Additionally, we also show that fk,v(xv′) can be easily lower and upper bounded so that the
relationship between zk,v,v′ and xk

vfk,v(xv′) can be expressed as linear constraints. Let lower
bound:

Lk,v,v′ = min
xv′

fk,v(xv′) = min
k′

dist(τk
v , τk′

v′).

The second equality above follows from the definition of fk,v(xv′) and the constraint that∑
k′∈[K] xk′

v′ = 1. Similarly, let upper bound:

Uk,v,v′ = max
xv′

fk,v(xv′) = max
k′

dist(τk
v , τk′

v′).

Lower bounds L and U can be easily computed for each tuple ⟨k, v, v′⟩ before we setup the
optimization problem. To replace xk

vfk,v(xv′) with a real valued zk,v,v′ , we first add the
constraints:

Lk,v,v′xk
v ≤ zk,v,v′ ≤ Uk,v,v′xk

v ∀k ∈ [K], v ∈ [M], v′ ∈ [M], v ̸= v′ (5)

This constraint ensures that zk,v,v′ = 0 if xk
v = 0. We still need to ensure that if xk

v = 1 then
zk,v,v′ = fk,v(xv′). Towards this end, we add the constraints:

fk,v(xv′) − Uk,v,v′(1 − xk
v) ≤ zk,v,v′ ≤ fk,v(xv′)− (6)

Lk,v,v′(1 − xk
v) ∀k ∈ [K], v ∈ [M], v′ ∈ [M], v ̸= v′

In the above constraint, if xk
v = 1 then zk,v,v′ = fk,v(xv′) and this value of zk,v,v′ is also

feasible for the previous constraint. Also, when xk
v = 0 then the previous constraint gives

zk,v,v′ = 0 which is still feasible for the above constraint.
This adds KM2 continuous variables and 4KM2 inequalities; note the reduction in the

number of these additional variables and constraints as compared to the naive approach. Also,
note that the new objective

∑
k∈[K] zk,v,v′ is now completely continuous. By introducing

an additional variable y which is to stand for minv∈[M],v′∈[M],v ̸=v′

{ ∑
k∈[K] zk,v,v′

}
and the

constraints∑
k∈[K]

zk,v,v′ ≥ y ∀k ∈ [K], v ∈ [M], v′ ∈ [M], v ̸= v′ (7)

the max-min optimization becomes the Mixed Integer Linear Program (MILP)
CompactRiskOPT in Table 2.

The arguments presented till now directly leads to the following formal claim of correctness

▶ Propostion 1. Optimization CompactRiskOPT is equivalent to RiskOPT.

CP 2022

5:8 Traj. Opt. for Safe Nav. in Maritime Traf. Using Hist. Data

(a) Architecture of generator. (b) Illustration of diversity loss.

Figure 2 A LSTM based generative model (left) with diversity loss computation (right). This
instance of the generative model is shown with n = 6 and m = 4. The exact diversity loss formula is
in text in Equation 8.

3.2 Trajectory Generation

Our aim is to use historical data to generate the K plausible trajectories. In practice,
such generation would be performed by port authority using human expertise, their own
prediction methods or vessels themselves can compute it using routing tools such as ECDIS,
as mentioned in the introduction. However, these possible trajectories are not recorded in
the maritime traffic dataset that are commercially available1, which only record historical
movement of vessels. Clearly, randomly generating trajectories produces very unrealistic
trajectories. Instead, we use a generative adversarial networks (GAN) [9] like set-up to learn
from historic data and generate multiple future trajectories; the GAN-like learning ensures
realism by generating trajectories close to observed ground truth trajectories in the data.
We generate a set of K trajectories {τ1

v , τ2
v , . . . τK

v } for each vessel v. The selection of one
trajectory among this set for each vessel is done in the path planning part as described in
the previous sub-section. We take inspiration from a GAN to build a simpler architecture
for trajectory generation that is easier to train and achieves better results in experiments.

More formally, the goal is to output multiple future trajectories {τ1
v , τ2

v , . . . τK
v } for each

of the M vessels starting from current time step t, where each trajectory τ i
v is of m time

steps. Each time step is 1 minute in wall-clock time. The input to this task is the previous
n-step trajectory τprv

v . During training the future trajectory (ground truth) is known and
specified as τ true

v = ⟨ltrue
t+1 , . . . , ltrue

t+m⟩, where ltrue
t = (xtrue

t , ytrue
t) is the location of the vessel

on the 2D plane (this is available from the historical data).

LSTM architecture. Our architecture for this generative task is shown in Figure 2a. It
is essentially a LSTM layer (we call this the generator gθ). LSTMs are a special kind of
recurrent neural networks, capable of learning long-term dependencies [11]. All recurrent
neural networks have the form of a chain of repeating modules of neural network. A LSTM
layer also has this chain like structure where each repeating structure is called a LSTM cell.
Each LSTM cell takes in an input (one element of a sequence which is a location li in our
case) and outputs a hidden value hi that is fed to the next LSTM cell. The chain structure
ensures that hi captures the information about all the inputs lj with j ≤ i. The last cells in
a LSTM layer output the predicted future elements of the sequence.

1 https://www.marinetraffic.com

https://www.marinetraffic.com

C. Basrur, A. J. Singh, A. Sinha, A. Kumar, and T. K. S. Kumar 5:9

In our architecture, the first n LSTM cells take in as input the past n locations given by
τprv

v . The next m cells output the future prediction with a sequential structure where the
prediction at a time-step forms the input for the LSTM cell that predicts the location for
the next time step. The predicted location output is formed by transforming the hi value
from the output LSTM cells by passing hi through a fully connected layer represented by f

in Figure 2a.

Stochastic predictions. Importantly, all the future predictor cells also take in Gaussian
noise z1 of dimension D as input, which enables stochastic predictions that provide the
multiple future trajectories we need. Multiple trajectories provide flexibility for the optimizer
to reach better solutions.

Next, we describe the loss function. During training, for any given predicted sequence
output τ̂ j

v = ⟨l̂j
t+1, . . . , l̂j

t+m⟩ we define a loss L(τ̂ j
v , τ true

v) =
∑m

i=1 ||ltrue
t+i − l̂j

t+i||2. However,
instead of using just one predicted sequence we invoke the generator S times with different
noise samples (and same past location input) to obtain S distinct predicted sequences and
form the overall loss L as follows:

L
(
{τ̂1

v , . . . τ̂S
v }, τ true

v

)
= min

j∈{1,...,S}
L(τ̂ j

v , τ true
v) (8)

This loss is illustrated in Figure 2b. The above loss function is known as Minimum over N
(MoN) loss [7] in prior literature and has been used as an additional loss term for diverse
samples in SocialGAN [10] for pedestrian trajectory prediction. To understand this loss, note
that replacing the min with average or max will force all generated trajectories to collapse
to that single trajectory that provides the lowest loss, thereby producing a deterministic
prediction instead of the desired stochastic prediction. The min allows for diverse samples
while still ensuring that the distribution that generates these samples is able to generate
samples close to the ground truth.

Observe that our stochastic prediction is history dependent, which implicitly takes into
account the speed of the vessel (which in turn depends on external but unknown factors
such as weather and vessel type). In particular, we use only the information that the current
VTIS system uses in Singapore port, which simply linearly extrapolates the vessel’s current
trajectory for prediction.

Also note the distinct aspect that unlike a GAN (e.g., SocialGAN) there is no discriminator
network in our architecture, but the loss function of the generator gθ uses the diversity
loss to generate required trajectories. The absence of a discriminator removes the need for
adversarial training process of typical GANs, making our training process much more stable
and computationally faster, which is critical for us given the large data size. Moreover,
we demonstrate experimentally that our approach outperforms SocialGAN as well as a
simple linear extrapolation which is the current approach followed by Singapore port’s
VTIS. In particular, we use three prior proposed metrics to demonstrate the superiority of
our approach; these include two common metrics in trajectory prediction, namely Average
Displacement Error (ADE) and Final Displacement Error (FDE), and a metric named
discriminative score proposed in time-series generation [33]. The ADE and FDE compare the
generated trajectories with the actual historical trajectory, and also showcase the diversity
in our stochastic predictions. The discriminative score metric ensures that our generated
trajectories are realistic (i.e., similar to trajectories in the historical dataset). These metrics
are explained in the experiment section.

CP 2022

5:10 Traj. Opt. for Safe Nav. in Maritime Traf. Using Hist. Data

4 Experiments

We evaluate our proposed learning and planning based system on real world maritime
dataset. We use 1.5 years of historical Automatic Identification System (AIS) data (spanning
the months between January 2018 -June 2019) of vessels voyaging in the Singapore Strait
purchased from the company MarineTraffic. Each AIS record contains information such as
timestamp, vessel unique id, lat-long (GPS) positions, course over ground (COG), speed over
ground (SOG) and navigation status (e.g anchored/sailing etc). The vital vessel navigation
information such as lat-long positions are logged every few seconds interval resulting in total
of around 6 million records. Our evaluation is mainly for tankers and cargo vessels because
majority of traffic involved in hotspot formation belong to these two types. They are also
generally considered as high-risk category vessels due to type and size of cargo they carry.

We further process the data to get about 1.6 million individual vessel trajectories for
our proposed method in the planning region (shown in figure 1a) . Each vessel trajectory
includes 20 latitude-longitude reported at intervals of one minute. These trajectories are
used to train our generative model as explained later. Additional experimental details are in
the supplemental material.

4.1 Trajectory Generation
In addition to the maritime data we also evaluate our trajectory generation model on three
publicly available human pedestrian trajectory datasets (ETH, Hotel, Zara1) [14, 22]. The
data includes 2200 trajectories of human movement behaviour in congested environments.
The results are in the supplement and are provided mainly to showcase that our proposed
approach is competitive with socialGAN even on datasets socialGAN is optimized for.

Evaluation metrics. We use commonly adopted metrics – ADE and FDE [15, 2] and
discriminative score [33] for evaluating generated trajectories:

Average displacement error (ADE): Average L2 distance between the ground truth
τ true

v and the kth predicted trajectory τ̂k
v over all predicted locations in τ̂k

v .

ADE(τ̂k
v , τ true

v) =
∑m

i=1 ||lk
t+i − ltrue

t+i ||2
m

(9)

For a given trajectory τprv
v , we sample K future trajectories from the generator. The

best and mean ADEs are given by:

(best) ADE = min
k∈[K]

ADE(τ̂k
v , τ true

v) (10)

(mean) ADE =
∑K

k=1 ADE(τ̂k
v , τ true

v)
K

(11)

We compare our approach with Social GAN on both best and mean ADE.
Final displacement error (FDE): It is the L2 distance between the ground truth and
the kth prediction at the final predicted location for this trajectory.

FDE(τ̂k
v , τ true

v) = ||lk
t+m − ltrue

t+m||2 (12)

The calculations for best and mean FDE is similar to the ones of the ADE in equation (10)
and (11).
The ADE and FDE metric show both the quality of predictions and diversity of trajectory
generation. If the best ADE (and FDE) is low, then it implies, there is at least one

C. Basrur, A. J. Singh, A. Sinha, A. Kumar, and T. K. S. Kumar 5:11

Table 3 ADE and FDE comparison between our approach and SocialGAN for the Maritime
navigational data (lower is better).

Metric (in meters) SocialGAN Ours

(best) ADE 491.6 281.2
(best) FDE 975.5 496.3
(avg) ADE 698.3 463.7
(avg) FDE 1340.6 814.6

trajectory that is close to the actual ground truth trajectory. We also observe empirically
that average ADE and FDE are different than the best ADE and FDE. This implies that
there is diversity in predictions, which is incorporated by the MoN loss in (8).
Discriminative score [33]: It is a well adopted measure to validate the quality of
generated samples from a generator. Given a generator, we use a test trajectory dataset
(which is not used in training the generator) with N trajectories, each of length n + m:
{(τprv

v1
, τ true

v1
), . . . , (τprv

vN
, τ true

vN
)}. We generate (using our already trained generator) N

future trajectories corresponding to each τprv
vi

for i ∈ [N] to obtain {τ̂vi
, . . . , τ̂vN

}. Then,
we have a dataset of 2N trajectories, half of which are true trajectories {τ true

v1
, . . . , τ true

vN
}

(labelled 1) and the other half generated using our generator {τ̂vi , . . . , τ̂vN
} (labelled 0).

We train a classifier on this dataset and measure its accuracy. A perfect generator would
generate data indistinguishable from real ones and hence the classifier would have 50%
accuracy. Any deviation from this 50% is a measure of how inaccurate the generator is.
The discriminative score measures this deviation and is defined as abs(0.5 − accuracy).
A lower discriminative score quantitatively indicates a better generator. Empirically, our
generator achieves a low discriminative score, which implies that our generator generates
trajectories that are representative of the typical vessel movement patterns found in the
historical dataset.

Maritime data results. We divide the whole vessel trajectories data into training and testing
set in a 80/20 ratio. Each vessel trajectory consists of 20 locations, first 10 locations (i.e.,
n = 10) are used as input to the model and next 10 locations (i.e., m = 10) as the labels. This
corresponds to using last 10 mins of trajectory to generate trajectories for next 10 mins. We
use the same number of model parameters for both SocialGAN and our approach, additional
details on hyper-parameter settings are provided in supplementary material. Table 3 shows
the ADE and FDE measures of both approaches. We observe empirically that in all four
metrics, our approach is able to achieve better solution quality than SocialGAN. This result
shows effectiveness of our proposed generative model on the maritime data.

Note that tanker and cargo vessels are about 200-300 meter in length. Therefore, ADE
and FDE achieved by our approach are small relative to the size of tankers. Furthermore, best
ADE/FDE in our case are quite different than the average ADE/FDE. This demonstrates
that there is diversity in the generated trajectories.

Discriminative score. Our generator achieves a discriminative score of 0.19 as shown in
Figure 3a. As the classifier is trained the score steadily increases but hits a plateau of 0.19.
As reported in past work [33], 0.19 is competitive (better in some cases) with the scores
obtained for other time series generation tasks. Having a low discriminative score ensures
that the trajectories generated are realistic, and reflect typical movement patterns observed
in the historical dataset. However, this doesn’t necessarily imply that our samples are not

CP 2022

5:12 Traj. Opt. for Safe Nav. in Maritime Traf. Using Hist. Data

20 50 80 110 140 170 200 230 260 290 320 350 380

Classifier Training Epochs

0

0.05

0.1

0.15

0.2

D
is

c
r
im

in
a

t
iv

e
 S

c
o

r
e

(a) Discriminative score to distinguish between
real or fake trajectory sample. A score between
(0.0 – 0.2) is reasonable.

0 20 40 60 80 100

Curvature Percentile

0

0.5

1

1.5

2

M
e

a
n

 S
q

u
a

re
 E

rr
o

r

Linear
Worst(ADE)
Best(ADE)
Median(ADE)

(b) Comparison of best, median and worst of
the generated trajectories against linear extra-
polation as a function of increasing curvature in
the real trajectories.

Figure 3

diverse. The FDE values for the generated trajectories differ by a significant amount as
shown in Table 3; the average FDE is significantly higher than the best FDE. The same
argument can be made for the metric ADE as well.

Varying curvatures. To demonstrate the robustness of our trajectory generator, we test
it on trajectories with varying curvatures. We assign a curvature percentile to a trajectory
where having a higher percentile implies that the vessel trajectory is more curved. In
figure 3b, x-axis is curvature percentile, and y-axis is the average error of all trajectories in
that curvature bucket. Results in figure 3b show that while the generator’s performance is
comparable to linear extrapolation in the case of low curvature percentiles (vessels almost
moving in a straight line). It does much better with vessels that are changing their direction.
Even the worst of the trajectory samples start doing better than the linear extrapolation
as the curvature increases. This shows that our generator is a much better predictor in
challenging scenarios when vessels are turning, than the current linear extrapolation method
used by Singapore port’s VTIS. We also emphasize that linear extrapolation is a very good
metric in most cases, as large vessels typically are unable to turn sharply. Therefore, these
results show that our generator has learned much better movements patterns found in the
historical data than the linear prediction.

4.2 Path Planning
Here we present our experimental results for path planning module on the maritime data.
The path planning part requires a generative model for generating trajectory samples. As
empirically observed, SocialGAN performs worse on the maritime data. Therefore, we use
our proposed model as the generative model for trajectory generation.

The evaluation of path planning part is mainly for close quarter scenarios where two or
more vessels come very close to each other (less than 500 meters). This number (500 meters)
was set after our discussions with maritime domain experts; however, it is configurable and
does not affect our algorithmic methods. We use the objective in Table 2 as our evaluation
criterion which essentially measures the minimum CPA between any any two vessels.

We use the naive formulation in Section 3.1 as baseline and refer to it as the naive solver.
We refer to the improved formulation as the accelerated solver. This is our main proposed
solver. We also test against the linearly extrapolated trajectories, which shows what would
be the risk if vessels moved over this trajectory (linear extrapolation is the current prediction
method Singapore port’s VTIS uses).

C. Basrur, A. J. Singh, A. Sinha, A. Kumar, and T. K. S. Kumar 5:13

(a) Ship routes in the Singapore strait with high-
lighted region in red is used as our planning region.

(b) Improvement (I) in risk of trajectories recom-
mended by accelerated solver compared to historical
trajectories using boxplots.

Figure 4

Planning instance generation. For each day we generate instances from peak hour period
(7 AM - 9 AM) . Majority of close quarter incidents occur during this period. We first select
a planning region near the port waters that has high traffic activity based on historical
data as shown in Figure 4a. We also select an instance window of 20 minutes because our
complete trajectory is of 20 locations at one minute intervals. So a planning instance includes
a set of vessel trajectories that have at least one location present within the given planning
region and the time window. A snapshot of a planning instance is shown in Figure 1b. For
each instance we compute a risk value based on historical data as defined in Section 2. We
evaluate our path planning approach on 1000 different instances with the highest risk.

Distributional result. In Figure 4b, we show distributional information about improvement
of risk values in 1000 different instances . The x-axis denotes the number of samples (K) and
y-axis shows percentage improvement of risk using accelerated solver. For a given instance
the percentage improvement of risk (I) is given by

I = 100.
risk(τ true

1 , . . . , τ true
M) −

[
risk(τ rec

1 , . . . , τ rec
M)

]
abs(risk(τ true

1 , . . . , τ true
M)) (13)

Note that risk, as defined in Equation 1, is always negative. Thus, the absolute value in the
denominator is needed to show the percentage improvement [30]. We set optimization time
limit to one minute to test the near real-time performance of the trajectory optimization
module. We observe that the mean (in blue circle) values are higher than medians (orange)
thus indicating a positively skewed distribution with long tail. The boxes cover the data
range from 25th to 75th percentile. And the fences around the boxes cover the whole range
of data. There exist some rare outliers where recommended trajectories are slightly worse
off than historical trajectories. Based on our investigation, it was because a ship captain
performed an atypical maneuver (such as taking sharp turns) which is rarely observed in
the dataset. We also observe an overall good improvement (around 50%) of solution quality
across 1000 instances starting from 7 samples. This result show robustness of our proposed
accelerated solver across different instances in near real-time.

Different instances. In Figure 5a we demonstrate the performance of linear prediction,
naive and accelerated solvers on 1000 different instances. The x-axis denotes instance id and
y-axis denotes percentage improvement of risk compared to historical trajectories. Green color

CP 2022

5:14 Traj. Opt. for Safe Nav. in Maritime Traf. Using Hist. Data

(a) Comparison of linear prediction, naive and ac-
celerated solver on improvement of risk compared
to historical trajectories.

5 10 15 20

Number of trajectory samples

−80

−60

−40

−20

0

20

40

60

80

100

%
 I

m
p

ro
v

e
m

e
n

t
o

v
e

r
h

is
to

ri
ca

l
ri

sk

Naive Solver

Accelerated Solver

(b) Comparison of naive and accelerated solver on
improvement of risk over historical trajectories with
varying number of samples.

Figure 5

points denote the improvement using the accelerated solver, computed as per equation 13.
Similarly, blue and red color denotes the improvement using the linear prediction and naive
solver. We set an optimization time limit of one minute for solving each instance. We use
a sample size of K = 20 for each trajectory. For all the instances, the accelerated solver
achieves equal or better solution quality than both the linear prediction baseline and naive
solver. This is because optimization time limit of 1 minute is limited for the naive solver to
achieve good quality solution. On average the accelerated solver (green dotted line) achieves
around 80% improvement of risk. Linear prediction in blue color perform poorly than both
the solvers as it is just the linear extrapolation of data from previous time steps.

Varying samples. In our path planning optimization sample size is an important parameter.
Therefore, in this experiment we test both the solvers with varying number of sample sizes.
Results in Figure 5b show the comparison of naive and accelerated solver on solution quality
with varying number of samples K. The x-axis denotes number of samples used in the
optimization and y-axis denotes average percentage improvement of risk over historical data.
The results shown are averaged over 15 instances. For this experiment also we set the
optimization time limit to 1 minute. We observe that for accelerated solver solution quality
improve with increasing number of samples, and quality does not change much after 15
samples. This is an expected result because at low number of samples the solution space
is small. As the number of samples increase the solution space also increase which leads
to better solution quality. But beyond a certain point there are upper limits to maximum
possible distance between ships in a region with finite space. Thus the risk plateaus out
with increasing number of samples. In this experiment also we observe that the accelerated
solver is able to provide better solution quality than both historical data and the naive
solver. In case of naive solver after about 7-8 samples the effect of optimization time limit
kicks in. More number of samples would require longer optimization time to get the same
solution quality, and thus we see a drop in solution quality. This experiment provides vital
information about how to choose the sample size parameter in our approach.

Runtime comparison. Results in Figure 6a shows comparison of naive and accelerated
solver on optimization time with varying number of samples K. The x-axis denotes number
of samples and y-axis denotes average optimization runtime. The results shown are averaged
over 20 instances. For this experiment, we set the optimality gap of the solver to 10%. We
observe that runtime of naive solver rise almost exponentially with increasing number of

C. Basrur, A. J. Singh, A. Sinha, A. Kumar, and T. K. S. Kumar 5:15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of trajectory samples

0

500

1000

1500

2000

A
v

e
rg

e
 R

u
n

ti
m

e
 (

in
 s

e
co

n
d

s) Naive Solver

Accelerated Solver

(a) Comparison of naive and accelerated solver
on runtime with varying sample count.

(b) Close quarter scenario.

Figure 6

samples. However, accelerated solver is able to maintain a constant runtime irrespective
of sample size. The solver has a runtime of around 4 seconds at 20 sample size. We also
observed that accelerated solver is able to achieve a runtime of around 5 seconds at 20 sample
size even for 5% optimality gap (not shown in the figure). For any system to be used in
real-time scenario, a decision time of few seconds is very crucial. The empirical result shows
our proposed system is well adapted for a real-time safe trajectory recommendation system.

Close quarter scenario. Figure 6b shows an instance of close quarter situation. Green and
red dotted line denote previous and next 10-step trajectories from historical data respectively.
Blue dotted line is the recommended trajectory from our learning and planning based system.
It is one of the predicted samples from the generative model. In the figure vessels with id 15
and 18 are heading in opposite direction. They come very close to each other (less than 500
meters) which is a close quarter situation as highlighted in the big red circle. We observe that
our recommended trajectories (in blue) are able to maintain a safe distance and thus avoid
the close quarter incident. We provide four video files for such instances of close quarter
situations using our maritime traffic simulator on our GitHub repo.

Close quarter scenario. Figure 7 shows qualitative results of some of the generated tra-
jectories from our generative model. Trajectories in green and red are complete historical
trajectories with time=1:10 and time=11:20 respectively. Trajectories in cyan color are
generated sample future trajectories (time=11:20). Trajectories in blue color are the selected
trajectories for time=11:20 from the path planning solver. Here we observe that the generated
trajectories in cyan are a good representative sample of the historical trajectories in red.

5 Conclusion

We have presented a multiagent path planning approach to the problem of alleviating close
quarter incidents in a highly congested maritime traffic environment. We proposed a data-
driven based optimization methodology to the problem. We first learn a generative model of
vessel movement behaviors from historical data. Empirically, we have shown the superior
quality of our generative model over the baseline model. The trajectory samples generated
from our model are then used in our proposed novel and efficient MILP solver to reduce close
quarter incidents. Empirically, we have shown that our solver is able to provide high quality
safe trajectory recommendations in near real-time in a variety of real-world close quarter
situations mined from past data.

CP 2022

5:16 Traj. Opt. for Safe Nav. in Maritime Traf. Using Hist. Data

Figure 7 Qualitative result for generative model.

References
1 Lucas Agussurja, Akshat Kumar, and Hoong Chuin Lau. Resource-constrained scheduling for

maritime traffic management. In AAAI Conference, 2018.
2 Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre Robicquet, Li Fei-Fei,

and Silvio Savarese. Social lstm: Human trajectory prediction in crowded spaces. In IEEE
conference on CVPR, pages 961–971, 2016.

3 Christophe Andrieu, Nando De Freitas, Arnaud Doucet, and Michael I Jordan. An introduction
to mcmc for machine learning. Machine learning, 50(1):5–43, 2003.

4 Saumya Bhatnagar, Akshat Kumar, and Hoong Chuin Lau. Decision making for improving
maritime traffic safety using constraint programming. In Proceedings of the 28th IJCAI, 2019.

5 S. Choudhury, K. Solovey, M. J. Kochenderfer, and M. Pavone. Efficient large-scale multi-drone
delivery using transit networks. In IEEE ICRA, pages 4543–4550, 2020.

6 Lei Du, Floris Goerlandt, and Pentti Kujala. Review and analysis of methods for assessing
maritime waterway risk based on non-accident critical events detected from ais data. Reliability
Engineering and System Safety, 200, 2020.

7 Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set generation network for 3d object
reconstruction from a single image. In IEEE conference on CVPR, pages 605–613, 2017.

8 Futurenautics. Autonomous ships | white paper. https://www.sipotra.it/old/wp-content/
uploads/2017/05/Autonomous-Ships.pdf, 2016.

9 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications
of the ACM, 63(11):139–144, 2020.

10 Agrim Gupta, Justin Johnson, Li Fei-Fei, Silvio Savarese, and Alexandre Alahi. Social gan:
Socially acceptable trajectories with generative adversarial networks. In IEEE Conference on
CVPR, pages 2255–2264, 2018.

11 Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation,
9(8):1735–1780, 1997.

12 IMO. E-navigation. https://www.imo.org/en/OurWork/Safety/Pages/eNavigation.aspx,
2019.

13 International Maritime Organization. Electronic Nautical Charts (ENC) and Electronic Chart
Display and Information Systems (ECDIS). https://www.imo.org/en/OurWork/Safety/
Pages/ElectronicCharts.aspx, 2022.

14 Laura Leal-Taixé, Michele Fenzi, Alina Kuznetsova, Bodo Rosenhahn, and Silvio Savarese.
Learning an image-based motion context for multiple people tracking. In IEEE Conference on
CVPR, pages 3542–3549, 2014.

15 Namhoon Lee, Wongun Choi, Paul Vernaza, Christopher B Choy, Philip HS Torr, and
Manmohan Chandraker. Desire: Distant future prediction in dynamic scenes with interacting
agents. In IEEE Conference on CVPR, pages 336–345, 2017.

https://www.sipotra.it/old/wp-content/uploads/2017/05/Autonomous-Ships.pdf
https://www.sipotra.it/old/wp-content/uploads/2017/05/Autonomous-Ships.pdf
https://www.imo.org/en/OurWork/Safety/Pages/eNavigation.aspx
https://www.imo.org/en/OurWork/Safety/Pages/ElectronicCharts.aspx
https://www.imo.org/en/OurWork/Safety/Pages/ElectronicCharts.aspx

C. Basrur, A. J. Singh, A. Sinha, A. Kumar, and T. K. S. Kumar 5:17

16 H. Ma, C. Tovey, G. Sharon, T. K. S. Kumar, and S. Koenig. Multi-agent path finding with
payload transfers and the package-exchange robot-routing problem. In AAAI Conference,
pages 3166–3173, 2016.

17 Faris Mokhtar. Busy shipping lane’s narrow passageway hard for vessels to navigate.
https://www.todayonline.com/singapore/busy-shipping-lanes-narrow-passageway-
hard-vessels-navigate, 2017.

18 Robert Morris, Corina S. Pasareanu, Kasper Søe Luckow, Waqar Malik, Hang Ma, T. K. Satish
Kumar, and Sven Koenig. Planning, scheduling and monitoring for airport surface operations.
In AAAI Workshop on Planning for Hybrid Systems, 2016.

19 MPA. Vessel Traffic Information System. https://www.mpa.gov.sg/web/portal/home/
port-of-singapore/operations/vessel-traffic-information-system-vtis, 2021.

20 MPA Singapore. Over 250 participate in Joint Oil Spill Exercise to Test Responsiveness to Oil
Spills at Sea. https://www.mpa.gov.sg/web/portal/home/media-centre/news-releases/
mpa-news-releases/detail/091cd124-ca60-4f34-bdb6-a0967f82defd, 2018.

21 International Maritime Organization. Autonomous shipping. https://www.imo.org/en/
MediaCentre/HotTopics/Pages/Autonomous-shipping.aspx.

22 Stefano Pellegrini, Andreas Ess, and Luc Van Gool. Improving data association by joint
modeling of pedestrian trajectories and groupings. In European conference on computer vision,
pages 452–465. Springer, 2010.

23 Henrik Ringbom. Regulating autonomous ships – concepts, challenges and precedents. Ocean
Development & International Law, 50(2-3):141–169, 2019.

24 Rolls-Royce. Remote and autonomous ship – The next steps. https://www.
rolls-royce.com/~/media/Files/R/Rolls-Royce/documents/customers/marine/
ship-intel/aawa-whitepaper-210616.pdf, 2016.

25 David Silver. Cooperative pathfinding. In AIIDE, pages 117–122, 2005.
26 Arambam James Singh, Akshat Kumar, and Hoong Chuin Lau. Hierarchical multiagent

reinforcement learning for maritime traffic management. In Proceedings of the 19th AAMAS,
2020.

27 Arambam James Singh, Duc Thien Nguyen, Akshat Kumar, and Hoong Chuin Lau. Multiagent
decision making for maritime traffic management. In AAAI Conference, 2019.

28 Roni Stern, Nathan R. Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne T. Walker,
Jiaoyang Li, Dor Atzmon, Liron Cohen, T. K. Satish Kumar, Roman Barták, and Eli Boyarski.
Multi-agent pathfinding: Definitions, variants, and benchmarks. In SoCS, pages 151–159,
2019.

29 Teck-Hou Teng, Hoong Chuin Lau, and Akshat Kumar. Coordinating vessel traffic to improve
safety and efficiency. In Proceedings of the 16th AAMAS, pages 141–149. ACM, 2017.

30 Leo Törnqvist, Pentti Vartia, and Yrjö O Vartia. How should relative changes be measured?
The American Statistician, 39(1):43–46, 1985.

31 Kevin Varley. Ships Queues Worsen Port Delays From Singapore to Piraeus.
https://www.bloomberg.com/news/articles/2021-11-02/ships-queues-worsen-port-
delays-from-singapore-to-piraeus, 2021.

32 Peter R. Wurman, Raffaello D’Andrea, and Mick Mountz. Coordinating hundreds of cooperat-
ive, autonomous vehicles in warehouses. AI Magazine, 29(1):9–20, 2008.

33 Jinsung Yoon, Daniel Jarrett, and Mihaela van der Schaar. Time-series generative adversarial
networks. Advances in Neural Information Processing Systems, 32:5508–5518, 2019.

34 J. Yu and S. M. LaValle. Structure and intractability of optimal multi-robot path planning on
graphs. In AAAI Conference, pages 1443–1449, 2013.

35 Jinfen Zhang, Tiago A Santos, C Guedes Soares, and Xinping Yan. Sequential ship traffic
scheduling model for restricted two-way waterway transportation. Proceedings of the Institution
of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment,
231(1):86–97, 2017.

CP 2022

https://www.todayonline.com/singapore/busy-shipping-lanes-narrow-passageway-hard-vessels-navigate
https://www.todayonline.com/singapore/busy-shipping-lanes-narrow-passageway-hard-vessels-navigate
https://www.mpa.gov.sg/web/portal/home/port-of-singapore/operations/vessel-traffic-information-system-vtis
https://www.mpa.gov.sg/web/portal/home/port-of-singapore/operations/vessel-traffic-information-system-vtis
https://www.mpa.gov.sg/web/portal/home/media-centre/news-releases/mpa-news-releases/detail/091cd124-ca60-4f34-bdb6-a0967f82defd
https://www.mpa.gov.sg/web/portal/home/media-centre/news-releases/mpa-news-releases/detail/091cd124-ca60-4f34-bdb6-a0967f82defd
https://www.imo.org/en/MediaCentre/HotTopics/Pages/Autonomous-shipping.aspx
https://www.imo.org/en/MediaCentre/HotTopics/Pages/Autonomous-shipping.aspx
https://www.rolls-royce.com/~/media/Files/R/Rolls-Royce/documents/customers/marine/ship-intel/aawa-whitepaper-210616.pdf
https://www.rolls-royce.com/~/media/Files/R/Rolls-Royce/documents/customers/marine/ship-intel/aawa-whitepaper-210616.pdf
https://www.rolls-royce.com/~/media/Files/R/Rolls-Royce/documents/customers/marine/ship-intel/aawa-whitepaper-210616.pdf
https://www.bloomberg.com/news/articles/2021-11-02/ships-queues-worsen-port-delays-from-singapore-to-piraeus
https://www.bloomberg.com/news/articles/2021-11-02/ships-queues-worsen-port-delays-from-singapore-to-piraeus

Acquiring Maps of Interrelated Conjectures
on Sharp Bounds
Nicolas Beldiceanu
IMT Atlantique, LS2N (TASC), Nantes, France

Jovial Cheukam-Ngouonou
IMT Atlantique, LS2N (TASC), Nantes, France, and Université Laval, Québec, Canada

Rémi Douence
IMT Atlantique, LS2N, Inria, (Gallinette), Nantes, France

Ramiz Gindullin
IMT Atlantique, LS2N (TASC), Nantes, France

Claude-Guy Quimper
Université Laval, Québec, Canada

Abstract
To automate the discovery of conjectures on combinatorial objects, we introduce the concept of a
map of sharp bounds on characteristics of combinatorial objects, that provides a set of interrelated
sharp bounds for these combinatorial objects. We then describe a Bound Seeker, a CP-based system,
that gradually acquires maps of conjectures. The system was tested for searching conjectures on
bounds on characteristics of digraphs: it constructs sixteen maps involving 431 conjectures on sharp
lower and upper-bounds on eight digraph characteristics.

2012 ACM Subject Classification Computing methodologies → Heuristic function construction;
Mathematics of computing → Combinatorial optimization

Keywords and phrases Acquisition of conjectures, digraphs, bounds

Digital Object Identifier 10.4230/LIPIcs.CP.2022.6

Supplementary Material Software (Source Code): https://github.com/cquimper/MapSeekerCP2022
archived at swh:1:dir:e25840f81f3be49d17b827efeab9a5a285595703

Funding Nicolas Beldiceanu: partially founded by the EU-funded ASSISTANT project no. 101000165.
Jovial Cheukam-Ngouonou: founded by the ANR AI@IMT project and by Laval University.
Ramiz Gindullin: founded by the EU-funded ASSISTANT project.

Acknowledgements Thanks to Hervé Grall for his participation in the definition of the map concept,
and to Samir Loudni and Helmut Simonis for their comments on a preliminary version of this paper.

1 Introduction

Research on conjectures making systems in the context of discrete mathematics is a topic that
goes back to the late 1950s and the 1980s [8, 14, 32] and got renewed interest [20, 21, 29, 31].
Within CP, some initial research on the generation of implied constraints was done by Charley
et al. [11] and the most recent work focuses on model and constraint acquisition [4, 7, 10, 19,
27, 28] rather than on conjecture making. Within OR, Hansen’s AutoGraphiX system [1, 17]
focuses on finding unrelated bounds using Variable Neighbourhood Search.

Four reasons motivate our work: (i) to highlight that CP can contribute to the automatic
discovery of conjectures, (ii) to systematically search sharp bounds on characteristics of
objects that show up in combinatorial problems, (iii) to stress the need to develop conjecture
discovery programs that build up a body of strongly interrelated knowledge rather than
unrelated conjectures as it has been the case so far, (iv) by the fact that bounds are an essential
feature of branch-and-bound methods in optimisation but also a weakness of CP [16, 22]:
the development of sharp bounds that consider several interrelated characteristics is still a

© Nicolas Beldiceanu, Jovial Cheukam-Ngouonou, Rémi Douence, Ramiz Gindullin, and Claude-Guy
Quimper;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 6; pp. 6:1–6:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CP.2022.6
https://github.com/cquimper/MapSeekerCP2022
https://archive.softwareheritage.org/swh:1:dir:e25840f81f3be49d17b827efeab9a5a285595703;origin=https://github.com/cquimper/MapSeekerCP2022;visit=swh:1:snp:25b3d7d4706f54dfa30a8f33e12b3dd734cab564;anchor=swh:1:rev:27a7d2df3230e3f2f59f84a314383982c283a900
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Acquiring Maps of Interrelated Conjectures on Sharp Bounds

manual process [3, 6]. Our approach is unique among all works for conjectures generation, as
the result is not a set, but rather a graph of conjectures, linked by projection (i.e. variable
elimination) operators. Our contributions are:

We introduce the concept of map of sharp bounds as a set of interrelated conjectures
providing sharp lower and upper-bounds wrt the characteristic of a combinatorial object.
For each conjecture on a sharp bound, the map gives some extremal characteristics i.e.,
the characteristic values common to all combinatorial objects achieving the bound.
By introducing secondary characteristics and by permitting the use of common sub-expres-
sions in a polynomial, as well as simple Boolean and conditional formulae, we tend to
produce explainable conjectures. This also reveals unified conjectures across different
subsets of characteristics.
We demonstrate the usefulness of CP for acquiring such maps: using digraphs as com-
binatorial objects, the system produces 431 conjectures distributed in 16 maps obtained
from 8 characteristics combined with lower and upper bounds. It retrieves a set of known
results, enhances some known bounds, and comes up with new conjectures, some of which
we proved to be true.

The significance of maps is twofold. Beyond sharp bounds, a map brings together the relations
between several sharp bounds and the structure of combinatorial objects reaching each bound
under the same edifice. A map can be used to test the mutual consistency of independently
acquired bounds by verifying that one bound can be derived from another bound.

In Sect. 2, we introduce the concept of a map that presents a set of conjectures for sharp
bounds and their logical relations. In Sect. 3.1, we provide the workflow of our acquisition
system. We introduce, in Sect. 3.2, a parameterised CP conjecture generator. We evaluate
the produced conjectures in Sect. 4, discuss related work in Sect. 5, and conclude in Sect. 6.

2 Conjectures map as a symbolic piece of knowledge

After providing an informal overview of maps of conjectures, and a first example of a
map, we motivate, define and illustrate the map concept. Then we show how the use of
secondary characteristics permits both acquiring formulae sharing common sub-expressions,
and sometimes come up with the same bound for different subsets of input characteristics.

Informal overview of maps. Consider digraphs as an example of combinatorial objects. It
is well known that any digraph G satisfies the following invariant: the number of arcs a of G
is less than or equal to the square of the number of vertices v2 of G, and the maximum value
v2 is only reached when the number of vertices of the smallest connected component of G is
equal to v, i.e. G consists of a single connected component of v vertices.

We are interested in systematically generating such candidate invariants, a.k.a. conjectures,
for a richer set of characteristics, e.g. the number of connected components c of G, the
number c of vertices of the smallest connected component of G.

Our conjectures have one of the following forms: (i) sharp bounds of a digraph character-
istic wrt other digraph characteristics, e.g. a ≤ v2, or (ii) implication showing that, when a
sharp bound is reached, some characteristics are fixed or functionally determined by some
other characteristics, e.g. a = v2 ⇒ c = 1, and a = v2 ⇒ c = v.

Finally, we are interested in connecting sharp bounds, revealing that the right-hand side
of an implication of type (ii) can be used to eliminate a characteristic of a sharp bound and
retrieve a sharp bound with one less characteristic. For instance, replacing c by v in the
sharp bound a ≤ c2 + (v − c)2, we retrieve the sharp bound a ≤ v2. We call these different
conjectures and the links connecting sharp bounds “map”.

N. Beldiceanu et al. 6:3

A first example of map. As an example of combinatorial objects, we use in this paper
digraphs with these characteristics: the number v of vertices, the number a of arcs, the
number c (resp. s) of connected components (resp. strongly connected components), the
number c (resp. c) of vertices of the smallest (resp. largest) connected component, the number
s (resp. s) of vertices of the smallest (resp. largest) strongly connected component. To
compare the bounds obtained by the Bound Seeker with the database of invariants of the
global constraint catalogue, see Sect.4.3 of [2], we assume that each vertex of a digraph has
at least one incoming or outgoing arc.

▶ Example 1. Fig. 1 illustrates the map concept with a map containing three conjectures
labelled as ❶, ❷, and ③:

Two conjectures about the sharp bounds ❶ a ≤ (v − (c − 1))2 + (c − 1), and ❷ a ≤ v2

on the maximum number of arcs a in a digraph G wrt the number of vertices v, and the
number of connected components c of G.
The conjecture ③ of node (B) indicates that the bound v2 is reached only when c = 1.

The arrow going from node (A) to node (B) is labelled by ③ as the bound v2 is obtained by
replacing c by 1 in the bound (v − (c − 1))2 + (c − 1). The leftmost and rightmost parts of
Fig. 1 show, in brown, two digraphs achieving these bounds.

v = 3
c = 2
a = 5

Node (A) {v, c}
❶ a ≤ (v − (c − 1))2 + (c − 1)

Node (B) {v}
❷ a ≤ v2

③ c = 1 v = 3
c = 1
a = 9

③

Figure 1 Map of two sharp bounds on the maximum number of arcs of a digraph.

In this paper, all maps of conjectures are presented in the same way as the map in Fig. 1:
(i) the upper left corner of a node gives a node label in black, (ii) the upper right corner
provides the parameters used in the sharp bound of this node in red, (iii) a dark label of the
form ❶ refers to the sharp bound itself, (iv) a light label of the form ① designates an equation
which must hold to reach the sharp bound given in (iii), (v) a brown illustration shows a
witness to the sharpness of the bound. Finally, an arrow from a first node to a second node
indicates which equation(s) in the second node should be used to substitute some parameters
used in the first node’s bound to retrieve the bound given in the second node. For space
reasons, some large maps, e.g. Fig 4, may omit the elements (i) and (v).

Motivating and defining the concept of map. We introduce the concept of a map of
conjectures as a way to reveal the links between a set of conjectures related to sharp bounds
for a characteristic of a combinatorial object. Our goal is to describe conjectures on sharp
bounds of characteristics of a combinatorial object, e.g. a digraph, a tree, and to organise
these conjectures into a single structure, a map of sharp bounds, which (i) systematically
interconnects these conjectures, and which (ii) describes the structure of the combinatorial
objects for which the bounds are reached. In the map in Fig. 1, we consider for digraphs three
characteristics, a, v and c for the number of arcs, of vertices, and of connected components.

▶ Definition 2. Given a finite set of input characteristics P and an output characteristic
o /∈ P, a map of sharp upper bounds Mo ≤

P is defined as a digraph where:
Each node of the map is associated with a subset P ⊆ P of input characteristics and
corresponds to a maximum conjecture of the form o ≤ f(P). This inequality is tight, i.e.
there exist values that can be given to the parameters P in order to reach the equality.

CP 2022

6:4 Acquiring Maps of Interrelated Conjectures on Sharp Bounds

In addition, a node contains maximality conjectures, at most one per characteristic q

in the complement of P wrt P, represented by the symbolic equality q = gq(P), where
gq is a function defined over realisable parameters values of P and called a maximum
characterisation, and expressing the following property: for any combination of parameters
P reaching the maximum f(P), the characteristic q is equal to gq(P).
Each arc from conjecture o ≤ fi(Pi) to conjecture o ≤ fj(Pj) corresponds to a projection
from a subset Pi of input characteristics to a subset Pj of input characteristics, by
eliminating a characteristic qi,j , i.e. Pj = Pi \ {qi,j}. The arc is labelled with an equality
qi,j = gqi,j

(Pj) where gqi,j
(Pj) is the value given to qi,j to reach the equality in the

conjecture o ≤ fj(Pj). The equality qi,j = gqi,j
(Pj) is called a maximality conjecture.

In a map, there is a single output characteristic that we bound using the other characterist-
ics called input characteristics. The output characteristic is the bounded characteristic, while
the input characteristics are the bounding characteristics. While the maximum conjecture
provides a bound on the output characteristic wrt the characteristics in P , the maximality
conjectures indicate the values taken by the characteristics not in P when the bound is
reached. Similarly to Mo ≤

P , a map Mo ≥
P provides a collection of sharp lower bounds as a

set of minimum conjectures of the form o ≥ fj(Pj), and a set of minimality conjectures.

Node (A)
❶ a ≤ (c − 1) · c2 + (v − (c − 1) · c)2

Node (B)
❷ a ≤ c2 + (v − c)2

⑤ c = (v = c) ? 1 : 2

Node (C)
❸ a ≤ (c − 1) + (v − (c − 1))2

⑥ c = (c = 1) ? v : 1

Node (D)
❹ a ≤ v2

⑦ c = v ⑧ c = 1

⑤ ⑥

⑦ ⑧

{v, c, c}

{v, c} {v, c}

{v}

K7
v = 7,
a = 49

K2 K5
v = 7, c = 2, a = 29

K1 K1 K5
v = 7, c = 3, a = 27

K2 K2 K3
v = 7, c = 3, c = 2, a = 17

Figure 2 Map Ma ≤
{v,c,c} with the sharp upper-bounds ❶, ❷, ❸, ❹ for the number of arcs in a

digraph; each node presents an example in brown: given a value for the characteristics attached to
the node, a graph reaching the maximum is described, as a union of cliques Ki, with i vertices, e.g.
in node (B), given the assignments v = 7 and c = 2, the digraph with 2 cliques K2, K5 reaches the
maximum 29 for the number a of arcs; cond ? x : y denotes x if condition cond holds, y otherwise.

▶ Example 3 (Extending Ex. 1 to a map of four nodes). Fig. 2 presents Map Ma ≤
{v,c,c}, where

we consider the following characteristics of digraphs: as input characteristics, the number v of
vertices, the number c of connected components, and the number c of vertices of the smallest
connected component; as output characteristic, the number a of arcs. In Map Ma ≤

{v,c,c},
there are four nodes, corresponding to the subsets {v, c, c}, {v, c}, {v, c} and {v}, shown in
red, whereas the power set of {v, c, c} contains eight subsets. For the four other subsets,
namely {c, c}, {c}, {c} and ∅, no conjecture can be found, as the number of arcs is not upper
bounded wrt these characteristics. In the nodes (A), (B), (C) and (D), the items labelled
with ❶, ❷, ❸ and ❹ indicate a maximum conjecture wrt the number a of arcs, while the
elements marked with ⑤, ⑥, ⑦ and ⑧ show maximality conjectures wrt c and c. For instance,
in Node (B), the maximum conjecture ❷ a ≤ c2 + (v − c)2 really means: among all digraphs
with v nodes and whose smallest component contains c nodes, the digraph with most arcs
has exactly c2 + (v − c)2 arcs. Each arc is labelled with a maximality conjecture giving the

N. Beldiceanu et al. 6:5

value of the characteristic that is eliminated. For instance, from Node (A) to Node (B), the
characteristic c that is eliminated from ❶ satisfies this maximality conjecture ⑤ : when the
maximum of number of arcs is reached, the value of c is 1 if v = c, 2 otherwise.

Capturing more bounds with secondary characteristics. As the number of input charac-
teristics grows, the bound formulae can get rather complicated. Consequently, we introduce
a set A of auxiliary characteristics to obtain simpler formulae. Examples of such auxiliary
characteristics are, for instance, (i) c>1, (ii) s>1, and (iii) c∈{2,3} which correspond to (i) the
number of connected components with more than one vertex, (ii) to the number of strongly
connected components with more than one vertex, and (iii) to the number of connected
components with two or three vertices and for which all strongly connected components have
only one vertex. Also initially introduced when searching for lower bounds on the number of
arcs, such characteristics have proved useful for many other bounds. We introduce the notion
of secondary characteristics of the node of a map, which will be illustrated in Ex. 5 and 6.

▶ Definition 4. Given a node of a map that is associated to a subset P ⊆ P of input
characteristics, to an output characteristics o, to a maximum conjecture of the form o ≤ f(P),
and a set of auxiliary characteristics A, the set of secondary characteristics of the node is
defined as the characteristics of the set A ∪ (P − P − {o}) which are functionally determined
by the set P when o = f(P).

To test that a secondary characteristic is functionally determined by P , we check for each
generated combination of values for P that the value of the secondary characteristic is unique.
This test is performed while generating our dataset used for acquiring conjectures.

To find bounds that exploit these secondary characteristics, we use a multi-level approach:
(i) first, we look for a formula for each secondary characteristic; (ii) then we try to catch
a sharp bound also considering the secondary characteristics for which we could find a
formula. Both in (i) and (ii) a formula can either use input characteristics and secondary
characteristics for which we already found a formula. As a result, we obtain formulae that
are easier to interpret, as we can associate a straightforward meaning to the sub-terms that
appear in a bound. Ex. 5 illustrates this point.

▶ Example 5 (Bound expressed wrt several secondary characteristics). This example shows the
only lower bound found by the Bound Seeker on the number of arcs a of a digraph G wrt the
size c of its largest connected component and the size s of its smallest strongly connected
component. We have P = {v, a, c, c, c, s, s, s}, the bound parameters P = {c, s}, the output
characteristic o = a, and the auxiliary characteristics A = {c>1, s>1}. All potential secondary
characteristics A ∪ (P − P − {o}) = {v, c, c, s, s, c>1, s>1} are functionally determined by c

and s. The lower bound found by the Bound Seeker is a ≥ s>1 − c>1 + v with:
• s>1 = min(−s + c + 1, 2 · (s ≥ 2)),
• c>1 = (c = c ? 0 : c), where c = 1 + (((c − 2 · s) ≤ 0) ∧ ((c mod s) ≥ 1)),
• v = ((c − c) = 0 ? c : c + c), where c = ((2 · s − c) ≤ 0 ? c : s),

where a Boolean expression such as (s ≥ 2) is used as an integer, i.e. either 0 for false or 1
for true. While the main formula s>1 − c>1 + v is simple, it uses a secondary characteristic
s>1 which is expressed directly wrt c and s, and two other secondary characteristics c>1 and
v which mention the two extra secondary characteristics c and c for which two formulae
involving only c and s could be found. The occurrence of Boolean expressions reflects slight
variations in the structure of witness digraphs, i.e. digraphs reaching a sharp bound, as shown
in Table 1.

CP 2022

6:6 Acquiring Maps of Interrelated Conjectures on Sharp Bounds

Table 1 Digraphs minimising the number of arcs for four values of the bound parameters c and s.

c s a v c c c>1 s>1 witness digraph s>1 − c>1 + v

6 1 5 6 1 6 1 0 0 − 1 + 6

6 3 7 6 1 6 1 2
.

2 − 1 + 6

6 4 10 10 2 4 2 2
.

2 − 2 + 10

6 6 6 6 1 6 1 1
.

1 − 1 + 6

Within a same map, expressing bounds in terms of secondary characteristics may reveal a
same bound formula for several subsets of input characteristics. We observed this phenomenon
in the majority of the acquired maps. Ex. 6 illustrates this for the acquired map giving the
upper bound on the number of vertices of the largest connected component of a digraph.

▶ Example 6 (Map example illustrating how bounds can be unified by using secondary char-
acteristics). In the appendix, Fig. 4 depicts the maximum and maximality conjectures of
the map Mc ≤

{v,c,c,s,s,s} found by the Bound Seeker for the upper-bound on the size of the
largest connected component c with the related links. Note that v needs to be an input
characteristic, as otherwise the upper-bound of c is unbounded. Part (A) shows the 16
bounds found when using only the input characteristics: these bounds are defined by 5
maximum conjectures ➊,. . . ,➎ and 4 maximality conjectures ⑥,. . . ,⑨. Each link illustrates
how a maximum conjecture is projected onto an other maximum conjecture via a maximality
conjecture: e.g., the link ➎

⑦−→ ➊ shows how the bound ➎ c ≤ s − c · s + v is rewritten as
➊ c ≤ v as we have ⑦ c = 1. Part (B) shows the bounds found when also using the secondary
characteristics r and c, where r is a secondary characteristic corresponding to v − c · c. We
only have 2 maximum conjectures ➊ c ≤ v and ➋ c ≤ r + c, where r and c are defined by the
5 maximality conjectures ③,. . . ,⑦ shown on Part (B). The natural upper-bound of c is the
number of vertices of the digraph (see ➊), unless c or c are part of the input characteristics
(see ➋), which requires to consider the feasibility conditions induced by the use of such
inputs.

Missing arcs are due to the lack of functional dependencies. For instance, in Part (A), we
have no arc from {v, s} to {v}, as the number of strongly connected components s is not
functionally determined by the number of vertices v when the sharp bound ❶ is reached, i.e.
when c = v: e.g., for c = v = 2 we both have s = 2 and s = 1 as shown by . . and . . .

3 A Bound Seeker

3.1 Overview of the map acquisition system
Parts (A) and (B) of Fig. 3 gives the different phases for generating a map: software compo-
nents are shown in cyan and labelled with capital letters, while data is displayed in orange.
We now detail the phases (A1), (A2), (A3), (B1), (B2), and (B3). To illustrate each phase,
we use the bound table T a ≤

{v,c},3 provided in Part (C1) of Fig. 3.

(A1) Generating data. To learn valid conjectures for any digraph of at most k vertices, we
produce all parameter combinations of interest for digraphs up to a maximum number n of
vertices. An exhaustive generation of such data is not a problem, as a program is used for
this purpose. However, the issue is to select the appropriate value of k, neither too small
to create invalid conjectures for digraphs with more than k vertices, nor too large to limit

N. Beldiceanu et al. 6:7

(A
)

D
at

a
ac

qu
is

it
io

n
fo

r
a

m
ap

M
o

≤
P

(A1) Data Generation (domain dependent)

Bound Tables (T o ≤
P,i

, P ⊆P, i∈[2,n]):

each column is an input, a bound,
or a secondary characteristic for
digraphs whose number of vertices
does not exceed a given limit.

(A2) Metadata Generation

Metadata (Do ≤
P,i

, P ⊆P, i∈[2,n]):

columns information, row con-
straints, functional dependen-
cies for each bound table.

(A3) Meta Metadata Generation

Selected Tables (T o ≤
P,k

, P ⊆P):

selected size for each subset of
bound tables from which ac-
quire conjectures. (B

)
C

on
je

ct
ur

es
ac

qu
is

it
io

n
fo

r
ea

ch
ta

bl
e

T
o

≤
P

,k Metadata Bound Tables

(B1) Candidate Generation

Candidate Formulae:
select formula type, used func-
tions, and used functional de-
pendency to generate a max-
imum conjecture of the form
o ≤ f(P) and maximality con-
jectures for the bound table
T o ≤

P,k
.

(B2) CP Model Generation

Candidate Conjectures

(B3) Test Conjectures

Selected Conjectures

selected
size

k
largest

size
n

v c a c
1 1 1 1
2 1 4 2
2 2 2 1
3 1 9 3
3 2 5 2
3 3 3 1

(C1) bound
table
T a ≤

{v,c},3

(C2) corres-
ponding
digraphs

G
1 K1
2 K2
3 K1, K1
4 K3
5 K2, K1
6 K1, K1, K1

(C
)

B
ou

nd
ta

bl
e

ex
am

pl
e

Figure 3 Workflow in the Bound Seeker: (A) data and (B) conjecture acquisition phases;
Phase (A1) with a red background depends on the combinatorial objects we consider (digraphs in our
case), while Phases (A2), (A3), . . . , (B3) are domain independent; (C1) example of an upper-bound
table for digraphs of at most 3 vertices with the input characteristic v, c, the output characteristics a,
and the secondary characteristic c corresponding to the number of vertices of the largest connected
component; (C2) digraphs corresponding to each entry of the bound table shown in (C1).

the number of generated constraints to acquire the conjectures in Phase (B2). To this end,
Phase (A1) produces a table T with the characteristics values for digraphs of at most n

vertices in such a way that the size of the table T does not exceed a given memory limit.
With this table T , Phase (A1) extracts for each i between 2 and n, for each subset of input
characteristics P of P, and each output characteristic o, a bound table T o ≤

P,i based only on
the entries of T corresponding to digraphs with at most i vertices. Each row of a bound
table represents a feasible combination of values for P , with the corresponding bound value
for o, and the values of the secondary characteristics.

Unlike all the next steps, Phase (A1) depends on the type of combinatorial objects for
which we generate conjectures. For digraphs, our data generation phase uses a CP model
to produce a set of bound tables that is used by the acquisition process. As illustrated in
Part (C1) of Fig. 3, the bound table T a ≤

{v,c},3 provides a sharp upper bound of the output
characteristic a wrt the input characteristics v and c. A bound table may also mention
secondary characteristics, e.g. c in T a ≤

{v,c},3, which are functionally determined by the input
characteristics. Each column of the table T a ≤

{v,c},3 refers to a characteristic, i.e. v, c, a, c,
while each row corresponds to a combination of parameter values for v, c with the associated
maximum number of arcs a and the value of the secondary characteristic c.

(A2) Generating metadata. For each bound table T o ≤
P,i (with P ⊆ P and i ∈ [2, n]),

with nrows rows, where T o ≤
P,i [r, j] denotes the value of the r-th row and the j-th column,

Phase (A2) calculates the aggregated information Do ≤
P,i (with P ⊆ P and i ∈ [2, n]) used to

select the size k employed when searching for the conjectures of the subset P and the output
characteristics o, such as:

CP 2022

6:8 Acquiring Maps of Interrelated Conjectures on Sharp Bounds

Table 2 Examples of candidates formulae and corresponding generated formulae for the bound
table T a ≤

{v,c},3 in Part (C1) of Fig 3.

Candidate formulae generated by Phase (B1) Formulae found by Phase (B2)

polynomial of degree 1 parameterised by v and c to determine c c = v − c + 1
polynomial of degree 1 parameterised by v and c to determine a none
polynomial of degree 2 parameterised by v and c to determine a a = c2 − 2 · v · c + v2 − c + 2 · v

polynomial of degree 1 parameterised by v and c to determine a none
polynomial of degree 2 parameterised by v and c to determine a a = c2 − c + v

The minimum/maximum values of each column and the number of distinct values.
The minimal functional dependencies [24] that determine in the table T o ≤

P,k the output
characteristic and the secondary characteristics. Each functional dependency gives a
subset of characteristics that functionally determine another characteristic. For instance,
in the bound table T a ≤

{v,c},3, columns a and c are functionally determined by columns v

and c. But column a is also functionally determined by columns v and c.
Binary constraints between two distinct columns i and j of the table T o ≤

P,k , i.e. constraints
of the form ∀r ∈ [1, nrows], T o ≤

P,k [r, i] op T o ≤
P,k [r, j] (with op ∈ {≤, <, >, ≥}). In T a ≤

{v,c},3 we
have for each row that the number of vertices is greater than or equal to the number of
connected components, i.e. v ≥ c, and similarly v ≥ c, a ≥ v, a ≥ c, a ≥ c.

Such knowledge is used to focus the search for conjectures: first by selecting promising
subsets of input parameters for a formula, and second by providing information that avoids
producing meaningless formulae. For instance, we do not generate a formula with a term
min(v, c) as v ≥ c is true. The generated metadata is also the input of the next phase.

(A3) Generating meta metadata to find the relevant size of the training dataset. Based
on the information computed by Phase (A2), Phase (A3) determines for the subset P and
the output characteristic o, the size k used when searching for conjectures. To select the size
k in the datasets T o ≤

P,i (with i ∈ [2, n]) from which we acquire the conjectures, we operate
as follows. As a functional dependency or a binary constraint of a table T o ≤

P,i may become
invalid for a table T o ≤

P,j with j > i, we identify the smallest size k from which the set of
minimal functional dependencies and the set of binary constraints of the tables T o ≤

P,k , . . . , T o ≤
P,n

remain identical. In practice, for space reason, we generated digraphs with up to n = 26
vertices. To avoid overfitting when the number of rows of table T o ≤

P,k is too small, we select
the smallest size corresponding to the table with at least 200 rows: on average, conjectures
were produced using digraphs with up to 18 vertices.

(B1) Generating candidate formulae. This phase generates for a bound table T o ≤
P,k , partially

instantiated candidate formulae to acquire the corresponding maximal and maximality
conjectures. Given the parameters P , the output characteristic o, the set of secondary
characteristics of the selected bound table T o ≤

P,k , Phase (B1) produces on request the next
candidate formula to find a conjecture. The set of potential characteristics that the formula
may mention, and the formula itself, are restricted by the functional dependencies and the
binary constraints that were identified by the metadata generation phase. Table 2 shows
some candidates formulae that are successively produced for table T a ≤

{v,c},3.

N. Beldiceanu et al. 6:9

(B2) Generating a CP model linking a parameterised formula with the data. This
phase uses a candidate formula generated by Phase (B1) to post an equational constraint
for each entry in a bound table T o ≤

P,k to obtain a formula where all input parameters and
coefficients are fixed and thus produce a conjecture. Phase (B2) queries Phase (B1) for
the next candidate parameterised formula, tries to instantiate it, and asks again for a next
candidate formula. To find a value for each coefficient of a candidate formula, we use a
constraint model to link a candidate formula to (i) the functional dependencies and binary
constraints identified by the metadata generation phase, and (ii) all the bound table entries
of the selected size. Many constraints break different symmetry types and force all sub-terms
of a formula to be meaningful. The second column of Table 2 shows for each candidate
formula the corresponding concrete formula found by the CP model.

(B3) Testing the candidate conjectures. This last phase tests the validity of the conjectures
against the largest bound table T o ≤

P,n , i.e. against the largest available generated dataset.

3.2 A constraint approach for acquiring symbolic equations
The search for sharp bounds leads to the identification of equations in which the left-hand
side is an output or a secondary characteristic, and the right-hand side is a formula involving
input and secondary characteristics. As already noted in the introduction of [9] and in
the conclusion of [18], the space of candidate formulae constitutes a major challenge for
equation discovery methods. Rather than applying a bottom-up approach that generates
formulae of increasing complexity, we adopt the following strategy. As we aim at finding
simple formulae, we use three complementary classes of formulae that turned out to appear
concomitantly in a map: (1) Boolean formulae involving k arithmetic conditions linked by
a single commutative logical operator or by a sum, (2) simple conditional formulae, and
(3) formulae over polynomials that can share common sub-expressions. A first attempt to
use only polynomials without common sub-expressions missed some formulae, e.g. see Ex. 5,
and quite often provided too complicated formulae, as illustrated in Ex. 8. Based on the
metadata introduced in Sect. 3.1, we will present a CP approach for restricting the space of
formulae: for space reasons, we focus on polynomials sharing common sub-expressions.

3.2.1 A parameterised candidate formulae generator for Phase (B1)
Formula syntax. All conjectures we generate have the form characteristic op formula, where
op is one of the comparison operators ≤, =, ≥, and formula is a formula involving a set
of characteristics. Consequently, formulae are described by the following set of simplified
grammar rules, where “Small Capitals” indicates a non-terminal symbol, “Roman” denotes
a function or a known constant, “Italic” highlights a (digraph) characteristics, “Bold” denotes
an unknown integer constant. Within these rules, polynomial(Params, degree) denotes a
polynomial whose maximum degree is fixed (with degree > 0) on a non-empty subset
of parameters of its potential parameters Params, and the functions geq0(x), geq(x, y),
sum_consec(x), cmod(x, y), dmod(x, y) resp. stand for 1 if x ≥ 0 otherwise 0, 1 if x ≥ y

otherwise 0, x·(x+1)
2 , x − (y mod x), x − (x mod y).

Formula ::= cst | Bool | cst + Bool | Cond | Pol | PolBinary | PolUnary
Bool ::= BoolOp(BoolConds) BoolOp ::= ∧| ∨ | = |+
BoolConds ::= BoolCond, BoolConds | BoolCond
BoolCond ::= Param Cmp cst Cmp ::= ≤ | = | ≥ | ̸=
Cond ::= (BoolCond ? ParamCst : ParamCst) ParamCst ::= Param|cst

CP 2022

6:10 Acquiring Maps of Interrelated Conjectures on Sharp Bounds

Pol ::= polynomial(Params, degree)
PolBinary ::= Bf(Pol, Pol) Bf ::= min | max | floor | mod | cmod | dmod | prod
PolUnary ::= Uf1(Pol) | Uf2(Pol, cst)
Uf1 ::= geq0 | sum_consec Uf2 ::= min | max | floor | mod | power
Params ::= Param∗ Param ::= Char|BTerm|UTerm Char ::= v|c|c|c|s|s|s
BTerm ::= Bt(Char, Char)
UTerm ::= sum_consec(Char) | Ut(Char, cst) | Char ∈ [cst, cst]
Bt ::= min | max | floor | ceil | mod | cmod | dmod | prod
Ut ::= min | max | floor | ceil | mod | geq | power

▶ Example 7 (Examples of generated Boolean, conditional, polynomial formulae).
(s = 1) ∧ (c ∈ [2, 3]) and (v = c) = (c = 1), where the 2nd formula denotes a condition
that is satisfied only if both conditions (v = c) and (c = 1) are true, or both false.
(s = 1 ? ⌈ v

2 ⌉ : v) and ((c − c) = 0 ? c : c + c), where (cond ? x : y) denotes x if the
condition cond holds, y otherwise.
(v mod c)2−c·(v mod c)+v·c where v mod c is a shared binary term BTerm, ⌊ (s≥2)+s+v

2 ⌋
where (s ≥ 2) is a unary term UTerm of the form geq(s, 2).

▶ Example 8 (Finding simpler bounds using Boolean and conditional formulae). We illustrate
with an example generated by the system on the lower bound of the number of arcs a wrt the
size of the smallest and largest connected components c and c, and the size s of the largest
strongly connected component, how using Boolean and conditional formulae often leads to
simpler conjectures. Without using Boolean and conditionals, we get a ≥ s>1 − c>1 + v with
s>1 = min(s−1, 1), c>1 = min(min(c, 2), min(c, 2)+c−c−1), and v = min(c+c, c ·c−c2 +c);
enabling Boolean and conditional formulae, we get the simpler bound: a ≥ s>1 − c>1 + v

with s>1 = (s ≥ 2), c>1 = (c ≥ 2) + ((c − c) ≥ 1), and v = ((c − c) = 0 ? c : c + c).

Candidate formulae generator. Since we want to try out a variety of formulae, we create
a parameterised candidate formulae generator, which, upon backtracking, proposes a new
candidate formula with non-fixed coefficients; these are variables for the constants and for the
input characteristics that will be used in a candidate formula. In this generator we specify:

The structure of the formula, that is whether we use (1) a Boolean formula, (2) a simple
conditional formula, or (3) a formula over polynomials; in this later case we also specify
how many unary and binary terms occur in each polynomial.
The arithmetic functions we may use in the terms.
The complexity of a polynomial, that is its potential maximum degree, its maximum
number of non-zero coefficients, the ranges of its coefficients.
The list of possible combinations of characteristics that the candidate formula can use in
its parameters. Such combinations correspond to functional dependencies identified by
the metadata generation phase, i.e. Phase (A2).

We use more than one generator to design a formula generation policy where the simplest
candidate formulae are tried first.

3.2.2 Constraint model for acquiring a conjecture for formulae over
polynomials for Phase (B2)

Given a candidate formula F , (corresponding either to Pol, to PolBinary, or to PolUnary
as described in the set of grammar rules in Sect. 3.2.1), for which the set of used parameters
is partially determined, and for which the coefficients are not yet fixed, we create a constraint
model that relates these unknowns to all rows in a bound table. Our model includes four types
of constraints, namely (i) structural constraints on the input and secondary characteristics

N. Beldiceanu et al. 6:11

that will be used in F , (ii) symmetry-breaking constraints, (iii) constraints preventing the
generation of formulae in which a term could be simplified, and (iv) equational constraints
on each row of a bound table. We describe the model variables, the constraints on the
characteristics used in F , the constraints on the unary/binary terms and binary function
of F , and the equational constraints on the table entries. The number of variables and
constraints of the model is linear wrt the number of table entries as it is dominated by
the equational constraints. For reasons of space, concerning the constraints of the type (ii)
and (iii), we will only detail the constraints related to the min function.

Variables used in the model. Table 3 introduces the variables used to represent a non-
constant formula F involving at most nc characteristics (i.e. input and secondary charac-
teristics), nu unary terms, nb binary terms, and np polynomials, wrt a bound table T of
nrows rows. We use n as a shortcut for nc + nu + nb. For the binary term Bi, the variables
B_IND1 i, B_IND2 i, B_Oi designate a term with the arguments (CB_IND1 i

, CB_IND2 i
)

when B_Oi = 0, and (CB_IND2 i
, CB_IND1 i

) otherwise. When the binary term is commut-
ative, e.g. min, the order of the arguments is irrelevant and B_Oi will be set to 0 (see
constraint (4.c) in Table 4), but otherwise, e.g. mod, the order matters.

Table 3 Variables of the model, where ncu is an abbreviation of the term nc + nu.

Objects Variables Comments

Characteristics Cj

(j ∈ [1, nc]) Cj ∈ {0, 1} Cj = 1 iff Cj used by formula F

Unary term Ui

(i ∈ [1, nu])
Ui,j ∈ {0, 1}
(j ∈ [1, nc]) Ui,j = 1 iff Cj used by Ui

U_INDi ∈ [1, nc] index of the used characteristics
U_MIN i minimum value of the used characteristics
U_MAX i maximum value of the used characteristics
U_CST i constant used in Ui

(r ∈ [1, nrows]) U_VALi,r
value of term Ui wrt r-th row and the

j-th column (with Ui,j = 1) of table T
Binary term Bi

(i ∈ [1, nb])
Bi,j ∈ {0, 1}
(j ∈ [1, nc]) Bi,j = 1 iff Cj used by Bi

B_IND1 i ∈ [1, nc] index of first used characteristic
B_IND2 i ∈ [1, nc] index of second used characteristic
B_Oi ∈ {0, 1} order of used characteristics in arguments

(r ∈ [1, nrows]) B_VALi,r
value of term Bi wrt r-th row, the B_IND1 i-th,

and the B_IND2 i-th columns of table T

Polynomial Pi

of degree di

Pi,j ∈ {0, 1}
with j ∈ [1, n] and
n = nc + nu + nb

{
Pi,j = 1, j ∈ [1, nc] ⇒ Cj used by Pi

Pi,j = 1, j ∈ [nc + 1, ncu] ⇒ Uj−nc used by Pi

Pi,j = 1, j ∈ [ncu + 1, n] ⇒ Bj−nc−nu used by Pi

(i ∈ [1, np])
Mi,k

(k ∈ [1,
(

n+di
di

)
])

Mi,k is the k-th coefficient of Pi, the
coefficient with the largest k is the constant

(r ∈ [1, nrows]) P_VALi,r value of polynomial Pi wrt r-th row of table T

Constraints on the structure of the formula. The upper part of Table 4 lists the constraints,
(i) specifying which characteristics the formula F uses, i.e. see (1a), (ii) forcing a unary
term, a binary term, and a polynomial to use the appropriate number of characteristics,
i.e. see (2a), (3a) and (4a), (iii) connecting the characteristics used by the unary and binary
terms with the characteristics used in the polynomials and the formula, i.e. see (5a), (6a),
(iv) restricting non-zero coefficients of polynomials, i.e. see (7a), (8a).

CP 2022

6:12 Acquiring Maps of Interrelated Conjectures on Sharp Bounds

Table 4 (Top) Constraints on the structure of a formula F ; fd_table is the list of characteristics
combinations that may be used by F , created by the candidate formulae generator, while maxz is
the maximum number of non-zero coefficients of a polynomial. (Mid) Constraints on a unary term
Ui (with i ∈ [1, nu]), where ufi is the function assigned to Ui, minj (with j ∈ [1, nc]), is the smallest
value of the j-th characteristic. (Bottom) Constraints on a binary term Bi (with i ∈ [1, nb]), where
bfi is the function assigned to Bi, and table_unordered is the set of pairs of characteristics
indices such that the 1st characteristic is not always smaller, or greater, than 2nd characteristic;
char. is an abbreviation for characteristic.

Constraints Comments

(1a) table(⟨C1, . . . , Cc⟩, fd_table) restrict the char. used in F
(2a) ∀i ∈ [1, nu] :

∑j=nc

j=1 Ui,j = 1 Ui uses 1 char.
(3a) ∀i ∈ [1, nb] :

∑j=nc

j=1 Bi,j = 2 Bi uses 2 char.

(4a) ∀i ∈ [1, np] :
∑

j∈[1,n] Pi,j ≥ 1 Pi uses at least one char., or
at least one unary or binary term

(5a)
∀j ∈ [1, nc] : Cj =

∨
i∈[1,nu] Ui,j∨∨

i∈[1,nb] Bi,j ∨
∨

i∈[1,np] Pi,j
link Ui,j , Bi,j , and Pi,j to Cj

(6a) ∀j ∈ [nc + 1, n] :
∑

i∈[1,np] Pi,j > 0 force each unary/binary term to
be used by at least 1 polynomial

(7a) ∀i ∈ [1, np] : (
∑k<(n+di

di
)

k=1 [Mi,k ̸= 0]) > 0 polynomials are not constant

(8a) ∀i ∈ [1, np] : (
∑k≤(n+di

di
)

k=1 [Mi,k ̸= 0]) ≤ maxz each polynomial has a maximum
number of non-zeros coefficients

(1b) element(U_INDi, ⟨Ui,1, . . . , Ui,nc ⟩, 1) get index of used char.
(2b) element(U_INDi, ⟨min1, . . . , minnc ⟩, U_MIN i) get min. value of used char.
(3b) element(U_INDi, ⟨max1, . . . , maxnc ⟩, U_MAX i) get max. value of used char.

(4b) ufi ∈ {min} ⇒
{

U_CST i > U_MIN i

U_CST i < U_MAX i

cannot simplify unary term Ui,
as otherwise could remove Ui

(1c) element(B_IND1 i, ⟨Bi,1, . . . , Bi,nc ⟩, 1) get index of first used char.
(2c) element(B_IND2 i, ⟨Bi,1, . . . , Bi,nc ⟩, 1) get index of second used char.
(3c) B_IND1 i < B_IND2 i indexes are ordered

(4c) bfi ∈ {min} ⇒ B_Oi = 0 fix order of the 2 arguments as
min is a commutative function

(5c) bfi ∈ {min} ⇒ table
(

⟨B_IND1 i, B_IND2 i⟩,
table_unordered

)
assign two char.whose
values are not ordered

Constraints on unary/binary terms and on a binary function. Within Table 4, con-
straint (1b) (resp. (1c), (2c)), links the 0-1 variables Ui,j (resp. Bi,j) to the index of
the characteristic involved in the term. To avoid generating unary terms of the form
min(Characteristic, Cst) which could just be rewritten as Characteristic or as Cst, con-
straint (4b) restricts the minimum and maximum values of the constant. When using the min
function in a binary term, constraint (4c) avoids generating equivalent binary terms whose ar-
guments are permuted. Constraint (5c) prevents generating a binary term when the min could
be simplified, e.g. avoids generating min(c, c) as the metadata information found in Phase (A2)
indicates that c is always smaller than or equal to c. Finally, when the candidate formula F
is a binary function corresponding to min, that uses the polynomials P1 and P2 of degree d,
we post the lexicographic ordering constraint ⟨M1,1, . . . , M1,(n+d

d)⟩ <lex ⟨M2,1, . . . , M2,(n+d
d)⟩

between the monomial coefficients of P1 and P2. Note that, for space reason, besides con-
straints (4b), (4c), and (5c), we omit in Table 4 the symmetry and simplification constraints
related to functions that are different from min.

N. Beldiceanu et al. 6:13

Equational constraints. For each row r of the bound table T we post some constraints
linking the selected characteristics Cj with (i) the value variable U_VALi,r of each unary
term Ui, (ii) the value variable B_VALi,r of each binary term Bi, and (iii) the value variable
P_VALi,r of each polynomial Pi. For each row r we also post an equality constraint linking
the value of the candidate formula F on row r with the corresponding bound value on the
same row. Finally, for a binary function min between two polynomial P1 and P2, we impose
that for at least one of the entries of the bound table the value of P1 is strictly less than the
value of P2 on the same entry, and that the converse applies for another entry of the table.
To avoid unnecessarily complex formulae, we minimise the sum of the absolute values of the
coefficients of a candidate formula F .

4 Evaluation of the Bound Seeker

We focus on constructing 16 maps on the lower and upper-bounds of the number of vertices,
the number of arcs, the number of connected (resp. strongly connected) components, and their
minimum and maximum sizes. The components of the system are written in SICStus Prolog
and consist of 10000 lines of code for the Data Generation, the Metadata Generation, the
Meta Metadata Generation, the Candidate Formulae Generation, the CP Model Generation,
and the Test phase. The Data Generation phase generates a total of 1944 bound tables
(occupying 2 Gb) for each maximum number of digraph vertices ranging from 2 to 26; each
bound table gives the lower or upper-bound of a characteristic wrt different subsets of input
characteristics. We evaluate the Bound Seeker from several standpoints:

The percentage of conjectures that, while acquired from the size selected by the Meta
Metadata, still hold for all entries of the largest generated bound tables, i.e. the tables of
digraphs containing up to 26 vertices.
The percentage of bounds from the database of invariants in [2] that was retrieved (resp.
not found).
Besides the conjectures retrieved from the global constraint catalogue database, we manu-
ally proved ten new conjectures. Using WolframAlpha, we also checked the consistency
of 105 projections of a sharp bound B1 onto a sharp bound B0 involving one less input
characteristic, by substituting in B1 the input characteristic to be eliminated, by the
expression defined by the corresponding maximality conjecture.

As the complexity of a formula increases with the number of input characteristics, we limit
our evaluation to up to 3 input characteristics. All experiments to acquire the conjectures for
the 16 maps were done using the same system parameters, i.e. none of the components have
been tuned manually to behave differently depending on the considered map. Out of 350
(resp. 202) combinations of input characteristics for which the Bound Seeker tried to find a
sharp lower (resp. upper) bound, using only polynomials, it got at least one sharp bound
for 279 (resp. 149) combinations of characteristics, as well as 1236 (resp. 975) minimality
(resp. maximality) conjectures. Using also Boolean and conditional expressions it found 3
extra lower bounds and 93 new maximality/minimality conjectures. Table 5 provides the
results for the 16 maps using SICStus 4.6.0 on a 2015 iMac with a 4 GHz Core i7 and 32Gb
of memory: for each map, we give the number of formulae found using only polynomials
(see col. #P1), then using Boolean, conditional, and polynomial (see col. #B2, #C2 and
#P2). Using Boolean and conditional expressions generates 3.8% new formulae compared
to when using polynomials alone; moreover, 31.07% of the formulae that use polynomials
are replaced by simpler formulae that use Boolean or conditionals expressions. The time
spent is explained by a significant number of candidate formulae tested, as it comes from the

CP 2022

6:14 Acquiring Maps of Interrelated Conjectures on Sharp Bounds

Table 5 Number of minimum/maximum and minimality/maximality conjectures found for each
of the 16 maps and time in min. using only polynomials (see only Poly), and using Booleans,
conditionals and polynomials (see Bool/Cond/Poly).

Maps only Poly Bool/Cond/Poly Maps only Poly Bool/Cond/Poly
#P1 Time #B2 #C2 #P2 Time #P1 Time #B2 #C2 #P2 Time

Mc ≥
P 259 257 47 25 194 533 Mc ≤

P 100 218 9 17 77 439
Mc ≥

P 129 230 0 13 120 476 Mc ≤
P 153 193 32 31 94 542

Ms ≥
P 97 130 0 8 90 306 Ms ≤

P 102 392 15 31 60 999
Ma ≥

P 367 1248 38 102 255 3180 Ma ≤
P 384 2505 46 84 264 5939

Mc ≥
P 63 167 10 27 27 388 Mc ≤

P 130 223 16 14 102 457
Ms ≥

P 43 54 0 18 25 226 Ms ≤
P 48 171 1 8 40 365

Ms ≥
P 263 474 37 31 198 813 Ms ≤

P 93 100 5 17 73 267
Mv ≥

P 294 368 30 75 205 1570 Mv ≤
P 14 7 0 2 12 90

Table 6 Comparing the conjectures on the bounds found by the Bound Seeker (BS) with the
database of invariants of the global constraint catalogue (GCC).

Number of input characteristics 1 2 3 Total Percentage

Number of equivalent sharp bounds retrieved by BS 22 14 4 40 66,66%
Number of sharper bounds than the GCC found by BS 1 3 0 4 6,66%
Number of generalised sharp bounds found by BS 0 6 0 6 10%
Number of erroneous bounds found in the GCC by BS 1 1 1 3 5%
Number of bounds in the GCC not retrieved by BS 0 0 7 7 11,66%
Total bounds of the GCC per column 24 24 12 60

combination of minimal functional dependencies and grammar rules. Moreover, arithmetic
constraints like div and mod with multiple occurrences of the same variable are handled
poorly by CP solvers. The datasets used in the experiments and the sixteen maps found will
be available for download in a technical report.

Evaluation of the acquired conjectures wrt the largest data sets. Of the 3625 conjectures
acquired when only using polynomials, we found 5 invalid conjectures when tested against
all samples of the largest data set, i.e. all digraphs up to 26 vertices. Of the 3264 conjectures
acquired when also using Boolean and conditional expressions, we found 16 invalid conjectures.
Note that in this setting the Bound Seeker does not try to find polynomial formulae if it
already found a Boolean or a conditional formula.

Comparing the conjectures founds with proved bounds of the constraint catalogue. As
shown in Table 6, the Bound Seeker retrieves 66.66% of the bounds of the constraint catalogue,
even if the resulting formulae have sometimes a different form: e.g., the upper-bound on the
number of arcs a wrt the number of vertices v, connected components c, and strongly connected
components s in the catalogue is expressed as a ≤ c−1+(v−s+1)·(v−c+1)+⌊ (s−c+1)·(s−c)

2 ⌋,
while the Bound Seeker finds the equivalent inequality a ≤ ⌊ r2+s2+v·c+r−s+v

2 ⌋, with c =
max(2 · v − v · c, 1), s = v − s + 1 and r = v · [c ≥ 2] − c · [c ≥ 2]; r is a secondary characteristic
corresponding to v−c ·c. Unlike the bound given by [2], the bound found by the Bound Seeker
defines the size c of the smallest connected component, and the size s of the largest strongly
connected component of those extreme digraphs for which the upper-bound is reached.

N. Beldiceanu et al. 6:15

An example of a generalised bound found by the Bound Seeker is the lower bound
a ≥ ((v − c) ≤ 1 ? max(v − 1, 1) : v − 2), with v = (c = c ? c : c + c) which extends the
catalogue bound c ̸= c ⇒ a ≥ c + c − 2 + (c = 1). An example of correct bound found
by the Bound Seeker replacing the erroneous bound (i) a ≥ v − ⌊ s−1

2 ⌋ of the catalogue is
(ii) a ≥ v − c∈{2,3} with c∈{2,3} = (v = s ? ⌊ v

2 ⌋ : ⌊ s−1
2 ⌋): for the edge condition v = s = 2, (i)

returns 2, rather than 1 as (ii) does. Bound (ii) a ≥ v − c∈{2,3} can be interpreted as follows:
to minimise the number of arcs, one has to maximise the number of connected components
of the form . ., . . ., . . . or The missing bounds of the catalogue are partially
explained by the limited complexity of the common subexpressions (see BTerm, UTerm in
Sect. 3.2.1) of our polynomials, and by the lack of some secondary characteristics.

5 Related work

While there exist several discovery programs in the context of mathematics devoted to set
theory, number theory, finite algebra and knot theory [12, 23, 13], only a few systems focus
on finding bounds between characteristics of a combinatorial object. The two most notable
systems are S. Fajtlowicz’s Graffiti program [14] and P. Hansen’s AutoGraphiX system [1, 17].
The first difference is that the Bound Seeker attempts to systematically construct a set of
sharp bounds on all possible combinations of a set of input characteristics. The second main
difference is that the Bound Seeker introduces secondary characteristics and searches for key
properties of extreme combinatorial objects for which the bounds are reached.

In slightly different domains, recent work in CP uses machine learning techniques to
estimate the domain boundaries of an objective function [30] of an optimisation problem. Some
other work uses CP to extract equations from a spreadsheet [18, 25], and some recent work
investigates how to integrate integer programming solvers within neural networks [15, 26].

The specificity of our approach compared to machine learning and constraint acquisition [7]
is twofold: (i) we can generate our input data, but we need to ensure that these data contain
the correct values of the sharp bounds we consider, as otherwise, we would necessarily obtain
wrong maximal conjectures; moreover, maximality conjectures only make sense for sharp
bounds; (ii) we have to learn concise conjectures that fit perfectly to all available data, as
minimising an error measure would be irrelevant for acquiring conjectures on sharp bounds.

6 Conclusion

We introduce a structure that connects a set of sharp bounds. Based on this structure, we
propose a constructive approach to acquire a set of interrelated conjectures on sharp bounds.
We show the relevance of using a variety of types of formulae, i.e., Boolean, conditionals, and
polynomials with shared sub-expressions, to acquire simpler conjectures. This work opens
a new application domain for CP for automated conjectures-making systems. It creates a
new line of research to those already reported in a recent survey on machine learning for
combinatorial optimisation [5].

References
1 Mustapha Aouchiche, Gilles Caporossi, Pierre Hansen, and M. Laffay. Autographix: a survey.

Electron. Notes Discret. Math., 22:515–520, 2005. doi:10.1016/j.endm.2005.06.090.
2 Nicolas Beldiceanu, Mats Carlsson, and Jean-Xavier Rampon. Global Constraint Catalog, 2nd

Edition (revision a). Technical Report T2012-03, Swedish Institute of Computer Science, 2012.
Available at http://ri.diva-portal.org/smash/get/diva2:1043063/FULLTEXT01.pdf.

CP 2022

https://doi.org/10.1016/j.endm.2005.06.090
http://ri.diva-portal.org/smash/get/diva2:1043063/FULLTEXT01.pdf

6:16 Acquiring Maps of Interrelated Conjectures on Sharp Bounds

3 Nicolas Beldiceanu, Mats Carlsson, Jean-Xavier Rampon, and Charlotte Truchet. Graph
invariants as necessary conditions for global constraints. In Peter van Beek, editor, Principles
and Practice of Constraint Programming - CP 2005, 11th International Conference, CP 2005,
Sitges, Spain, October 1-5, 2005, Proceedings, volume 3709 of Lecture Notes in Computer
Science, pages 92–106. Springer, 2005.

4 Nicolas Beldiceanu and Helmut Simonis. A Model Seeker: Extracting Global Constraint Models
from Positive Examples. In Michela Milano, editor, Principles and Practice of Constraint
Programming - 18th International Conference, CP 2012, Québec City, QC, Canada, October
8-12, 2012. Proceedings, volume 7514 of Lecture Notes in Computer Science, pages 141–157.
Springer, 2012. doi:10.1007/978-3-642-33558-7_13.

5 Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial
optimization: A methodological tour d’horizon. Eur. J. Oper. Res., 290(2):405–421, 2021.

6 Christian Bessière, Emmanuel Hebrard, George Katsirelos, Zeynep Kızıltan, Émilie Picard-
Cantin, Claude-Guy Quimper, and Toby Walsh. The balance constraint family. In Barry
O’Sullivan, editor, Principles and Practice of Constraint Programming - 20th International
Conference, CP 2014, Lyon, France, September 8-12, 2014. Proceedings, volume 8656 of Lecture
Notes in Computer Science, pages 174–189. Springer, 2014.

7 Christian Bessière, Frédéric Koriche, Nadjib Lazaar, and Barry O’Sullivan. Constraint
acquisition. Artif. Intell., 244:315–342, 2017. doi:10.1016/j.artint.2015.08.001.

8 V. Brankov, P. Hansen, and D. Stevanović. Automated conjectures on upper bounds for the
largest laplacian eigenvalue of graphs. Linear Algebra and its Applications, 414(2):407–424,
2006.

9 Jure Brence, Ljupčo Todorovski, and Sašo Džeroski. Probabilistic grammars for equation
discovery. Knowledge-Based Systems, 224:107077, 2021. doi:10.1016/j.knosys.2021.107077.

10 Céline Brouard, Simon de Givry, and Thomas Schiex. Pushing data into CP models using
graphical model learning and solving. In Helmut Simonis, editor, Principles and Practice
of Constraint Programming - 26th International Conference, CP 2020, Louvain-la-Neuve,
Belgium, September 7-11, 2020, Proceedings, volume 12333 of Lecture Notes in Computer
Science, pages 811–827. Springer, 2020. doi:10.1007/978-3-030-58475-7_47.

11 John William Charnley, Simon Colton, and Ian Miguel. Automatic generation of implied
constraints. In Gerhard Brewka, Silvia Coradeschi, Anna Perini, and Paolo Traverso, editors,
ECAI 2006, 17th European Conference on Artificial Intelligence, August 29 - September 1, 2006,
Riva del Garda, Italy, Including Prestigious Applications of Intelligent Systems (PAIS 2006),
Proceedings, volume 141 of Frontiers in Artificial Intelligence and Applications, pages 73–77. IOS
Press, 2006. URL: http://www.booksonline.iospress.nl/Content/View.aspx?piid=1649.

12 Simon Colton, Andreas Meier, Volker Sorge, and Roy L. McCasland. Automatic generation
of classification theorems for finite algebras. In David A. Basin and Michaël Rusinowitch,
editors, Automated Reasoning - Second International Joint Conference, IJCAR 2004, Cork,
Ireland, July 4-8, 2004, Proceedings, volume 3097 of Lecture Notes in Computer Science, pages
400–414. Springer, 2004. doi:10.1007/978-3-540-25984-8_30.

13 Alex Davies, Petar Veličković, Lars Buesing, Sam Blackwell, Daniel Zheng, Nenad Tomašev,
Richard Tanburn, Peter Battaglia, Charles Blundell, András Juhász, Marc Lackenby, Geordie
Williamson, Demis Hassabis, and Pushmeet Kohli. Advancing mathematics by guiding human
intuition with ai. Nature, 600(7887):70–74, 2021. doi:10.1038/s41586-021-04086-x.

14 Siemion Fajtlowicz. On conjectures of Graffiti. Discret. Math., 72(1-3):113–118, 1988. doi:
10.1016/0012-365X(88)90199-9.

15 Aaron M. Ferber, Bryan Wilder, Bistra Dilkina, and Milind Tambe. Mipaal: Mixed integer
program as a layer. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI
2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI
2020, New York, NY, USA, February 7-12, 2020, pages 1504–1511. AAAI Press, 2020. URL:
https://aaai.org/ojs/index.php/AAAI/article/view/5509.

https://doi.org/10.1007/978-3-642-33558-7_13
https://doi.org/10.1016/j.artint.2015.08.001
https://doi.org/10.1016/j.knosys.2021.107077
https://doi.org/10.1007/978-3-030-58475-7_47
http://www.booksonline.iospress.nl/Content/View.aspx?piid=1649
https://doi.org/10.1007/978-3-540-25984-8_30
https://doi.org/10.1038/s41586-021-04086-x
https://doi.org/10.1016/0012-365X(88)90199-9
https://doi.org/10.1016/0012-365X(88)90199-9
https://aaai.org/ojs/index.php/AAAI/article/view/5509

N. Beldiceanu et al. 6:17

16 Minh Hoàng Hà, Claude-Guy Quimper, and Louis-Martin Rousseau. General bounding
mechanism for constraint programs. In Gilles Pesant, editor, Principles and Practice of
Constraint Programming - 21st International Conference, CP 2015, Cork, Ireland, August 31 -
September 4, 2015, Proceedings, volume 9255 of Lecture Notes in Computer Science, pages
158–172. Springer, 2015.

17 Pierre Hansen and Gilles Caporossi. Autographix: An automated system for finding con-
jectures in graph theory. Electron. Notes Discret. Math., 5:158–161, 2000. doi:10.1016/
S1571-0653(05)80151-9.

18 Samuel Kolb, Sergey Paramonov, Tias Guns, and Luc De Raedt. Learning constraints in
spreadsheets and tabular data. Mach. Learn., 106(9-10):1441–1468, 2017. doi:10.1007/
s10994-017-5640-x.

19 Mohit Kumar, Stefano Teso, and Luc De Raedt. Acquiring integer programs from data. In Sarit
Kraus, editor, Proceedings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019, pages 1130–1136. ijcai.org, 2019.
doi:10.24963/ijcai.2019/158.

20 Guillaume Lample and François Charton. Deep learning for symbolic mathematics. In 8th In-
ternational Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net, 2020. URL: https://openreview.net/forum?id=S1eZYeHFDS.

21 Craig E. Larson and Nicolas Van Cleemput. Automated conjecturing I: Fajtlowicz’s Dalmatian
heuristic revisited. Artif. Intell., 231:17–38, 2016. doi:10.1016/j.artint.2015.10.002.

22 Jimmy Ho-Man Lee, Ka Lun Leung, and Yu Wai Shum. Consistency techniques for polytime
linear global cost functions in weighted constraint satisfaction. Constraints, 19(3):270–308,
2014.

23 Doug Lenat. AM: An artificial intelligence approach to discovery in mathematics. PhD thesis,
Stanford University, 1976.

24 Thorsten Papenbrock, Jens Ehrlich, Jannik Marten, Tommy Neubert, Jan-Peer Rudolph,
Martin Schönberg, Jakob Zwiener, and Felix Naumann. Functional dependency discovery: An
experimental evaluation of seven algorithms. Proc. VLDB Endow., 8(10):1082–1093, 2015.
doi:10.14778/2794367.2794377.

25 Sergey Paramonov, Samuel Kolb, Tias Guns, and Luc De Raedt. Tacle: Learning constraints in
tabular data. In Ee-Peng Lim, Marianne Winslett, Mark Sanderson, Ada Wai-Chee Fu, Jimeng
Sun, J. Shane Culpepper, Eric Lo, Joyce C. Ho, Debora Donato, Rakesh Agrawal, Yu Zheng,
Carlos Castillo, Aixin Sun, Vincent S. Tseng, and Chenliang Li, editors, Proceedings of the
2017 ACM on Conference on Information and Knowledge Management, CIKM 2017, Singapore,
November 06 - 10, 2017, pages 2511–2514. ACM, 2017. doi:10.1145/3132847.3133193.

26 Anselm Paulus, Michal Rolínek, Vít Musil, Brandon Amos, and Georg Martius. Comboptnet:
Fit the Right NP-Hard Problem by Learning Integer Programming Constraints, 2021. arXiv:
2105.02343.

27 Émilie Picard-Cantin, Mathieu Bouchard, Claude-Guy Quimper, and Jason Sweeney. Learning
the parameters of global constraints using branch-and-bound. In J. Christopher Beck, editor,
Principles and Practice of Constraint Programming - 23rd International Conference, CP 2017,
Melbourne, VIC, Australia, August 28 - September 1, 2017, Proceedings, volume 10416 of Lecture
Notes in Computer Science, pages 512–528. Springer, 2017. doi:10.1007/978-3-319-66158-2_
33.

28 Steve Prestwich. Robust constraint acquisition by sequential analysis. In Giuseppe De Giacomo,
Alejandro Catalá, Bistra Dilkina, Michela Milano, Senén Barro, Alberto Bugarín, and Jérôme
Lang, editors, ECAI 2020 - 24th European Conference on Artificial Intelligence, 29 August-8
September 2020, Santiago de Compostela, Spain, August 29 - September 8, 2020 - Including
10th Conference on Prestigious Applications of Artificial Intelligence (PAIS 2020), volume
325 of Frontiers in Artificial Intelligence and Applications, pages 355–362. IOS Press, 2020.
doi:10.3233/FAIA200113.

CP 2022

https://doi.org/10.1016/S1571-0653(05)80151-9
https://doi.org/10.1016/S1571-0653(05)80151-9
https://doi.org/10.1007/s10994-017-5640-x
https://doi.org/10.1007/s10994-017-5640-x
https://doi.org/10.24963/ijcai.2019/158
https://openreview.net/forum?id=S1eZYeHFDS
https://doi.org/10.1016/j.artint.2015.10.002
https://doi.org/10.14778/2794367.2794377
https://doi.org/10.1145/3132847.3133193
http://arxiv.org/abs/2105.02343
http://arxiv.org/abs/2105.02343
https://doi.org/10.1007/978-3-319-66158-2_33
https://doi.org/10.1007/978-3-319-66158-2_33
https://doi.org/10.3233/FAIA200113

6:18 Acquiring Maps of Interrelated Conjectures on Sharp Bounds

29 Gal Raayoni, Shahar Gottlieb, Yahel Manor, George Pisha, Yoav Harris, Uri Mendlovic, Doron
Haviv, Yaron Hadad, and Ido Kaminer. Generating conjectures on fundamental constants
with the Ramanujan Machine. Nature, 590:67–73, 2021. doi:10.1038/s41586-021-03229-4.

30 Helge Spieker and Arnaud Gotlieb. Learning objective boundaries for constraint optimization
problems. In Giuseppe Nicosia, Varun Kumar Ojha, Emanuele La Malfa, Giorgio Jansen,
Vincenzo Sciacca, Panos M. Pardalos, Giovanni Giuffrida, and Renato Umeton, editors,
Machine Learning, Optimization, and Data Science - 6th International Conference, LOD 2020,
Siena, Italy, July 19-23, 2020, Revised Selected Papers, Part II, volume 12566 of Lecture Notes
in Computer Science, pages 394–408. Springer, 2020. doi:10.1007/978-3-030-64580-9_33.

31 Ljupco Todorovski. Equation discovery. In Claude Sammut and Geoffrey I. Webb, ed-
itors, Encyclopedia of Machine Learning, pages 327–330. Springer, 2010. doi:10.1007/
978-0-387-30164-8_258.

32 Hao Wang. Toward mechanical mathematics. In Jörg Siekmann and Graham Wrightson,
editors, Automation of Reasoning: Classical Papers on Computational Logic 1957–1966, pages
244–264. Springer-Verlag, Berlin, 1983.

A Map example

➌{v, c, s} ➍{v, c, c} ➊{v, s, s} ➌{v, c, s} ➌{v, c, s}

➊⑥⑦{v, s} ➋⑧{v, c} ➊⑥⑦{v} ➌⑨{v, c} ➊⑥⑦{v, s} ➊⑥⑦{v, s}

➋{v, c, s} ➊{v, s, s} ➊{v, s, s} ➋{v, c, s} ➎{v, c, s}

⑥ ⑧ ⑨ ⑥⑥

⑦ ⑥

⑦ ⑦ ⑦

➊ c ≤ v

➋ c ≤ v − c + 1
➌ c ≤ (v = c ? v : v − c)
➍ c ≤ c − c · c + v

➎ c ≤ s − c · s + v

⑥ c = v

⑦ c = 1
⑧ c = (c = 1 ? v : 1)
⑨ c = 1 + (v ̸= c)

➋④{v, c, s} ➋⑤{v, c, c} ➊{v, s, s} ➋④{v, c, s} ➋④{v, c, s}

➊③{v, s} ➋⑥{v, c} ➊③{v} ➋④{v, c} ➊③{v, s} ➊③{v, s}

➋⑥{v, c, s} ➊{v, s, s} ➊{v, s, s} ➋⑥{v, c, s} ➋⑦{v, c, s}

③ ⑥ ④ ③③

③ ③

③ ③ ③

➊ c ≤ v ➋ c ≤ r + c

③ r = 0, c = v

④ r = max(v − 2 · c, 0)
⑤ r = v − c · c

⑥

{
r = v · (c ≥ 2) − c · (c ≥ 2)
c = max(2 · v − v · c, 1)

⑦

r = v + s · (c = 1) − c · s

−v · (c = 1)
c = max(2 · v − v · c, s)

(A)

(B)

Figure 4 Map Mc ≤
{v,c,c,s,s,s} of upper-bounds of the output characteristic c found by the Bound

Seeker, where each dotted node contains, from left to right, a reference to the maximum conjecture
❶,. . . ,❺, ❶,❷, possibly a set of maximality conjectures ⑥,. . . ,⑨,③,. . . ,⑦, and the set of input
characteristics in red; Part (A) corresponds to the bounds found while only using the input
characteristics, and Part (B) refers to the bounds found using also the secondary characteristics.

https://doi.org/10.1038/s41586-021-03229-4
https://doi.org/10.1007/978-3-030-64580-9_33
https://doi.org/10.1007/978-0-387-30164-8_258
https://doi.org/10.1007/978-0-387-30164-8_258

Parallel Hybrid Best-First Search
Abdelkader Beldjilali #

Université Fédérale de Toulouse, INRAE, UR 875, 31326 Toulouse, France

Pierre Montalbano #

Université Fédérale de Toulouse, ANITI, INRAE, UR 875, 31326 Toulouse, France

David Allouche #

Université Fédérale de Toulouse, ANITI, INRAE, UR 875, 31326 Toulouse, France

George Katsirelos #

Université Fédérale de Toulouse, ANITI, INRAE, MIA Paris, AgroParisTech, 75231 Paris, France

Simon de Givry #

Université Fédérale de Toulouse, ANITI, INRAE, UR 875, 31326 Toulouse, France

Abstract
While processor frequency has stagnated over the past two decades, the number of available cores in
servers or clusters is still growing, offering the opportunity for significant speed-up in combinatorial
optimization. Parallelization of exact methods remains a difficult challenge. We revisit the concept
of parallel Branch-and-Bound in the framework of Cost Function Networks. We show how to adapt
the anytime Hybrid Best-First Search algorithm in a Master-Worker protocol. The resulting parallel
algorithm achieves good load-balancing without introducing new parameters to be tuned as is the
case, for example, in Embarrassingly Parallel Search (EPS). It has also a small overhead due to its
light communication messages. We performed an experimental evaluation on several benchmarks,
comparing our parallel algorithm to its sequential version. We observed linear speed-up in some
cases. Our approach compared favourably to the EPS approach and also to a state-of-the-art parallel
exact integer programming solver.

2012 ACM Subject Classification Computing methodologies → Parallel algorithms

Keywords and phrases Combinatorial Optimization, Parallel Branch-and-Bound, CFN

Digital Object Identifier 10.4230/LIPIcs.CP.2022.7

Supplementary Material Software (Source Code): https://github.com/toulbar2/toulbar2
archived at swh:1:dir:93fd0c2246746901b0391ac4c4c04ca57980b3bb

Other (Results): https://miat.inrae.fr/degivry/Beldjilali22Supp.pdf

Funding This work has been partially funded by the French ”Agence Nationale de la Recherche”,
through grant ANR-19-P3IA-0004. It was performed using HPC resources from CALMIP (Grant
2022-P21010).

Carbon footprint The experiments in this paper took approximately 17, 000 hours and emitted
68kg of CO2, with an estimate of 4g/h per core.

1 Introduction
Cost Function Networks (CFNs), also known as Weighted Constraint Satisfaction Problems
(WCSPs) [17] is a mathematical framework which has been derived from Constraint Sat-
isfaction Problems by replacing constraints with cost functions. In a CFN, we are given
a set of variables with an associated finite domain and a set of local cost functions. Each
cost function involves some variables and associates a non-negative integer cost to each of
the possible combinations of values they may take. The usual WCSP problem considered
is to assign all variables in a way that minimizes the sum of all costs. This minimization
problem is NP-hard, and exact methods usually rely on Branch and Bound (B&B) algorithms
exploring a binary search tree with soft local consistency maintained at each node in order
to improve the problem lower bound (represented by c∅) and prune domain values with a
forbidden cost (represented by a maximum cost k) [5].

© Abdelkader Beldjilali, Pierre Montalbano, David Allouche, George Katsirelos, and Simon de Givry;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 7; pp. 7:1–7:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kader.beldjilali@free.fr
mailto:pierre.montalbano@inrae.fr
https://orcid.org/0000-0001-8126-892X
mailto:david.allouche@inrae.fr
mailto:gkatsi@gmail.com
https://orcid.org/0000-0002-3727-6698
mailto:simon.de-givry@inrae.fr
https://orcid.org/0000-0002-2242-0458
https://doi.org/10.4230/LIPIcs.CP.2022.7
https://github.com/toulbar2/toulbar2
https://archive.softwareheritage.org/swh:1:dir:93fd0c2246746901b0391ac4c4c04ca57980b3bb;origin=https://github.com/toulbar2/toulbar2;visit=swh:1:snp:c20c18e4bb55f2cae5001716347680c6197637b4;anchor=swh:1:rev:ef07d71bcd00950663baf2285af7b8899adbff18
https://miat.inrae.fr/degivry/Beldjilali22Supp.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Parallel Hybrid Best-First Search

Contraint Programming (CP) exact approaches usually rely on Depth-First Search (DFS)
methods while Integer Linear Programming (ILP) approaches explore the tree in a best-first
manner by exploiting strong bounds. We are interested in hybrid methods combining depth-
first and best-first with possibly weaker bounds but faster to compute. This is the case of the
Hybrid Best-First Search (HBFS) method [2]. HBFS is a B&B algorithm for solving WCSPs.

Dealing with parallel computers or grids to speed-up solving time of exact methods has
been explored in many different ways. For grids, with slow network interconnection, MapRe-
duce is a general approach exploiting problem decomposition into independent subproblems
solved in parallel (map on the grid processors) and then sequentially reduced at the end
of the resolution. In CP, this decomposition approach is called Embarrassingly Parallel
Search (EPS) [15]. MapReduce has been applied also in the context of non serial dynamic
programming in Graphical Models [19] and CFNs [3]. Message-passing approaches, on the
other hand, take advantage of the low-latency communication of supercomputers, consisting
of a large number of multiprocessor servers interconnected at high speed and low latency.
This allows for finer granularity in B&B parallelization. According to a recent survey [9],
parallelizing the search based on message-passing and parallel B&B in CP are difficult
problems and still poorly explored. In CP, for example, COMET [18] uses work-stealing
where workers which have run out of work take unexpanded nodes from other workers, leaving
them less work to do and keeping all workers busy. In ILP, a recent review on parallel B&B
was proposed in [21]. We selected the Master-Worker protocol as the basis for our approach.
Other approaches rely on portfolios.

In this work we describe a parallel version of HBFS. We give an empirical evaluation
on combinatorial optimization academic problems from Operations Research and real-life
Graphical Model problems occuring in genetics and biology. Our experimental study analyses
solving time and speed-ups of the parallel version compared to the original sequential HBFS.
We also compare our approach with a parallel ILP solver (IBM Ilog cplex). Moreover, we
performed experiments on a high-performance cluster to study the scalability of our algorithm
and compare with EPS.

2 Hybrid Best-First Search

The sequential version of HBFS [2] is a B&B method for CFNs that combines Best-First
Search (BFS) and Depth-First Search (DFS). Like BFS, HBFS provides an anytime global
lower bound on the optimum, while also providing anytime upper bounds, like DFS. Hence, it
provides feedback on the progress of search and solution quality in the form of an optimality
gap. Besides, it exhibits highly dynamic behavior that allows it to perform on par with
methods like Limited Discrepancy Search [11] and frequent restarting [10, 7] in terms of
quickly finding good solutions. As in BFS, HBFS maintains a frontier of open search nodes. It
expands each open node using DFS with a limit on its number of backtracks. Each bounded
DFS returns a new list of open nodes to be inserted in the BFS frontier.

The pseudo-code of HBFS is given in Algorithm 1. The main procedure is in charge of the
BFS frontier of open nodes. Here a node ν corresponds to a sequence of decisions ν.δ. The
root node has an empty decision sequence (line 1). When a node is explored by DFS (line 5),
an unassigned variable is chosen and a branching decision to either assign the variable to
a chosen value (left branch, positive decision) or remove the value from the domain (right
branch, negative decision) is taken. The number of decisions taken to reach a given node
ν is the depth of the node, ν.depth. HBFS always chooses the next open node to explore
with minimum lower bound ν.lb (best-first principle) and, in case of ties, maximum depth

A. Beldjilali, P. Montalbano, D. Allouche, G. Katsirelos, and S. de Givry 7:3

1

2

3 6

4 5 7

8 9

Figure 1 A tree that is partially explored by DFS with a backtrack limit Z = 4. Nodes with a
bold border are leaves, nodes with no border are placed in the open list after the backtrack bound is
exceeded. Nodes are numbered in the order they are visited.

ν.depth (depth-first principle) in the frontier. The minimum of all open node lower bounds,
denoted lb(open), is a valid global lower bound (kept in clb at line 6) for the problem. HBFS
also maintains the current upper bound (cub) as the cost of the best solution found so far by
DFS (line 5). The search ends when the open list is empty or contains nodes with a lower
bound greater than or equal to cub (line 2).

Algorithm 1 Hybrid Best-First Search. Initial call: HBFS(c∅,k) with Z = 1.

Function HBFS(clb,cub): integer ; /* Returns the optimum value */

1 open := {ν(δ = ∅, lb = clb)} ; /* Initializes the open list with a root node */
2 while (open ̸= ∅ and clb < cub) do

ν :=pop(open) ; /* Chooses a node with minimum lower bound and maximum depth */
3 Restores state ν.δ, leading to assignment Aν , maintaining soft local consistency ;
4 NodesRecompute := NodesRecompute + ν.depth ;
5 cub :=DFS(Aν ,cub,Z) ; /* Increase Nodes and put all right open branches in open */
6 clb := max(clb, lb(open)) ;

if (NodesRecompute > 0) then
7 if (NodesRecompute/Nodes > β and Z ≤ N) then Z := 2 × Z;
8 else if (NodesRecompute/Nodes < α and Z ≥ 2) then Z := Z/2;

return cub;

DFS increases a counter Nodes at each branching decision. It can backtrack (taking right
branches) up to a limit of Z backtracks. When this limit is reached, all the unexplored
right branches are placed in open. HBFS controls the balance between best-first search
(partially exploring more open nodes) and depth-first search (complete exploration from a
given starting node). Best-first search requires recomputing the state ν.δ of a node (line 3)
which can be costly in practice. HBFS uses a simple rule to limit this recomputation effort
(measured by NodesRecompute at line 4). It tries to keep the ratio NodesRecompute

Nodes in the
interval [α, β] by increasing (by a power of two) the backtrack limit Z if the ratio value is
above β or decreasing Z if it is below alpha (lines 7–8). Initially, Z is set to 1. In order to
avoid exponential DFS behavior, HBFS limits the maximum value taken by Z to N . We kept
the same value α = 5%, β = 10%, N = 214 in our experiments as in the original paper [2].

3 Parallel HBFS

The parallel version of HBFS is based on the Master-Worker parallel paradigm [21] where
the Master is in charge of the open node frontier and dispatches the current best (with
minimum lower bound) open node plus the current best solution found so far to the next

CP 2022

7:4 Parallel Hybrid Best-First Search

available Worker. The Worker performs a bounded DFS starting from the received node and
returns to the Master the resulting list of open nodes (see Fig. 1, with a DFS limit here of 4
backtracks). The Worker also returns the best solution found during its restricted search
if any. Only the Master has a global view of the whole search and reports optimality gaps
(cub−clb

cub) until the proof of optimality is reached: when the current best lower bound in the
frontier of open nodes, including active worker starting nodes, is equal or greater than the
cost of the best solution found so far or the frontier is empty and there are no active workers.
When the problem is solved, the Master kills all the workers and returns the optimum value.

According to a round robin schema, the Master sends open nodes to every idle worker
in a balanced way, ensuring a natural load balancing between the workers as soon as the
number of open nodes in the frontier is larger than the number of workers. Moreover, an
initial backtrack limit of Zi = 1 associated to each Worker i favors the production of open
nodes at the beginning of the search. Each Zi is bounded by N as in sequential HBFS so
that no worker takes too long.

The pseudo-code of the Master (resp. Worker) is given in Algorithm 2 (resp. Alg. 3).
In the implementation, we avoid to send the same solution twice to a Worker. Moreover,
workers send their solution only if it improves compared to the last solution sent by the
Master. This strategy allows to shorten messages in the Master-Worker protocol.

Algorithm 2 Parallel HBFS-Master. Initial call for p workers: HBFS-Master(c∅,k,(1, . . . , p)).

Function HBFS-Master(clb, cub, S): integer ; /* S queue of workers, return the optimum */

open := {ν(δ = ∅, lb = clb)} ; /* Initializes the open list with a root node */
I := S ; /* Queue of idle workers */
A := ∅ ; /* Maps active workers to open nodes currently being processed */
while ((open ̸= ∅ or A ̸= ∅) and clb < cub) do

while (open ̸= ∅ and I ̸= ∅) do
ν :=pop(open) ; /* Chooses a node with minimum lower bound and maximum depth */
i :=popFront(I) ; /* Unqueue the first idle worker */
A := A ∪ {(i, ν)} ;
Send ν and best solution cub to Worker i ;

9 Receive a list of open nodes V and solution cub′ by worker j ; /* Wait for message */
push(open, V) ; /* Adds worker open nodes to the Master open list */
cub := min(cub, cub′) ; /* Checks if a better solution as been found */

10 pushBack(I, j) ; /* Pushes Worker j at the end of the idle worker queue I */
11 A := A \ {(j, A[j])} ; /* Removes Worker j from active workers */

clb := max(clb, min(lb(open), min{lb(ν) for (i, ν) ∈ A})) ; /* Global lower bound */
return cub;

3.1 Improving the ramp-up phase
We observed that at the beginning of the search the first active worker may take a long time

to build its list of open nodes when it reaches the initial backtrack limit (equal to one). It
can be explained by the fact that if it found a new solution then this improved upper bound
will possibly imply more work in subsequent propagation made later when assessing the
lower bound of each open node. This has the effect to slow-down the construction of the list
of open nodes when HBFS stops backtracking. During this period, called the ramp-up phase
(where some workers have not been assigned at least one task), no parallelism is exploited.
We modified our communication protocol to send a message to the master as soon as an
open-node has been collected or a new solution has been found by a worker inside its DFS

A. Beldjilali, P. Montalbano, D. Allouche, G. Katsirelos, and S. de Givry 7:5

Algorithm 3 Parallel HBFS-Worker. Initial call for Worker i: HBFS-Worker(k,i) with Zi = 1.

Procedure HBFS-Worker(cub,rank) ; /* rank: Worker ID */

while (true) do
openi := ∅ ; /* local open list of Worker i */
Receive an open node ν and solution cub′ by Master ; /* Wait for message */
cub := min(cub, cub′) ; /* Updates cub and best solution if any */
Restores state ν.δ, leading to assignment Aν , maintaining soft local consistency ;
NodesRecompute := NodesRecompute + ν.depth ;

12 cub :=DFS(Aν ,cub,Zi) ; /* Increase Nodes ; put all right open branches in openi */
if (NodesRecompute > 0) then

13 if (NodesRecompute/Nodes > β and Zi ≤ N) then Zi := 2 × Zi;
14 else if (NodesRecompute/Nodes < α and Zi ≥ 2) then Zi := Zi/2;
15 Send openi and best solution cub to the Master ; /* or closing-node mes. in burst

mode */

subroutine (line 12). Such messages are received by the Master (line 9) which does not
change the Worker state to idle (lines 10 and 11) until it receives a closing-node message by
the Worker (sent at line 15). By doing so, it allows the Master to distribute open nodes to
idle workers earlier before the first active worker has finished its initial DFS. We call this
modified Master-Worker protocol the burst mode. However, the Worker can potentially send
O(nd) more messages and it disallows data compression of the open list messages.1

4 Experimental Results

We implemented in C++ our parallel HBFS in the CFN solver toulbar2.2 We used the boost
MPI library for the Master-Worker communication protocol. We kept default parameters
of toulbar2 except no dichotomic branching in order to explore a binary search tree with
DFS (option -d:). The variable ordering heuristic is dom/wdeg [4] combined with last
conflict [14]. The value ordering heuristic exploits the last solution found if any [7] or else
EDAC existential value [6]. EDAC is also used as soft local consistency during search.
Instances were preprocessed by VAC [5] and the resulting CFNs saved to files before the
experiments to reduce the setup sequential time of paralllel HBFS. We compared both the
sequential and parallel version of HBFS and also with the integer programming solver cplex
(version 20.1 with non-premature stop parameters EPAGAP=EPGAP=EPINT=0). We set the
number of threads used by cplex to the desired number of cores.

Experiments were performed either on medium-scale computers (24-core Intel Xeon
E5-2687W v4 at 3 GHz and 256 GB) with 1-hour timeout or on a large-scale cluster with
more than 10, 000 cores (36-core per node of Intel Skylake 6140 at 2.3 GHz and 192 GB)
with a longer 10-hour timeout for the sequential version only. Solving times are reported in
seconds and correspond to CPU (resp. wall-clock) time for the sequential (resp. parallel)
methods. No initial upper bounds were provided.

We tested the methods on four benchmarks selected from [12] with a total of 134 instances:
two academic benchmarks taken in Operations Research, uncapacitated warehouse location
problem (Warehouses) with 15 instances [13] and DIMACS maximum clique problem with

1 In non-burst mode, all right branches share a common prefix in their ν.δ and only the deepest δ
information need to be sent to the Master.

2 https://toulbar2.github.io/toulbar2 version 1.2.

CP 2022

https://toulbar2.github.io/toulbar2

7:6 Parallel Hybrid Best-First Search

62 instances (MaxClique)3 and two real-life Graphical Model benchmarks, linkage analysis
problem occuring in genetics (Linkage) with 22 instances coming from UAI Evaluation 2008 4

and computational protein design problem in biology (CPD) with 35 instances [1]. We
applied the tuple encoding to convert Linkage and CPD to integer linear programs [12]. For a
comparison on MaxClique with another parallel branch and bound implementation, see [16].

4.1 Comparison of parallel HBFS with its sequential version

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0 0.05 0.1 0.15 0.2

HBFS 1-core
10-core without burst

10-core with burst
20-core without burst

20-core with burst

Figure 2 Comparison on a medium-scale computer between sequential versus parallel HBFS
with or without burst mode. The x-axis represents normalized time (with 0.2 corresponding to 720
seconds). The y-axis corresponds to normalized lower and upper bounds on 134 instances (with 1
corresponding to the optimum or best known cost, see the text description).

We compared the anytime behavior of sequential (HBFS-1) and parallel HBFS (with 10
or 20 cores) with or without burst mode (see Sec. 3.1) on a medium-scale computer. We
summarize the evolution of lower (clb in Alg. 1 and 2) and upper bounds (cub) for each
method over all instances in Fig. 2. Specifically, for each instance we normalize all costs
as follows: the initial lower bound c∅ produced by EDAC is 0; the best but potentially
suboptimal solution found by any method is 1; the worst solution is 2. This normalization
is invariant to translation and scaling. Additionally, we simply normalize time from 0 to
1, corresponding to 1 hour. A point x, y on the lower bound line for method M in Fig. 2
means that after normalized runtime x, method M has proved on average over all instances
a normalized lower bound of y and similarly for the upper bound.

First, we observed that all parallel versions significantly outperformed the sequential
HBFS lower bound curve. Concerning upper bound curves, the burst mode gave a clear
advantage to parallel HBFS especially at the beginning of the search. In the sequel of the
paper, we always report results of parallel HBFS with burst mode. As shown in the figure,
increasing the number of cores from 10 to 20 slightly improved the bounds.

In Table 1 we report the number of instances solved by sequential and parallel HBFS
for each benchmark. Parallel HBFS solved 1 more instance than the single core version in
Linkage and 1 (resp. 3) in MaxClique using 10 (resp. 20) cores. We made local comparisons
of solving times (shown in parentheses) by averaging on the subset of instances solved by the

3 We removed the largest instances keller6 and p_hat1500-1,2,3 from the original 66 DIMACS instances.
4 Linkage instances were further preprocessed by variable elimination limited to at most 8 neighbors [8].

A. Beldjilali, P. Montalbano, D. Allouche, G. Katsirelos, and S. de Givry 7:7

three methods (HBFS-1, HBFS-10, HBFS-20). It allows us to display overall speed-up of
parallel approaches by giving the ratio of total sequential over parallel time. Parallel HBFS
obtained near linear speed-up on MaxClique. Recall that 1 core is used by the master and the
rest by the workers in the Master-Worker approach preventing us from full linear speed-up.
On CPD and Linkage the speed-up was halved. For Warehouses, only 50% of reduction in
overall time was observed. This can be explained partly by the limited number of search
nodes (Table 4 in Supplementary Material).We also observed that the evaluation of right
branches made by the first active worker starting from the root node took most of the time.
This is due to the fact that a first solution has been found by the worker resulting in more
propagation on the right branches especially near the root. This pathological phenomenon
did not appear on the other benchmarks.

Table 1 Number of solved instances within 1 hour (except for sequential HBFS-1 run on the
cluster with a larger timeout of 10 hours) and average time in seconds in parentheses. To compute
the mean we only consider for a given method (toulbar2 HBFS or cplex) the instances solved with
any number of cores on the same computer (server with 3 GHz cores or cluster with 2.3 GHz cores).

Method CPD (35) Warehouses (15) Linkage (22) MaxClique (62)
Speed-up Speed-up Speed-up Speed-up

HBFS-1 30 (43.44s) 15 (128.96s) 20 (23.24s) 37 (364.25s)
HBFS-10 30 (8s) 5.43 15 (80.174s) 1.61 21 (3.5s) 6.64 38 (40.24s) 9.05
HBFS-20 30 (4.43s) 9.81 15 (85.39s) 1.51 21 (2s) 11.62 40 (19.9s) 18.3

cplex-1 24 (331.2s) 15 (123.83s) 22 (8.04s) 42 (282.16s)
cplex-10 24 (226.51s) 1.46 15 (68.82s) 1.8 22 (2.56s) 3.14 45 (55.48s) 5.08
cplex-20 24 (198.49s) 1.67 15 (72.06s) 1.72 22 (2.29s) 3.51 46 (71.47s) 3.95

HBFS-1 (cluster) 30 (66.46s) 15 (392.30s) 21 (427.21s) 37 (504s)
HBFS-180 (cluster) 30 (3.7s) 17.96 15 (126s) 3.11 22 (4.15s) 102.94 45 (6.44s) 78.26

4.2 Comparison of parallel HBFS with integer programming
In Table 1 we also report the number of instances solved and their average solving time
(as explained above) by cplex using multithreading. It clearly dominates HBFS on Linkage
(Supp. Fig. 5).For Warehouses, the differences are less important still in favor of cplex.
For MaxClique, although the global picture shows that it solved six more instances than
HBFS with 20 cores, both methods performed well on different subsets of instances (e.g.,
HBFS-20 solved two instances – brock400_4 and sanr400_0.7 – unsolved by cplex-20 whereas
cplex-20 solved eight instances unsolved by HBFS-20). For CPD, the CFN approach largely
dominates the integer programming approach for all the instances. Concerning anytime
curves shown in Fig. 3 (see also Supp. Fig. 4 and 5), the CFN approach is also significantly
superior to cplex on average in producing good upper bounds faster, HBFS-20 being the best
method. Concerning overall speed-up, cplex had difficulties to benefit from parallelism on
CPD, Linkage, and Warehouses where it usually develops a small amount of search nodes
(less than 7, 059 nodes except on Linkage/pedigree19 and pedigree40), resulting in poor
speed-up except in a few cases. The speed-up is better on MaxClique but seems to stagnate
when going from 10 to 20 cores (it was even slower on four instances).

4.3 Comparison of parallel HBFS with EPS on a cluster
The EPS approach is a two-phase procedure. First, the problem to be solved is decomposed
into a list of l independent subproblems. Next, all the subproblems are solved in parallel
(with at most p workers running at the same time) based on a particular scheduling strategy

CP 2022

7:8 Parallel Hybrid Best-First Search

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0 0.05 0.1 0.15 0.2

HBFS 1-core
10-core
20-core

cplex 1-core
10-core
20-core

Figure 3 Comparison on a medium-scale computer between toulbar2 using parallel HBFS (with
burst mode) and cplex using multiple threads. The x-axis represents normalized time (with 0.2
corresponding to 720 seconds). The y-axis corresponds to normalized lower and upper bounds on
134 instances (with 1 corresponding to the optimum or best known cost, see the text description).

with no communication between the workers. For optimization problems, we need to provide
a good initial upper bound. Otherwise the search tree can be much larger than needed. In
the first phase, we used the original HBFS method to collect l subproblems. As soon as
HBFS has more than l open nodes in its frontier it stops and returns the current upper
bound (cub) and the list of open nodes (without those having a lower bound lb(ν) ≥ cub).
Each open node ν defines an independent subproblem with partial assignment ν.δ. In order
to collect open nodes more rapidly we fix the (maximum) backtrack limit Z = N = 1. Ideally
l should be 30 × p with p the number of available cores [15]. In the second phase, we schedule
on the cluster the subproblems that are solved by the original HBFS method using a simple
scheduling heuristic based on increasing |ν.δ|.

In Table 2 we report for nine difficult instances their optimum value, the upper bound
found at the end of EPS Phase-1, the actual number of generated subproblems, the average
solving time of all subproblems, the maximum solving time, the number of failed subproblems
(timeout of 1 hour) and the overall solving time of EPS Phase-2 using 180 cores on the cluster.
We compare with HBFS using the same number of cores. Our EPS strategy failed on 4/9
instances. In parentheses, we indicate the maximum depth ν.depth of failed subproblems.
Clearly, finding the right number l of not-too-difficult subproblems corresponding to partial
assigments greater than a given depth is a challenging task. In our experiments, we tried
with different values for l ∈ [50, 6000], selecting the largest threshold value with a Phase-1
duration being less than 1 second for Linkage (l = 6000), 6 seconds for MaxClique (l = 6000)
and 44 seconds for CPD (l = 1000). On the opposite, we did not tune any specific parameter
for our parallel HBFS method.

In Table 1 we also report the overall speed-up of HBFS-180 compared to HBFS-1 on the
cluster. HBFS-180 got a two-order-of-magnitude speed-up on Linkage.

5 Conclusion

Although the speed-up offered by the parallel version of HBFS was very instance dependent,
we observed significant gain on several instances, outperforming in some cases state-of-the-
art solvers like cplex. Even if the scalability of our approach must be subject of deeper
investigation, due to the minimal size of the information shared between the Master and the
Workers, our approach is very likely compliant with a larger number of cores.

A. Beldjilali, P. Montalbano, D. Allouche, G. Katsirelos, and S. de Givry 7:9

Table 2 EPS and HBFS-180 results on hard instances (with n variables and maximum domain
size d). A ’-’ indicates that some (see #failed) subproblems could not be solved in less than 3, 600sec.

instance n d opt. cub l av. time max. t. #fail(depth) EPS-180 HBFS-180
linkage/pedigree19 259 5 4625 5684 5114 20.57 - 1 (4) - 69.1
linkage/pedigree40 274 6 7300 8838 5641 101.99 - 49 (21) - 1680
linkage/pedigree51 295 5 6406 6802 5798 0.61 497.38 0 499 5.7

cpd/1BRS 38 178 4007610 4007679 956 2.94 38.90 0 44 37.5
cpd/1CDL 38 170 3590514 3590825 1001 6.66 79.04 0 79 18.3
cpd/1GVP 52 170 5196719 5196841 979 14.59 170.66 0 171 17.0

maxcl./brock400_1 400 2 373 379 6010 63.95 - 12 (149) - 1812
maxcl./brock400_2 400 2 371 379 5975 65.27 - 18 (149) - 880

maxcl./san400_0.5_1 400 2 387 392 6073 5.07 414.96 0 3652 1220

A more challenging task which remains as future work is to exploit the structure of
CFNs by parallelizing Backtrack with Tree Decomposition (BTD-HBFS) [2]. Shared memory
protocols may be more suitable for this task to make learnt nogoods available to all Workers.

On the practical side, our parallel HBFS could ran in conjunction with a parallel large
neighborhood search strategy [20] offering even better anytime lower and upper bounds.

References
1 D Allouche, J Davies, S de Givry, G Katsirelos, T Schiex, S Traoré, I André, S Barbe,

S Prestwich, and B O’Sullivan. Computational protein design as an optimization problem.
Artificial Intelligence, 212:59–79, 2014.

2 D Allouche, S de Givry, G Katsirelos, T Schiex, and M Zytnicki. Anytime Hybrid Best-First
Search with Tree Decomposition for Weighted CSP. In Proc. of CP-15, pages 12–28, Cork,
Ireland, 2015.

3 D. Allouche, S. de Givry, and T. Schiex. Towards parallel non serial dynamic programming
for solving hard weighted csp. In Proc. of CP-10, St Andrews, Scotland, 2010.

4 F Boussemart, F Hemery, C Lecoutre, and L Sais. Boosting systematic search by weighting
constraints. In ECAI, volume 16, page 146, 2004.

5 M. Cooper, S. de Givry, M. Sanchez, T. Schiex, M. Zytnicki, and T. Werner. Soft arc
consistency revisited. Artificial Intelligence, 174(7–8):449–478, 2010.

6 S. de Givry, M. Zytnicki, F. Heras, and J. Larrosa. Existential arc consistency: Getting
closer to full arc consistency in weighted csps. In Proc. of IJCAI’05, pages 84–89, Edinburgh,
Scotland, 2005.

7 E Demirovic, G Chu, and P J. Stuckey. Solution-based phase saving for CP: A value-selection
heuristic to simulate local search behavior in complete solvers. In Proc. of CP-18, pages
99–108, Lille, France, 2018.

8 A Favier, S de Givry, A Legarra, and T Schiex. Pairwise decomposition for combinatorial
optimization in graphical models. In Proc. of IJCAI-11, Barcelona, Spain, 2011.

9 I Gent, I Miguel, P Nightingale, C McCreesh, P Prosser, N Moore, and C Unsworth. A
review of literature on parallel constraint solving. Theory and Practice of Logic Programming,
18(5-6):725–758, 2018.

10 C. Gomes, B. Selman, and H. Kautz. Boosting combinatorial search through randomization.
In Proc. of AAAI’98, Madison, WI, 1998.

11 W. D. Harvey and M. L. Ginsberg. Limited discrepancy search. In Proc. of IJCAI’95, Montréal,
Canada, 1995.

12 B Hurley, B O’Sullivan, D Allouche, G Katsirelos, T Schiex, M Zytnicki, and S de Givry. Multi-
Language Evaluation of Exact Solvers in Graphical Model Discrete Optimization. Constraints,
21(3):413–434, 2016.

CP 2022

7:10 Parallel Hybrid Best-First Search

13 J Kratica, D Tošic, V Filipović, and I Ljubić. Solving the simple plant location problem by
genetic alg. RAIRO, 35(1):127–142, 2001.

14 C. Lecoutre, L Saïs, S. Tabary, and V. Vidal. Reasoning from last conflict(s) in constraint
programming. Artificial Intelligence, 173:1592,1614, 2009.

15 A Malapert, J-C Régin, and M Rezgui. Embarrassingly parallel search in constraint program-
ming. Journal of Artificial Intelligence Research, 57:421–464, 2016.

16 C McCreesh and P Prosser. The shape of the search tree for the maximum clique problem and
the implications for parallel branch and bound. ACM Trans. Parallel Comput., 2(1), 2015.

17 P. Meseguer, F. Rossi, and T. Schiex. Soft constraints processing. In F. Rossi, P. van Beek,
and T. Walsh, editors, Handbook of Constraint Programming, chapter 9. Elsevier, 2006.

18 L Michel, A See, and P Van Hentenryck. Parallelizing constraint programs transparently.
In C Bessière, editor, Principles and Practice of Constraint Programming – CP 2007, pages
514–528, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

19 L Otten and R Dechter. And/or branch-and-bound on a computational grid. JAIR, 59:351–435,
2017.

20 Abdelkader Ouali, David Allouche, Simon de Givry, Samir Loudni, Yahia Lebbah, Francisco
Eckhardt, and Lakhdar Loukil. Iterative Decomposition Guided Variable Neighborhood Search
for Graphical Model Energy Minimization. In Proc. of UAI-17, pages 550–559, Sydney,
Australia, 2017.

21 T Ralphs, Y Shinano, T Berthold, and T Koch. Parallel solvers for mixed integer linear
optimization. In Handbook of parallel constraint reasoning, pages 283–336. Springer, 2018.

Learning MAX-SAT Models from Examples Using
Genetic Algorithms and Knowledge Compilation
Senne Berden #

Declarative Languages and Artificial Intelligence, KU Leuven, Belgium

Mohit Kumar #

Declarative Languages and Artificial Intelligence, KU Leuven, Belgium

Samuel Kolb #

Declarative Languages and Artificial Intelligence, KU Leuven, Belgium

Tias Guns # Ñ

Declarative Languages and Artificial Intelligence, KU Leuven, Belgium

Abstract
Many real-world problems can be effectively solved by means of combinatorial optimization. However,
appropriate models to give to a solver are not always available, and sometimes must be learned from
historical data. Although some research has been done in this area, the task of learning (weighted
partial) MAX-SAT models has not received much attention thus far, even though such models can be
used in many real-world applications. Furthermore, most existing work is limited to learning models
from non-contextual data, where instances are labeled as solutions and non-solutions, but without
any specification of the contexts in which those labels apply. A recent approach named hassle-sls
has addressed these limitations: it can jointly learn hard constraints and weighted soft constraints
from labeled contextual examples. However, it is hindered by long runtimes, as evaluating even a
single candidate MAX-SAT model requires solving as many models as there are contexts in the
training data, which quickly becomes highly expensive when the size of the model increases. In this
work, we address these runtime issues. To this end, we make two contributions. First, we propose a
faster model evaluation procedure that makes use of knowledge compilation. Second, we propose
a genetic algorithm named hassle-gen that decreases the number of evaluations needed to find
good models. We experimentally show that both contributions improve on the state of the art by
speeding up learning, which in turn allows higher-quality MAX-SAT models to be found within a
given learning time budget.

2012 ACM Subject Classification Computing methodologies → Machine learning

Keywords and phrases Machine learning, constraint learning, MAX-SAT

Digital Object Identifier 10.4230/LIPIcs.CP.2022.8

Supplementary Material Software (Source Code): https://github.com/ML-KULeuven/HASSLE-GEN
archived at swh:1:dir:6769420692514ea592885add6759177a0c221e8b

Funding This project was partially funded by the Research Foundation - Flanders (FWO) projects
G0G3220N and FWO-S007318N, as well as the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (Grant Nos. 101002802, CHAT-
Opt and 694980, SYNTH) and the “Agentschap Innoveren & Ondernemen” (VLAIO) as part of the
innovation mandate HBC.2021.0246. (S. Kolb).

Acknowledgements We would like to thank Luc De Raedt for his helpful comments.

1 Introduction

Many real-world problems can be effectively solved by means of combinatorial optimization.
With appropriate mathematical models, problems like planning [25], routing [20] and schedul-
ing [9] can be delegated to a highly-optimized solver that can quickly and automatically
yield one or more high-quality solutions. However, automatic solvers do not remove the need

© Senne Berden, Mohit Kumar, Samuel Kolb, and Tias Guns;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 8; pp. 8:1–8:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:senne.berden@kuleuven.be
https://orcid.org/0000-0002-6473-5757
mailto:mohitkr092@gmail.com
https://orcid.org/0000-0002-7202-1818
mailto:samuel.kolb@kuleuven.be
https://orcid.org/0000-0002-7803-2198
mailto:tias.guns@kuleuven.be
https://people.cs.kuleuven.be/~tias.guns/
https://orcid.org/0000-0002-2156-2155
https://doi.org/10.4230/LIPIcs.CP.2022.8
https://github.com/ML-KULeuven/HASSLE-GEN
https://archive.softwareheritage.org/swh:1:dir:6769420692514ea592885add6759177a0c221e8b;origin=https://github.com/ML-KULeuven/HASSLE-GEN;visit=swh:1:snp:8c465dba87a56e093362b1b832290c3f07cf8b29;anchor=swh:1:rev:014dc50406ba1f4b45c666dbce7797feda551f5f
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Learning MAX-SAT Models Using Genetic Algorithms and Knowledge Compilation

for human effort altogether; they merely move it from the solving phase to the modeling
phase. Unfortunately, the manual construction of an appropriate model can be difficult for
several reasons. First, it requires both modeling and expert domain knowledge. Finding
people that possess both, or setting up a collaboration to marry both, is not a trivial issue.
Second, some optimization criteria and constraints might be hard to express explicitly for
a human modeler. Third, even with the criteria and constraints successfully modeled, the
potentially difficult task of weighting them by importance relative to each other remains, at
least for problems with multiple optimization criteria and problems that contain weighted
soft constraints. Finally, manual modeling can be a laborious process. It might require many
iterations of gradual refinement of the model, as well as a survey of the various stakeholders
to discover what is considered important and what constraints might apply. This arduous
model construction phase motivates another approach altogether: learning the model from
data, as opposed to manually constructing it.

This is the machine learning task we tackle in this work. Specifically, we focus on learning
MAX-SAT models, a type of mathematical model that can be used to represent many
interesting real-world problems [1, 9, 25, 26, 27]. The task involves jointly learning hard and
soft constraints – as well as appropriate weights for the latter – that best explain a set of
labeled contextual examples [16]. These examples are known solutions and non-solutions
to the considered problem. For instance, when learning a model for rostering nurses in a
hospital, historical rosters can be used as examples. The rosters would be labeled as positive
or negative depending on whether they were deemed suitable.

As alluded to above, the type of examples we consider are contextual; they come with
associated contexts. These contexts represent the states of affairs that the examples occurred
in. Let us examine their relevance. In the nurse rostering scenario, a roster in which
some nurses have to work several consecutive long shifts is likely not optimal in normal
circumstances, and thus not a solution. However, in the context of a pandemic taking place,
or many nurses being unavailable due to illness or other circumstances, such a roster might
be optimal and an appropriate solution to the rostering problem. Contexts are a useful way
of including this type of situational information in the example set, with the goal of learning
a model that can generalize across contexts. For any given context, such a model can then
be used to construct new solutions that are appropriate in that context. As will be discussed
in Section 2, learning from examples that are annotated with contexts is one of the things
that sets this work apart from most existing related work.

The problem of learning MAX-SAT models from labeled contextual examples has recently
been addressed in [16]. This work laid the theoretical groundwork, showing that, given enough
training data and time, high-quality models can be learned. Subsequent work introduced
hassle-sls, a more efficient stochastic local search approach [17]. However, hassle-sls
still suffers from long runtimes, which stem from the particularly expensive candidate model
evaluation involved in learning. Faster learning is desirable, as it would allow for better
models to be learned in a given training time budget. To this end, we make two contributions:
1. We develop a novel knowledge-compilation-based evaluation procedure that significantly

speeds up MAX-SAT model evaluation when learning small to medium-sized models, or
when learning from a large set of examples. Because evaluation is the major bottleneck
in the search for good models, improving its efficiency speeds up learning considerably.

2. We develop a novel genetic algorithm named hassle-gen, whose crossover operator takes
much larger steps in the search space than hassle-sls, reducing the number of model
evaluations needed to find a good model. Because of this, hassle-gen learns high-quality
MAX-SAT models significantly faster than the state of the art.

S. Berden, M. Kumar, S. Kolb, and T. Guns 8:3

2 Related Work

We focus specifically on learning weighted partial MAX-SAT models. This work is positioned
in the research field of constraint learning, because the unweighted and weighted clauses
in these models can respectively be seen as hard and weighted soft constraints. Here, we
provide an overview of some of the most relevant works in constraint learning. For a more
thorough overview, we refer the reader to [8].

Learning hard constraints. We start by discussing a few approaches that are aimed at
learning constraint satisfaction problems (CSPs). The first of these, named ConAcq.1, is
a version space algorithm that learns CSPs from examples labeled as solutions and non-
solutions [5]. The version space is represented implicitly as a propositional CNF formula
over variables that denote binary constraints. Complete variable assignments that satisfy
the formula then correspond to CSPs in the version space, i.e., CSPs that are consistent
with respect to the given labeled examples. This approach was followed by ConAcq.2 [6] and
QuAcq [4], two active learning approaches that learn more efficiently by respectively asking
the user complete and partial membership queries.

Some other approaches are instead focused on learning global constraints. For exam-
ple, [23] and [24] focus on learning the parameters of global constraints from a small pool of
positive examples. Similarly, Model Seeker is effective at learning global constraints from
positive examples provided in matrix-form [3]. In Model Seeker, fitting constraints are taken
from a catalogue of constraints and related metadata (e.g., information about implication
relations between constraints), and then subjected to several types of redundancy checks and
simplifications. This method has proven to be very effective, even in the presence of many
variables or only few examples.

Finally, GenetiCS is a method that learns constraints for mathematical programming
models from known feasible and infeasible examples [22]. The approach is related to the
one developed in this work in that it involves an evolutionary algorithm, but differs in that
it learns linear and polynomial (in)equalities represented as abstract syntax trees (ASTs),
rather than weighted partial MAX-SAT models. Additionally, GenetiCS does not learn from
contextual examples.

Learning soft constraints. Several methods that focus on learning an objective to be
optimized, in the form of weighted soft constraints, also exist. They can be categorized
into parameter learning and structure learning approaches. The former is merely aimed
at learning the weights of a given set of constraints. The latter also learns the constraints
themselves.

One relevant example is CLEO, an interactive method whose purpose is to learn the
weights of clauses occurring in MAX-SAT or MAX-SMT models [7]. Although the focus lies
on learning weights, the algorithm is asked to weight many more constraints than are desired
in the final model. However, a sparsity assumption is applied by including the minimization
of the weight vector’s 1-norm as one of the method’s objectives, leading to a lot of constraints
getting assigned a weight of zero. In this sense, the approach can be seen as a form of
structure learning.

Another approach with the purpose of learning soft constraints and their weights is
presented in [13]. In this work, a type of weighted MAX-SAT model is learned. These
MAX-SAT models are an extension to the ones we consider, in that the constraints are
function-free disjunctive first-order logic clauses, and thus are not limited to propositional

CP 2022

8:4 Learning MAX-SAT Models Using Genetic Algorithms and Knowledge Compilation

logic. Another difference with the work presented here is the input given: the method
requires examples of possible worlds as well as preference relations between these worlds to be
provided. It then uses inductive logic programming to learn a set of appropriate constraints,
which are subsequently weighted using preference learning techniques.

HASSLE. The approaches discussed above are focused on learning either hard constraints
or soft constraints. They differ significantly with our approach, in which both types of
constraints are being learned jointly. This joint learning is desirable in the setting we
consider, as will be discussed in Section 4. Another large difference is that none of the above
works are aimed at learning from contextual examples. However, it is a realistic assumption
that what one considers optimal depends on the context one is positioned in.

Although none of the methods discussed above is applicable to the presently considered
problem setting, two approaches that do try to solve this task already exist. The first
approach, called hassle-milp, was introduced in [16]. This work also proved that MAX-SAT
models are PAC-learnable, justifying empirical risk minimization. hassle-milp formulates
the learning task as a mixed-integer linear program (MILP), which can be solved by an
off-the-shelf solver. The main drawbacks of this method are that it is not optimized for
efficiency and that, unless a solver that offers anytime functionality is used, it either produces
a solution that has zero empirical error, or no solution at all.

The second approach, called hassle-sls, is a stochastic local search algorithm that
improves on hassle-milp by offering anytime functionality and by increasing efficiency [17].
It keeps track of a current model and iteratively constructs and evaluates a neighborhood of
minimally altered models, of which the best neighbor then replaces the current model. To
make the approach tractable, the neighborhood is constructed heuristically, keeping only
those models that show some promise of improving on the current model according to the
employed heuristic.

One large drawback of hassle-sls is its long runtime, which is exacerbated when the size
of the learning problem increases. The algorithm slows down significantly when the model
one aims to learn becomes larger, or when the number of distinct contexts occurring in the
training data increases. At the heart of this issue lies the high cost of model evaluation.
hassle-sls is particularly affected by this, because in every iteration, it evaluates an entire
neighborhood of MAX-SAT models before making only a minimal alteration to the current
model. In this paper, we alleviate the runtime issues in two ways. First, we make model
evaluation less expensive by making use of knowledge compilation. Second, we reduce the
number of evaluations needed to find a good model, by developing a novel search strategy
called hassle-gen.

3 Preliminaries

Weighted partial MAX-SAT. Let X = {X1, . . . , Xn} be a set of Boolean variables. An
assignment x – also referred to as an instance – is a mapping of each variable Xi ∈ X to
either true or false.

Let L = {Xi, Xi|Xi ∈ X} be the set of literals defined over X, where Xi is the negation
of Xi. A disjunctive clause C is a disjunction of literals from L. An assignment satisfies C

when it satisfies at least one of the literals occurring in C. A formula in conjunctive normal
form (CNF) F is a conjunction of clauses. An assignment satisfies F when it satisfies all
of the clauses occurring in F . A weighted clause (C, w) consists of a clause C and a weight
w, which we assume lies in [0, 1] without loss of generality. A weighted CNF formula is a
conjunction of weighted clauses.

S. Berden, M. Kumar, S. Kolb, and T. Guns 8:5

A MAX-SAT problem is defined by a CNF formula F . An assignment is a solution to the
MAX-SAT problem when it satisfies the maximum number of clauses that can simultaneously
be satisfied in F . A partial MAX-SAT problem is defined by two CNF formulas, Fh and
Fs. An assignment is a solution when it satisfies Fh and satisfies the maximum number of
clauses that can simultaneously be satisfied in Fs while satisfying Fh. Finally, a weighted
partial MAX-SAT problem is defined by a CNF formula Fh and a weighted CNF formula
Fs. An assignment is a solution when it satisfies Fh and accumulates the maximum total
weight in satisfied weighted clauses that can be accumulated in Fs while satisfying Fh. The
clauses in Fh and the weighted clauses in Fs can respectively be seen hard and weighted soft
constraints. When an assignment is not a solution because it does not satisfy all the clauses
in Fh, it is called infeasible. When it does satisfy all clauses in Fh, but does not accumulate
the maximum attainable weight in satisfied soft constraints of Fs, it is called suboptimal.

For the sake of brevity, we from now on refer to weighted partial MAX-SAT simply as
MAX-SAT. Because this work aims to learn MAX-SAT problems from known solutions and
non-solutions, we will generally refer to a MAX-SAT problem as a MAX-SAT model. When
we speak of the MAX-SAT learning problem, we refer to the problem of learning MAX-SAT
models.

Contexts. As explained in Section 1, there is a strong motivation to think of a historical
labeled example as an instance that is known to be a solution or non-solution in a specific
context. As a context might represent a state of affairs, it often makes sense for it to be a
conjunction. Most generally, however, a context ϕ is simply a propositional formula over
Boolean variables.

An assignment is a solution to a MAX-SAT model consisting of hard constraints Fh and
weighted soft constraints Fs in a context ϕ if it satisfies Fh and ϕ, and accumulates the
maximum total weight in satisfied weighted clauses that can be accumulated in Fs while
satisfying Fh and ϕ. Thus, it is possible for an instance to be optimal in a particular context,
but suboptimal outside of that context.

4 Problem Statement

In this work, the goal is not to solve MAX-SAT problems, but to learn them from a set of
labeled, contextual examples. Specifically, such an example consists of:
1. A context ϕ

2. An assignment x that satisfies context ϕ

3. A Boolean label l, denoting whether assignment x is an optimal solution to the target
model in context ϕ or not

Note that the label “non-solution” does not specify whether the example is a non-solution
because it is infeasible or because it is suboptimal. We focus on this type of supervision,
because in real-world settings, the reason for the negative label is typically not available.
While this assumption on the input makes supervision easier to provide, it also gives rise
to a credit assignment problem: when a candidate model wrongly labels an example as a
solution, it is unclear whether the hard constraints or the soft constraints should be altered.
For this reason, both types of constraints should be learned jointly, rather than separately.
The learning task becomes:

▶ Definition 1 (MAX-SAT learning). Given Boolean variables X = {X1, . . . , Xn} and a set
of labeled contextual examples S = {(ϕi, xi, li)|i = 1, . . . , m}, find hard constraints Fh and
weighted soft constraints Fs that define a MAX-SAT model which can be used to obtain
high-quality instances in any context ϕ.

CP 2022

8:6 Learning MAX-SAT Models Using Genetic Algorithms and Knowledge Compilation

Something not yet specified is what constitutes a high-quality instance. Intuitively, an
instance is good when it is feasible and close to optimal with respect to the ground-truth
model. The learned model’s ability to generate high-quality instances is reflected in its
infeasibility and average regret, which will be the primary performance measures in the
experimental evaluation. The infeasibility expresses what proportion of solutions to the
learned model are actually infeasible with respect to the ground-truth model. The regret
captures how good the learned model’s solutions are with respect to the ground-truth model’s
soft constraints. In section 7, we will discuss how exactly these measures are computed.

As the ground-truth model is not available, infeasibility and regret cannot be used during
learning. Instead, we aim to maximize the model’s training set accuracy, which is the
proportion of examples whose label correctly denotes how the example relates to the model.

5 Knowledge Compilation

When learning MAX-SAT models, the vast majority of the runtime is spent evaluating
candidate models. Let us consider in more detail why this is the case.

To fully evaluate a model’s training set accuracy, it has to be evaluated on all contextual
examples included in the training data. Checking whether an instance is feasible or infeasible
is relatively straightforward: one merely has to loop over at most all hard constraints of the
model, and check for each whether it is satisfied by the instance. Checking optimality, however,
requires knowing the maximum total weight that can be accumulated while satisfying the
hard constraints. Attaining this information requires solving the model, which is NP-hard
[18]. An additional complication is the fact that examples are accompanied by contexts,
which might affect the optimal total weight that can be accumulated. So, in order to correctly
evaluate a single candidate model, hassle-sls solves a separate MAX-SAT problem from
scratch for every distinct context occurring in the data (which can then be cached and reused
for all examples sharing that context). This causes model evaluation to be particularly slow,
which in turn significantly slows down learning.

The solution we present is based on a novel representation of a MAX-SAT model
as an algebraic decision diagram (ADD). An ADD is an extension of a binary decision
diagram (BDD), in which the terminal nodes can be assigned real values, rather than just
true or false [2]. It is a rooted, directed, acyclic graph which consists of two types of nodes:
decision nodes and terminal nodes. A decision node is associated with a Boolean variable
and branches into two child nodes; one for each truth assignment to the variable. A terminal
node is associated with a real value.

Our ADD representation of a MAX-SAT model maps every infeasible instance onto a
terminal node with value 0 and every feasible instance onto a terminal node with as value
the sum of the weights of all satisfied soft constraints. A useful aspect of this representation
is that the optimal value (in the absence of a context) can very easily be discovered: one
simply has to loop through all terminals in order to find the highest one. This information is
required to determine whether an instance is a solution. An example of a MAX-SAT model
and its corresponding ADD representation is shown in Example 2.

▶ Example 2.
Consider the MAX-SAT model with hard constraints Fh = (a ∨ b) and soft constraints

Fs = (0.5 : b ∨ c) ∧ (0.7 : ¬c). This problem corresponds to the following ADD, in which
negative edges are represented as dashed lines and positive edges as solid lines:

S. Berden, M. Kumar, S. Kolb, and T. Guns 8:7

a

b b

cc

0 1.2 0.5 0.7

Although the construction of the ADD is necessarily an expensive operation – as it
practically solves the NP-hard MAX-SAT problem – there are potential time benefits in
reusing the resulting ADD for context-specific inference. The main idea is that each candidate
model can be converted to an ADD once, after which the diagram can be reused to compute
the optimal attainable value for all separate contexts occurring in the training data. Contrast
this with the original approach, in which a brand new MAX-SAT problem has to be solved
for every model-context combination.

The evaluation procedure. The full knowledge-compilation-based evaluation procedure
is shown at a high level in Algorithm 1. It takes as input a MAX-SAT model and a set of
labeled contextual examples, and it produces as output the model’s accuracy on the set of
examples. To do this, it performs three steps. First, it constructs an ADD that represents
the model in the absence of any context. Next, it runs through all the contexts present in
the example set and, for each, uses the ADD constructed in step 1 to compute the optimal
value in that context. Finally, it runs through all examples and, for each, uses the ADD
constructed in step 1 to compute the value the example achieves. Each example’s value,
along with its associated context’s optimal value computed in step 2, can then be used to
label the example. Finally, the assigned label is compared with the example’s label in the
training data.

This description naturally raises the following two questions, which we answer in turn:
1. How to convert a MAX-SAT model to an ADD?
2. How to incorporate contexts in the inference done on the ADD?

Constructing the ADD. To transform a MAX-SAT model defined by hard constraints Fh

and soft constraints Fs to an ADD, we make use of the basic operators defined on BDDs
and ADDs. We do not go over the details of these operations here. For more information,
we refer the reader to chapter 6 of the book Logic in Computer Science [12].

The transformation procedure starts by constructing a separate BDD for each disjunctive
clause, irrespective of whether it is weighted or not. In each BDD that corresponds to a soft
constraint from Fs, the terminal that denotes true is then given the constraint’s associated
weight as value. This effectively casts the BDD to an ADD representing the weighted soft
constraint.

All the BDDs that represent hard constraints are then combined using the multiplication
operator. This results in a single BDD that represents the conjunction of all hard constraints.
Similarly, the ADDs representing soft constraints are combined using the addition operator.
This results in a single ADD in which every instance leads to a terminal that denotes the
total weight in satisfied soft constraints accumulated by that instance. However, this ADD
does not yet consider whether the instances are feasible or not.

CP 2022

8:8 Learning MAX-SAT Models Using Genetic Algorithms and Knowledge Compilation

Algorithm 1 The evaluation procedure using knowledge compilation.
1: procedure Evaluate(model: a MAX-SAT model, examples: a set of labeled contextual

examples)
2: score← 0
3: ADDmodel ← convert model to ADD
4: contexts← set of all separate contexts occuring in examples

5: for each context in contexts do
6: Compute best value of ADDmodel in context

7: Cache this best value
8: for each example in examples do
9: instance, context, label← the instance, context and label of example

10: best-value← retrieve optimal value in context from cache
11: value← compute value of instance in ADDmodel

12: if value = best-value then
13: assigned-label ← solution
14: else
15: assigned-label ← non-solution
16: if label = assigned-label then
17: score← score + 1
18: score← score

Length(examples)
19: return score

Finally, the BDD representing the hard constraints and the ADD representing the soft
constraints are multiplied. The effect of this is that the terminals of all feasible paths of the
ADD representing the soft constraints are multiplied by 1, while the terminals of infeasible
paths are multiplied by 0. In turn, all feasible paths still end up in the same terminal node
as before, while infeasible paths are redirected to a terminal with value 0. For compactness,
the resulting diagram is then reduced to a reduced ordered BDD [12]. The resulting diagram
represents the entire MAX-SAT model.

Context-specific inference. Once a candidate model has been transformed into an ADD,
we want to be able to quickly infer the optimal value attainable in a specific context ϕ.

A straightforward way of doing this involves multiplying the ADD that represents the
MAX-SAT model with a BDD that represents ϕ, and doing inference on the resulting diagram.
However, we have found that this generally takes too long and does not shorten overall model
evaluation time. Similarly, performing restrict operations on the model’s ADD representation
in accordance with ϕ is not fast enough.

Instead, we go through the entire ADD, starting from the root node, and ignoring branches
that violate ϕ. The maximum terminal value reached this way is the best attainable value
achievable in ϕ.

This process is straightforward when ϕ is a conjunction of literals, as one simply has
to ignore branches that violate one of the literals in ϕ. Luckily, this is arguably the most
common scenario, as a context typically represents a state of affairs, which is most naturally
represented using a conjunction.

When ϕ is a disjunction, or more generally a DNF formula, one can repeat the process
above for each conjunctive clause in ϕ. The maximum terminal value reached for any of the
conjunctive clauses is then the maximum attainable value in ϕ as a whole.

S. Berden, M. Kumar, S. Kolb, and T. Guns 8:9

As an optimization, we perform a precomputation before any example or context is
considered, which involves finding and storing all paths leading to the terminal node with
the maximum value in the ADD representing the MAX-SAT model. A quick computation
can then be made for every context occurring in the training data to determine whether it
violates all of the paths leading to said terminal node. If any of these paths is not violated,
one knows immediately that the optimal value in the context is the same as the one in the
absence of a context, which has been precomputed. In the other case, the procedure detailed
above is used.

6 The Genetic Algorithm

As discussed above, the bottleneck in hassle-sls is the evaluation of MAX-SAT models,
because it involves solving MAX-SAT problems, which is NP-hard. In every iteration of
hassle-sls, an entire neighborhood – which frequently consists of several dozen models –
is evaluated, before the best neighbor is identified and a minimal alteration to the current
model is made. This is the crux of the problem: many expensive candidate model evaluations
lead only to a minimal step in the search space.

For this reason, we develop an alternative search strategy in the form of a genetic
algorithm, which we call hassle-gen. Genetic algorithms form a class of population-based
metaheuristic optimization approaches that are loosely inspired by biological evolution
[10, 11, 21]. They aim to solve optimization problems by evolving a population of candidate
solutions, also referred to as individuals. They generally consist primarily of genetic selection,
mutation and crossover operators. An overview of hassle-gen is given in Algorithm 2. In
what follows, we discuss its components in detail.

Algorithm 2 HASSLE-GEN, a genetic algorithm for learning MAX-SAT models from examples.
1: procedure HASSLE-GEN(examples: a set of labeled contextual examples, k: the

total number of constraints to learn, q: the population size, pc: the crossover probability,
[pm1, pm2, pm3]: the mutation probabilities, g: the maximum number of generations, t:
the cutoff time)

2: Randomly initialize a population of models containing k constraints
3: Evaluate population

4: while generation < g ∧ runtime < t do
5: new-population← empty population
6: while new-population not of size q do
7: parent1, parent2 ← Crowding-parent-selection(population)
8: if Random() < pc then
9: ind← Clause-Crossover(parent1, parent2, examples)

10: else
11: ind← either parent1 or parent2, selected at random
12: ind← Hardness-mutation(ind, pm1)
13: ind← Weight-mutation(ind, pm2)
14: ind← Literal-mutation(ind, pm3, examples)
15: surv1, surv2 ← Crowding-survivor-selection(ind, parent1, parent2)

▷ Includes evaluation of ind

16: Add surv1 and surv2 to new-population

17: population← new-population

18: return best individual in population

CP 2022

8:10 Learning MAX-SAT Models Using Genetic Algorithms and Knowledge Compilation

Selection. Selection consists of two components: parent selection and survivor selection.
The former is concerned with determining which individuals of the current population to
subject to the mutation and crossover operations. The latter is concerned with determining
which individuals to keep in the next generation’s population and which to discard. Good
selection strikes an appropriate balance between exploitation of useful information present in
the current population and exploration of new regions of the search space.

Both hassle-gen’s parent and survivor selection are determined by its use of a variation of
the deterministic crowding scheme [19], which we employ because it is effective at maintaining
population diversity, which in turn benefits the search.

Parent selection is straightforward in deterministic crowding: in every generation, each
individual is selected to be a parent exactly once. Because hassle-gen’s crossover operator
only produces a single offspring, this means that in every generation, every individual gives
rise to exactly one offspring, together with another parent individual.

Deterministic crowding’s survivor selection requires a distance metric d between individuals
to be defined. It uses this metric in the following way. Say parents p1 and p2 gave rise to
offspring o. Then, by the time survivors have to be selected, a matching is made. Parent
p1 is matched to o only if d(p1, o) < d(p2, o); otherwise, parent p2 is matched to o. The
offspring and matched closest parent then compete, wherein only the individual with the
highest fitness makes it to the next generation. The other parent automatically survives.
Here, the fitness of a MAX-SAT model is simply its training set accuracy.

A first consequence of this scheme is that the average fitness of the population never
decreases, because a parent never gets replaced by a worse individual. Second, the best
individual is automatically kept in the next generation, unless this individual has produced
an even better offspring. Finally, and most importantly, there is a strong emphasis on
maintaining the initial population’s diversity. This is true because an offspring is typically
quite similar to its parents, with one of which it has to compete for survival, and because the
matching procedure sets up offspring-parent competitions in such a way that the distance
between the competitors is minimized. Having new individuals compete for survival with
similar old individuals is how diversity is maintained, because this prevents any specific
genetic information from quickly taking over the entire population.

What remains to be answered is how the distance metric d is instantiated. We opt for
a metric that captures the semantic distance between MAX-SAT models, rather than a
syntactic distance. The metric makes use of the notion of an accuracy bit vector.

▶ Definition 3 (Accuracy bit vector). Given a list of examples S, a MAX-SAT model M has
an associated accuracy bit vector v, which has as many entries as S has examples. For each
index i, the entry at index i in v is 1 iff M accurately labels the example at index i in S, and
0 otherwise.

▶ Definition 4 (Semantic distance). Let S be a list of m examples and let M1 and M2 be
two MAX-SAT models with respective accuracy bit vectors v1 and v2. Let their number of
correctly labeled examples be s1 and s2, respectively. Finally, let dH be the Hamming distance
between v1 and v2. Then, the semantic distance dSem between M1 and M2 is

dSem = dH − L

U − L
, where L = |s1 − s2| and U = m− |s1 + s2 −m|

This semantic distance metric considers the Hamming distance of the accuracy bit vectors,
relative to a lower and upper bound. If we were to simply use the Hamming distance itself,
we would give inherent preference to matching highly accurate or highly inaccurate models.

S. Berden, M. Kumar, S. Kolb, and T. Guns 8:11

Mutation. A mutation operator takes a single individual as input. Usually, it only makes a
small modification to the individual, in order to slightly redirect the search or to introduce
new genetic information that can then be recombined by crossover operators.

hassle-gen contains three mutation operators, which are all applied to any selected
parent. The first operator, named hardness mutation, loops over all of the individual’s con-
straints and, independently for each constraint, with probability pm1, changes the constraint
from a hard to a soft constraint or vice versa.

The second operator, named weight mutation, loops over all of the individual’s weighted
soft constraints, and independently for each constraint, with probability pm2, replaces the
constraint’s weight by a weight sampled uniformly at random from (0, 1].

Finally, literal mutation is responsible for altering the occurrences of variables in clauses.
This operator differs in nature from the first two in that it is more informed; it considers
the training data. It takes effect with probability pm3. It starts by randomly selecting one
constraint of the individual being mutated. This constraint is the only one to be affected
by the mutation. The operator then constructs a neighborhood around this constraint,
consisting of all other constraints that differ in only a single variable occurrence (i.e., a
single literal appears, disappears or changes its sign), excluding all constraints that already
occur in the model. Finally, the operator uses a heuristic way of evaluating all neighboring
constraints, and mutates the selected constraint into the best neighboring one. The heuristic
evaluation of constraints is based on the notion of coverage, where constraints with higher
coverage are better according to the heuristic.

▶ Definition 5 (Covering). A constraint c is said to cover an example e consisting of instance
i and label l if and only if:

l is “solution” and i satisfies c
l is “non-solution” and i does not satisfy c.

▶ Definition 6 (Coverage bit vector). Given a list of examples S, a constraint c has an
associated coverage bit vector v, which has as many entries as S has examples. For each
index i, the entry at index i in v is 1 iff c covers the example at index i in S, and 0 otherwise.
The sum of all of v’s entries is called c’s coverage.

Note that a constraint’s coverage is only a heuristic measure of its usefulness, as it
disregards the weights of soft constraints and the existence of contexts. Still, in preliminary
experiments, we found that the use of this heuristic leads to a much more effective operator
than one that simply alters literals at random.

Crossover. A crossover operator recombines information from multiple individuals, generally
two. The motivation is that by combining individuals that are fit for different reasons, new
individuals can be obtained that combine the strengths of both parents.

hassle-gen contains one crossover operator, which we call constraint crossover. It
takes two parents as input and produces a single offspring. Unlike the mutation operators,
constraint crossover keeps the constraints themselves intact, but rearranges which constraints
co-occur. It is through this mechanism that hassle-gen is able to take larger steps in the
search space than hassle-sls. Like literal mutation, constraint crossover is an informed
operator and considers the training data. This allows it to bias its steps towards directions
that are likely to improve the model’s training set accuracy.

For any pair of parents, constraint crossover takes effect with probability pc. Given two
parents, each containing k constraints, it selects k constraints that are combined in the single
offspring. It does not do so blindly, but considers combinations of the constraints’ coverage
bit vectors.

CP 2022

8:12 Learning MAX-SAT Models Using Genetic Algorithms and Knowledge Compilation

▶ Definition 7 (Combining coverage bit vectors). Let S be a list of examples, and let c1 and
c2 be constraints with respective associated coverage bit vectors v1 and v2. The coverage bit
vector v of conjunction c1 ∧ c2 is attained by performing:

a pairwise AND operation on v1 and v2 for all examples in S labeled “solution”
a pairwise OR operation on v1 and v2 for all examples in S labeled “non-solution”

The sum of all of v’s entries is called the coverage of c1 ∧ c2.

One option would be to choose the k constraints taken from the two parents which lead
to the largest coverage when combined. However, identifying these constraints involves
computing the coverage of

(2k
k

)
combinations.

Instead, we opt for a sequential selection of constraints that works as follows. First, the
constraint with the highest coverage is selected and copied into the offspring. Then follows a
repeated selection of the constraint that leads to the highest coverage when combined with
the already selected constraints, until k constraints have been selected.

7 Experimental Evaluation

In this section, we thoroughly investigate the following research questions.

Q1 Does the knowledge-compilation-based model evaluation procedure speed up the evalua-
tion of candidate MAX-SAT models?

Q2 When given the same amount of time, is hassle-gen able to learn higher-quality
MAX-SAT models than hassle-sls?

Datasets. Each synthetic ground-truth model with kh hard constraints and ks soft con-
straints over n variables is generated such that none of its clauses is entailed by any
combination of the other clauses in the model. For each disjunctive clause, the number of
literals is chosen uniformly at random from [1, 5]. The literals themselves are also selected
randomly. For ks of the generated clauses, a weight is sampled uniformly from (0, 1].

For each generated ground-truth model, a dataset is constructed in two phases. First,
a set of conjunctive contexts of n/2 literals is generated such that each included context
actually affects the maximum attainable value in the ground-truth model. Then, for each
context, a specified number of infeasible, suboptimal and solution instances are generated.
Infeasible and suboptimal instances are acquired simply by generating random instances that
satisfy the context until the desired number of infeasible and suboptimal ones are found. To
generate solution instances, a solver is used. To prevent overly similar solution instances, 10
times as many solutions as required are generated for every context, after which the desired
amount are sampled at random.

Performance measures. To answer Q1, we consider the relative increase in the number
of evaluations hassle-sls makes per second when using the novel evaluation procedure
compared to when using the original procedure. For example, a speed-up factor of 3.4 would
mean that hassle-sls was able to perform 3.4 times as many evaluations with the new
evaluation procedure than with the original procedure in the given cutoff time.

To answer Q2, we compute the learned model’s score, infeasibility and average regret.
A model’s score is simply its training set accuracy, which was used as training objective.
The other two metrics assess the quality of the learned model’s solutions with respect to the
ground-truth model that was used to generate the training data.

S. Berden, M. Kumar, S. Kolb, and T. Guns 8:13

A learned model M ’s infeasibility expresses what proportion of solutions of M are actually
infeasible with respect to the ground-truth model M∗. It can be measured exactly by use
of model counting (MC), i.e., counting the number of solutions to a propositional formula.
However, the MAX-SAT models we consider are not just propositional formulas; they also
contain weighted soft constraints. For this reason, we require a propositional formula
expressing the solutions to the MAX-SAT model. Let M be a MAX-SAT model with hard
constraints Fh. Say that x̂ is a solution to the model which realizes a value of v̂ in satisfied
soft constraints. We can then find each subset of soft constraints Si for which the associated
weights sum up to v̂. Using this, a propositional formula θM expressing the solutions of M

can be attained as:

θM = Fh ∧ (
∨
Si

∧
θs∈Si

θs)

This formula expresses that an instance is a solution to the model if it satisfies the hard
constraints and satisfies one of the subsets of soft constraints that realizes the optimal value.
With F ∗

h denoting the hard constraints of ground-truth model M∗, the infeasibility of M

can be computed as:

infM∗(M) = MC(θM ∧ ¬F ∗
h)

MC(θM)

The average regret of a learned model M with respect to a ground-truth model M∗

expresses how good the solutions of M are with respect to the soft constraints of M∗. We
compute average regret using only solutions to M that are feasible in M∗. Hence, infeasibility
and regret should be considered together to get a complete picture of a model’s quality. We
generate up to 1000 such feasible instances. For each such instance x, let v∗ be the value it
realizes with respect to M∗’s soft constraints, and let v̂∗ be M∗’s optimal value. The regret
of x is then simply (v̂∗ − v∗)/v̂∗. The average regret of M with respect to M∗ is then the
average regret over the considered instances. The regret is computed in the global context,
i.e., outside of any particular context. Thus, achieving low regret requires good generalization
across contexts, as the model is evaluated in the global context, but is trained using only
contextual data in which the contexts actually matter (i.e., affect the optimal attainable
value of the ground-truth model).

Results. To answer Q1, we run hassle-sls with a cutoff time of 60 seconds on learning
problems of various sizes. We consider sizes similar to the ones considered in [16] and [17]. By
default we use learning problems with 10 variables, 8 hard constraints and 8 soft constraints
in the ground-truth model and 100 contexts with 1 infeasible, 1 suboptimal and 2 solution
examples per context in the dataset. We change each of these properties in turn, while
keeping the others at their default values. When increasing the number of total constraints
of the ground-truth model, half are hard constraints and half are soft constraints. When
increasing the number of examples per context, half are solutions, a quarter are infeasible
and a quarter are suboptimal. For each learning problem size, we vary the randomization
seed to create 15 different learning problems, over which we average the results.

As shown in Figure 1, the novel ADD-based model evaluation procedure gives rise to a
significant speed-up for all learning problem sizes considered. It should be noted that, as the
number of variables or the number of constraints increases, the relative speed-up decreases.
This is caused by the ADD representation growing in size as the size of the MAX-SAT
model increases. On the other hand, when larger training sets are considered, the ADD

CP 2022

8:14 Learning MAX-SAT Models Using Genetic Algorithms and Knowledge Compilation

Figure 1 The speed-up in model evaluation realized by using the knowledge-compilation-based
model evaluation procedure decreases as the number of variables or the number of constraints in the
model increases. On the other hand, the speed-up increases as the example set grows larger.

representation can be reused to a higher degree, increasing the relative speed-up. We can
conclude that the knowledge-compilation-based evaluation procedure is most useful when
learning relatively small MAX-SAT models, or when learning from large training datasets.
This answers Q1.

To answer Q2, we again vary several aspects of the learning problem in turn, but
consider slightly larger learning problems. This time, by default we use 16 variables, 16
hard constraints and 16 soft constraints in the ground-truth model and 100 contexts with
1 infeasible, 1 suboptimal and 2 solution instances per context in the dataset. Again, 15
different randomization seeds are used for each learning problem size. We run hassle-sls
and hassle-gen– both using the knowledge-compilation-based evaluation procedure – on
each learning problem using a cutoff time of 150 seconds. hassle-gen was run with a
population size of 20, pc = 0.5, pm1 = 0.05, pm2 = 0.05 and pm3 = 1, which were determined
in a coarse grid search on a separate set of learning problems.

As the first row of Figure 2 shows, hassle-gen consistently achieves a higher score than
hassle-sls across many learning problem instances with varying properties. Furthermore,
when the size of the considered models increases, the difference between the scores achieved
by the search methods grows larger. This can be explained by the fact that hassle-sls only
makes a minimal alteration to the current model in every iteration: it changes at most a
single literal, the hardness or the weight of a single constraint. These alterations become
increasingly inconsequential when considering larger models, resulting in exponentially larger
search spaces. By contrast, hassle-gen’s constraint crossover allows for much larger steps
in the search space, and because it considers the training data, these steps tend to go into
an improving direction.

The second and third rows of Figure 2 show how the higher score achieved by hassle-gen
in turn translates into lower infeasibility and regret. This shows that the models learned
by hassle-gen do not merely achieve a higher training set accuracy than those learned by
hassle-sls, but that the solutions they generate are also of a higher quality with respect to
the ground-truth model. This answers Q2.

8 Conclusion

We have made two contributions aimed at alleviating the runtime issues of the state-of-the-art
technique for learning MAX-SAT models from labeled contextual examples. First, to speed
up model evaluation, we proposed a knowledge-compilation-based evaluation procedure.
Our experiments showed this procedure to be most useful when learning relatively small

S. Berden, M. Kumar, S. Kolb, and T. Guns 8:15

Figure 2 When given the same cutoff time, hassle-gen consistently learns models with a higher
score (i.e., training set accuracy) than hassle-sls. This in turn translates into lower infeasibility
and lower regret, which means that the models learned by hassle-gen can be used to generate
higher-quality solutions than those learned by hassle-sls.

MAX-SAT models or when learning from a large set of training data. Second, to reduce
the amount of evaluations required to find a good model, we proposed a genetic algorithm
named hassle-gen. In the experiments, hassle-gen consistently beat the state of the
art on learning problems of various sizes: when given the same amount of training time, it
learned models that can be used to generate higher-quality solutions.

One possible direction for future work is to try to speed up model evaluation even
further. In our proposed evaluation procedure, an ADD representing the MAX-SAT model
is computed in its entirety, to then be used for context-specific inference. However, some
parts of the ADD might not be relevant in any context occurring in the training data, and
thus do not strictly have to be computed. A “lazy” decision diagram construction procedure
could exploit this fact and lead to even faster evaluation.

Another possible direction is to focus on learning different types of models from examples.
One possible extension is to learn maximum satisfiability modulo theories (MAX-SMT)
models, where constraints are not limited to disjunctive clauses over binary variables, but
can be first-order logic formulas with respect to one or more background theories. Some work
has already been done on learning SMT models from examples [14], but learning MAX-SMT
models from contextual examples has thus far not been explored. Another possible extension
is to learn mixed-integer linear programs (MILP) from contextual data. To this end, recent
work [15] has proposed a search strategy that can be seen as a hybrid between stochastic
local search and stochastic gradient descent. However, the approach suffers from runtime
issues, suggesting that the ideas we proposed here might be of use.

CP 2022

8:16 Learning MAX-SAT Models Using Genetic Algorithms and Knowledge Compilation

References
1 Roberto Asín Achá and Robert Nieuwenhuis. Curriculum-based course timetabling with SAT

and MaxSAT. Annals of Operations Research, 218(1):71–91, 2014.
2 R Iris Bahar, Erica A Frohm, Charles M Gaona, Gary D Hachtel, Enrico Macii, Abelardo

Pardo, and Fabio Somenzi. Algebraic decision diagrams and their applications. Formal Methods
in System Design, 10(2):171–206, 1997.

3 Nicolas Beldiceanu and Helmut Simonis. A model seeker: Extracting global constraint models
from positive examples. In International Conference on Principles and Practice of Constraint
Programming, pages 141–157. Springer, 2012.

4 Christian Bessiere, Remi Coletta, Emmanuel Hebrard, George Katsirelos, Nadjib Lazaar, Nina
Narodytska, Claude-Guy Quimper, and Toby Walsh. Constraint acquisition via partial queries.
In Twenty-Third International Joint Conference on Artificial Intelligence, 2013.

5 Christian Bessiere, Remi Coletta, Frédéric Koriche, and Barry O’Sullivan. A SAT-based
version space algorithm for acquiring constraint satisfaction problems. In European Conference
on Machine Learning, pages 23–34. Springer, 2005.

6 Christian Bessiere, Remi Coletta, Barry O’Sullivan, Mathias Paulin, et al. Query-driven
constraint acquisition. In IJCAI, volume 7, pages 50–55, 2007.

7 Paolo Campigotto, Roberto Battiti, and Andrea Passerini. Learning modulo theories for
preference elicitation in hybrid domains. CoRR, abs/1508.04261, 2015. arXiv:1508.04261.

8 Luc De Raedt, Andrea Passerini, and Stefano Teso. Learning constraints from examples. In
Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

9 Emir Demirović, Nysret Musliu, and Felix Winter. Modeling and solving staff scheduling with
partial weighted maxSAT. Annals of Operations Research, 275(1):79–99, 2019.

10 Agoston E Eiben and James E Smith. Introduction to evolutionary computing, volume 53.
Springer, 2003.

11 David Edward Goldberg. Genetic algorithms in search, optimization, and machine learning.
Addison-Wesley Pub. Co., 1989.

12 Michael Huth and Mark Ryan. Logic in computer science: Modelling and reasoning about
systems. Cambridge University Press, 2004.

13 Samuel Kolb. Learning constraints and optimization criteria. In Workshops at the Thirtieth
AAAI Conference on Artificial Intelligence, 2016.

14 Samuel Kolb, Stefano Teso, Andrea Passerini, and Luc De Raedt. Learning SMT(LRA)
constraints using SMT solvers. In IJCAI, volume 18, pages 2333–2340, 2018.

15 Mohit Kumar, Samuel Kolb, Luc De Raedt, and Stefano Teso. Learning mixed-integer linear
programs from contextual examples, 2021. arXiv:2107.07136.

16 Mohit Kumar, Samuel Kolb, Stefano Teso, and Luc De Raedt. Learning MAX-SAT from
contextual examples for combinatorial optimisation. Proceedings of the AAAI Conference on
Artificial Intelligence, 34(04):4493–4500, April 2020. doi:10.1609/aaai.v34i04.5877.

17 Mohit Kumar, Samuel Kolb, Stefano Teso, and Luc De Raedt. Learning MAX-SAT from
contextual examples for combinatorial optimisation, 2022. arXiv:2202.03888.

18 Chu Min Li and Felip Manya. MaxSAT, hard and soft constraints. In Handbook of satisfiability,
pages 613–631. IOS Press, 2009.

19 Samir W Mahfoud et al. Crowding and preselection revisited. In PPSN, volume 2, pages
27–36. Citeseer, 1992.

20 Patrick Mills and Edward Tsang. Guided local search for solving sat and weighted max-sat
problems. Journal of Automated Reasoning, 24(1):205–223, 2000.

21 Melanie Mitchell. An introduction to genetic algorithms. MIT Press, 1998.
22 Tomasz P Pawlak and Krzysztof Krawiec. Synthesis of mathematical programming constraints

with genetic programming. In European Conference on Genetic Programming, pages 178–193.
Springer, 2017.

http://arxiv.org/abs/1508.04261
http://arxiv.org/abs/2107.07136
https://doi.org/10.1609/aaai.v34i04.5877
http://arxiv.org/abs/2202.03888

S. Berden, M. Kumar, S. Kolb, and T. Guns 8:17

23 Émilie Picard-Cantin, Mathieu Bouchard, Claude-Guy Quimper, and Jason Sweeney. Learning
parameters for the sequence constraint from solutions. In International Conference on Principles
and Practice of Constraint Programming, pages 405–420. Springer, 2016.

24 Émilie Picard-Cantin, Mathieu Bouchard, Claude-Guy Quimper, and Jason Sweeney. Learning
the parameters of global constraints using branch-and-bound. In International Conference on
Principles and Practice of Constraint Programming, pages 512–528. Springer, 2017.

25 Nathan Robinson, Charles Gretton, Duc Nghia Pham, and Abdul Sattar. Partial weighted
MaxSAT for optimal planning. In Pacific Rim International Conference on Artificial Intelli-
gence, pages 231–243. Springer, 2010.

26 Sean Safarpour, Hratch Mangassarian, Andreas Veneris, Mark H Liffiton, and Karem A
Sakallah. Improved design debugging using maximum satisfiability. In Formal Methods in
Computer Aided Design (FMCAD’07), pages 13–19. IEEE, 2007.

27 Qiang Yang, Kangheng Wu, and Yunfei Jiang. Learning action models from plan examples
using weighted MAX-SAT. Artificial Intelligence, 171(2-3):107–143, 2007.

CP 2022

Complexity of Minimum-Size Arc-Inconsistency
Explanations
Christian Bessiere #

CNRS, University of Montpellier, France

Clément Carbonnel #

CNRS, University of Montpellier, France

Martin C. Cooper #

IRIT, University of Toulouse, France

Emmanuel Hebrard #

LAAS CNRS, Toulouse, France

Abstract
Explaining the outcome of programs has become one of the main concerns in AI research. In
constraint programming, a user may want the system to explain why a given variable assignment is
not feasible or how it came to the conclusion that the problem does not have any solution. One
solution to the latter is to return to the user a sequence of simple reasoning steps that lead to
inconsistency. Arc consistency is a well-known form of reasoning that can be understood by a
human. We consider explanations as sequences of propagation steps of a constraint on a variable
(i.e. the ubiquitous revise function in arc consistency algorithms) that lead to inconsistency. We
characterize, on binary CSPs, cases for which providing a shortest such explanation is easy: when
domains are Boolean or when variables have maximum degree two. However, these polynomial cases
are tight. Providing a shortest explanation is NP-hard if the maximum degree is three, even if the
number of variables is bounded, or if domain size is bounded by three. It remains NP-hard on trees,
despite the fact that arc consistency is a decision procedure on trees. Finally, the problem is not
FPT-approximable unless the Gap-ETH is false.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming;
Theory of computation → Fixed parameter tractability; Theory of computation → Problems,
reductions and completeness

Keywords and phrases Constraint programming, constraint propagation, minimum explanations,
complexity

Digital Object Identifier 10.4230/LIPIcs.CP.2022.9

Funding This work was supported by the AI Interdisciplinary Institute ANITI, funded by the French
program “Investing for the Future – PIA3” under grant agreement no. ANR-19-PI3A-0004. The
first two authors received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 952215.

1 Introduction

Constraint Programming (CP) is a technology that allows the user to solve combinatorial
problems formulated as constraint networks. A constraint network is characterized by a set
of variables taking values in a finite domain that are subject to constraints. Constraints
restrict the combinations of values that specified subsets of variables can take. One of the
advantages of using CP is that in general constraint networks represent the problem to
solve much more compactly than would an integer linear program or a SAT formula. CP
formulations are not only compact but also easy to understand for the user thanks to the
expressiveness of constraints that allow to remain close to the original problem. However,
nowadays, AI becomes even more demanding in terms of explainability. A user may want to

© Christian Bessiere, Clément Carbonnel, Martin C. Cooper, and Emmanuel Hebrard;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 9; pp. 9:1–9:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bessiere@lirmm.fr
https://orcid.org/0000-0003-4059-6403
mailto:clement.carbonnel@lirmm.fr
https://orcid.org/0000-0003-2312-2687
mailto:cooper@irit.fr
https://orcid.org/0000-0003-4853-053X
mailto:hebrard@laas.fr
https://orcid.org/0000-0003-3131-0709
https://doi.org/10.4230/LIPIcs.CP.2022.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Complexity of Minimum-Size Arc-Inconsistency Explanations

not only understand the formulation of their problem as a constraint network but also to be
provided with explanations of why this assignment is the only solution, why that value is not
feasible, or why the problem does not have any solution.

An abductive explanation for a proposition is often defined as a prime implicant of
that proposition, i.e. an implicant that cannot be generalized further. For instance, an
explanation of a Machine Learning model’s prediction is often defined as a minimal subset
of features that entails that prediction [16, 10]. Similarly, a minimal unsatisfiable core
(irreducible unsatisfiable subset of constraints) can be seen as an abductive explanation for
unsatisfiability since it is a sufficient and minimal reason for unsatisfiability. At least one
term of an abductive explanation must be relaxed in order to change the outcome. This is
the viewpoint adopted in many existing approaches. For instance by providing explanations
in the form of minimal sets of choices of the user that lead to the given value removal (e.g.,
product configuration [1]), or explanations in the form of minimal sets of constraints that
lead to an inconsistency [11]. The purpose of such approaches is to help the user to repair
the inconsistency, not to let them understand why it is an inconsistency.

Intuitively, an explanation is more than a sufficient condition. In particular, if an
abductive explanation answers the “why” question, it does not answer the “how” question.
An intuitive definition of an explanation also covers the demonstration of how the considered
cause has that consequence. For instance, when solving a logic puzzle, we may want to
let the user understand why the zebra is necessarily in the middle house, not by providing
a set of constraints of the problem that rule out all other positions for the zebra, but by
displaying a sequence of simple reasoning steps that lead to that conclusion. This notion
of demonstrative explanation can be related to proof systems and to the notion of formal
proof. A formal proof better explains unsatisfiability by making every step explicit down to
axiomatic definitions. For instance, a refutation proof log using the reverse unit propagation
(RUP) system [8, 9] allows one to formally verify the unsatisfiability of a formula, provided
that one can “trust” the application of the unit propagation rule, i.e. trust that a given
formula that is refutable via unit propagation is indeed unsatisfiable. This is valid in the
context of formal proof verification where each unit propagation refutation can be checked
efficiently. However, this may produce very long proofs in which each step might be too
complex for an explanation to a non-expert.

We would therefore want to produce demonstrative explanations, allowing a trustworthy
verification, however with minimal requirements on the recipient of the explanation. This is
of course impossible in general. In [17, 2], the choice was made to provide explanations in
the form of sequences of inferences performed by constraint propagation. We consider an
even simpler, and also incomplete, proof system: Arc Consistency. Arc consistency has often
been considered as a sufficiently strong inference technique on applications where the human
is in the loop (configuration [12], logic puzzles [17]).

Our goal is to analyze the complexity of providing the shortest possible explanation of arc
inconsistency of a problem. For simplicity of presentation, we restrict ourselves to normalized
networks of binary constraints. We show that when variables have degree two or domains
are Boolean, finding a shortest explanation of arc inconsistency is polynomial. However, the
problem is NP-hard in general and the two polynomial cases above are tight. Finding a
shortest explanation of arc inconsistency is NP-hard as soon as variables have degree three,
even if the number of variables is bounded (even though the problem is obviously polynomial
to solve). It is also NP-hard if domain size is bounded by three. Perhaps more surprisingly,
it remains NP-hard on trees, where arc consistency is known to be a decision procedure.
We also show that there is little hope that we can efficiently find short (if not shortest)
explanations: the problem is not FPT-approximable unless the Gap-ETH is false.

C. Bessiere, C. Carbonnel, M. C. Cooper, and E. Hebrard 9:3

2 Background and Definitions

The constraint satisfaction problem (CSP) involves finding solutions to a constraint network.
A constraint network (or CSP instance) is defined as a set of n variables X = X1, . . . , Xn,
a set of domains D = {D(X1), . . . , D(Xn)}, where D(Xi) is the finite set of values that Xi

can take, and a set C of constraints. A binary constraint c(Xi, Xj) is a binary relation that
specifies which combinations of values (tuples) the variables (Xi, Xj) are allowed to take. A
CSP is binary when all the constraints are binary. A binary CSP is said to be normalized if
there is at most one constraint per pair of variables. A degree-2 CSP does not contain any
variable involved in more than two constraints. Arc consistency (AC) is the basic form of
inference reasoning on constraint networks. A tuple τ of values on (Xi, Xj) is called a support
on constraint c(Xi, Xj) for a value v ∈ D(Xi) (and τ [Xj] its support in D(Xj)) if and only
if τ [Xi] = v, τ [Xj] ∈ D(Xj) and τ ∈ c(Xi, Xj). A value v in D(Xi) is arc consistent if and
only if v has a support on every constraint involving Xi. A network is arc consistent if all
values in all domains are arc consistent. The operation revise(Xi, c(Xi, Xj)), often denoted
by Xi

c← Xj in the following, removes from D(Xi) all values that do not have any support
on c(Xi, Xj). If enforcing arc consistency on a network (that is, applying revise() operations
until a fix point is reached) leads to a domain wipe out (i.e. an empty domain), we say that
the network is arc inconsistent.

▶ Definition 1 (Arc Inconsistency Explanation). An arc inconsistency explanation for a CSP
instance is a sequence of revise() operations such that one of the domains is wiped out by
the execution of the sequence of revise() operations.

▶ Definition 2 (Shortest Arc Inconsistency Explanation). The shortest arc inconsistency
explanation problem consists in finding an arc inconsistency explanation of minimum length.

▶ Example 3 (Explaining the Zebra puzzle). The Zebra puzzle, which may (or may not) be
due to Lewis Carroll, has a well known CSP model whereby, for each of the 5 house colors,
nationalities, beverages, cigarette brands, and pets, we have a variable whose value is the
number of the corresponding house (e.g., XZebra stands for the house where the Zebra lives).
The constraints are statements such as The Englishman lives in the red house or The Old
Gold smoker owns snails. Moreover, each house has a unique colour, its owner has a unique
nationality, drinks a unique beverage, smokes a unique brand, and has a unique pet.

Applying arc consistency on this CSP detects that “the Kools smoker does not live
in the 2nd house”. A demonstrative explanation would be: The Norwegian lives in the
first house. Since the Norwegian lives next to the blue house, then the 2nd house is blue.
Since the 2nd house has a single color, then it is not yellow. Since Kools are smoked in the
yellow house, then the Kools smoker does not live in the 2nd house.

Each step corresponds to the arc consistency revision of some domain knowledge (in bold)
with respect to a constraint (in italic), that is, it corresponds in our framework to the following
sequence of revise() operations: ⟨XBlue ← XNorwegian, XYellow

̸=← XBlue, XKools
=← XYellow⟩.

3 Complexity of Explaining Arc Inconsistency: Structure

We show that if all variables are involved in no more than two constraints, finding shortest
arc inconsistency explanations is polynomial. We then show that this class is tight. As soon
as we allow a variable to be in the scope of three constraints, the problem becomes NP-hard,
even if the CSP has no more than four variables. Perhaps even more surprising, the problem
is NP-hard on CSPs structured as trees, despite arc consistency being a decision procedure
on trees.

CP 2022

9:4 Complexity of Minimum-Size Arc-Inconsistency Explanations

3.1 Tractability on degree-2 CSPs
▶ Theorem 4. Shortest Arc Inconsistency Explanation is solvable in time polynomial
in the number of variables and values when restricted to binary normalized networks with
maximum degree two.

Proof. A constraint network of maximum degree two is composed of unconnected cycles
and paths. A shortest arc inconsistency explanation clearly always concerns only one of the
connected components of the network. An exhaustive search over all connected components
only increases complexity by at most a linear factor. Since, furthermore a path can be viewed
as a degenerate cycle (a cycle in which one constraint disallows no tuples), it follows that we
only need consider the case of a single cycle.

Without loss of generality, we suppose that the cycle is X1, . . . , Xn, with constraints
c(Xi, Xi+1), where here and in the rest of the proof addition within subscripts is understood to
be modulo n, so that for example Xn+1 actually refers to X1. We say that revise() operations
are clockwise (resp. anticlockwise) if they are of the form Xi+1 ← Xi (resp. Xi ← Xi+1). We
say that a pair of revise() operations R1, R2 commute if the two sequences R1R2 and R2R1
produce the same result. It is easy to verify that the only revise() operations that may not
commute are those in which the destination variable of one is the source variable of the other.
Furthermore, revise() operations in opposite directions (clockwise and anticlockwise) always
commute, even Xi ← Xi+1 and Xi+1 ← Xi. Thus the only pairs of revise() operations that
do not commute are of the form {Xi ← Xi+1, Xi+1 ← Xi+2}. What’s more, if we have the
operations Xi ← Xi+1, Xi+1 ← Xi+2 in this order, then the set of value-eliminations cannot
decrease if we inverse the order of these two operations.

In a shortest arc inconsistency explanation E, a revise() operation must be useful: it must
eliminate a domain value whose elimination is essential for a subsequent revise() operation
or for the final domain wipe-out. In the former case, the operation Xi ← Xi+1 must be
followed later in the sequence by Xi−1 ← Xi. Let S be the sequence of revise() operations
in E between the operation Xi ← Xi+1 and the next subsequent occurrence of Xi−1 ← Xi.
By the above discussion on commutativity, we can shift the operation Xi ← Xi+1 just after
S without decreasing the set of value-eliminations since S does not contain Xi−1 ← Xi. In
this way, we can group together all the anticlockwise revise() operations to form a sequence
of anticlockwise operations on consecutive edges in the cycle. The same argument holds
for clockwise operations which can be grouped together to form a sequence of clockwise
operations on consecutive edges in the cycle.

An obvious observation is that a shortest arc inconsistency explanation is necessarily of
length bounded by nd, where d is the maximum domain size, since at least one elimination
must occur at each operation. Moreover, there are up to n possible starting points for the
sequence of clockwise (resp. anticlockwise) operations. Hence a shortest explanation can be
found in polynomial time, by exhaustive search over the starting points and lengths of the
clockwise/anticlockwise sequences. ◀

3.2 Intractability on CSPs with four variables
The result in Theorem 4 is tight. We show that as soon as we allow variables to have degree 3,
finding a shortest explanation becomes NP-hard. This is true even if the number of variables
is bounded by four. (Observe that all binary normalized CSPs on three variables have degree
at most 2.) We use a reduction from Clique, which is NP-complete [13], to prove hardness.

C. Bessiere, C. Carbonnel, M. C. Cooper, and E. Hebrard 9:5

▶ Definition 5 (Clique).
Input: An undirected graph G = (V, E) and an integer k

Question: Is there S ⊆ V such that |S| ≤ k and for all i ̸= j ∈ S, {i, j} ∈ E?

It is noticeable that CSPs with a bounded number of variables have a constant number
of possible revise() operations available at each step –only 12 in the case of four variables.
This is not sufficient to make the problem of finding a shortest explanation easy.

▶ Theorem 6. Shortest Arc Inconsistency Explanation is NP-hard, even on binary
normalized networks with four variables.

▶ Lemma 7. Deciding whether there exists an arc inconsistency explanation of length smaller
than or equal to k is NP-complete, even on binary normalized networks with four variables.

Proof. Membership. Given a sequence of revise() operations, we decide whether this sequence
is an arc inconsistency explanation by executing each revise() in the order of the sequence
and checking whether one of the domains is empty after these executions. As constraints
have bounded arity, executing a revise() operation is polynomial, so the whole process is
polynomial.

Completeness. We reduce the Clique problem to the problem of deciding whether there is
an arc inconsistency explanation of length at most 3n + 3 for a CSP instance. Let G = (V, E)
be a graph with set of vertices V = {1, . . . , n}.

We construct the CSP instance PG with four variables X = {X1, X2, X3, X4}, all with
domain {(p, i) : p ∈ 0..n + 1, i ∈ 1..n} ∪ {st : t ∈ 1..k + 1}.

We build the set of constraints

C = {c1(X1, X2), c2(X1, X3), c3(X2, X3), X1 = X4, X2 = X4, X3 = X4}

with:

c1(X1, X2) = {((p− 1, i), (p, i)) : p ∈ [0, n + 1], ∀i ̸= p ∈ [1, n]}
∪ {((p− 2, i), (p, i)) : p ∈ [0, n + 1], ∀i ∈ [1, n]}
∪ {(st, st) : t ∈ [1, k + 1]}

c2(X1, X3) = {(p− 1, i), (p, i)) : p ∈ [0, n + 1], ∀i ∈ [1, n]} ∪ {(st−1, st) : t ∈ [1, k + 1]}
c3(X2, X3) = ({{(p, i) : p ∈ [0, n + 1], i ∈ [1, n]}2}\

{((n + 1, i), (n + 1, j)) : i = j ∨ {i, j} ∈ E})
∪ {{st : t ∈ [1, k + 1]}2}

The constraint network for a graph with 3 vertices and the edges {1, 2} and {2, 3} is shown
in Figure 1.

We first show that if G contains a k-clique, then, there exists an arc inconsistency
explanation of length 3n + 3 for PG.

Assume that the set of vertices S is a k-clique. We build the sequence R(S) of revise()
operations in the following way, and we will say that R(S) encodes the set S, since there is a
one-to-one mapping between subsets S ⊆ V and this type of explanation:

If p /∈ S, the (3p− 2)th element in the sequence R(S) is X2
c1← X1, the (3p− 1)th element

is X4
=← X2, and the (3p)th element is X1

=← X4.
If p ∈ S, the (3p− 2)th element in the sequence R(S) is X3

c2← X1, the (3p− 1)th element
is X4

=← X3, and the (3p)th element is X1
=← X4.

CP 2022

9:6 Complexity of Minimum-Size Arc-Inconsistency Explanations

X2
(0, 1)
(0, 2)
(0, 3)
(1, 1)
(1, 2)
(1, 3)
(2, 1)
(2, 2)
(2, 3)
(3, 1)
(3, 2)
(3, 3)
(4, 1)
(4, 2)
(4, 3)

s1

s2

s3

X1
(0, 1)
(0, 2)
(0, 3)
(1, 1)
(1, 2)
(1, 3)
(2, 1)
(2, 2)
(2, 3)
(3, 1)
(3, 2)
(3, 3)
(4, 1)
(4, 2)
(4, 3)

s1

s2

s3

X3
(0, 1)
(0, 2)
(0, 3)
(1, 1)
(1, 2)
(1, 3)
(2, 1)
(2, 2)
(2, 3)
(3, 1)
(3, 2)
(3, 3)
(4, 1)
(4, 2)
(4, 3)

s1

s2

s3

X2
(0, 1)
(0, 2)
(0, 3)
(1, 1)
(1, 2)
(1, 3)
(2, 1)
(2, 2)
(2, 3)
(3, 1)
(3, 2)
(3, 3)
(4, 1)
(4, 2)
(4, 3)

s1

s2

s3

c1 c2 c3

Figure 1 The CSP PG, reduction of the graph G = ({1, 2, 3}, {(1, 2), (2, 3)}). Solid edges represent
allowed tuples for c1 and c2, while dashed edges stand for forbidden tuples of c3. The equality
constraints are not represented. There are two explanations of Arc-Inconsistency of length 12.
The first encodes the clique {2, 3} with the revise() operations X2

c1← X1, X3
c2← X1, X3

c2← X1

at positions 1, 4, and 7 in the sequence. The second encodes the clique {1, 2} with the revision
operations X3

c2← X1, X3
c2← X1, X2

c1← X1 at positions 1, 4, and 7.

Then the last three elements in the sequence R(S) are X2
c1← X1, X3

c2← X1, and X2
c3← X3.

In the following, the subsequence composed of the (3p− 2)th, the (3p− 1)th, and the (3p)th
operations (that is, ⟨X2

c1← X1, X4
=← X2, X1

=← X4⟩ or ⟨X3
c2← X1, X4

=← X3, X1
=← X4⟩), is

called the pth iteration.

Before each iteration p ∈ {1, . . . , n} of three domain revisions, the invariants are:

(q, i) ̸∈ D(X1) ∀q < p− 1, ∀i ∈ [1, n] (1)
sj ∈ D(X1) ⇐⇒ k + 1 ≥ j > |S ∩ {0, . . . , p− 1}| (2)

(p− 1, i) ∈ D(X1) ⇐⇒ i ∈ S ∪ {p, . . . , n} (3)

All invariants are verified before entering iteration p = 1. For each one, we show that if it
is true before entering iteration p ≥ 1 then it remains true before entering iteration p + 1.

Invariant 1: Notice that a value (q, i) ∈ D(X2) (resp. D(X3)) is only supported by values
(q′, i) ∈ D(X1) such that q′ < q. If Invariant 1 is true before iteration p, then when revising
the domain of either X2 or X3, D(X1) contains no value (q, i) with q < p− 1 and therefore
all values (p− 1, i) are removed from D(X2) (resp. D(X3)). The revisions w.r.t. equality
constraints make sure that this is propagated back to D(X1).

Invariant 2. Notice that a value st ∈ D(X3) is only supported by value st−1 ∈ D(X1),
whereas the tuple (st, st) is a support in all other constraints. If Invariant 2 is true before
iteration p, then either p ∈ S in wich case the operation X3

c2← X1 removes the value sj (with
j = |S ∩ {0, . . . , p− 1}|+ 1) from D(X3) since the value sj−1 was its only support and is not
in D(X1); or X2

c1← X1 removes no s value and |S ∩ {0, . . . , p− 1}| does not change.
Invariant 3. For any i ∈ [1, n]:

C. Bessiere, C. Carbonnel, M. C. Cooper, and E. Hebrard 9:7

If i > p, then we have (p − 1, i) ∈ D(X1) which is a support for (p, i) w.r.t. c1 and c2
hence (p, i) is not removed and the invariant holds because i ∈ {p + 1, . . . , n}.

If i < p, notice that by Invariant 1, the tuple ((p − 2, i), (p, i)) cannot be a support
for (p, i) ∈ D(X2). Therefore, both constraints c1 and c2 have the same unique potential
support for the value (p, i) (in D(X2) and D(X3) respectively): ((p− 1, i), (p, i)). So we have:
“(p− 1, i) ∈ D(X1) before iteration p” iff “(p, i) ∈ D(X1) before iteration p + 1”. In addition,
i ∈ S ∪ {p, . . . , n} ⇐⇒ i ∈ S ∪ {p + 1, . . . , n} because i < p. Finally, by the induction
hypothesis we have “(p− 1, i) ∈ D(X1) before iteration p” iff i ∈ S ∪ {p, . . . , n}, and hence
by transitivity: “(p, i) ∈ D(X1) before iteration p + 1” iff i ∈ S ∪ {p + 1, . . . , n}.

If i = p, there are two cases: If p ∈ S, then the first operation at iteration p is X3
c2← X1,

(p, i) is not removed since it is supported by (p− 1, i), and the invariant is true at iteration
p + 1 since i ∈ S. If p ̸∈ S, then the first operation at iteration p is X2

c1← X1, (p, i) is
removed, and the invariant is true at iteration p + 1 since i ̸∈ S ∪ {p + 1, . . . , n}.

After n iterations, the invariants hold for p = n + 1 (i.e. after the 3n-th operation) and
hence D(X1) is {(n, i)∀i ∈ S} ∪ {(n + 1, i)∀i} ∪ {sk+1}}. The call to X2

c1← X1 then yields
D(X2) = {(n + 1, i)∀i ∈ S}∪{sk+1} and the call to X3

c2← X1 yields D(X3) = {(n + 1, i)∀i ∈
S}. Therefore, the last call to X2

c3← X3 produces a wipe-out, since on layer n + 1, the
remaining vertices stand for a clique of G and the allowed tuples are non-edges of G.

We then prove that if G does not contain any k-clique, then the shortest arc inconsistency
explanation for PG is of length strictly greater than 3n + 3. We first show that the shortest
explanation must use constraint c3, then we show that only explanations that encode a set
S ⊆ V (as defined above) such that S is a clique of size k of G can be the shortest.

Suppose first that the constraint c3 does not appear in any revise() of the explanation.
By construction, the values (p, i) are organized in layers, where a layer q is the set of
values (q, i), ∀i. Wiping out the domain of a variable requires removing the n + 2 layers
0 to n + 1 from its domain. Moreover, removing a layer q from X1 (resp. X2 or X3)
requires having already removed layer q + 1 (resp. q − 1) from X2 or X3 (resp. X1).
Removing a layer q from X4 requires having already removed layer q from X1, X2, or
X3. Hence, removing a layer q from a variable requires iteratively removing layers 0
to q − 1 or n + 1 down to q + 1 from other variables. The only way to do that is to
execute a sequence of revise() operations looping on a cycle of variables {X1, X2, X4},
or on {X1, X3, X4}, or both. Looping in the order ⟨X1

c1← X2, X4
=← X1, X2

=← X4⟩ or
⟨X1

c2← X3, X4
=← X1, X3

=← X4⟩ removes layers from n + 1 down to q, whereas looping in the
order ⟨X2

c1← X1, X4
=← X2, X1

=← X4⟩ or ⟨X3
c2← X1, X4

=← X3, X1
=← X4⟩ removes layers

from 0 up to q. We can then compute the number of revise() operations necessary to remove
a layer q from a variable given the order in which we loop. If we execute revise() operations
in the orders ⟨X1

c1← X2, X4
=← X1, X2

=← X4⟩ or ⟨X1
c2← X3, X4

=← X1, X3
=← X4⟩, layer q

is removed from the domain of X1 (resp. X2/X3, or X4) in 3(n + 1 − q) + 1 operations
(resp. 3(n + 1− q) + 3, or 3(n + 1− q) + 2 operations). If we execute revise() operations
in the orders ⟨X2

c1← X1, X4
=← X2, X1

=← X4⟩ or ⟨X3
c2← X1, X4

=← X3, X1
=← X4⟩, layer q is

removed from the domain of X1 (resp. X2/X3, or X4) in 3q + 3 operations (resp. 3q + 1, or
3q + 2 operations). As wiping out a domain requires, given a value q, removing layers 0 to q

from below and layers n + 1 down to q + 1 from above, we conclude that a domain wipe out,
on either X1, X2, X3, or X4, requires at least 3n + 4 revise() operations. This means that
there does not exist any arc inconsistency explanation for PG of length smaller than or equal
to 3n + 3 if we do not use c3 in the explanation.

CP 2022

9:8 Complexity of Minimum-Size Arc-Inconsistency Explanations

Hence, we must use c3. However, by construction of c3, every value in D(X2) (resp.
D(X3)) is supported as long as at least one value (p, i) with p ∈ [0, n], and any value st is
in the domain of D(X3) (resp. D(X2)). In other words, to remove a layer with a revise
on c3, the domains of X2 and X3 must only contain (p, i) values from layer n + 1. This
requires us to remove all layers from 0 to n−1 from X1 by executing n loops by a sequence of
revise() operations ⟨X2/X3 ← X1, X4 ← X2/X3, X1 ← X4⟩ for a cost of 3n operations, plus
a X2

c1← X1 and a X3
c2← X1 to remove layer n from X2 and X3. In other words, it must be

a sequence of revise() operations that encodes a set, i.e., R(S) for some set S ⊆ {1, . . . , n}.
Now, suppose that S is not a clique and let i1 and i2 be two non-adjacent vertices in S. By
Invariant 3, at iteration n + 1, we have (n, i1) ∈ D(X1) and (n, i2) ∈ D(X1) and hence after
operations X2

c1← X1 and X3
c2← X1, we have (n + 1, i1) ∈ D(X2) and (n + 1, i2) ∈ D(X3).

Therefore, neither X2
c3← X3 nor X3

c3← X2 would fail, and at least one more operation is
necessary. Finally, suppose that |S| < k. Then by Invariant 2, at iteration n + 1, we have
sk ∈ D(X1) and hence after operations X2

c1← X1 and X3
c2← X1, we have sk+1 ∈ D(X2)

and sk+1 ∈ D(X3). Therefore, at least one more operation is necessary. Consequently, the
number of operations can be equal to 3n + 3 only if S is a clique of size k of G. ◀

3.3 Intractability and inapproximability on trees
We have seen in Section 3.2 that Shortest Arc-Inconsistency Explanation is already
NP-hard on networks with four variables. This result does not completely settle the intract-
ability of the problem. For example, it is still possible that a polynomial-time algorithm
exists for some broad generalization of degree-2 networks that does not contain 4-cliques (for
instance, networks of treewidth 2). We show that it is not the case. We use a simple reduction
from Dominating Set, which is NP-complete [7], to derive NP-hardness of Shortest
Arc-Inconsistency Explanation, even on trees.

▶ Definition 8 (Dominating Set).
Input: An undirected graph G = (V, E) and an integer k

Question: Is there S ⊆ V such that |S| ≤ k and for all i ∈ V , there is j ∈ S with {i, j} ∈ E?

The NP-hardness of Shortest Arc-Inconsistency Explanation on trees circum-
scribes even more tightly the degree-2 tractability island of Section 3.1. However, these
NP-hardness results do not rule out efficient approximation algorithms nor fixed-parameter
tractable algorithms, which could be satisfactory for applications where only short explan-
ations are worth computing and optimality is not strictly necessary. We again show that
such desirable scenarios are not possible. We show that our reduction from Dominating
Set can be used to derive (conditional) fixed-parameter inapproximability of Shortest
Arc-Inconsistency Explanation.

We must briefly introduce some terminology before we can formally present the result.
A minimization problem P is fpt-approximable [4] if there exist computable functions f, ρ :
N → R≥1 such that n · ρ(n) is nondecreasing and an algorithm A that, given as input a
non-negative integer k and an instance I of P that has a solution of cost at most k, computes
a solution to I of cost at most k · ρ(k) in time f(k) · |I|O(1). Here, ρ is the approximation
ratio and f is possibly exponential. Note that if a problem is not FPT-approximable, then no
such algorithm A exists for any computable functions f and ρ; such problems are sometimes
called completely inapproximable [15].

Our FPT-inapproximability result is conditional on a complexity hypothesis known as the
Gap-ETH [6, 14], which states that there exists a constant ϵ > 0 such that no algorithm with
runtime 2o(n) can distinguish satisfiable 3-SAT instances from those in which no assignment

C. Bessiere, C. Carbonnel, M. C. Cooper, and E. Hebrard 9:9

satisfies a (1− ϵ) fraction of the clauses. It has been shown recently [3] that the Minimum
Dominating Set problem (which consists in finding the smallest dominating set in a graph)
is not FPT-approximable unless the Gap-ETH is false.

▶ Lemma 9. Deciding whether there exists an arc inconsistency explanation of length smaller
than or equal to k is NP-complete, even on binary tree-structured normalized constraint
networks.

Proof. Membership. As in Lemma 7.

Completeness. We reduce the Dominating Set problem to the problem of deciding
whether there is an arc inconsistency explanation of length at most k for a CSP instance.

Let G = (V, E) be a graph, V = {v1, . . . , vn}. We construct a constraint network PG as
follows: the set of variables is {Y, X1, . . . , Xn}, where the domain of Y is {v1, . . . , vn} and
the domain of each Xi is {vi}, and PG contains a constraint c(Y, Xi) = {(vj , vi) : {vi, vj} /∈
E and vi ̸= vj} for all i ≥ 1. An example of this reduction is shown in Figure 2. We claim
that G has a dominating set of size k if and only if PG has an arc-inconsistency explanation
of length k.

If G has a dominating set S of size k, then let R be a sequence containing every operation
Y ← Xi such that vi belongs to S. Since every vj ∈ V is dominated by some vk ∈ S (which
is either vj itself or one of its neighbours), by construction vj is removed from D(Y) by
Y ← Xk. Therefore D(Y) is empty at the end of the sequence and R is an arc-inconsistency
explanation of length k.

Conversely, if R is a minimal arc-inconsistency explanation of PG of length k then we can
assume that it is a sequence of operations of the form Y ← Xi. (Since each D(Xi) contains
a single value, only the last operation could be Xi ← Y for some i, and in that case it can be
replaced with Y ← Xi.) Then, the set S = {vi : Y ← Xi occurs in R} must be a dominating
set of size k: at the end of R every vj ∈ D(Y) has been pruned by some operation Y ← Xk,
and every value removed at this step is by construction dominated by vk in G.

PG is a tree-structured constraint network and can be constructed in polynomial time
from G. Therefore, Shortest Arc-Inconsistency Explanation is NP-hard on such
networks. ◀

▶ Theorem 10. Shortest Arc Inconsistency Explanation is NP-hard and not FPT-
approximable unless the Gap-ETH is false, even on binary tree-structured normalized con-
straint networks.

Proof. In the reduction of the proof of Lemma 9, the size-k dominating sets of G are in one-
to-one correspondence with arc-inconsistency explanations of PG of length k. Furthermore,
the dominating set corresponding to an explanation can be computed in polynomial time,
so any FPT-approximation algorithm for Shortest Arc-Inconsistency Explanation
translates into one for Minimum Dominating Set. By the results of [3], this would imply
that the Gap-ETH is false. ◀

As a final remark, we note that the same inapproximability result can be established
under the weaker (and more conventional) complexity hypothesis FPT ̸= W[2]. However,
the proof is significantly more involved and has been left out for the sake of brevity.

4 Complexity of Explaining Arc Inconsistency: Domain Size

We show that finding shortest arc inconsistency explanations is polynomial on binary
normalized CSPs with Boolean domains. Again, this class is tight: As soon as we allow three

CP 2022

9:10 Complexity of Minimum-Size Arc-Inconsistency Explanations

1 4

2 3

5

Y

v1

v2

v3

v4

v5 v5 : X5

v4 : X4

X2 : v2

X1 : v1

X3 : v3

Figure 2 Left: a graph G. Right: the constraint network PG in the proof of Lemma 9.

values per domain, the problem becomes NP-hard.

4.1 Tractability on Boolean domains
▶ Theorem 11. Shortest Arc Inconsistency Explanation is solvable in polynomial
time when restricted to binary normalized networks with all domains of size at most two.

Proof. Let P = (X, D, C) be a binary CSP with domain size at most two. We assume,
without loss of generality, that all domains D(Xi) are non-empty subsets of {0, 1} and
that no constraint relation is empty. Let Xr be the variable at which a domain wipe-out
occurs in a shortest arc inconsistency explanation. Complexity is only multiplied by n

if we perform an exhaustive search over all possible variables Xr, so in the following we
consider Xr to be fixed. We construct a directed causal graph GP in which shortest arc
inconsistency explanations correspond to particularly simple subgraphs. In GP there are
two types of vertices: source-variable vertices Xs

i (i = 1, . . . , n), and variable-value vertices
⟨Xi, a⟩ (i = 1, . . . , n, a ∈ {0, 1}). GP has the following directed edges: (Xs

i , ⟨Xj , b⟩) (for all
i, j, b such that b ∈ D(Xj) has no support in D(Xi)), and (⟨Xi, a⟩, ⟨Xj , b⟩) (for all i, j, a, b

such that a ∈ D(Xi) is the only support of b ∈ D(Xj)). Each arc corresponds to a possible
revise operation: (Xs

i , ⟨Xj , b⟩) corresponds to the elimination of b from D(Xj) since it has
no support in D(Xi), and (⟨Xi, a⟩, ⟨Xj , b⟩) corresponds to the elimination of b from D(Xj)
when its unique support a ∈ D(Xi) has been eliminated. An example of the causal graph for
a simple CSP is shown in Figure 3.

Let R be a shortest arc inconsistency explanation, and let Xr be the variable at which
a wipe-out occurs. By minimality of R, each revise operation in R eliminates a value from
a domain. Indeed, each operation, except possibly the last, eliminates exactly one value
otherwise there would be a domain wipe-out before the end of R. Furthermore, the only way
that the final revise operation Xr ← Xi of R can cause the simultaneous elimination of both
0 and 1 from D(Xr) (without there already being a wipe-out at D(Xi)) is that (1) some
value b ∈ D(Xr) never had any support at Xi and (2) the other value 1−b lost its unique
support a at Xi by a previous operation in R. We can deduce from (1) and (2) that just
before the execution of Xr ← Xi, the value 1−a in D(Xi) has no support at Xr. This implies
that we can replace the last operation Xr ← Xi of R by its inverse operation Xi ← Xr to
produce an arc inconsistency explanation of the same length as R but in which the final
operation eliminates a single value (namely 1−a from D(Xi) leading to a wipe-out at Xi).

For any revise operation in R, eliminating b from D(Xj), there is a corresponding arc
(u, v) in GP where v is the vertex ⟨Xj , b⟩ and u is the cause of the elimination of b from
D(Xj). By the above argument, we can assume that each revise operation in R corresponds
to a single elimination and hence a single arc in GP . Let GR be the subgraph of GP consisting

C. Bessiere, C. Carbonnel, M. C. Cooper, and E. Hebrard 9:11

X1 < X2

X2 ≤ X3

X3 ≤ X4

X4 ≤ X5

X5 ≤ X6

X6 ≤ X1

X2 ̸= X4

Xs
1

Xs
2

⟨X2, 0⟩ ⟨X3, 0⟩ ⟨X4, 0⟩ ⟨X5, 0⟩ ⟨X6, 0⟩ ⟨X1, 0⟩

⟨X1, 1⟩ ⟨X6, 1⟩ ⟨X5, 1⟩ ⟨X4, 1⟩ ⟨X3, 1⟩ ⟨X2, 1⟩

Figure 3 Left: a Boolean binary CSP P (the domain of every variable is {0, 1}). Right: the
causal graph GP of the proof of Theorem 11. The shortest explanation involves the two paths in red
originating from Xs

1 and corresponds to the sequence ⟨X2 ← X1, X3 ← X2, X4 ← X3, X4 ← X2⟩.

of the arcs corresponding to the operations of R. Let Xr be again the variable at which a
wipe-out occurs at the end of R. For each a ∈ D(Xr), in GR there must be a directed path
Pa from a source-variable vertex to ⟨Xr, a⟩. By minimality, the set of arcs of GR is the union
of the set of arcs of Pa (a ∈ D(Xr)). Since each elimination has a unique cause (given by
the arc corresponding to the revise operation in R producing the elimination), the in-degree
of each vertex in GR is at most one. Furthermore, source-variable vertices have in-degree 0.
It follows that P0 and P1 can only possibly share arcs along an initial common subpath.

If D(Xr) is a singleton {a}, then GR must be a shortest path in GP from a source-variable
vertex to ⟨Xr, a⟩ and hence can be found in polynomial time by a standard shortest-path
algorithm. So now suppose that D(Xr) = {0, 1}. If the set of edges of P0 and P1 are disjoint
then P0 and P1 must both be shortest paths in GP from source-variable vertices to ⟨Xr, 0⟩
and ⟨Xr, 1⟩, respectively. If P0 and P1 have an initial common subpath, then they must
diverge at some vertex v of GP , the common initial subpath is a shortest path in GP from a
source-variable vertex to v and the remaining divergent paths P ′

0 and P ′
1 are shortest paths

from v to ⟨Xr, 0⟩ and ⟨Xr, 1⟩, respectively. By an exhaustive search over the O(n) vertices v

of GP , we can determine the paths P0 and P1 in polynomial time. ◀

It is interesting to note that in the proof of Theorem 11, one of the paths P ′
0, P ′

1 may
actually be empty. In this case, GR is a path (either P0 or P1). This occurs if the elimination
of a from D(Xr) triggers a sequence of revise operations that leads to the elimination of 1−a

from D(Xr). Another interesting point is that if P ′
0, P ′

1 are both non-empty, then the revise
operations corresponding to P ′

1 can all be inversed (i.e. each Xi ← Xj becomes Xj ← Xi)
and their order reversed in R to produce an alternative shortest arc inconsistency proof R̃

which ends in a wipe-out at the variable Xk at which P ′
0 and P ′

1 diverged. For instance,
the sequence ⟨X2 ← X1, X3 ← X2, X4 ← X3, X2 ← X4⟩ is also a shortest explanation in
the example of Figure 3. In this case, GR̃ is a path (obtained in the example by using the
edge in blue (⟨X4, 0⟩, ⟨X2, 1⟩) instead of (⟨X2, 0⟩, ⟨X4, 1⟩)). Hence, we can optimise since the
exhaustive search over vertices v is unnecessary.

4.2 Intractability on domains with three values
▶ Theorem 12. Shortest Arc Inconsistency Explanation is NP-hard, even on binary
normalized networks with all domains of size at most three.

CP 2022

9:12 Complexity of Minimum-Size Arc-Inconsistency Explanations

c1 = c4 c6

c5

c1 = c4 c6

c5

c3 = c4 c6

c5

c4 = c4 c6

c5

c3

c3

c3
c3

=

X ′′
1 X ′

1 X1 H1 B1

B0

X ′′
2 X ′

2 X2 H2 B2

Y

X ′′
3 X ′

3 X3 H3 B3

X ′′
4 X ′

4

X4

H4 B4

Figure 4 The constraint network PG in the proof of Lemma 13 when looking for a dominating
set in the graph G = ({1, 2, 3, 4}, {(1, 2), (2, 4), (2, 3), (3, 4)}).

▶ Lemma 13. Deciding whether there exists an arc inconsistency explanation of length
smaller than or equal to k is NP-complete, even on binary normalized networks with all
domains of size at most three.

Proof. Membership. As in Lemma 7.

Completeness. We reduce the Dominating Set problem (whether a graph G has
a dominating set of size at most k) to the problem of deciding whether there is an arc
inconsistency explanation of length at most 4n + k + 1 for a CSP instance. Let G = (V, E)
be a graph with V = {1, . . . , n}.

We construct the CSP instance PG with 5n + 2 variables

X = {X1, . . . , Xn, X ′
1, . . . , X ′

n, X
′′

1 , . . . , X
′′

n , H1, . . . , Hn, B0, . . . , Bn, Y }

all with domain {0, 1, 2} except B0 whose domain is {0} and Y whose domain is {2}.
We build the set of constraints

C = {c1(X
′′

i , X ′
i) : i ∈ [1, n]} ∪ {c2(X ′

i, Xi) : i ∈ [1, n]}
∪ {c3(Xi, Xj) : {i, j} ∈ E} ∪ {c4(Xi, Hi) : i ∈ [1, n]}
∪ {c5(Bi−1, Hi) : i ∈ [1, n]} ∪ {c6(Hi, Bi) : i ∈ [1, n]} ∪ {Bn = Y }}

where

c1(X
′′

i , X ′
i) = {(0, 0)}

c2(X ′
i, Xi) = {(0, 0), (1, 1), (2, 2)}

c3(Xi, Xj) = {0, 1, 2} × {0, 1, 2} \ {(0, 2), (2, 0)}

c4(Xi, Hi) = {0, 1, 2} × {0, 1, 2} \ {(0, 1), (1, 1)}

c5(Bi−1, Hi) = {0, 1, 2} × {0, 1, 2} \ {(0, 2), (1, 2)}

c6(Hi, Bi) = {0, 1, 2} × {0, 1, 2} \ {(0, 2)}

The constraint network is shown in Figure 4 for a graph with n = 4 vertices and 4 edges.
We first prove that if G contains a k-dominating set, then there exists an arc inconsistency

explanation of length 4n + k + 1 for PG. Assume that the set of vertices S is a k-dominating

C. Bessiere, C. Carbonnel, M. C. Cooper, and E. Hebrard 9:13

set. We build the sequence R of revise() operations in the following way. The first k elements
in R are X ′

i
c1← X

′′

i for each vertex i in S. The k next elements in R are Xi
c2← X ′

i, again
for vertices i in S. After those 2k revise() operations, for all i in S, D(Xi) = {0}. Then,
for each vertex j in V \ S, R contains Xj

c3← Xi, where i ∈ S and {i, j} ∈ E. We know
such a vertex i exists for each j because S is a dominating set. After those additional
n− k revise() operations, for all i not in S, D(Xi) = {0, 1}. The n next elements in R are
Hi

c4← Xi, removing value 1 from D(Hi) because 2 /∈ D(Xi). The 2n next elements in R are
⟨Hi

c5← Bi−1, Bi
c6← Hi⟩ in increasing order of i from 1 to n. Each Hi

c5← Bi−1 removes value
2 from D(Hi) if 2 /∈ D(Bi−1) and Bi

c6← Hi removes value 2 from D(Bi) if 1, 2 /∈ D(Hi).
As B0 = 0 and value 1 has already been removed from all Hi’s domains, those 2n revise()
remove value 2 from the domain of all Bi. Finally, after these 2k + (n− k) + n + 2n = 4n + k

revise() operations, the last element in R, Y
=← Bn, wipes out the domain of Y and proves

arc inconsistency.
We then prove that if there exists an arc inconsistency explanation for PG of length

4n + k + 1, then G contains a k-dominating set. We first observe that if we remove c5(B0, H1)
or Bn = Y from PG, the instance becomes satisfiable. (B0 is necessary to trigger removals of
value 2 from the His and Y to trigger removals of value 0.) Hence, no wipe out can occur
without executing 2n + 1 revise() operations on the path from B0 to Y . Furthermore, if
a single variable Hi still has value 1 in its domain, the propagation of removals stops. As
a result, value 2 needs to be removed from all Xis and a revise() needs to be executed on
the n constraints c4. We then have n + k remaining available operations to remove value 2
from all Xis. If we do these removals thanks to the sequence ⟨X ′

i
c1← X

′′

i , Xi
c2← X ′

i⟩, it costs
2n operations, which is more than n + k. To reach n + k, we need to remove value 2 in a
single operation for at least n− k variables. The only way to do that is through a Xj

c3← Xi

for n − k variables Xj . Now, Xj
c3← Xi removes value 2 from D(Xj) only if D(Xi) = {0}

and c3(Xi, Xj) ∈ C. D(Xi) is equal to {0} only if Xi is one of the k variables on which
⟨X ′

i
c1← X

′′

i , Xi
c2← X ′

i⟩ has been executed. c3(Xi, Xj) belongs to C only if {i, j} ∈ E. As
a result, the set of k vertices i corresponding to the k variables with D(Xi) = {0} is a
dominating set. ◀

5 Conclusion

We have investigated the complexity of finding a shortest proof of inconsistency of a binary
CSP in the form of a sequence of arc consistency operations. Our characterisation in terms
of structure or domain size shows that this problem is polynomial when variables have degree
two or domains are Boolean. The problem is NP-hard if the CSP has four variables of
degree three or if the domain size is bounded by three. It is also NP-hard on trees. In
addition, the problem is not FPT-approximable unless the Gap-ETH is false. Although
our initial motivation was to provide short explanations for human users, there are other
possible applications. Virtual Arc Consistency (VAC) algorithms for cost-function networks
use arc-inconsistency explanations in the CSP of zero-cost tuples in order to update cost
functions [5]. Our NP-hardness results can be seen as a justification for the use of minimal
rather than minimum-cardinality arc-inconsistency explanations by VAC algorithms. On a
final positive note, the polynomial-time algorithm for the special case of size-2 domains may
prove an inspiration for heuristic methods to improve minimal arc inconsistency explanations
via the search for shortest paths in the causal graph described in the proof of Theorem 11.

References
1 Jérôme Amilhastre, Hélène Fargier, and Pierre Marquis. Consistency restoration and explan-

ations in dynamic CSPs application to configuration. Artif. Intell., 135(1-2):199–234, 2002.

CP 2022

9:14 Complexity of Minimum-Size Arc-Inconsistency Explanations

doi:10.1016/S0004-3702(01)00162-X.
2 Bart Bogaerts, Emilio Gamba, and Tias Guns. A framework for step-wise explaining how

to solve constraint satisfaction problems. Artif. Intell., 300:103550, 2021. doi:10.1016/j.
artint.2021.103550.

3 Parinya Chalermsook, Marek Cygan, Guy Kortsarz, Bundit Laekhanukit, Pasin Manurangsi,
Danupon Nanongkai, and Luca Trevisan. From Gap-ETH to FPT-inapproximability: Clique,
dominating set, and more. In Chris Umans, editor, Proceedings of the 58th IEEE Annual
Symposium on Foundations of Computer Science (FOCS’17), pages 743–754. IEEE Computer
Society, 2017. doi:10.1109/FOCS.2017.74.

4 Yijia Chen, Martin Grohe, and Magdalena Grüber. On parameterized approximability. In
Hans L. Bodlaender and Michael A. Langston, editors, Parameterized and Exact Computation,
Second International Workshop, IWPEC, volume 4169 of Lecture Notes in Computer Science,
pages 109–120. Springer, 2006. doi:10.1007/11847250_10.

5 Martin C. Cooper, Simon de Givry, Martí Sánchez-Fibla, Thomas Schiex, and Matthias
Zytnicki. Virtual arc consistency for weighted CSP. In Dieter Fox and Carla P. Gomes, editors,
AAAI 2008, pages 253–258. AAAI Press, 2008. URL: http://www.aaai.org/Library/AAAI/
2008/aaai08-040.php.

6 Irit Dinur. Mildly exponential reduction from gap 3SAT to polynomial-gap label-cover.
Electronic Colloquium on Computational Complexity, page 128, 2016.

7 M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness (Series of Books in the Mathematical Sciences). W. H. Freeman, first edition
edition, 1979.

8 Allen Van Gelder. Verifying RUP proofs of propositional unsatisfiability. In ISAIM, 2008.
9 E. Goldberg and Y. Novikov. Verification of proofs of unsatisfiability for CNF formulas. In

2003 Design, Automation and Test in Europe Conference and Exhibition, pages 886–891, 2003.
doi:10.1109/DATE.2003.1253718.

10 Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva. Abduction-based explanations
for machine learning models. Proceedings of the AAAI Conference on Artificial Intelligence,
33(01):1511–1519, 2019. doi:10.1609/aaai.v33i01.33011511.

11 Ulrich Junker. QUICKXPLAIN: preferred explanations and relaxations for over-constrained
problems. In Deborah L. McGuinness and George Ferguson, editors, Proceedings of the
Nineteenth National Conference on Artificial Intelligence, Sixteenth Conference on Innovative
Applications of Artificial Intelligence, pages 167–172. AAAI Press / The MIT Press, 2004.

12 Ulrich Junker. Configuration. In Francesca Rossi, Peter van Beek, and Toby Walsh, editors,
Handbook of Constraint Programming, volume 2 of Foundations of Artificial Intelligence, pages
837–873. Elsevier, 2006.

13 R. Karp. Reducibility among combinatorial problems. In R. Miller and J. Thatcher, editors,
Complexity of Computer Computations, pages 85–103. Plenum Press, 1972.

14 Pasin Manurangsi and Prasad Raghavendra. A birthday repetition theorem and complexity of
approximating dense CSPs. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca
Muscholl, editors, Proceedings of the 44th International Colloquium on Automata, Languages,
and Programming (ICALP’17), volume 80 of LIPIcs, pages 78:1–78:15. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.ICALP.2017.78.

15 Dániel Marx. Completely inapproximable monotone and antimonotone parameterized problems.
In Proceedings of the 25th IEEE Annual Conference on Computational Complexity, pages
181–187, 2010. doi:10.1109/CCC.2010.25.

16 Andy Shih, Arthur Choi, and Adnan Darwiche. A symbolic approach to explaining Bayesian
network classifiers. In IJCAI’18, pages 5103–5111. AAAI Press, 2018.

17 Mohammed H. Sqalli and Eugene C. Freuder. Inference-based constraint satisfaction supports
explanation. In William J. Clancey and Daniel S. Weld, editors, AAAI 96, IAAI 96, Volume
1, pages 318–325. AAAI Press / The MIT Press, 1996.

https://doi.org/10.1016/S0004-3702(01)00162-X
https://doi.org/10.1016/j.artint.2021.103550
https://doi.org/10.1016/j.artint.2021.103550
https://doi.org/10.1109/FOCS.2017.74
https://doi.org/10.1007/11847250_10
http://www.aaai.org/Library/AAAI/2008/aaai08-040.php
http://www.aaai.org/Library/AAAI/2008/aaai08-040.php
https://doi.org/10.1109/DATE.2003.1253718
https://doi.org/10.1609/aaai.v33i01.33011511
https://doi.org/10.4230/LIPIcs.ICALP.2017.78
https://doi.org/10.1109/CCC.2010.25

A Constraint Programming Approach to Ship Refit
Project Scheduling
Raphaël Boudreault #

Thales Digital Solutions, Québec, Canada

Vanessa Simard #

NQB.ai, Québec, Canada

Daniel Lafond #

Thales Digital Solutions, Québec, Canada

Claude-Guy Quimper #

Université Laval, Québec, Canada

Abstract
Ship refit projects require ongoing plan management to adapt to arising work and disruptions.
Planners must sequence work activities in the best order possible to complete the project in the
shortest time or within a defined period while minimizing overtime costs. Activity scheduling
must consider milestones, resource availability constraints, and precedence relations. We propose a
constraint programming approach for detailed ship refit planning at two granularity levels, daily
and hourly schedule. The problem was modeled using the Cumulative global constraint, and
the Solution-Based Phase Saving heuristic was used to speedup the search, thus achieving the
industrialization goals. Based on the evaluation of seven realistic instances over three objectives,
the heuristic strategy proved to be significantly faster to find better solutions than using a baseline
search strategy. The method was integrated into Refit Optimizer, a cloud-based prototype solution
that can import projects from Primavera P6 and optimize plans.

2012 ACM Subject Classification Computing methodologies → Planning and scheduling; Theory of
computation → Constraint and logic programming

Keywords and phrases Ship refit, planning, project management, constraint programming, scheduling,
optimization, resource-constrained project scheduling problem

Digital Object Identifier 10.4230/LIPIcs.CP.2022.10

Supplementary Material Software (Source Code): https://github.com/raphaelboudreault/chuffed/
releases/tag/SBPS; archived at swh:1:dir:3eb166e6188719513b62f762559a2420c13c9997

Funding This project has received financial support from the Scale AI Canadian Innovation Super-
cluster and from the Mitacs Accelerate program.

Acknowledgements Thanks are due to the many members of the Refit Optimizer project team
and our collaborators at Dalhousie University, Polytechnique Montréal, Sōdan, Simwell and Genoa
Design International. We are very grateful to the many domain experts consulted and to Seaspan
Victoria Shipyards for their invaluable feedback.

1 Introduction

Ship refit planning is a complex and tedious endeavor that requires scheduling several hundred
(or thousand) tasks across a time horizon that may span several weeks, months or even over
a year [2]. Planners must ensure that precedence relations between tasks are respected, that
the required human and material resources are available, and that the scheduled work is
completed within the maximum allocated project duration. For instance, dry-dock work
periods need to be fixed years in advance, thus leaving no flexibility for increasing project

© Raphaël Boudreault, Vanessa Simard, Daniel Lafond, and Claude-Guy Quimper;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 10; pp. 10:1–10:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:raphael.boudreault@thalesgroup.com
https://orcid.org/0000-0002-5602-7515
mailto:vanessa.simard@nqb.ai
https://orcid.org/0000-0001-8861-8902
mailto:daniel.lafond@thalesgroup.com
https://orcid.org/0000-0002-1669-353X
mailto:claude-guy.quimper@ift.ulaval.ca
https://orcid.org/0000-0002-5899-0217
https://doi.org/10.4230/LIPIcs.CP.2022.10
https://github.com/raphaelboudreault/chuffed/releases/tag/SBPS
https://github.com/raphaelboudreault/chuffed/releases/tag/SBPS
https://archive.softwareheritage.org/swh:1:dir:3eb166e6188719513b62f762559a2420c13c9997;origin=https://github.com/raphaelboudreault/chuffed;visit=swh:1:snp:ff1764f3cbf74a1eccfe4b906da5fefa8d013f64;anchor=swh:1:rev:7ae65707e5d6323432668fc5dac1326c3bf0a90a
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 A CP Approach to Ship Refit Project Scheduling

time span. Potential goals of planners in this context are to create schedules minimizing the
project total duration or, in case the planning horizon prevents the work to be accomplished
in time, minimizing the overtime labor costs. Some planners focus on other needs, such as
creating robust schedules leaving flexibility to adjust to unforeseen delays. Indeed, while
initial plans must be free of conflicts, unplanned events, delays and their arising work require
ongoing re-planning efforts throughout the project. While initial planning may take several
weeks for large projects, leaving time for planners to manually attempt optimizing the task
scheduling, replanning leaves very little time for planners to consider their options and thus
is mainly an opportunistic and reactive process.

There exist multiple enterprise resource planning tools such as Microsoft Project [25],
Primavera P6 [33], and IBM Maximo [18], which are typical software solutions to support
ships refit planning. Yet beyond the core project management functionalities, the support for
optimizing schedules with computational methods from operations research remains limited
to resources leveling, i.e. spreading the workload more evenly across the project duration.
Some optimization solutions have been previously created for custom projects, yet lack
reusability. To our knowledge, the only generic and reusable schedule optimization capability
currently available is the Aurora (Stottler Henke) intelligent scheduling solution [35]. While
the available information about Aurora’s proprietary optimization algorithms is limited,
these are described as being based on heuristics, as opposed to exact methods, derived from
domain experts. While this satisfying approach is highly relevant and effective for human
problem solving given the human brain’s bounded computational capabilities, we posit that
optimization algorithms can be developed to do better than human-derived heuristics. The
current work aims to push further the state-of-the-art in this area by producing a general
purpose exact method enhanced with metaheuristics.

Thales Canada has set out to create Refit Optimizer, a prototype solution for multi-
objective optimization in the ship refit domain, while also designing it to be reusable across a
wide variety of other scheduling contexts [22]. The key motivation for this work comes from
challenges and innovation opportunities identified in the context of the Arctic/Offshore Patrol
Ships and Joint Support Ships in-service support (AJISS) program with the Royal Canadian
Navy. Herein, the focus is on detailed planning, using either days or hours as the basic time
unit. The Refit Optimizer prototype is currently operational, deployed on a secure cloud
platform, and combines several complementary services for importing/exporting project
data (from/to Primavera P6), visualizing the schedule using an interactive Gantt chart
and tasks list, editing the schedule, freezing scheduled tasks, and optimizing the schedule
according to one of three different objectives (makespan, overtime costs or robustness).
Additional capabilities include comparing options, analyzing and visualizing geospatial
conflicts, forecasting progress, modeling uncertainties and assessing risks using discrete-event
simulations (see [22]).

We propose a constraint programming approach for detailed ship refit planning that is
currently fully integrated into Refit Optimizer. The problem considered is closely related to
the Resource-Constrained Project Scheduling Problem (RCPSP) [16, 17, 34] and is modeled
using the efficient Cumulative global constraint [1, 38]. We use the Solution-Based Phase
Saving (SBPS) value selection heuristic [13, 42] to speedup the search and obtain better
solutions in a reasonable time. We evaluate our approach on a benchmark formed of seven
instances supplied by our industrial partners, namely Sōdan, the AJISS team and Seaspan
Victoria Shipyards, which are compared to each other using RCPSP complexity metrics from
the literature.

R. Boudreault, V. Simard, D. Lafond, and C.-G. Quimper 10:3

The paper is organized as follows. Section 2 describes the ship refit planning problem.
Section 3 presents background notions on scheduling, constraint programming, SBPS and
RCPSP complexity measures. The CP model is presented in Section 4, as well as its
extensions and the search heuristics developed in our context. Our approach is evaluated on
the benchmark instances in Section 5. Finally, Section 6 addresses the applicability of the
solution to an industrial setting, followed by a conclusion suggesting directions for future
work.

2 Problem Description

Ship refitting is an important shipyard event during which all ship’s activities are suspended
for improvements. The objective of a refit is to restore, customize, modify, or modernize
part of a ship. Most of the time, however, stopping all activities can become costly, which
makes efficient ships refit planning important. The time window, or horizon, during which a
refit takes place can be decided years in advance. When the horizon is exceeded, the dock
is no longer available and the ship has to leave. Thus, in order to estimate the required
duration, planners have to consider a large number of daily or even hourly tasks depending on
multiple capacity-limited resources, both human and material. Furthermore, due to physical
limitations, a maximum number of workers must be simultaneously allowed in some work
areas. Precedence relationships must be considered between many of the tasks, while some
date constraints, such as milestones, must be achieved. Finally, specific tasks must be idle
over the weekends. In practice, the initial planned time is often insufficient, in which case
overtime for some tasks can be scheduled to fit in the restrictive horizon.

Three main objectives are targeted in this project according to the challenges faced by
shipyards. First, to support planners in their horizon estimation, the prototype solution
has to offer to minimize the refit total duration, also known in scheduling as makespan.
This helps the planner at the tactical level by identifying the minimum time needed for
a certain ship refit, according to the constraints on tasks. Then, it has to allow the user
to produce an operational plan over a fixed horizon that minimizes the overtime costs.
Since a lot of unplanned delays happen during the actual refit execution, this option helps
a shipyard respect their obligation while minimizing costs associated with overtime labor.
Finally, the solution has to propose an operational plan taking the robustness into account
when planning overtime. The idea is to minimize the risk of exceeding the refit deadline by
planning the overtime work, as much as possible, at the beginning of the horizon. Thus, if
unforeseen events during the execution increase the need for overtime before the end of the
refit, it is still possible to proceed. With the option of these three objectives, a user can
efficiently estimate a ship refit duration, while being supported during its execution.

Our research is based on the practical needs of our industrial partners which supplied us
with realistic use cases. Table 1 presents seven instances of different sizes that were made
available for our tests. Each instance is defined by a horizon, given in days or in hours
depending on the planning granularity, which represents the available time to complete all
tasks. The proposed horizon comes from the initial planners overestimate and can be seen as
a baseline for the makespan minimization. The number of tasks, precedence relations, and
resources, as well as the task duration range (without overtime), help to better evaluate and
compare the size of the instances. The number of tasks that can be performed in overtime
(#O) is given, where a “*” indicates that those tasks must be idle during weekends. Some
tasks do not follow any work hours requirement and thus cannot be shortened nor suspended.
A common example of this in a ship refit is paint drying tasks. The number of work areas
(#WA) is also presented and included as a specific type of resource.

CP 2022

10:4 A CP Approach to Ship Refit Project Scheduling

Table 1 Size comparison of the seven instances supplied by our industrial partners.

Instance Horizon #Tasks
(#O)

Task
duration

#Precedence
relations

#Resources
(#WA)

day-yacht21 29 days 21 (20) 1-3 days 32 9 (2)
hour-yacht21 704 hours 21 (20) 1-8 hours 32 9 (2)
generic136 178 days 136 (136*) 1-20 days 99 9 (4)
software138 183 days 138 (138*) 1-10 days 341 8 (0)
navy253 728 hours 253 (253*) 1-8 hours 246 92 (87)
cruise510 268 days 510 (464*) 1-15 days 550 32 (24)
navy830 6200 hours 830 (830*) 1-200 hours 816 146 (128)

The first four instances, day-yacht21, hour-yacht21, generic136, and software138,
were artificially created by the team for testing purposes. They are used to test the limits of
the optimization algorithms, since realistic instances are somewhat simpler because they are
manually created by human experts. The instances day-yacht21 and hour-yacht21 are two
versions of the same ship with different task durations and planning granularities, respectively
days and hours. This simple problem has been used in user workshops to compare the result
of a manual optimization to the result of our approach. Instance generic136 does not
describe a particular ship refit and was created to test simultaneously various precedence
and date constraint types. Instance software138 describes the management of a software
development project, which is used to show the genericity of our approach to scheduling
problems with resources. Other instances are anonymized versions of real, or closely inspired
by real, refit use cases from recent years. Instances navy253 and navy830 are two versions
of a real use case provided by the AJISS team, while cruise510 is inspired by a sample
problem provided by Seaspan Victoria Shipyards.

3 Background

3.1 Scheduling
The problem we consider is part of the great family of scheduling problems. In the operations
research and optimization literature, scheduling problems are many and varied. Given a set
of tasks I, these problems require finding when to execute each task over a definite timeline
T := {0, 1, . . . , tm}, where each t ∈ T is a discrete time point, so that an objective function
is optimized while different constraints are satisfied. Specifically, our scheduling use case is
highly related to the Resource-Constrained Project Scheduling Problem (RCPSP). Introduced
in 1969 by Pritsker et al. [34], its standard definition (see e.g. [16, 17]) supposes first that
preemption is forbidden, i.e. that each task cannot be interrupted once started. Then, a
finite set of resources R is considered, where each task i ∈ I requires an amount hi,r ∈ Z≥0

of resource r ∈ R used for its whole duration. Each resource r ∈ R has a constant usage
capacity cr ∈ Z>0 and is fully available at any time (renewable). Also, the resources are
cumulative, i.e. more than one task can use a resource at a time. Thus, the RCPSP assumes
at each time point t ∈ T that each resource’s total usage by tasks does not exceed its capacity.
Finally, precedence relationships between some tasks are considered. The objective is to find
a schedule with the earliest project ending date or, in other words, the minimal makespan.

Blazewicz et al. [7] have shown that the RCPSP belongs to the strongly NP-hard problems.
Thus, its computation complexity and industrial application interest has led to a plethora of
techniques, both exact and heuristic, in various research domains. These approaches include

R. Boudreault, V. Simard, D. Lafond, and C.-G. Quimper 10:5

notably specialized branch-and-bound methods [12, 21, 40], mixed-integer programming [11, 20]
and, as presented in Section 3.2, constraint programming. We refer the reader to Pellerin et
al. [30] for a recent survey of current heuristic approaches.

Among the various RCPSP benchmark instance sets in the literature, three are usual:
PSPLIB [19], BL [5] and Pack [8]. While these contain from 17 to 120 tasks, our instances
listed in Table 1 are significantly larger. Furthermore, the number of resources in these
benchmarks is at most 5, while ours can go up to 146. Planning horizons, as well as navy830
maximal task duration, are also greater than the ones in these benchmarks that go up to
139 and 19 time points respectively, but are comparable to the ones in the more realistic
instances of Koné et al. [20].

3.2 Constraint Programming

Constraint Programming (CP) is a powerful programming paradigm to solve combinatorial
problems. In particular, it can be used to optimally solve many large-scale optimization
problems under constraints [36]. A CP model is formed of decision variables, each provided
with a finite set of possible values called domain and denoted dom(X) for a variable X.
The relationships between the variables are defined by constraints, each provided with a
specialized inference algorithm. Optimization problems also have an objective function to
minimize. CP solvers generally perform a tree search to find feasible solutions, where each
node of the tree corresponds to a partial solution, and each branching is a node created from
its parent with an additional assignment of an unfixed variable to a value. The branching
selection rules for variables and values are defined using heuristics.

Significant efforts have been made in the constraint programming community to effi-
ciently solve scheduling problems involving resource constraints. Introduced by Aggoun and
Beldiceanu [1], the Cumulative global constraint enforces the usage of a resource by tasks
to be at most its capacity for each time point in the optimization timeline. Formally, for a
resource r ∈ R, given variables Si and Di are respectively the starting time and duration of
task i ∈ I, Cumulative([Si | i ∈ I], [Di | i ∈ I], [hi,r | i ∈ I], cr) is logically equivalent to

∑
i ∈ I :

Si≤ t <Si+Di

hi,r ≤ cr ∀ t ∈ T .

Over the years, many efficient rules for the Cumulative constraint have been developed
to detect failures and filter variables’ domains (see e.g. [4, 6, 14, 29, 41]). Furthermore,
important progress towards solving large-scale RCPSP instances with CP has been made by
Schutt et al. [37, 38] by combining some of these rules with lazy clause generation. Introduced
by Ohrimenko et al. [28], this technique is a hybrid between CP and boolean satisfiability
(SAT) solvers. During the search, each filtered value is now recorded with an explanation as
a SAT clause. When a failure is detected, the solver uses its explanations to learn a nogood,
a core reason for what led to this conflict. This nogood is then added as a new constraint to
the solver’s underlying SAT mechanism. As a result, this process allows avoiding reproducing
the same choices later during the search. Furthermore, it enables SAT-based branching
heuristics depending on variables’ activity in conflicts, notably Variable State Independent
Decaying Sum (VSIDS) [26]. Several modern and efficient CP solvers, such as Chuffed [9]
and OR-Tools [31], are based on the lazy clause generation technique.

CP 2022

10:6 A CP Approach to Ship Refit Project Scheduling

3.3 Solution-Based Phase Saving

Large Neighborhood Search (LNS) [32, 39] is a metaheuristic that has been successfully used
in many contexts for scaling exact solving methods to large optimization problems. Given
an initial solution, the technique iteratively improves the best known solution according
to the considered objective. At each iteration, a neighborhood is chosen such as a part of
the variables are fixed to their value in the current solution, whereas the others are relaxed,
which generates a smaller subproblem. Solutions of the latter can then be quickly found by
any chosen method.

One of the major drawbacks of relying on LNS to find better solutions for an optimization
problem is the loss of exactness from the initial solving method. Thus, a relatively simple,
efficient and closely related to LNS value selection heuristic for CP solvers has been introduced
by Vion and Piechowiak [42] as Best-Solution. Demirović et al. [13] introduced the same
heuristic soon after under the name Solution-Based Phase Saving (SBPS). We refer in the
following to this heuristic as the latter terminology.

Given an optimization problem with variables X1, . . . , Xn, a variable selection heuristic
Hvar and a value selection heuristic Hval, let b = (b1, . . . , bn) denote the current best solution,
if one exists, where bi corresponds to the value of Xi in this solution. If Xk is the variable
chosen by Hvar, the SBPS branching strategy does the following:
a) If b exists and bk ∈ dom(Xk), then choose the value bk for Xk;
b) Else, choose a value for Xk following Hval.

Thus, the strategy focuses the search around the current best solution as much as possible.
Combined with a restart strategy and a dynamic variable selection heuristic such as VSIDS,
SBPS effectively mimics LNS [13]. Indeed, starting from the root node, the search fixes almost
all variables to their current best solution value, and then searches around this solution for a
subset of unassigned variables with backtracking, thus implicitly building a neighborhood.
The size of the latter is then limited by the restart strategy. Also, the dynamic aspect of
the search produces a built-in diversification of neighborhoods, besides that VSIDS tends
to select closely related variables. The resulting strategy produced interesting results on a
variety of instances [13, 42].

3.4 RCPSP Complexity

In order to properly assess the performance of our approach on the instances in Table 1,
it is important to compare them on a similar scale. To do so, Artigues et al. [3] listed a
selection of state-of-the-art indicators that characterize the complexity of RCPSP instances.
These indicators are typically used to generate instances of a targeted complexity level, but
are also relevant to evaluate existing instances. They can be classified in four categories:
precedence-oriented, time-oriented, resource-oriented, and hybrid.

The Order Strength (OS) is a precedence-oriented indicator showing how much the
instance’s precedence constraints induce an ordering of the tasks [3, 24]. If P denotes the set
of task pairs {i, j} (i, j ∈ I, i ̸= j) which cannot be executed in parallel due to a chain of
precedence constraints between them, OS is defined as the ratio of |P | over the total number
of task pairs:

OS := |P |
|I|(|I| − 1)/2 .

We have OS ∈ [0, 1]. It has been observed that the closer the value is to 1, the more ordered
the tasks and the lower the complexity.

R. Boudreault, V. Simard, D. Lafond, and C.-G. Quimper 10:7

The Resource Factor (RF) is a resource-oriented indicator which evaluates the resource
usage by tasks [3]. It is defined as the ratio of the average number of required resources by
task over the number of resources:

RF :=
∑

i∈I,r∈R ui,r

|I||R|
.

where ui,r equals 1 if task i ∈ I requires resource r ∈ R (hi,r > 0), and 0 otherwise. We
have RF ∈ [0, 1]. It has been shown that as the RF value increases, the complexity also does.

The Resource Strength (RS) indicator combines a time-oriented view with the resource
complexity [3, 10]. For each resource r ∈ R, it considers its maximal usage cmax

r when tasks
are scheduled at their earliest while satisfying precedence constraints,

cmax
r := max

t∈T

∑
i∈IES

t

hi,r,

where IES
t ⊆ I is the subset of tasks executed at time point t in this schedule. The resource’s

strength RSr is then defined by the ratio of its overall availability over its availability in the
earliest schedule:

RSr := cr − cmin
r

cmax
r − cmin

r

,

where cmin
r := maxi∈I hi,r. In the case where cmax

r ≤ cr, RSr is instead fixed to 1. Thus,
every resource r ∈ R with RSr = 1 is always sufficiently available and is not a constraint.
The RS value is obtained by averaging RSr over all resources. We have RS ∈ [0, 1], and the
complexity generally increases as RS decreases.

The Disjunctive Ratio (DR) indicator is a hybrid between the precedence and resource
complexities [3, 5]. The set of task pairs P which cannot be executed in parallel from OS
is extended with a set D of pairs that would violate a resource constraint if both tasks
overlapped in time, i.e. D := {{i, j} : ∃ r ∈ R, hi,r + hj,r > cr}. DR is then defined as the
ratio of the number of elements in this new set over the total number of task pairs:

DR := |P ∪ D|
|I|(|I| − 1)/2 .

We also have DR ∈ [0, 1]. It has been established that the higher DR is, the more disjunctive
the instance is.

4 Methodology

4.1 Main model
In the following, we present the main CP model developed for the ship refit planning problem,
as described in Section 2. It is inspired from the classical RCPSP model for CP [38]. Note
that in this model, we assume a planning granularity in days. Extensions to support hours
and other specific constraints are discussed in Section 4.2.

Reusing the scheduling notation introduced in Section 3.1, we define the input parameters.
The horizon tm ∈ Z>0 determines the scheduling timeline as the set T = {0, 1, . . . , tm}. If
I is the given set of tasks to schedule, each task i ∈ I is associated with sL

i , sU
i ∈ T and

eL
i , eU

i ∈ T which are lower (L) and upper (U) bounds on the task starting (s) and ending
(e) times as implied by the date constraints. Each task i ∈ I also has a processing time

CP 2022

10:8 A CP Approach to Ship Refit Project Scheduling

pi ∈ T which corresponds to the task duration in days without overtime. The precedence
requirements form the set P and are encoded as triples (i, j, l), asking for task i ∈ I to
be completed l ∈ T days before task j ∈ I \ {i} starts. Each resource r in the given set
of resources R has a constant capacity cr ∈ Z>0, a daily standard usage cost wS

r ∈ R≥0,
and a daily overtime usage cost wO

r ∈ R≥0, with wS
r ≤ wO

r . The amount of resource r ∈ R
required by task i ∈ I is given by hi,r ∈ Z≥0. A working day is defined by three parameters,
dS , dO, dE ∈ {0, 1, . . . , 23}, with dS < dO ≤ dE , where [dS , dO − 1] are standard hours and
[dO, dE] are overtime hours. Finally, tasks that can be performed in overtime are contained
in the set I∗ ⊆ I.

The integer decision variables of our model are as follows. For each task i ∈ I, Si is the
task starting time, while Ei is the task total elapsed time between its start and its completion.
We define dom(Si) = [sL

i , sU
i] and dom(Ei) = T , for each i ∈ I.

The constraints of the model are presented below.

Cumulative([Si | i ∈ I], [Ei | i ∈ I], [hi,r | i ∈ I], cr) ∀r ∈ R (1)
eL

i ≤ Si + Ei ≤ eU
i ∀i ∈ I (2)

Si + Ei + l ≤ Sj ∀(i, j, l) ∈ P (3)⌈(
dO − dS

)
pi

dE − dS

⌉
≤ Ei ≤ pi ∀i ∈ I∗ (4)

Ei = pi ∀i ∈ I \ I∗ (5)

The Cumulative constraints (1) ensure that the cumulative usage of each resource by tasks
does not overload its capacity at any given point in the timeline. Since Si + Ei represents
the ending time of task i ∈ I, constraints (2) force the ending time of each task to respect
its upper and lower bounds, as implied by the problem date constraints. Constraints (3)
impose the precedence requirements from set P. Constraints (4) define the possible values
for the elapsed time Ei of task i ∈ I∗ that can include some overtime work hours. First,
the value must be at most pi since it corresponds to the task duration without overtime.
Second, note that performing overtime hours reduces the overall elapsed time in days of a
task. The number of standard hours required by task i ∈ I∗ is given by

(
dO − dS

)
pi, which

is redistributed over longer days of dE − dS hours, fully using the overtime hours each day,
thus a lower bound on Ei. For example, if (dS , dO, dE) = (8, 16, 20), a typical day is formed
of 8 standard hours and 4 overtime hours. A task i ∈ I∗ with pi = 3 requires 3 × 8 = 24
standard hours, but can be completed in

⌈ 24
12
⌉

= 2 days when working 12-hour shifts (8
hours is in overtime). Finally, constraints (5) force tasks that cannot be executed in overtime
(I \ I∗) to have their standard duration.

We considered three different objective functions, where the model can be used with
either of them. First, the makespan objective, which is the minimization of the schedule
duration, is modeled as follows:

min max
i∈I

(Si + Ei) .

This objective is considered without allowing overtime, which is done by assuming I∗ := ∅.
Then, the overtime objective is to minimize the costs associated with overtime work.

For a task i ∈ I∗, the number of standard working days transformed into overtime is given
by pi − Ei. Since each overtime day costs wO

r − wS
r per resource r ∈ R used, the total cost

is given by
∑

i∈I∗
∑

r∈R hi,r(wO
r − wS

r)(pi − Ei). Equivalently, we minimize the following
linear expression where the inner summation is pre-computed for each i ∈ I∗:

min
∑
i∈I∗

(pi − Ei)
(∑

r∈R
hi,r(wO

r − wS
r)
)

.

R. Boudreault, V. Simard, D. Lafond, and C.-G. Quimper 10:9

Finally, the robustness objective is to minimize the risk of exceeding the deadline of a
schedule by planning the overtime early in the project. To evaluate this criterion for a task
i ∈ I∗, we multiply its amount of used overtime pi − Ei by its starting time Si, leading to
the following non-linear function:

min
∑
i∈I∗

(pi − Ei)Si.

4.2 Extensions
The model presented in Section 4.1 has been extended in several ways to better suit the
ship refit planning reality. First of all, more types of precedence constraints were considered
other than the ones in (3). Indeed, our current model supports any precedence of the form
Xi + l ≤ Yj , where X, Y ∈ {S, S + E} for l ∈ T and i, j ∈ I (i ̸= j). It was also asked
that our model consider that some tasks, but not all, should be suspended on weekends.
To this end, additional variables Ni representing the non-working (idle) time points of task
i ∈ I were considered. In the model, the non-working time is included in the elapsed time
of the task. Thus, constraints (4) and (5) are instead applied on the working time Ei − Ni.
Additional constraints are considered to enforce a value for Ni when the task overlaps at least
one weekend. Finally, the model has been extended to support a scheduling granularity in
hours. In this case, the overtime constraints (4) and (5) are replaced by additional variables
Oi encoding the number of hours in overtime for task i ∈ I∗. Each of these variables is
closely related via special constraints to its associated Ni which also includes the non-working
hours during the nights. Thus, in hours, the elapsed times are simply equal to pi + Ni.

4.3 Search Heuristics
Two branching heuristics for the CP model are considered herein as a basis. For the
makespan objective, we select the starting time variable Si, i ∈ I, with the smallest value
in its domain, and we assign it to this value. This way, the search focuses as much as possible
around the schedule where each task begins at its earliest starting time. For the overtime
and robustness objectives, the branching heuristic selects the task i ∈ I that has a starting
time variable Si with the smallest value in its domain. Then, it assigns, in order, the smallest
value in dom(Si) to Si and the greatest value in dom(Ei) to Ei. In the hour granularity case,
this last branching is replaced by assigning the smallest value in dom(Oi) to Oi, and then
the smallest value in dom(Ei) to Ei. In both cases, the intuition is to place the tasks as early
as possible, while simultaneously choosing a task duration with as few overtime time points
as possible. The resulting heuristic can be formulated with the priority search annotation
from the MiniZinc modeling language [15, 27], and is supported by Chuffed CP solver [9].

5 Experimentation

The benchmark we considered for our experiments is formed of the seven instances presented
in Section 2. In order to compare them on the same basis and assess their complexity, we
computed for each instance the indicators OS, RF, RS and DR introduced in Section 3.4.
The resulting values are presented in Table 2. In the case of RS, since many resources gave a
value RSr = 1 which makes the comparison difficult, we decided to compute RS by averaging
RSr over all resources r ∈ R that are in fact restrictive (RSr < 1). Values in bold font
highlight the most complex instances according to each indicator.

CP 2022

10:10 A CP Approach to Ship Refit Project Scheduling

Table 2 Complexity indicators of the seven instances.

Instance OS RF RS DR

day-yacht21 0.72 0.28 0.40 0.82
hour-yacht21 0.72 0.28 0.40 0.82
generic136 0.02 0.23 0.24 0.06
software138 0.27 0.12 0.01 0.32
navy253 0.19 0.02 0.71 0.18
cruise510 0.07 0.06 0.27 0.07
navy830 0.02 0.01 0.66 0.02

Each instance has its strengths and weaknesses. Looking first at OS, instance generic136
is one with the least ordered structure. It can be explained by the fact that the instance was
created with arbitrary precedence relations as a means of testing. It seems nonetheless that
our three realistic use cases, navy253, cruise510 and navy830, are also relatively complex
according to this indicator. In terms of resource usage (RF) and disjunctive structure (DR),
the two smallest instances, day-yacht21 and hour-yacht21 are the most complex ones. A
big part of that comes from the fact these instances contain a lot less resources, but are
more often used at full capacity. Finally, considering the time-oriented view (RS), the typical
RCPSP instance software138 is the most constrained in terms of resources. Although the
realistic instances seem to be less affected by their resource constraints, their complexity lies
in the large number of tasks to schedule and the lack of artificially induced ordering.

The CP model presented in Section 4 was modeled in the MiniZinc 2.5.5 language [27]. We
implemented1 the SBPS scheme as described in Section 3.3 into the solver Chuffed [9], which
we used to solve the instances. The Cumulative constraint was set to apply the optional
Time-Table-Edge-Finding (TTEF) checking and filtering rules [37, 41]. The experiments
were performed on a MSI GP63 Leopard 8RE machine with an Intel i7-8750H CPU at 2.2
GHz, 6 cores and 16 GB of RAM. Each optimization execution was given a timeout of 4
hours, and a constant restart strategy of 100 failures.

Each instance was solved for each objective, makespan, overtime and robustness. For
the last two objectives, we have empirically chosen a “restricted” horizon for each instance
corresponding to a reduction between 2% and 30% of the best known makespan. However,
due to its specific constrained nature preventing overtime to be performed, generic136 could
not be considered for these objectives.

For each optimization, two search methods were compared. The Baseline strategy
consists simply of using the search heuristics defined in Section 4.3. The SBPS strategy,
on the other hand, also uses these heuristics until a first solution is found. When it is the
case, the SBPS branching procedure activates. Furthermore, the variable selection scheme
of choosing Si, i ∈ I, with the smallest value in dom(Si) is replaced by selecting Si with
the greatest conflict activity, as provided by the VSIDS score of Chuffed [9, 26]. The latter
modification allows the resulting procedure to effectively reproduce an LNS [13]. We did
not directly use the free search (-f) option of Chuffed, which is alternating between the
user-defined heuristic and the VSIDS strategy (on all the variables), since we observed the
solving process was generally slowed down by its usage. However, since no solution was
found before the timeout without it, we added the free search for instance software138
when optimizing the overtime and the robustness.

1 The code is available at https://github.com/raphaelboudreault/chuffed/releases/tag/SBPS. We
thank Emir Demirović for providing his original implementation [13].

https://github.com/raphaelboudreault/chuffed/releases/tag/SBPS

R. Boudreault, V. Simard, D. Lafond, and C.-G. Quimper 10:11

Table 3 Results on the benchmark instances when considering the makespan objective.

Instance
Baseline SBPS Time (s)

improv.Objective Time (s) Objective Time (s)

day-yacht21 28 days 0.2* 28 days 0.2* 0.2
hour-yacht21 78 hours 0.4* 78 hours 0.4* 0.4
generic136 178 days 0.7* 178 days 0.7* 0.7
software138 144 days 1.4 119 days 41.6 1.1
navy253 389 hours 4.2 389 hours 3.7 3.7
cruise510 228 days 14.7 227 days 785.7 229.3
navy830 5216 hours 18.7 5144 hours 199.7 18.2

Table 4 Results on the benchmark instances when considering the overtime objective.

Instance
Baseline SBPS Time (s)

improv.Objective Time (s) Objective Time (s)

day-yacht21 1560 0.3* 1560 0.3* 0.3
hour-yacht21 485 0.4* 485 0.4* 0.4
software138 5600 14 359.6 2600 153.4 34.3
navy253 70 4.2 66 5.0 4.0
cruise510 26 000 11.7 15 760 7555.3 5.8
navy830 227 25.2 36 276.5 26.6

Table 5 Results on the benchmark instances when considering the robustness objective.

Instance
Baseline SBPS Time (s)

improv.Objective Time (s) Objective Time (s)

day-yacht21 47 0.3* 47 0.3* 0.3
hour-yacht21 192 0.4* 192 0.4* 0.4
software138 900 13 571.8 258 320.2 15.3
navy253 10 686 5057.6 3480 1411.9 6.7
cruise510 4870 13 022.5 842 1321.7 14.2
navy830 146 794 11 208.9 9076 13 863.4 41.1

Tables 3, 4, and 5 present respectively the results obtained when considering the
makespan, overtime and robustness objectives. In each table, we report the best
objective value found (Objective) as well as the solving time (Time) in seconds. When the
timeout was reached, we instead show the required time to find the best solution. A “*” next
to a solving time value indicates that the instance was optimally solved. For comparison
purposes, we also report the time in seconds taken with SBPS to find a solution with an
objective value less than or equal to the best one found with Baseline (Time improv.).

For the makespan objective (Table 3), instances day-yacht21, hour-yacht21, and
generic136 are quickly solved optimally using both strategies. For the other instances, the
Baseline method finds its best solution in the first 20 seconds of the search, without being

CP 2022

10:12 A CP Approach to Ship Refit Project Scheduling

able to improve it after. In comparison, the SBPS strategy improves the minimal makespan
for software138 by 25 days, cruise510 by 1 day and navy830 by 9 days, while instance
navy253 gave the same solution. The use of SBPS thus reduced the best makespan by 5%
on average. Furthermore, the improved solutions are found in a similar time than Baseline,
except for cruise510 where the solution of 227 days is found 15.6 times slower.

For the overtime objective (Table 4), the objective value corresponds to the costs induced
by overtime work. Since our benchmark is formed of abstract and anonymized realistic
instances, the obtained costs are of different sizes and units, thus incomparable in-between
instances. Note that instances day-yacht21 and hour-yacht21 are still trivially solved
optimally with both strategies. Bigger instances see their best objective value from Baseline
considerably improved with SBPS. The best cost is reduced by 48% on average using SBPS,
while the best solution of Baseline is found 94 times faster for software138, and 2 times
faster for cruise510.

For the robustness objective (Table 5), the unconventional way of representing it is
a challenge for the Baseline method. While day-yacht21 and hour-yacht21 are still
optimally solved, the larger instances need a lot of computation time to settle on a good
solution. In fact, for software138 and cruise510, the time to find the best solution is close
to the timeout (14 400 seconds). In comparison, the SBPS strategy finds a solution with the
same robustness value much faster, in no more than 42 seconds. For cruise510, the solution
is found 917 times faster. Furthermore, the best objective found by Baseline is reduced on
average by 79%.

6 Discussion

The main goal of this research was to create a prototype solution for multi-objective opti-
mization in the ship refit domain. By successfully proposing plans to the targeted instances
supplied by our industrial partners within a reasonable time limit, we have demonstrated
the applicability of our constraint programming model. It was important for practical use to
obtain a good solution under predetermined time limits: 15 minutes for instances under 100
tasks, one hour for instances between 100 and 500 tasks, and four hours for instances over
500 tasks. In comparison, an expert manually planning smaller instances like day-yacht21
could take up to four hours. While it was possible to consider the Baseline strategy as an
attempt to solve the biggest instances, the computation time and the solution’s quality were
sometimes less than satisfactory for industrial purposes. The use of SBPS proved to be a
fairly good strategy, leading to improved objective values in a significantly shorter amount
of time for the makespan, overtime and robustness objectives. These experiments also
demonstrated the Refit Optimizer prototype’s relevance for real-world project planning and
ongoing project management with re-optimization. Qualitative user feedback from usability
tests with domain experts also supports this assessment.

A lot of effort was put in designing Refit Optimizer to be reusable across a wide variety
of other scheduling contexts. The terminology and architecture of the product database
were made consistent with the terms and structures from the project management field.
Plus, the genericity of the constraints formulation allows to consider more than ten different
types of precedence and time constraints on tasks. Resources can include workers as well as
locations and equipment, which opens to future improvements with geospatial constraints [22].
Preliminary tests on real projects in the naval, avionics, and ground transportation domains
also show that the solution has a strong cross-domain potential.

R. Boudreault, V. Simard, D. Lafond, and C.-G. Quimper 10:13

The main reason why we chose Chuffed [9] over other CP solvers was its proven efficiency on
large-scale RCPSP instances by combining state-of-the-art Cumulative filtering algorithms
with lazy clause generation [37, 38]. Its built-in VSIDS branching heuristic allowed us to
easily reproduce the gains obtained in recent SBPS-related work [13, 42]. Furthermore,
Chuffed could directly support the priority search MiniZinc annotation [15, 27] used to
formulate our baseline search heuristics. We did try the OR-Tools CP-SAT solver [31] via its
FlatZinc implementation, but preliminary results showed greater computation times to find
similar or worse solutions. We did also try a standard LNS procedure prior implementing
SBPS. However, we rapidly found that the technique was rather inefficient for the overtime
and robustness objectives, while it was difficult to find a suitable solution deconstruction
rule.

There were many challenges in working in an industrial setting. First, the importance of
anonymity for the industrial partners made it difficult to analyze some results. For many
instances, the estimated workforce costs were changed to abstract values, which produced
unrealistic execution costs. Having access to real data would have allowed us to produce
more complex realistic instances to challenge our prototype. Explainability of results was
also an important challenge. Since the tool needs to be used in an industrial setting by many
different people, it is important to document and explain each potential source of incoherent
results encountered. Thus, a lot of effort was put on explaining the input data format and
importance of each parameter to untrained users in order to avoid as much illogical data
as possible. It was also important to focus on results interpretation and solution selection.
Furthermore, one recurring issue was that, in a lot of situations, real projects could not be
optimized because of an unsatisfiability proof by the algorithm. Without any feedback to
the users as to why it is the case, users were at a loss for identifying which constraints to
relax or remove. An automated method for identifying causes and potential solutions to help
overcome over-constrained problems appears to be an essential requirement for the successful
use of the prototype in the field. We did use FindMUS [23] from the MiniZinc tool suite to
help us identify the data inconsistencies. However, its usage required complete knowledge of
the optimization model, thus was not a viable option for end users.

A comparison of the complexity of our seven instances to the complexity of PSPLIB [19],
BL [5] and Pack [8] benchmarks, as evaluated by Artigues et al. [3], shows the difference
between real-life and theoretical applications. Our set of realistic instances is more complex
on average when looking at OS (precedence) and RS (resources over time), although the
difference is small. This can be explained by the significant greater size of our instances.
However, the literature benchmarks are widely more complex in terms of RF (resource
usage) and DR (resources and precedence). That can be explained by the changes made by
experts so the instances could be manually planned. Manually defined resources are also less
restrictive than in computer generated instances.

It would have been interesting to test our CP approach on the three literature benchmarks,
as well as the extended ones from Koné et al. [20]. We established that our set of seven
instances, although closer to the ship refit reality, were less complex than the computer
generated instances, thus more extensive tests would be necessary to complete the constraint
programming prototype. Although our industrial partners may not be subject to high levels
of precedence-resource complexity, it is important to be aware of the prototype’s limits in the
hopes of further improving the solution. Being able to consider more complex problems could
also become a strategic advantage for shipyards, allowing them to include more constraints
normally not considered with manual plans.

CP 2022

10:14 A CP Approach to Ship Refit Project Scheduling

7 Conclusion

In this paper, we introduced a CP approach to the ship refit planning problem. Our prototype
solution was successfully tested on seven realistic instances supplied by our industrial partners
with varying levels of complexity, which demonstrated the CP applicability for this problem.
The proposed CP model is highly related to the classical RCPSP model, while multiple
extensions are considered to address problem-specific constraints and objectives. As a means
to speedup the search of better solutions, we proposed to use the SBPS value selection
heuristic. Its usage improved on average the objective value by 5%, 48% and 79% when
minimizing respectively the makespan, the overtime costs and the robustness, as better
solutions are found significantly faster than with our baseline heuristics.

Directions for future work include the integration of an optimization algorithm based on
mixed-integer programming, and extending algorithms by considering task priority levels
for scope optimization, i.e. when work requirements surpass the capacity. We also aim to
further explore the use of probabilistic discrete-event simulations for robustness assessment,
and the use of geospatial modeling and visualization to improve planning as well as users
understanding.

References
1 Abderrahmane Aggoun and Nicolas Beldiceanu. Extending chip in order to solve complex

scheduling and placement problems. Mathematical and Computer Modelling, 17(7):57–73,
April 1993. doi:10.1016/0895-7177(93)90068-A.

2 Rashpal Ahluwalia and Denis Pinha. Decision support system for production planning in the
ship repair industry. Industrial and Systems Engineering Review, 2(1):52–61, July 2014.

3 Christian Artigues, Oumar Koné, Pierre Lopez, Marcel Mongeau, Emmanuel Néron, and
David Rivreau. Benchmark instance indicators and computational comparison of methods. In
Resource-Constrained Project Scheduling, pages 107–135. John Wiley & Sons, Ltd, 2008.

4 Philippe Baptiste, Claude Le Pape, and Wim Nuitjen. Constraint-Based Scheduling: Applying
Constraint Programming to Scheduling Problems. International Series in Operations Research
& Management Science. Springer, Boston, MA, first edition, 2001.

5 Philippe Baptiste and Claude Le Pape. Constraint propagation and decomposition techniques
for highly disjunctive and highly cumulative project scheduling problems. Constraints, 5(1):119–
139, January 2000. doi:10.1023/A:1009822502231.

6 Nicolas Beldiceanu and Mats Carlsson. A new multi-resource cumulatives constraint with
negative heights. In Pascal Van Hentenryck, editor, Principles and Practice of Constraint
Programming - CP 2002, Lecture Notes in Computer Science, pages 63–79, Berlin, Heidelberg,
2002. Springer. doi:10.1007/3-540-46135-3_5.

7 J. Blazewicz, J. K. Lenstra, and A. H. G. Rinnooy Kan. Scheduling subject to resource
constraints: Classification and complexity. Discrete Applied Mathematics, 5(1):11–24, January
1983. doi:10.1016/0166-218X(83)90012-4.

8 Jacques Carlier and Emmanuel Néron. On linear lower bounds for the resource constrained
project scheduling problem. European Journal of Operational Research, 149:314–324, September
2003. doi:10.1016/S0377-2217(02)00763-4.

9 Geoffrey G. Chu. Improving Combinatorial Optimization. PhD thesis, The University of
Melbourne, 2011. GitHub: https://github.com/chuffed/chuffed.

10 Bert De Reyck and Willy Herroelen. On the use of the complexity index as a measure of
complexity in activity networks. European Journal of Operational Research, 91(2):347–366,
June 1996. doi:10.1016/0377-2217(94)00344-0.

11 Sophie Demassey. Mathematical programming formulations and lower bounds. In Resource-
Constrained Project Scheduling: Models, Algorithms, Extensions and Applications, pages 49–62.
John Wiley & Sons, Ltd, 2008.

https://doi.org/10.1016/0895-7177(93)90068-A
https://doi.org/10.1023/A:1009822502231
https://doi.org/10.1007/3-540-46135-3_5
https://doi.org/10.1016/0166-218X(83)90012-4
https://doi.org/10.1016/S0377-2217(02)00763-4
https://github.com/chuffed/chuffed
https://doi.org/10.1016/0377-2217(94)00344-0

R. Boudreault, V. Simard, D. Lafond, and C.-G. Quimper 10:15

12 Erik L. Demeulemeester and Willy S. Herroelen. New benchmark results for the resource-
constrained project scheduling problem. Management Science, 43(11):1485–1492, November
1997. doi:10.1287/mnsc.43.11.1485.

13 Emir Demirović, Geoffrey Chu, and Peter J. Stuckey. Solution-Based Phase Saving for CP:
A Value-Selection Heuristic to Simulate Local Search Behavior in Complete Solvers. In
John Hooker, editor, Principles and Practice of Constraint Programming, Lecture Notes
in Computer Science, pages 99–108, Cham, 2018. Springer International Publishing. doi:
10.1007/978-3-319-98334-9_7.

14 Hamed Fahimi, Yanick Ouellet, and Claude-Guy Quimper. Linear-time filtering algorithms
for the disjunctive constraint and a quadratic filtering algorithm for the cumulative not-first
not-last. Constraints, 23(3):272–293, July 2018. doi:10.1007/s10601-018-9282-9.

15 Thibaut Feydy, Adrian Goldwaser, Andreas Schutt, Peter J Stuckey, and Kenneth D Young.
Priority Search with MiniZinc. In ModRef 2017: The Sixteenth International Workshop on
Constraint Modelling and Reformulation, 2017.

16 Sönke Hartmann and Dirk Briskorn. An updated survey of variants and extensions of the
resource-constrained project scheduling problem. European Journal of Operational Research,
297(1):1–14, February 2022. doi:10.1016/j.ejor.2021.05.004.

17 Willy Herroelen, Bert De Reyck, and Erik Demeulemeester. Resource-constrained project
scheduling: A survey of recent developments. Computers & Operations Research, 25(4):279–302,
April 1998. doi:10.1016/S0305-0548(97)00055-5.

18 IBM Maximo Application Suite. IBM, 2021. Website: https://www.ibm.com/ca-en/
products/maximo.

19 Rainer Kolisch and Arno Sprecher. PSPLIB - A project scheduling problem library. European
Journal of Operational Research, 96(1):205–216, January 1997. doi:10.1016/S0377-2217(96)
00170-1.

20 Oumar Koné, Christian Artigues, Pierre Lopez, and Marcel Mongeau. Event-based MILP
models for resource-constrained project scheduling problems. Computers & Operations Research,
38(1):3–13, January 2011. doi:10.1016/j.cor.2009.12.011.

21 Philippe Laborie. Complete MCS-based search: Application to resource constrained project
scheduling. In Proceedings of the 19th International Joint Conference on Artificial Intelligence,
IJCAI’05, pages 181–186, San Francisco, CA, USA, July 2005. Morgan Kaufmann Publishers
Inc.

22 Daniel Lafond, Dave Couture, Justin Delaney, Jessica Cahill, Colin Corbett, and Gaston
Lamontagne. Multi-objective schedule optimization for ship refit projects: Toward geospatial
constraints management. In Tareq Ahram, Redha Taiar, and Fabienne Groff, editors, Human
Interaction, Emerging Technologies and Future Applications IV, Advances in Intelligent Systems
and Computing, pages 662–669, Cham, 2021. Springer International Publishing. doi:10.1007/
978-3-030-74009-2_84.

23 Kevin Leo and Guido Tack. Debugging unsatisfiable constraint models. In Domenico
Salvagnin and Michele Lombardi, editors, Integration of AI and OR Techniques in Con-
straint Programming, Lecture Notes in Computer Science, pages 77–93, Cham, 2017.
Springer International Publishing. GitLab: https://gitlab.com/minizinc/FindMUS. doi:
10.1007/978-3-319-59776-8_7.

24 Anthony A. Mastor. An experimental investigation and comparative evaluation of production
line balancing techniques. Management Science, 16(11):728–746, July 1970. doi:10.1287/
mnsc.16.11.728.

25 Microsoft Project. Microsoft, 2019. Website: https://www.microsoft.com/en-ca/
microsoft-365/project/project-management-software.

26 M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an
efficient SAT solver. In Proceedings of the 38th Design Automation Conference, pages 530–535,
June 2001. doi:10.1145/378239.379017.

CP 2022

https://doi.org/10.1287/mnsc.43.11.1485
https://doi.org/10.1007/978-3-319-98334-9_7
https://doi.org/10.1007/978-3-319-98334-9_7
https://doi.org/10.1007/s10601-018-9282-9
https://doi.org/10.1016/j.ejor.2021.05.004
https://doi.org/10.1016/S0305-0548(97)00055-5
https://www.ibm.com/ca-en/products/maximo
https://www.ibm.com/ca-en/products/maximo
https://doi.org/10.1016/S0377-2217(96)00170-1
https://doi.org/10.1016/S0377-2217(96)00170-1
https://doi.org/10.1016/j.cor.2009.12.011
https://doi.org/10.1007/978-3-030-74009-2_84
https://doi.org/10.1007/978-3-030-74009-2_84
https://gitlab.com/minizinc/FindMUS
https://doi.org/10.1007/978-3-319-59776-8_7
https://doi.org/10.1007/978-3-319-59776-8_7
https://doi.org/10.1287/mnsc.16.11.728
https://doi.org/10.1287/mnsc.16.11.728
https://www.microsoft.com/en-ca/microsoft-365/project/project-management-software
https://www.microsoft.com/en-ca/microsoft-365/project/project-management-software
https://doi.org/10.1145/378239.379017

10:16 A CP Approach to Ship Refit Project Scheduling

27 Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J. Duck,
and Guido Tack. MiniZinc: Towards a standard CP modelling language. In Christian
Bessière, editor, Principles and Practice of Constraint Programming – CP 2007, Lecture
Notes in Computer Science, pages 529–543, Berlin, Heidelberg, 2007. Springer. Website:
https://www.minizinc.org/. doi:10.1007/978-3-540-74970-7_38.

28 Olga Ohrimenko, Peter J. Stuckey, and Michael Codish. Propagation via lazy clause generation.
Constraints, 14(3):357–391, September 2009. doi:10.1007/s10601-008-9064-x.

29 Yanick Ouellet and Claude-Guy Quimper. A O(n log2 n) checker and O(n2 log n) filtering
algorithm for the energetic reasoning. In Willem-Jan van Hoeve, editor, Integration of
Constraint Programming, Artificial Intelligence, and Operations Research, Lecture Notes in
Computer Science, pages 477–494, Cham, 2018. Springer International Publishing. doi:
10.1007/978-3-319-93031-2_34.

30 Robert Pellerin, Nathalie Perrier, and François Berthaut. A survey of hybrid metaheuristics
for the resource-constrained project scheduling problem. European Journal of Operational
Research, 280(2):395–416, January 2020. doi:10.1016/j.ejor.2019.01.063.

31 Laurent Perron and Vincent Furnon. OR-Tools. Google, 2022. Website: https://developers.
google.com/optimization/.

32 David Pisinger and Stefan Ropke. Large Neighborhood Search. In Michel Gendreau and
Jean-Yves Potvin, editors, Handbook of Metaheuristics, International Series in Operations
Research & Management Science, pages 399–419. Springer US, Boston, MA, 2010. doi:
10.1007/978-1-4419-1665-5_13.

33 Primavera P6 Enterprise Project Portfolio Management (P6 EPPM). Oracle,
2022. Website: https://docs.oracle.com/en/industries/construction-engineering/
primavera-p6-project/index.html.

34 A. Alan B. Pritsker, Lawrence J. Waiters, and Philip M. Wolfe. Multiproject scheduling with
limited resources: A zero-one programming approach. Management Science, September 1969.
doi:10.1287/mnsc.16.1.93.

35 Robert Richards and Richard Stottler. Complex project scheduling lessons learned from NASA,
boeing, general dynamics and others. In 2019 IEEE Aerospace Conference, pages 1–9, March
2019. doi:10.1109/AERO.2019.8741996.

36 Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of Constraint Program-
ming, volume 2 of Foundations of Artificial Intelligence. Elsevier, 2006.

37 Andreas Schutt, Thibaut Feydy, and Peter J. Stuckey. Explaining time-table-edge-finding
propagation for the cumulative resource constraint. In Carla Gomes and Meinolf Sellmann,
editors, Integration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems, Lecture Notes in Computer Science, pages 234–250, Berlin, Heidelberg,
2013. Springer. doi:10.1007/978-3-642-38171-3_16.

38 Andreas Schutt, Thibaut Feydy, Peter J. Stuckey, and Mark G. Wallace. Explaining the cumu-
lative propagator. Constraints, 16(3):250–282, July 2011. doi:10.1007/s10601-010-9103-2.

39 Paul Shaw. Using Constraint Programming and Local Search Methods to Solve Vehicle Routing
Problems. In Michael Maher and Jean-Francois Puget, editors, Principles and Practice of
Constraint Programming — CP98, Lecture Notes in Computer Science, pages 417–431, Berlin,
Heidelberg, 1998. Springer. doi:10.1007/3-540-49481-2_30.

40 Arno Sprecher. Scheduling resource-constrained projects competitively at modest memory
requirements. Management Science, 46(5):710–723, 2000.

41 Petr Vilím. Timetable edge finding filtering algorithm for discrete cumulative resources. In
Tobias Achterberg and J. Christopher Beck, editors, Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems, Lecture Notes in Computer
Science, pages 230–245, Berlin, Heidelberg, 2011. Springer. doi:10.1007/978-3-642-21311-3_
22.

42 Julien Vion and Sylvain Piechowiak. Une simple heuristique pour rapprocher DFS et LNS
pour les COP. In Actes des 13e Journées Francophones de la Programmation par Contraintes,
JFPC 2017, pages 38–45, Montreuil sur Mer, France, June 2017.

https://www.minizinc.org/
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/s10601-008-9064-x
https://doi.org/10.1007/978-3-319-93031-2_34
https://doi.org/10.1007/978-3-319-93031-2_34
https://doi.org/10.1016/j.ejor.2019.01.063
https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://doi.org/10.1007/978-1-4419-1665-5_13
https://doi.org/10.1007/978-1-4419-1665-5_13
https://docs.oracle.com/en/industries/construction-engineering/primavera-p6-project/index.html
https://docs.oracle.com/en/industries/construction-engineering/primavera-p6-project/index.html
https://doi.org/10.1287/mnsc.16.1.93
https://doi.org/10.1109/AERO.2019.8741996
https://doi.org/10.1007/978-3-642-38171-3_16
https://doi.org/10.1007/s10601-010-9103-2
https://doi.org/10.1007/3-540-49481-2_30
https://doi.org/10.1007/978-3-642-21311-3_22
https://doi.org/10.1007/978-3-642-21311-3_22

On Redundancy in Constraint Satisfaction
Problems
Clément Carbonnel # Ñ

CNRS, LIRMM, University of Montpellier, France

Abstract
A constraint language Γ has non-redundancy f(n) if every instance of CSP(Γ) with n variables
contains at most f(n) non-redundant constraints. If Γ has maximum arity r then it has non-
redundancy O(nr), but there are notable examples for which this upper bound is far from the best
possible. In general, the non-redundancy of constraint languages is poorly understood and little is
known beyond the trivial bounds Ω(n) and O(nr).

In this paper, we introduce an elementary algebraic framework dedicated to the analysis of the
non-redundancy of constraint languages. This framework relates redundancy-preserving reductions
between constraint languages to closure operators known as pattern partial polymorphisms, which
can be interpreted as generic mechanisms to generate redundant constraints in CSP instances. We
illustrate the power of this framework by deriving a simple characterisation of all languages of arity
r having non-redundancy Θ(nr).

2012 ACM Subject Classification Theory of computation → Constraint and logic programming;
Mathematics of computing → Discrete mathematics

Keywords and phrases Constraint satisfaction problem, redundancy, universal algebra, extremal
combinatorics

Digital Object Identifier 10.4230/LIPIcs.CP.2022.11

Funding This work was supported by the AI Interdisciplinary Institute ANITI, funded by the French
program “Investing for the Future – PIA3” under grant agreement no. ANR-19-PI3A-0004. The
author also received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement no. 952215.

1 Introduction

The constraint satisfaction problem (CSP) is a fundamental computer science problem with
many applications in artificial intelligence and operational research. An instance of the CSP
is a set of variables, a set of domain values, and a set of constraints, which are relations
imposed upon certain sequences of variables. The goal is to decide whether it is possible to
assign domain values to variables in such a way that all constraints are satisfied. The CSP is
a natural common framework for a wide variety of well-studied combinatorial problems, such
as satisfiability and graph homomorphism, and is in general intractable.

Following early work of Schaefer on the Boolean domain [25], Feder and Vardi initiated
the systematic study of CSPs with fixed constraint languages and famously conjectured that
all these “non-uniform” CSPs are either polynomial-time solvable or NP-complete [14]. This
conjecture prompted a considerable research effort aimed at identifying generic sufficient
conditions for the tractability of non-uniform CSPs, which eventually coalesced into a
powerful, unified algebraic framework for analysing and classifying the complexity of constraint
languages [2, 4]. After more than two decades of research, the Feder-Vardi conjecture was
finally settled in the affirmative with two independent proofs by Bulatov [8] and Zhuk [26].

The success and flexibility of the algebraic framework motivated the study of constraint
languages from a broader perspective. Beyond the classical “P versus NP-complete” question,
classifications of constraint languages have been obtained for a wide variety of properties,

© Clément Carbonnel;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 11; pp. 11:1–11:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:clement.carbonnel@lirmm.fr
http://www.lirmm.fr/~ccarbonnel/
https://orcid.org/0000-0003-2312-2687
https://doi.org/10.4230/LIPIcs.CP.2022.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 On Redundancy in Constraint Satisfaction Problems

including solvability by specific classes of polynomial-time algorithms [3, 16], membership in
fine complexity classes within P [12], learnability [10, 5], definability in certain logics [1, 22],
and more.

In this paper we will study non-uniform CSPs from a different perspective. The central
question we ask is the following: given a finite constraint language Γ of arity r, what is the
maximum number of non-redundant constraints in a CSP instance over Γ? If we denote by
n the number of variables, then this quantity (which we call the non-redundancy of Γ) is
O(nr), and if Γ is non-trivial (i.e. at least one relation is neither empty nor complete) then it
is Ω(n). As extreme examples, a set of affine relations over a finite field has non-redundancy
Θ(n), while sets of r-clauses are easily seen to have non-redundancy Θ(nr). Curiously, very
little is known beyond these trivial bounds, especially outside the Boolean domain. The
purpose of this paper is to describe an elementary algebraic framework for classifying the non-
redundancy of constraint languages, which we illustrate by deriving a simple combinatorial
characterisation of r-ary constraint languages with non-redundancy Θ(nr).

We draw motivation for studying non-redundancy from two different lines of work. The
task of learning a constraint network from answers to queries (sometimes called constraint
acquisition) has attracted considerable interest in the past decades [7, 10], and a significant
effort has been devoted to designing systems that can learn CSPs with as few queries as
possible. In this context, it was observed in [5, 6] that the non-redundancy of a language Γ
corresponds exactly to its VC-dimension, which is a lower bound on the number of yes/no
queries (of any kind) that is necessary in order to learn exactly a constraint network over
Γ. Therefore, any progress on lower bounds for non-redundancy immediately translates
into unconditional, universal lower bounds for constraint acquisition. More generally, for
applications where non-uniform CSPs are used to represent knowledge, the non-redundancy
of a constraint language is a good estimate of its representational power: if Γ has non-
redundancy f(n) and arity r, then the number of n-variable CSP instances over Γ with
pairwise distinct solution sets is Ω(2f(n)) and O(2f(n)r log n).

Our second motivation comes from a series of recent results on the sparsification of
non-uniform Boolean CSPs [9, 20]. In these papers, the goal is to determine whether there
exists a polynomial-time algorithm that takes as input an instance of CSP(Γ) (with up
to roughly nr constraints if Γ has arity r) and outputs an equisatisfiable instance of size
q(n), q(n) = o(nr). On the surface, this question looks quite different from estimating the
non-redundancy of Γ: sparsification is in essence an algorithmic question, and sparsification
algorithms are not limited to removing redundant constraints because they only have to
maintain equisatisfiability. Nevertheless, all sparsification algorithms for NP-hard Boolean
CSPs presented in [9, 20] operate purely by removing redundant constraints, and to the best
of our knowledge all CSPs whose non-redundancy is known to be O(nq) also have an O(nq)
sparsification algorithm. While non-redundancy and sparsifiability cannot be equivalent in
general (for instance, all polynomial-time non-uniform CSPs have a sparsification algorithm
that outputs an instance of size O(1)), this suggests that an improved understanding of
non-redundancy in constraint languages would help design sparsification algorithms.

Our results

Our first contribution is a generic algebraic framework for the asymptotic study of non-
redundancy in non-uniform CSPs. More precisely, we establish a tight connection between
redundancy-preserving reductions for constraint languages and pattern partial polymorphisms,
a type of closure operator that was recently introduced in the context of exponential algorithms
for certain classes of non-uniform Boolean CSPs [21]. A key property of this algebraic duality

C. Carbonnel 11:3

is that both sides are easily interpretable in terms of non-redundancy. We observe that each
pattern partial polymorphism of a constraint language Γ describes a rule to identify (or
produce) redundant constraints in CSP instances over Γ. In some cases, knowledge of a single
non-trivial pattern partial polymorphism of Γ can be sufficient to establish an improved
upper bound on its non-redundancy.

Then, we combine our framework with a theorem of Erdős on the maximum cardinality of
Kr

2 -free hypergraphs [13] to obtain an explicit characterisation of those constraint languages
of arity r having non-redundancy Θ(nr). Incidentally, we show the existence of a small gap:
either a constraint language of arity r has non-redundancy Θ(nr), or it has non-redundancy
O(nr−ϵ) for ϵ = 21−r. This (improperly) extends a result of Chen et al. [9] for Boolean
languages, which was obtained using very different methods. Beyond non-redundancy, our
main result has direct consequences for sparsification, which will be discussed towards the
end of the paper.

Related work

A recent series of papers on the sparsification of Boolean languages have established a number
of results on the non-redundancy of constraint languages as byproducts. In [9], Chen et
al. show that every Boolean language of arity r that does not contain an r-clause can
be expressed using multivariate polynomials of total degree at most r − 1. Coupled with
elementary arguments on Boolean clauses (see e.g. the proof of Lemma 15 in Section 3),
this implies that the non-redundancy of any Boolean constraint language of arity at most
r is either Θ(nr) or O(nr−1). Other results in the same paper imply a non-redundancy
classification for Boolean constraint languages of arity at most 3, and a characterisation
of symmetric Boolean constraint languages with linear non-redundancy. The framework
presented in our paper is inspired from their methods, although it is extended to work
with arbitrary domains and adapted to study specifically the non-redundancy of constraint
languages.

Building upon these results, Lagerkvist and Wahlstrom [20] devised an O(n) sparsification
algorithm for the class of languages with a Mal’tsev embedding, which generalises linear
equations over finite fields. Their algorithm operates by removing redundant constraints,
and hence implies a similar bound on the non-redundancy of these languages. To the best
of our knowledge, all languages known to have non-redundancy O(n) belong to this class.
The same paper also provides a sufficient condition for having non-redundancy O(nq), q > 1
based on the closely related notion of k-edge embedding.

Bessiere et al. [5] initiated the direct study of non-redundancy of constraint languages,
with a focus on applications in machine learning. They established the equivalence between
non-redundancy and VC-dimension, classified the non-redundancy of constraint languages of
arity at most 2, and identified a class of ternary constraint languages whose non-redundancy
is o(n2) and cannot be fully determined using results based on algebraic embeddings.

2 Preliminaries

Relations, languages and constraint satisfaction problems

A relation R of arity r = ar(R) over a domain D is a subset of Dr. Given a tuple t of length
r and S ⊆ {1, . . . , r}, we denote by t[S] the tuple obtained from t by discarding elements
whose index is not in S. Similarly, the projection on S ⊆ {1, . . . , r} of a relation R of arity
r is denoted by R[S] = {t[S] | t ∈ R}. A (finite) constraint language Γ is a finite set of

CP 2022

11:4 On Redundancy in Constraint Satisfaction Problems

relations over a finite domain D, and the arity of a constraint language Γ is defined as the
maximum arity of its relations. Given a constraint language Γ, a CSP instance over Γ is a
pair (X,C), where X is a finite set of variables and C is a finite set of constraints, that is,
pairs (R,S) with R ∈ Γ and S ∈ Xar(R). A solution to a CSP instance (X,C) is a mapping
ϕ : X → D such that for every (R,S) ∈ C, we have ϕ(S) ∈ R. We will denote the set of all
solutions to a CSP instance I by sol(I). The constraint satisfaction problem over Γ, denoted
by CSP(Γ), takes as input a CSP instance I over Γ and asks whether sol(I) is non-empty.

Primitive-positive definitions and polymorphisms

Given a constraint language Γ, a relation R of arity r is primitive-positive definable (pp-
definable) over Γ if there exists a first-order formula ψ with r free variables x1, . . . , xr that
only uses existential quantification, conjunction, equality, and relations from Γ such that R =
{(f(x1), . . . , f(xr)) | f is a model of ψ}. In that case, we will often write R(x1, . . . , xr) ≡ ψ.
If ψ is quantifier-free, then R is qfpp-definable over Γ. We denote by ⟨Γ⟩ (resp. ⟨Γ⟩ ̸∃) the
set of all relations that are pp-definable (resp. qfpp-definable) from Γ. It is well-known
that CSP(Γ′) is log-space reducible to CSP(Γ) for all Γ′ ⊆ ⟨Γ⟩ [17]. If in addition we have
Γ′ ⊆ ⟨Γ⟩ ̸∃, then the reduction is tighter: if CSP(Γ) is solvable in time O(cn), then so is
CSP(Γ′) [18].

Given a set D, a partial operation over D of arity k is an operation f : Df → D with
Df ⊆ Dk. Given a relation R of arity r over D, f is a partial polymorphism of R if for
all tuples t1, . . . , tk ∈ R such that for all 1 ≤ i ≤ r we have (t1[i], . . . , tk[i]) ∈ Df , the
tuple f(t1, . . . , tk) = (f(t1[1], . . . , tk[1]), . . . , f(t1[r], . . . , tk[r])) belongs to R. By extension,
an operation is a partial polymorphism of a language if it is a partial polymorphism of each
of its relations. A polymorphism of a relation over D is a partial polymorphism f with
Df = Dk. Given a language Γ, we denote by pol(Γ) the set of polymorphisms of Γ.

Geiger’s theorem [15] states that for any two languages Γ,Γ′ over the same domain, we
have Γ′ ⊆ ⟨Γ⟩ if and only if pol(Γ) ⊆ pol(Γ′). A similar duality was observed between qfpp-
definability and partial polymorphisms by Romov [24]. These results form the foundation of
the algebraic approach to non-uniform CSPs, in which the complexity of constraint languages
is studied through the lens of their (partial) polymorphisms. We refer the reader to recent
surveys for a more in-depth treatment of the subject [4][11].

Redundancy

In a CSP instance (X,C), a constraint c ∈ C is non-redundant if and only if (X,C) and
(X,C\{c}) have different solution sets. Given a constraint language Γ, the non-redundancy
of Γ, denoted by NRDΓ, is the function that maps each n ∈ N to the maximum number of
non-redundant constraints in an instance of CSP(Γ) with n variables. It is easily seen that if Γ
is a constraint language of arity r that does not contain only empty or complete relations, then
NRDΓ(n) = O(nr) and NRDΓ(n) = Ω(n). It is also known that the asymptotic behaviour of
the NRDΓ function for a finite language Γ is governed by that of its individual relations, as
witnessed by these two inequalities:

NRDΓ ≤
∑
R∈Γ

NRD{R} NRDΓ ≥ max
R∈Γ

(NRD{R})

The second inequality holds because each instance over {R} is also over Γ, and the first
holds because the property of being non-redundant is monotone. (If c = (S,R) is non-
redundant in I, then it is non-redundant in the subinstance of I consisting only of those

C. Carbonnel 11:5

constraints with relation R. Repeating this reasoning with all R ∈ Γ provides the desired
upper bound.) Formal proofs can be found in [5]. In this paper we are only interested
in the asymptotic behaviour of the NRDΓ function; it follows from the inequalities above
that classifying single-relation languages is sufficient to deduce a classification for all finite
constraint languages.

3 Redundancy-preserving reductions

It is easily observed that primitive-positive definability does not preserve non-redundancy
in general, in the sense that two constraint languages Γ1 and Γ2 with Γ1 ⊆ ⟨Γ2⟩ and
Γ2 ⊆ ⟨Γ1⟩ may have very different non-redundancy asymptotics. (An extreme example is
Γ1 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)} and Γ2 being the set of all ternary Boolean clauses. By
the results of [9], NRDΓ1(n) = Θ(n) but NRDΓ2(n) = Θ(n3). The pp-interdefinability of
these languages is well known and can be verified by inspecting Post’s lattice [23].) On
the other hand, qfpp-definitions do preserve non-redundancy, but have limited expressive
power. In this section, we attempt to construct an ideal notion of definability tailored for
non-redundancy, with three goals in mind: the corresponding reductions between constraint
languages must preserve non-redundancy bounds, a useful algebraic duality must exist, and
the framework should be as general as possible.

We start by presenting our proposed notion of definability.

▶ Definition 1. Let D be a set and Γ be a constraint language over D. We say that a relation
R of arity r has an fgpp-definition over Γ if R has a pp-definition

R(x1, . . . , xr) ≡ ∃y1, . . . , yq : ψ(x1, . . . , xr, y1, . . . , yq)

over Γ ∪ {Qg | g : D → D}, where Qg = {(d, g(d)) | d ∈ D}, and for each existentially
quantified variable yi there exists some xj such that Qg(xj , yi) is an atom in ψ.

In Definition 1, “fgpp-definition” stands for functionally guarded pp-definition. Note
that qfpp-definability implies fgpp-definability, but that fgpp-definability does not imply
pp-definability in general. (This is due to the functional atoms Qg, which may not belong to
Γ.) On the Boolean domain, fgpp-definitions are equivalent to the cone-definitions of Chen
et al. [9].

Given a constraint language Γ over D, let ⟨Γ⟩fg denote the set of relations over D that
are fgpp-definable over Γ. The next proposition is the first step towards proving that
fgpp-definitions are suitable for studying the NRD function.

▶ Proposition 2. Let Γ1 and Γ2 be two non-trivial languages over the same finite domain D.
If Γ2 ⊆ ⟨Γ1⟩fg, then NRDΓ2(n) = O(NRDΓ1(n)).

Proof. Let I be an instance of CSP(Γ2) with variable set X, |X| = n, and exactly NRDΓ2(n)
non-redundant constraints. Without loss of generality, we assume that no constraint in I is
redundant.

Let R ∈ Γ2 be some relation and R(x1, . . . , xr) ≡ ∃y1, . . . , yq : ψ(x1, . . . , xr, y1, . . . , yq) be
an fgpp-definition of R over Γ1. For each constraint ci = (R, (xi

1, . . . , x
i
r)) in I, we introduce

a set Y i of q fresh variables yi
1, . . . , y

i
q and replace ci with the set of constraints

Si = {(P, (z1
j , . . . , z

k
j)) | P (z1

j , . . . , z
k
j) is an atom in ψ(xi

1, . . . , x
i
r, y

i
1, . . . , y

i
q)}

Repeating this process for all R ∈ Γ2 and constraint ci yields a CSP instance I∗ over
Γ1 ∪ {Qg | g : D → D} whose solution set, when projected onto X, is exactly sol(I).

CP 2022

11:6 On Redundancy in Constraint Satisfaction Problems

By construction, for each y ∈ Y = ∪iY
i there exist g : D → D and x ∈ X such that

for all ϕ ∈ sol(I∗), we have ϕ(y) = g(ϕ(x)). In particular, if there exist y1, y2 ∈ Y , x ∈ X
and g : D → D such that y1 = g(x) and y2 = g(x) then we have ϕ(y1) = ϕ(y2) for all
ϕ ∈ sol(I∗). It follows that y1 and y2 can be merged into a single variable without changing
the number of non-redundant constraints in I∗. After exhaustive application of this rule, we
have |Y | ≤ n · |D||D|.

Now, we greedily remove redundant constraints from I∗ until all constraints are non-
redundant. Observe that this process cannot remove all constraints from a set Si, for any i.
Indeed, by assumption, for each constraint ci in I there exists an assignment ϕ : X → D that
only violates ci in I. This assignment can be extended to an assignment ϕ∗ : X ∪ Y → D

that is not a solution to I∗ and may only violate constraints in Si. Therefore, removing
all of Si would increase the solution set of I∗, which cannot happen since only redundant
constraints are removed.

In addition, the language {Qg | g : Dc → D} contains only functional constraints and
hence has linear non-redundancy. (This follows, for example, from [5, Theorem 13].) Since
|X|+ |Y | ≤ n · (1 + |D||D|), we deduce that I∗ contains O(n) constraints that are not from Γ1.

By the three paragraphs above, I∗ has at most n · (1 + |D||D|) variables and at least
NRDΓ2(n) − O(n) non-redundant constraints from Γ1. By definition of NRD this implies
NRDΓ2(n) = O(NRDΓ1(n)) + O(n), and finally NRDΓ2(n) = O(NRDΓ1(n)) since Γ1 is
non-trivial. ◀

▶ Example 3. Let p > 1 be a prime number, D = {0, . . . , p− 1} and consider the relation
R = {(x, y, z) | x3 + y3 + z2 = 1}, where sum and product are understood as operations over
the finite field of order p. If we let Rlin = {(x, y, z) | x+ y + z = 1} and f, g : D → D such
that f(d) = d3 and g(d) = d2, we can equivalently define R as

R(x, y, z) ≡ ∃a, b, c : Rlin(a, b, c) ∧Qf (x, a) ∧Qf (y, b) ∧Qg(z, c)

which implies that R ∈ ⟨{Rlin}⟩fg. From Proposition 2 and the fact that linear equations
over finite fields have linear non-redundancy, we deduce that {R} has non-redundancy O(n).

▶ Example 4. Following [20], a language Γ1 over non-empty domain D1 has an embedding
over a language Γ2 over domain D2 ⊇ D1 if there exists a bijective function h : Γ1 → Γ2
such that for all R ∈ Γ1, ar(R) = ar(h(R)) and R = h(R) ∩D1. If we interpret both Γ1 and
Γ2 as languages over D2 and define g : D2 → D2 such that g(d) = d if d ∈ D1 and g(d) = d∗

1
otherwise (where d∗

1 is an arbitrary value in D1), then each R ∈ Γ1 can be written as

R(x1, . . . , xr) ≡ h(R)(x1, . . . , xr)
∧

1≤i≤r

Qg(xi, xi)

and hence Γ1 ⊆ ⟨Γ2⟩fg. Therefore, by Proposition 2, embeddings preserve the non-redundancy
asymptotics of constraint languages.

We will establish an algebraic duality for fgpp-definitions based on pattern partial poly-
morphisms, which were introduced by Lagerkvist and Wahlstrom [21] in a different context
(the study of exponential algorithms for sign-symmetric Boolean languages).

A polymorphism pattern of arity k is a set of pairs (t, x), where t is a sequence of variables
of length k and x occurs in t. A k-ary partial operation f : Df → D satisfies a k-ary
polymorphism pattern P if

Df = {(ϕ(x1), . . . , ϕ(xk)) | ((x1, . . . , xk), x) ∈ P, ϕ : {x1, . . . , xk} → D}

C. Carbonnel 11:7

and f(ϕ(x1), . . . , ϕ(xk)) = ϕ(x) for all ((x1, . . . , xk), x) ∈ P , ϕ : {x1, . . . , xk} → D. It follows
from definition that for any pattern P and finite set D, there is at most one partial operation
on D that satisfies P . We denote this function by fD

P and call it the interpretation of P
on D.

We say that a partial operation f is a pattern partial operation if it satisfies some
polymorphism pattern P . We will often use the following equivalent characterisation.

▶ Observation 5. Let D be a finite set, k be a nonnegative integer and Df ⊆ Dk. A partial
operation f : Df → D is a pattern partial operation if and only if for every t ∈ Df and
g : D → D, we have that g(t) ∈ Df and f ◦ g(t) = g ◦ f(t).

Proof. Suppose that f is a pattern partial operation because it satisfies a certain polymorph-
ism pattern P . In particular, for every t ∈ Df there exists some ((x1, . . . , xk), x) ∈ P and
ϕ : {x1, . . . , xk} → D such that t = (ϕ(x1), . . . , ϕ(xk)). Then, for any mapping g : D → D we
have g(t) = (g(ϕ(x1)), . . . , g(ϕ(xk))), which must belong to Df as witnessed by the mapping
ϕ′ = g ◦ ϕ. Furthermore, by definition we have f(ϕ′(x1), . . . , ϕ′(xk)) = ϕ′(x), or equivalently
f ◦ g(t) = g ◦ f(t).

Conversely, suppose that for every t ∈ Df and g : D → D, we have that g(t) ∈ Df

and f ◦ g(t) = g ◦ f(t). Let DP = {x1, . . . , xq} be a set of variables in bijection with
D = {d1, . . . , dq}, and let P denote the pattern

{((xi1 , . . . , xik
), xj) | (di1 , . . . , dik

) ∈ Df , f(di1 , . . . , dik
) = dj}

Then, we must have xj ∈ {xi1 , . . . , xik
} for any ((xi1 , . . . , xik

), xj) ∈ P . Indeed, if it were not
the case then there would exist a tuple t = (di1 , . . . , dik

) ∈ Df such that f(t) /∈ {di1 , . . . , dik
},

and we would have f ◦ g(t) ̸= g ◦ f(t) for the mapping g : D → D such that g(d) = d if
d ∈ {di1 , . . . , dik

} and g(d) = di1 otherwise.
Furthermore, mappings ϕ from DP to D can be identified with mappings from D to D,

so with a slight abuse of notation we have

f(ϕ(xi1), . . . , ϕ(xik
)) = ϕ(f(xi1 , . . . , xik

)) = ϕ(xj)

for all ϕ : DP , ((xi1 , . . . , xik
), xj) ∈ P and f satisfies P . ◀

On the Boolean domain, pattern partial operations are called pSDI operations [21] (for
partial self-dual idempotent operations). Beyond the Boolean domain, notable examples
of pattern partial operations are the first Pixley partial operation of [5] and the universal
Mal’tsev partial operations of [20], the simplest of which is presented in Example 6.

▶ Example 6. Let PM
2 denote the polymorphism pattern

((x, x, y), y)
((y, x, x), y)

and consider the partial operation fD
P M

2
over some set D, which is an example of a pattern

partial operation with domain {(d1, d2, d3) ∈ D3 | (d1 = d2) or (d2 = d3)}. By definition, a
binary relation R admits fD

P M
2

as a partial polymorphism if and only if it is rectangular, that
is, R does not contain three tuples (a, b), (a, c), (d, c) such that (d, b) /∈ R. It can be further
observed (although it is not immediately obvious) that a binary relation admits fD

P M
2

as a
partial polymorphism if and only if it is fgpp-definable from the empty constraint language.
This polymorphism pattern plays a critical role in the characterisation of the non-redundancy
of binary constraint languages obtained in [5], and we will revisit it in the next section.

CP 2022

11:8 On Redundancy in Constraint Satisfaction Problems

Throughout this note we will use p2pol(Γ) to denote the set of all pattern partial
polymorphisms of Γ. The following proposition shows that p2pol(Γ) determines precisely the
set of relations that are fgpp-definable over Γ.
▶ Proposition 7. Let Γ1 and Γ2 be two constraint languages over the same finite domain D.
Then, p2pol(Γ1) ⊆ p2pol(Γ2) if and only if Γ2 ⊆ ⟨Γ1⟩fg.
Proof. We first prove the backward implication. Suppose that Γ2 ⊆ ⟨Γ1⟩fg but there exists
some pattern partial operation f ∈ p2pol(Γ1) of arity k that is not a partial polymorphism
of some relation R ∈ Γ2. Let R(x1, . . . , xr) ≡ ∃y1, . . . , yq : ψ(x1, . . . , xr, y1, . . . , yq) be an
fgpp-definition of R over Γ1 and define R ̸∃(x1, . . . , xr, y1, . . . , yq) ≡ ψ(x1, . . . , xr, y1, . . . , yq).
First, observe that for all g : D → D and k tuples t1 = (d1, g(d1)), . . . , tk = (dk, g(dk)) of Qg

such that f(t1, . . . , tk) is defined, it holds that

f(t1, . . . , tk) = (f(d1, . . . , dk), f(g(d1), . . . , g(dk))) = (f(d1, . . . , dk), g(f(d1, . . . , dk))) ∈ Qg

so f is a partial polymorphism of Γ1 ∪ {Qg | g : D → D}. Since R ̸∃ is qfpp-definable over
Γ1 ∪ {Qg | g : D → D}, this implies that f is a partial polymorphism of R ̸∃. However,
f is not a partial polymorphism of R, so there exist k = ar(f) tuples t1, . . . , tk ∈ R such
that f(t1, . . . , tk) is defined and does not belong to R. Let t′1, . . . , t′k ∈ R ̸∃ be such that
t′l[1, . . . , r] = tl for all l ≤ k. By Definition 1, there exists for each r < i ≤ r + q an index
j ≤ r and a mapping g : D → D such that t′l[i] = g(t′l[j]) for all l ≤ k. Since the domain of
f is closed under all unary operations from D to D, tf = f(t′1, . . . , t′k) is defined and belongs
to R ̸∃, a contradiction since tf [1, . . . , r] = f(t1, . . . , tk) /∈ R = R ̸∃[1, . . . , r].

The forward implication is a bit more difficult. Let R denote the set of all relations
R over D such that R /∈ ⟨Γ1⟩fg and every pattern partial polymorphism of Γ1 is a partial
polymorphism of R. Towards a contradiction, suppose that R is non-empty. Let R be a
relation in R with minimum arity r. Note that ⟨Γ1⟩fg contains all unary relations over D, so
we may assume that r ≥ 2. Now, we define

R̂ =
⋂

Q∈⟨Γ1⟩fg
R⊆Q

Q

and observe that R̂ is well defined (because Dr ∈ ⟨Γ1⟩fg) and strictly contains R. In particular,
there exists a certain tuple t ∈ R̂\R. We pick an arbitrary ordering t1, . . . , tm of the tuples of
R, and for all l ≤ r we define the lth column of R as cl = (t1[l], . . . , tm[l]). Then, we define

Df = {g(cl) | 1 ≤ l ≤ r, g : D → D}

and let p = |Df |, as well as σ : Df → {1, . . . , p} be an arbitrary bijection such that σ−1(i) = ci

for i ≤ r. Now, consider the relation Rf (y1, . . . , yr) ≡ ∃yr+1, . . . , yp : ψ(y1, . . . , yp), where
ψ(y1, . . . , yp) is given by∧

Q∈Γ1
(tq

1,...,tq
m)∈Q

Q(yσ(tq
1[1],...,tq

m[1]), . . . , yσ(tq
1[ar(Q)],...,tq

m[ar(Q)]))
∧

i,j≤p, g:D→D:
σ−1(i)=g(σ−1(j))

Qg(yi, yj)

and the first conjunction is restricted to tuples of variables that are well-defined with respect
to σ. By construction, the tuples of Rf are in one-to-one correspondance with the pattern
partial polymorphisms of Γ1 of arity m whose domain is the closure of c1, . . . , cr under
all unary operations D → D. In particular, Rf contains the tuples corresponding to the
m partial projection operations on Df and hence Rf contains R. Then, since Rf is fgpp-
definable over Γ1, it follows that t ∈ Rf . This particular tuple t corresponds to a certain
pattern partial polymorphism ft of Γ1, of arity m, domain Df and such that f(cl) = t[l] for
all l ≤ r. Since t /∈ R, ft is not a partial polymorphism of R, which concludes the proof. ◀

C. Carbonnel 11:9

4 Pattern partial polymorphisms and redundancy

Recall from Section 2 that in order to study the function NRDΓ, we can assume without
loss of generality that Γ contains a single relation R. Then, it will be convenient to rephrase
CSP(Γ) as a homomorphism problem: given a relation RX over some finite set X of the
same arity as R, is there a homomorphism from RX to R? Here, a homomorphism is a
mapping ϕ from X to D such that ϕ(t) ∈ R for all t ∈ RX . We will use hom(RX , R) to
denote the set of all homomomorphisms from RX to R. In this formulation, the constraint
scopes are given by the tuples of RX and a constraint (R, t), t ∈ RX , is redundant if and
only if hom(RX , R) = hom(RX\{t}, R).

▶ Lemma 8. Let RX , R be relations with respective domains X,D and let fD
P be a k-ary

partial polymorphism of R that satisfies a pattern P . If t, t1, . . . , tk are tuples of RX such
that t = fX

P (t1, . . . , tk), then hom(RX , R) = hom(RX\{t}, R).

Proof. For the sake of contradiction, suppose that there exists a homomorphism h : X → D

such that h(t) /∈ R but h(t1), . . . , h(tk) ∈ R. Observe that fX∪D
P is a partial polymorphism

of R (when interpreted as a relation over X ∪D) and define g : X ∪D → X ∪D such that
g(u) = h(u) if u ∈ X and g(u) = u otherwise. Since fX∪D

P is a pattern partial operation, we
have that

fX∪D
P (g(t1), . . . , g(tk)) = g(fX∪D

P (t1, . . . , tk)) = g(fX
P (t1, . . . , tk)) = g(t) = h(t) /∈ R

which contradicts the fact that fX∪D
P is a partial polymorphism of R. ◀

In essence, a (partial) polymorphism is an operator that combines solutions (tuples of
values) to produce new ones. What this lemma says is that pattern partial polymorphisms
can also be used to combine constraints and produce new ones that are valid for the instance,
i.e. redundant. The is particularly interesting in light of the algebraic duality uncovered in
Proposition 7: if Γ can fgpp-define a relation R with high non-redundancy, then Γ has high
non-redundancy by Proposition 2, and if it cannot then Proposition 7 and Lemma 8 provide
a non-trivial mechanism to identify redundant constraints that is valid for CSP(Γ) but not
for CSP({R}).

▶ Example 9. Let R be a relation with the operation fD
P M

2
of Example 6 as partial poly-

morphism. Consider a CSP instance (RX , R) and suppose that there exist four variables
x1, x2, y1, y2 ∈ X such that (x1, y1), (x1, y2), (x2, y2), (x2, y1) are tuples of RX (i.e. are scopes
of constraints with relation R). Then, the pattern partial polymorphism fD

P M
2

combined with
Lemma 8 implies that the constraint (R, (x2, y1)) is redundant, as it is the image through
fX

P M
2

of the first three constraints.

Given a relation R over a set X and a set F of partial operations on X, we denote by
F(R) the transitive closure of R under operations from F . If no tuple t of R can be generated
from tuples in R\{t} via an operation in F , we say that R is F-independent. The following
two propositions are natural consequences of Lemma 8 regarding upper bounds on the NRD
function.

▶ Proposition 10. Let R be a relation over a set D, PR be the set of polymorphism patterns
that are satisfied by partial polymorphisms of R, and PS

R denote the set of interpretations of
PR on set S. If for every relation RX over a set X of n elements such that ar(RX) = ar(R)
there exists a relation R∗

X of cardinality at most f(n) such that R∗
X ⊆ RX ⊆ PX

R (R∗
X), then

NRD{R}(n) ≤ f(n).

CP 2022

11:10 On Redundancy in Constraint Satisfaction Problems

Proof. Suppose that such a relation R∗
X exists for every relation RX . Let (RX , R) be

an instance of CSP({R}) and R1 ⊂ R2 ⊂ . . . ⊂ Rq be the sequence of distinct relations
obtained by transitive closure of R∗

X under PX
R , with R1 = R∗

X and Rj = RX . For every
1 ≤ i < q, there exists a pattern P ∈ PR and tuples t1, . . . , tk in Ri such that Ri+1 = Ri∪{t},
t = fX

P (t1, . . . , tk). By Lemma 8, we have hom(Ri, R) = hom(Ri+1, R). This is true for all
i, so in particular we have hom(R∗

X , R) = hom(RX , R). Therefore, every non-redundant
constraint in (RX , R) must be of the form (R, t) with t ∈ R∗

X , and their total number is at
most f(n). ◀

▶ Example 11. Consider a relation R of arity r over a set D, and suppose that R has the
pattern partial polymorphism fD

P M
2

of Examples 6 and 9. We will use Proposition 10 to show
that NRD{R}(n) ≤ 2nq, where q = ⌈r/2⌉.

Let (RX , R) be an instance of CSP({R}) with n variables and no redundant constraint.
Let R1

X denote the projection of RX onto its first q indices and R2
X be its projection

onto the remainder. For simplicity, we will interpret RX as a binary relation over disjoint
domains R1

X and R2
X . Let GX be the bipartite graph with domain R1

X ∪ R2
X and edge

relation RX . Observe that for any path (v1, v2), (v2, v3), . . . , (vk−1, vk) in GX with an odd
number of edges, repeated application of fX

P M
2

on the corresponding tuples of RX eventually
produces the edge (v1, vk). Therefore, the smallest subrelation R∗

X of RX that contains RX

in its transitive closure via fX
P M

2
corresponds to a forest subgraph FX of GX . In particular,

|R∗
X | = |E(FX)| ≤ |R1

X |+ |R2
X | ≤ 2nq, and by Proposition 10, NRD{R}(n) ≤ 2nq.

▶ Proposition 12. Let R be a relation over a set D, PR be the set of polymorphism patterns
that are satisfied by partial polymorphisms of R, and PS

R denote the set of interpretations of
PR on set S. If every relation RX over a set X of n elements that is PX

R -independent and
such that ar(RX) = ar(R) has cardinality at most f(n), then NRD{R}(n) ≤ f(n).

Proof. Follows immediately from Proposition 10 as every minimal relation R∗
X with R∗

X ⊆
RX ⊆ PX

R (R∗
X) is PX

R -independent. ◀

We conclude this section with a straightforward lower bound on the non-redundancy
of constraint languages that do not admit a certain polymorphism pattern related to the
fgpp-definability of k-clauses, whose properties are well known on the Boolean domain.

▶ Definition 13. Let k ≥ 2 and c1, . . . , c2k−1 be the lexicographic ordering of the relation
{x, y}k\{(y, . . . , y)} with respect to y > x. The k-universal polymorphism pattern Pu

k is the
set of all pairs (ti, y) with ti = (c1[i], . . . , c2k−1[i]), i ≤ k.

The interpretation of Pu
k on the Boolean domain is called the Boolean k-universal partial

operation [21]. In the definition above, the ordering of {x, y}k\{(y, . . . , y)} is not important:
a different ordering would produce a different pattern, but it would be equivalent in the sense
that it would have the same interpretation on all sets, up to a permutation of the arguments.
(For instance, the pattern PM

2 of Example 6 is equivalent to Pu
2 .)

▶ Example 14. Pu
3 is the pattern given by the following pairs:

((x, x, x, x, y, y, y), y)
((x, x, y, y, x, x, y), y)
((x, y, x, y, x, y, x), y)

Observe that the left-hand side of these pairs corresponds to the three columns of the relation
corresponding to a 3-clause with no negated literals, modulo the renaming x ← 1, y ← 0.
The right-hand side is the missing tuple (0, 0, 0) in the clause.

C. Carbonnel 11:11

▶ Lemma 15. Let R be a relation of arity r over a domain D and r ≥ k ≥ 2. If fD
P u

k
/∈

p2pol({R}), then NRD{R}(n) = Ω(nk).

Proof. Suppose that fD
P u

k
/∈ p2pol({R}). For simplicity of notation we write f = fD

P u
k

and
assume that {0, 1} ⊆ D. (Note that |D| > 1 since otherwise we would have f ∈ p2pol(R).)
We claim that Ck ∈ ⟨{R}⟩fg, where Ck(x1, . . . , xk) ≡ x1 ∨ . . . ∨ xk. Let p = |Df | and
σ : Df → {1, . . . , p} be a bijection such that σ−1(i) = ϕ(ti) for all i ≤ k, where (ti, y) ∈ Pu

k

is as in Definition 13 and ϕ : {x, y} → D is such that ϕ(x) = 1 and ϕ(y) = 0. We define

ψ(y1, . . . , yp) ≡
∧

(t∗
1 ,...,t∗

k)∈R
∀i, (t∗

1 [i],...,t∗
k[i])∈Df

R(yσ((t∗
1 [1],...,t∗

k
[1])), . . . , yσ((t∗

1 [r],...,t∗
k

[r])))

and note that the set of models of this formula are in one-to-one correspondance with the
partial polymorphisms of R with domain Df . Then, the formula

ϕ(y1, . . . , yk) ≡ ∃yk+1, . . . , yp : ψ(y1, . . . , yp)
∧

i,j≤p:
∃g:D→D : σ−1(i)=g(σ−1(j))

Qg(yj , yi)

is an fgpp-definition of a relation of arity k that contains every tuple of Ck (as projections with
domain Df are pattern partial operations) and cannot contain the tuple (0, . . . , 0) (otherwise
this tuple would extend to the model of ψ that corresponds to f , and by assumption
f /∈ p2pol({R})). Since the unary relation {(0), (1)} is fgpp-definable from any language, we
have Ck ∈ ⟨{R}⟩fg, as claimed.

Now, by Proposition 2 we need only prove that the language {Ck} has non-redundancy
Ω(nk). A simple argument is to define for any n a CSP instance In = (X,C) over {Ck}
with n variables and such that C contains one constraint (Ck, (x1, . . . , xk)) for all distinct
x1, . . . , xk in X. This instance has Ω(nk) constraints, and none is redundant: for any
constraint c = (Ck, (x1, . . . , xk)) ∈ C, the assignment that maps every variable to 1 except
x1, . . . , xk satisfies every constraint except c. ◀

▶ Example 16. Let p > 2, D = {1, . . . , p} and consider the relation R = {(x, y, z) ∈ D3 |
max(x, y) > z}. Observe that the set of tuples S = ({1, 2}2 × {2, 3})\{(2, 2, 2)} is a subset
of R, while the missing tuple (2, 2, 2) does not belong to R. It follows that there exist some
ordering t1, . . . , t8 of S such that fD

P u
3

(t1, . . . , t8) is defined and is equal to (2, 2, 2), and hence
fD

P u
3
/∈ p2pol({R}). By Lemma 15, {R} has non-redundancy Ω(n3), which is tight since R

has arity 3.

In general, the largest value k for which Lemma 15 applies on a relation R gives a simple
lower bound on its non-redundancy. This bound is unlikely to be tight in general, although
we do not know any counter-examples.

5 A classification for languages with maximum non-redundancy

In this section, we will combine the lower bound of Lemma 15 with an upper bound derived
from Proposition 12 and a well-known theorem in extremal hypergraph theory to prove our
main result: a characterisation of constraint languages of arity r whose non-redundancy has
the fastest possible asymptotic growth Θ(nr). Our approach suggests a simple connection
between the non-redundancy of constraint languages and hypergraph Turán numbers.

CP 2022

11:12 On Redundancy in Constraint Satisfaction Problems

▶ Definition 17 ([19]). Let H be a family of r-uniform hypergraphs. The nth Turán number
of H, denoted by ex(n,H), is the maximum number of edges in an r-uniform hypergraph with
n vertices that does not contain any hypergraph in H as a subgraph.

The following theorem of Erdős is a fundamental result on this topic.

▶ Theorem 18 ([13]). If Kr
2 be the complete r-uniform r-partite hypergraph with vertex

classes of size two and Kr
2 ∈ H, then ex(n,H) = O(nr−ϵ), where ϵ = 21−r.

We will link relations and hypergraphs in a slightly unusual way. If R is a relation over
X, then we define HM (R) as the r-partite r-uniform hypergraph over vertex set X1, . . . , Xr,
where each Xi = {xi | x ∈ X} is a copy of X, and edge set {{x1

1, . . . , x
r
r} | (x1, . . . , xr) ∈ R}.

Note that HM (R) has cardinality exactly |R|, and its vertex set is of size r · |X| = O(|X|).

▶ Lemma 19. Let R be a relation of arity r ≥ 2 over a domain D with partial polymorphism
fD

P u
r

. If I = (RX , R) is an instance of CSP({R}) and HM (RX) contains Kr
2 as a subgraph,

then I contains a redundant constraint.

Proof. Suppose that Kr
2 occurs in HM (RX) as a subgraph. Let t1, . . . , t2r be 2r tuples of

RX whose images in HM (RX) are the edges of a subgraph H isomorphic to Kr
2 . Because

both HM (RX) and Kr
2 are r-uniform r-partite hypergraphs and Kr

2 contains for each vertex
class {x, y} two edges e1, e2 with e1 = e2\{x} ∪ {y}, the vertex classes of H are subsets of
the vertex classes of HM (RX). This implies that for each j ≤ r, there exist two elements
xj , yj such that ti[j] ∈ {xj , yj} for all i ≤ 2r. Furthermore, all tuples ti are distinct,
so {ti | i ≤ 2r} = Πj≤r{xj , yj} and some tuple, say t1, is exactly (y1, . . . , yr). After
reordering lexicographically the other tuples t2, . . . , tr2 with respect to yj > xj , we obtain
that fX

P u
r

(t2, . . . , t2r) = t1, so by Lemma 8 the constraint (R, t1) is redundant in I and the
claim follows. ◀

▶ Corollary 20. Let R be a relation of arity r ≥ 2 over a domain D. If fD
P u

r
∈ p2pol({R}),

then NRD{R}(n) = O(nr−ϵ), where ϵ = 21−r > 0.

Proof. Let I = (RX , R) be an instance of CSP({R}) with exactly NRD{R}(n) constraint,
all of which are non-redundant. By Lemma 19, HM (RX) does not contain Kr

2 as a subgraph.
Since HM (RX) has O(n) vertices, by Theorem 18 it has O(nr−ϵ) edges. By construction we
have |RX | = |HM (RX)|, so |RX | = O(nr−ϵ) and finally NRD{R}(n) = O(nr−ϵ). ◀

Combining Corollary 20 with Lemma 15, we can fully characterise constraint languages
with worst-case non-redundancy Θ(nr).

▶ Theorem 21. Let Γ be a constraint language with domain D and maximum arity r ≥ 2.
If fD

P u
r
/∈ p2pol(Γ) then NRDΓ(n) = Θ(nr), and otherwise NRDΓ(n) = O(nr−ϵ), where

ϵ = 21−r > 0.

Proof. Recall from Section 2 that the non-redundancy of a constraint language is asymp-
totically determined by the non-redundancy of its individual relations, i.e. NRDΓ(n) =
Θ(maxR∈Γ NRD{R}(n)). If fD

P u
r
/∈ p2pol(Γ) then there exists R ∈ Γ such that fD

P u
r
/∈

p2pol({R}), and by Lemma 15 we have NRDΓ(n) = Θ(nr). If instead fD
P u

r
∈ p2pol(Γ), then

by Corollary 20 we obtain NRDΓ(n) = O(nr−ϵ). ◀

It is unlikely that the literature on Turán numbers can be used to derive tight upper
bounds. Most results on this topic focus on forbidding a single fixed subhypergraph, while
in our case the list of forbidden structures in irredundant instances is typically infinite and

C. Carbonnel 11:13

equipped with an algebraic structure; this discrepancy makes any bound obtained this way
quite loose. For instance, on the elementary case r = 2, Corollary 20 only produces an upper
bound of O(n3/2) for binary rectangular relations while more direct arguments (Example 11)
easily establish the tight bound Θ(n). Similarly, on Boolean languages the same result holds
for ϵ = 1, but proving such a bound using Lemma 8 (rather than polynomials, as in [9])
would necessitate a much deeper analysis of the pattern partial polymorphisms of constraint
languages preserved by fD

P u
r

.
Finally, we remark that the proof of Corollary 20 implies a simple polynomial-time

sparsification algorithm for all languages Γ of arity r with NRDΓ(n) = o(nr).

▶ Theorem 22. Let Γ be a constraint language with domain D and maximum arity r ≥ 2.
If fD

P u
r
∈ p2pol(Γ), then there exists a polynomial time algorithm that takes an instance of

CSP(Γ) as input and outputs an equisatisfiable instance of CSP(Γ) with O(nr−ϵ) constraints,
where ϵ = 21−r > 0.

Proof. Let I = (X,C) be an instance of CSP(Γ). For each relation R ∈ Γ, the algorithm
constructs the relation RX = {(x1, . . . , xr) | (R, (x1, . . . , xr)) ∈ C} and enumerates all
sequences t1, . . . , t2r of tuples of RX . For each sequence, it tests whether t1 = fX

P u
r

(t2, . . . , t2r)
and discards the constraint (R, t1) from I when the test succeeds. By Lemma 8, this process
only removes redundant constraints. The algorithm then outputs the residual instance.

After this algorithm has terminated, for each relation R the corresponding relation RX

contains at most O(nr−ϵ) tuples because the r-uniform r-partite hypergraph HM (RX) has
cardinality |RX | and does not contain Kr

2 as a subhypergraph. There are O(1) distinct
relations in Γ, so the total number of remaining constraints is O(nr−ϵ). ◀

6 Conclusion

We have presented an algebraic framework based on fgpp-definitions and pattern partial
polymorphisms dedicated to the study of non-redundancy of constraint languages, extending
earlier work on Boolean languages [9, 21]. Based on this framework, we have established
a loose connection with extremal hypergraph theory and deduced a characterisation of
constraint languages of arity r with non-redundancy Θ(nr). The progress we have made in
this paper is modest, and much is still unknown on this topic. We believe that the following
challenges are the natural next steps towards a better understanding of non-redundancy.

Find a characterisation of constraint languages with non-redundancy O(n). In this paper
we have characterised constraint languages whose non-redundancy is the highest possible
with respect to their arity, so it would be interesting to do the same for languages whose
non-redundancy is the lowest possible. It is conceivable that this class coincides with that of
languages with a finite Mal’tsev embedding [21] since no counter-example is known. However,
proving that it is the case will likely require a better understanding of the pattern partial
polymorphisms of these languages and lower bounds more sophisticated than those based on
Boolean clauses.

Determine whether all r-ary constraint languages with non-redundancy o(nr) have
non-redundancy O(nr−1). This is known to be true for the Boolean domain by the results
of Chen et al. [9], but for larger domains we are only able to prove the existence of a
considerably smaller gap which vanishes as r grows. Both our approach and that of Chen
et al. have intrinsic limitations when dealing simultaneously with large domains and large
arities, so it would be interesting to see how they could be combined.

CP 2022

11:14 On Redundancy in Constraint Satisfaction Problems

Determine the non-redundancy of all ternary constraint languages. A classification is
known for binary languages (see [5], although a more direct proof follows from Example 11
and Lemma 15) and ternary Boolean languages [9], but not on ternary languages with
arbitrary domains.

Clarify the relationship between non-redundancy, sparsification, and learnability. In
particular, it would be interesting to determine whether non-redundancy O(nq) implies
sparsification algorithms with output size O(nq) and whether non-redundancy is asymptotic-
ally equivalent to chain length, a closely related measure that characterises the efficiency of
a class of learning algorithms for constraint acquisition [5].

References
1 Albert Atserias, Andrei A. Bulatov, and Anuj Dawar. Affine systems of equations and

counting infinitary logic. Theoretical Compututer Science, 410(18):1666–1683, 2009. doi:
10.1016/j.tcs.2008.12.049.

2 Libor Barto, Zarathustra Brady, Andrei Bulatov, Marcin Kozik, and Dmitriy Zhuk. Minimal
taylor algebras as a common framework for the three algebraic approaches to the CSP. In
36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS’21), pages 1–13.
IEEE, 2021. doi:10.1109/LICS52264.2021.9470557.

3 Libor Barto and Marcin Kozik. Constraint satisfaction problems solvable by local consistency
methods. Journal of the ACM, 61(1):3:1–3:19, 2014. doi:10.1145/2556646.

4 Libor Barto, Andrei Krokhin, and Ross Willard. Polymorphisms, and how to use them. In
Dagstuhl Follow-Ups, volume 7. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

5 Christian Bessiere, Clément Carbonnel, and George Katsirelos. Chain length and csps learnable
with few queries. In Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence
(AAAI’20), pages 1420–1427, 2020. doi:10.1609/aaai.v34i02.5499.

6 Christian Bessiere, Remi Coletta, Emmanuel Hebrard, George Katsirelos, Nadjib Lazaar, Nina
Narodytska, Claude-Guy Quimper, and Toby Walsh. Constraint acquisition via partial queries.
In Francesca Rossi, editor, Proceedings of the 23rd International Joint Conference on Artificial
Intelligence (IJCAI’13), pages 475–481, 2013.

7 Christian Bessiere, Frédéric Koriche, Nadjib Lazaar, and Barry O’Sullivan. Constraint
acquisition. Artificial Intelligence, 244:315–342, 2017. doi:10.1016/j.artint.2015.08.001.

8 Andrei A. Bulatov. A dichotomy theorem for nonuniform csps. In Chris Umans, editor, 58th
IEEE Annual Symposium on Foundations of Computer Science (FOCS’17), pages 319–330.
IEEE Computer Society, 2017. doi:10.1109/FOCS.2017.37.

9 Hubie Chen, Bart M. P. Jansen, and Astrid Pieterse. Best-case and worst-case sparsifiability
of Boolean csps. Algorithmica, 82(8):2200–2242, 2020. doi:10.1007/s00453-019-00660-y.

10 Hubie Chen and Matthew Valeriote. Learnability of solutions to conjunctive queries. Journal of
Machine Learing Research, 20:67:1–67:28, 2019. URL: http://jmlr.org/papers/v20/17-734.
html.

11 Miguel Couceiro, Lucien Haddad, and Victor Lagerkvist. A survey on the fine-grained
complexity of constraint satisfaction problems based on partial polymorphisms. J. Multiple
Valued Log. Soft Comput., 38(1-2):115–136, 2022.

12 László Egri, Pavol Hell, Benoît Larose, and Arash Rafiey. Space complexity of list H -
colouring: a dichotomy. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA’14), pages 349–365. SIAM, 2014.
doi:10.1137/1.9781611973402.26.

13 P Erdös. On extremal problems of graphs and generalized graphs. Israel Journal of Mathematics,
2(3):183–190, 1964.

https://doi.org/10.1016/j.tcs.2008.12.049
https://doi.org/10.1016/j.tcs.2008.12.049
https://doi.org/10.1109/LICS52264.2021.9470557
https://doi.org/10.1145/2556646
https://doi.org/10.1609/aaai.v34i02.5499
https://doi.org/10.1016/j.artint.2015.08.001
https://doi.org/10.1109/FOCS.2017.37
https://doi.org/10.1007/s00453-019-00660-y
http://jmlr.org/papers/v20/17-734.html
http://jmlr.org/papers/v20/17-734.html
https://doi.org/10.1137/1.9781611973402.26

C. Carbonnel 11:15

14 Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic snp
and constraint satisfaction: A study through datalog and group theory. SIAM Journal on
Computing, 28(1):57–104, 1998.

15 David Geiger. Closed systems of functions and predicates. Pacific journal of mathematics,
27(1):95–100, 1968.

16 Pawel M. Idziak, Petar Markovic, Ralph McKenzie, Matthew Valeriote, and Ross Willard.
Tractability and learnability arising from algebras with few subpowers. SIAM Journal on
Computing, 39(7):3023–3037, 2010. doi:10.1137/090775646.

17 Peter Jeavons, David Cohen, and Marc Gyssens. Closure properties of constraints. J. ACM,
44(4):527–548, July 1997. doi:10.1145/263867.263489.

18 Peter Jonsson, Victor Lagerkvist, Gustav Nordh, and Bruno Zanuttini. Strong partial
clones and the time complexity of SAT problems. J. Comput. Syst. Sci., 84:52–78, 2017.
doi:10.1016/j.jcss.2016.07.008.

19 Peter Keevash. Hypergraph turán problems. Surveys in combinatorics, 392:83–140, 2011.
20 Victor Lagerkvist and Magnus Wahlström. Kernelization of constraint satisfaction prob-

lems: A study through universal algebra. In Proceedings of the 23rd Conference on
Principles and Practice of Constraint Programming (CP’17), pages 157–171, 2017. doi:
10.1007/978-3-319-66158-2_11.

21 Victor Lagerkvist and Magnus Wahlström. Which np-hard SAT and CSP problems admit
exponentially improved algorithms? CoRR, abs/1801.09488, 2018. arXiv:1801.09488.

22 Benoît Larose, Cynthia Loten, and Claude Tardif. A characterisation of first-order constraint
satisfaction problems. Logical Methods in Computer Science, 3(4), 2007. doi:10.2168/
LMCS-3(4:6)2007.

23 Emil L. Post. The two-valued iterative systems of mathematical logic. Annals of Mathematics
studies, 1941. doi:10.2307/2268608.

24 Boris A Romov. The algebras of partial functions and their invariants. Cybernetics, 17(2):157–
167, 1981.

25 Thomas J. Schaefer. The complexity of satisfiability problems. In STOC ’78: Proceedings
of the tenth annual ACM Symposium on Theory of Computing (STOC’78), pages 216–226.
Association for Computing Machinery, 1978. doi:10.1145/800133.804350.

26 Dmitriy Zhuk. A proof of the CSP dichotomy conjecture. Journal of the ACM, 67(5):30:1–30:78,
2020. doi:10.1145/3402029.

CP 2022

https://doi.org/10.1137/090775646
https://doi.org/10.1145/263867.263489
https://doi.org/10.1016/j.jcss.2016.07.008
https://doi.org/10.1007/978-3-319-66158-2_11
https://doi.org/10.1007/978-3-319-66158-2_11
http://arxiv.org/abs/1801.09488
https://doi.org/10.2168/LMCS-3(4:6)2007
https://doi.org/10.2168/LMCS-3(4:6)2007
https://doi.org/10.2307/2268608
https://doi.org/10.1145/800133.804350
https://doi.org/10.1145/3402029

From Crossing-Free Resolution to Max-SAT
Resolution
Mohamed Sami Cherif #

Aix-Marseille Univ, Université de Toulon, CNRS, LIS, France

Djamal Habet #

Aix-Marseille Univ, Université de Toulon, CNRS, LIS, France

Matthieu Py #

Aix-Marseille Univ, Université de Toulon, CNRS, LIS, France

Abstract
Adapting a SAT resolution proof into a Max-SAT resolution proof without considerably increasing
its size is an open problem. Read-once resolution, where each clause is used at most once in the
proof, represents the only fragment of resolution for which an adaptation using exclusively Max-SAT
resolution is known and trivial. Proofs containing non read-once clauses are difficult to adapt because
the Max-SAT resolution rule replaces the premises by the conclusions. This paper contributes to
this open problem by defining, for the first time since the introduction of Max-SAT resolution, a
new fragment of resolution whose proofs can be adapted to Max-SAT resolution proofs without
substantially increasing their size. In this fragment, called crossing-free resolution, non read-once
clauses are used independently to infer new information thus enabling to bring along each non
read-once clause while unfolding the proof until a substitute is required.

2012 ACM Subject Classification Theory of computation → Proof theory

Keywords and phrases Satisfiability, Proof, Max-SAT Resolution

Digital Object Identifier 10.4230/LIPIcs.CP.2022.12

1 Introduction

The maximum satisfiability (Max-SAT) problem is an optimization extension of the satisfiab-
ility (SAT) problem and consists, given a formula in Conjunctive Normal Form (CNF), in
determining the maximum number of clauses that it is possible to satisfy by an assignment
of the variables. This well known formalism is used to represent and solve many real-world
and crafted problems making it of great academic and industrial interest [3, 4]. SAT and
Max-SAT are strongly related and share many aspects. In fact, SAT solving techniques are
often used in the context of Max-SAT solving, particularly in SAT-based and Branch and
Bound (BnB) algorithms for Max-SAT [1, 2, 21]. Yet, in theory, bridging the gap between
SAT and Max-SAT inference remains one of the main challenges in the last decade.

One of the first proof systems for Max-SAT is based on an inference rule called Max-SAT
resolution [6, 7, 16, 17], which is an extension of the resolution rule [28] introduced in the
context of SAT. Max-SAT resolution is sound, complete and is the most studied inference
rule for Max-SAT, both in theory and practice [1, 5, 18, 19, 23, 24, 27]. However, adapting
a resolution proof to get a valid Max-SAT resolution proof of reasonable size remains an
open problem. Bonet et al. state that “it seems difficult to adapt a classical resolution proof
to get a Max-SAT resolution proof, and it is an open question if this is possible without
increasing substantially1 the size of the proof ” [7]. Indeed, unlike resolution, the Max-SAT
resolution rule replaces the premises with the conclusions, which is necessary to maintain

1 typically when the size of the adapted proof is exponential with respect to the size of the initial one.

© Mohamed Sami Cherif, Djamal Habet, and Matthieu Py;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 12; pp. 12:1–12:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mohamed-sami.cherif@univ-amu.fr
https://orcid.org/0000-0003-4646-9982
mailto:djamal.habet@univ-amu.fr
mailto:matthieu.py@univ-amu.fr
https://doi.org/10.4230/LIPIcs.CP.2022.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 From Crossing-Free Resolution to Max-SAT Resolution

Max-SAT equivalence after its application. Moreover, aside from the traditional resolvent
clause, additional clauses2 are also added to ensure Max-SAT equivalence. In [17], Larrosa
et al. describe Max-SAT resolution as “a movement of knowledge”. As such, read-once
resolution proofs, where each clause is used once, represent the only fragment of resolution
for which an immediate and trivial adaptation is possible [6, 7, 12]. Recent works [11, 24]
try to circumvent this problem by allowing the use of the split rule, which intuitively allows
to duplicate a clause by adding one literal, to linearly adapt tree-like resolution refutations.
More specifically, the adaptation takes advantage of the structure of such proofs and applies
the split rule to fix the non read-once input clauses. However, the resulting proofs are in
the ResS proof system [18] in which Max-SAT resolution is augmented with the split rule.
To bridge the gap between SAT and Max-SAT resolution, non read-once clauses need to be
inferred using the clauses produced by Max-SAT resolution.

In this paper, we contribute to this open problem by identifying a new fragment of
resolution, that we call crossing-free resolution, for which an adaptation using only Max-SAT
resolution is possible without substantially increasing the size of the proof. Crossing-free
derivations are defined using the ensuing derivations of non read-once clauses. Intuitively, non
read-once clauses are used independently to infer new information in crossing-free resolution
proofs. The adaptation of such proofs to Max-SAT resolution proofs is shown possible
modulo some minor syntactic subtleties. Furthermore, we show that k-stacked diamond
patterns, which were shown exponential for the adaptation in [24], fall within the crossing-free
resolution fragment and can be adapted into Max-SAT resolution proofs without increasing
their size.

This paper is organized as follows. Section 2 gives some necessary definitions and notations
and presents the necessary background on resolution for SAT and Max-SAT as well as related
work. The crossing-free resolution refinement is introduced in Section 3 and its adaptation
to Max-SAT resolution is presented in Section 4. We study (k-stacked) diamond patterns
and show that they can be adapted without increasing their size in Section 5. Finally, we
conclude in Section 6.

2 Preliminaries

2.1 Definitions and Notations
Let X be the set of propositional variables. A literal l is a variable x ∈ X or its negation x.
A clause C is a disjunction (or a set) of literals. If |C| = 1, C is a unit clause. A formula in
Conjunctive Normal Form (CNF) ϕ is a conjunction (or a multiset) of clauses. An assignment
I : X → {true, false} maps each variable to a boolean value and can be represented as a set
of literals. A literal l is satisfied (resp. falsified) by an assignment I if l ∈ I (resp. l ∈ I). A
clause C is satisfied by an assignment I if at least one of its literals is satisfied by I, otherwise
it is falsified by I. The empty clause □ contains zero literals and is always falsified. A clause
C is a tautology if it contains both a literal l and its negation l, i.e., ∃l ∈ C s.t l ∈ C, and in
such case it is always satisfied. A clause C opposes a clause C ′ if C contains a literal whose
negation is in C ′, i.e., ∃l ∈ C s.t l ∈ C ′. We denote var(l), var(C) and var(ϕ) the variables
appearing respectively in the literal l, the clause C and the formula ϕ. The width of a clause
C is the number of literals occurring in it. A CNF formula ϕ is satisfied by an assignment I,
that we call model of ϕ, if each clause C ∈ ϕ is satisfied by I, otherwise it is falsified by I.

2 referred to as compensation clauses

M. S. Cherif, D. Habet, and M. Py 12:3

Solving the Satisfiability (SAT) problem consists in determining whether there exists an
assignment I that satisfies a given CNF formula ϕ. In the case where such an assignment
exists, we say that ϕ is satisfiable, otherwise we say that ϕ is unsatisfiable or inconsistent.
The cost of an assignment I, denoted costI(ϕ), is the number of clauses falsified by I. The
Maximum Satisfiability (Max-SAT) problem is an optimization extension of SAT which, for
a given CNF formula ϕ, consists in determining the maximum number of clauses that can
be satisfied by an assignment of the variables. Equivalently, it consists in determining the
minimum number of clauses that each assignment must falsify, i.e., min

I
costI(ϕ).

2.2 Resolution for SAT
A well-known proof and refutation system for SAT is based on the resolution rule [28]. Given
two opposed clauses, this rule, defined below, deduces a resolvent clause which can be added
to the formula. A resolution proof or derivation of a clause C is a finite sequence of resolutions
starting from the clauses of ϕ and deducing C usually represented as a finite sequence of
clauses. If C is the empty clause □, the proof is referred to as a refutation of ϕ. A resolution
proof can also be represented in the form of a Directed Acyclic Graph (DAG) whose nodes
are clauses in the proof either having two or zero incoming arcs (resp. if they are resolvents
or clauses of the initial formula). The size of a resolution derivation π, denoted s(π), is the
number of resolvents in it whereas its width, denoted w(π), is the maximum width of all its
clauses.

▶ Definition 1 (Resolution [28]). Given two opposed clauses C1 and C2, the resolution rule
is defined as follows:

C1 = x ∨ A C2 = x ∨ B

C3 = A ∨ B

Many restricted classes of resolution have been studied in the literature, e.g read-once
resolution [13], tree (or tree-like) resolution [15] and linear resolution [22] among others. In
particular, a resolution proof is read-once if each clause is used at most once in the proof.
Similarly, a resolution derivation is tree-like if every intermediate clause, i.e., resolvent, is
used at most once in the derivation. Linear resolution, defined below, lies between tree-like
and general resolution in terms of proof complexity [8, 9]. In this fragment, the proofs are
linear in the sense that each deduced clause is used as premise in the next resolution step.
Note that, when the first condition of (c) holds in the definition, the clause Di is called the
input parent clause of Ci+1.

▶ Definition 2 (Linear resolution [22]). Let ϕ be a CNF formula and C be a clause. A linear
resolution derivation of C from ϕ is a sequence of clauses C1, ..., Cm such that:
(a) C1 is a clause in ϕ

(b) Cm is the clause C

(c) For every i < m, Ci+1 is the resolvent of Ci either with a clause Di from ϕ or with a
clause Ck for some k < i.

2.3 Resolution for Max-SAT
One of the first and most studied proof systems for Max-SAT is the Max-SAT resolution
calculus (MaxRes) which relies on an inference rule extending resolution for Max-SAT
[6, 7, 16, 17]. Other than the resolvent clause, this rule, called Max-SAT resolution and
defined below, introduces new clauses referred to as compensation clauses and essential to

CP 2022

12:4 From Crossing-Free Resolution to Max-SAT Resolution

preserve Max-SAT equivalence. As a sound and complete rule for Max-SAT [6, 7], Max-SAT
resolution plays an important role in the context of Max-SAT theory and solving [5, 18, 24, 27].
In particular, for a given CNF formula, it is possible to generate a Max-SAT resolution proof
of its optimum by applying the saturation algorithm [7]. Furthermore, it is extensively used
and studied in the context of Branch and Bound algorithms for Max-SAT [1, 10, 14, 19] and
more marginally in the context of SAT-based ones [12, 23].

▶ Definition 3 (Max-SAT equivalence). Let ϕ and ϕ′ be two CNF formulas. ϕ and ϕ′ are
Max-SAT equivalent iff for any assignment I : var(ϕ) ∪ var(ϕ′) → {true, false}, we have
costI(ϕ) = costI(ϕ′).

▶ Definition 4 (Max-SAT resolution [6, 7, 16, 17]). Given two opposed clauses C1 and C2,
the Max-SAT resolution rule is defined as follows:

C1 = x ∨ A C2 = x ∨ B

Cr = A ∨ B

CC1 = x ∨ A ∨ B

CC2 = x ∨ A ∨ B

where Cr is the resolvent clause and CC1, CC2 are compensation clauses.

Note that the following rewriting is used to represent the compensation clauses in
compacted form: C ∨a1 ∨ a2 ∨ ... ∨ an = (C ∨a1)∧ (C ∨a1 ∨a2)∧ ...∧ (C ∨a1 ∨a2 ∨ ...∨∨an).
This rewriting was introduced in [17] as a recursive rule to transform the compensation
clauses into CNF form. This also entails that the Max-SAT resolution rule depends on the
ordering of the literals, as reported in [7, 17]. For the sake of simplification, we will allow the
use of this rewriting as two full-fledged rules to manipulate clauses in compacted form. We
will refer to the left-right rewriting as expansion and right-left one as compaction. This may
entail abusing some notations but it is useful to further simplify the proofs. Furthermore,
given three sets of literals A, B and C, the equality C ∨ A ∨ B

∗= C ∨ A ∨ A ∨ B is sound for
Max-SAT as reported in [17] (c.f. Remark 13) and may be as such used in the proofs. We
discuss these subtleties following Theorem 14 in Section 4.

A Max-SAT resolution proof or derivation of a formula ϕ′ from ϕ is a finite sequence of
Max-SAT resolutions starting from the clauses of ϕ and deducing ϕ′ and is usually represented
as a finite sequence of formulas. Note that we may allow the addition of tautological clauses
to any formula in the proof. We discuss this syntactic subtlety at the end of Section 4. A
Max-SAT resolution proof can also be represented as a bipartite DAG whose nodes are either
clauses or inference steps (in which case they will be omitted for more simplicity). A sequence
of Max-SAT resolution steps deducing one empty clause is referred to as Max-SAT resolution
refutation. For a given CNF formula, it is possible to generate a Max-SAT resolution proof
of its optimum by applying the saturation algorithm [7]. Note that other inference rules and
proof systems were also studied in the context of Max-SAT [5, 11, 18, 20, 27].

Unlike resolution, the Max-SAT resolution rule replaces the premises by the conclusions.
Larrosa et al. describe Max-SAT resolution as “a movement of knowledge” [17]. Because of
this specificity, it is not easy to adapt a resolution proof to obtain a Max-SAT resolution proof.
Indeed, in resolution proofs, several resolution steps can share the same premise, because the
premises are not consumed after the application of a resolution step. On the other hand, the
premises of a Max-SAT resolution step are consumed after its application. Consequently, the
immediate adaptation of a resolution proof for Max-SAT is only possible if it is read-once
[6, 7, 12]. In this fragment, it is simply sufficient to replace every resolution step in the

M. S. Cherif, D. Habet, and M. Py 12:5

proof by a Max-SAT resolution step to produce a Max-SAT resolution proof of similar size.
However, adapting any resolution proof to a Max-SAT proof without substantially increasing
its size remains an open problem.

Recent works [11, 24] augment the Max-SAT resolution rule by the split rule defined
below, forming a new system stronger than MaxRes and called ResS [18], to linearly adapt
tree-like resolution refutations into ResS refutations. More specifically, the adaptation takes
advantage of the structure of such proofs and applies the split rule, which intuitively allows to
duplicate a clause by adding one literal, to fix the non read-once input clauses. Furthermore,
the substitution algorithm introduced in [26] also enables to generate substitutes for non
read-once clauses using SAT oracles but no guarantee is provided for the size of the computed
ResS refutations. To the best of our knowledge, read-once resolution remains the only
fragment of resolution for which an adaptation using exclusively Max-SAT resolution is
possible without substantially increasing the proof size. In the next section, we define a new
refinement of resolution for which this is possible.

▶ Definition 5 (Split). Given a clause C and variable x, the split rule is defined as follows:

C

x ∨ C x ∨ C

3 Crossing-Free Resolution

The main difficulty in adapting resolution proofs to Max-SAT resolution ones lies in inferring
a substitute for non read-once clauses. Indeed, such clauses must be naturally inferred using
Max-SAT resolution while unfolding (i.e., reading and applying) the initial resolution proof,
contrary to previous works [11, 24] where non read-once clauses are artificially fixed using the
split rule before the actual unfolding of the proof. In this section, we define a new fragment
of resolution, referred to as crossing-free resolution. The idea behind this refinement is to
ensure enough manoeuvrability of proofs in terms of structure in order to infer substitutes
for non read-once clauses when necessary. To this end, we define below the notion of ensuing
derivation of a non read-once clause. Intuitively, this particular derivation is ensued from a
non read-once clause in the sense that it is sufficient to delimit the impact of its multiple use.
Note that a node where a set of given paths in a resolution proof intersect will be referred to
as their junction node.

▶ Definition 6 (Ensuing derivation). Let ϕ be a CNF formula and π a resolution derivation
of clause C from ϕ. The ensuing derivation of a non read-once clause C ′ in π, denoted
ED(C ′), is the sub-derivation of π formed by all the resolution steps in the paths starting
from C ′ in π until their first junction node. We call the clause derived in the junction node,
the ensued clause of C ′, denoted EC(C ′).

▶ Example 7. We consider the resolution derivation π represented in Figure 1 of clause
C = x6 from the formula ϕ = {x1 ∨ x3 ∨ x4, x4 ∨ x5, x4 ∨ x5, x1 ∨ x4, x2 ∨ x4 ∨ x6, x5 ∨
x7, x2 ∨ x3 ∨ x7, x5 ∨ x7}. The non read-once clauses x4 and x2 ∨ x3 ∨ x7 and their ensuing
derivations are respectively represented in red and blue. Furthermore, we have EC(x4) = x6
and EC(x2 ∨ x3 ∨ x7) = x2 ∨ x3.

Recall that clauses are consumed after the application of Max-SAT resolution. Therefore,
it seems difficult to adapt resolution derivations in which ensuing derivations of non read-once
clauses cross. Indeed, in such cases, the formula can significantly evolve as compensation
clauses may be used while others may be generated. As such, crossing-free resolution ensures
that ensuing derivations are disjoint, i.e., do not cross, as defined below.

CP 2022

12:6 From Crossing-Free Resolution to Max-SAT Resolution

x4 ∨ x5 x4 ∨ x5

x1 ∨ x3 ∨ x4 x4 x1 ∨ x4 x2 ∨ x4 ∨ x6

x1 ∨ x3 x1 x2 ∨ x6

x3 x3 ∨ x6

x2 ∨ x3

x6

x2 ∨ x3 ∨ x5 x2 ∨ x3 ∨ x5

x5 ∨ x7 x2 ∨ x3 ∨ x7 x5 ∨ x7

Figure 1 Ensuing derivations in a crossing-free resolution proof.

▶ Definition 8 (Crossing-free resolution derivation). Let ϕ be a CNF formula and π a resolution
derivation of clause C from ϕ. π is crossing-free iff for every pair of non read-once clauses
(C1, C2), ED(C1) and ED(C2) are disjoint, i.e., they do not contain a shared arc.

▶ Example 9. We consider the same formula ϕ in Example 7. The resolution derivation π

of clause C = x6 from ϕ represented in Figure 1 is crossing-free since the ensuing derivations
of the non read-once clauses x4 and x2 ∨ x3 ∨ x7 are disjoint.

Note that the crossing-free resolution refinement entails an interesting property established
in the following proposition. Intuitively, this property ensures that non read-once clauses are
used independently to infer new information in crossing-free resolution proofs. This entails
that each ensuing derivation in a crossing-free resolution proof can be adapted independently
as described in the next section.

▶ Proposition 10. Let ϕ be a CNF formula, π be a crossing-free resolution derivation
of clause C from ϕ and C ′ a non read-once clause in π. Every clause Cl in ED(C ′) s.t
Cl /∈ {C ′, EC(C ′)} is read-once.

Proof. Let Cl be a clause in ED(C ′) s.t Cl /∈ {C ′, EC(C ′)}. Clearly, if Cl is not read once,
ED(Cl) shares at least one arc with ED(C ′) which is absurd since π is crossing-free. ◀

4 From Crossing-Free Resolution to Max-SAT Resolution

In this section, we show that crossing-free resolution derivations can be adapted to Max-
SAT resolution derivations modulo some minor syntactic subtleties without substantially
increasing their size. In the following proposition, we first provide some patterns which will
be encountered in the adaptation.

▶ Proposition 11. Let A, B, C and {l} be four sets of literals s.t |C| > 0. The following
deductions can be done in O(|C|) inference steps:
(a) (A ∨ C) ∧ (B ∨ C) ⊢MaxRes A ∨ B

(b) (l ∨ A ∨ C) ∧ (l ∨ B) ⊢MaxRes A ∨ B ∨ C

(c) (l ∨ A ∨ C) ∧ (l ∨ B ∨ C) ⊢MaxRes A ∨ B ∨ C

Proof. We provide the proof for case (a) by induction on |C| = n:
If n = 1, then C = {l′}. Clearly, (A ∨ l′) ∧ (B ∨ l′) ⊢MaxRes A ∨ B by application of a
Max-SAT resolution step on literal var(l′).

M. S. Cherif, D. Habet, and M. Py 12:7

Suppose n > 1 and let l′ ∈ C. By the induction hypothesis, we can deduce (A ∨ C) ∧
(B ∨ C \ {l′}) ⊢MaxRes A ∨ B ∨ l′ in n − 1 inference steps. Furthermore, B ∨ C =
(B ∨ C \ {l′}) ∧ (B ∨ l′) by expansion and (A ∨ B ∨ l′) ∧ (B ∨ l′) ⊢MaxRes A ∨ B by
application of a Max-SAT resolution step on variable var(l′). Therefore, we conclude
that we can deduce (A ∨ C) ∧ (B ∨ C)} ⊢MaxRes A ∨ B in O(n) inference steps.

Proofs for cases (b) and (c) are similar by induction on |C|. ◀

Next, we start dealing with the adaptation of crossing-free resolution derivations and
particularly ensuing derivations. To generate a substitute for a non read-once clause, note
that we can use the literals in the junction nodes (c.f. Lemma 1 in [24]) of an ensuing
derivation, i.e., nodes where paths starting from the non read-once clause intersect. To
generate such substitutes using Max-SAT resolution, we start by dealing with read-once linear
parts in the proof. Informally, we want to drag (i.e., bring along) each non read-once clause
while unfolding the proof until they are reused. This is formally established for read-once
linear parts of the proof in the following lemma. Note that the implications of equality ∗= in
the proof will be further discussed at the end of the section.

▶ Lemma 12. Let ϕ be a CNF formula, π = C1, ..., Cs(π) be a read-once linear resolution
derivation of clause C ̸= □ from ϕ. We can deduce ϕ ⊢MaxRes C ∧(C1 ∨C) in O(s(π)×w(π))
inference steps.

Proof. Let m = s(π). Since π is read-once, it can be trivially adapted into a Max-SAT
resolution derivation of C from ϕ of the same size by replacing every resolution step with a
Max-SAT resolution step [6, 7, 12]. Next, we prove by induction on i ∈ {1, .., m − 1} that we
can infer C ′

i = C1 ∨ Ci+1 at the ith Max-SAT resolution step:
For i = 1, the first Max-SAT resolution on clauses C1 = l1 ∨ A1 and D1 = l1 ∨ B1 w.r.t
var(l1) generates the following compensation clause:

CC1|1 = l1 ∨ A1 ∨ B1
∗= l1 ∨ A1 ∨ A1 ∨ B1 = C1 ∨ C2 = C ′

1

Note that to establish the equality ∗=, we can add the tautological clauses l1 ∨A1 ∨B1 ∨A1
(or alternatively l1∨A1∨A1) to the formula) in which case l1∨A1∨A1 ∨ B1 can be trivially
inferred by compaction. Furthermore, if D1 is a unit clause, CC1|1 is not generated.
However, we can simply add the tautological clauses l1 ∨ A1 ∨ A1 which correspond to
C1 ∨ C2 since D1 = l1 (i.e., B1 is empty).

Ci = li ∨ Ai Di = li ∨ Bi

Ci+1 = Ai ∨ Bi

CC1|i = li ∨ Ai ∨ Bi

C ′
i−1 = C1 ∨ Ci = C1 ∨ li ∨ Ai

C1 ∨ li ∨ Ai

C1 ∨ Ai

C1 ∨ Ai ∨ Bi

C ′
i = C1 ∨ Ai ∨ Bi = C1 ∨ Ci+1

var(li)

var(li)

Figure 2 Induction step to infer C′
i at the ith step. Solid lines represent the application of

the Max-SAT resolution rule whereas dashed lines represent compaction or expansion. Unused
compensation clauses are omitted.

CP 2022

12:8 From Crossing-Free Resolution to Max-SAT Resolution

x4 x2 ∨ x4 ∨ x6

x2 ∨ x6 x2 ∨ x3

x3 ∨ x6

x4 x2 ∨ x4 ∨ x6

x2 ∨ x6

x4 ∨ x2 ∨ x6

x2 ∨ x3

x3 ∨ x6

x2 ∨ x6 ∨ x3

x4 ∨ x6

x4 ∨ x2 ∨ x6

x4 ∨ x6 ∨ x3

x4 ∨ x3 ∨ x6

Figure 3 Dragging the non read-once clause while unfolding a read-once linear section of the
proof. Solid lines represent the application of the Max- SAT resolution rule whereas dashed lines
represent compaction or expansion. Unused compensation clauses are omitted.

Suppose that we can generate C ′
i−1 = C1 ∨ Ci at the ith − 1 Max-SAT resolution step.

The ith step on Ci = li ∨ Ai and Di = li ∨ Bi w.r.t var(li) generates the resolvent
Ci+1 = Ai ∨Bi and the compensation clauses CC1|i = li ∨Ai ∨Bi and CC2|i = li ∨Ai ∨B.
The induction step to infer C ′

i is represented in Figure 2. Note that similarly to the base
case, if Di = li(i > 1) is a unit clause, i.e., the ith step corresponds to a deletion of literal
li from Ci = li ∨ Ai deducing the resolvent Ci+1 = Ai, the tautological clauses li ∨ Ai ∨ Ai

can be added to the formula thus replacing CC1|i in Figure 2. However, as showcased in
the same figure, the addition of such clauses in case D1 is unit can be avoided since the
initial expansion step on C ′

i−1 suffices to generate C1 ∨ Ai = C1 ∨ Ci+1 = C ′
i.

Finally, by Proposition 11 (case b.), the inference of C1 ∨ Ai ∨ Bi in Figure 2 requires
O(|Bi|) Max-SAT resolution steps and, thus, every step in π is clearly adapted in O(w(π))
inference steps to generate C and C1 ∨ Cm. Therefore, we conclude that we can deduce
ϕ ⊢MaxRes C ∧ (C1 ∨ Cm) in O(s(π).w(π)) inference steps. ◀

▶ Example 13. We consider the read-once linear derivation of clause x3 ∨ x6 from ϕ =
{x4, x2 ∨ x4 ∨ x6, x2 ∨ x3} represented on the left of Figure 3. The Max-SAT resolution
proof deducing x3 ∨ x6 and x4 ∨ x3 ∨ x6 is represented on the right of Figure 3.

Next, we establish our main result on the adaptation of crossing-free resolution derivations.
The proof in the following theorem particularly deals with the junction nodes in ensuing
derivations, i.e., nodes where the paths starting from the non read-once clauses intersect.
More specifically, we want to drag or bring along the non read-once clause through these
particular nodes. We provide an illustration of a full adaptation in Example 15.

▶ Theorem 14. Let ϕ be a CNF formula and π be a crossing-free resolution derivation of
clause C from ϕ. We can deduce ϕ ⊢MaxRes C in O(s(π) × (s(π) + w(π))2) inference steps.

M. S. Cherif, D. Habet, and M. Py 12:9

l ∨ A l ∨ B

A ∨ B

l ∨ A ∨ B

l ∨ A ∨ B

Cl ∨ l ∨ A Cl ∨ l ∨ B

...
...

Cl Cl ∨ l

Cl ∨ l ∨ A
Cl ∨ A ∨ B

Cl ∨ l ∨ A ∨ B

Cl ∨ l ∨ A
Cl ∨ A

Cl ∨ A ∨ B

var(l)

var(l)

var(B)
var(l)

Figure 4 Inferring Cl ∨ A ∨ B in a junction node of ED(Cl). Solid lines represent the application
of the Max-SAT resolution rule, bold double arcs represent the application of Max-SAT resolution
to delete opposed sets of literals and dashed lines represent compaction or expansion. Unused
compensation clauses are omitted.

l l ∨ B

B

l ∨ B

Cl ∨ l ∨ B

...
...

Cl Cl ∨ l

Cl ∨ B

var(l)

var(l)

Figure 5 Inferring Cl ∨ C′ in case A is empty in a junction node of ED(Cl). Solid lines represent
the application of the Max-SAT resolution rule whereas dashed lines represent compaction and
expansion. Unused compensation clauses are omitted.

l ∨ A l ∨ A

A

Cl ∨ l ∨ A Cl ∨ l ∨ A

...
...

Cl Cl ∨ l

Cl ∨ l ∨ A

Cl ∨ A

var(l)

var(l)

Figure 6 Inferring Cl ∨ C′ in case A = B in a junction node of ED(Cl). Solid lines represent
the application of the Max-SAT resolution rule whereas dashed lines represent compaction and
expansion. Unused compensation clauses are omitted.

CP 2022

12:10 From Crossing-Free Resolution to Max-SAT Resolution

Proof. Property 10 ensures that each ensuing derivation can be adapted independently. Let
Cl be a non read-once clause in π and w.l.o.g we only consider it ensuing derivation ED(Cl).
We prove that at each step of ED(Cl) deriving clause C ′, we can infer C ′ and SC ∨ C ′ where
SC is either Cl or its substitute in the path leading to C ′. The proof is by induction on the
size of the derivation. The base case where the derivation is empty is trivial. Next, using
Lemma 12, we can suppose w.l.o.g that C ′ is derived in a junction node (of paths starting
from Cl). Let l ∨ A and l ∨ B be the premises of the resolution step deriving C ′ = A ∨ B.

The induction hypothesis ensures that there exists a Max-SAT resolution derivation of
l ∨ A and C ∨ l ∨ A. As showcased in Figure 4, Cl ∨ l can be used to replace the occurrences
of Cl in the derivation of l ∨ B. Note that to avoid using tautological substitutes, we can
suppose w.l.o.g that l /∈ Cl by interchanging the proofs of l ∨ A and l ∨ B when necessary
thus entailing a different unfolding order of the original proof and the generation of the exact
same clause as a substitute in such nodes. Again, similarly to the left side, the induction
hypothesis ensures the existence of a Max-SAT resolution derivation of l∨B and Cl∨ l∨ l ∨ B

and, therefore, Cl ∨ l ∨ B by expansion. Clearly, C ′ = A ∨ B can be derived by Max-SAT
resolution and we showcase in Figure 4 how Cl ∨ C ′ = C ∨ A ∨ B can be inferred using the
compensation clauses as well as Cl ∨ l ∨ A and Cl ∨ l ∨ B.
Note that the following particular cases can occur:

A or B is empty, in which case a unit clause is used to derive C ′ = A ∨ B. We represent
in Figure 5 how to derive Cl ∨ C ′ in case A is empty. The derivation in case B is empty
is symmetric and thus omitted. Notice that in the case both A and B are empty, π is a
refutation and there is no need to derive Cl ∨ C ′ in the last Max-SAT resolution step. In
fact, more generally, this is also not necessary for the last junction node in an ensuing
derivation in π.
A = B in which case the generated compensation clauses are tautological and are not
necessary to derive Cl ∨ C ′ = Cl ∨ A as showcased in Figure 6.

Finally, in each junction node we need O(|B|) inference steps to deduce Cl ∨ A ∨ B using case
(c) in Proposition 11. Similarly, using expansion on A and pattern (b) in Proposition 11, we
need O(|A| × |B|) inference steps to deduce Cl ∨ l ∨ A. It is important to note that the width
of the proof may evolve while generating substitutes for non read-once clauses as literals
may be added in junction nodes. However, the width remains bounded by w(π) + s(π) and
thus each junction node can be adapted in O((w(π) + s(π))2) inference steps. Therefore, we
conclude that we can deduce ϕ ⊢MaxRes C in O(s(π) × (s(π) + w(π))2) inference steps. ◀

▶ Example 15. We consider the formula ϕ = {x1 ∨ x3 ∨ x4, x4 ∨ x5, x4 ∨ x5, x1 ∨ x4, x2 ∨
x4 ∨ x6, x2 ∨ x3} and the derivation π of clause x6 from ϕ represented in Figure 1. We omit
the section of the proof (in blue) deriving clause x2 ∨x3 for simplicity. Note that this omitted
part, i.e., the ensuing derivation of the non read-once clause x2 ∨ x3 ∨ x7 corresponds to a
diamond pattern [24]. Such patterns will be studied in Section 5 (refer to Example 23 for
the adaptation). The adaptation of proof π is reported in Figure 7. We reuse the adaptation
of the linear read-once section in Example 3. The non read-once clause and its substitutes
are colored in red and added tautological clauses are represented in green. Note that this is
one of the possible adaptations depending on the order chosen for adapting the branches of
ED(x4). Finally, we stress the fact that we could have generated the clause C = x4 ∨ x6
after the last Max-SAT resolution step on clauses x3 ∨ x3 (but we omit this inference since
x6 = EC(x4) as mentioned in the proof of Theorem 14). Indeed, C can be inferred by an
additional Max-SAT resolution step on the compensation clauses obtained in the last step,
i.e., clauses x3 ∨ x6 and x4 ∨ x3 ∨ x6. In the proof of Theorem 14, this corresponds to the
case where B is empty in a junction node of an ensuing derivation.

M. S. Cherif, D. Habet, and M. Py 12:11

x4 ∨ x5 x4 ∨ x5

x4 x4 ∨ x2 ∨ x6

x2 ∨ x6

x4 ∨ x2 ∨ x6

x3 ∨ x6

x2 ∨ x3

x2 ∨ x6 ∨ x3

x4 ∨ x6

x4 ∨ x2 ∨ x6

x4 ∨ x6 ∨ x3

x4 ∨ x3 ∨ x6

x4 ∨ x3 ∨ x6

x4 ∨ x3 x4 ∨ x1

x1 ∨ x3

x4 ∨ x3 ∨ x1 x4 ∨ x3 ∨ x1 ∨ x3

x4 ∨ x3 ∨ x1 ∨ x3

x4 ∨ x3 ∨ x1 ∨ x3

x4 ∨ x1 ∨ x3 x4 ∨ x1 ∨ x3

x1 ∨ x3

x3

x6

Figure 7 Adaptation of a crossing-free resolution derivation. Solid lines represent the application
of the Max-SAT resolution rule whereas dashed lines represent compaction and expansion. Unused
compensation clauses are omitted.

Next, we discuss some minor syntactic subtleties that occur in the adaptation. First, it is
important to note that the use of the expansion and compaction rewritings as full fledged
rules is relevant for simplification but not necessary. Recall that these two rules are mainly
used in order to switch between the different equivalent forms of C when it is written in CNF
form. Each form corresponds to a different ordering of the literals in C. When applying
Max-SAT resolution, a relevant order may be chosen when necessary. However, an application
of a compaction followed by an expansion may correspond to a certain rearrangement of the
variables in CNF form. This may occur when adapting the read-once linear part of the proof.
Indeed, as showcased in Figure 2, a compaction may be followed by an expansion to isolate
the clause C1 ∨ li ∨ Ai from the compact form C1 ∨ Ai. Similarly, as shown in Figure 4, it
may be necessary to isolate the clause Cl ∨ l from the compact form Cl ∨ l ∨ A when dealing
with junction nodes.

More specifically, we may need to rearrange a certain literal at the beginning or at the
end of the ordering. In Proposition 16, we prove that it is possible to switch the first and
last literals in the CNF form of C in O(|C|) inference steps. This entails that in the proof
of Theorem 14, the compaction and expansion rules can be omitted and replaced with
O(s(π) × (s(π) + w(π))) Max-SAT resolutions. Clearly, this does not impact our result in
terms of the size of the resulting adaptation. In Example 17, we provide the full simplified
adaptation of the proof in Example 15 without the use of rewriting rules.

▶ Proposition 16. Let n be a natural number and l1, ..., ln be n literals. We can deduce
(l1) ∧ (l1 ∨ l2) ∧ ... ∧ (l1 ∨ ... ∨ ln−1 ∨ ln) ⊢MaxRes (ln) ∧ (ln ∨ l2) ∧ ... ∧ (ln ∨ l2 ∨ ... ∨ ln−1 ∨ l1)
in O(n) inference steps.

CP 2022

12:12 From Crossing-Free Resolution to Max-SAT Resolution

x5 ∨ x4 x5 ∨ x4

x4 x4 ∨ x2 ∨ x6

x2 ∨ x6

x3 ∨ x6

x2 ∨ x3

x2 ∨ x6 ∨ x3

x4 ∨ x6

x4 ∨ x2 ∨ x6

x4 ∨ x6 ∨ x3

x4 ∨ x3 x4 ∨ x1

x1 ∨ x3

x4 ∨ x1 ∨ x3 x4 ∨ x1 ∨ x3

x1 ∨ x3

x3

x6

Figure 8 Adaptation of a crossing-free resolution proof to a Max-SAT resolution proof. Unused
compensation clauses are omitted.

Proof. By induction on n we have:
If n = 1 the result is trivial.
For n > 1, the application of Max-SAT resolution on clauses l1 ∨ ∨ ln−2 ∨ ln−1 and
l1 ∨∨ ln−1 ∨ ln w.r.t var(ln−1) generates the resolvent clause C = l1 ∨∨ ln−2 ∨ ln and
the compensation clause CC = l1∨....∨ln−2∨ln∨ln−1. Furthermore, by induction, we can
deduce (l1)∧(l1∨l2)∧...∧(l1∨...∨ln−2∨ln) ⊢MaxRes (ln)∧(ln∨l2)∧...∧(ln∨l2∨...∨ln−2∨l1)
in O(n − 1) inference steps. A single additional Max-SAT resolution step on clauses
CC and ln ∨ l2 ∨ ... ∨ ln−2 ∨ l1 w.r.t var(l1) is sufficient to generate the resolvent clause
ln ∨ l2 ∨ ... ∨ ln−2 ∨ ln−1 and the compensation clause ln ∨ l2 ∨ ... ∨ ln−1 ∨ l1. Therefore,
we deduce the wanted result in O(n) inference steps. ◀

▶ Example 17. We consider the same formula ϕ in Example 15. We represent in Figure 8 a
Max-SAT resolution proof (without rewriting) of clause x6 from ϕ. Notice how we use the
following rearrangement x6 ∧ (x6 ∨ x3) ⊢MaxRes x3 ∧ (x3 ∨ x6) to generate the substitute
x4 ∨x3. Furthermore, the tautological clause x4 ∨x3 ∨x1 ∨x3 colored in green in Figure 7 and
the rearrangement in which it is involved are not necessary since the last required substitute
for x1, i.e x4 ∨ x1 ∨ x3 is naturally generated by the preceding Max-SAT resolution step.
Therefore, they can be deleted as is the case for the full adaptation without rewriting in
Figure 8.

Next, we discuss the implications of the equality ∗= used in the proof of Lemma 12, i.e.,
l ∨ A ∨ B

∗= l ∨ A ∨ A ∨ B. Recall that this equality is sound for Max-SAT (c.f. Remark
13 in [17]). However, to avoid adding it as a standalone rule and as explained in the
proof of Lemma 12, we can consider the addition of tautological clauses. This may also be
required in case of unit clauses. It is important to note that the number of tautological
clauses added to the formula in an adaptation of a crossing-free resolution derivation π is in
O(s(π)× (w(π)+s(π))). A similar phenomenon was also noted in [8]. In addition, notice how

M. S. Cherif, D. Habet, and M. Py 12:13

the adaptation may also rely on tautological compensation clauses which are generated by
Max-SAT resolution. Such clauses are usually deleted or omitted in the literature [6, 7, 17]
but they may carry important information which is necessary to infer substitutes for non
read-once clauses.

Finally, we establish our result on crossing-free refutations in the following corollary.
We also illustrate in Example 19 an adaptation of a crossing free resolution refutation to a
Max-SAT resolution refutation.

▶ Corollary 18. Let ϕ be an unsatisfiable CNF formula and π be a crossing-free resolution
refutation of ϕ. We can deduce ϕ ⊢MaxRes □ from ϕ in O(s(π)3) inference steps.

Proof. Trivially entailed from Theorem 14 since w(π) = O(s(π)) for refutations. ◀

▶ Example 19. We consider the unsatisfiable CNF formula ϕ = {x1, x1∨x3, x1∨x2, x2∨x3}
and the refutation π of ϕ represented in Figure 9. Clearly, π is crossing-free since there is only
one non read-once clause, i.e., x1. In fact, π also corresponds to the ensuing derivation of x1
and □ is its ensued clause, i.e., ED(x1) = π and EC(x1) = □. Two possible adaptations
of π are illustrated in Figure 10. The non read-once clause and its substitutes are colored
in red. The possible adaptations correspond to different possible orderings of the proof. In
the adaptation on the left, we consider that the resolution step on clauses x1 ∨ x1 and x1
precedes the one on clauses x1 and x1 ∨ x2, and inversely for the adaptation on the right.
Note that the adaptation on the left corresponds to the handmade example provided by
Bonet et al. in [6, 7] (c.f. Example 1 in [6] or Example 3 in [7]).

x1 ∨ x3 x1 x1 ∨ x2 x2 ∨ x3

x3 x2

x3

□

Figure 9 Crossing-free resolution refutation.

x1 ∨ x3 x1 x1 ∨ x2 x2 ∨ x3

x3

x1 ∨ x3

x2 ∨ x3

x3

□

x1 x1 ∨ x2 x2 ∨ x3

x2

x1 ∨ x2

x1 ∨ x3

x3

x2 ∨ x3

x3

x1 ∨ x3

□

Figure 10 Two possible adaptations of the crossing-free resolution refutation represented in
Figure 9 depending on the ordering of the resolution steps involving the non read-once clause x1.
Unused compensation clauses are omitted.

CP 2022

12:14 From Crossing-Free Resolution to Max-SAT Resolution

5 On (k-stacked) Diamond Patterns

In this section, we study particular resolution refutations, called k-stacked diamond patterns,
which were introduced and shown exponential for the adaptation (to ResS) in [24]. A diamond
pattern (x, y, A) where x, y /∈ A is the sequence of resolutions represented in Figure 11. Note
that the particular diamond pattern (x, y,□) is a resolution refutation. Now, imagine that
the topmost clause of (x, y,□) is derived through another diamond pattern. We iterate the
same reasoning to define a k-stacked diamonds pattern as in Definition 20.

▶ Definition 20 (k-stacked diamond). Let k ≥ 1 be a natural number and let xi and yi where
1 ≤ i ≤ k be distinct variables. A k-stacked diamond pattern is formed by k diamond patterns
(xi, yi, Ai) where 1 ≤ i ≤ k such that A1 = □ and Ai = (x1 ∨ · · · ∨ xi−1) for 1 < i ≤ k. Each
diamond (xi, yi, Ai) is stacked on top of (xi−1, yi−1, Ai−1) such that the last conclusion of
the former is the topmost central premise of the latter.

When k > 2, the size of a k-stacked diamond P is s(P) = 3k while the size of the
computed refutation in ResS [18], i.e., Max-SAT resolution augmented with the split rule, by
the adaptation in [24] is at least 2k−1 which is exponential in the size of P . First, notice
that k-stacked diamond patterns fall within the crossing-free resolution. Furthermore, these
patterns can be adapted to Max-SAT resolution refutations without increasing their size as
established in 22. Such an adaptation is illustrated in Example 23.

▶ Proposition 21. Let k ≥ 1 be a natural number. A k-stacked diamond resolution refutation
is crossing-free.

▶ Proposition 22. Let ϕ be a CNF formula, k ≥ 1 be a natural number and π be a k-stacked
diamond resolution refutation. There exists a Max-SAT resolution refutation π′ of ϕ s.t
s(π′) ≤ s(π).

Proof. We show how to adapt every diamond pattern without increasing its size In Figure 12.
This is entailed by the fact that each diamond is clearly a crossing-free derivation and more
specifically an ensuing derivation of a non read-once clause. As such, a k-stacked diamond P

can be adapted in at most s(P) Max-SAT resolution steps. ◀

▶ Example 23. We consider the ensuing derivation of clause x2 ∨ x3 ∨ x7 represented in
Figure 1. As mentioned in Example 15, this part of the proof corresponds to a diamond
pattern. Its adaptation is illustrated in Figure 13 (the non read-once clause and its substitute
are represented in red). The adaptation can be added on top of clause x2 ∨ x3 in Figure 8 to
obtain the full adaptation of the initial crossing-free proof represented in Figure 1.

6 Conclusion

In this paper, we introduced a new fragment of resolution, called crossing-free resolution, in
which ensuing derivations of non read-once clauses are disjoint. We showed that crossing-free

x ∨ Ax ∨ y x ∨ y

y ∨ A y ∨ A

A

Figure 11 Diamond pattern (x, y, A).

M. S. Cherif, D. Habet, and M. Py 12:15

x ∨ y x ∨ A x ∨ y

y ∨ A

x ∨ y ∨ A

x ∨ y ∨ A y ∨ A

A

Figure 12 Adaptation of a diamond pattern (x, y, A).

x7 ∨ x5 x7 ∨ x2 ∨ x3 x7 ∨ x5

x5 ∨ x2 ∨ x3

x7 ∨ x2 ∨ x3 ∨ x5

x5 ∨ x2 ∨ x3

x2 ∨ x3

Figure 13 Adaptation of the diamond pattern in the resolution proof represented in Figure 1
(colored in blue) corresponding to the ensuing derivation of clause x7 ∨x2 ∨x3. Unused compensation
clauses are omitted.

resolution derivations and in particular crossing-free refutations can be adapted to Max-SAT
resolution proofs without substantially increasing their size. To the best of our knowledge,
this is the first non trivial fragment, i.e., different from read-once resolution, whose adaptation
is shown possible using only Max-SAT resolution with a reasonable guarantee on the size of
the adapted proofs. The idea behind the adaptation is to naturally infer substitutes for non
read-once clauses by dragging them along while unfolding the initial resolution proof and by
relying on compensation clauses produced by Max-SAT resolution. Furthermore, we show
that diamond patterns, which were shown exponential for the adaptation in [24], fall within
the crossing-free resolution fragment and can be adapted into Max-SAT resolution proofs
without increasing their size.

Our results contribute to the difficult open problem of adapting resolution proofs to Max-
SAT resolution proofs without increasing their size [6, 7] and, therefore, helps to bridge the
gap between resolution for SAT and Max-SAT. Furthermore, unlike SAT solvers, Max-SAT
solvers are still not able to output certificates in the form of Max-SAT equivalent proofs
mainly due to the variety of solving paradigms and due to the theoretical gap between SAT
and Max-SAT resolution. Our work can be useful in this regard and particularly in improving
the efficiency of independent proof builders for the Max-SAT problem [25]. Finally, as future
work, it would be interesting to characterize a larger intersection between SAT and Max-SAT
resolution by proving that an adaptation of an extended refinement of resolution (ideally
unrestricted resolution) without a substantial increase in the size of the proofs is possible,
even through augmenting Max-SAT resolution by other inference rules.

CP 2022

12:16 From Crossing-Free Resolution to Max-SAT Resolution

References
1 André Abramé and Djamal Habet. Ahmaxsat: Description and Evaluation of a Branch

and Bound Max-SAT Solver. J. Satisf. Boolean Model. Comput., 9(1):89–128, 2014. doi:
10.3233/sat190104.

2 Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. SAT-based MaxSAT algorithms.
Artificial Intelligence, 196:77–105, 2013. doi:10.1016/j.artint.2013.01.002.

3 Fahiem Bacchus, Jeremias Berg, Matti Järvisalo, and Ruben Martins, editors. MaxSAT
Evaluation 2021: Solver and Benchmark Descriptions. Department of Computer Science
Report Series B. Department of Computer Science, University of Helsinki, Finland, 2021. URL:
https://maxsat-evaluations.github.io/2021/.

4 Fahiem Bacchus, Matti Järvisalo, and Ruben Martins. Maximum Satisfiability, pages 929–991.
Frontiers in Artificial Intelligence and Applications. IOS PRESS, Netherlands, 2 edition, 2021.
doi:10.3233/FAIA201008.

5 Maria Luisa Bonet and Jordi Levy. Equivalence Between Systems Stronger Than Resolution.
In Luca Pulina and Martina Seidl, editors, Theory and Applications of Satisfiability Testing
- SAT 2020 - 23rd International Conference, Alghero, Italy, July 3-10, 2020, Proceedings,
volume 12178 of Lecture Notes in Computer Science, pages 166–181. Springer, 2020. doi:
10.1007/978-3-030-51825-7_13.

6 Maria Luisa Bonet, Jordi Levy, and Felip Manyà. A Complete Calculus for Max-SAT. In
Armin Biere and Carla P. Gomes, editors, Theory and Applications of Satisfiability Testing -
SAT 2006, 9th International Conference, Seattle, WA, USA, August 12-15, 2006, Proceedings,
volume 4121 of Lecture Notes in Computer Science, pages 240–251. Springer, 2006. doi:
10.1007/11814948_24.

7 Maria Luisa Bonet, Jordi Levy, and Felip Manyà. Resolution for Max-SAT. Artif. Intell.,
171(8-9):606–618, 2007. doi:10.1016/j.artint.2007.03.001.

8 Joshua Buresh-Oppenheim and Toniann Pitassi. The Complexity of Resolution Refinements.
J. Symb. Log., 72(4):1336–1352, 2007. doi:10.2178/jsl/1203350790.

9 Sam Buss and Jan Johannsen. On Linear Resolution. J. Satisf. Boolean Model. Comput.,
10(1):23–35, 2016. doi:10.3233/sat190112.

10 Mohamed Sami Cherif, Djamal Habet, and André Abramé. Understanding the power of
Max-SAT resolution through UP-resilience. Artif. Intell., 289:103397, 2020. doi:10.1016/j.
artint.2020.103397.

11 Yuval Filmus, Meena Mahajan, Gaurav Sood, and Marc Vinyals. MaxSAT Resolution and
Subcube Sums. In Luca Pulina and Martina Seidl, editors, Theory and Applications of
Satisfiability Testing - SAT 2020 - 23rd International Conference, Alghero, Italy, July 3-
10, 2020, Proceedings, volume 12178 of Lecture Notes in Computer Science, pages 295–311.
Springer, 2020. doi:10.1007/978-3-030-51825-7_21.

12 Federico Heras and João Marques-Silva. Read-Once Resolution for Unsatisfiability-Based Max-
SAT Algorithms. In Toby Walsh, editor, IJCAI 2011, Proceedings of the 22nd International
Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011,
pages 572–577. IJCAI/AAAI, 2011. doi:10.5591/978-1-57735-516-8/IJCAI11-103.

13 Kazuo Iwama and Eiji Miyano. Intractability of Read-Once Resolution. In Proceedings of the
Tenth Annual Structure in Complexity Theory Conference, Minneapolis, Minnesota, USA, June
19-22, 1995, pages 29–36. IEEE Computer Society, 1995. doi:10.1109/SCT.1995.514725.

14 Adrian Kügel. Improved Exact Solver for the Weighted MAX-SAT Problem. In Daniel Le
Berre, editor, POS-10. Pragmatics of SAT, Edinburgh, UK, July 10, 2010, volume 8 of EPiC
Series in Computing, pages 15–27. EasyChair, 2010. doi:10.29007/38lm.

15 Sukhamay Kundu. Tree resolution and generalized semantic tree. In Zbigniew W. Ras and
Maria Zemankova, editors, Proceedings of the ACM SIGART International Symposium on
Methodologies for Intelligent Systems, ISMIS 1986, Knoxville, Tennessee, USA, October 22-24,
1986, pages 270–278. ACM, 1986. doi:10.1145/12808.12838.

https://doi.org/10.3233/sat190104
https://doi.org/10.3233/sat190104
https://doi.org/10.1016/j.artint.2013.01.002
https://maxsat-evaluations.github.io/2021/
https://doi.org/10.3233/FAIA201008
https://doi.org/10.1007/978-3-030-51825-7_13
https://doi.org/10.1007/978-3-030-51825-7_13
https://doi.org/10.1007/11814948_24
https://doi.org/10.1007/11814948_24
https://doi.org/10.1016/j.artint.2007.03.001
https://doi.org/10.2178/jsl/1203350790
https://doi.org/10.3233/sat190112
https://doi.org/10.1016/j.artint.2020.103397
https://doi.org/10.1016/j.artint.2020.103397
https://doi.org/10.1007/978-3-030-51825-7_21
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-103
https://doi.org/10.1109/SCT.1995.514725
https://doi.org/10.29007/38lm
https://doi.org/10.1145/12808.12838

M. S. Cherif, D. Habet, and M. Py 12:17

16 Javier Larrosa and Federico Heras. Resolution in Max-SAT and its relation to local consistency
in weighted CSPs. In Leslie Pack Kaelbling and Alessandro Saffiotti, editors, IJCAI-05, Pro-
ceedings of the Nineteenth International Joint Conference on Artificial Intelligence, Edinburgh,
Scotland, UK, July 30 - August 5, 2005, pages 193–198. Professional Book Center, 2005. URL:
http://ijcai.org/Proceedings/05/Papers/0360.pdf.

17 Javier Larrosa, Federico Heras, and Simon de Givry. A logical approach to efficient Max-SAT
solving. Artif. Intell., 172(2-3):204–233, 2008. doi:10.1016/j.artint.2007.05.006.

18 Javier Larrosa and Emma Rollon. Towards a Better Understanding of (Partial Weighted)
MaxSAT Proof Systems. In Luca Pulina and Martina Seidl, editors, Theory and Applications
of Satisfiability Testing - SAT 2020 - 23rd International Conference, Alghero, Italy, July
3-10, 2020, Proceedings, volume 12178 of Lecture Notes in Computer Science, pages 218–232.
Springer, 2020. doi:10.1007/978-3-030-51825-7_16.

19 Chu Min Li, Felip Manyà, and Jordi Planes. New Inference Rules for Max-SAT. J. Artif.
Intell. Res., 30:321–359, 2007. doi:10.1613/jair.2215.

20 Chu Min Li, Felip Manyà, and Joan Ramon Soler. A Clause Tableau Calculus for MaxSAT.
In Subbarao Kambhampati, editor, Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016, pages
766–772. IJCAI/AAAI Press, 2016. URL: http://www.ijcai.org/Abstract/16/114.

21 Chu-Min Li, Zhenxing Xu, Jordi Coll, Felip Manyà, Djamal Habet, and Kun He. Combining
Clause Learning and Branch and Bound for MaxSAT. In Laurent D. Michel, editor, 27th
International Conference on Principles and Practice of Constraint Programming, CP 2021,
Montpellier, France (Virtual Conference), October 25-29, 2021, volume 210 of LIPIcs, pages
38:1–38:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.
CP.2021.38.

22 D. W. Loveland. A linear format for resolution. In M. Laudet, D. Lacombe, L. Nolin, and
M. Schützenberger, editors, Symposium on Automatic Demonstration, pages 147–162, Berlin,
Heidelberg, 1970. Springer Berlin Heidelberg. doi:10.1007/BFb0060630.

23 Nina Narodytska and Fahiem Bacchus. Maximum Satisfiability Using Core-Guided Max-
SAT Resolution. In Carla E. Brodley and Peter Stone, editors, Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelligence, July 27 -31, 2014, Québec City, Québec,
Canada, pages 2717–2723. AAAI Press, 2014. URL: https://ojs.aaai.org/index.php/AAAI/
article/view/9124.

24 Matthieu Py, Mohamed Sami Cherif, and Djamal Habet. Towards Bridging the Gap Between
SAT and Max-SAT Refutations. In 32nd IEEE International Conference on Tools with Artificial
Intelligence, ICTAI, pages 137–144. IEEE, 2020. doi:10.1109/ICTAI50040.2020.00032.

25 Matthieu Py, Mohamed Sami Cherif, and Djamal Habet. A Proof Builder for Max-SAT.
In Chu-Min Li and Felip Manyà, editors, Theory and Applications of Satisfiability Testing
- SAT 2021 - 24th International Conference, Barcelona, Spain, July 5-9, 2021, Proceedings,
volume 12831 of Lecture Notes in Computer Science, pages 488–498. Springer, 2021. doi:
10.1007/978-3-030-80223-3_33.

26 Matthieu Py, Mohamed Sami Cherif, and Djamal Habet. Computing Max-SAT Refutations
using SAT Oracles. In 33rd IEEE International Conference on Tools with Artificial Intelligence,
ICTAI 2021, Washington, DC, USA, November 1-3, 2021, pages 404–411. IEEE, 2021. doi:
10.1109/ICTAI52525.2021.00066.

27 Matthieu Py, Mohamed Sami Cherif, and Djamal Habet. Inferring Clauses and Formulas
in Max-SAT. In 33rd IEEE International Conference on Tools with Artificial Intelligence,
ICTAI 2021, Washington, DC, USA, November 1-3, 2021, pages 632–639. IEEE, 2021. doi:
10.1109/ICTAI52525.2021.00101.

28 John Alan Robinson. A Machine-Oriented Logic Based on the Resolution Principle. J. ACM,
12(1):23–41, 1965. doi:10.1145/321250.321253.

CP 2022

http://ijcai.org/Proceedings/05/Papers/0360.pdf
https://doi.org/10.1016/j.artint.2007.05.006
https://doi.org/10.1007/978-3-030-51825-7_16
https://doi.org/10.1613/jair.2215
http://www.ijcai.org/Abstract/16/114
https://doi.org/10.4230/LIPIcs.CP.2021.38
https://doi.org/10.4230/LIPIcs.CP.2021.38
https://doi.org/10.1007/BFb0060630
https://ojs.aaai.org/index.php/AAAI/article/view/9124
https://ojs.aaai.org/index.php/AAAI/article/view/9124
https://doi.org/10.1109/ICTAI50040.2020.00032
https://doi.org/10.1007/978-3-030-80223-3_33
https://doi.org/10.1007/978-3-030-80223-3_33
https://doi.org/10.1109/ICTAI52525.2021.00066
https://doi.org/10.1109/ICTAI52525.2021.00066
https://doi.org/10.1109/ICTAI52525.2021.00101
https://doi.org/10.1109/ICTAI52525.2021.00101
https://doi.org/10.1145/321250.321253

Isomorphisms Between STRIPS Problems and
Sub-Problems
Martin C. Cooper #

IRIT, University of Toulouse, France

Arnaud Lequen #

IRIT, University of Toulouse, France

Frédéric Maris # Ñ

IRIT, University of Toulouse, France

Abstract
Determining whether two STRIPS planning instances are isomorphic is the simplest form of
comparison between planning instances. It is also a particular case of the problem concerned with
finding an isomorphism between a planning instance P and a sub-instance of another instance P ′.
One application of such an isomorphism is to efficiently produce a compiled form containing all
solutions to P from a compiled form containing all solutions to P ′. In this paper, we study the
complexity of both problems. We show that the former is GI-complete, and can thus be solved,
in theory, in quasi-polynomial time. While we prove the latter to be NP-complete, we propose
an algorithm to build an isomorphism, when possible. We report extensive experimental trials
on benchmark problems which demonstrate conclusively that applying constraint propagation in
preprocessing can greatly improve the efficiency of a SAT solver.

2012 ACM Subject Classification Computing methodologies → Planning for deterministic actions;
Mathematics of computing → Matchings and factors

Keywords and phrases planning, isomorphism, complexity, constraint propagation

Digital Object Identifier 10.4230/LIPIcs.CP.2022.13

Supplementary Material The material to reproduce the experiments can be found here:
Software (Source Code): https://github.com/arnaudlequen/PDDLIsomorphismFinder

Funding This work was supported by the AI Interdisciplinary Institute ANITI, funded by the French
program “Investing for the Future – PIA3” under Grant agreement no. ANR-19-PI3A-0004.

Acknowledgements The authors would like to thank the anonymous reviewers, whose insightful
comments helped improve this paper.

1 Introduction

Models used for STRIPS [7] planning encode sizeable state-spaces that can rarely be rep-
resented explicitly, but that have a clear and somewhat regular structure. Parts of this
structure can be, however, common to multiple planning instances, although this similarity
is often far from immediate to identify by looking at the STRIPS representation. Indeed,
finding whether or not an instance P is a sub-instance of another problem P ′ requires to map
every fluent and every operator of P to their counterpart in P ′, while respecting a morphism
property. This requires the exploration of the exponential search space of mappings from
P to P ′. Finding such a mapping, however, allows us to carry over significant pieces of
information from one problem to the other. In particular, any solution-plan for P can then
be translated into a plan for P ′ efficiently.

A classical technique in constraint programming is to store all solutions to a CSP or SAT
instance in a compact compiled form [1]. This is performed off-line. A compilation map
indicates which operations and transformations can be performed in polynomial time during

© Martin C. Cooper, Arnaud Lequen, and Frédéric Maris;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 13; pp. 13:1–13:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cooper@irit.fr
https://orcid.org/0000-0003-4853-053X
mailto:arnaud.lequen@irit.fr
https://orcid.org/0000-0003-0339-0967
mailto:maris@irit.fr
https://www.irit.fr/~Frederic.Maris/
https://orcid.org/0000-0002-1084-1669
https://doi.org/10.4230/LIPIcs.CP.2022.13
https://github.com/arnaudlequen/PDDLIsomorphismFinder
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Isomorphisms Between STRIPS Problems and Sub-Problems

the on-line stage [6]. STRIPS fixed-horizon planning can be coded as a SAT instance using
the classical SATPLAN encoding [9]. So, for a given instance, all plans can be stored in a
compiled form, at least in theory. In practice, the compiled form will often be too large to
be stored. Types of planning problems which are nevertheless amenable to compilation are
those where the number of plans is small or, at the other extreme, there are few constraints
on the order of operators. If we have a compiled form C ′ representing all solution-plans
to an instance P ′ and we encounter a similar problem P , it is natural to ask whether we
can synthesize a plan for P from C ′. If P is isomorphic to a subproblem of P ′, then it
suffices to apply a sequence of conditioning operations to C ′ to obtain a compiled form
C representing all solutions to P . This is our main motivation for studying isomorphisms
between subproblems. A trivial but important special case occurs when C ′ is empty, i.e. P ′

has no solution. In this case, an isomorphism from P ′ to a subproblem of P is a proof that
P ′ has no solution.

In this paper, we first focus on problem SI, which is concerned with finding an isomorphism
between two STRIPS instances of identical size. As we show that the problem is GI-complete,
we prove that a quasi-polynomial time algorithm exists [2]. We then consider problem
SSI, which is concerned with finding an isomorphism between a STRIPS instance and a
subinstance of another STRIPS instance. We call such a mapping a subinstance isomorphism.
After showing that this problem is NP-complete, we propose an algorithm that finds a
subinstance isomorphism if one exists, or that detects that none exists. This algorithm is
based on constraint propagation techniques, that allow us to prune impossible associations
between elements of P and P ′, as well as on a reduction to SAT.

So far we have assumed that the two planning instances P and P ′ have the same initial
states and goals (modulo the isomorphism). Even when this is not the case, an isomorphism
from P to a subinstance of P ′ can still be of use. For example, if π is a solution-plan for
P , then its image in P ′ can be converted to a single new operator which could be added to
P ′ to facilitate its resolution. Such an operator would have the image of the initial state
I of P for precondition, and the image of the result of the application of π to I for effect,
thus abstracting away the application of the sequence of operators π. We therefore also
consider this weaker notion of subinstance isomorphism, that we call homogeneous subinstance
isomorphism, and the corresponding computational problem SSI-H.

Previous work investigated the complexity of various problems related to finding solution-
plans for STRIPS planning instances [4], or focused on the complexity of solving instances
from specific domains [8]. More scarcely, problems focused on altering planning models have
been studied from a complexity theory point of view, such as the problem concerned with
adapting a planning model so that some user-specified plans become feasible [10].

The paper is organized as follows. In Section 2, we introduce general notations, concepts
and constructions that we use throughout this paper. In Section 3 and Section 4, we present
our complexity results, for SI and SSI respectively. In Section 5, we present the outline of
our algorithm for SSI. Section 6 is dedicated to the experimental evaluation and discussion.

2 Preliminaries

2.1 Automated Planning
A STRIPS planning problem is a tuple P = ⟨F, I, O, G⟩ such that F is a set of fluents
(propositional variables whose values can change over time), I and G are sets of literals
of F , called the initial state and goal, and O is a set of operators. Operators are of the
form o = ⟨pre(o), eff(o)⟩. pre(o) and eff(o) are, respectively, the precondition and effect

M. C. Cooper, A. Lequen, and F. Maris 13:3

of o, which are sets of literals of F . We will denote pre+(o) = {f ∈ F | f ∈ pre(o)}
the positive fluents of pre(o), and pre−(o) = {f ∈ F | ¬f ∈ pre(o)} the negative fluents.
Similarly, eff+(o) = {f ∈ F | f ∈ eff(o)} and eff−(o) = {f ∈ F | ¬f ∈ eff(o)}. By a slight
abuse of notation, we will denote pre : O → 2F ∪ 2¬F the function o 7→ pre(o), and use
similar notations for pre+, pre−, eff, eff+, and eff−. In the rest of this paper, we will note
C = {pre+, pre−, eff+, eff−}. We will also use the notation that, for any set S of literals of F ,
¬S = {¬l | l ∈ S}.

A state s is an assignment of truth values to all fluents in F . For notational convenience, we
associate s with the set of literals of F which are true in s. Given an instance P = ⟨F, I, O, G⟩,
a solution-plan is a sequence of operators o1, . . . , ok from O such that the sequence of states
s0, . . . , sk defined by s0 = I and si = (si−1 \ eff−(oi)) ∪ eff+(oi) (i = 1, . . . , k) satisfies
pre+(oi) ⊆ si−1, pre−(oi) ∩ si−1 = ∅ (i = 1, . . . , k) and G ⊆ sk. A plan is defined similarly
but without the conditions concerning I and G.

2.2 Complexity Class GI
This section introduces the complexity class GI, for which SI is later shown to be complete.
GI is built around the Graph Isomorphism problem, which consists in finding a bijection
u : V → V ′ between the vertices of two graphs G(V, E) and G′(V ′, E′), such that the images
of vertices linked by an edge in G are also linked by an edge in G′ (and vice-versa). Formally,
we require that the following condition holds:

{x, y} ∈ E iff {u(x), u(y)} ∈ E′ (1)

▶ Definition 1. The complexity class GI is the class of problems with a polynomial-time
Turing reduction to the Graph Isomorphism problem.

Complexity class GI contains numerous problems concerned with the existence of an
isomorphism between two non-trivial structures encoded explicitly. Such problems are
often complete for the class: finding an isomorphism between colored graphs, hypergraphs,
automata, etc. are GI-complete problems [15]. In particular, we later use the following result:

▶ Proposition 2 ([15], Ch. 4, Sec. 15). The Oriented Graph Isomorphism problem is
GI-complete.

As with the Graph Isomorphism problem, an isomorphism between oriented graphs
G(V, E) and G′(V ′, E′) is a bijection u : V → V ′ such that (x, y) ∈ E iff ((u(x), u(y)) ∈ E′.

In this paper, we consider another category of structures, called Finite Model, defined
below. Finite models are also such that the related isomorphism existence problem is
GI-complete.

▶ Definition 3. A Finite Model is a tuple M = ⟨V, R1, . . . , Rn⟩ where V is a finite non-empty
set and each Ri is a relation on elements of V with a finite number of arguments.

Let M = ⟨V, R1, . . . , Rn⟩ and M ′ = ⟨V ′, R′
1, . . . , R′

n⟩ be two finite models. An isomorph-
ism between M and M ′ is a bijection u : V → V ′ such that, for any i ∈ {1, . . . , n}, for any
set of elements v1, . . . , vm with m the arity of Ri, Ri(v1, . . . , vm) iff R′

i (u(v1), . . . , u(vm)).

▶ Proposition 4 ([15], Ch. 4, Sec. 15). The Finite Model Isomorphism problem is GI-
complete.

Class GI is believed to be an intermediate class between P and NP: the Graph Isomorphism
problem can indeed be solved in quasi-polynomial time [2]. Although the problem is thought
not to be NP-complete, no polynomial time algorithm is known.

CP 2022

13:4 Isomorphisms Between STRIPS Problems and Sub-Problems

2.3 Graph encodings into STRIPS
In this section, we present two ways to encode a graph G = (V, E) into a planning problem
P = ⟨F, I, O, G⟩. These constructions are needed at various points in the rest of this paper,
and only differ in that they take into account, or not, the orientation of the edges of G. The
intuition behind these constructions is that they model an agent that would move on the
graph, resting on vertices and moving along edges. An agent being on vertex v would thus
be denoted by the state {v}, where all fluents other than v are false.

In order to make the construction and resulting proofs simpler to read, for any pair
(vs, vt) ∈ F 2, we will denote move(vs, vt) the operator that represents a movement from
vertex vs to vertex vt. Keeping in mind that F = V , we have, more formally:

move(vs, vt) = ⟨{vs}, {vt} ∪ ¬(V \ {vt})⟩

Where {vs} is the precondition of the operator, and {vt} ∪ ¬(V \ {vt}) its effects. In the
following construction, the vertices (resp. edges) of G are in bijection with the fluents (resp.
operators) of P . In particular, we do not allow multi-edges. Other alternative constructions
for move could have been used, as long as the encoding of each edge is unique. The one we
propose is sufficient for our theoretical use, even though they encode trivial planning tasks.

▶ Construction 5. Let G = (V, E) be an oriented graph. Let us build the planning problem
PG = ⟨F, I, O, G⟩, where:

F = V

O = {move(vs, vt) | (vs, vt) ∈ E}
G = I = ∅

In the case of non-oriented graphs, the construction is essentially the same, except that
moves are possible in both directions. This gives us the following definition:

▶ Construction 6. Let G = (V, E) be a non-oriented graph. Let us build the planning problem
PG = ⟨F, I, O, G⟩, where F , I and G are defined as in Construction 5, but where:

O = {move(vs, vt), move(vt, vs) | {vs, vt} ∈ E}

3 STRIPS Isomorphism Problem

This section is concerned with the problem of finding an isomorphism between two STRIPS
planning problems. After introducing the notion of isomorphism between STRIPS instances
that we use throughout this paper, we formally introduce problem SI, and settle its complexity.

▶ Definition 7 (Isomorphism between STRIPS instances). Let P = ⟨F, I, O, G⟩ and P ′ =
⟨F ′, I ′, O′, G′⟩ be two STRIPS instances. An isomorphism from P to P ′ is a pair (υ, ν) of
bijections υ : F → F ′ and ν : O → O′ that respect the following three conditions:

∀o ∈ O, ν (o) = ⟨υ (pre(o)) , υ (eff(o))⟩ (2)
υ (I) = I ′ (3)
υ (G) = G′ (4)

Where, by a slight abuse of notation, for any two sets F1 and F2 of fluents of F ,

υ (F1 ∪ ¬F2) = υ (F1) ∪ ¬υ (F2)

M. C. Cooper, A. Lequen, and F. Maris 13:5

An immediate property of this definition is that it carries over all plans: any se-
quence o1, . . . , on of operators of O is a plan for P if, and only if, the corresponding plan
ν (o1) , . . . , ν (on) is a plan for P ′. This homomorphism property is enforced by equation (2).
Similarly, all solution-plans carry over, as enforced by the additional conditions defined in
equations (3) and (4). We now introduce the problem SI formally, and analyze its complexity:

▶ Problem 8. STRIPS Isomorphism problem SI
Input: Two STRIPS instances P and P ′

Output: An isomorphism (υ, ν) between P and P ′, if one exists

▶ Proposition 9. SI is GI-complete

The rest of this section is dedicated to the proof of this result. We first show the
GI-hardness of the problem, and then that it belongs to GI.

▶ Lemma 10. SI is GI-hard

Proof. The proof consists in a reduction from the Oriented Graph Isomorphism problem to
SI. Let (G, G′) be an instance of the Oriented Graph Isomorphism problem, where G = (V, E)
and G′ = (V ′, E′). The proof relies on Construction 5, which gives us in polynomial time the
STRIPS planning problems PG and PG′ .

We show that there exists an isomorphism u : V → V ′ between G and G′ iff there exists
an isomorphism (υ, ν) between PG and PG′ . The main idea consists in, first, identifying
mappings u and υ, and second, showing that the morphism condition between the edges of
graphs G and G′ is enforced by the morphism condition on the operators of STRIPS instances
PG and PG′ , and vice-versa.

(⇒) Suppose that there exists a graph isomorphism u : V → V ′ between G and G′,
and let us show that there exists an isomorphism between PG and PG′ . We define the
transformation ν on elements of O by ν (⟨pre(o), eff(o)⟩) = ⟨u(pre(o)), u(eff(o))⟩. We will
show that ν : O → O′ is well-defined and that the pair (u, ν) forms an isomorphism between
PG and PG′ . For any o ∈ O, by construction, there exists a unique pair (v1, v2) ∈ V 2 such
that o = move(v1, v2). Thus, we have that

o ∈ O iff (v1, v2) ∈ E

iff (u(v1), u(v2)) ∈ E′

iff move(u(v1), u(v2)) ∈ O′

iff ν (move(v1, v2)) ∈ O′

iff ν (o) ∈ O′

The arguments from one line to the other stem from the construction of the various objects
we use. Thus, we have shown that PG and PG′ are isomorphic.

(⇐) Suppose that PG and PG′ are isomorphic, and that there exists an isomorphism
(υ, ν) between them. We will show that there exists an isomorphism between G and G′. By
hypothesis, we have υ : F → F ′ (or υ : V → V ′) and ν : O → O′ two bijections.

In the following, we will denote by g and g′ the bijections g : E → O and g′ : E′ → O′,
that exist by the construction (e.g. g((v1, v2)) = move(v1, v2)).

Let us show that the function υ is a graph isomorphism between G and G′. We have that,
for any e = (v1, v2) ∈ E, g(e) = move(v1, v2) ∈ O. So ν ◦ g(e) = ν (move(v1, v2)), and as
such, ν ◦ g(e) = move(υ (v1) , υ (v2)) ∈ O′. Then, g′−1 ◦ ν ◦ g(e) = (υ (v1) , υ (v2)), but also
g′−1 ◦ ν ◦ g(e) ∈ E′. As a consequence, (υ (v1) , υ (v2)) ∈ E′.

With similar arguments, as g, g′ and ν are bijections, the converse can be shown. As a
consequence, ν is a graph isomorphism between G and G′. ◀

CP 2022

13:6 Isomorphisms Between STRIPS Problems and Sub-Problems

▶ Lemma 11. SI is in GI.

Proof. The proof follows a reduction from SI to the Finite Model isomorphism problem, as
defined in Definition 3. It is based on the following construction: for any planning problem
P = ⟨F, I, O, G⟩, we build the finite model MP , such that:

MP = ⟨V, RF , RI , RO, RG, Rpre+ , Rpre− , Reff+ , Reff−⟩
V = F ⊔ O

For X ∈ {F, I, O, G}, RX = X

For each S ∈ C, RS =
{

(o, f) ∈ V 2 | o ∈ O and f ∈ S(o)
}

where C = {pre+, pre−, eff+, eff−}. We will show that any two STRIPS planning problems P

and P ′ are isomorphic iff MP and MP ′ are isomorphic.
Let us denote MP = ⟨V, RF , . . . , Reff−⟩ and MP ′ = ⟨V ′, R′

F , . . . , R′
eff−⟩

(⇒) Suppose that there exists an isomorphism (υ, ν) between P and P ′. Define the
mapping g : V → V ′ such that, for x ∈ V ,

g(x) =
{

υ (x) if x ∈ F

ν (x) if x ∈ O
(5)

g is immediately a bijection, by hypothesis on (υ, ν). In addition, for X ∈ {F, I, O, G},
RX(v) iff R′

X(g(v)), by hypothesis on (υ, ν).
Let o ∈ O, p ∈ F . We have that, for any S ∈ C = {pre+, pre−, eff+, eff−},

RS(o, p) iff o ∈ O and p ∈ S(o) (6)
iff ν (o) ∈ O′ and υ (p) ∈ S(ν (o)) (7)
iff R′

S(ν (o) , υ (p))
iff R′

S(g(o), g(p))

The passage from (6) to (7) is by definition of the isomorphism. The other equivalences
follow mostly by definition. This proves that MP and MP ′ are isomorphic.

(⇐) Suppose that MP and MP ′ are isomorphic, and that g : V → V ′ is an isomorphism
between the two models. Let us define υ = g|F (resp. ν = g|O) the restriction of g on the
subdomain F (resp. O). Clearly, we have that υ : F → F ′, as otherwise there would exist an
element v ∈ V such that RF (v) but without R′

F (g(v)), violating the isomorphism hypothesis
on g. Similarly, we have ν : O → O′. We have, as above, for any o ∈ O,

o = ⟨pre(o), eff(o)⟩
iff ∀p ∈ F, ∀S ∈ C, p ∈ S(o) ⇔ RS(o, p) (8)
iff ∀p ∈ F, ∀S ∈ C, p ∈ S(o) ⇔ R′

S(g(o), g(p)) (9)
iff ∀p ∈ F, ∀S ∈ C, g(p) ∈ g(S(o)) ⇔ R′

S(g(o), g(p)) (10)
iff ∀p′ ∈ F ′, ∀S ∈ C, p′ ∈ g(S(o)) ⇔ R′

S(g(o), p′) (11)
iff g(o) = ⟨g(pre(o)), g(eff(o))⟩ (12)
iff ν (o) = ⟨υ (pre(o)) , υ (eff(o))⟩

The relations between the first line and (8), as well as between (11) and (12) hold
by construction of MP and MP ′ . The equivalence between (8) and (9) comes from the
hypothesis that g is an isomorphism. Between (9) and (10), we use that g is a bijection. For
the equivalence between (10) and (11), we use that g is surjective over F ′.

This finally proves that (υ, ν) is a homomorphism, and thus an isomorphism by choice of
its domain and codomain. ◀

M. C. Cooper, A. Lequen, and F. Maris 13:7

The results still hold if we do not enforce conditions (3) and (4), that the initial and goal
states of P and P ′ are in bijection. Indeed, the hardness proof relies on a reduction from
the Graph Isomorphism problem, with graphs that do not have initial or goal nodes, which
renders trivial the initial and goal states of the construction. Conversely, the proof that SI
belongs to class GI can include, or not, the relations RI and RG that take into account the
information concerning initial and goal states, and still remain correct for the version of SI
without conditions on the initial and goal states. This means that the hardness of SI comes
from matching the inner structure of the state-space, and that additional properties on some
states (like being initial states or goal states) do not impact significantly the complexity of
the problem. This is consistent with our intuition of class GI: it is known that finding a
color-preserving isomorphism between colored graphs (i.e., an isomorphism that conserves a
given property on nodes) is also a problem that is complete for this class [15].

4 The STRIPS Subinstance isomorphism problem

Let us now introduce problems SSI-H and SSI, which are concerned with finding (different
kinds of) isomorphisms between a planning instance P and some subinstance of another
STRIPS instance P ′. In this section, we settle the complexity of both problems, and show
that they are NP-complete. We use this result in order to propose, in the next section, an
algorithm for SSI and SSI-H. This algorithm is based on a reduction to SAT, assisted by a
preprocessing phase that relies on constraint propagation.

We begin by introducing the notion of homogeneous subinstance isomorphism, which is
concerned with finding an isomorphism between P and a subinstance of P ′, but does not
conserve the initial state and goal. It maps the whole state-space of problem P to a part of
the state-space of problem P ′, regardless of the initial state and goal of either problem.

▶ Definition 12 (Homogeneous subinstance isomorphism). Consider two STRIPS instances
P = ⟨F, I, O, G⟩ and P ′ = ⟨F ′, I ′, O′, G′⟩. A homogeneous subinstance isomorphism from P

to P ′ is a pair (υ, ν) of injective mappings υ : F → F ′ and ν : O → O′ that respect condition
(2) of Definition 7.

▶ Problem 13. STRIPS Homogeneous Subinstance Isomorphism SSI-H
Input Two STRIPS instances P and P ′

Output A homogeneous subinstance isomorphism (υ, ν) between P and P ′, if one exists

A homogeneous subinstance isomorphism between P and P ′ is useful, for instance, in the
case where we managed to compile all plans for P ′, and wish to extract a plan for P . The
following more precise notion of isomorphism between P and a subinstance of P ′ takes into
account the information provided by the initial state and goal. This allows us to carry over
only solution-plans from one problem to the other.

▶ Definition 14 (Subinstance isomorphism). A subinstance isomorphism from P to P ′ is a
homogeneous subinstance isomorphism that respects conditions (3) and (4) of Definition 7.

▶ Problem 15. STRIPS Subsintance Isomorphism SSI
Input Two STRIPS instances P and P ′

Output A subinstance isomorphism (υ, ν) between P and P ′, if one exists

The main difference between SI and SSI is that, in SSI, we relax the condition on the
bijectivity of υ and ν, to account for the difference in size between P and P ′. Their injectivity
is still required in order to prevent fluents (or operators) being merged together by the
mapping. All other conditions remain the same.

CP 2022

13:8 Isomorphisms Between STRIPS Problems and Sub-Problems

The main result of this section is presented below. The proof is based on a reduction
from the Subgraph Matching problem, which is known to be NP-complete [5]. As such, we
introduce that problem before stating our result. Essentially, it consists in finding a mapping
g, that defines an isomorphism between G and the subgraph (g(V), E′ ∩ g(V) × g(V)) of G′.

▶ Problem 16. Subgraph Matching problem
Input Two non-oriented graphs G(V, E) and G′(V ′, E′)

Output An injective mapping g : V → V ′ such that, for any v1, v2 ∈ V , {v1, v2} ∈ E iff
{g(v1), g(v2)} ∈ E′.

▶ Proposition 17. SSI is NP-complete

Proof. In order to prove that SSI is in NP, it suffices to resort to the certificate-based
definition of the class NP, and observe that the mappings υ and ν constitute a polynomial
size certificate that can be checked in polynomial time.

The proof that SSI is NP-hard consists in a reduction from the Subgraph Matching
problem, which is straightforward with the construction that we proposed earlier.

Let (G, G′) be an instance of the Subgraph Matching problem, and let us follow Con-
struction 6 to build planning problems PG and PG′ . We show that there exists a subgraph
matching g between G and G′ iff there exists a subinstance isomorphism of PG and PG′ .

(⇒) Suppose that there exists a subgraph matching g : V → V ′ between G and G′.
Then by construction, as F = V and F ′ = V ′, g is also an injective mapping between F

and F ′. In addition, let us define the mapping ν : O → O′ such that ν : move(v1, v2) 7→
move(g(v1), g(v2)). ν is well-defined, as {v1, v2} ∈ E iff {g(v1), g(v2)} ∈ E′, so move(v1, v2) ∈
O iff move(g(v1), g(v2)) ∈ O′. In addition, as g is injective, so is ν. As a consequence, (g, ν)
is a subinstance isomorphism between PG and PG′ .

(⇐) Suppose that there exists a subinstance isomorphism (υ, ν) between PG and PG′ . As
above, υ : V → V ′ is an injective mapping. In addition, we have that

(v1, v2) ∈ E

iff move(v1, v2) ∈ O

iff ν (move(v1, v2)) ∈ O′

iff move(υ (v1) , υ (v2)) ∈ O′

iff (υ (v1) , υ (v2)) ∈ E′

As a consequence, υ is a subgraph matching between G and G′. ◀

In addition, it is clear that SSI-H is in NP. As the above proof of NP-hardness of SSI is
independent of the initial and goal states, it also applies to the problem SSI-H.

▶ Corollary 18. SSI-H is NP-complete

5 An algorithm for SSI

In this section, we present an algorithm for problem SSI, for which the pseudo-code is
presented in Algorithm 1. This algorithm is based on a compilation of the problem into a
propositional formula, which is then passed to a SAT solver. It is completed by a preprocessing
step, based on constraint propagation, that allows us to prune impossible mappings early on.

M. C. Cooper, A. Lequen, and F. Maris 13:9

Algorithm 1 to find a subinstance isomorphism.
Input: Two STRIPS instances P and P ′

Output: A subinstance isomorphism between P and P ′ if one exists
1: Initialize_domains(F, O)

/* Prune impossible associations */
2: Q := F ∪ O

3: while Q ̸= ∅ do
4: v := Q.Pop()
5: r := Revise(v)
6: if r then
7: if D(v) = ∅ then return UNSAT
8: else Q.Add({v′ | v′ related to v})

/* Search phase through a SAT solver */
9: φ := Encode_to_SAT(P, P ′, D)

10: return Interpret(Solver.Find_model(φ))

Given two STRIPS instances P and P ′, the algorithm outputs, when possible, a subin-
stance isomorphism (υ, ν). Algorithm 1 consists in two main phases. The first phase, that
spans lines 2 to 8, consists in pruning as many associations between fluents (resp. operators)
of problem P and fluents (resp. operators) of problem P ′ that are impossible, because of
some syntactical inconsistencies (described below) that are then propagated. The second
phase, that starts at line 9, consists in a search phase, by means of an encoding of the
problem into a CNF formula, that is then passed to a SAT solver.

5.1 Pruning invalid associations
By association between fluents, we mean a pair (f, f ′) ∈ F ×F ′ such that f ′ is a candidate for
the value of υ (f). Similarly, we call an association between operators a pair (o, o′) ∈ O × O′

such that o′ is a candidate for the value of ν (o). Detecting early on associations that can
not be part of a valid subinstance isomorphism reduces the size of the search space.

In order to prune as many inconsistent associations as possible, we use a technique similar
to constraint propagation, as commonly found in the constraint programming literature. The
general idea is to maintain, for each fluent f ∈ F of P , a domain D(f) ⊆ F ′ of fluents of
P ′, that consists of the plausible candidates for the value of υ (f). Similarly, each operator
o ∈ O is assigned a domain D(o) ⊆ O′, containing the plausible candidates for ν (o). In the
following, we call fluents and operators variables. The aim of the procedure presented below
is to trim the domains of the variables, thus alleviating the load left to the SAT solver.

The first step is to initialize the domains. For each fluent f ∈ F , we set D(f) = F ′. The
initial assignment of the domains of operators o ∈ O, however, is based on operator profiles.
For each operator o ∈ O ∪ O′, we define the vector profile(o) ∈ N6, called the profile of o.
This vector numerically abstracts some characteristics of the operator, so that an operator
o ∈ O cannot be associated to operator o′ ∈ O′ if profile(o) ̸= profile(o′). In practice, profile(o)
consists of the number of positive and negative fluents in the precondition and effect of o, as
well as its number of strict-add and strict-delete fluents. A fluent f is said to be strict-add for
operator o if f ∈ pre−(o) ∧ f ∈ eff+(o), and strict-delete if f ∈ pre+(o) ∧ f ∈ eff−(o). Then,
we initialize the domain of each o ∈ O such that

D(o) = {o′ ∈ O′ | profile(o′) = profile(o)}

CP 2022

13:10 Isomorphisms Between STRIPS Problems and Sub-Problems

The second step is to propagate the additional constraints posed by these newly-found
restrictions of the domains. The technique we propose is based on the concept of arc
consistency, which is ubiquitous in the field of constraint programming. The idea consists
in eliminating, from the domains of fluents (resp. operators), the candidate fluents (resp.
operators) that have no support in the domain of some operator (resp. fluent).

More specifically, let us consider a fluent f ∈ F . When an operator o ∈ O is such that f

appears, negated or not, in its precondition or effect, then we say that o depends on f . Let us
denote d(f) the set of operators that depend on f . When f ′ ∈ F ′, we define d(f ′) in a similar
fashion. Now suppose that υ (f) = f ′. As a consequence of equation (2) of Definition 7, each
operator of d(f) must have its image by ν in d(f ′). Otherwise, f would appear in pre(o)
or eff(o), but υ (f) would not appear in υ (pre(o)) nor υ (eff(o)). Thus, if for some operator
o ∈ d(f) no candidate operator for its image is in d(f ′) (i.e., D(o) ∩ d(f ′) = ∅), then it
means that f ′ can not be chosen as the image of f .

In the following, we refine the argument of last paragraph by identifying pre+(o) with
pre+(o′), . . . , eff−(o) with eff−(o′). We thus have the following constraint for D(f), where
C = {pre+, pre−, eff+, eff−}:

D(f) ⊆
{

f ′
∣∣∣∣ ∀o ∈ O, ∀S ∈ C s.t. f ∈ S(o),

∃o′ ∈ D(o) s.t. f ′ ∈ S(o′)

}
(13)

A similar case can be made for operators. Let o ∈ O be any operator, and consider a
candidate operator o′ ∈ O′. In order for the morphism property to hold, in the case where
ν (o) = o′, for every fluent f of pre+(o), for instance, there must exist in pre+(o′) a fluent
that belongs to D(f). More generally and more formally, we have the following:

D(o) ⊆ {o′ | ∀S ∈ C, ∀f ∈ S(o), ∃f ′ ∈ D(f) ∩ S(o′)} (14)

Algorithmically, we enforce these constraints using an adaptation of AC3 [12, 14]. The
algorithm revolves around the revision of the coherence of the variables’ domains. Revising
a variable v boils down to checking that all elements of its domain still comply with the
necessary condition evoked earlier, which is either equation (13) if v is a fluent, or equation (14)
if v is an operator. The main loop, depicted in Algorithm 1, then consists in revising all
fluents and operators iteratively, by maintaining a queue Q of variables to revise (line 1).
The algorithm begins by revising once each variable. If, during the revision of a variable
v, the domain of v is altered by the procedure, then all variables that are related to v are
added to the set of variables to revise later on (lines 5 to 9). We say that v′ is related to v

if v is a fluent and v′ ∈ d(v), or conversely. If the domain of a variable is empty, then no
isomorphism exists, and the procedure ends prematurely (line 6 and 7). Otherwise, the loop
ends when there is no variable left to revise.

This procedure is often not sufficient to conclude, but greatly alleviates the pressure on
the search phase, which we present in the following section.

5.2 Encoding into a SAT instance
In this section, we build the propositional formula φ evoked earlier, from the models of which
an isomorphism can be extracted. φ is built on the set of variables Var(φ), such that:

Var(φ) =
{

f j
i

∣∣∣ i ∈ F, j ∈ F ′
}

∪ { os
r | r ∈ O, s ∈ O′ }

The propositional variable f j
i represents the association of fluent i ∈ F to fluent j ∈ F ′.

Likewise, os
r represents the association of r ∈ O to s ∈ O′.

M. C. Cooper, A. Lequen, and F. Maris 13:11

In the rest of this section, we show how to build formula φ, which encodes the SSI problem
input to Algorithm 1. φ consists in the conjunction of the formulas presented below.

The formula presented in (15) enforces that each fluent has an image which is unique.
Similarly, by swapping f j

i variables for oj
i and adapting the domains of i and j, we enforce

that each operator has an image by ν.

∧
i∈F

 ∨
j∈D(i)

f j
i ∧

∧
j,k∈D(i)

j ̸=k

(¬f j
i ∨ ¬fk

i)

 (15)

We now need to ensure that υ and ν are injective. For fluents, this is done through (16). A
similar formula is used to ensure the injectivity of ν on operators.∧

i∈F ′

∧
j,k∈F
j ̸=k

¬f i
j ∨ ¬f i

k (16)

The morphism property is enforced by formulas (17) and (18), for each S ∈ C, where C =
{pre+, pre−, eff+, eff−}. More precisely, (17) ensures that, for any S ∈ C and for any operator
o ∈ O, we have υ (S(o)) ⊆ S(ν (o)). Conversely, (18) ensures that S(ν (o)) ⊆ υ (S(o)).

∧
r∈O
s∈O′

os
r −→

∧
i∈S(r)

∨
j∈S(s)

f j
i

 (17)

∧
r∈O
s∈O′

os
r −→

∧
j∈S(s)

∨
i∈S(r)

f j
i

 (18)

Finally, we need to conserve the initial and the goal state (i.e., respect equations (3) and
(4)). Let us denote I+ (resp. I−) the set of fluents appearing positively (resp. negatively) in
I, and use similar notation for G, I ′ and G′. For every T ∈ {I+, I−, G+, G−}, and for the
corresponding T ′ ∈ {I ′+, I ′−, G′+, G′−}, we then add the following formulas:∧

i∈T

∨
j∈T ′

f j
i ∧

∧
j∈T ′

∨
i∈T

f j
i (19)

The formulas presented in (15), (16), and (19) are immediately in CNF, and the size
of their conjunction is in O(|F | · |F ′|2 + |O| · |O′|2) assuming |F | ≤ |F ′| and |O| ≤ |O′|. In
addition, the formulas presented in (17) and (18) can be readily converted into CNF by
duplicating the implication in each clause, and then have a size O(|O| · |O′| · |F | · |F ′|).

The preprocessing step presented in Section 5.1 allows us to simplify φ. Indeed, if it is
known that fluent i ∈ F (resp. r ∈ O) cannot be mapped to fluent j ∈ F ′ (resp. s ∈ O′),
then f j

i (resp. os
r) is necessarily false in any model of φ. As a consequence, as all formulas

are in CNF, every positive occurrence of f j
i is removed in the clauses of φ, while clauses

where f j
i appears negatively are simplified.

In order to adapt the algorithm for SSI-H, it suffices to remove the set of formulas
presented in (19). The others formulas and the rest of the algorithm remains the same.

CP 2022

13:12 Isomorphisms Between STRIPS Problems and Sub-Problems

Table 1 Number of instances of SSI-H and SSI on which our implementation of our method
terminates within 600 seconds. For each problem, the first pair of columns shows the number of
STRIPS matching instances solved with and without the constraint propagation-based preprocessing,
respectively. The last column shows the average percentage of clauses that have been eliminated
from the propositional encoding, thanks to the pruning step.

Domain SSI-H SSI
CP NoCP Av. Simp. CP NoCP Av. Simp.

blocks 172 96 76.1% 166 93 76.2%
gripper 210 189 74.9% 90 84 75.1%
hanoi 74 75 0.2% 85 82 0.2%
rovers 19 6 97.4% 16 6 97.3%
satellite 34 22 79.1% 38 23 78.4%
sokoban 204 0 98.6% 205 4 98.6%
tsp 376 374 0.7% 265 266 1.0%

6 Experimental evaluation

We implemented Algorithm 1 in Python 3.10, and used it to solve SSI and SSI-H. In order
to parse planning instances in PDDL and convert them into a STRIPS representation, we
used the parser of TouISTPlan [3]. The SAT solver we used was Maple LCM [11], winner of
the main track at SAT 2017. The code and sets of benchmarks are available online.

Experiments were run on a machine running Rocky Linux 8.5, powered by an Intel
Xeon E5-2667 v3 processor, using at most 8GB of RAM and 4 threads per test. Our set of
benchmarks is based on eight sets found in previous International Planning Competitions,
namely Blocks, Gripper, Hanoi, Rovers, Satellite, Sokoban, TSP and Visitall. For each of
these domains, we created what we call STRIPS matching instances, which are pairs of
instances of the same domain. We did this for each possible pair of planning instances of
each considered domain. A STRIPS matching instance is an instance of both SSI and SSI-H.
We thus evaluated our algorithm adapted for both problems on the same set of benchmarks.

The goal of the experiments is twofold. First, the aim is to demonstrate that, despite
the theoretical hardness of the problem, it is possible to find a (homogeneous) subinstance
isomorphism in reasonable time for problems of non-trivial size. Second, the goal is to
show the efficiency of the pruning technique presented in Section 5.1, i.e., to prove that the
additional cost of the preprocessing is outbalanced by the speed-up it provides during search.

The coverage of our implementation on our set of benchmarks is shown in Table 1 for
both SSI and SSI-H. The table shows the absolute and relative numbers of instances of
SSI (resp. SSI-H) on which our implementation terminates within the time and memory
cutoffs. Note that we tested our algorithm on a handful of other domains, but we only report
those for which at least one instance was solved. Domains where even the smallest problem
timeouts include Visitall, Barman and Woodworking, for instance.

The first point we notice is that problems SSI-H and SSI are often closely comparable
in terms of hardness, except for some particular domains. These include domains TSP and
Gripper, for which 40% and 133% more instances are solved when requiring no condition on
the initial state and goal. For both domains, this is due to the additional constraints in SSI.
Indeed, because of these constraints all pairs of non-identical TSP planning instances (or
Gripper planning instances) constitute negative SSI instances, which turn out to be harder
for the SAT solver to detect than positive ones.

M. C. Cooper, A. Lequen, and F. Maris 13:13

A crucial observation is that the preprocessing step almost never holds back the algorithm:
almost all instances of our test sets that can be solved without preprocessing are also solved
when the preprocessing step is performed. Furthermore, in many sets of benchmarks, the
preprocessing greatly improves the overall performance of our implementation, so much so
that some previously infeasible domains are now within the range of our algorithm. Such
extreme cases include Sokoban, for which our algorithm is powerless without the pruning step:
all 204 instances solved by our implementation are outside the range of the preprocessing-less
version of the algorithm. In most cases, however, we observe a significant increase in the
coverage of the algorithm, that remains nonetheless within the same order of magnitude. For
example, for domain Satellite in the case of SSI, 34 instances are solved when constraint
propagation is enabled, whereas only 22 can be settled without it.

More specifically, in most cases, the preprocessing step leads to a reduction of the size of
the propositional encoding. This is shown by the columns labeled “Av. Simp.” in Table 1,
which represent the average proportion of clauses that are simplified as a consequence of the
pruning step. The highest percentages of simplified clauses are found in domains that contain
little to no symmetries. For example, in Rovers, fluents represents entities that often have
different types, and that are affected in different ways by operators. For instance, operators of
the form navigate(rover, x, y) have a unique profile, and are not numerous. Consequently,
their respective domains remain small, which is something our algorithm makes the most of.

On the contrary, for domains that contain lots of symmetries, the pruning step does not
remove a significant number of associations. This is the case in Hanoi, where all operators
have the same profile: except for the information provided by the initial and goal state, all
disks are interchangeable, which does not allow our preprocessing to draw any conclusive
result. The only bits of information that can guide the search are encoded in the initial state,
which we believe partly explains the slightly greater coverage of SSI over SSI-H.

In some instances of our set of benchmarks, pruning suffices to find that no (homogeneous)
subinstance isomorphism exists: as the majority of associations between fluents or between
operators are ruled out, the domains of some variables become empty. As a direct consequence,
our algorithm is most effective in the case where no (homogeneous) subinstance isomorphism
exists. In many of these cases, an empty domain is found for a variable, which allows the
algorithm to return UNSAT prematurely, and skip the search phase altogether. This is
why the pruning step allows us to significantly increase our coverage on STRIPS matching
instances that are negative, as shown in Figure 1, while our performance on positive instances
is more modest, although significant.

In Table 2, we also show that the additional time required by the constraint propagation
phase is negligible compared to the rest of the algorithm. In fact, be it in domains where
it prunes out lots of associations or in domains where its efficiency is limited, constraint
propagation rarely takes more than a handful of seconds. As a consequence, some instances
that would otherwise require a substantial amount of time are now solved almost immediately.
In addition, as shown in Figure 1b, solving any 500 negative SSI instances requires 10 minutes
when pruning is not enabled, while it requires less than a minute when pruning is enabled.

In Table 3, we present a few results on the absolute sizes of the problems that we solved
during our experiments, within the time and memory limits. For a STRIPS planning problem
P = ⟨F, I, O, G⟩, we denote |P | = |F | + |O|. As an SSI instance has two main dimensions,
represented by the respective sizes of the planning instances that constitute it, we present
two different ways of measuring it size6. In the first set of columns of Table 3, the sum
of both planning instances is considered, and we report the size of the SSI instance that
maximizes that sum. With this metric, P ′ is often disproportionately bigger than P . This

CP 2022

13:14 Isomorphisms Between STRIPS Problems and Sub-Problems

0 200 400 600
Time cutoff (s)

0

200

400

600

800
To
ta
l #

 o
f i
ns

ta
nc

es
 so

lv
ed

(a) SSI instances with positive outcome

0 200 400 600
Time cutoff (s)

0

200

400

600

800

To
ta
l #

 o
f i
ns

ta
nc

es
 so

lv
ed

(b) SSI instances with negative outcome

0 200 400 600
Time cutoff (s)

0

200

400

600

800

To
ta
l #

 o
f i
ns

ta
nc

es
 so

lv
ed

(c) SSI-H instances with positive outcome

0 200 400 600
Time cutoff (s)

0

200

400

600

800

To
ta
l #

 o
f i
ns

ta
nc

es
 so

lv
ed

(d) SSI-H instances with negative outcome

Figure 1 Number of SSI (top) and SSI-H (bottom) instances that can be solved by our implement-
ation, as a function of the time cutoff. Blue/orange curves correspond respectively to with/without
pruning (constraint propagation preprocessing).

imbalance can be explained by the fact that the encoding into a propositional formula is
of time and size O(|O| · |O′| · |F | · |F ′|), as mentioned previously. Thus, in the second set
of columns, we consider instead the lexicographic order on pairs (|P |, |P ′|), and report the
biggest problem with respect to that metric.

7 Conclusion

In this article, we introduced the problem SI, which is concerned with finding an isomorphism
between two planning problems, and showed that it is GI-complete. Afterwards, we introduced
the notion of subinstance isomorphism, as well as the associated problem SSI. In addition
to proving the NP-completeness of the problem, we proposed an algorithm for it, based on
constraint propagation techniques and a reduction to SAT

The experimental evaluation of said algorithm shows that traditional constraint propaga-
tion in a preprocessing step can greatly improve the efficiency of SAT solvers. However,
even though it is not costly to perform, not all planning domains benefited equally from this
preprocessing.

On a more general note, various methods have been proposed to automatically reformulate
general models, with the aim of rendering easier the task delegated to the solver [13]. It
remains an interesting open question to identify which characteristics of problems in NP
make them amenable to this hybrid CP-SAT approach.

M. C. Cooper, A. Lequen, and F. Maris 13:15

Table 2 Average time, in seconds, spent in each of the main three steps of the algorithm: pruning
(CP), compilation to SAT, and solving, respectively. The last column summarizes the average
total running time of the algorithm. We only report instances that were successfully solved (either
positively or negatively), and results for SSI-H and SSI are thus non-comparable.

Domain SSI-H SSI
CP Comp. Solving Total time CP Comp. Solving Total time

blocks 0.5 93.3 76.8 170.3 0.4 83.3 94.6 178.1
gripper 0.2 23.5 9.8 33.4 0.1 11.2 35.2 46.5
hanoi 0.3 43.9 78.0 122.0 0.3 70.9 47.8 118.9
rovers 1.8 168.9 2.2 171.4 1.7 180.7 2.7 183.5
satellite 0.4 116.4 48.8 165.4 0.4 85.0 10.3 95.4
sokoban 1.7 222.7 2.3 225.2 1.7 220.6 1.4 222.3
tsp 0.2 50.7 46.7 97.5 0.1 14.6 26.6 41.2

Table 3 Sizes of the biggest instances that can be solved by our implementation within the time
and memory limits, for both SSI-H and SSI. In the first set of columns, we consider the sum of the
sizes of the planning instances that constitute the STRIPS matching instance. In the second set, we
consider the size of P , the smallest planning instance among the pair that constitutes the instance.

Domain
SSI-H SSI

Maximum sum Max |P | Maximum sum Max |P |
|P | |P ′| Sum |P | |P ′| |P | |P ′| Sum |P | |P ′|

blocks 57 4642 4699 534 534 57 4642 4699 534 534
gripper 510 510 1020 510 510 510 510 1020 510 510
hanoi 13 3328 3341 391 391 13 6953 6966 391 513
rovers 276 2667 2943 920 920 276 2667 2943 920 920
satellite 147 2066 2213 608 920 147 2610 2757 608 920
sokoban 2212 2286 4498 2212 2286 2212 2286 4498 2212 2286
tsp 182 930 1112 462 462 90 930 1020 380 380

References

1 Jérôme Amilhastre, Hélène Fargier, and Pierre Marquis. Consistency restoration and explan-
ations in dynamic csps application to configuration. Artif. Intell., 135(1-2):199–234, 2002.
doi:10.1016/S0004-3702(01)00162-X.

2 László Babai. Group, graphs, algorithms: the graph isomorphism problem. In Proceedings of
the International Congress of Mathematicians, pages 3319–3336. World Scientific, 2018.

3 Djamila Baroudi, Maël Valais, and Frédéric Maris. Touistplan. URL: https://github.com/
touist/touistplan.

4 Tom Bylander. The computational complexity of propositional strips planning. Artificial
Intelligence, 69(1-2):165–204, 1994.

5 Stephen A. Cook. The complexity of theorem-proving procedures. In Michael A. Harrison,
Ranan B. Banerji, and Jeffrey D. Ullman, editors, 3rd Annual ACM Symposium on Theory of
Computing, pages 151–158. ACM, 1971. doi:10.1145/800157.805047.

6 Adnan Darwiche and Pierre Marquis. A knowledge compilation map. J. Artif. Intell. Res.,
17:229–264, 2002. doi:10.1613/jair.989.

CP 2022

https://doi.org/10.1016/S0004-3702(01)00162-X
https://github.com/touist/touistplan
https://github.com/touist/touistplan
https://doi.org/10.1145/800157.805047
https://doi.org/10.1613/jair.989

13:16 Isomorphisms Between STRIPS Problems and Sub-Problems

7 Richard Fikes and Nils J. Nilsson. STRIPS: A new approach to the application of theorem
proving to problem solving. Artif. Intell., 2(3/4):189–208, 1971. doi:10.1016/0004-3702(71)
90010-5.

8 Malte Helmert. Complexity results for standard benchmark domains in planning. Artificial
Intelligence, 143(2):219–262, 2003. doi:10.1016/S0004-3702(02)00364-8.

9 Henry A. Kautz and Bart Selman. Planning as satisfiability. In Bernd Neumann, editor, ECAI
92, pages 359–363. John Wiley and Sons, 1992.

10 Songtuan Lin and Pascal Bercher. Change the world - how hard can that be? On the
computational complexity of fixing planning models. In Zhi-Hua Zhou, editor, IJCAI-21,
pages 4152–4159, August 2021. doi:10.24963/ijcai.2021/571.

11 Mao Luo, Chu-Min Li, Fan Xiao, Felip Manyà, and Zhipeng Lü. An effective learnt clause
minimization approach for cdcl sat solvers. In IJCAI-17, pages 703–711, 2017. doi:10.24963/
ijcai.2017/98.

12 Alan K Mackworth. Consistency in networks of relations. Artificial intelligence, 8(1):99–118,
1977.

13 Peter Nightingale, Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian Miguel, and Patrick
Spracklen. Automatically improving constraint models in savile row. Artif. Intell., 251:35–61,
2017. doi:10.1016/j.artint.2017.07.001.

14 Francesca Rossi, Peter Van Beek, and Toby Walsh. Handbook of Constraint Programming.
Elsevier, 2006.

15 Viktor N Zemlyachenko, Nickolay M Korneenko, and Regina I Tyshkevich. Graph isomorphism
problem. Journal of Soviet Mathematics, 29(4):1426–1481, 1985.

https://doi.org/10.1016/0004-3702(71)90010-5
https://doi.org/10.1016/0004-3702(71)90010-5
https://doi.org/10.1016/S0004-3702(02)00364-8
https://doi.org/10.24963/ijcai.2021/571
https://doi.org/10.24963/ijcai.2017/98
https://doi.org/10.24963/ijcai.2017/98
https://doi.org/10.1016/j.artint.2017.07.001

Solving the Constrained Single-Row Facility Layout
Problem with Decision Diagrams
Vianney Coppé #

UCLouvain, Louvain-la-Neuve, Belgium

Xavier Gillard #

UCLouvain, Louvain-la-Neuve, Belgium

Pierre Schaus #

UCLouvain, Louvain-la-Neuve, Belgium

Abstract
The Single-Row Facility Layout Problem is an NP-hard problem dealing with the ordering of
departments with given lengths and pairwise traffic intensities in a facility. In this context, one seeks
to minimize the sum of the distances between department pairs, weighted by the corresponding
traffic intensities. Practical applications of this problem include the arrangement of rooms on a
corridor in hospitals or offices, airplanes and gates in an airport or machines in a manufacture. This
paper presents two novel exact models for the Constrained Single-Row Facility Layout Problem, a
recent variant of the problem including positioning, ordering and adjacency constraints. On the
one hand, the state-of-the-art mixed-integer programming model for the unconstrained problem is
extended to incorporate the constraints. On the other hand, a decision diagram-based approach
is described, based on an existing dynamic programming model for the unconstrained problem.
Computational experiments show that both models outperform the only mixed-integer programming
model in the literature, to the best of our knowledge. While the two models have execution times of
the same order of magnitude, the decision diagram-based approach handles positioning constraints
much better but the mixed-integer programming model has the advantage for ordering constraints.

2012 ACM Subject Classification Mathematics of computing → Combinatorial optimization

Keywords and phrases Discrete Optimization, Mixed-Integer Programming, Decision Diagrams,
Constrained Single-Row Facility Layout Problem

Digital Object Identifier 10.4230/LIPIcs.CP.2022.14

Supplementary Material Software (Source Code): https://github.com/vcoppe/csrflp-dd
Software (Source Code): https://github.com/vcoppe/csrflp-mip

1 Introduction

The Single-Row Facility Layout Problem (SRFLP) is an ordering problem considering a set of
departments in a facility, with given lengths and pairwise traffic intensities. Its goal is to find
a linear ordering of the departments minimizing the weighted sum of the distances between
department pairs. The SRFLP is applied in different fields to arrange items such as rooms
on a corridor in hospitals or offices [52], airplanes and gates in an airport [53], machines in a
manufacture [30], books on a shelf and files in disk cylinders [50]. When all facilities have
equal lengths and the traffic intensities are binary, the problem is known as the Minimum
Linear Arrangement Problem (MinLA). It is a well-known graph layout problem which has
been proved to be NP-hard [20] and consequently, so is the SRFLP.

Due to its difficulty in being solved by exact methods, many heuristic techniques have
been designed to find good quality solutions to the SRFLP problem [19, 28, 29, 41] and
more recently [18, 23, 40, 47, 51]. The first attempt to solve the SRFLP optimally was a
branch-and-bound algorithm with interesting lower bounds [52]. Later, the DP approach

© Vianney Coppé, Xavier Gillard, and Pierre Schaus;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 14; pp. 14:1–14:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vianney.coppe@uclouvain.be
https://orcid.org/0000-0001-5050-0001
mailto:xavier.gillard@uclouvain.be
https://orcid.org/0000-0002-4493-6041
mailto:pierre.schaus@uclouvain.be
https://orcid.org/0000-0002-3153-8941
https://doi.org/10.4230/LIPIcs.CP.2022.14
https://github.com/vcoppe/csrflp-dd
https://github.com/vcoppe/csrflp-mip
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Solving the Constrained Single-Row Facility Layout Problem with Decision Diagrams

presented in [39] was applied to the SRFLP in [50]. More recent techniques include non-linear
programming [31], linear mixed-integer programming (MIP) [2, 3, 46], branch-and-cut [4, 5]
and semidefinite programming [7, 8, 9, 35, 36].

In [37], positioning, ordering and relation constraints were suggested for the SRFLP to
model real-life situations. The resulting problem is called the Constrained Single-Row Facility
Layout Problem (cSRFLP). They also proposed a permutation-based genetic algorithm to
solve this new problem and reported very good results, with objective values deviating by
only a few percents from the best known solutions to the unconstrained problem for instances
with up to 100 departments. In [44], the first MIP model solving the cSRFLP is introduced
and a constrained improved fireworks algorithm is described. The latter is shown to find
solutions of better quality than the genetic algorithm of [37].

This paper begins with a formal definition of the SRFLP in Section 2 and of the constraints
that constitute the cSRFLP. We then present two novel exact models to solve the problem.
In Section 3, we model the constraints of the cSRFLP on top of the state-of-the-art MIP
model for the SRFLP [4]. Likewise, Section 4 recalls the dynamic programming (DP) model
for the SRFLP from [50] and shows how the new constraints can be integrated. This DP
model will be used as the basis of a decision diagram-based approach described in detail in
Sections 5 and 6.

A decision diagram (DD) is a data structure used to encode sets in a compressed form
through a graphical representation. They first appeared as binary decision diagrams for
the representation of Boolean functions and were successfully used for circuit design and
formal verification [1, 15, 34, 43]. Among the wide variety of domains in which the DDs
were applied through the years [45, 56], the compactness which they provide was exploited
in constraint programming [32, 48, 55] and optimization [10, 25, 26, 27, 42]. Recently, a
complete framework for discrete optimization with decision diagrams was introduced in [13].
It relies on a DP model of the problem, which can represent the solution space in a compact
form. In spite of their compactness, DDs encoding hard optimization problems may not fit
in memory. The exact optimization method is therefore built upon relaxed and restricted
DDs. These approximate DDs were introduced in [6, 11, 14] for their ability to provide tight
lower and upper bounds [16, 17, 33, 54]. An adapted branch-and-bound algorithm based
exclusively on DDs was presented in [13].

In Section 7, the results of our computational experiments are presented. They show that
our two new models outperform the MIP model from [44] in terms of solving time. Other
than that, there is no clear winner between the DD approach and the new MIP model. The
former seems to handle positioning constraints better while the latter is particularly efficient
for relation constraints. However, the ability to parallelize the DD approach is unmatched
by the MIP solver. The paper concludes with a summary of our contributions and directions
for future work.

2 Problem Definition

This section is organized as follows, a formal definition of the SRFLP is given in Section 2.1
which is then completed in Section 2.2 with the constraints that constitute the cSRFLP.

2.1 SRFLP
The SRFLP is a linear ordering problem considering a set N = {1, 2, . . . , n} of departments in
a facility. Each department i has a given length li and is connected to all other departments
by a traffic intensity cij . Both the lengths and the traffic intensities are positive integers. It
is imposed that cij = cji but it is not a modeling restriction since a trip in any direction
covers the same distance, the traffic intensities can thus concentrate both directions [52].

V. Coppé, X. Gillard, and P. Schaus 14:3

c12 = 8

c13 = 3

c14 = 5

c23 = 1

c24 = 4

c34 = 6

1 2 3 4

l1 = 5 l2 = 3 l3 = 2 l4 = 6

center-to-center

end-to-start

Figure 1 An instance of the SRFLP with 4 departments ordered optimally. The lengths of
the departments are noted below them and the pairwise traffic intensities are given on the edges
connecting pairs of departments. Center-to-center and end-to-start distances between departments
one and three are shown.

A solution to the SRFLP is an ordering of the departments on a line, defined by the
bijection π : N → {1, 2, . . . , n}. If dπ

ij is the center-to-center distance between departments i

and j for ordering π, the cost function to minimize is formulated as follows:

SRFLP (π) =
n∑

i=1

n∑
j=1
i<j

cijdπ
ij . (1)

It is a measure of the total distance traveled by components or products within the
facility. Using center-to-center distances implies that we must deal with half department
lengths. However, one can notice that wherever a department i is placed with respect to a
department j, the center-to-center distance between i and j will be at least li+lj

2 . This leads
to a reformulation that simplifies the coming formulas:

SRFLP (π) =
n∑

i=1

n∑
j=1
i<j

cij d̃π
ij + K with K =

n∑
i=1

n∑
j=1
i<j

cij
li + lj

2 (2)

where d̃π
ij is the end-to-start distance (see Figure 1) separating departments i and j and K

is a constant accounting for all contributions of half department lengths [52].

▶ Example 1. Let us illustrate the computation of the objective function on the facility
given in Figure 1. We first compute the value of the constant K:

K = c12
l1 + l2

2 + c13
l1 + l3

2 + c14
l1 + l4

2 + c23
l2 + l3

2 + c24
l2 + l4

2 + c34
l3 + l4

2
= 85 + 3

2 + 35 + 2
2 + 55 + 6

2 + 13 + 2
2 + 43 + 6

2 + 62 + 6
2

= 8 · 4 + 3 · 3.5 + 5 · 5.5 + 1 · 2.5 + 4 · 4.5 + 6 · 4 = 114.5

and then the cost of the ordering π(i) = i, ∀i ∈ N as shown in Figure 1:

SRFLP (π) = c12d̃π
12 + c13d̃π

13 + c14d̃π
14 + c23d̃π

23 + c24d̃π
24 + c34d̃π

34 + K

= c12 · 0 + c13l2 + c14(l2 + l3) + c23 · 0 + c24l3 + c34 · 0 + K

= 8 · 0 + 3 · 3 + 5 · (3 + 2) + 1 · 0 + 4 · 2 + 6 · 0 + 114.5 = 156.5.

CP 2022

14:4 Solving the Constrained Single-Row Facility Layout Problem with Decision Diagrams

2.2 cSRFLP
The cSRFLP is obtained by adding three types of constraints to the SRFLP:

Positioning constraints: A department is forced to be located at a specific position within
the ordering. These constraints are described by a function position : N → N ∪{0} which
maps positions to their corresponding department or to 0 if there is no constraint on
the position. To simplify the coming equations, we also define the function department :
N → N ∪ {0} which is the inverse mapping, between departments and positions.
Ordering constraints: These constraints impose that some department must come before
another one in the ordering. Formally, the function predecessors : N → 2N gives the set
of predecessors of each department, i.e. all departments that must be placed on the left
of the given department.
Relation constraints: Similarly to ordering constraints, relation constraints impose a
relative ordering between a pair of departments. In this case, however, the two departments
are required to be adjacent in the ordering. The function previous : N → N ∪ {0} maps
departments to the department that must be placed right before, or to 0 if there is no
such constraint.

3 Mixed-Integer Programming Model

In this section, we integrate the constraints of the cSRFLP to the MIP model for the SRFLP,
used within the branch-and-cut framework of [4]. This model uses betweenness variables ζijk

which describe the relative ordering of departments i, j, k ∈ N in an ordering π:

ζπ
ijk =

{
1, if π(i) < π(k) < π(j) or π(j) < π(k) < π(i)
0, otherwise. (3)

Using those variables, the objective function can be formulated as follows:

SRFLP (ζ) =
∑
i∈N

∑
j∈N
i<j

cij

∑
k∈N

ζijklk + K (4)

and is to be minimized under the following constraints:

ζijk = ζjik ∀{i, j, k | i < j} ⊆ N (5)
ζijk + ζikj + ζjki = 1 ∀{i, j, k} ⊆ N (6)
ζijd + ζjkd − ζikd ≥ 0 ∀{i, j, k, d} ⊆ N (7)
ζijd + ζjkd + ζikd ≤ 2 ∀{i, j, k, d} ⊆ N. (8)

Equation (5) follows from the definition of the betweenness variables in Equation (3).
Equation (6) states that only one department among i, j, k lies between the two others.
Finally, Equations (7) and (8) express the fact that when a department d is placed between
departments i and k, then the department d must either lie between departments (a) i and j

or (b) j and k, but not both (a) and (b).
We now present how the constraints of the cSRFLP can be integrated in the model.

A solution to the original model specifies a relative ordering of the departments. Yet,
it does not impose one extremity to the left of the arrangement. As we will need this
information in the constraints presented in Section 2.2, we solve this issue by adding two

V. Coppé, X. Gillard, and P. Schaus 14:5

dummy departments L and R. For the cSRFLP, the set of departments is thus defined as
N = {1, . . . , n} ∪ {L, R} and departments L and R also obey Equations (3)–(8). We set
lL = lR = 0 and cLi = ciL = cRi = ciR = 0, ∀i ∈ N so that the dummy departments have no
impact on the objective function. Department L and R are respectively forced on the left
and right side of the arrangement by adding the constraints:

ζLRi = 1 ∀i ∈ N \ {L, R} (9)
ζijL = 0 ∀i, j ∈ N (10)
ζijR = 0 ∀i, j ∈ N. (11)

Equation (9) imposes that all other departments are placed between departments L and
R. Inversely, Equations (10) and (11) ensure that departments L and R are not placed
between any two departments.

We can now write the additional constraints of the model for the cSRFLP:

n∑
k=1

ζLik = j − 1 ∀i ∈ N, position(i) = j ̸= 0 (12)

n∑
k=1

ζiRk = n − j ∀i ∈ N, position(i) = j ̸= 0 (13)

ζLij = 0 ∀i, j ∈ N, i ∈ predecessors(j) ∨ i = previous(j) (14)
ζLji = 1 ∀i, j ∈ N, i ∈ predecessors(j) ∨ i = previous(j) (15)
ζiRj = 1 ∀i, j ∈ N, i ∈ predecessors(j) ∨ i = previous(j) (16)
ζjRi = 0 ∀i, j ∈ N, i ∈ predecessors(j) ∨ i = previous(j) (17)
ζijk = 0 ∀i, j ∈ N, i = previous(j), k ∈ N \ {i, j}. (18)

Equations (12) and (13) ensure that j−1 departments are located on the left of department
i and n− j on the right, given that i must be placed at the j-th position. Equations (14)–(17)
impose that i is placed between L and j and that j is placed between i and R, when either i

is a predecessor of j or i must be placed right before j. Finally, Equation (18) is added for
relation constraints to avoid having any departments placed between the two departments
involved in the constraint.

4 Dynamic Programming Model

Dynamic programming is a different technique to tackle this problem. Section 4.1 presents
an efficient DP model introduced in [50]. We then show in Section 4.2 how the constraints
can be incorporated in this model. As a whole, this formulation will be the starting point for
our DD-based approach.

CP 2022

14:6 Solving the Constrained Single-Row Facility Layout Problem with Decision Diagrams

4.1 SRFLP
Let us first reformulate the cost function:

SRFLP (π) =
n∑

i=1

n∑
j=1
i<j

cij d̃π
ij + K =

n∑
i=1

n∑
j=1

π(i)<π(j)

cij d̃π
ij + K (19)

=
n∑

i=1

n∑
j=1

π(i)<π(j)

cij

n∑
k=1

π(i)<π(k)<π(j)

lk + K (20)

=
n∑

k=1
lk

n∑
i=1

π(i)<π(k)

n∑
j=1

π(k)<π(j)

cij + K. (21)

In Equation (19), we use the bijection π to sum over unique pairs of positions instead of
unique pairs of departments. We then develop the end-to-start distances d̃π

ij in Equation (20),
which are equal to the sum of the lengths of departments between i and j in the ordering π.
Finally, we reorder the summations in Equation (21). This allows reading the cost function
differently: for each department k, we add its length lk to the distance between pairs of
departments (i, j) lying on opposite sides of k and multiply it by the corresponding traffic
intensity cij .

The idea of the DP model is to place the departments one by one on the line from left
to right. From Equation (21), it is clear that the individual cost of placing department k

at position π(k) only depends on the side on which all other departments are located with
respect to k. If the state of the DP model is the subset of departments which remain to be
placed – called free departments from now on, as opposed to fixed departments – we can
compute this individual cost and recursively find the optimal ordering of each subset of N .
Formally, the components of the DP model are:

The control variables xj ∈ Dj with j ∈ {0, . . . , n − 1}. Variable xj represents the
department placed at position j + 1 on the line. All variables have the same domain
Dj = N since departments can appear anywhere in the ordering.
The state space S which contains all subsets of N . It includes a root state r̂ = N , a
terminal state t̂ = ∅ and an infeasible state 0̂. The state space is partitioned into the sets
S0, . . . , Sn where Sj contains all states with j variables assigned.
The set of transition functions tj : Sj × Dj → Sj+1 for j = 0, . . . , n − 1 which rule the
transition between the states of consecutive stages:

tj

(
sj , xj

)
=

{
sj \ {xj}, if xj ∈ sj

0̂, otherwise. (22)

The set of transition cost functions hj : Sj × Dj → R for j = 0, . . . , n − 1 which associate
a value to each transition:

hj

(
sj , xj

)
=

{
lxj

∑
i∈sj

∑
k∈sj\{xj} cik, if xj ∈ sj

0, otherwise.
(23)

This formula immediately follows from Equation (21) since sj – the complement of
sj – contains fixed departments placed before position j and sj \ {xj} contains free
departments, which will be placed after position j.
The root value vr = K from Equation (2).

V. Coppé, X. Gillard, and P. Schaus 14:7

To solve an instance of the SRFLP using this DP model, one needs to apply the following
recurrence:

min f̂(x) = vr +
n−1∑
j=0

hj

(
sj , xj

)
subject to sj+1 = tj

(
sj , xj

)
, for all xj ∈ Dj , j = 0, . . . , n − 1

sj ∈ Sj , j = 0, . . . , n. (24)

Speeding up the computation of transition costs. We also store in the states an array
containing the cut values of each free department: the sum of all traffic intensities from
the fixed departments and each free department. It allows to reduce the computational
complexity of the transition costs from O

(
n2)

to O(n) and will also be useful when designing
a lower bound in Section 6.2. For a state sj and each department i ∈ N , we define:

sj
cut[i] =

{ ∑
j∈sj cij , if i ∈ sj

0, otherwise (25)

which can be updated in O(n) during a transition tj

(
sj , xj

)
:

sj+1
cut [i] =

{
sj

cut[i] + cixj
, if i ∈ sj \ {xj}

0, otherwise (26)

and the transition costs become:

hj

(
sj , xj

)
=

{
lxj

∑
i∈sj\{xj} sj

cut[i], if xj ∈ sj

0, otherwise.
(27)

▶ Example 2. Considering the instance shown on Figure 1, we compute the cut values for
the state s = {3, 4}. We have that scut[1] = scut[2] = 0 since departments 1 and 2 are already
placed. For the free departments, we apply Equation (25) and obtain: scut[3] = c13 + c23 =
3 + 1 = 4 and scut[4] = c14 + c24 = 5 + 4 = 9.

4.2 cSRFLP
Adding constraints to the DP model is done through the predicates validj : Sj × Dj →
{true, false} for j = 0, . . . , n − 1. They are used in the transition functions to filter out
infeasible solutions:

tj

(
sj , xj

)
=

{
sj \ {xj}, if xj ∈ sj ∧ validj(sj , xj)
0̂, otherwise. (28)

For clarity, we split the predicates validj into several conditions, corresponding each to a
specific constraint:

validj(sj , xj) = pj(sj , xj) ∧ oj(sj , xj) ∧ rj(sj , xj) (29)

with pj , oj and rj concerning respectively positioning, ordering and relation constraints:

pj(sj , xj) = (position(xj) = 0 ∧ department(j + 1) = 0) ∨ position(xj) = j + 1 (30)
oj(sj , xj) = predecessors(xj) ⊆ sj (31)
rj(sj , xj) = (previous(xj) = 0 ∧ ∄k ∈ sj : previous(k) ∈ sj) ∨ previous(xj) ∈ sj . (32)

CP 2022

14:8 Solving the Constrained Single-Row Facility Layout Problem with Decision Diagrams

r

u1{2, 3, 4}
(0, 8, 3, 5) u2{1, 3, 4}

(8, 0, 1, 4) u3{1, 2, 4}
(3, 1, 0, 6) u4{1, 2, 3}

(5, 4, 6, 0)

v1{3, 4}
(0, 0, 4, 9) v2{2, 4}

(0, 9, 0, 11) v3{2, 3}
(0, 12, 9, 0) v4{1, 4}

(11, 0, 0, 10) v5{1, 3}
(13, 0, 7, 0) v6{1, 2}

(8, 5, 0, 0)

w1{4}
(0, 0, 0, 15) w2{3}

(0, 0, 10, 0) w3{2}
(0, 13, 0, 0) w4{1}

(16, 0, 0, 0)

t

K = 114.5

1,0 2,0 3,0 4,0

2,24

3,26

4,66

1,25

3,24

4,54

1,35

2,27
4,24

1,50 2,33

3,18

3,18

4,24
2,33 4,54 2,27

3,24

1,50

4,661,35

3,26 1,25

2,24

4,0 3,0 2,0 1,0

{1, 2, 3, 4}
(0, 0, 0, 0)

∅
(0, 0, 0, 0)

Figure 2 The exact DD associated with the instance shown on Figure 1. Arcs are annotated
with their label (in bold) and cost. Next to each node, a gray box contains the corresponding state:
the set of free departments and the cut values. Arcs in bold are part of an optimal solution.

In Equation (30), pj checks that either department xj and position j + 1 are both
unconstrained, or that department xj is constrained to be at position j + 1. As explained
previously, the j-th transition decides which department is placed at position j + 1. For
ordering constraints, Equation (31) verifies that all predecessors of department xj have
already been placed. The predicates rj for relation constraints are slightly more complicated.
Either xj has no relation constraint, then it can only be placed if no other free department has
a relation constraint with a fixed department, or xj has a relation constraint and previous(xj)
must be a fixed department.

5 Decision Diagram Representation

This section explains how a DP model can be used to derive DDs. A weighted decision
diagram is a graphical structure which encodes a set of solutions to a discrete optimization
problem P . Formally, it is represented by a layered directed acyclic graph B = (U, A, d, v, σ)
where U is the set of nodes, A is the set of arcs. The set of nodes is partitioned into layers
L0, . . . , Ln. In particular, layers L0 and Ln contain only one node, respectively the root
node r and the terminal node t. Each node is mapped to a state by the function σ. An arc

V. Coppé, X. Gillard, and P. Schaus 14:9

a ∈ A connects a node in a layer Lj to a node in the next layer Lj+1. Its label d(a) ∈ Dj

represents the assignment of value d(a) to variable xj and v(a) denotes its length. As a
result, each path p =

(
a(0), . . . , a(n−1)) from r to t is a complete assignment of the variables,

with xj = d
(
a(j)), and has a total length of v(p) = vr +

∑n−1
j=0 v

(
a(j)). The set of all r − t

paths of B encodes the set of possible assignments Sol(B). In an exact decision diagram,
the length of each r − t path is equal to the objective function value of the corresponding
assignment and Sol(B) = Sol(P). Thus, the resolution of discrete optimization problems is
reduced to a shortest-path problem on a directed acyclic graph f (x∗) = v∗(B).

The size |B| of a decision diagram is the number of nodes it contains in all layers. Its
width is given by maxj |Lj |, where |Lj | is the width of layer j. Arcs leaving a same node
always have different labels, so every node u ∈ Lj has a maximum out-degree of |Dj |. A
binary decision diagram encodes binary variables only, as opposed to multi-valued decision
diagrams in the general case [38].

Using a DP model, an exact DD can be built layer by layer starting with the first layer
L0 containing the root node r associated to the root state r̂. From a layer Lj , we then fill
Lj+1 with all nodes corresponding to distinct feasible states which can be reached from any
state in Lj . For each of these transitions, we add an arc from the node in Lj to the one in
Lj+1 and its length is given by the transition cost.

▶ Example 3. The exact DD for the instance shown in Figure 1 is illustrated in Figure 2.
The size of this DD is 16 and its width is 6. On the left side of the DD, the path in bold is
an optimal solution. It corresponds to the ordering displayed in Figure 1 and its length is
equal to 114.5 + 0 + 24 + 18 + 0 = 156.5 as computed in Example 1.

6 Branch-and-Bound

Although DP formulations tend to represent problems in a compact manner, it is usually
intractable to generate exact DDs for combinatorial problems as the size of the state space can
grow exponentially with the number of variables. An adapted branch-and-bound algorithm
exploiting DDs (B&B-DD) was presented in [13] with the potential to solve larger instances
to optimality. The algorithm successively explores subproblems corresponding to nodes in
the exact DD of the problem. As in classical branch-and-bound, two ingredients are used: a
primal upper bound heuristic to discover good feasible solutions, and a lower bound procedure
allowing to prune the nodes with a lower bound larger than the best so far solution. The
major idea of B&B-DD is to limit the width of the DDs to obtain these two ingredients. The
primal heuristic is obtained by discarding nodes of the DD to respect the width limit while
the lower bound procedure consists in discovering the best path in a relaxed DD obtained by
merging nodes. The nodes of B&B-DD are expanded using a classical best-first-search.

Preliminary experiments convinced us to slightly deviate from the generic B&B-DD
framework and specialize it for the SRFLP in order to be competitive with state-of-the-art
approaches. We use a problem specific lower bound rather than the state-merging procedure,
as well as a breadth-first search allowing to better exploit the recursive structure of the
problem. The lower bound and the custom search are detailed in the next sections.

6.1 Primal Upper Bound Heuristic
As explained in Section 6, we rely on restricted DDs to generate good feasible solutions
starting from a given node of the exact DD. To obtain a restricted DD, it is sufficient to
remove nodes of a layer when its width exceeds a given maximum width. The nodes and

CP 2022

14:10 Solving the Constrained Single-Row Facility Layout Problem with Decision Diagrams

r

u1{2, 3, 4}
(0, 8, 3, 5) u2{1, 3, 4}

(8, 0, 1, 4) u3{1, 2, 4}
(3, 1, 0, 6) u4{1, 2, 3}

(5, 4, 6, 0)

v1{3, 4}
(0, 0, 4, 9) v2{2, 4}

(0, 9, 0, 11) v3{2, 3}
(0, 12, 9, 0) v4{1, 4}

(11, 0, 0, 10) v5{1, 3}
(13, 0, 7, 0) v6{1, 2}

(8, 5, 0, 0)

w1{4}
(0, 0, 0, 15) w2{3}

(0, 0, 10, 0) w3{2}
(0, 13, 0, 0) w4{1}

(16, 0, 0, 0)

t

K = 114.5

1,0 2,0 3,0 4,0

2,24

3,26

4,66

1,25

3,24

4,54

1,35

2,27
4,24

1,50 2,33

3,18

3,18

4,24
2,33 4,54 1,50

4,66

1,25

2,24

4,0 3,0 2,0 1,0

{1, 2, 3, 4}
(0, 0, 0, 0)

∅
(0, 0, 0, 0)

Figure 3 A restricted DD associated with the instance shown on Figure 1 and built with a
maximum width of 4. Nodes in dotted circles have been removed from the layer.

arcs which remain in the DD are not modified and thus correspond to feasible solutions.
A heuristic is used to select nodes to remove from a layer and attempts to identify nodes
leading to the poorer quality solutions. Restricted DDs also allow to retrieve the set of
subproblems which need to be explored next. In this paper, this set is computed as the set
of direct successors of the initial node of the restricted DD.

▶ Example 4. Figure 3 shows a restricted DD built for the instance displayed in Figure 1
with a maximum width of 4. The third layer exceeded the maximum width so the nodes v3
and v5 have been removed.

6.2 Lower Bound
In [13], a relaxed DD is used to compute a single lower bound at a given node. Based on this
lower bound, we decide whether to enqueue or prune the open subproblems. Recently, [22]
suggested that we could attach a different lower bound to each node to be added to the
branch-and-bound queue. In our approach, this lower bound is based on a heuristic rough
lower bound (RLB) which can be computed swiftly for any node. As described in [22], the
RLB can also be used to skip nodes during the compilation of restricted DDs.

V. Coppé, X. Gillard, and P. Schaus 14:11

In order to derive the RLB from a node u, the next theorem shows that the cost to
optimally complete the partial solution of node u can be decomposed in two terms: one
solely involving the free departments and the other one involving the cost between free and
fixed departments.

▶ Theorem 5. Given a node u and its state σ(u) = s, let π∗|u be the best ordering one can
obtain when crossing node u. For conciseness, we set π = π∗|u. We have the equivalence:

SRFLP (π) − v∗(u) =
∑
i∈s

∑
j∈s

π(i)<π(j)

cij

∑
k∈s

π(i)<π(k)<π(j)

lk

︸ ︷︷ ︸
free departments layout cost

+
∑
j∈s

scut[j]
∑
k∈s

π(k)<π(j)

lk

︸ ︷︷ ︸
cost w.r.t. fixed departments

. (33)

Those two terms of Equation (33) cannot be evaluated exactly in a cheap way as this
would be as difficult as solving the original problem. Nonetheless one can compute an efficient
lower bound for each term independently. For a node u, the value of the RLB is given by:

RLB(u) =
{

∞, if σ(u) = 0̂
LBedge(u) + LBcut(u), otherwise, (34)

where LBedge(u) is a lower bound on the free departments layout cost and LBcut(u) is a
lower bound on the cost induced by the cut values of free departments.

6.2.1 Free departments layout cost
The first lower bound LBedge is an under-approximation of the internal layout cost of free
departments. Given a subset of departments, we compute a lower bound on the cost of its
optimal layout by multiplying each pairwise traffic intensity by an optimistic distance. If we
must place n departments on a line, n − k pairs of departments will have k − 1 departments
between them (see Figure 1). In order to under-approximate the layout cost, we greedily
multiply the highest traffic intensities by the smallest distance possible. Since we cannot
assume any particular ordering of the free departments, the distances between pairs of free
departments are unknown. Still, we can compute lower bounds on those distances if we sort
the free departments by increasing length and assume that a separation of k departments will
be formed by the k shortest departments. This lower bound can be seen as a generalization
of the Edges method [49] designed for the MinLA.

In practice, a list containing all pairwise traffic intensities in decreasing weight order
is precomputed, as stated by the precondition of Algorithm 1. The same is done for the
department lengths. We then only need to traverse those lists and multiply each traffic
intensity value by the adequate cumulative length. The complexity of the algorithm is O

(
n2)

since there are n(n−1)
2 pairs in total.

▶ Example 6. Let us illustrate the computation of this lower bound on the root node
of the DD in Figure 2. We first create the list of traffic intensities sorted decreasingly:
edge = [c12 = 8, c34 = 6, c14 = 5, c24 = 4, c13 = 3, c23 = 1] and the list of free department
lengths sorted increasingly: length = [l3 = 2, l2 = 3, l1 = 5, l4 = 6]. There are 3 pairs of
departments with 0 departments in between, 2 pairs with 1 department in between and 1
pair with 2 departments in between.

LBedge(r) = 0 · c12 + 0 · c34 + 0 · c14 + l3c24 + l3c13 + (l3 + l2)c23

= 0 · 8 + 0 · 6 + 0 · 5 + 2 · 4 + 2 · 3 + (2 + 3) · 1 = 19

CP 2022

14:12 Solving the Constrained Single-Row Facility Layout Problem with Decision Diagrams

Algorithm 1 Computation of LBedge(u).
Require: edge = sorted≥ ({⟨c : cij , dep1 : i, dep2 : j⟩ | 1 ≤ i < j ≤ n})

and length = sorted≤ ({⟨l : li, dep : i⟩ | 1 ≤ i ≤ n})
1: s← σ(u), lb← 0, cumul_l← 0, i← 1, j ← 1
2: for k ← 1 to |s| − 1 do
3: for l← 1 to k do
4: while edge[i].dep1 /∈ s ∨ edge[i].dep2 /∈ s do
5: i← i + 1
6: lb← lb + cumul_l · edge[i].c
7: i← i + 1
8: while length[j].dep /∈ s do
9: j ← j + 1

10: cumul_l← cumul_l + length[j].l
11: j ← j + 1
12: return lb

6.2.2 Cost with respect to fixed departments
The second term of the RLB is related to the cut values of free departments and a lower
bound is given by the first-generation bound described in [52]. Given a department i placed
first on the line, the minimum total cost with respect to i is defined as:

MTC(i) = min
π

n∑
j=1
i̸=j

cij

n∑
k=1

π(k)<π(j)

lk (35)

and Lemma 7 tells us how to find the optimal arrangement π.

▶ Lemma 7. Suppose that department i is placed in first position on the line. For every
other department j compute the cost-to-length ratio rj = cij

lj
. The optimal arrangement,

which yields MTC(i) is obtained by ordering the departments according to decreasing values
of this ratio rj, the department with the greatest rj being adjacent to i.

This lower bound can also be used when several departments are placed in the leftmost
positions on the line. We only need to consider all fixed departments as a single department
connected to free departments with traffic intensities given by the respective cut values,
exactly as in the second term of Equation (33). As the free departments need to be sorted
by decreasing cut-to-length ratios, the time complexity of this lower bound is O(n log(n)).

▶ Example 8. We compute the lower bound for the node u1 of the DD shown in Figure 2,
with σ(u1) = s. The departments are first sorted as follows:

order =
[

scut[2]
l2

= 8
3 ,

scut[3]
l3

= 3
2 ,

scut[4]
l4

= 5
6

]
.

We then compute the lower bound as the total cost with respect to all fixed departments:

LBcut(u1) = 0 · scut[2] + l2scut[3] + (l2 + l3)scut[4]
= 0 · 8 + 3 · 3 + (3 + 2) · 5 = 34.

6.2.3 Refining the lower bound
In Section 6.1, we mentioned that for a node uj−1 ∈ Lj−1, its direct successors are added
to the branch-and-bound queue. During the compilation of a restricted DD, not only we
generate these successors in layer Lj but we also create all nodes which we can reach in layer
Lj+1. As a result, we can compute a tighter lower bound for each node of Lj by taking
advantage of the RLB values of its successors:

LB
(
uj

)
= v∗(uj) + min

xj∈Dj

(
hj

(
σ

(
uj

)
, xj

)
+ RLB

(
tj

(
σ

(
uj

)
, xj

)))
. (36)

V. Coppé, X. Gillard, and P. Schaus 14:13

▶ Example 9. Given the restricted DD shown in Figure 3, the local lower bound of node u1
is computed as follows: LB(u1) = 0 + min (24 + RLB(v1), 26 + RLB(v2), 66 + RLB(v3)).

6.3 A Breadth-First Branch-and-Bound

In the DP model of the SRFLP, a state sj at level j is the successor of exactly j different states.
More generally, it can be reached by as many as j! different paths since any permutation of
the departments could be a valid solution. The classical branch-and-bound algorithm always
explores the most promising node first with a best-first-search strategy i.e. the one with
the lowest lower bound or lowest shortest-path length. In the context of B&B-DD, nodes
with a same state could be enqueued and explored multiple times during the algorithm.
Preliminary experiments showed that this was often the case for the cSRFLP. This can be
avoided by only exploring a complete layer before considering the next one. Therefore we
suggest exploring the most promising node of what we call the lowest active layer (LAL) –
the layer containing nodes of the queue with the least variables assigned. By doing so, all
ancestors of the chosen node must have already been explored. It also ensures that at most
one node associated with any state of the model will be inserted in the queue. The only
adjustment to make is to maintain an additional data structure keeping track of all nodes in
the queue. In that data structure, exactly like in any layer of a DD, we identify nodes by
their state and keep in memory the path with shortest length to each state. We then only
add one node to the queue for each state, and otherwise update the shortest-path leading to
it. Our strategy is thus equivalent to a breadth-first-search in the exact DD but enhanced by
pruning mechanisms.

This whole procedure is described by Algorithm 2. The index of the LAL is denoted l

and increases throughout the execution of the algorithm. The branch-and-bound queue is
split between Ql and Ql+1 which respectively contain open nodes of layers l and l + 1. For
each layer Lj , Mj is a map containing the node with the shortest path to each state of the
level j. It is used in lines 17-26 to avoid adding multiple nodes in the branch-and-bound
queue for the same state. The loop of line 8 can be parallelized, which is a key asset of
B&B-DD [12, 21]. Each thread is responsible for developing a different restricted DD at
line 13 and synchronization happens when queues, maps and the incumbent solution need to
be updated.

7 Computational Experiments

In this section, we draw a comparison between the existing techniques to solve the cSRFLP to
optimality. Namely, the MIP model from [44], the MIP model introduced in [4] and extended
in Section 3 and the DD-based approach presented throughout the rest of the paper. In the
following, they are respectively referred to as Liu, Amaral and DD. The MIP models were
implemented and evaluated using Gurobi version 9.1.2 [24]. Concerning the DD approach, it
was implemented in C++ and the code was largely based on DDO [21], a Rust library for
DD-based discrete optimization. The heuristics selected are the following:

Maximum width: We use fixed-width DDs for all experiments. To that end, we experi-
mentally determined that a narrow maximum width of 3 leads to the best performance.
It may seem very small but as explained in Section 6, the lower bound of a node is
exclusively based on RLB values of its child nodes. As a result, the quality of the lower
bounds does not depend on the maximum width of the DDs. Moreover, we observed that
we were able to find very good solutions early in the search anyway.

CP 2022

14:14 Solving the Constrained Single-Row Facility Layout Problem with Decision Diagrams

Algorithm 2 The breadth-first branch-and-bound algorithm. select_node is a heuristic used to
select the most promising node of the queue.
1: v(r)← vr // root node value
2: Q0 ← {r} // queue for layer 0
3: M0 ← {σ(r) : r} // map for layer 0
4: UB ←∞
5: for l = 0 to n− 1 do // l is the lowest active layer
6: Ql+1 ← ∅ // queue for layer l + 1
7: Ml+1 ← ∅ // map for layer l + 1
8: while Ql ̸= ∅ do
9: u← select_node(Ql)

10: Ql ← Ql \ {u}
11: if LB(u) ≥ UB then
12: continue
13: B ← Restricted(u)
14: for all u′ ∈ Ln of B do // update best solution
15: if v(u′) < UB then
16: UB ← v(u′)
17: for all u′ ∈ Ll+1 of B do // enqueue successors of u and update Ml+1
18: if LB(u′) < UB then
19: if Ml+1.contains(σ(u′)) then // this state is already in the queue and map
20: if v(u′) < v(Ml+1[σ(u′)]) then // update only if the value is improved
21: Ql+1 ← Ql+1 \ {Ml+1[σ(u′)]}
22: Ql+1 ← Ql+1 ∪ {u′}
23: Ml+1[σ(u′)]← u′

24: else // this state is not in the queue and map
25: Ml+1[σ(u′)]← u′

26: Ql+1 ← Ql+1 ∪ {u′}
27: return UB

Variable ordering: The vertices must be placed from left to right on the line in the DP
model so it is imposed for this formulation of the problem.
Search node selection: Nodes with the smallest lower bound in the branch-and-bound
queue are explored first in the branch-and-bound.
Node selection for restriction: When the size of a layer exceeds the maximum width of
the DD, we delete the nodes with the largest RLB values.

The instances used in the experiments are classical SRFLP instances taken from [2, 3, 8,
31, 52] with up to 25 departments. We then created admissible sets of constraints for each
problem size:

constraint sets with 2, 4, 6, 8 and 10 positioning, ordering or relation constraints.
constraint sets with 0, 2, 4, 6, 8 and 10 constraints of each type.

For each of these scenarios, 5 different random sets of constraints were generated, except
for the case with no constraints. Note that an instance with n departments can not have more
than n positioning constraints, and that similar limits exist for the other types of constraints,
we thus have up to 101 sets of constraints for each problem size. A link to the source
code along with all the benchmark instances is given in the supplementary material. All
experiments were performed on a machine with two Intel Xeon E5-2640 (2.6GHz) processors.

The three algorithms were executed on all combinations of instances and constraints
with a time limit of 5 hours for each. The first row of Figure 4 shows the cumulative
number of instances solved by each algorithm over time while the second row shows the mean
ratio between the runtimes of each instance and its corresponding unconstrained instance,
with respect to the number of constraints of each given type. Our first observation is that
the two models presented in this paper clearly outperform the one from [44], which fails
to solve most of the instances under the time limit regardless of the type of constraints

V. Coppé, X. Gillard, and P. Schaus 14:15

10 1 101 103

Runtime (s)

100

200

300

400

500

In
st

an
ce

s s
ol

ve
d

All

10 1 101 103

Runtime (s)

100

200

300

400

500

Positioning

10 1 101 103

Runtime (s)

200

400

600
Ordering

10 1 101 103

Runtime (s)

100

200

300

400

500

Relation

0 2 4 6 8 10
Number of constraints of each type

0.0

0.5

1.0

M
ea

n
ru

nt
im

e
ra

tio
 w

ith
un

co
ns

tra
in

ed
 in

st
an

ce

0 2 4 6 8 10
Number of constraints

0

1

2

0 2 4 6 8 10
Number of constraints

0.5

1.0

0 2 4 6 8 10
Number of constraints

0.0

0.5

1.0

Liu
Amaral
Amaral (24t)
DD
DD (24t)

Amaral
DD

Liu
Amaral
Amaral (24t)
DD
DD (24t)

Amaral
DD

Liu
Amaral
Amaral (24t)
DD
DD (24t)

Amaral
DD

Liu
Amaral
Amaral (24t)
DD
DD (24t)

Amaral
DD

Figure 4 Number of instances solved by each algorithm for the different types of constraints, and
mean ratio between the runtime of each constrained instance and the runtime of the corresponding
unconstrained instance, with respect to the number of constraints of each type.

applied. Next, even if Amaral and DD both succeed in solving all instances, they have
different behaviors depending on the type of scenario. From the graphs of the second row, we
notice that the more constraints we add, the faster the DD approach gets. The constraints
in the DD formulation are indeed handled very efficiently because all infeasible solutions
are automatically pruned in the transition functions, which results in a smaller DP graph
to explore. The same cannot be said about Amaral, since instances with between 4 and
8 positioning constraints take more time to solve than their corresponding unconstrained
instance on average. This is probably because positioning constraints are modeled with a
sum of n variables on the left side of an equality. On the contrary, ordering and relation
constraints are modeled very naturally in Amaral because it uses relative ordering variables.
Adding these types of constraints thus tightens the model and reduces the execution time. It
allows Amaral to solve hard instances with ordering and relation constraints slightly faster
than DD. However, DD is the first to solve all instances when using 24 threads and seems to
benefit the most from parallelization.

8 Conclusion

In this paper, two novel exact models for the cSRFLP have been presented: an extension
of the MIP model from [4] for the SRFLP and a DD-based approach starting from the
DP model of [50]. The computational experiments have shown that they greatly improve
on the performance of the only MIP model introduced in the literature to the best of our
knowledge. Both models have their benefits, the DD approach incorporates the three types
of constraints very efficiently, especially positioning constraints, and parallelizes better. On
the other hand, the MIP model integrates ordering and relation constraints very well and
can be easily implemented with any MIP solver. The DD approach can surely be improved
in the future, for instance by taking the constraints into account within the lower bounds. It
would also be interesting to combine the strengths of our two approaches.

References
1 Sheldon B. Akers. Binary decision diagrams. IEEE Transactions on Computers, 27(06):509–516,

1978.
2 André R. S. Amaral. On the exact solution of a facility layout problem. European Journal of

Operational Research, 173(2):508–518, 2006.

CP 2022

14:16 Solving the Constrained Single-Row Facility Layout Problem with Decision Diagrams

3 André R. S. Amaral. An exact approach to the one-dimensional facility layout problem.
Operations Research, 56(4):1026–1033, 2008.

4 André R. S. Amaral. A new lower bound for the single row facility layout problem. Discrete
Applied Mathematics, 157(1):183–190, 2009.

5 André R. S. Amaral and Adam N. Letchford. A polyhedral approach to the single row facility
layout problem. Mathematical programming, 141(1-2):453–477, 2013.

6 Henrik R. Andersen, Tarik Hadžić, John N. Hooker, and Peter Tiedemann. A constraint
store based on multivalued decision diagrams. In International Conference on Principles and
Practice of Constraint Programming, pages 118–132. Springer, 2007.

7 Miguel F. Anjos, Andrew Kennings, and Anthony Vannelli. A semidefinite optimization
approach for the single-row layout problem with unequal dimensions. Discrete Optimization,
2(2):113–122, 2005.

8 Miguel F. Anjos and Anthony Vannelli. Computing globally optimal solutions for single-row
layout problems using semidefinite programming and cutting planes. INFORMS Journal on
Computing, 20(4):611–617, 2008.

9 Miguel F. Anjos and Ginger Yen. Provably near-optimal solutions for very large single-row
facility layout problems. Optimization Methods & Software, 24(4-5):805–817, 2009.

10 Bernd Becker, Markus Behle, Friedrich Eisenbrand, and Ralf Wimmer. Bdds in a branch and
cut framework. In International Workshop on Experimental and Efficient Algorithms, pages
452–463. Springer, 2005.

11 David Bergman, Andre A. Cire, Willem-Jan van Hoeve, and John N. Hooker. Optimization
bounds from binary decision diagrams. INFORMS Journal on Computing, 26(2):253–268,
2014.

12 David Bergman, Andre A. Cire, Ashish Sabharwal, Horst Samulowitz, Vijay Saraswat, and
Willem-Jan van Hoeve. Parallel combinatorial optimization with decision diagrams. In Inter-
national Conference on AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems, pages 351–367. Springer, 2014.

13 David Bergman, Andre A. Cire, Willem-Jan van Hoeve, and John N. Hooker. Discrete
optimization with decision diagrams. INFORMS Journal on Computing, 28(1):47–66, 2016.

14 David Bergman, Andre A. Cire, Willem-Jan van Hoeve, and Tallys Yunes. Bdd-based heuristics
for binary optimization. Journal of Heuristics, 20(2):211–234, 2014.

15 Randal E. Bryant. Graph-based algorithms for boolean function manipulation. Computers,
IEEE Transactions on, 100(8):677–691, 1986.

16 Margarita P. Castro, Andre A. Cire, and J. Christopher Beck. An mdd-based lagrangian
approach to the multicommodity pickup-and-delivery tsp. INFORMS Journal on Computing,
32(2):263–278, 2020.

17 Andre A. Cire and Willem-Jan van Hoeve. Multivalued decision diagrams for sequencing
problems. Operations Research, 61(6):1411–1428, 2013.

18 Dilip Datta, André R. S. Amaral, and José R. Figueira. Single row facility layout problem
using a permutation-based genetic algorithm. European Journal of Operational Research,
213(2):388–394, 2011.

19 Zvi Drezner. A heuristic procedure for the layout of a large number of facilities. Management
Science, 33(7):907–915, 1987.

20 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-completeness. Books in mathematical series. W. H. Freeman, 1979.

21 Xavier Gillard, Pierre Schaus, and Vianney Coppé. Ddo, a generic and efficient framework for
mdd-based optimization. In Proceedings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence (IJCAI-20), pages 5243–5245, 2020.

22 Xavier Gillard, Pierre Schaus, Vianney Coppé, and André A. Cire. Improving the filtering of
branch-and-bound mdd solver. In International Conference on the Integration of Constraint
Programming, Artificial Intelligence, and Operations Research, 2021.

V. Coppé, X. Gillard, and P. Schaus 14:17

23 Jian Guan and Geng Lin. Hybridizing variable neighborhood search with ant colony optim-
ization for solving the single row facility layout problem. European Journal of Operational
Research, 248(3):899–909, 2016.

24 LLC Gurobi Optimization. Gurobi optimizer reference manual, 2022. URL: https://www.
gurobi.com.

25 Gary D. Hachtel and Fabio Somenzi. A symbolic algorithms for maximum flow in 0-1 networks.
Formal Methods in System Design, 10(2):207–219, 1997.

26 Tarik Hadžić and John N. Hooker. Postoptimality analysis for integer programming using
binary decision diagrams. Technical report, Carnegie Mellon University, 2006.

27 Tarik Hadžić and John N. Hooker. Cost-bounded binary decision diagrams for 0-1 programming.
In Integration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems, pages 84–98. Springer, 2007.

28 Kenneth M. Hall. An r-dimensional quadratic placement algorithm. Management science,
17(3):219–229, 1970.

29 Sunderesh S. Heragu and Attahiru Sule Alfa. Experimental analysis of simulated annealing
based algorithms for the layout problem. European Journal of Operational Research, 57(2):190–
202, 1992.

30 Sunderesh S. Heragu and Andrew Kusiak. Machine layout problem in flexible manufacturing
systems. Operations research, 36(2):258–268, 1988.

31 Sunderesh S. Heragu and Andrew Kusiak. Efficient models for the facility layout problem.
European Journal of Operational Research, 53(1):1–13, 1991.

32 Samid Hoda, Willem-Jan van Hoeve, and John N. Hooker. A systematic approach to mdd-
based constraint programming. In International Conference on Principles and Practice of
Constraint Programming, pages 266–280. Springer, 2010.

33 John N. Hooker. Improved job sequencing bounds from decision diagrams. In International
Conference on Principles and Practice of Constraint Programming, pages 268–283. Springer,
2019.

34 Alan J. Hu. Techniques for efficient formal verification using binary decision diagrams. PhD
thesis, Stanford University, Department of Computer Science, 1995.

35 Philipp Hungerländer and Franz Rendl. A computational study and survey of methods for the
single-row facility layout problem. Computational Optimization and Applications, 55(1):1–20,
2013.

36 Philipp Hungerländer and Franz Rendl. Semidefinite relaxations of ordering problems. Math-
ematical Programming, 140(1):77–97, 2013.

37 Zahnupriya Kalita and Dilip Datta. A constrained single-row facility layout problem. The
international journal of advanced manufacturing technology, 98(5):2173–2184, 2018.

38 Timothy Kam. Multi-valued decision diagrams: Theory and applications. Multiple-Valued
Logic, 4(1):9–62, 1998.

39 Richard M. Karp and Michael Held. Finite-state processes and dynamic programming. SIAM
Journal on Applied Mathematics, 15(3):693–718, 1967.

40 Ravi Kothari and Diptesh Ghosh. An efficient genetic algorithm for single row facility layout.
Optimization Letters, 8(2):679–690, 2014.

41 K. Ravi Kumar, George C. Hadjinicola, and Ting-li Lin. A heuristic procedure for the
single-row facility layout problem. European Journal of Operational Research, 87(1):65–73,
1995.

42 Yung-Te Lai, Massoud Pedram, and Sarma B. K. Vrudhula. EVBDD-based algorithms for
integer linear programming, spectral transformation, and function decomposition. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 13(8):959–975,
1994.

43 C.-Y. Lee. Representation of switching circuits by binary-decision programs. The Bell System
Technical Journal, 38(4):985–999, 1959.

CP 2022

https://www.gurobi.com
https://www.gurobi.com

14:18 Solving the Constrained Single-Row Facility Layout Problem with Decision Diagrams

44 Silu Liu, Zeqiang Zhang, Chao Guan, Lixia Zhu, Min Zhang, and Peng Guo. An improved
fireworks algorithm for the constrained single-row facility layout problem. International
Journal of Production Research, 59(8):2309–2327, 2021.

45 Elsa Loekito, James Bailey, and Jian Pei. A binary decision diagram based approach for
mining frequent subsequences. Knowledge and Information Systems, 24(2):235–268, 2010.

46 Robert Love and Jsun Wong. On solving a one-dimensional space allocation problem with
integer programming. INFOR: Information Systems and Operational Research, 14(2):139–143,
1976.

47 Gintaras Palubeckis. Single row facility layout using multi-start simulated annealing. Computers
& Industrial Engineering, 103:1–16, 2017.

48 Guillaume Perez and Jean-Charles Régin. Efficient operations on mdds for building constraint
programming models. In Proceedings of the Twenty-Fourth International Joint Conference on
Artificial Intelligence (IJCAI-15), pages 374–380, 2015.

49 Jordi Petit. Experiments on the minimum linear arrangement problem. Journal of Experimental
Algorithmics, 8, 2003.

50 Jean-Claude Picard and Maurice Queyranne. On the one-dimensional space allocation problem.
Operations Research, 29(2):371–391, 1981.

51 Hamed Samarghandi and Kourosh Eshghi. An efficient tabu algorithm for the single row
facility layout problem. European Journal of Operational Research, 205(1):98–105, 2010.

52 Donald M. Simmons. One-dimensional space allocation: an ordering algorithm. Operations
Research, 17(5):812–826, 1969.

53 J. K. Suryanarayanan, Bruce L. Golden, and Qi Wang. A new heuristic for the linear placement
problem. Computers & Operations Research, 18(3):255–262, 1991.

54 Willem-Jan van Hoeve. Graph coloring lower bounds from decision diagrams. In International
Conference on Integer Programming and Combinatorial Optimization, pages 405–418. Springer,
2020.

55 Hélène Verhaeghe, Christophe Lecoutre, and Pierre Schaus. Compact-mdd: Efficiently filtering
(s) mdd constraints with reversible sparse bit-sets. In Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence (IJCAI-18), pages 1383–1389, 2018.

56 Ingo Wegener. Branching programs and binary decision diagrams: Theory and applications.
Discrete Applied Mathematics, 2000.

Constraint Acquisition Based on Solution Counting
Christopher Coulombe #

Université Laval, Québec, Canada

Claude-Guy Quimper # Ñ

Université Laval, Québec, Canada

Abstract
We propose CABSC, a system that performs Constraint Acquisition Based on Solution Counting.
In order to learn a Constraint Satisfaction Problem (CSP), the user provides positive examples and
a Meta-CSP, i.e. a model of a combinatorial problem whose solution is a CSP. This Meta-CSP
allows listing the potential constraints that can be part of the CSP the user wants to learn. It also
allows stating the parameters of the constraints, such as the coefficients of a linear equation, and
imposing constraints over these parameters. The CABSC reads the Meta-CSP using an augmented
version of the language MiniZinc and returns the CSP that accepts the fewest solutions among the
CSPs accepting all positive examples. This is done using a branch and bound where the bounding
mechanism makes use of a model counter. Experiments show that CABSC is successful at learning
constraints and their parameters from positive examples.

2012 ACM Subject Classification Computing methodologies Ñ Modeling methodologies

Keywords and phrases Constraint acquisition, CSP, Model counting, Solution counting

Digital Object Identifier 10.4230/LIPIcs.CP.2022.15

1 Introduction

Constraint solvers are used to solve complex combinatorial problems. They require an expert
to model the problem using the constraints available in the solver. The model creation is a
crucial step, but is often time-consuming. One way to save time to the expert is to suggest
a model based on sample solutions. For instance, a hospital that wants to automatize the
creation of their work schedules for its staff might provide to the experts previous schedules.
Assisted with software, the expert wants to discover what constraint generated the examples.
While some of these constraints are already known and even written on legal documents,
there are as important constraints that are not written but are part of the work culture.
These are the constraints for which a constraint acquisition software becomes handy.

When two constraints are candidates for a model, the one that was the most likely used
to generate the sample solutions is the most restrictive one [14]. Different approaches exist to
decide which constraint is the most restrictive. There are mainly statistical approaches [13, 14]
and approaches based on a ranking system [6] (that includes many other criteria). Current
methods analyze the constraint in isolation. However, adding to a model a constraint that
accepts many solutions can reduce more the solution space than adding a constraint that
accepts few solutions. It all depends on the interaction between the constraints in the model.
We propose the first approach that takes into account this interaction. It uses a model
counter to make sure that the constraints suggested to the expert are those that are the
most likely to explain the observed sample solutions given the constraints that were already
identified to be part of the model.

In this paper, we propose CABSC, an algorithm for Constraint Acquisition Based on
Solution Counting. CABSC uses examples of solutions to evaluate which constraints to keep
from a chosen set of candidates. The selection process is based on solution counting using
model counters, an approach which differs from the current methods detailed in Section 2.
The definitions for our approach are given in the Section 3, followed by a practical explanation
in Section 4. Experiments are explained in Section 5 and discussed in Section 6.

© Christopher Coulombe and Claude-Guy Quimper;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 15; pp. 15:1–15:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:christopher.coulombe.1@ulaval.ca
mailto:claude-guy.quimper@ift.ulaval.ca
http://www2.ift.ulaval.ca/~quimper
https://doi.org/10.4230/LIPIcs.CP.2022.15
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Constraint Acquisition Based on Solution Counting

2 General Background

Constraint acquisition is an intricate problem that can be solved in a few ways. A first
idea called passive learning requires examples of solutions and/or non-solutions. A system
chooses which constraint represents best the examples from a preselection of constraints.
The preselected pool of constraints from which the model is built is called a bias. Other
methods use active learning and generate examples of solution and ask an expert to classify
the examples given. From a bias, the system choses the best set of constraints according to
the answer provided.

Passive learning systems exploit the idea that the underlying structure of the given
examples gives information about the model to learn. Beldiceanu and Simonis [6] created a
Model Seeker that learns constraints from a catalog given positive and negative examples.
The constraints of the catalog that accepts the positive examples and reject the negative
examples are sorted with the more likely constraints having a higher rank. The sorting system
is based on a ranking value that is a function of multiple parameters, including the number
of solutions satisfying the constraint [5]. A constraint accepting fewer solutions is more
likely to be the constraint that generated the examples as there is a lesser chance that the
examples are a product of a coincidence. To work, this method needs to make the hypothesis
that the constraints learned are independent of each other. That hypothesis is not what
transpires in real applications and may result in errors. Two constraints with a small but
near identical set of solutions would be picked over two constraints accepting more solutions
if picked individually but very few solutions when combined. This is counterproductive as
the idea is often to complete an already existing model or to learn multiple constraints at
the same time.

Picard-Cantin et al. [13] approached the problem with a statistical approach with the idea
that the constraint that best explains the examples is the most improbable one. Equation (1)
was therefore used by Picard-Cantin et al. [14] to calculate the probability of the constraints
where GCpP q is the probability that a random assignment satisfies the constraint C with
the parameters P . The parameters can be, for instance, the coefficients of a linear equation.
SCpP q is the solution set that satisfies the constraint C with the parameters P . The
probability is calculated for a constraint over n variables. probpeq is the probability to observe
an assignment e of n variables and probpeiq is the probability to observe an assignment of a
single variable.

GCpP q “
ÿ

ePSCpP q

Probpeq “
ÿ

ePSCpP q

n
ź

i“1
Probpeiq (1)

A hypothesis of independence between the variables of the constraints is applied in the
equation. Whenever a variable is in the scopes of multiple constraints, the hypothesis of
independence between the variables becomes an approximation. In all cases, the preferred
constraints are the ones with a small number of solutions but the independence hypothesis
can lead to an erroneous ranking of the constraints. Moreover, this system was not designed
for learning multiple constraints and requires solution counting algorithms specialized for
each constraint.

Another approach was suggested by Bessiere et al. [8] which consists of creating a model
from partial queries, a form of active learning, with an algorithm called QuAcq. The system
creates an example and asks an expert whether the presented values are valid. The system
adapts the learned constraints depending on the provided answer. Recently, QuAcq was
improved with a new version called QuAcq2 [7]. In some cases, QuAcq and QuAcq2 can

C. Coulombe and C.-G. Quimper 15:3

require a number of queries too high to be efficiently answered by a person. The number of
queries can go as high as n2 logpnq where n is the number of variables of the problem [7].
Multiple authors tackled this problem such as Daoudi et al. [10], Addi et al. [2], Addi et al. [1],
Arcangioli and Lazaar [3], Tsouros et al. [20] and Tsouros et al. [19], but up to thousands of
queries can still be needed.

3 The CABSC approach

The CABSC approach (Constraint Acquisition Based on Solutions Counting) we introduce
fulfills three goals:
1. To lift the hypothesis of independence between variables;
2. To allow learning multiple constraints;
3. To work with any set of constraints for which filtering algorithms exist, rather than

solution counting algorithms.

CABSC models the process of learning constraints as a Meta-CSP. As will be described in
Section 3.1, a Meta-CSP is a combinatorial problem whose solution is a CSP. In our case, the
solution is the CSP we learn from the examples. When modeling the Meta-CSP, we list the
mandatory constraints, i.e. the constraints that we know belong to the model, and also the
possible constraints, those that could belong to the model. The variables of the Meta-CSP
encode the possible activation of a constraint and also the parameters of the constraints, such
as the coefficients of a linear constraint. Solving the Meta-CSP provides the learned model.
To do so, we use a branch and bound to decide which constraint to keep and identify the
values of the parameters. Our approach uses constraint programming to model a Meta-CSP
and to define a family of CSPs from which we can learn. We therefore do not aim to learn
any CSP but the optimal CSP among a set programmed through constraint programming.
This approach is inspired from regression where one defines a family of functions (e.g. linear
functions) and aims at finding the function from this family that best fits the data. Here, we
aim at finding the CSP from a family of CSPs defined by the Meta-CSP that best explains
the examples.

As there are multiple candidate constraints that could belong to the learned model, we
follow Beldiceanu and Simonis [6] and Picard-Cantin et al. [13] by selecting the constraints
that minimize the number of solutions. However, instead of analyzing the constraints
individually like Beldiceanu and Simonis [6] and Picard-Cantin et al. [13], our system reasons
globally on all constraints which allows us to consider multiple different constraints at once.

In order to lift the hypothesis that variables and constraints in a CSP are independent,
we directly count the solutions of a model using a model counter. The solution to our
Meta-CSP is therefore a CSP whose constraints are satisfied by all observed examples and is
as restrictive as possible, i.e. it minimizes the number of solutions.

Our approach has two main differences from existing methods. The first difference is that
constraint programming, through the declaration of a Meta-CSP, is used to define a family
of CSPs from which we can learn. A second difference from most existing methods is that
we use a criterion with a global view on the model to learn by considering the constraints to
learn as a whole instead of individually.

3.1 Definition of a Meta-CSP
Following [16], a CSP P is a triple P “ xX, dom, Cy where X is a n-tuple of variables
X “ xX1, X2, . . . , Xny, dom is a function that maps a variable in Xi P X to a set of
values, called domain, that can be assigned to the variable Xi, C is a t-tuple of constraints

CP 2022

15:4 Constraint Acquisition Based on Solution Counting

C “ xC1, C2, . . . , Cty . A constraint Cj is a pair xRj , Sjy where Sj Ď X is the scope of the
constraint and Rj is a relation on the variables in Sj . In other words, Rj is a subset of
the Cartesian product of the domains of the variables in Sj . A solution to the CSP P is an
assignment to the variables X “ v1, . . . , Xn “ vn such that vj P dompXjq @1 ď j ď n and
each Cj is satisfied in that the tuple xv1, . . . , vny projected onto Sj is a tuple in Rj .

We extend the definition of a CSP to a Meta-CSP. The solution of a Meta-CSP is a CSP.
In our case, it is the CSP we want to learn. A Meta-CSP is a tuple M “ xX, P, α, dom, E, Cy

where X “ xX1, . . . , Xny are the decision variables, P “ xP1, . . . , Pqy are the parameter
variables, α “ xα1, α2, . . .y are the activation variables, dom is a function that maps a variable
in X YP Yα to a set of values that can be assigned to the variable, E is the example matrix
of dimensions mˆ n, and C “ tC1, . . . , Ctu is a set of constraints. A row ei “ xei,1, . . . , ei,ny

of matrix E satisfies ei,j P dompxjq and is a solution to the CSP we want to learn. The
examples of the matrix must satisfy the constraints that we want to learn.

A constraint Cj is a quadruple xRj , Sj , Pj , αjy where Sj Ď X is the scope of the constraint,
Pj Ď P Y α its parameters set and αj P α its activation variable. For instance, for a linear
constraint, the parameters Pj are the coefficients that need to be learned. To each constraint
Cj is associated the activation variable αj with domain dompαjq Ď tK,Ju. Deciding whether
αj is true (J) is equivalent to deciding whether the constraint appears in the learned model.
One can force a constraint to appear in the learned model by setting dompαjq “ tJu in the
definition of the Meta-CSP. The relation Rj is a set of the assignments accepted by the
constraint along with the parameters given to the constraint: Rj Ď

Ś

xPSj
x ˆ

Ś

pPPj
.

A solution to the Meta-CSP is an assignment to the parameter variables P1 “ p1, . . . , Pq “

pq and an assignment to the activation variables α1 “ r1, . . . , αt “ rt such that rj P dompαjq

for all constraints Cj , pk P dompPkq for all 1 ď k ď q. Finally, the examples must satisfy the
activated constraint, i.e. @1 ď j ď t, αj ùñ @i xei,1, . . . , ei,n, p1, . . . , pqy P Rj .

4 Framework

4.1 The Language

We augmented the MiniZinc language [12] to model a Meta-CSP. The declaration of constraints
in a Meta-CSP differs from the one in a CSP in two ways. First, the constraints had to
be rewritten in MiniZinc to include the Boolean activation variable. This avoids writing
explicitly, for each constraint, the underlying constraints needed for such variables. Second,
when declaring the scope of a constraint, the indices of the decision variables in X need
to be stored in the constraint. Indeed, the constraint’s filtering algorithm needs a map of
the decision variables in its scope to the columns of the matrix of examples E. Therefore,
constraints used for the Meta-CSP have different specifications from what is possible within
MiniZinc, which is why the language had to be augmented. The MiniZinc language was also
modified to better communicate with the solver we developed, i.e. imports and heuristics
were adapted to give a better control. Even though the modifications to MiniZinc do not
change its fundamental structure, the way to write a Meta-CSP is made significantly easier.

Listing 1 provides a code snippet written in the augmented MiniZinc language. A set of
two-dimensional points are given as solutions of an unknown CSP problem. We know that
the x and y coordinates of these points are nonnegative. We do not know whether these
points are subject to a linear inequality or an elliptic inequality. This Meta-CSP will tell us.

C. Coulombe and C.-G. Quimper 15:5

Listing 1 Code snippet of the augemented MiniZinc.
1 set: domain = 1..10;
2 array : x = [1]; % Points are (x,y)
3 array : y = [2];
4 array : x_y = [1..2];
5 var domain : a;
6 var domain : b;
7 var domain : c;
8 var 0..1: activation1 ;
9 var 0..1: activation2 ;

10

11 constraint Linear (x, [1] , " >=", 0, true); % x >= 0
12 constraint Linear (y, [1] , " >=", 0, true); % y >= 0
13 constraint Linear (x_y , [a,b], " <=", c, activation1); % a*x + b*y <= c
14 constraint Ellipse (x_y , [a,b], " <=", c, activation2); % a*x2 + b*y2 <= c
15 constraint Xor(activation1 , activation2 , true);

The decision variables x and y are declared on lines 2 and 3. As their values are known
for each example, they are not declared as variables using the keyword var but rather as
constants corresponding to the column numbers in the example matrix E.

Line 11 declares the first constraint of the problem. It is interpreted as follows: It is a
linear constraint whose scope is the decision variable x, whose coefficient vector is r1s, whose
comparison operator is ě, and whose right-hand side is 0. It can be interpreted as r1sT x ě 0.
The activation variable is set to true, which means that this constraint is known to belong to
the CSP. Line 12 imposes y ě 0 with a similar constraint. Line 13 encodes the first constraint
that we want to learn. It is a linear constraint over the variables x and y whose coefficients
and right-hand side are unknown and are represented by the parameter variables a, b, and c.
Finally, it is unknown whether this constraint belongs to the CSP. The activation variable
activation1 will be set to 1 if it belongs and 0 otherwise. Line 14 encodes the second
constraint that we want to learn. It is an elliptic constraint centered at the origin where
parameter variables a, b, and c are reused. The activation variable activation2 is used
for this constraint. Line 15 shows an example of a constraint over two activation variables
meaning that exactly one constraint among the linear and the elliptic constraint can be
activated. This is an example of how one can define the bias (i.e. the family of CSPs from
which the CSP is learned) and exploit the full richness of CP to model the learning process.

A constraint can be satisfied by all examples even if the solver chooses not to learn it by
setting its activation variable to K, unlike a reified constraint which would be set to K only
if the examples are not satisfied.

Figure 1 is a graphical representation of the problem encoded in Listing 1. The curves
represent both candidate constraints: the linear candidate and the elliptic candidate. The
dots are the sample solutions that are provided.

We are looking for the CSP that is the most likely the one that generated the points
provided in the example matrix E, i.e. the CSP that accepts the fewest solutions among
all CSPs that accepts all solutions in E. We see in Figure 1 that the Elliptic constraint
accepts 9 solutions while the linear constraint accepts 10 solutions. Therefore, our approach
learns that an elliptic inequality fits best the examples with parameters a “ 1, b “ 2, c “

10, activation1 “ K and activation2 “ J, which confirms the visual intuition.

4.2 The Solver
We created a custom solver called CabscSolver that reads the Meta-CSP written in the
augmented MiniZinc language and the example matrix E. This solver finds the CSP that
accepts the fewest solutions among all CSPs that accept all examples. CabscSolver uses
a branch and bound to solve the problem. The branching variables are the activation

CP 2022

15:6 Constraint Acquisition Based on Solution Counting

0 1 2 3 4

0

1

2

3

4
Simple Example

Linear : 3x+3y=10
Elliptic : 1x²+2y²=10

Figure 1 Simple example.

and parameter variables α Y P . After branching, constraint propagation is triggered. Let
Cpx⃗, p⃗, αq be a constraint where x⃗ is the vector of decision variables, p⃗ is the vector of
parameter variables, and α is the activation variable. Only the domains of p⃗ and α need to
be filtered as the values of the decision variables are provided by the examples. To filter
the constraint, one needs to filter the expression α ùñ

Źm
i“1 Cpei|x⃗, p⃗,Jq where ei|x⃗ is the

projection of the ith example over the decision variables in the scope of the constraint. The
filtering can take place only when the value of the activation variable α is known. Indeed,
if α is false (K), the constraint is satisfied and no filtering is required. If α is true (J), a
conjunction of constraints needs to be filtered. Each component of the conjunction can
be filtered independently, but a more sophisticated algorithm might process the examples
in batch to gain in efficiency. The choice is specific to each constraint. In the example of
Listing 1, if variable activation1 is set to J during the search process, the linear constraint
filters values 1 and 2 from the domain of c as the point px, yq “ p3, 0q prevents the linear
constraint to be satisfied when c ď 2.

In order to make the branch and bound effective at minimizing the number of solutions
accepted by the CSP we want to learn, one needs to compute a lower bound on this number
of solutions. This computation is carried in two phases. In the first phase, we detect if
a situation occurs where it is possible to deduce which CSP accepts the fewest solutions,
regardless whether this CSP accepts the examples or not. If such a CSP can be deduced, the
second phase launches a model counter to compute the number of solutions for this CSP.

Some constraints have monotonic parameters with respect to the number of solutions
they accept [14]. For instance, consider the linear constraint cT x ď b where the parameters c

and b are a vector of nonnegative coefficients and a nonnegative right-hand side. The vector
x contains the decision variables. It is clear that the number of solutions accepted by this
constraint decreases as the values in c increases and b decreases. In order to obtain the
most restrictive constraint, one needs to fix the parameters c to their greatest values in their
domains and b to its smallest value. If all parameter variables with more than one value in
their domain are monotonic and all constraints agree to set these variables to the same values

C. Coulombe and C.-G. Quimper 15:7

(either largest or smallest) in order to minimize the number of solutions, then we can proceed
to the second phase and compute a lower bound on the number of solutions. Otherwise, we
use the number of examples as the trivial lower bound as this is the minimum number of
solutions the CSP can accept. Since parameter variables can be subject to constraints, it is
possible that fixing the value of the parameter variables leads to inconsistencies. In such
a case, the CSP used to calculate the lower bound has no solution. Even if that CSP has
no solution, multiple CSPs can exist further in the search tree. We therefore still use the
number of examples as a lower bound on those nodes.

In the second phase, the parameter variables are set to their most restrictive value and
activation variables that are not set to false are forced to be true in order to have the
maximum number of activated constraints. This results in a CSP A for which the number of
solutions needs to be determined. There exists a few model counters in the literature such
as the exact probabilistic model counter GANAK [17] or the approximate model counter
ApproxMC4 [9, 18]. Both of these counters can only approximate the number of solutions of a
model written as a CNF file. CabscSolver encodes the constraints of A into a pseudo-Boolean
language that is translated to a CNF using the MiniSat+ module NaPS [11]. This CNF is
given to the model counter which calculates the number of solutions of the model. This
number is used as a lower bound on the number of solutions of the learned CSP for the
current node of the branch and bound.

Executing the model counter is the most time-consuming operation in the whole search
process. Since the parameter variables are often fixed to the same values (due to their
monotonicity), it is worth implementing a cache system. Therefore, before calling the model
counter, the system checks whether the generated model was previously counted, and if so,
returns the number of solutions previously found.

The resulting algorithm is summarized in Figure 2. The next branching is defined by the
best-first-search heuristics, i.e. the open node with the smallest lower bound is expanded.
When the lower bound of a node is greater than the number of solutions of the incumbent
CSP, this node is closed.

5 Experiments

5.1 Implementation

We implemented CabscSolver in Python1. While this interpreted language leads to a slow
execution, in practice, most of the computation time is spent in the model counters. We use
GANAK [17] and ApproxMC4 [9, 18] as model counters that are both efficiently implemented
in C/C++.

GANAK is a probabilistic exact model counter [17]. Using the parameter δ, GANAK
guarantees with a probability of at least 1´ δ that the value provided is an exact count. The
approximate model counter ApproxMC4 [9, 18] was also integrated to our solver to count
the number of solutions since some calculations are much faster with this counter. Let F be
the real number of solutions of a model. ApproxMC4 gives an approximation of F with a
configurable confidence. More specifically, it returns a count that is guaranteed to be within
r F
p1`ϵq , F ¨ p1 ` ϵqs with a probability of at least 1 ´ δ, where ϵ and δ are the configurable

parameters. The chosen values for the parameters ϵ and δ are discussed in Section 5.3.

1 The code and the benchmarks will be available on the authors’ web sites.

CP 2022

15:8 Constraint Acquisition Based on Solution Counting

Next branching

NoCan the parameters be fixed
to launch model counting?

Start

Is the CSP model in cache?

Convert the CSP model to a
SAT model

No

Yes

Is the CSP model optimal?
Yes

Return CSP model

Count the number of
solutions of the SAT model

Add the CSP model to the
cache

No

Yes

Figure 2 Flow chart for the CABSC approach.

To read the Meta-CSP models, using the parsing toolkit Lark, we implemented, from
scratch, a parser that interprets a subset of the MiniZinc language [12] to which we add the
necessary augmentations. MiniZinc was not changed in any way other than the required
augmentations. This allows us to efficiently communicate the Meta-CSP models to the solver.

5.2 Instances
We try to learn the constraints inspired from nurse scheduling problems. The problem
consists of creating a schedule that respects a set of predetermined rules. In these schedules,
the increments used are days, meaning that we are only preoccupied on a daily basis whether
the nurses work or not. Let η P t2, 3, 4u and d P t7, 14, 21, 28u be the number of nurses
and days in a schedule (with ηd ď 56). All instances have a matrix of decision variables
rrXp1,1q, . . . , Xp1,dqs, . . . , rXpη,1q, . . . , Xpη,dqss. Each variable of the matrix represents a day of
work for a nurse with its domain being t0, 1, 2u. Xi,j takes the value 0 if the nurse i does not
work on day j. If the nurse i does work during day j, Xi,j takes the value 1 or 2, depending
on whether the nurse works in room 1 or 2.

In the first benchmark, denoted Sequence, we want to learn one of these two constraints
on the rows of the matrix.

SequenceprXi,1, . . . , Xi,ds, l, u, k, V q @1 ď i ď η (2)

Amongpt1, t2, rXi,7w`1, . . . , Xi,7pw`1qs, V q @1 ď i ď η, @0 ď w ă
d

7 (3)

Constraint (2) is the Sequence constraint [4] that is satisfied when at least l and at most u

variables in a window Xi,j , . . . , Xi,j`k´1 of k consecutive variables are assigned to a value
in the set V . This constraint is used to spread out the workload of the nurses over the
days without underload nor overload. The parameters l, u, and k are unknown and need
to be learned. Their domains are given by domplq “ dompuq “ dompkq “ r0, 7s and are

C. Coulombe and C.-G. Quimper 15:9

subject to l ď u ă k. The set V is known and fixed to t1, 2u as these are the values that
represent a nurse who is working. Constraint (3) simply constrains the number of work days
to be at least t1 and at most t2 every week. The parameter variables t1 and t2 have for
domain dompt1q “ dompt2q “ r0, 7s. One, and only one, constraint among (2) or (3) must
be activated. We therefore constrain the activation variables of both constraints with a Xor,
just like the line 15 of Listing 1. The benchmark Sequence is composed of 368 instances
generated with distinct constraints, parameters, and examples. These instances satisfy the
Sequence constraint and the parameters lie in the intervals l, u P r1, 6s and k P r2, 7s.

The second benchmark, denoted Complex, inherits all the characteristics of the Se-
quence benchmark, including the constraint to learn, to which additional known constraints
are added on the decision variables. These constraints have for goal to encode a more realistic
situation where constraints that we want to learn are mixed with constraints that are known.
For each column rXp1,dq, . . . , Xpη,dqs of the matrix that represents the schedule for the day
d, we have the constraint Amongpb, 3, rXp1,dq, . . . , Xpη,dqs, V q where b “ 1 if d is a Monday,
Tuesday, Wednesday, or Thursday and b “ 2 otherwise. This constraint and its parameters
are known and added to the Meta-CSP with an activation variable set to J. This constraint
does not need to be learned. For instances with 3 or more nurses, we also have another
known constraint Xpη,jq “ 0_Xpη´2,jq “ 0 @j P t1, . . . , du in order to prevent nurse η from
working at the same time as η ´ 2. When applicable, this constraint is also included in the
Meta-CSP as a known constraint. The Complex benchmark has 247 instances that satisfy
the Sequence constraint with the parameters lying in the intervals l, u P r1, 6s and k P r2, 7s.

In the third benchmark denoted Vacation, the Meta-CSP is identical to the one of
Complex. However, the examples E that are provided to the solver are particular: nurses
can be non-working for 7 consecutive days. This represents a situation where the staff goes on
leave during the vacation period. These leaves violate the Sequence constraint and force the
solver to activate the Among constraint and learn its parameters t1 and t2. The examples
were created such that nurse η never takes a vacation but other nurses do. For a problem
spanning w weeks, nurses globally take no more than w weeks of vacation. We generated
272 instances for this benchmark such that the instances satisfy the Among constraint. The
parameters lie in the intervals t1 P r2, 3s and t2 P r3, 7s.

The last benchmark Overtime uses the same Meta-CSP as Complex and Vacation,
but the examples E provided to learn the CSP differ from Vacation on one point: rather
than leaving for vacations for 7 consecutive days, the nurses in the Overtime benchmark
work on a stretch of 7 consecutive days. This represents a situation when the hospital is
understaffed and nurses need to work overtime. This benchmark has 304 instances such that
the instances satisfy the Among constraint and the parameters lie in the intervals t1 P r2, 7s
and t2 P r4, 7s with the restriction t1 ď t2.

For all benchmarks, the solver aims to learn exactly one constraint among (2) and (3).
The selection depends on the known constraints added to the Meta-CSPs and the examples.

5.3 Experimental Setup
For each instance, the CSP we want to learn was written in the MiniZinc language [12] and
used to randomly generate up to a thousand solutions. The Meta-CSP model was written in
our augmented-MiniZinc language in order to learn which constraint, between the Sequence
and the Among constraints, is activated and what are the parameters that were used to
generate the examples.

CabscSolver supports two model counters. We first used the solver with the model
counter GANAK [17]. By setting the parameter δ to 0.05, we state that the value returned
by the model counter is guaranteed to be exact with a probability of at least 0.95. Tighter

CP 2022

15:10 Constraint Acquisition Based on Solution Counting

guarantees can be used, but the time taken to count the number of solutions of the models
increases accordingly. Using this model counter and this configuration, we nevertheless
assume the given number of solutions to be exact. GANAK was used with a maximum cache
size of 2000 Mb. We ran all benchmarks on the solver using this model counter.

As a second series of tests, we used a mix of ApproxMC4 [9, 18] and GANAK. Some CSP
models are faster to evaluate with ApproxMC4, so we tried to make CABSC faster using
both model counters. Since ApproxMC4 is not an exact model counter, we did not want to
run both model counters at the same time and simply use the result returned by the fastest
of the two. When using both model counters, GANAK and ApproxMC4 are simultaneously
launched. If GANAK finishes first, ApproxMC4 is terminated. If ApproxMC4 finishes first,
GANAK is terminated only if the returned result is conclusive. Indeed, ApproxMC4 returns
a solution count that is guaranteed to be within an interval with a parametrized confidence.
A solution returned by this model counter could be largely underestimated, which could
lead to the wrong CSP model being learned. If F is the exact number of solutions of a CSP,
the number of solutions returned by ApproxMC4 lies in r F

p1`ϵq , F ¨ p1 ` ϵqs with probability
1 ´ δ. When ApproxMC4 returns a number of solutions that is p1 ` ϵq times greater than
the number of solutions accepted by the incumbent CSP, the computation of GANAK is
halted, and the node is closed, i.e. no children of this node will be explored in the search tree.
Otherwise, we draw no conclusion and let GANAK terminate its computation. ApproxMC4
is rather used as a means to close nodes faster than substituting GANAK.

The same way we assumed that GANAK would return exact values, we assume that
ApproxMC4 does not give a solution count that is lower than the minimum value of the
interval. We used δ “ 0.10 and ϵ “ 0.5 which means that the count calculated is guaranteed
to be in the range r F

1.5 , 1.5F s with a probability of at least 0.90. A lower probability is
accepted from ApproxMC4 than GANAK since the main focus of using ApproxMC4 is to
count CSP models faster than GANAK.

We ran the experiments on a computer with the following configuration: CentOS 7.6.1810,
32 GB ram, Processor Intel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz, 32 Cores. We
simultaneously launch 7 instances of the solver.

From each instance, random subsets of 1, 2, 3, 5, 10, 25, and 100 examples were used. Each
time, the top 3 solutions are returned by the solver, and we verify that one of these solutions
is the one used to generate the examples. For the Sequence and Complex benchmarks,
the expected constraint to be learned is the Sequence constraint with parameters l, u,
and k. For the Vacation and Overtime benchmarks, the examples violate the Sequence
constraint, and the Among constraint is expected to be learned with parameters t1 and t2.

6 Results and Discussion

Figure 3 presents the results obtained when running CabscSolver using only GANAK for the
four benchmarks presented at Section 5.2. On the y-axis is the number of examples that are
given to the solver. On the x-axis is the proportion of instances for which the solution is the
best one returned by the solver, the second best, the third best, or whether the CSP that
was used to produce the examples does not appear at all in the top-3 learned models. We
recall that the solver returns the CSP that minimizes the number of solutions.

6.1 Accuracy
CABSC performs generally well as seen in Figure 3. Each benchmark presents a distinct
behavior regarding the quality of the results. The first observable behavior is that CABSC
succeeds in learning the CSP that was used to generate the data as seen with the benchmark

C. Coulombe and C.-G. Quimper 15:11

Classification of the Instances for Various Number of Examples

0 20 40 60 80 100
1
2
3
5

10
25

100

Percentage (%)

#
E

xa
m

pl
es

a) Sequence

0 20 40 60 80 100
1
2
3
5

10
25

100

bl
an

k

#1 #2 #3 Other

b) Complex

0 20 40 60 80 100
1
2
3
5

10
25

100

bl
an

k

c) Vacation
0 20 40 60 80 100

1
2
3
5

10
25

100

bl
an

k
d) Overtime

Figure 3 Classification of the instances in percentage for each number of examples. CabscSolver
uses GANAK as the only model counter.

Sequence. In this simpler case, the solver has to count the solutions of a conjunction of
Sequence constraints, i.e. the constraints to learn. With few examples, our approach stays
coherent with the results of Picard-Cantin et al. [13] where they reach above 70% accuracy
with a single example of solution, and around 85% accuracy with 5 examples. Extending the
number of examples drastically reduces the margin of incorrectly learned instances while
the number of examples needed is still relatively low. With only 25 examples, 96.47% of the
instances resulted in a correctly learned Sequence constraint at the first try. A few instances
could not be resolved even with 100 examples. The unsolved instances occur when the solver
finds a more restrictive constraint than the one that was used to generate the examples. This
can happen if all the examples given are not enough to filter out parameters that would make
the constraints more restrictive. This is why we see that with more examples given, fewer
instances remain unsolved. The same phenomenon happens with the Complex benchmark
where we see an efficient progression as the number of given examples increases.

Finding a more restrictive constraint is not the only way to get an incorrect model.
As Figure 3 c) shows, the results for the Vacation benchmark converge toward a point
where increasing the number of examples does not affect the results while still having a
non-negligible proportion (8.82%) of unsolved instances. This is caused by multiple CSPs
that are tied. A tie occurs when two distinct CSPs have the same number of solutions. In
an instance from Vacation, the constraint we want to learn restricts 2 nurses to work a
minimum of 3 days and a maximum of 4 days from Monday to Sunday. Since at least one
nurse is required to work each day and that a nurse can work a maximum of 4 days within
the week, the only way to satisfy the requirements is by having a first nurse working 4 days
and the second nurse working 3 or 4 days. It is impossible for one of the nurses to work
fewer than 3 days without violating the constraints. The problem comes when setting the
value for the minimum number of days a nurse can work during the week. Consider a second
selection of parameters where a minimum of 2 working days is required instead of 3. The
same solutions are available since this change in parameters does not add solutions. The

CP 2022

15:12 Constraint Acquisition Based on Solution Counting

same goes with a minimum of 1 or 0 working day. This situation leads to four distinct CSPs
with the same solution space. Since the objective is to find the CSP accepting the fewest
solutions, these four CSPs are equivalent and the solver returns them in an arbitrary order.
Most of the unsolved instances in the benchmark Vacation have the correct CSP in fourth
position, which would have been first if the branching heuristics broke ties differently. We did
not observe in our benchmarks situations where the solution spaces differ which let us believe
that these models are equivalent. If we pretend for a moment that the Vacation benchmark
was completed using heuristics that break ties without errors, we obtain the Figure 4.

Classification of the Instances for Various Number of Examples

0 20 40 60 80 100
1
2
3
5

10
25

100

Percentage (%)

#
E

xa
m

pl
es

a) Sequence

0 20 40 60 80 100
1
2
3
5

10
25

100

bl
an

k
#1 #2 #3 Other

b) Complex

0 20 40 60 80 100
1
2
3
5

10
25

100

bl
an

k

c) Vacation
0 20 40 60 80 100

1
2
3
5

10
25

100

bl
an

k

d) Overtime

Figure 4 Hypothetical best results for each benchmark.

Figure 4 shows that this hypothetical heuristic allows solving perfectly the Vacation
benchmark using as few as 10 examples. Improvements are also present with the other
benchmarks. This confirms that finding equivalent CSPs is the main reason why the solver
does not succeed to correctly learn some CSPs.

The unsolved instances from the Complex benchmark are mainly caused by constraints
found more restrictive than the correct one while the unsolved instances from the Vacation
benchmark are mostly caused by equivalent CSPs. The unsolved instances of the Overtime
benchmark are caused by a mix of these two reasons.

The final results show that our model can accurately learn the constraints even when the
schedules contain vacations, overtime, or constraints that interfere with the constraints one
wants to learn. Few examples are needed to obtain good results. These figures demonstrate
that CABSC can learn constraints with the right parameters in diverse situations.

6.2 Execution Time
6.2.1 Using GANAK alone
For the Complex benchmark, model counting represents on average 93.6% of the time
spent in the solver. Solution counting is a #P-difficult problem with few effective algorithms.
Even with state-of-the-art tools, computing a lower bound on the number of solutions
can take several minutes. The bound that took the longest time to compute by GANAK

C. Coulombe and C.-G. Quimper 15:13

took 648 seconds. Figure 5 represents the time taken to solve all instances, i.e. the
p368 ` 247 ` 272 ` 304q ˆ 7 instances that come from the four benchmarks that were solved
with 1, 2, 3, 5, 10, 25, and 100 examples using only GANAK as a model counter. Most of
the instances are solved within a minute, but the solving time quickly and abruptly rises.
This time limitation comes from a few main elements.

First, the size of the Meta-CSP greatly impacts the time needed for CABSC to find a
solution. This size is measured in the number of parameter variables and activation variables
since their number affects the depth of the search tree, thus the number of nodes explored
in the branch and bound. For our instances, a few hundreds nodes could be observed on
average resulting in around 30 to 60 unique calls to a model counter.

Second, the examples also impact the total runtime in two ways. With a higher number
of examples, the solver is able to filter out more values from the domain of the parameter
variables which directly decreases the number of potential calls to a model counter. Using a
single example, the instances in the Complex benchmark takes on average 385.3 seconds to
solve. With a hundred examples, the average time drops to 306.9 seconds, an improvement of
20.35%. The second way the solving time is impacted by the examples is with their length, i.e.
the number of decision variables. The more decision variables, the more Boolean variables
in the SAT model to count. For this reason, we were not able to learn the constraints of
schedules with a horizon of 56 days or more.

Lastly, all bounds do not take the same computation time. Indeed, we obtain SAT
instances with various numbers of Boolean variables and clauses. The internal structure of
these SAT instances can also vary. The bound that is the slowest to calculate uses a SAT
instance with 672 Boolean variables and 1172 clauses and takes 648 seconds to count. The
Boolean model with the greatest number of variables has 804 variables and 2052 clauses and
is counted in 0.11 seconds. This demonstrates that the counting time does not only depend
on the number of decision variables, but also the structure of the problem.

6.2.2 Using both GANAK and ApproxMC4

One method used to improve the time needed to solve a Meta-CSP is by combining a
probabilistic exact model counter with an approximate model counter. This allows some
CSP models to have their solutions counted quicker. The way ApproxMC4 was added to

0 2000 4000 6000 8000
Instances sorted by solving time

1

10

100

1000

So
lv

in
g

tim
e

(s
)

Time taken to solve each instance using GANAK alone

Complex
Overtime
Vacation
Sequence
One minute
Worst instance with GANAK alone

1

10

100

1000

Figure 5 Measures of time for all instances using GANAK alone.

CP 2022

15:14 Constraint Acquisition Based on Solution Counting

CabscSolver was to use it to prune CSP models from the search tree when the number of
solutions was reasonably far from the number of solutions of the best CSP model found so
far, as explained in Section 5.3.

This method is a lot faster than using GANAK as the only model counter as demonstrated
by the Figure 6. The worst instance with GANAK alone lasted 2350 seconds while the same
instance lasted 1099 seconds using ApproxMC4. The arithmetic average solving time of
the Complex drops from 333.0 seconds to 158.7 seconds. This represents an improvement
of 52.3% in average. The geometric average drops from 54.2 seconds to 41.0 seconds, an
improvement of 24.4%.

The results obtained using both GANAK and ApproxMC4 have a lower accuracy by a
small margin. While the accuracy of the results for the Sequence, Vacation and Overtime
benchmarks remain unchanged, Complex suffers slight changes when few examples of
solutions are given. Since the results have no significant differences to be seen on a graph,
the changes are textually reported. With a single example of solution, the percentage of
correctly learned CSP models drops from 48.99% to 48.48%. When using two examples of
solutions, the percentage of correctly learned CSP models drops from 63.97% to 63.56% and
with three examples, it drops from 69.64% to 68.83%. When using five examples of solutions
or more, adding ApproxMC4 do not change the results anymore. All the other accuracy
results are exactly the same, whether ApproxMC4 was used or not.

The lack of changes in the accuracy of Sequence, Vacation and Overtime benchmarks
is mainly caused by the fact that ApproxMC4 returns approximations that are often too
close to take into account. The solver then has to ask GANAK to finish calculating the
number of solutions of the CSP model regardless of the time needed by ApproxMC4. For the
Complex benchmark, many CSP models were approximated by ApproxMC4 a lot faster
than GANAK could and with values that allow pruning many nodes. ApproxMC4 sometimes
overestimates the count of solutions outside the wanted interval of values. Since we used
δ “ 0.10 for the model counters, ApproxMC4 therefore has a probability of at most 0.10
to return values outside the wanted interval. This can cause many of the evaluations to
accidentally prune correct CSP models, which can cause the Meta-CSP not to be properly
solved. On the opposite side, it is possible to see improvements in the CSP learned due

0 2000 4000 6000 8000
Instances sorted by solving time

1

10

100

1000

So
lv

in
g

tim
e

(s
)

Time taken to solve each instance using GANAK and ApproxMC4

Complex
Overtime
Vacation
Sequence
One minute
Worst instance with GANAK alone

1

10

100

1000

Figure 6 Measures of time for all instances using GANAK with ApproxMC4.

C. Coulombe and C.-G. Quimper 15:15

to overestimations that prune CSP models that would be learned if counted exactly. This
happened on few instances from the Complex benchmark where the correct CSP went from
being the third suggestion to the second. Since the correct CSP was not suggested as a first
choice, the accuracy of correctly learned CSP models did not improve from these.

6.3 Potential Improvements
There exist several open source model counters that are efficient at counting SAT models, but
fewer available programs to count the solutions of a CSP. Translating Sequence constraints
into pseudo-Boolean constraints and then to CNF offers no guarantee in the efficiency of the
model. Directly counting the solution of a CSP could be faster and would certainly prevent
from translating the model.

Parallelization could also speed up the exploration of the search tree. An approach like
Embarassingly Parallel Search [15] could be appropriate, but also parallelization within the
model counters would be suited as it is offered by ApproxMC3 [9, 18].

7 Conclusion

We introduced CABSC, a technique for Constraint Acquisition Based on Solution Counting.
Our approach learns the CSP that accepts all provided examples but that minimizes the size
of its solution space. This criterion has proven to return good solutions. The branch and
bound uses model counters to compute a bound on the number of solutions for a given CSP.
Experimental results show that CABSC successfully learns models and require few examples
for our benchmarks.

References
1 Hajar Ait Addi and Redouane Ezzahir. Pa-quacq: Algorithm for constraint acquisition system.

In Smart Data and Computational Intelligence, pages 249–256, 2019.
2 Hajar Ait Addi, Christian Bessiere, Redouane Ezzahir, and Nadjib Lazaar. Time-bounded

query generator for constraint acquisition. In Integration of Constraint Programming, Artificial
Intelligence, and Operations Research (CPAIOR 2018), pages 1–17, 2018.

3 Robin Arcangioli and Nadjib Lazaar. Multiple constraint acquisition. In Proceedings of
the 2015 International Conference on Constraints and Preferences for Configuration and
Recommendation and Intelligent Techniques for Web Personalization, pages 16–20, 2015.

4 Nicolas Beldiceanu and Évelyne Contejean. Introducing global constraints in chip. Mathematical
and Computer Modelling, 20(12):97–123, 1994.

5 Nicolas Beldiceanu and Helmut Simonis. A constraint seeker: Finding and ranking global
constraints from examples. In Proceedings of the 17th International Conference on Principles
and Practice of Constraint Programming (CP 2011), pages 12–26, 2011.

6 Nicolas Beldiceanu and Helmut Simonis. A model seeker: Extracting global constraint models
from positive examples. In Proceedings of the 18th International Conference on Principles and
Practice of Constraint Programming (CP 2012), pages 141–157, 2012.

7 Christian Bessiere, Clément Carbonnel, Anton Dries, Emmanuel Hebrard, George Katsirelos,
Nadjib Lazaar, Nina Narodytska, Claude-Guy Quimper, Kostas Stergiou, Dimosthenis C.
Tsouros, and Toby Walsh. Partial queries for constraint acquisition. Technical Report
abs/2003.06649, CoRR, 2020. arXiv:2003.06649.

8 Christian Bessiere, Remi Coletta, Emmanuel Hebrard, George Katsirelos, Nadjib Lazaar, Nina
Narodytska, Claude-Guy Quimper, and Toby Walsh. Constraint acquisition via partial queries.
In Francesca Rossi, editor, Proceedings of the 23rd International Joint Conference on Artificial
Intelligence (IJCAI-13), pages 475–481, 2013.

CP 2022

http://arxiv.org/abs/2003.06649

15:16 Constraint Acquisition Based on Solution Counting

9 Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. Algorithmic improvements
in approximate counting for probabilistic inference: From linear to logarithmic sat calls. In
Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI-16),
pages 3569–3576, 2016.

10 Abderrazak Daoudi, Younes Mechqrane, Christian Bessiere, Nadjib Lazaar, and El-Houssine
Bouyakhf. Constraint acquisition with recommendation queries. In Proceedings of the 25th
International Joint Conference on Artificial Intelligence (IJCAI-16), pages 720–726, 2016.

11 Niklas Eén and Niklas Sörensson. Translating pseudo-boolean constraints into sat. Journal on
Satisfiability, Boolean Modeling and Computation, 2(1-4):1–26, 2006.

12 Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J. Duck, and
Guido Tack. Minizinc: Towards a standard cp modelling language. In Proceedings of the 13th
International Conference on Principles and Practice of Constraint Programming (CP 2007),
pages 529–543, 2007.

13 Émilie Picard-Cantin, Mathieu Bouchard, Claude-Guy Quimper, and Jason Sweeney. Learning
parameters for the sequence constraint from solutions. In Proceedings of the 22nd International
Conference on Principles and Practice of Constraint Programming (CP 2016), pages 405–420,
2016.

14 Émilie Picard-Cantin, Mathieu Bouchard, Claude-Guy Quimper, and Jason Sweeney. Learning
the parameters of global constraints using branch-and-bound. In Proceedings of the 23rd
International Conference on Principles and Practice of Constraint Programming (CP 2017),
pages 512–528, 2017.

15 Jean-Charles Régin, Mohamed Rezgui, and Arnaud Malapert. Embarrassingly parallel search.
In Proceedings of the 19th International Conference on Principles and Practice of Constraint
Programming (CP 2013), pages 596–610, 2013.

16 Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of Constraint Program-
ming, volume 2 of Foundations of Artificial Intelligence. Elsevier, 2006.

17 Shubham Sharma, Subhajit Roy, Mate Soos, and Kuldeep S. Meel. Ganak: A scalable
probabilistic exact model counter. In Proceedings of the 28th International Joint Conference
on Artificial Intelligence (IJCAI-19), pages 1169–1176, 2019.

18 Mate Soos and Kuldeep S. Meel. Bird: Engineering an efficient cnf-xor sat solver and its
applications to approximate model counting. In Proceedings of the 33rd AAAI Conference on
Artificial Intelligence (AAAI-19), pages 1592–1599, 2019.

19 Dimosthenis C. Tsouros, Kostas Stergiou, and Christian Bessiere. Structure-driven multiple
constraint acquisition. In Proceedings of the 25th International Conference on Principles and
Practice of Constraint Programming (CP 2019), pages 709–725, 2019.

20 Dimosthenis C. Tsouros, Kostas Stergiou, and Panagiotis G. Sarigiannidis. Efficient methods
for constraint acquisition. In Proceedings of the 24th International Conference on Principles
and Practice of Constraint Programming (CP 2018), pages 373–388, 2018.

Computing Relaxations for the Three-Dimensional
Stable Matching Problem with Cyclic Preferences
Ágnes Cseh #

Institute of Economics, Centre for Economic and Regional Studies, Budapest, Hungary

Guillaume Escamocher #

Insight Centre for Data Analytics, School of Computer Science and Information Technology,
University College Cork, Ireland

Luis Quesada #

Insight Centre for Data Analytics, School of Computer Science and Information Technology,
University College Cork, Ireland

Abstract
Constraint programming has proven to be a successful framework for determining whether a given
instance of the three-dimensional stable matching problem with cyclic preferences (3dsm-cyc) admits
a solution. If such an instance is satisfiable, constraint models can even compute its optimal solution
for several different objective functions. On the other hand, the only existing output for unsatisfiable
3dsm-cyc instances is a simple declaration of impossibility.

In this paper, we explore four ways to adapt constraint models designed for 3dsm-cyc to the
maximum relaxation version of the problem, that is, the computation of the smallest part of an
instance whose modification leads to satisfiability. We also extend our models to support the presence
of costs on elements in the instance, and to return the relaxation with lowest total cost for each of
the four types of relaxation. Empirical results reveal that our relaxation models are efficient, as in
most cases, they show little overhead compared to the satisfaction version.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming;
Theory of computation → Design and analysis of algorithms

Keywords and phrases Three-dimensional stable matching with cyclic preferences, 3dsm-cyc,
Constraint Programming, relaxation, almost stable matching

Digital Object Identifier 10.4230/LIPIcs.CP.2022.16

Supplementary Material Software (Source Code): https://doi.org/10.5281/zenodo.6798122

Funding This publication has emanated from research conducted with the financial support of
Science Foundation Ireland under Grant numbers 12/RC/2289-P2 and 16/SP/3804, which are
co-funded under the European Regional Development Fund. Cseh was supported by OTKA grant
K128611 and the János Bolyai Research Fellowship.

Acknowledgements COST Action CA16228 European Network for Game Theory.

1 Introduction

Defined on three instead of two agent sets, the 3-dimensional stable matching problem [34] is
a natural generalisation of the well-known stable marriage problem [24]. Its most studied
variant is the 3-dimensional stable matching problem with cyclic preferences (3dsm-cyc) [42],
in which agents from the first set only have preferences over agents from the second set,
agents from the second set only have preferences over agents from the third set, and finally,
agents from the third set only have preferences over agents from the first set.

A matching is a set of triples such that each triple contains one agent from each agent
set and each agent appears in at most one triple. A weakly stable matching does not admit a
blocking triple such that all three agents would improve, while according to strong stability, a
triple already blocks if at least one of its agents improves, and the others in the triple remain
equally satisfied.

© Ágnes Cseh, Guillaume Escamocher, and Luis Quesada;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 16; pp. 16:1–16:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cseh.agnes@krtk.hu
https://orcid.org/0000-0003-4991-2599
mailto:guillaume.escamocher@insight-centre.org
https://orcid.org/0000-0001-9029-5671
mailto:luis.quesada@insight-centre.org
https://orcid.org/0000-0003-3177-655X
https://doi.org/10.4230/LIPIcs.CP.2022.16
https://doi.org/10.5281/zenodo.6798122
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Computing Relaxations for the 3DSM-CYC Problem

Constraint programming approaches allow one to identify instances that do not admit a
weakly or strongly stable matching – these will be in the focus of our investigation. For such
an instance, how to construct a matching that is blocked by only a few triples? Alternatively,
which matching minimises the number of justifiably disappointed agents who appear in
a blocking triple? A somewhat more sophisticated approach is to assume that a central
authority is able to compensate blocking triples or even single agents appearing in blocking
triples. If such a compensation has been allocated, then the triple or agent withdraws their
claim to form a more advantageous coalition. How to find a matching with the lowest
compensation needed to eliminate all blocking triples?

In order to facilitate a general framework, we associate a cost with each agent. The goal
is then to minimise the total cost of triples or agents who block the matching, or have to be
compensated in order to withdraw from blocking.

1.1 Literature review
We first restrict our attention to related work in the 2-dimensional and non-bipartite stable
matching settings. We mention two already established relaxations of stability and also
elaborate on problem variants with costs. Then we turn to the 3-dimensional setting, review
related work on 3dsm-cyc, and finally discuss constraint models.

1.1.1 Relaxing stability
Various stable matching problems need not admit a stable solution. The relaxation of stability
by definition necessarily involves the occurrence of blocking pairs. In the literature, two main
relaxations have been defined.

The number of blocking pairs is a characteristic property of every matching. A natural goal
is to find a matching with the lowest number of blocking pairs; such a matching is called almost
stable. This approach has a broad literature: almost stable matchings have been investigated
in bipartite [33, 29, 6, 27] and non-bipartite stable matching instances [1, 5, 11, 14], but not
in the 3-dimensional setting yet.

Agents who appear in blocking pairs in a solution are called blocking agents. Besides
minimizing the number of blocking pairs, another intuitive objective is to minimise the
number of blocking agents [49]. The complexity of minimizing the number of blocking agents
in a non-bipartite stable matching instance is an open problem that was posed in the seminal
book of Manlove [38]. Similar, but slightly more complicated instability measures can be
found in the paper of Eriksson and Häggström [19].

1.1.2 Costs and preference negotiation in stable matching problems
Arguably the most natural extension of various matching problems is to consider graphs
with edge or vertex costs. For bipartite instances with edge costs, finding a minimum-cost
stable matching can be done in polynomial time [31, 28, 21, 22]. The same problem for
non-bipartite graphs is NP-hard, but 2-approximable under certain monotonicity constraints
using LP methods [53, 54].

Vertex costs play a role in stable matching problems if the agents are part of some type
of instance manipulation. In their theoretical study, Boehmer et al. [9] allow agents to
reshuffle their preference list. College admission is possibly the most widespread application
of stability. Surveys report that bribes have been performed in college admission systems
in China, Bulgaria, Moldova, and Serbia [30, 37]. However, preference list manipulation,

Á. Cseh, G. Escamocher, and L. Quesada 16:3

potentially done by assigning money to the affected agents, does not imply an illegal action.
The internal assignment process of humanitarian organisations [52, 3, 48] aims at stability in
the first place, but it also routinely features salary premium negotiations for staff members
sent to a less desirable location.

1.1.3 3DSM-CYC

Several applications areas have been modeled by extended 3dsm-cyc instances. Cui and
Jia [16] modeled three-sided networking services, such as frameworks connecting users, data
sources, and servers. In their setting, users have identical preferences over data sources,
data sources have preferences over servers based on the transferred data, and servers have
preferences over users. Building upon this work, Panchal and Sharma [44] provided a
distributed algorithm that finds a stable solution. Raveendran et al. [47] tested resource
allocation in Network Function Virtualisation. They demonstrated the superior performance
of the proposed cyclic stable matching framework in terms of data rates and user satisfaction,
compared to a centralised random allocation approach.

A recent real application was described by Bloch et al. [8] who analysed the Paris public
housing market. In their work, the first agent set consists of various housing institutions
such as the Ministry of Housing, the second agent set is the set of households looking for an
apartment, and finally, the third agent set contains the social housing apartments that are to
be assigned to these households. Institutions have preferences over household-apartment pairs,
and households rank apartments in their order of preference. Cseh and Peters [15] studied a
restricted variant where the institutions have preferences directly over the households, no
matter which apartment they are matched to.

Maximum relaxations in these applications correspond to the smallest number or cost of
users, data sources, servers, households, or housing agencies, who need to be compensated
for being part of a blocking triple.

As for the complecity of 3dsm-cyc, Biró and McDermid [7] showed that deciding
whether a weakly stable matching exists is NP-complete if preference lists are allowed to
be incomplete, and that the same complexity result holds for strong stability even with
complete lists. However, the combination of complete lists and weak stability proved to
be extremely challenging to solve. After a series of papers [10, 20, 45] proving that small
3dsm-cyc instances always admit a weakly stable matching, Lam and Plaxton [36] recently
showed NP-hardness for instances with at least 90 agents per agent set – this is also the size
of the smallest known no-instance.

1.1.4 CP models for 3DSM-CYC

Several constraint models have been developed for the bipartite stable matching problem and
its many-to-one variant [26, 56, 55, 39, 43, 50]. We build upon the recent work of Cseh et
al. [13], who introduced five constraint models for 3dsm-cyc. Besides capturing both weak
and strong stability, they translated three fairness notions into 3-dimensional matchings.

1.2 Our contribution
In this paper we study four types of relaxation to 3dsm-cyc, based on two established and
two new relaxation principles. For each of these types we propose CP approaches that are
built on top of the best two approaches from Cseh et al. [13]. We carry out a comprehensive
empirical evaluation on a generated data set that includes both satisfiable and unsatisfiable

CP 2022

16:4 Computing Relaxations for the 3DSM-CYC Problem

instances. We analyse the behaviour of our constraint models based on different preference
structures, cost functions, and their scalability. The results of the evaluation give insight
into the convenience of the introduced types of relaxation, in particular in those cases where
the four methods agree on the optimal relaxation.

2 Notation and problem definitions

In Section 2.1 we formally define input and output formats for 3dsm-cyc, using previous
notations [13]. The four ways of relaxing stability are then discussed in Section 2.2. Finally,
matching costs are introduced in Section 2.3.

2.1 Problem definition

Input and output. Formally, a 3dsm-cyc instance is defined over three disjoint sets of
agents of size n, denoted by A = {a1, . . . , an}, B = {b1, . . . , bn}, and C = {c1, . . . , cn}. A
matching M corresponds to a disjoint set of triples, where each triple, denoted by (ai, bj , ck),
contains exactly one agent from each agent set. Each agent is equipped with her own
preferences in the input. The cyclic property of the preferences means the following: each
agent in A has a strict and complete preference list over the agents in B, each agent in B has
a strict and complete preference list over the agents in C, and finally, each agent in C has a
strict and complete preference list over the agents in A. These preferences are captured by
the rank function, where rankai(bj) is the position of agent bj in the preference list of ai,
from 1 if bj is ai’s most preferred agent to n if bj is ai’s least preferred agent.

Preferences over triples. The preference relation of an agent on possible triples is derived
naturally from the preference list of this agent. Agent ai is indifferent between triples
(ai, bj , ck1) and (ai, bj , ck2), since she only has preferences over the agents in B and the
same agent bj appears in both triples. However, when comparing triples (ai, bj1 , ck1) and
(ai, bj2 , ck2), where bj1 ̸= bj2 , ai prefers the first triple if rankai

(bj1) < rankai
(bj2), and she

prefers the second triple otherwise. The preference relation is defined analogously for agents
in B and C as well.

Weak and strong stability. A triple t = (ai, bj , ck) is said to be a strongly blocking triple
to matching M if each of ai, bj , and ck prefer t to their respective triples in M . Practically,
this means that ai, bj , and ck could abandon their triples to form triple t on their own, and
each of them would be strictly better off in t than in M . If a matching M does not admit
any strongly blocking triple, then M is called a weakly stable matching. Similarly, a triple
t = (ai, bj , ck) is called a weakly blocking triple if at least two agents in the triple prefer t to
their triple in M , while the third agent does not prefer her triple in M to t. This means that
at least two agents in the triple can improve their situation by switching to t, while the third
agent does not mind the change. A matching that does not admit any weakly blocking triple
is referred to as strongly stable. By definition, strongly stable matchings are also weakly
stable, but not the other way round. Observe that it is impossible to construct a triple t that
keeps exactly two agents of a triple equally satisfied, while making the third agent happier,
since the earlier two agents need to keep their partners to reach this, which then defines the
triple as one already in M .

Á. Cseh, G. Escamocher, and L. Quesada 16:5

2.2 Relaxing stability
We examine four different ways to relax stability in 3dsm-cyc. Two of them are standard in
the stable matching literature and are based on minimising the number of blocking elements,
see Section 2.2.1. The other two relaxation notions are introduced in Section 2.2.2, and they
build upon elements that are prohibited to be part of a blocking triple. We remark that all
four relaxations can be translated to other stable matching problems as well.

2.2.1 Almost stable matchings
Let sbt(M) denote the set of strongly blocking triples, and wbt(M) denote the set of weakly
blocking triples to a matching M . Since strongly blocking triples are also weakly blocking,
sbt(M) ⊆ wbt(M).

▶ Definition 1. A strong triple-almost stable (TAS) matching is a matching that minimises
the function |wbt(M)| over all matchings M . Analogously, a weak TAS matching is a
matching that minimises the function |sbt(M)| over all matchings M .

If the instance admits a strongly stable matching, then it minimises both functions, but
otherwise, there is no connection between the sets of weak TAS and strong TAS matchings.

The agents involved in a strongly blocking triple are called strongly blocking agents,
and form the set sba(M). Analogously, agents involved in any weakly blocking triple are
called weakly blocking agents, and form the set wba(M). Notice that sba(M) ⊆ wba(M). A
natural objective is to find a matching that minimises the functions sba(M) or wba(M).

▶ Definition 2. A matching that minimises sba(M) is called weak agent-almost stable
(AAS), while a matching that minimises wba(M) is called strong AAS.

Notice that weak AAS and strong AAS matchings are not identical to weak TAS and
strong TAS matchings. As an example, consider two matchings M1 and M2 such that
wbt(M1) = {(a1, b1, c1), (a1, b1, c2), (a1, b1, c3)} and wbt(M2) = {(a1, b1, c1), (a2, b2, c2)}. We
have |wbt(M1)| = 3 and |wbt(M2)| = 2, so M2 is a better strong TAS candidate than M1.
However |wba(M1)| = |{a1, b1, c1, c2, c3}| = 5 and |wba(M2)| = |{a1, a2, b1, b2, c1, c2}| = 6,
so M1 is a better strong AAS candidate than M2.

2.2.2 Accommodating elements
Instead of minimising the number of blocking elements, we can eliminate them altogether by
setting some agents to be accommodating. Accommodating agents never report that they are
part of a blocking triple, which eliminates all blocking triples containing at least one of those
agents. In a realistic scenario, accommodating agents are allocated compensation for their
poor match.

▶ Definition 3. A weak minimally-accommodating stable (MAS) matching is a matching
that minimises the number of accommodating agents needed to eliminate all of its strongly
blocking triples. Analogously, a strong MAS matching is a matching that minimises the
number of accommodating agents needed to eliminate all of its weakly blocking triples.

Notice that MAS matchings are distinct from AAS matchings. As an example, consider
the matchings M2 from before, where wbt(M2) = {(a1, b1, c1), (a2, b2, c2)}, and the matching
M3 such that wbt(M3) = {(a1, b1, c1), (a1, b2, c2), (a1, b3, c3)}. We have |wba(M2)| = 6 and
|wba(M3)| = 7, so M2 is a better strong AAS candidate than M3. However, we need both an

CP 2022

16:6 Computing Relaxations for the 3DSM-CYC Problem

Table 1 Different ways of interpreting relaxation.

single agent more than one agent
minimise the number agent-almost stable triple-almost stable
of blocking elements (AAS) (TAS)
minimise the number minimally-accommodating stable minimally-pair-accommodating stable
of accommodating elements (MAS) (MPAS)

agent from {a1, b1, c1} and an agent from {a2, b2, c2} to be accommodating to eliminate the
blocking triples in wbt(M2), while setting a single agent, a1, to be accommodating eliminates
all blocking triples in wbt(M3). Therefore M3 is a better strong MAS candidate than M2.

We can extend the definition of accommodating to groups of agents. Agents x and y

from different agent sets form an accommodating pair if they are prevented from appearing
together in a blocking triple. In 3dsm-cyc, exactly one of the two agents has preferences
over the other agent, without loss of generality let us assume that it is x. Setting x and y to
be an accommodating pair expresses that x receives compensation for not being matched
to y specifically. However, x can appear in a blocking triple with another agent from the
set of y, and y also can block with any other agent than x. This compensation is thus less
powerful than the previous one.

▶ Definition 4. A weak minimally-pair-accommodating stable (MPAS) matching is a
matching that minimises the number of accommodating pairs needed to eliminate all of its
strongly blocking triples. Analogously, a strong MPAS matching is a matching that minimises
the number of accommodating pairs needed to eliminate all of its weakly blocking triples.

The sets of MPAS and MAS matchings are incomparable. As an example, consider the
matching M3 from before, where wbt(M3) = {(a1, b1, c1), (a1, b2, c2), (a1, b3, c3)}, and the
matching M4 such that wbt(M4) = (a1, b2, c3), (a1, b2, c2), (a2, b3, c1). Only the agent a1
needs to be accommodating to eliminate all blocking triples in wbt(M3), but no single agent
appears in all blocking triples of wbt(M4), so M3 is a better strong MAS candidate than M4.
On the other hand, we can eliminate all blocking triples in wbt(M4) by setting only two
pairs to be accommodating, while we need three to do the same for wbt(M3). Therefore M4
is a better strong MPAS candidate than M3.

Further extending MPAS to groups of three agents would mean minimising the number
of accommodating triples, which is equivalent to TAS.

Table 1 summarises the four different notions of relaxation that we have explored. We
remark that while AAS and TAS require that the relaxation set covers every blocking element,
for MAS and MPAS, the relaxation set must hit every blocking element.

2.3 Matching costs
When computing a minimal set of elements for relaxation, not all agents might be given
equal importance. The central authority might allocate a higher compensation to prioritised
blocking pairs or to popular agents. For a given relaxation version, the cost of a matching is
the sum of the costs of the elements in the minimal set of this particular relaxation. For a
given matching M and arbitrary costs on agents and triples, we thus have for strong stability:

CostAAS(M) =
∑

a∈wba(M)

Cost(a)

CostTAS(M) =
∑

t∈wbt(M)

Cost(t)

Á. Cseh, G. Escamocher, and L. Quesada 16:7

The definitions for weak stability can be obtained by replacing wbt by sbt and wba by sba.
For CostMAS and CostMPAS, we need a further definition.

▶ Definition 5. For a matching M , set S of agents is agent-convenient if setting all agents
in S to accommodating implies that M is stable. Analogously, set S of pairs of agents is
pair-convenient for M if setting all pairs in S to accommodating implies the stability of M .

This definition is the same for both types of stability. We can now write the remaining
matching cost definitions for arbitrary agent and pair costs as follows.

CostMAS(M) = min
S is agent-convenient for M

∑
a∈S

Cost(a)

CostMPAS(M) = min
S is pair-convenient for M

∑
p∈S

Cost(p)

Notice that in all four types of relaxation, not specifying element costs is equivalent to having
them all set to 1. We will therefore refer to a relaxation as an arbitrary-cost relaxation when
elements have an explicit cost, and as a unit-cost relaxation when they do not.

3 Methodology

In this section, we explain how we modified the two best performing models for 3dsm-cyc,
called div-ranks and hs [13], to enable them to deal with soft constraints.

3.1 Soft DIV-ranks model
The div-ranks model for 3dsm-cyc with only hard constraints consists of 3n variables
X = {x1, . . . , xn}, Y = {y1, . . . , yn}, and Z = {z1, . . . , zn}, where the domain of each
variable v is set as D(v) = {1, . . . , n}. Assigning xi = j (respectively yi = j, or zi = j)
corresponds to matching ai (respectively bi, or ci) to her jth preferred agent. The constraints
used to find a stable matching M , if any exists, are defined in [13] in the following manner.

(matching) For all 1 ≤ i, j, k ≤ n, the constraint xi = rankai(bj) ∧ yj = rankbj (ck) ⇒
zk = rankck

(ai) is added. This is to ensure that each solution corresponds to a feasible,
if not stable, matching. Since domain values correspond to positions in preference lists
and not to agents, it is possible for two variables from the same agent set to be assigned
the same value. This is why all-different constraints are not used for this model.
(stability) Under weak stability, for all 1 ≤ i, j, k ≤ n, the constraint xi ≤ rankai(bj)∨yj ≤
rankbj

(ck) ∨ zk ≤ rankck
(ai) is added. This is to ensure that the triple (ai, bj , ck) is not

strongly blocking. When solving the problem under strong stability, the inequalities
are strict but the following part is added to each disjunction: ∨(xi = rankai

(bj) ∧ yj =
rankbj (ck) ∧ zk = rankck

(ai)).
(redundancy) For all 1 ≤ i, j, k ≤ n, the constraint yj = rankbj

(ck) ∧ zk = rankck
(ai) ⇒

xk = rankai
(bj) is added.

(redundancy) For all 1 ≤ i, j, k ≤ n, the constraint zk = rankck
(ai) ∧ xi = rankai(bj) ⇒

yj = rankbj
(ck) is added.

For the relaxation version of 3dsm-cyc, we add to the div-ranks model an integer variable
crel corresponding to the cost of the relaxation, as well as additional Boolean variables whose
exact number depends on the type of relaxation.

AAS and MAS: a Boolean variable relAi for each of the n agents ai in A, a Boolean
variable relBj for each of the n agents bj in B, and a Boolean variable relCk for each of
the n agents ck in C, which amounts to 3n additional variables.

CP 2022

16:8 Computing Relaxations for the 3DSM-CYC Problem

TAS: a Boolean variable reli,j,k for each of the n3 potential blocking triples (ai, bj , ck).
MPAS: a Boolean variable relABi,j for each of the n2 agent pairs ai, bj from A × B, a
Boolean variable relBCj,k for each of the n2 agent pairs bj , ck from B × C, and a Boolean
variable relCAk,i for each of the n2 agent pairs ck, ai from C × A, which amounts to 3n2

additional variables.

For all four types, a variable set to 1 means that its corresponding element is part of
the correction set. Determining from the composition of the correction set whether a given
triple is allowed to be blocking is expressed in the model by extending the disjunction of the
stability constraint corresponding to this triple. The part added depends on the type of the
relaxation but not on the kind of stability, so for a given type of relaxation the same part
will be added to both weak and strong stability constraints.

For AAS, we add ∨(relAi ∧relBj ∧relCk) to the constraint that checks whether the triple
(ai, bj , ck) is blocking. If all three agents are in the correction set, then the constraint is
satisfied, and whether this triple is blocking has no effect on the stability of the instance.
For TAS, we add ∨reli,j,k to the stability constraint. This immediately satisfies the
constraint when the triple is in the correction set.
For MAS, we add ∨(relAi ∨ relBj ∨ relCk). Because of the distinction between blocking
and accommodating agents, for MAS we only need one agent to be in the correction set
for the triple to be disregarded, while for AAS we needed all three agents.
For MPAS, we add ∨(relABi,j ∨ relBCj,k ∨ relCAk,i). The constraint is satisfied when
any two agents in the triple are present as an accommodating pair in the correction set.

Because relaxation has been added to the stability constraints in a disjunctive way, a
trivial solution for the instance can be obtained by assigning 1 to all Boolean variables.
Therefore we add a final constraint for the objective function which sums the costs of the
elements in the correction set. Minimising this value results in a correction set of minimum
cardinality (for unit-cost relaxation), or in a solution of mininum cost (for arbitrary-cost
relaxation). Both cases represent a maximum relaxation for the instance. For the unit-cost
relaxation, all cost factors in the objective function are replaced by 1.

For AAS and MAS:
crel =

∑n
i=1(relAi × Cost(ai)) +

∑n
j=1(relBj × Cost(bj)) +

∑n
k=1(relCk × Cost(ck)).

For TAS: crel =
∑n

i=1
∑n

j=1
∑n

k=1(reli,j,k × (Cost(ai, bj , ck))).
For MPAS:
crel =

∑n
i=1

∑n
j=1(relABi,j × (Cost(ai, bj))) +

∑n
j=1

∑n
k=1(relBCj,k × (Cost(bj , ck)))

+
∑n

k=1
∑n

i=1(relCAk,i × (Cost(ck, ai))).

3.2 Soft HS model
We extend the hs model from Cseh et al. [13] by relaxing the constraints that enforce the
stability of the matching. Following Cseh et al. [13], in the soft hs model, we assume that T

is the set of all possible triples {(a1, b1, c1), (a1, b1, c2), . . . , (an, bn, cn)}, where without loss
of generality, the triples in T are ordered, that is, ti ∈ T refers to the ith triple of T . We also
borrow their definition of non-blocking triples, that is, given a triple t ∈ T , we denote by
BT (t) all the triples in T that prevent t from becoming a blocking triple given the preferences.
The variables and constraints of the model are as follows:

Á. Cseh, G. Escamocher, and L. Quesada 16:9

Let M be a set variable whose upper bound is T .
Let S be a set variable whose upper bound is as follows.

For AAS/MAS: A ∪ B ∪ C

For TAS: T

For MPAS: A × B ∪ B × C ∪ C × A

Let c be an integer variable corresponding to the cost of the relaxation.
(matching) Ensure that each agent from each set is matched by having:

∀a ∈ A :
∑

ti∈T :a∈ti
(ti ∈ M) = 1;

∀b ∈ B :
∑

ti∈T :b∈ti
(ti ∈ M) = 1;

∀c ∈ C :
∑

ti∈T :c∈ti
(ti ∈ M) = 1.

(stability) In the original version, each stable matching is a hitting set of the non-blocking
triples (i.e., ∀tj ∈ T : M ∩ {i : ti ∈ BT (tj)} ̸= ∅). We relax this definition as follows.

For AAS: ∀tj ∈ T : ∃⟨a, b, c⟩ ∈ BT (tj) : ⟨a, b, c⟩ ∈ M ∨ {a, b, c} ⊆ S
For TAS: ∀tj ∈ T : ∃ti ∈ BT (tj) : ti ∈ M ∨ ti ∈ S
For MAS: ∀tj ∈ T : ∃⟨a, b, c⟩ ∈ BT (tj) : ⟨a, b, c⟩ ∈ M ∨ {a, b, c} ∩ S ̸= ∅
For MPAS: ∀tj ∈ T : ∃⟨a, b, c⟩ ∈ BT (tj) : ⟨a, b, c⟩ ∈ M ∨ {⟨a, b⟩, ⟨b, c⟩, ⟨c, a⟩} ∩ S ̸= ∅

(cost of relaxation) The cost variable is constrained as follows:
For AAS/MAS: c =

∑
x∈S Cost(x)

For TAS: c =
∑

⟨a,b,c⟩∈S Cost(a, b, c)
For MPAS: c =

∑
⟨x,y⟩∈S Cost(x, y)

The type of stability is addressed in the computation of the BT sets – the model as such
is not concerned with this aspect. In hs, matching M is constrained to be a set of triples
representing M as defined in Section 2.1, so the cost of the relaxation follows the definitions
in Section 2.3. In the actual implementation, M is represented in terms of an array of n3

Boolean variables, where each variable refers to the inclusion/exclusion of the corresponding
triple in the mapping. Similarly, S is also represented as an array of Boolean variables. The
size of this array is either 3n, 3n2 or n3, depending on the type of relaxation.

4 Experimental results

All experiments were performed on machines with Intel(R) Xeon(R) CPU with 2.40GHz
running on Ubuntu 18.04. Tests for the div-ranks model were processed by MiniZinc
2.5.5 [41] before being given to the two constraint solvers Chuffed 0.10.4. [12], which is based
on lazy-clause generation, and Gecode 6.3.0 [25]. The hs model on the other hand has been
directly encoded using Gecode 6.2.0.

4.1 Dataset
4.1.1 Preference lists
The instances used in our experiments belong to three different classes: Random, ML1swap,
and ML2swaps. In the latter two, the preferences are based on master lists. Master list
instances are instances where the preference lists of all agents in the same agent set are
identical. Master lists provide a natural way to represent the fact that in practice agent
preferences are often not independent. Examples of their real-life applications occur in
resident matching programs [4], dormitory room assignments [46], cooperative download
applications such as BitTorrent [2], and 3-sided networking services [16].

The precise method to create an instance from each class is as follows:
Random: generated randomly from uniform distribution.
ML1swap: all agents in the same agent set follow the same randomly chosen master list.
Then in each preference list, the positions of two randomly chosen agents are swapped.

CP 2022

16:10 Computing Relaxations for the 3DSM-CYC Problem

10 1

100

101

102

103

to
ta

l r
un

tim
e

(s
)

Random_Unsat, none ML1swap_Unsat, none ML2swaps_Unsat, none

10 1

100

101

102

103

to
ta

l r
un

tim
e

(s
)

Random_Unsat, ucAAS ML1swap_Unsat, ucAAS ML2swaps_Unsat, ucAAS

10 1

100

101

102

103

to
ta

l r
un

tim
e

(s
)

Random_Unsat, ucTAS ML1swap_Unsat, ucTAS ML2swaps_Unsat, ucTAS

10 1

100

101

102

103

to
ta

l r
un

tim
e

(s
)

Random_Unsat, ucMAS ML1swap_Unsat, ucMAS ML2swaps_Unsat, ucMAS

5 7 9 11
size (n)

10 1

100

101

102

103

to
ta

l r
un

tim
e

(s
)

Random_Unsat, ucMPAS

5 7 9 11
size (n)

ML1swap_Unsat, ucMPAS

5 7 9 11
size (n)

ML2swaps_Unsat, ucMPAS

DIV-ranks-bu-gecode DIV-ranks-td-gecode hs-bu-gecode hs-td-gecode

Figure 1 A comparison of total time spent by all Gecode models on the unsatisfiable unit-cost
instances.

Á. Cseh, G. Escamocher, and L. Quesada 16:11

10 1

100

101

102

103

to
ta

l r
un

tim
e

(s
)

Random_Unsat, pcAAS ML1swap_Unsat, pcAAS ML2swaps_Unsat, pcAAS

10 1

100

101

102

103

to
ta

l r
un

tim
e

(s
)

Random_Unsat, pcTAS ML1swap_Unsat, pcTAS ML2swaps_Unsat, pcTAS

10 1

100

101

102

103

to
ta

l r
un

tim
e

(s
)

Random_Unsat, pcMAS ML1swap_Unsat, pcMAS ML2swaps_Unsat, pcMAS

5 7 9 11
size (n)

10 1

100

101

102

103

to
ta

l r
un

tim
e

(s
)

Random_Unsat, pcMPAS

5 7 9 11
size (n)

ML1swap_Unsat, pcMPAS

5 7 9 11
size (n)

ML2swaps_Unsat, pcMPAS

DIV-ranks-bu-gecode DIV-ranks-td-gecode hs-bu-gecode hs-td-gecode

Figure 2 A comparison of total time spent by all Gecode models on the unsatisfiable popularity-
cost instances.

ML2swaps: each agent set has a randomly chosen master list that all agents in the set
follow. First, two agents are randomly chosen from each agent’s preference list, and their
positions are swapped. Then, two more agents from each list are randomly chosen such
that the new agents were not involved in the first swap, and their positions are swapped.

For each instance class and each odd size n ∈ {5, 7, . . . , 19}, we generated instances with
n agents in each agent set, solved the instances under strong stability, and kept the first
50 that were satisfiable and the first 50 that were unsatisfiable. This gave us a total of 300
instances for each size, 150 with a strongly stable matching and 150 without. We had to
restrict ourselves to strong stability for unsatisfiability, because the smallest known instance
without a weakly stable matching is of size 90 [36], so it would not have been feasible to
obtain a representative sample of reasonably-sized unsatisfiable instances for weak stability.

CP 2022

16:12 Computing Relaxations for the 3DSM-CYC Problem

100

101

102

to
ta

l r
un

tim
e

(s
)

Random_Unsat, none ML1swap_Unsat, none ML2swaps_Unsat, none

100

101

102

to
ta

l r
un

tim
e

(s
)

Random_Unsat, ucAAS ML1swap_Unsat, ucAAS ML2swaps_Unsat, ucAAS

100

101

102

to
ta

l r
un

tim
e

(s
)

Random_Unsat, ucTAS ML1swap_Unsat, ucTAS ML2swaps_Unsat, ucTAS

100

101

102

to
ta

l r
un

tim
e

(s
)

Random_Unsat, ucMAS ML1swap_Unsat, ucMAS ML2swaps_Unsat, ucMAS

5 7 9 11 13 15 17 19
size (n)

100

101

102

to
ta

l r
un

tim
e

(s
)

Random_Unsat, ucMPAS

5 7 9 11 13 15 17 19
size (n)

ML1swap_Unsat, ucMPAS

5 7 9 11 13 15 17 19
size (n)

ML2swaps_Unsat, ucMPAS

DIV-ranks-bu-chuffed DIV-ranks-td-chuffed

Figure 3 A comparison of total time spent by all Chuffed models on the unsatisfiable unit-cost
instances.

Á. Cseh, G. Escamocher, and L. Quesada 16:13

100

101

102

to
ta

l r
un

tim
e

(s
)

Random_Unsat, pcAAS ML1swap_Unsat, pcAAS ML2swaps_Unsat, pcAAS

100

101

102

to
ta

l r
un

tim
e

(s
)

Random_Unsat, pcTAS ML1swap_Unsat, pcTAS ML2swaps_Unsat, pcTAS

100

101

102

to
ta

l r
un

tim
e

(s
)

Random_Unsat, pcMAS ML1swap_Unsat, pcMAS ML2swaps_Unsat, pcMAS

5 7 9 11 13 15 17 19
size (n)

100

101

102

to
ta

l r
un

tim
e

(s
)

Random_Unsat, pcMPAS

5 7 9 11 13 15 17 19
size (n)

ML1swap_Unsat, pcMPAS

5 7 9 11 13 15 17 19
size (n)

ML2swaps_Unsat, pcMPAS

DIV-ranks-bu-chuffed DIV-ranks-td-chuffed

Figure 4 A comparison of total time spent by all Chuffed models on the unsatisfiable popularity-
cost instances.

CP 2022

16:14 Computing Relaxations for the 3DSM-CYC Problem

The three types of instances that we studied have been previously used to test the
div-ranks and hs models, along with a fourth class named ML_oneset [13]. Since ML_oneset
instances always admit a strongly stable matching [13], we did not include this additional
instance class in our experiments.

4.1.2 Cost formulas
For each configuration of the model, solver, and relaxation type, each instance was set up with
two definitions of costs on its elements. The first one is a unit-cost relaxation, corresponding
to a cost of 1 for every agent, pair, and triple in the instance. For the second one, that we
call popularity-cost relaxation, the cost of an agent is a measure of how well she is ranked in
other agents’ preference lists. Formally the cost of an agent b ∈ B is defined as:

Cost(b) =
n∑

i=1
n − rankai

(b).

The costs of agents from A and C are defined analogously. The intent is to penalise
putting popular agents in the correction set, by giving a higher cost to better ranked agents.
The cost of a pair (respectively triple) of agents is the sum of the individual costs of the two
(respectively three) agents composing it.

4.2 Scalability
In this section we evaluate the performance of div-ranks and hs by considering how well
they scale with respect to the number of agents in the set. We have decided to classify the
experiments into eight groups depending on: (a) the satisfiability of the instance, (b) the
solver used and (c) whether the soft constraints have unit cost or not.

The focus of this paper is on dealing with unsatisfiable instances. However, since in
practice we cannot always know in advance whether an instance admits a solution, we found
it important to check that the satisfiable cases are solved efficiently too. As the instances are
satisfiable, the cost of the optimal relaxation is 0 for each one of them, regardless of the type
of relaxation. While we could not include the results because of lack of space, all approaches
deal with satisfiable instances without major issue.

In Figures 1, 2 3, and 4 we present the results for the unsatisfiable instances. The
approaches evaluated are classified in terms of: (a) the model used (div-ranks vs hs), (b)
the solver used (Gecode vs Chuffed) and (c) the search strategy used (Bottom Up (bu) vs
Top Down (td)). Bottom Up consists of branching on the cost variable first by selecting
the smallest value in the domain first. Effectively this means that we follow a succession of
unsatisfiable checks and end with a satisfiable check, which is bound to lead to an optimal
solution since we have already proved that there is no solution with a smaller cost. With
the Top Down strategy we do the opposite: we find a solution and keep on restricting the
next one to be better until that is no longer possible. Effectively this means that we follow a
succession of satisfiable checks and end with an unsatisfiable check. The unsatisfiable check
ensures that the last satisfiable check corresponds to an optimal solution [18].

Our first observation is that the Chuffed approaches clearly outperform the Gecode
approaches. As demonstrated by Figures 3 and 4, all Chuffed approaches solve the vast
majority of instances of size 15 in less than 10 seconds, while the Gecode approaches struggle
with instances of size 11 in quite a few cases. The Chuffed approaches also result in much
fewer failures – in some cases the gap is of more than two orders of magnitude.

Á. Cseh, G. Escamocher, and L. Quesada 16:15

We consider 9 relaxation types. The first one (none) corresponds to the case where all
soft constraints are considered hard. This category was included to gauge the amount of
overhead added by modeling each type of relaxation. The other 8 categories correspond
to the unit-cost and popularity-cost versions of the four relaxation options introduced in
Section 2.2.

In general we observe that our approaches deal much better with MAS and MPAS
than with TAS and AAS. In instances where all relaxation types lead to the same optimal
relaxation, we can save a considerable amount of time by computing one of our two relaxation
types. When it comes to the type of cost, this does not seem to deteriorate much the
performance of the Chuffed approaches. In the Gecode approaches we actually observe an
improvement in performance when we consider our popularity-cost instances in most of the
cases. The situation might be different for instances with completely arbitrary costs.

The Bottom Up vs Top Down comparison is another point where we observe differences
between the Chuffed and the Gecode approaches. In the Chuffed approaches, even though
in most of the cases we did not observe major differences, in some cases the Top Down
exploration led us to visibly better results. The situation in Gecode is quite the opposite.
The very same model (div-ranks) presented very different behaviours depending on whether
Top Down or Bottom Up was used. The Bottom Up tests were completed for all the (small)
sizes. However, we had to discard some of the Top Down tests since it was already known
that they were going to time out. It is important to remark, though, that the Bottom Up
strategy did not always lead to improvements. The improvements were mostly observed when
dealing with AAS/TAS instances. Similarly, we observed differences in the performance of
hs with respect to the Bottom Up vs Top Down comparison. The Bottom Up strategy led
us to better results when dealing with the popularity-cost instances in most of the cases.

We test the scalability of the different relaxation versions on a few large instances in
Appendix A.

5 Conclusion and future work

We extended 3dsm-cyc constraint models to four relaxation versions of the problem, two
based on already established two-dimensional relaxation notions, and two that we introduced.
For each of these four relaxations, we tested our models on instances of various sizes and
types, for two different cost functions, and using both a bottom-up and a top-down approach.
Our results show that our models are able to efficiently compute a maximum relaxation for
unsatisfiable 3dsm-cyc instances.

While our relaxation models performed well for the two cost functions that we studied,
it would be interesting to know in what ways their behavior would be affected when given
different formulas for the costs of the elements in the instance. For example, one could set the
cost of a triple as the difference between the highest and lowest costs of its agents, mirroring
the definition of sex-equal [32, 55, 40, 51] optimisation for satisfiable instances. It would be
also interesting to find out how the presence of mandatory agents/pairs/triples affect the
performance since these constraints are highly motivated in the literature [17, 23, 35].

Another possible avenue of research would be to explore the relations between minimum
correction sets of different relaxation types. If for a particular class of instances the maximum
relaxations are identical for different types, then one could use our findings that the two new
relaxation versions lead to better performance, and search for minimally-accommodating
stable matchings instead of almost stable matchings to get the same result faster.

CP 2022

16:16 Computing Relaxations for the 3DSM-CYC Problem

References
1 David J. Abraham, Péter Biró, and David F. Manlove. “Almost stable” matchings in the

roommates problem. In Thomas Erlebach and Giuseppe Persiano, editors, Proceedings of
WAOA ’05: the 3rd Workshop on Approximation and Online Algorithms, volume 3879 of
Lecture Notes in Computer Science, pages 1–14. Springer, 2006.

2 David J Abraham, Ariel Levavi, David F Manlove, and Gregg O’Malley. The stable roommates
problem with globally-ranked pairs. Internet Mathematics, 5:493–515, 2008.

3 Péter Biró. Applications of matching models under preferences. Trends in Computational
Social Choice, page 345, 2017.

4 Péter Biró, Robert W Irving, and Ildikó Schlotter. Stable matching with couples: An empirical
study. Journal of Experimental Algorithmics (JEA), 16:Article no. 1.2, 2011.

5 Péter Biró, David F. Manlove, and Eric J. McDermid. “Almost stable” matchings in the
roommates problem with bounded preference lists. Theoretical Computer Science, 432:10–20,
2012.

6 Péter Biró, David F. Manlove, and Shubham Mittal. Size versus stability in the marriage
problem. Theoretical Computer Science, 411:1828–1841, 2010.

7 Péter Biró and Eric McDermid. Three-sided stable matchings with cyclic preferences. Al-
gorithmica, 58(1):5–18, 2010. doi:10.1007/s00453-009-9315-2.

8 Francis Bloch, David Cantala, and Damián Gibaja. Matching through institutions. Games
Econ. Behav., 121:204–231, 2020. doi:10.1016/j.geb.2020.01.010.

9 Niclas Boehmer, Robert Bredereck, Klaus Heeger, and Rolf Niedermeier. Bribery and control
in stable marriage. Journal of Artificial Intelligence Research, 71:993–1048, 2021.

10 Endre Boros, Vladimir Gurvich, Steven Jaslar, and Daniel Krasner. Stable matchings in
three-sided systems with cyclic preferences. Discrete Mathematics, 289(1-3):1–10, 2004.
doi:10.1016/j.disc.2004.08.012.

11 Jiehua Chen, Danny Hermelin, Manuel Sorge, and Harel Yedidsion. How hard is it to satisfy
(almost) all roommates? In 45th International Colloquium on Automata, Languages, and
Programming (ICALP 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

12 Geoffrey Chu. Improving combinatorial optimization. PhD thesis, University of Melbourne,
Australia, 2011. URL: https://hdl.handle.net/11343/36679.

13 Ágnes Cseh, Guillaume Escamocher, Begüm Genç, and Luis Quesada. A collection of constraint
programming models for the three-dimensional stable matching problem with cyclic preferences.
In 27th International Conference on Principles and Practice of Constraint Programming (CP
2021), Montpellier, France, 25-29 October 2021, pages 1–19. Schloss Dagstuhl–Leibniz-Zentrum
für Informatik, 2021.

14 Ágnes Cseh, Robert W. Irving, and David F. Manlove. The stable roommates problem with
short lists. Theory of Computing Systems, 63(1):128–149, 2019.

15 Ágnes Cseh and Jannik Peters. Three-dimensional popular matching with cyclic preferences.
CoRR, abs/2105.09115, 2021. arXiv:2105.09115.

16 Lin Cui and Weijia Jia. Cyclic stable matching for three-sided networking services. Comput.
Networks, 57(1):351–363, 2013. doi:10.1016/j.comnet.2012.09.021.

17 Vânia M.F. Dias, Guilherme D. Da Fonseca, Celina M.H. De Figueiredo, and Jayme L.
Szwarcfiter. The stable marriage problem with restricted pairs. Theoretical Computer Science,
306:391–405, 2003.

18 Ulrich Dorndorf, Erwin Pesch, and Toàn Phan-Huy. Solving the open shop scheduling problem.
Journal of Scheduling, 4(3):157–174, 2001.

19 Kimmo Eriksson and Olle Häggström. Instability of matchings in decentralized markets with
various preference structures. International Journal of Game Theory, 36(3-4):409–420, 2008.

20 Kimmo Eriksson, Jonas Sjöstrand, and Pontus Strimling. Three-dimensional stable matching
with cyclic preferences. Mathematical Social Sciences, 52(1):77–87, 2006. doi:10.1016/j.
mathsocsci.2006.03.005.

https://doi.org/10.1007/s00453-009-9315-2
https://doi.org/10.1016/j.geb.2020.01.010
https://doi.org/10.1016/j.disc.2004.08.012
https://hdl.handle.net/11343/36679
http://arxiv.org/abs/2105.09115
https://doi.org/10.1016/j.comnet.2012.09.021
https://doi.org/10.1016/j.mathsocsci.2006.03.005
https://doi.org/10.1016/j.mathsocsci.2006.03.005

Á. Cseh, G. Escamocher, and L. Quesada 16:17

21 Tomás Feder. A new fixed point approach for stable networks and stable marriages. Journal of
Computer and System Sciences, 45(2):233–284, 1992. doi:10.1016/0022-0000(92)90048-N.

22 Tomás Feder. Network flow and 2-satisfiability. Algorithmica, 11(3):291–319, 1994. doi:
10.1007/BF01240738.

23 Tamás Fleiner, Robert W. Irving, and David F. Manlove. Efficient algorithms for generalised
stable marriage and roommates problems. Theoretical Computer Science, 381:162–176, 2007.

24 David Gale and Lloyd S. Shapley. College admissions and the stability of marriage. American
Mathematical Monthly, 120(5):386–391, 1962. doi:10.4169/amer.math.monthly.120.05.386.

25 Gecode Team. Gecode: Generic constraint development environment, 2019. Available from
http://www.gecode.org.

26 Ian P. Gent, Robert W. Irving, David F. Manlove, Patrick Prosser, and Barbara M. Smith. A
constraint programming approach to the stable marriage problem. In Principles and Practice of
Constraint Programming - CP 2001, 7th International Conference, CP 2001, Paphos, Cyprus,
November 26 - December 1, 2001, Proceedings, volume 2239, pages 225–239. Springer, 2001.
doi:10.1007/3-540-45578-7_16.

27 Sushmita Gupta, Pallavi Jain, Sanjukta Roy, Saket Saurabh, and Meirav Zehavi. On the
(Parameterized) Complexity of Almost Stable Marriage. In 40th IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020),
volume 182 of Leibniz International Proceedings in Informatics (LIPIcs), pages 24:1–24:17,
Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

28 Dan Gusfield and Robert W. Irving. The Stable marriage problem - structure and algorithms.
MIT Press, 1989.

29 Koki Hamada, Kazuo Iwama, and Shuichi Miyazaki. An improved approximation lower bound
for finding almost stable maximum matchings. Information Processing Letters, 109:1036–1040,
2009.

30 Stephen P. Heyneman, Kathryn H. Anderson, and Nazym Nuraliyeva. The cost of corruption
in higher education. Comparative Education Review, 52(1):1–25, 2008.

31 Robert W. Irving, Paul Leather, and Dan Gusfield. An efficient algorithm for the "optimal"
stable marriage. Journal of the ACM, 34(3):532–543, 1987. doi:10.1145/28869.28871.

32 Akiko Kato. Complexity of the sex-equal stable marriage problem. Japan Journal of Industrial
and Applied Mathematics, 10:1–19, 1993.

33 Samir Khuller, Stephen G. Mitchell, and Vijay V. Vazirani. On-line algorithms for weighted
bipartite matching and stable marriages. Theoretical Computer Science, 127:255–267, 1994.

34 Donald E. Knuth. Mariages Stables. Les Presses de L’Université de Montréal, 1976. English
translation in Stable Marriage and its Relation to Other Combinatorial Problems, volume 10
of CRM Proceedings and Lecture Notes, American Mathematical Society, 1997.

35 Augustine Kwanashie. Efficient algorithms for optimal matching problems under preferences.
PhD thesis, University of Glasgow, 2015.

36 Chi-Kit Lam and C. Gregory Plaxton. On the existence of three-dimensional stable matchings
with cyclic preferences. Theory of Computing Systems, pages 1–17, 2021.

37 Qijun Liu and Yaping Peng. Corruption in college admissions examinations in china. Interna-
tional Journal of Educational Development, 41:104–111, 2015.

38 David F. Manlove. Algorithmics of Matching Under Preferences, volume 2. WorldScientific,
2013. doi:10.1142/8591.

39 David F. Manlove, Gregg O’Malley, Patrick Prosser, and Chris Unsworth. A constraint
programming approach to the hospitals / residents problem. In Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems, 4th Interna-
tional Conference, CPAIOR 2007, Brussels, Belgium, May 23-26, 2007, Proceedings, volume
4510, pages 155–170. Springer, 2007. doi:10.1007/978-3-540-72397-4_12.

40 Eric McDermid and Robert W. Irving. Sex-equal stable matchings: Complexity and exact
algorithms. Algorithmica, 68(3):545–570, 2014.

CP 2022

https://doi.org/10.1016/0022-0000(92)90048-N
https://doi.org/10.1007/BF01240738
https://doi.org/10.1007/BF01240738
https://doi.org/10.4169/amer.math.monthly.120.05.386
https://doi.org/10.1007/3-540-45578-7_16
https://doi.org/10.1145/28869.28871
https://doi.org/10.1142/8591
https://doi.org/10.1007/978-3-540-72397-4_12

16:18 Computing Relaxations for the 3DSM-CYC Problem

41 Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J. Duck, and
Guido Tack. Minizinc: Towards a standard CP modelling language. In Principles and Practice
of Constraint Programming - CP 2007, 13th International Conference, CP 2007, Providence,
RI, USA, September 23-27, 2007, Proceedings, volume 4741, pages 529–543. Springer, 2007.
doi:10.1007/978-3-540-74970-7_38.

42 Cheng Ng and Daniel S. Hirschberg. Three-dimensional stable matching problems. SIAM
Journal on Discrete Mathematics, 4(2):245–252, 1991. doi:10.1137/0404023.

43 Gregg O’Malley. Algorithmic aspects of stable matching problems. PhD thesis, University of
Glasgow, UK, 2007. URL: http://theses.gla.ac.uk/64/.

44 Nikita Panchal and Seema Sharma. An efficient algorithm for three dimensional cyclic stable
matching. International Journal of Engineering Research and Technology, 3(4), 2014.

45 Kanstantsin Pashkovich and Laurent Poirrier. Three-dimensional stable matching with cyclic
preferences. Optimization Letters, 14(8):2615–2623, 2020. doi:10.1007/s11590-020-01557-4.

46 Nitsan Perach, Julia Polak, and Uriel G. Rothblum. A stable matching model with an entrance
criterion applied to the assignment of students to dormitories at the Technion. International
Journal of Game Theory, 36(3-4):519–535, 2008. doi:10.1007/s00182-007-0083-4.

47 Neetu Raveendran, Yiyong Zha, Yunfei Zhang, Xin Liu, and Zhu Han. Virtual core network
resource allocation in 5g systems using three-sided matching. In 2019 IEEE International
Conference on Communications, ICC 2019, Shanghai, China, May 20-24, 2019, pages 1–6.
IEEE, 2019. doi:10.1109/ICC.2019.8762095.

48 Tina Rezvanian. Integrating Data-Driven Forecasting and Large-Scale Optimization to Improve
Humanitarian Response Planning and Preparedness. PhD thesis, Northeastern University,
2019.

49 Alvin E. Roth and Xiaolin Xing. Turnaround time and bottlenecks in market clearing:
Decentralized matching in the market for clinical psychologists. Journal of Political Economy,
105(2):284–329, 1997.

50 Mohamed Siala and Barry O’Sullivan. Revisiting two-sided stability constraints. In Interna-
tional Conference on AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems, pages 342–357. Springer, 2016.

51 Mohamed Siala and Barry O’Sullivan. Rotation-based formulation for stable matching. In
International Conference on Principles and Practice of Constraint Programming, pages 262–277.
Springer, 2017.

52 Mallory Soldner. Optimization and measurement in humanitarian operations: Addressing
practical needs. PhD thesis, Georgia Institute of Technology, 2014.

53 Chung-Piaw Teo and Jay Sethuraman. LP based approach to optimal stable matchings. In
Michael E. Saks, editor, Proceedings of SODA ’97: the 8th ACM-SIAM Symposium on Discrete
Algorithms, pages 710–719. ACM-SIAM, 1997.

54 Chung-Piaw Teo and Jay Sethuraman. The geometry of fractional stable matchings and its
applications. Mathematics of Operations Research, 23:874–891, 1998.

55 Chris Unsworth and Patrick Prosser. An n-ary constraint for the stable marriage problem. In
Proceedings of the 5th Workshop on Modelling and Solving Problems with Constraints, held at
IJCAI ’05: the 19th International Joint Conference on Artificial Intelligence, pages 32–38,
2005.

56 Chris Unsworth and Patrick Prosser. A specialised binary constraint for the stable marriage
problem. In Abstraction, Reformulation and Approximation, 6th International Symposium,
SARA 2005, Airth Castle, Scotland, UK, July 26-29, 2005, Proceedings, volume 3607, pages
218–233. Springer, 2005. doi:10.1007/11527862_16.

A Scalability on larger instances

To see how well our relaxation models scale on larger instances, we chose the best performing
approach for each configuration and ran it on unsatisfiable instances with more than 20
agents in each agent set. These instances, 20 in total, were the ones that were determined

https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1137/0404023
http://theses.gla.ac.uk/64/
https://doi.org/10.1007/s11590-020-01557-4
https://doi.org/10.1007/s00182-007-0083-4
https://doi.org/10.1109/ICC.2019.8762095
https://doi.org/10.1007/11527862_16

Á. Cseh, G. Escamocher, and L. Quesada 16:19

Table 2 Largest solved instance sizes and smallest unsolved instance sizes for each relaxation
version when run with a timeout of one hour, using the DIV-ranks model and the Chuffed solver.
⋆: There were two ML1swap instances of size 29 in the dataset. A popularity-cost TAS matching
was found before timeout for one but not for the other.

Random ML1swap ML2swaps
Relaxation largest smallest largest smallest largest smallest

solved unsolved solved unsolved solved unsolved
none 35 - 110 - 90 -

unit-cost AAS 35 - 90 110 70 90
popularity-cost AAS 32 35 29 90 70 90

unit-cost TAS 23 29 29 90 35 45
popularity-cost TAS 23 29 29⋆ 29⋆ 29 35

unit-cost MAS 35 - 90 110 70 90
popularity-cost MAS 35 - 90 110 70 90

unit-cost MPAS 35 - 90 110 70 90
popularity-cost MPAS 32 35 90 110 70 90

unsatisfiable for strong stability in the experiments by Cseh et al. [13]. We chose the DIV-
ranks model with the Chuffed solver, using the Bottom Up strategy for unit-cost relaxation
and Top Down for popularity-cost, because this showed the best performance in our other
tests. The results, displayed in Table 2, confirm that it is more efficient to compute MAS
relaxations, although AAS and MPAS also scale well for some combinations of instance class
and cost function.

CP 2022

DUELMIPs: Optimizing SDN Functionality and
Security
Timothy Curry #

University of Connecticut, Storrs, CT, USA

Gabriel De Pace #

University of Rhode Island, Kingston, RI, USA

Benjamin Fuller #

University of Connecticut, Storrs, CT, USA

Laurent Michel #

University of Connecticut, Storrs, CT, USA

Yan (Lindsay) Sun #

University of Rhode Island, Kingston, RI, USA

Abstract
Software defined networks (SDNs) define a programmable network fabric that can be reconfigured to
respect global networks properties. Securing against adversaries who try to exploit the network is an
objective that conflicts with providing functionality. This paper proposes a two-stage mixed-integer
programming framework. The first stage automates routing decisions for the flows to be carried by
the network while maximizing readability and ease of use for network engineers. The second stage is
meant to quickly respond to security breaches to automatically decide on network counter-measures
to block the detected adversary. Both stages are computationally challenging and the security stage
leverages large neighborhood search to quickly deliver effective response strategies. The approach is
evaluated on synthetic networks of various sizes and shown to be effective for both its functional
and security objectives.

2012 ACM Subject Classification Theory of computation → Network optimization; Networks →
Network security; Security and privacy → Trust frameworks

Keywords and phrases Network security, mixed integer programming, large neighborhood search

Digital Object Identifier 10.4230/LIPIcs.CP.2022.17

Funding This work is supported by ONR Grant N00014-19-1-2327. B. F. is supported by NSF
Awards #1849904, 2141033. L.M. and T. C. are partially supported by the Synchrony Chair in
Cybersecurity. The views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S.
government.

1 Introduction

Software-Defined Networks (SDN) create a programmable network framework, potentially
allowing organizations to simultaneously account for functionality, usability, and trust.
Optimization techniques have been used to improve an SDN configuration along a single
dimension: Functionality [2,17,24,36], Usability [21,28,32] or Trust [6,35]. Little work [10,19]
integrates these goals because of the antagonistic objectives of the three dimensions. For
instance, a fully permissive functionality policy based on shortest path optimizes routing
but reduces trust as any adversary has unrestricted access through the network. For those
readers unfamiliar with network attacks, Example 1 presents a toy network and attack.

© Timothy Curry, Gabriel De Pace, Benjamin Fuller, Laurent Michel, and Yan Sun;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 17; pp. 17:1–17:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:timothy.curry@uconn.edu
mailto:gdepace@uri.edu
mailto:benjamin.fuller@uconn.edu
mailto:laurent.michel@uconn.edu
mailto:yansun@uri.edu
https://doi.org/10.4230/LIPIcs.CP.2022.17
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 DUELMIPs: Optimizing SDN Functionality and Security

This work produces optimization models that simultaneously consider routing, usability,
and trust of the proposed SDN configuration. We consider two use cases:
Planning. When a new application is being stood up and network engineers want a configu-

ration. To explain configurations, it is crucial to use models with clear objectives that
prove solution quality. One is comfortable with a moderate computation time.

Rapid Response. Adapting when a security event occurs. Attackers rely on the sluggishness
of defense responses to pivot within an organization [12]. In this setting, one needs to
prepare a response in minutes. Automated responses are used to allow a security analyst
to craft a permanent response.

This work introduces DuelMIPs a reactive two-stage online mathematical programming
model in which a mixed-integer programming (MIP) method incorporates conflicting re-
quirements of routing, usability, and trust. The goal is, given a set of required flows and
disallowed flows, to find a configuration that either routes or blocks flows while minimizing
(1) the complexity of the resulting configuration, (2) the residual trust reduction if some
device in the network is possibly compromised. The Routing Model is computationally
heavy and runs first to produce a functional and usable configuration. The routing model,
which one executes whenever functional requirements have substantively changed, produces
routing decisions for all SDN devices in the network. It synthesizes small configurations that
are easy to understand and minimizes conflicts and defects that hurt interpretability [8, 34].
The production of an optimized configuration is followed by a deployment of the decisions
onto the SDN devices.

Network appliances detect security events [20, 25]. The Trust Model is run in response
to such a detection. This new information affects trust levels of the targeted devices and
related devices, allowing the Trust model to decide on actions to mitigate the detected
threat. Depending on which device was targeted, the network flows, and the loss of trust,
the second stage decides on traffic restrictions to minimize the global trust reduction. It
proposes blocking rules meant to hamper lateral movements within the network.

This paper offers the following contributions:
It adapts multi-commodity flows, common-place in supply chains, to the specifics of
routing in data networks. It handles wildcards in routing rules and the production of
SDN programs (rule sets) at SDN devices.
It articulates a trust model that is suitable for rapid response to security events. This
model is a physics-based approach using an elastic string networks analogy to capture
inter-node trust relations and mitigate the impact on trust with counter-measures.

▶ Example 1. Consider the network topology and routing policy presented in Figure 1.
This is a simplified example from our evaluation topology described in Section 5. The three
parts of Figure 1 are the inputs for the DuelMIPs’s routing model. Figure 1a shows the
physical connection between the SDN routers and end hosts. The goal of the Routing
Model is to install rulesets on the routers such that the flows in the required (Figure 1b)
and restricted tables (Figure 1c) will be serviced and blocked, respectively. In both cases,
flows are described by a triple of source (W0), destination (A0), and application-level protocol
(SQL). There are multiple paths that could be chosen for each flow (the set of possible paths
is defined by the topology) and many different valid rulesets to satisfy each pathing choice.
Specifically, SDN routers route a packet according to the most specific (and first) rule that
applies to that packet, describing which physical switch port the packet should be sent on (or
not forwarded). This is known as the longest prefix match rule. We slightly abuse notation
in Table 1 by listing the device connected through the switch port.

T. Curry, G. De Pace, B. Fuller, L. Michel, and Y. Sun 17:3

S0
W0

D0 D1
A0

A1
S1

S2C0

(a) Network topology.

Required
W0

HTTP←→ A0

W0
HTTP←→ A1

A0
SQL←→ D0

A1
SQL←→ D1

(b) Required flows.

Restricted
W0

HTTP←→ D0

W0
HTTP←→ D1

W0
SQL←→ D0

W0
SQL←→ D1

(c) Restricted flows.

Figure 1 Network topology, routing policy, and inputs for DuelMIPs’s routing model.

Table 1 Rulesets for SDN routers that satisfy the requirements presented in Figure 1. These
rules are part of the output of DuelMIPs in this example. Note the red, bold rule at the top of
S2’s ruleset is part of the trust model output, while all other rules come from the routing model.

S0 Ruleset
Match Action
(W0, D0, ∗) DROP
(W0, D1, ∗) DROP
(∗, W0, ∗) SEND(W0)
(∗, A0, ∗) SEND(S1)
(∗, A1, ∗) SEND(S1)

S1 Ruleset
Match Action
(∗, W0, ∗) SEND(S0)
(∗, A0, ∗) SEND(A0)
(∗, A1, ∗) SEND(A1)
(∗, D0, ∗) SEND(S2)
(∗, D1, ∗) SEND(S2)

S2 Ruleset
Match Action
(D1, A0, SQL) DROP
(∗, A0, ∗) SEND(S1)
(∗, A1, ∗) SEND(S1)
(∗, D0, ∗) SEND(D0)
(∗, D1, ∗) SEND(D1)

The routing model in DuelMIPs can generate rules with match fields containing up
to two wildcards. (As rules are described by a triple, three wildcards would mean that the
same rule is applied universally which is not appropriate for a router.) Furthermore, the
model prefers to use rules with more wildcards (which match any value), as it allows for more
compact and readable rulesets. This is in line with ruleset configurations designed by human
network engineers [28]. Producing rules with wildcards is important as network engineers
will only deploy rulesets that they can understand and modify. An example configuration
that could be produced by DuelMIPs is in Table 1.

One downside of using wildcard-based rules is that they allow incidental flows to be
serviced within the network. Consider the solution to the given input represented by Table 1
(minus the bolded, red rule in S2’s table). This is the output of DuelMIPs’s routing model.
The use of wildcards makes the ruleset readable. However, it routes flows that are not included
in the network policy. A packet of type A0

SQL−→ D1 will be routed A0 −→ S1 −→ S2 −→ D1
because of S1’s fifth rule and S2’s fifth rule. An analogous route exists for the return traffic
D1

SQL−→ A0. Wildcard usage is cruical for ruleset compactness, utility, and readability, but it
can permit incidental internal flows that enable network attacks.

The Trust Model reduces the trust loss due to incidental flows in cases when an end
host is marked as suspicious. Suppose a network appliance alerts DuelMIPs that W0 has
received suspicious traffic from an external client, C0. Modern network attacks often require
multiple steps to reach their goal [22], called exploit chains. The suspicious traffic at W0
is due to an attacker who is attempting to leverage the exploit chain (see Figure 2). The
trust model is run with W0 as the focus of distrust. DuelMIPs observes the incidental SQL
flow between D1 and A0. Since A0 is directly connected to W0, there is a transitive trust loss
induced on D1. DuelMIPs reduces this loss by blocking incidental flows with firewalls (if
the improvement surpasses the complexity cost of adding the firewalls). In this case, a drop
rule is added to S2’s routing table, shown in red. This rule does not block any required flows.

CP 2022

17:4 DUELMIPs: Optimizing SDN Functionality and Security

Figure 2 Exploit chain using in a pivot attack on the example network. Here the only link that
DuelMIPs could affect via a routing configuration is shown with a dashed outline.

HTTP
access to W0

HTTP
access to A0

Privilege
Escalation on

A0

SQL
Injection on

D1

Valuable Data
Exfiltration

SQL access
to D1

Organization. The rest of this work is organized as follows: Section 2 provides an overview
of the model goals, Section 3 presents the models, Section 4 the assessment metrics, Section 5
our experimental setup, Section 6 the results, and Section 7 concludes.

2 DuelMIPs objectives

This section outlines the routing (Sec 2.1) and trust (Sec 2.2) objectives. Section 3 describes
how they give rise to mathematical programming models. In the following, a network is formed
from set of devices D = H∪R that are either hosts H or SDN routers R. Assume that |D| = n.
Devices are connected by network arcs (wires) from A ⊆ D × D. Giving rise to a graph
G(D, A). A data flow f = ⟨s, d, t⟩ indicates the requirement to transport data packets for an
application-level protocol t from a source device s (typically a host) to a destination device d

(again, typically a host). A protocol t is from P = {SSL, HTTP, LDAP, MYSQL, SMTP, · · · } with
|P| = p. Let F = D2 × P be the universe of all possible flows and |F| = n2 · p.

2.1 Routing Objective

The network configuration problem is given a set of required F + ⊆ F and disallowed
F − ⊆ F flows. The objective is to find a set of rules, for each router, which routes all
flows in F + and ensures that all flows in F − are blocked. We consider routing rules of
the type ⟨s, d, t⟩ ⇒ action in which s, d ∈ D ∪ {∗}, t ∈ P ∪ {∗} and the wildcard *
means that any value in the corresponding set is permissible. Headers of the packet being
routed [26] are against s, d, and t to select the applicable rule from the routing table. The
action could be dropping the packet, or forwarding to a specific neighboring router g, i.e.,
action ∈ {DROP, SEND(g)}. For example, ⟨∗, 192.168.1.10, HTTP⟩ ⇒ DROP states that any
inbound HTTP traffic meant for 192.168.1.10 should be dropped. Observe how a route for
a flow f is implemented by routing rules in network devices along the path. For instance, in
Figure 1, the flow W0

HTTP←→ A1 uses the fourth wildcard routing rule in S0 and the third in S1
to reach its destination A1.

When configuring a network one must determine 1) the paths for all flows in F + and 2)
the table rules to be installed in routers. Specifically, the routing objective is the following:
1. Ensure that all flows in F + have a single path through the network (known as single

path routing used in intranet routing [23] and Internet routing [27]),
2. Ensure that all flows in F − are blocked,
3. Ensure for each r on the path of f ∈ F + ∪ F − there is at most one wildcard rule that

matches f . We do not require that f ∈ F − are blocked at the first possible device so this
constraint is applied to both F + and F −,

4. Minimize the total length of routes for required flows, and
5. Minimize the complexity of SDN rules that are deployed on each device.

T. Curry, G. De Pace, B. Fuller, L. Michel, and Y. Sun 17:5

Property 3 improves usability of the resulting SDN rules. See Section 4 which builds
on [5, 33]. This objective ensures that routes are set for all required flows that avoid routing
loops and minimize latency (shortest paths). This should be achieved with a small and
simple rule set that is usable by network engineers, i.e., the rules must be natural and
easily explainable. While wildcards reduce the complexity of a rule set, they also authorize
incidental flows that were not explicitly required nor explicitly forbidden, this set is denoted
by I. It is this set of incidental flows that is the focus of the trust model. We use Fr to
denote the set of all routable flows, mathematically Fr = F + ∪ I. We use Fr(a, b) to restrict
to all flows between hosts a and b with analogous notation for F +, F − and I.

2.2 Trust Objective

The trust model minimizes the impact of a detected security event on the overall trust in the
network. It is used in the setting when an attacker is trying to pivot to collect important
privileges [22], usually resulting in compromising, i.e., gaining unfettered access to some
critical component such as a customer database. For instance, one could compromise the
Gmail password of an HR representative and try this password in the HR system, learn
biographic information about a system administrator and use it to carry out a spear phishing
campaign. In many modern exploit chains, the attacker relies on similarity between systems
they are compromising to carry out such a pivot and gain new privileges.

This section describes basic trust modeling concepts [1, 14, 18, 37]. A trust model is
defined over an undirected graph G′(H, Fr) as above H represents network end devices or
hosts, while Fr is the set of flows that can be routed in the network. Note this graph G′ is
different than G(D, A) considered in the routing model. We consider two time values Init
and Final, however, all notation and modeling can naturally be extended to a sequence of
events over time.
Trust. Let the trust of a host h ∈ H , be Trust(h) ∈ R+. Let TrustInit(h) and TrustFinal(h)

refer to the initial and final trust values for a host reflecting its hardening [29].
Similarities. Incidental flows increase connectivity between hosts and offer additional path-

ways to reach other hosts. This paper codifies similarity as the fraction of incidental flows
over total flows between two hosts. That is, given a universe of possible flows Fr(a, b)
between two distinct hosts a and b, a set of required flows F +(a, b) between them and
I(a, b) as the set of incidental flows between a and b, one can define

sa,b
def= |F +(a, b) ∪ I(a, b)|/|Fr(a, b)| ∈ [0, 1] (1)

as the similarity between hosts a and b [16,40]. It is affected by paths in G′ connecting
a to b and it affects how the trust of a device changes as a result of security events at
nearby connected devices.

Event. Let e(hi) denote a security event affecting host hi ∈ H. The event e(hi) induces a
direct trust reduction defined as TrustRed(hi) = TrustInit(hi)− TrustFinal(hi) ≥ 0.

Event Set. An event set E conveys the simultaneous occurrence of multiple events.
Trust models propagate trust reductions that one experiences as a result of an event set E .
A trust reduction at host hi affects all hosts indirectly connected to hi. This propagation
of indirect trust reductions is captured with an elastic string model which will be described
in Section 3.2. The objective is to choose traffic blocking measures that minimize the total
trust reduction.

CP 2022

17:6 DUELMIPs: Optimizing SDN Functionality and Security

3 Optimization Models

The optimization framework consists of two models, a Routing Model and a Trust Model.
The Routing model produces network configurations that meet functional requirements
and are usable by network engineers (we describe metrics in Section 4). The Trust model
minimizes trust reduction of a presented network compromise.

The coupling between the two models is achieved through similarity variables defined in
Section 2.2. These variables are derived from the routing model solution and can be altered
due to trust model decisions. An increased similarity between two nodes can either increase
or reduce trust levels. Simpler, shorter and more usable configurations often leverage routing
wildcards that adversely impact node similarities and prompt the creation of more complex
defensive measures. This tension between desirable and secure configurations is the heart of
the problem hardness.

3.1 Routing Model

The routing model decides on the content of all routing tables to carry required flow, block
restricted flows while minimizing routing cost and maximizing the usability of the rule sets
to be installed on SDN devices. The input is the graph G(D, A), required flows F +, and
disallowed flows F −. The mathematical formulation is a multi-commodity network flow.
Required flows originate from a super-source node, flow into their actual source node (the
host from which the flow originates) and must reach a super-sink via the actual destination
node. An unusual structure in the model results from wildcards, a feature not normally seen
in multi-commodity flows. There are, for each network device, Boolean variables to convey
forwarding or dropping actions for each possible packet header that condition the routing
rule (the rs

i,j and ws
i variables below).

Parameters

F +, F − – set of required (resp. restricted) flows that must be routed (resp. blocked).
F = F + ∪ F − – set of all flows in network routing policy.
S – set of possible SDN routing table headers in network.
Sf – set of all SDN routing table headers that flow f matches.
S∗

f ⊂ Sf – set of SDN routing table headers with wildcards that flow f matches.
R, H, D = H ∪R – set of routers, hosts and all devices in the network.
A ⊆ D ×D – set of arcs (links) in the network.
σ,τ – abstract flow network super source and super sink.
δ−(i) and δ+(i) – set of predecessors, resp. successors of device i ∈ D.
src(f) and dst(f) – the source and destination of flow f

cost(s) – the cost (in terms of complexity) of using header s for a routing rule.
M – big-M constant.

Decision Variables

cf
i,j ∈ {0, 1} – Link (i, j) carries flow f .

pf
i,j ∈ {0, 1} – Link (i, j) is permitted (via chosen SDN rules) to carry flow f .

af
i ∈ {0, 1} – Flow f reaches device i ∈ D.

rs
i,j ∈ {0, 1} – Device i forwards flows matching header s ∈ S to device j.

ws
i ∈ {0, 1} – Device i firewalls flows matching header s ∈ S.

T. Curry, G. De Pace, B. Fuller, L. Michel, and Y. Sun 17:7

Constraints

The first constraints model network flows (injection 2 and conservation 3,4).

∀f ∈ F : cf
σ,f.src = 1 (2)

∀j ∈ R :
∑

i∈δ−(j)

cf
i,j =

∑
k∈δ+(j)

cf
j,k +

∑
s∈Sf

ws
j (3)

∀j ∈ H :
∑

i∈δ−(j)

cf
i,j =

∑
k∈δ+(j)

cf
j,k (4)

∀f ∈ F : af
σ = 1 (5)

∀f ∈ F : pf
σ,src(f) = 1 (6)

∀f ∈ F , ∀j ∈ δ+(σ) where i ̸= src(f) : pf
σ,i = 0

Equations 5 - 10 ensure that flows are well formed. Namely, they properly spawn from the
source, arrive at the sink, are carried when required (F +) and blocked when forbidden (F −).

∀f ∈ F : pf
dst(f),τ = 1 (7)

∀f ∈ F , ∀i ∈ δ−(τ) where i ̸= dst(f) : pf
i,τ = 0

∀f ∈ F , ∀i ∈ δ+(src(f)) : pf
src(f),i = 1 (8)

∀f ∈ F + : cf
dst(f),τ = 1 (9)

∀f ∈ F − : cf
dst(f),τ = 0 (10)

The remaining constraints focus on the rule implementations on network devices.

∀(i, j) ∈ A , ∀f ∈ F : pf
i,j =

∨
s∈Sf

rs
i,j (11)

∀(i, j) ∈ A , ∀f ∈ F : cf
i,j ≤ pf

i,j (12)

∀j ∈ D , ∀f ∈ F : af
j =

∨
i∈δ−(j)

(af
i ∧ (pf

i,j)) (13)

∀(i, j) ∈ A , ∀f ∈ F :
∑

s∈Sf

rs
i,j ≥ cf

i,j (14)

∀j ∈ R , ∀f ∈ F :
∑

k∈δ+(j)

∑
s∈S∗

f

rs
j,k +

∑
s∈S∗

f

ws
j ≤ 1 +M(1− af

j) (15)

Equation 11 states that a flow is permitted to travel over a link if there is a rule installed on
a device that allows it to do so. Equation 12 ensures that a required flow will only travel
over a link if that link permits it. Equation 13 enforces that a flow is able to reach a device
j only if the flow can reach a direct predecessor and the predecessor has a rule installed that
permits the flow to travel over the direct link to j.

Equation 14 requires that a proper forwarding rule is installed if a link is set to carry a
flow. Equation 15 states that if a flow reaches a router, then there is at most one wildcard rule
covering that flow on the router. This constraint is needed to ensure clear switch behavior
(see Section 4). Equation 15 is vacuously true for a flow that does not reach the router.

CP 2022

17:8 DUELMIPs: Optimizing SDN Functionality and Security

Routing Objective

The objective function for the routing model is

min α0 ·
∑
f∈F

∑
(i,j)∈A

cf
i,j + α1 ·

∑
s∈S

 ∑
(i,j)∈A

rs
i,j · cost(s) +

∑
i∈R

ws
i · cost(s)

It minimizes the routing costs (number of links utilized) and the complexity of all rule sets.

3.1.1 Incidental Flow Extraction
Finally, it is desirable to compute the set of incidental flows I introduced by using rules with
wildcards. We identify such flows using any complete graph traversal algorithm over the
topology and rulesets to identify flows that were not in F + nor F − but are routable.

3.2 Trust Model
The trust model receives information regarding the trustworthiness of network hosts (H), as
well as a list of all deliverable flows, i.e., Fr = F + ∪ I. The purpose of the model is to reason
about the connections induced by incidental flows (I) that are potentially damaging and
should be blocked via additional rules.

This model is inspired by physics. Each host h ∈ H is modeled as a metal ball resting at
a specific height in one-dimensional space. The host’s initial trust Mh is its mass while the
height of a ball represents TrustRed(h). The model considers a similarity graph G′(H, C) in
which the edge set C ⊆ Fr may have a connection for each flow in Fr. The edge set C is
defined as

C = {(h1, h2)|(h1, h2) ∈ Fr ∧ sh1,h2 > 0} (16)

Namely, an edge exists if there is a flow between the two hosts and the two hosts have a
non-zero similarity as defined in Equation 1. Note that similarity is over G′(H, C) while
routing considered G(D, A). In the physics analogy, each edge in C is an elastic string whose
tautness captures the similarity. Indeed, highly similar nodes that are connected are more
likely to see their trust move in unison if one is affected by a security event whereas highly
dissimilar nodes would not affect each other if one was compromised. Tautness is modeled
as the maximal length that the elastic string can have. At the onset, there are no trust
reductions anywhere, i.e., all balls lie on a flat surface at height 0.

Without loss of generality, assume a single security event e(h). The event e(h) causes
TrustRed(h) > 0 by picking up host h to a prescribed height equal to the trust reduction
directly incurred. That is, height = TrustRed(h). Raising host h to some height impacts
connected neighbors. Those hosts are lifted (a trust reduction) because of their respective
similarities to h. The behaviors of the elastic strings impact the magnitude of the collateral
lifts. In the physics analogy, connected devices are lifted as a function of their mass and
connections to neighbors. Massive hosts (highly trusted) are not easily lifted leading to a
dissipation of the upward force through the stretching of the elastic links as well as tensile
forces. There are multiple ways to model similarity:

alter the initial length of strings,
characterize the elasticity constant behind each string, or
bound the maximal extension length of a string.

which have subtle computational implications. Each approach leads to quantitatively different
yet qualitatively similar results. We chose to encode similarity as the maximum extension
length of a string. This proved most suitable for linear optimization.

T. Curry, G. De Pace, B. Fuller, L. Michel, and Y. Sun 17:9

Theoretical trust models [9] exist to address how trust can propagate [31]. Here, we
focus on how distrust propagates, i.e., direct and indirect trust loss. Distrust propagation
is different and is usually application dependent. Guha et al. [15] review the process for
developing a trust model for an application. The elastic string model, which is novel, elegantly
captures both direct and indirect (i.e., transitive) trust loss and is intuitive. It reflects the
nature of modern attackers for two reasons: (1) it chains together exploits across the network
and build up capabilities, (2) it capture pivoting abilities through similarities between nodes.

Parameters

H – set of nodes in the trust network. Same as set of hosts in physical network.
Mh – mass of node h ∈ H.
C – similarity connections. Each connection (h1, h2) ∈ C connects h1 to h2. See Eq 16.
C(h) – set of connections touching host h ∈ H.
Lc – maximum length of string for connection c ∈ C.
Kc – elastic constant for connection c ∈ C.
E ⊆ H - set of hosts experiencing trust loss due to potential network compromise.
E(h) ⊂ R+ - trust reduction experienced by host h ∈ E .
F + – the set of required flows to be delivered based on the routing policy.
I – the set of incidental flows induced by the network configuration.
F +(h1, h2) ⊆ F + – the set of flows in F + involving h1 and h2.
I(h1, h2) ⊆ I – the set of flows in I involving h1 and h2.

Decision Variables

tlh ∈ R≥0 – trust loss for host h ∈ H.
fc,h ∈ R – elastic force experienced by host h ∈ H due to connection c ∈ C.
tc,h ∈ R – tensile force experienced by host h ∈ H due to connection c ∈ C.
bh ∈ R≥0 – supporting force from ground experienced by host h ∈ H.
lh ∈ R≥0 – lifting force experienced by host h ∈ H.
sh1,h2 ∈ R≥0 – flow similarity between hosts h1, h2 ∈ H.
wc ∈ R≥0 – effective maximum length of connection c ∈ C.
zf ∈ {0, 1} – binary variable to install rule to block an incidental flow f ∈ I.

Constraints

The first set of constraints deal with network events which compromise the trust of hosts,
causing them to be lifted

∀h ∈ E : tlh ≥ E(h) , ∀h ∈ H \ E : lh = 0 (17, 18)

Equation 17 lower bounds the trust loss for the hosts involved in the event to be at least the
loss specified in the event. These hosts will then experience a lifting force necessary to stay
at height tlh and be in equilibrium described by Equation 29. Equation 18 states that hosts
that are not involved in the event do not experience a lifting force.

∀h ∈ H : bh ≤Mh , bh > 0 ⇐⇒ tlh = 0 (19, 20)

Equation 19 bounds the supporting force exerted by the ground on a host to be no greater
than the weight of the host. Equation 20 dictates that the supporting force on a host is
present if and only if the host is resting on the ground (did not incur a trust loss).

CP 2022

17:10 DUELMIPs: Optimizing SDN Functionality and Security

∀(h1, h2) ∈ C : w(h1,h2) = L(h1,h2) − sh1,h2 (21)

∀(h1, h2) ∈ C : sh1,h2 = |F +(h1, h2)| +
∑

f∈I(h1,h2)

(1− zf) (22)

Equation 21 gives the effective length of a string to be used in the force calculations. Higher
similarity between two hosts entails a shorter maximal distance between them. Equation 22
calculates the flow similarity between two hosts. By design, sh1,h2 ≤ Lc for all (h1, h2) ∈ C.

∀c ∈ C : fc,c1 = Kc · (tlc2 − tlc1) , fc,c2 = Kc · (tlc1 − tlc2) (23, 24)
∀c ∈ C : |tlc1 − tlc2 | ≤ wc , tc,c1 + tc,c2 = 0 (25, 26)

Equations 23 and 24 determine the elastic forces a host experiences due to connections in
which it is involved. This calculation is based directly on Hooke’s Law. Equation 25 ensures
that the distance between the hosts does not exceed the maximum length of the connection.
Equation 26 states that the tensile forces experienced by the hosts sum to zero, i.e., the
forces are equal in magnitude and opposite in direction.

∀c ∈ C : tc,c1 < 0 ⇐⇒ tlc1 > tlc2 , tc,c1 ̸= 0 ⇐⇒ wc − |tlc1 − tlc2 | = 0 (27, 28)

Equation 27 states that a host can only experience negative tension from a connection if it is
higher than the other host in the connection. Furthermore, Equation 28 prevents a host from
experiencing any tension from a connection if the string is not at its maximum length. The
last set of constraints require the solution to be an equilibrium state for the string network.

∀h ∈ H :

 ∑
c∈C(h)

fc,h + tc,h

 + bh + lh −Mh = 0 (29)

Equation 29 stipulates that the upward and downward forces experienced by each host must
balance. This integrates lifting, ground, tensile, gravitational, and connection forces. To
summarize, equations 17-29 are based on laws of classical mechanics and the desire to capture
indirect impacts of events described at the beginning of this subsection.

Trust Objective

The trust model minimizes a linear combination of the heights of the hosts and the number
of needed additional firewall rules. This mitigates trust reduction across network without
adding excessive complexity to the current routing configuration. This objective function is
expressed below (β0, β1, and γf are parameters).

min β0
∑
h∈H

tlh + β1
∑
f∈I

γf · zf (30)

Solving the Trust Model

A direct resolution of the trust model cannot complete to optimality in the small amount of
time (minutes) one would have to react to a security incident.

With LNS [30] as a meta-strategy, one can achieve high-quality solutions in seconds to
minutes at worst. The incomplete search can then proceed as shown in Algorithm 1 with t

being a parameter denoting the chunk size for the LNS.

T. Curry, G. De Pace, B. Fuller, L. Michel, and Y. Sun 17:11

Algorithm 1 Solve_TrustModel(M over G(V, E), e(h) ∈ E , t).

S∗ = solveLNS MIP (M(e(h)) ∪ {zf = 0|f ∈ Fr})
while more time do

Pick X such that |X| = t and X is a random subset of I

S = solveLNS MIP (M(e(h)) ∪ {zf = S∗(zf)|f ∈ Fr \X})
if S < S∗ ∧ feasible(S) then

S∗ = S

end if
end while

The algorithm starts by fixing all z variables to 0, i.e., it reports on the trust reduction
one would experience when taking no actions whatsoever. M(e(h)) denotes the MIP model
for the considered event. Then it proceeds in waves of LNS searches, each focusing on a
random subset X (of fixed cardinality t) of edges that coincide with incidental flows. Each
LNS searches fixes all other edges (E \X) to their values in the incumbent solution (S∗(zf))
and optimizes over the zf for all f ∈ X. Any feasible improving solution S in adopted as the
new incumbent. For our testing, we set t to be 50.

3.3 Integrated Approach
It is natural to consider an integrated approach with a single model that encompasses both
routing and security requirements. Such an model can be produced with a few changes.
First, the routing model can no longer limit its attention to the flows in F = F + ∪ F −.
Indeed, the trust part of the model must decide whether to block incidental flows whose
existence is implied by the value chosen for the routing variables. Thus, one must consider F

as the entire universe of flows, namely F = F . An immediate consequence is a significantly
larger set of decision variables for routing. Second, incidental flows are readily encoded in
the af

τ variables. Third, the trust model must restrict its decisions to zf variables for flows
in F \ (F + ∪ F −) since required flows cannot be blocked (and restricted flows are already
blocked). Finally, the objective function can be a lexicographic ordering of the objectives
from routing and trust (i.e., a weighted sum).

We implemented such a model and the resulting approach was not tractable. On the
introductory toy example, it produces the same solution as the 2-stage approach. Looking
ahead we evaluate our two stage model on pod-4 and pod-6 fat tree topologies found in data
center networks (see Section 5). On the smallest pod-4 instances of the empirical evaluation,
the integrated model had a duality gap in excess of 5% after 8 hours of computation time.
The last solution offered the same routing as the 2-stage model, while the loss of trust was
twice as big (the value of the trust objective that is being minimized). Worse, the model size
alone is prohibitive, causing the solver pre-processing phase to take more than 10 minutes.
The Achilles’ heel of the approach is the quadratic size of F . Finally, note that an LNS
approach here requires an incumbent solution that the integrated model does not find early
in the execution (the first solution on pod-4 is found after one hour of runtime).

Another tempting avenue is column-generation [11]. The on-demand creation of routes
with the addition of an indicator variable to choose such a route seems direct. Yet, every
route must create several variables for the incidental flows introduced by itself but also because
of the interplay with other selected routes. A column generation must therefore produce a
bundle of several columns (for the route and the incidental flows it creates by itself) as well
as examine all the existing routes to add another set of columns for the incidental flows
that arise from mixing routes. While this is doable and possibly competitive, we believe the
complexity of the implementation would exceed the two-stage approach.

CP 2022

17:12 DUELMIPs: Optimizing SDN Functionality and Security

4 Assessment

Optimization Assessment. To assess our optimization model we report on the following
standard metrics: 1) solve time, 2) optimality gap, 3) model size.
Functional Assessment Our motivating application for DuelMIPs is in data center networks
where links are uniform and high bandwidth [3]. The following quality metrics are used:
Normalized Path Length. For each fh1,h2 the path length divided by the shortest network

path between h1 and h2.
Normalized Number of Rules. The total number of rules written to SDN devices throughout

the network is normalized by the number of required rules.1 The desire for compact
rulesets is driven by two factors: 1) SDN devices are limited in their TCAM memory and
2) human interpretability.

SDN Rules. The total number of rules assigned to the SDN devices.
Wildcard Rules. The number of rules that are not fully specified. Wildcard rules are more

complex than fully specified rules and thus should be given additional weight when
judging the complexity of a configuration.

Usability Assessment. The literature on usability of network rules [4, 5,33,38,39] considers
the following factors to be important: structural complexity of the ruleset, size of the ruleset,
misconfigurations, conflicts and the presence of comments to aid in the intention of the rules.

All rules have the form of (src, dest, protocol)→ action in which action can be drop
or send(port). Therefore, the structural complexity of each rule largely depends on the
number of wildcards. Recall that wildcards can reduce the number of rules needed to specify
a routing policy, yet multiple occurrences on the same device can induce conflicts that weaken
clarity. The number of rules and wildcard rules is reported in Functional Assessment.

We focus on the number of conflicts in the ruleset, using the classification due to Al-Shaer
and Hamed [5]. Before describing conflict types recall that SDN devices match the most
specific rule, if two rules are the same specificity, the first listed rule is applied. Conflicts
indicate the complexity for human understanding.
Shadowing. A generic rule RB appears before a specific rule RA, hiding RA.
Generalization. A generic rule RA appears after a specific rule RB .
Correlation. Two rules match some packets in common.
Redundancy. Rule RA generalizes RB and both feature the same action.
Irrelevance. Rule RA matches no packets or all packets are handled by earlier rules.
Trust Assessment. To assess the Trust Model, we consider two versions. The first we call
Initial, denoted as ℵ, where no extraneous flows are blocked. This corresponds to a model in
which all zf are fixed to 0. The second version is the actual solution, denoted as F . The event
node in each scenario is lifted to height 8 (see Section 5). We split our evaluation into two
components: 1) directly examining the solution quality and 2) evaluating the solution with
respect to stopping potential attacks. Before these metrics, we introduce required notation.

Notation. Denote heights buckets of [0, 2], (2, 4], (4, 6], (6, 8], as vLow, Low, Med, High respec-
tively. Consider the multigraph Gm(H, E), where edges in E represent a permitted flow
between two end hosts in H. Define Gm,F as Gm when I = ∅.

1 Let RequiredRules(f) = 1 if f ∈ F − and RequiredRules(f) = ShortestPath(f)− 1 otherwise. Then
we normalize the number of rules by

∑
f∈F

RequiredRules(f).

T. Curry, G. De Pace, B. Fuller, L. Michel, and Y. Sun 17:13

Table 2 Network Roles. For intrapod flows, each server in a pod communicates with a chosen
manager server within the pod via HTTP. Communicate pattern is created randomly with the required
type and number of flows.

Pod # Role Each server communicates with
1 Web server 2-3 application servers via HTTP

NO HTTP to database or authentication

2 Application Server
1-2 content servers in each pod via RPC protocol
1-2 databases via SQL protocol
1-2 authentication servers via LDAP

3, 4 Content Server Application
5 Database Server Application
6 Authentication Server Application

Node Heights ∆. The difference between configurations ℵ and F of |vLow|, |Low|,
|Med|, |High|.

Potential Attacks – Attack Paths and Min Cut. Let Gm,T be the subgraph of G derived
from DuelMIPs′s solution and let n denote the number of edges in I removed. Let Gm,R

be a subgraph of G where n random edges in I are removed. We consider two metrics:
1. How many attack paths are removed by DuelMIPs’s defensive actions. Consider all

paths up to some maximum length in Gm which i) contain at least one edge from I

and ii) that connect a web server (an attack source a) to a database or authentication
server (attack target t), denoted as Pa,t(Gm). The number of removed attack paths is
measured by Gsize(Gm,T) := Pa,t(Gm,T)/Pa,t(Gm) (defined analogously for Gm,R).

2. The variety of attacks available to the attacker. Measured by the relative min-cut

resMin(Gm,T , a, t) := minCut(Gm,T , a, t)−minCut(Gm,F , a, t)
minCut(Gm, a, t)−minCut(Gm,F , a, t)

with resMin(Gm,R,a,t) defined analogously. Define resMin(Gm,T) as the expected value
of resMin(Gm,T , a, t) over all webservers a and database or authentication servers t

with resMin(Gm,R) defined analogously.

5 Experimental Setup

We created synthetic instances that model traffic that would be observed in a moderately
sized data center. The instances utilize the Fat-Tree [3] topology commonly seen in data
centers due to its large aggregate bandwidth, high fault tolerance, and robust scalability.
We use six pods, allowing for 54 endpoint devices to be present with 46 SDN devices. We
consider these endpoint devices to be servers in our experiments.

Network Topology, F +, and F −. We assign roles to the servers in each of the six pods.
The required and restricted communication patterns are based around these roles, this is
found in Table 2. All evaluation considers three variants: no wildcards, at most one wildcard
per rule, and at most two wildcards. No incidental flows are possible when no wildcards are
used, i.e. I = ∅. The parameters in the objective are set as α0 = 10 and α1 = 1.

The routing model evaluation is based on 15 instances. Callbacks were used to terminate
an optimization if the optimality gap was within 5% and the runtime had exceeded 3 hours.

Trust Inputs. Each network device was assigned a mass based on role. Maximum mass
for web, application, content, database, and authentication devices is 1, 2, 3, 3, 4 respectively.
Mass is drawn uniformly from the interval [m

2 , ..., m]. All event nodes are lifted to a height

CP 2022

17:14 DUELMIPs: Optimizing SDN Functionality and Security

Table 3 Optimization and functional assessments for routing model solutions when varying the
number of wildcards in the rule header. The 15 instances were each evaluated with all three settings.

0 wildcards ≤ 1 wildcards ≤ 2 wildcards
Optimization µ min max µ min max µ min max
Solve Time (s) 51 48 54 8.1K 910 12.6K 11.3K 10.8K 13.2K
Optimality Gap (%) 0 0 0 0 0 0 2 2 3
Millions of Variables 6.08 6.08 6.09 7.65 7.65 7.66 7.71 7.70 7.71
Millions of Constraints 1.75 1.73 1.76 2.33 2.30 2.35 2.90 2.87 2.93
Functional µ min max µ min max µ min max
Norm Path Length 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.3
Norm # of Rules 1.0 1.0 1.0 .47 .46 .49 .51 .41 .60
of Wildcard Rules 0 0 0 606 590 627 577 460 800
Total Rules 1340 1310 1360 627 612 647 677 546 803

of 8 (maximum height of 10). A height of 10 would reflect a node certainly compromised and
which should be islanded outright. In all instances, the elasticity constants for strings were
set to 1 to simplify the analysis of the outputs. The maximum length for any connection was
set to 8 to allow nodes to rest on the ground if appropriate defensive actions are taken.

Trust Objective Parameters. In the trust model objective, we set β0 = 10, the penalty
associated to the trust loss (height) of a node, β1 = 1 for simplicity, and each firewall rule
added to an SDN device induced a penalty cost (γf) based on the protocol being blocked.
Specifically, for HTTP and RPC firewalls, the penalty was set to 1. For SQL traffic, the penalty
was 2. Finally, for LDAP, the penalty was 3. Adding firewalls that filter packets using critical
protocols would be more likely to impact overall function.

Trust Optimization. The generated network configurations were given to the trust model
for analysis. Only the solutions from the one wildcard and two wildcard methodologies
were considered. That is, I = ∅ if no wildcards are used. The LNS strategy presented in
Algorithm 1 was used with a time limit of five minutes.

6 Results

All evaluations were conducted on a Linux machine equipped with an Intel Xeon CPU
E5-2620 2.00 GHz and 64GB of RAM. The MIP solver used was Gurobi Optimizer 9.1.

Routing. Here we ask if DuelMIPs’s routing stage: 1) produces solutions are output
quickly, 2) generates good configurations, and 3) produces rulesets that are lighter or less
complex than fully-specific rulesets. The routing model assessment is in Table 3.

Increasing wildcard usage significantly affects the model size and solving time. Yet, even
with up to 2 wildcards, this remains acceptable for use in network planning.

With no wildcards, all rules used the shortest path, and all restricted flows were blocked
at the first available SDN device. When wildcards are allowed, the number of rules decreases.
Interestingly, adopting 2 wildcards per rule does not deliver any further rule set compression
In some instances, we even observed an increase in the total number of rules when compared
to 1 wildcard. The ruleset size increases were due to Equation 15 (fully specified rules had
to be added alongside some 2 wildcard rules to prevent its violation), but were outweighed
by the improvements to the usability of the rulesets. Indeed, recall that ruleset size is

T. Curry, G. De Pace, B. Fuller, L. Michel, and Y. Sun 17:15

not the sole indicator of usability. A larger ruleset comprised of simple-to-understand two
wildcard rules could be considered more usable than a smaller ruleset that contains mainly
one wildcard rules.

A Python implementation of the state machine from [5] is used to detect conflicts.
DuelMIPs includes the constraint that each required flow matches at most one wildcard
rule. Two wildcard rules are correlated due to Equation 15. Thus, DuelMIPs can output non-
wildcard rules first, followed by wildcard rules without any risk of correlations. DuelMIPs
may exhibit correlation and generalization, it should never exhibit Irrelevance, Shadowing,
or Redundancy. This was confirmed in all experiments. The 1 wildcard instances displayed
an average of 21 generalizations and 10 correlations and 2 wildcard instances displayed an
average of 23 generalizations and 26 correlations. This slight increase is due to more general
rules that require (potentially multiple) specific rules to handle exceptions.

Trust. The Trust model takes a routing solution, a set of incidental flows, and an event
node referred to as a potentially compromised host. It must produce recommendations
for reducing collateral damage. The Trust Model runs in at most five minutes which is
appropriate. In many instances, the LNS uses several hundred iterations to get those results.
Table 4 shows results, averaging over the 54 potential security events, for each of the 15
routing instances that use up to 1 or 2 wildcards, respectively.

The optimizer drastically affects the height of nodes. For the routing solutions using at
most 1 wildcard, we see most hosts shift from High to Medium or Low to vLow. The result
is more dramatic with 2 wildcards with hosts shifting from High to vLow. This is achieved
by blocking only 1% of incidental flows in the 1 wildcard case, and, on average, 3% of the
incidental flows in the 2 wildcard case. No required flows are blocked.
Potential Attacks The trust model recommendations reduce an adversary’s ability to pivot
in the network. In Table 5, we consider the trust model’s output when a web server is
the event node. In both wildcard settings, the incidental flows that DuelMIPs decides
to firewall meaningfully reduce an attacker’s potential attack paths (see Section 4 for the
metric definition). Here the maximum path length is five nodes, which accounts for up to 5
pivots (most attacks use only a handful [7]) The two wildcard setting allows an attacker more
freedom to pivot in the network. It is important that the trust model’s recommendations
improve the security metrics more. This is confirmed. In either setting, DuelMIPs’s choices
are superior to removing random edges. This indicates that the trust model appropriately
considers the network structure when choosing which flows to block.

7 Conclusion

This work presents DuelMIPs, a two stage optimization approach. The first model, which
focuses on routing, is an IP that creates SDN rules for a moderate size data center network
in at most a few hours. The Routing Model outputs are functional and usable. By using
wildcards intelligently, the routing model is able to compress rule sets at the cost of allowing
some extraneous flows to be routed through the network.

The second model is a MIP that focuses on Trust. It is run in response to an identified
compromise and considers residual trust loss due to the extraneous flows created by the
Routing Model. It quickly creates recommendations that prevent an attacker from spreading
to other similar nodes. To retain tractability it utilizes LNS.

This work focused on the complex task of balancing SDN rulesets for functionality,
usability, and trust. The Routing and Trust models are coupled through the set of extraneous
flows. As mentioned in Section 3.2, other notions of similarity can be used to model other

CP 2022

17:16 DUELMIPs: Optimizing SDN Functionality and Security

Table 4 The average number of hosts within each trust reduction classification for each 1 and 2
wildcard routing configuration given to the trust model. Note that each cell is averaged over all 54
possible singleton trust reduction events. For each level in Level∆ = LevelF − Levelℵ.

1 wildcard 2 wildcard
Instance High∆ Med∆ Low∆ vLow∆ High∆ Med∆ Low∆ vLow∆

1 -8 6 -1 3 -14 -21 -2 37
2 -8 7 -5 5 -23 -17 9 30
3 -8 7 -3 4 -44 5 9 30
4 -8 7 -2 3 -20 -19 0 38
5 -8 7 -2 3 -27 -1 -3 31
6 -7 6 -1 1 -19 -17 0 36
7 -8 7 -5 5 -27 -13 3 36
8 -9 9 -15 15 -13 -20 -3 35
9 -7 7 -3 3 -36 21 9 6
10 -7 7 -7 7 -14 -23 -1 38
11 -8 8 -6 6 -11 -25 3 33
12 -8 9 -3 2 -23 -10 -3 30
13 -8 6 -1 3 -28 -12 5 35
14 -8 7 -1 2 -20 -24 10 35
15 -8 7 -4 5 -28 -3 -3 34

Table 5 Improvement of subgraph size and residual min-cut for DuelMIPs and random recom-
mendations. Attack source is web server and target is database or authentication server.

≤ 1 wildcards ≤ 2 wildcards
Metric µ σ2 min max µ σ2 min max
Gsize(Gm,T) 0.95 < 0.01 0.84 1.0 0.79 0.01 0.56 1.0
Gsize(Gm,R) 0.97 < 0.01 0.94 0.99 0.97 0.01 0.88 1.0
resMin(Gm,T) 0.95 < 0.01 0.86 1.0 0.31 0.02 0.15 0.69
resMin(Gm,R) 0.99 < 0.01 0.93 1.0 0.95 < 0.01 0.91 0.99

network security best practices. An important piece of future work is understanding the
impact of multiple event nodes on the Trust Model solve time. We see two potential
applications: 1) supporting a response to an attacker that has compromised multiple nodes
and 2) allowing the Trust Model to be useful in the Planning scenario as well. One could
try to preemptively deploy firewall rules that are likely to prevent collateral damage over a
variety of scenarios [13].

References
1 Alfarez Abdul-Rahman and Stephen Hailes. A distributed trust model. In Proceedings of the

1997 workshop on new security paradigms, pages 48–60, 1998.
2 Sugam Agarwal, Murali Kodialam, and TV Lakshman. Traffic engineering in software defined

networks. In 2013 Proceedings IEEE INFOCOM, pages 2211–2219. IEEE, 2013.
3 Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable, commodity

data center network architecture. In Proceedings of the ACM SIGCOMM 2008 Conference
on Data Communication, SIGCOMM ’08, pages 63–74, New York, NY, USA, 2008. ACM.
doi:10.1145/1402958.1402967.

4 Saeed Al-Haj and Ehab Al-Shaer. Measuring firewall security. In 2011 4th Symposium on
Configuration Analytics and Automation (SAFECONFIG), pages 1–4. IEEE, 2011.

5 Ehab S Al-Shaer and Hazem H Hamed. Firewall policy advisor for anomaly discovery and
rule editing. In International Symposium on Integrated Network Management, pages 17–30.
Springer, 2003.

https://doi.org/10.1145/1402958.1402967

T. Curry, G. De Pace, B. Fuller, L. Michel, and Y. Sun 17:17

6 Rashid Amin, Nadir Shah, Babar Shah, and Omar Alfandi. Auto-configuration of acl policy
in case of topology change in hybrid sdn. IEEE Access, 4:9437–9450, 2016.

7 Giovanni Apruzzese, Fabio Pierazzi, Michele Colajanni, and Mirco Marchetti. Detection and
Threat Prioritization of Pivoting Attacks in Large Networks. IEEE Transactions on Emerging
Topics in Computing, 8(2):404–415, April 2020. doi:10.1109/TETC.2017.2764885.

8 Randall J Boyle and Raymond R Panko. Corporate computer security. Pearson, 2015.
9 Jin-Hee Cho, Kevin Chan, and Sibel Adali. A survey on trust modeling. ACM Computing

Surveys (CSUR), 48(2):1–40, 2015.
10 Timothy Curry, Devon Callahan, Benjamin Fuller, and Laurent Michel. DOCSDN: Dynamic

and optimal configuration of software-defined networks. In Australasian Conference on
Information Security and Privacy, pages 456–474. Springer, 2019.

11 George B. Dantzig and Philip Wolfe. Decomposition principle for linear programs. Oper. Res.,
8(1):101–111, February 1960. doi:10.1287/opre.8.1.101.

12 Rup Kumar Deka, Kausthav Pratim Kalita, Dhruba K Bhattacharya, and Jugal K Kalita.
Network defense: Approaches, methods and techniques. Journal of Network and Computer
Applications, 57:71–84, 2015.

13 Ron S Dembo. Scenario optimization. Annals of Operations Research, 30(1):63–80, 1991.
14 Diego Gambetta et al. Can we trust trust. Trust: Making and breaking cooperative relations,

13:213–237, 2000.
15 Ramanthan Guha, Ravi Kumar, Prabhakar Raghavan, and Andrew Tomkins. Propagation of

trust and distrust. In Proceedings of the 13th international conference on World Wide Web,
pages 403–412, 2004.

16 Guibing Guo, Jie Zhang, and Neil Yorke-Smith. Leveraging multiviews of trust and similarity
to enhance clustering-based recommender systems. Knowledge-Based Systems, 74:14–27, 2015.

17 Jun He and Wei Song. Achieving near-optimal traffic engineering in hybrid software defined
networks. In 2015 IFIP Networking Conference (IFIP Networking), pages 1–9. IEEE, 2015.

18 Lance J Hoffman, Kim Lawson-Jenkins, and Jeremy Blum. Trust beyond security: an expanded
trust model. Communications of the ACM, 49(7):94–101, 2006.

19 MHR H.R. Khouzani, Zhengliang Liu, and Pasquale Malacaria. Scalable min-max multi-
objective cyber-security optimisation over probabilistic attack graphs. European Journal of
Operational Research, 278(3):894–903, 2019. doi:10.1016/j.ejor.2019.04.035.

20 Ansam Khraisat, Iqbal Gondal, Peter Vamplew, and Joarder Kamruzzaman. Survey of
intrusion detection systems: techniques, datasets and challenges. Cybersecurity, 2(1):1–22,
2019.

21 Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and P Brighten Godfrey.
Veriflow: Verifying network-wide invariants in real time. In 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 13), pages 15–27, 2013.

22 Man Yue Mo. One day short of a full chain: Real world exploit chains explained, March 2021.
URL: https://github.blog/2021-03-24-real-world-exploit-chains-explained/.

23 John Moy. Rfc2328: Ospf version 2, 1998.
24 Xuan-Nam Nguyen, Damien Saucez, Chadi Barakat, and Thierry Turletti. Officer: A general

optimization framework for openflow rule allocation and endpoint policy enforcement. In 2015
IEEE Conference on Computer Communications (INFOCOM), pages 478–486. IEEE, 2015.

25 Ahmed Patel, Qais Qassim, and Christopher Wills. A survey of intrusion detection and
prevention systems. Information Management & Computer Security, 2010.

26 Jon Postel. Internet protocol—darpa internet program protocol specification, rfc 791, 1981.
27 Yakov Rekhter, Tony Li, Susan Hares, et al. A border gateway protocol 4 (bgp-4), 1994.
28 Myriana Rifai, Nicolas Huin, Christelle Caillouet, Frédéric Giroire, D Lopez-Pacheco, Joanna

Moulierac, and Guillaume Urvoy-Keller. Too many sdn rules? compress them with minnie. In
2015 IEEE Global Communications Conference (GLOBECOM), pages 1–7. IEEE, 2015.

29 Karen Scarfone, Wayne Jansen, Miles Tracy, et al. Guide to general server security. NIST
Special Publication, 800(123), 2008.

CP 2022

https://doi.org/10.1109/TETC.2017.2764885
https://doi.org/10.1287/opre.8.1.101
https://doi.org/10.1016/j.ejor.2019.04.035
https://github.blog/2021-03-24-real-world-exploit-chains-explained/

17:18 DUELMIPs: Optimizing SDN Functionality and Security

30 P. Shaw. Using Constraint Programming and Local Search Methods to Solve Vehicle Routing
Problems. In Proceedings of Fourth International Conference on the Principles and Practice
of Constraint Programming (CP’98), pages 417–431. Springer Verlag, October 1998.

31 Yan Lindsay Sun, Wei Yu, Zhu Han, and KJ Ray Liu. Information theoretic framework
of trust modeling and evaluation for ad hoc networks. IEEE Journal on Selected Areas in
Communications, 24(2):305–317, 2006.

32 Stefano Vissicchio, Laurent Vanbever, Luca Cittadini, Geoffrey G Xie, and Olivier Bonaventure.
Safe update of hybrid sdn networks. IEEE/ACM Transactions on Networking, 25(3):1649–1662,
2017.

33 Artem Voronkov, Leonardo A Martucci, and Stefan Lindskog. Measuring the usability of
firewall rule sets. IEEE Access, 8:27106–27121, 2020.

34 John Wack, Ken Cutler, and Jamie Pole. Guidelines on firewalls and firewall policy. Technical
report, BOOZ-ALLEN AND HAMILTON INC MCLEAN VA, 2002.

35 Lei Wang, Qing Li, Yong Jiang, and Jianping Wu. Towards mitigating link flooding attack via
incremental sdn deployment. In 2016 IEEE Symposium on Computers and Communication
(ISCC), pages 397–402. IEEE, 2016.

36 Wen Wang, Wenbo He, and Jinshu Su. Enhancing the effectiveness of traffic engineering in
hybrid sdn. In 2017 IEEE International Conference on Communications (ICC), pages 1–6.
IEEE, 2017.

37 Yonghong Wang and Munindar P Singh. Formal trust model for multiagent systems. In IJCAI,
volume 7, pages 1551–1556, 2007.

38 Tina Wong. On the usability of firewall configuration. In Symposium on usable privacy and
security, 2008.

39 Avishai Wool. A quantitative study of firewall configuration errors. Computer, 37(6):62–67,
2004.

40 Cai-Nicolas Ziegler and Georg Lausen. Analyzing correlation between trust and user similarity
in online communities. In International Conference on Trust Management, pages 251–265.
Springer, 2004.

A Framework for Generating Informative
Benchmark Instances
Nguyen Dang #

School of Computer Science, University of St Andrews, UK

Özgür Akgün #

School of Computer Science, University of St Andrews, UK

Joan Espasa #

School of Computer Science, University of St Andrews, UK

Ian Miguel #

School of Computer Science, University of St Andrews, UK

Peter Nightingale #

Department of Computer Science, University of York, UK

Abstract
Benchmarking is an important tool for assessing the relative performance of alternative solving ap-
proaches. However, the utility of benchmarking is limited by the quantity and quality of the available
problem instances. Modern constraint programming languages typically allow the specification of a
class-level model that is parameterised over instance data. This separation presents an opportunity
for automated approaches to generate instance data that define instances that are graded (solvable
at a certain difficulty level for a solver) or can discriminate between two solving approaches. In this
paper, we introduce a framework that combines these two properties to generate a large number of
benchmark instances, purposely generated for effective and informative benchmarking. We use five
problems that were used in the MiniZinc competition to demonstrate the usage of our framework.
In addition to producing a ranking among solvers, our framework gives a broader understanding of
the behaviour of each solver for the whole instance space; for example by finding subsets of instances
where the solver performance significantly varies from its average performance.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming

Keywords and phrases Instance generation, Benchmarking, Constraint Programming

Digital Object Identifier 10.4230/LIPIcs.CP.2022.18

Supplementary Material Software (Source Code): https://github.com/stacs-cp/AutoIG

Funding This work uses the Cirrus UK National Tier-2 HPC Service at EPCC (http://www.cirrus.
ac.uk) funded by the University of Edinburgh and EPSRC (EP/P020267/1).
Nguyen Dang: is a Leverhulme Early Career Fellow.
Ian Miguel: supported by EPSRC EP/V027182/1.

1 Introduction

A practitioner faced with solving a new problem has a difficult choice among many solving
algorithms, whose performance on the new problem is unknown and is likely to be variable.
One approach is to draw instances from the problem to benchmark the various solvers under
consideration, i.e. an empirical study of relative performance. This approach is favoured for
computationally challenging tasks since the performance behaviour of a non-trivial algorithm
is difficult to predict and is unlikely to be susceptible to a purely theoretical analysis [10].
As Beiranvand et al. [11] argue, care must be taken to select an instance set with a variety of
difficulty for benchmarking in order to obtain the best insight into solver performance.

© Nguyen Dang, Özgür Akgün, Joan Espasa, Ian Miguel, and Peter Nightingale;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 18; pp. 18:1–18:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nttd@st-andrews.ac.uk
https://orcid.org/0000-0002-2693-6953
mailto:ozgur.akgun@st-andrews.ac.uk
https://orcid.org/0000-0001-9519-938X
mailto:jea20@st-andrews.ac.uk
https://orcid.org/0000-0002-9021-3047
mailto:ijm@st-andrews.ac.uk
https://orcid.org/0000-0002-6930-2686
mailto:peter.nightingale@york.ac.uk
https://orcid.org/0000-0002-5052-8634
https://doi.org/10.4230/LIPIcs.CP.2022.18
https://github.com/stacs-cp/AutoIG
http://www.cirrus.ac.uk
http://www.cirrus.ac.uk
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 A Framework for Generating Informative Benchmark Instances

Problem
specification

Instance
generator

model

OR Tools
graded

instances

Picat-SAT
graded

instances

Chuffed
graded

instances

Combined
graded

instances

Intermediate
results

Discriminating
results

Graded
instance

generation

Evaluating all
solvers

Discriminating
instance

generation

Yuck graded
instances

Figure 1 Flowchart of the whole AutoIG application process.

Constraint programming (CP) approaches particularly benefit from empirical analysis,
since modern tool chains like MiniZinc [34] and savilerow [35] support targeting multiple
solvers from a solver-independent constraint model. These may be entirely different paradigms,
such as SAT [13], SMT [9] or indeed CP, and so can vary in performance significantly.

The need for empirical benchmarking is further supported by competitions run by several
research communities, like the MiniZinc challenge [44] in the CP community, the SAT
competition [18] and the AI planning competition [47]. Solver developers enter a competition
by providing a default configuration of their solver. Each solver supports a common interface
for specifying their input and output. The competition is then run on a set of problem
instances and the solvers are ranked with respect to their comparative performance.

In the main solver competition for CP, the MiniZinc challenge, each solver is given two
inputs: a solver-independent problem-level model and instance data written in a separate
data file. Then MiniZinc is used to instantiate and translate the solver-independent model
into input suitable for each solver. The main result of the challenge is a ranking of solvers.
More detailed results pertaining to the ranking of solvers per problem class are also published.

The selection of problem instances to be used in a competition is extremely important to
avoid conclusions that are unintentionally biased towards the chosen instances. Competitions
somewhat mitigate this problem by inviting solver authors to submit benchmark instances.
This is a promising sociotechnical attempt at alleviating the problem of bias, but it is
laborious and does not provide a comprehensive solution.

Benchmarking is not only useful for finding an overall ranking among options, but also
for finding subsets of instances where the performance of a solver is significantly different
from the performance of the same solver overall. For example, solver A might perform better
for most instances of a problem class in comparison with B, yet perform very poorly for a
particular subset of the instances. Information like this can be extremely valuable to solver
developers. A traditional competition that works by running all solvers on a fixed set of
instances can occasionally detect such cases even though it does not actively look for them.

For an informative benchmark we need a sufficient quantity of high quality instances
and the ability to dynamically explore subsets of the instance space to detect performance
discrimination. In this work we present AutoIG, a constraint-based instance generation
framework, that supports automatically generating graded instances (i.e., solvable at a certain
difficulty level for a given solver), and finding discriminating instances (i.e. easy for one
solver and difficult for another solver). In combination, these two methods can be used to
generate a large number of high-quality instances. Furthermore, they can be used to find
interesting subsets of the instance space as opposed to leaving their discovery to chance.

Figure 1 gives a flowchart for an end-to-end application of AutoIG, whose instance
generation process is explained in Section 3. Without loss of generality, the flowchart lists the
four solvers used for the evaluation of AutoIG in this paper. Section 4 explains the choice

N. Dang, Ö. Akgün, J. Espasa, I. Miguel, and P. Nightingale 18:3

of these solvers and the five problem classes we use. Both stages of AutoIG can be applied
to other solvers and solver configurations. The AutoIG process has two main inputs: a
problem specification (in the form of a MiniZinc model in this paper) and a problem specific
instance generator. The instance generator is parameterised to allow AutoIG to generate a
variety of instances. There are two main places where we can extract results from AutoIG,
evaluating all solvers on the combined set of graded instances (marked intermediate results in
the flowchart, see Section 6) and evaluating the results of discriminating instances (marked
discriminating results in the flowchart, see Section 7). AutoIG source code and all data and
models used in this paper are available at https://github.com/stacs-cp/AutoIG.

The main contributions of this paper include:
1. A novel constraint-based framework for generating informative benchmark instances

which combines two approaches (graded and discriminating instance generation) that
were previously used in isolation [4, 3].

2. Support for MiniZinc and hand-written instance generators. The new system accepts a
user-defined generator as a constraint model, thus allowing problem-specific knowledge to
be injected into the instance generation process.

3. Support for the evaluation of local search solvers in addition to systematic solvers. The
instance evaluation also considers both solution quality and running time.

4. An extensive evaluation on five problems from the MiniZinc challenge, showing that we
can gain new interesting insights that complement the competition’s results.

2 Related Work

A series of papers uses evolutionary algorithms and applies instance space analysis methods to
problems in machine learning (classification [32], regression [33], clustering [17]) and in com-
binatorial optimisation (personnel scheduling [24], bin packing [27], course timetabling [16]).
They use evolutionary algorithms to generate problem instances [43, 42], whereas we take a
constraint-based approach. Part of their work is analysing existing instances in benchmark
suites and visualising the hardness distribution of instances for particular problems; our
framework can be fruitfully combined with their detailed analysis and visualisation methods.

Instance generators have been applied to hard problems in Operations Research as well.
For example, NSPLib [48] provides an instance generator and large sets of nurse rostering
instances. Their instance generator characterizes an instance through various complexity
indicators, including problem sizes, preference distribution measures, coverage distribution
measures, and time related constraints. They implement a dedicated procedure for generating
instances with properties corresponding to the values of specific indicators as parameters.
For the knapsack problem, [37] uses instance generators to identify the regions of the instance
space that contain difficult instances. For the traveling thieves problem, [14] uses instance
generators that discriminate between more than two options simultaneously.

In communities such as SAT, there have been various works [41, 21] that try to address
the generation of instances with desired properties. The SAT competition [19] organisers
partly crowdsource the creation of the evaluation set. They require participants to send 20
new instances each, guaranteeing that the competition is run on instances mostly unseen to
the solver developers prior to the competition. In addition, a set of previously used instances
is manually and carefully selected, using various criteria such as hardness and variety.

The problem of generating a good set of benchmark instances is also studied in the AI
planning community [45]. SMAC [23], a tool for optimizing algorithm parameters, is paired
with hand-coded programs to generate many sets of instances that smoothly scale in difficulty.

CP 2022

https://github.com/stacs-cp/AutoIG

18:4 A Framework for Generating Informative Benchmark Instances

Figure 2 An illustration of irace’s tuning process.

Afterwards, a subset of the generated sets is selected, according to various criteria such as
difficulty and fairness. This results in a set of instances that better reflect the differences
between planners when compared to the instances used in the competition.

A related field of study is algorithm configuration/selection, including portfolio-based
approaches (SATZilla [49, 50], CPHydra [36], sunny-CP [8, 28]). For these purposes it is
important to have a sufficient number of instances with a variety of difficulties that can
discriminate between the options [39].

3 Constraint-based Automated Instance Generation

Following the approaches in [4] and [3], our instance generation system AutoIG makes use
of the essence constraint modelling pipeline [1] and the automated algorithm configurator
irace [29]. The system receives as input a problem description model, a parameterised
instance generator written as a constraint model (referred to as the generator model), the
solver(s) for which we want to generate graded or discriminating instances, and the types of
instances we are interested in (SAT or UNSAT or both). The role of the essence pipeline is
to express the generator model and to create candidate instances by solving instances of the
generator model (referred to as generator instances), while the role of irace is to search in
the parameter space of the generator model, or in other words, to sample in the generator
instance space, to find configurations that can give us candidate instances with the desired
properties. In this section, we first describe the search procedure of irace (Section 3.1). We
then explain how irace and constraint modelling are combined in the instance generation
process of AutoIG (Section 3.2). Finally, we discuss in detail how each candidate instance
is evaluated during AutoIG search using gradedness or discriminating criteria (Section 3.3).

3.1 irace’s Tuning Process
irace [29] is a general-purpose automated algorithm configuration tool for finding the best
configurations of a parameterised algorithm. One of its key ideas is racing [30]: using
statistical tests to eliminate poor configurations early, avoiding wasting computational budget
on less promising areas of the configuration space. irace leverages this idea with an iterated
procedure where each iteration is a race among several configurations. Figure 2 illustrates
irace’s tuning process. At the first iteration, a number of random configurations are
generated, and a race started by evaluating all configurations on a subset of a given instance
set, on a number of random seeds if the algorithm studied is stochastic, or a combination
of both. A statistical test is applied to identify and eliminate the worst configurations.
Evaluation proceeds with the remaining configurations and a statistical test is conducted

N. Dang, Ö. Akgün, J. Espasa, I. Miguel, and P. Nightingale 18:5

Listing 1 A fragment of an example for racp problem
1 % --- Fragment of MiniZinc model (succ: the immediate successors of tasks) --
2 array [int(1..n_tasks)] of set of int(1..n_tasks): succ;
3 % --- Fragment of generator model, in Essence ---
4 given n_tasks_t : int(1..60) given s_density : int(1..5)
5 find succ: matrix indexed by [int(1..n_tasks_t)] of set of int(2..n_tasks_t)
6 such that sum([|succ[t]| | t : int(1..n_tasks_t)])/n_tasks_t = s_density
7 % --- Fragment of an example generator instance, in Essence ---
8 letting n_tasks_t = 6 letting s_density = 2
9 % --- Fragment of an example candidate instance, in MiniZinc ---

10 succ = [{2, 4, 5, 6}, {3, 4, 5}, {4, 5, 6}, {6}, {6}, {}];

Algorithm 1 An evaluation of a generator configuration.

1: Input: generator model M , generator instance G, solution history HG

2: Output: penalty p

3: r ← solve(M, G, HG) ▷ solve the generator instance G using the essence pipeline
4: if r is either UNSAT or timeout on savilerow then
5: return +∞ ▷ return a very large penalty, irace will discard G immediately
6: if r is timeout on minion then
7: return 1
8: I ← the instance generated by r

9: Add I into HG

10: p← Evaluate I using either GRADED or DISCRIMINATING procedure
11: return p

again. This is repeated until only a few good configurations remain or when the budget for
the current race has been used. The race is then finished and the surviving configurations
are used to update a sampling model. In the next iteration, new configurations are generated
based on the updated sampling model and a new race is started. Tuning terminates when a
given number of evaluations is exhausted, and the best configuration(s) recorded are returned.

3.2 AutoIG’s Instance Generation Process
We give an example of the instance generation process in Listing 1, based on racp (see

Section 4 for details). Fragments of a problem description model, a generator model, a
generator instance, and a candidate instance are shown. In this example, a parameter (succ)
of the problem description model (line 2) is written as a decision variable in the generator
model (line 5). The creation of succ is controlled by tunable integer parameters of the
generator model: n_tasks_t (equivalent to n_tasks in the original problem description); and
s_density. Given an instance of the generator model sampled by irace (line 8), a candidate
instance (line 10) can be created by solving the generator instance.

AutoIG utilises irace for searching in the configuration space of the generator model.
The instance generation process starts with irace creating a number of random generator
configurations (a configuration is an instance of the generator model, or in short, a generator
instance). Each configuration is then evaluated using the procedure described in Algorithm 1
and a penalty is given back to irace for the statistical test. The tuning of irace then
proceeds as normal, interleaving using constraint solving to generate new instances and to
evaluate them, and using feedback from the evaluation process to eliminate non-promising
configurations and to update the sampling model.

CP 2022

18:6 A Framework for Generating Informative Benchmark Instances

Algorithm 2 An evaluation of an instance using gradedness criteria.

1: Input: problem specification P , instance I, solver S, minimum solving time tmin,
maximum solving time tmax, instance types T (that we are interested in)

2: Output: penalty p

3: procedure Graded(P, I, S, tmin, tmax, T)
4: r ← solve(P, I, S, tmax) ▷ solve I using S with time limit tmax, save results to r

5: if solving_time(r) < tmin or r is timeout then
6: return 0 ▷ I is either too easy or too difficult for S

7: if instance_type(r) ̸∈ T then
8: return 0 ▷ I is not the instance type we are interested in
9: return -1

During each configuration evaluation, the generator instance G is first solved via the
essence pipeline (line 3 of Algorithm 1), whose solving procedure includes two translation
steps by the automated constraint modelling tool conjure [6, 5] and by savilerow followed
by a call to the constraint solver minion [20]. If G is unsatisfiable or if it is too large to
go through the pipeline, a very large penalty is returned so that irace will remove the
configuration from the current race immediately (line 5). If G is not solved by minion within
the current evaluation, a penalty of 1 is returned. Otherwise, the new candidate instance I

is added to the solution history of G to ensure that in the subsequent evaluations of this
configuration, the same instance will not be generated again. Solution history is implemented
via adding a negative constraint table into the minion input of G, and this table is constantly
updated every time G is evaluated during the tuning. Finally, the candidate instance I is
evaluated using one of the two instance evaluation procedures described in Algorithm 2 (for
graded instance generation) or Algorithm 3 (for discriminating instance generation), and
the corresponding penalty is returned to irace. Note that the default setting of irace uses
the Friedman test, a rank-based statistical test. This is also the setting used by AutoIG,
i.e., the magnitude of difference in the penalty values between evaluations is not taken into
account, only the rankings between them matter.

3.3 Evaluating Graded and Discriminating Instances
AutoIG’s instance generation process depends heavily on an effective way of evaluating the
quality of candidate instances. In this section, we describe the algorithms used for evaluating
whether each candidate instance is graded or for measuring their discriminating power. The
algorithms given in this section are invoked in line 10 of Algorithm 1.

To evaluate whether a candidate instance is graded, we employ Algorithm 2. This
algorithm has 6 inputs: a problem specification P of the problem under study, an instance I

and a solver S to be evaluated, the range of solving times (tmin and tmax) for the instance to
be considered graded for S (to avoid instances that are too easy or too hard to solve), and
the type of instances (T) that we are interested in (either satisfiable, unsatisfiable, or both).
The instance is first solved by S (line 4) (See Algorithm 2). Results of the solving (r) include
the status of the solving process (timeout/UNSAT/SAT), and the returned solution I (if
status is SAT). In our experiments S is called via the MiniZinc toolchain. For complete
solvers, we use the amount of time to solve the instance to completion (i.e., with a claim
of optimality for optimisation problems, or with a feasible solution returned for decision
problems or a claim of unsatisfiablity). For local search solvers such as Yuck, since a proof
of optimality cannot be achieved for optimisation problems, we use an external complete

N. Dang, Ö. Akgün, J. Espasa, I. Miguel, and P. Nightingale 18:7

Algorithm 3 An evaluation of an instance using discriminating criteria.

1: Input: problem specification P , instance I, favoured solver SF , base solver SB , minimum
solving time tmin (for B only), maximum solving time tmax, instance types T

2: Output: penalty p

3: procedure Discriminating(P, I, SF , SB , tmin, tmax, T)
4: rF ← solve(P, I, SF , tmax) ▷ solve I using SF with time limit tmax

5: rB ← solve(P, I, SB , tmax) ▷ solve I using SB with time limit tmax

6: if rF is timeout or instance_type(rF) ̸∈ T or solving_time(rB) < tmin then
7: return 0 ▷ I is either too difficult for SF , or not the right instance type, or too

easy for SB

8: scoreF , scoreB ← MiniZinc_Score(SF , SB , P, I)
9: if scoreF = 0 and scoreB = 0 then

10: return 0
11: return −scoreF /scoreB ▷ When scoreB = 0, returns large negative number.

solver (called the “oracle”) to solve the instance to optimality (with a much longer time limit
than tmax), and use that to measure the time until S first finds the optimal solution. If the
instance turns out to be too easy for S or if the solving process times out (line 5) or the
instance type is not interesting to the users (line 7), a penalty of 0 is given back to irace.
Otherwise, the instance is considered graded and a negative penalty of −1 is returned.

Algorithm 3 is used for evaluating the discriminating power of an instance between two
solvers. Each evaluation requires two input solvers: a favoured solver SF and a base solver
SB. We want to find instances that are easy to solve by SF , while being difficult for SB.
The idea is to measure the performance of both solvers on the same instance, and search for
instances that maximise the difference in performance. To avoid cases where the performance
difference may be due to time measurement sensitivity, we impose a minimum solving time
tmin on the base solver SB, i.e., the discriminating instances must be non-trivial to solve
by SB . Similar to the gradedness evaluation, AutoIG also allows focusing on a particular
instance type during the generation process.

The evaluation of the discriminating property starts by applying SF and SB on the
given instance (lines 4 and 5, Algorithm 3). If the instance does not satisfy our acceptance
conditions (incorrect type, too easy for the base solver SB or unsolvable by the favoured
solver SF (line 6)) a penalty of 0 is returned. Otherwise, we calculate the discriminating
power of the instance and use it as feedback to irace. The discriminating power is calculated
as the ratio between the performance of the favoured solver and the base solver, and the aim
of the tuning process is to maximise this ratio. To take into account both solving time and
solution quality when evaluating the performance of a solver, we use the complete scoring
approach of the MiniZinc competitions. After calculating the MiniZinc scores of both
solvers (line 8), the discriminating score is calculated as the MiniZinc score of SF divided by
the MiniZinc score of SB and the negation of that ratio is returned to irace (line 11). Note
that when both MiniZinc scores are equal to 0, the discriminating score is set to 0 (line 10).

The MiniZinc (complete) score for calculating the relative performance of two solvers
on an instance can be found on the competition website (https://www.minizinc.org/
challenge2021/rules2021.html#assessment). For completeness, in the rest of this section
we will describe this score calculation in detail.

Given a solver S, a problem model P and an instance I, the following information is
collected for the calculation: time(S, P, I) – the solving time of S on I; solved(S, P, I) –
whether a correct solution or a correct unsatisfiability result for I is returned by S; qual-

CP 2022

https://www.minizinc.org/challenge2021/rules2021.html#assessment
https://www.minizinc.org/challenge2021/rules2021.html#assessment

18:8 A Framework for Generating Informative Benchmark Instances

Algorithm 4 Check whether one solver performs better than another in terms of solution quality.

1: Input: solver A, solver B, problem model P , instance I

2: procedure IsBetter(A, B, P, I)
3: if P is a decision problem then
4: return solved(A, P, I) and not solved(B, P, I)
5: else
6: return (solved(A, P, I) and not solved(B, P, I)) or
7: (optimal(A, P, I) and not optimal(B, P, I)) or
8: (quality(A, P, I) is better than quality(B, P, I))

Algorithm 5 MiniZinc score calculation between two solvers.

1: Input: solver A, solver B, problem model P , instance I

2: procedure MiniZinc_Score(A, B, P, I)
3: if IsBetter(A, B, P, I) then
4: scoreA ← 1, scoreB ← 0
5: else if IsBetter(B, A, P, I) then
6: scoreA ← 0, scoreB ← 1
7: else if solved(A, B, P, I) then
8: scoreA ← time(B, P, I)/(time(A, P, I)+time(B, P, I))
9: scoreB ← 1− scoreA

10: else
11: scoreA ← scoreB ← 0
12: return scoreA and scoreB

ity(S, P, I) – the best objective value obtained by S; and optimal(S, P, I) – whether a claim
of optimality is returned by S. Based on those information, the function IsBetter(A, B, P, I)
(Algorithm 4) determines whether solver A is clearly better than solver B in terms of solution
quality, for decision problems (line 4) and for optimisation problems (lines 6-8).

Finally, the MiniZinc complete score when comparing two solvers on an instance I is
calculated in Algorithm 5. The calculation starts with checking whether one of the two
solvers is better than the other in term of solution quality (lines 3-6). If that is not the case,
there are two possibilities. First, I is solved by both solvers, and for optimisation problems,
the same solution quality is achieved by both. In that case the normalised solving times
are used as the scores. Second, both solvers fail to solve I, and in that case a score of 0 is
returned for both. Note that this is slightly different from the scoring used in the MiniZinc
competitions, where the scores of 1 and 0 are given to A and B, respectively. This is because
the final competition ranking is based on the Borda counting system, where the score is
calculated for all pairs of solvers, including the same pair in the opposite order.

4 Case Studies

In this section we describe the five problems that are used to evaluate AutoIG, and also
the set of four solvers that are used in our experiments. The five problems being used in
this study are taken from the latest MiniZinc Challenges. They are chosen with the aim
of covering a variety of different problem properties, including the existence of redundant
and symmetry breaking constraints, the usage of different global constraints, and a range of
problem domains. In this section, we give a brief overview of those problems and how their
instance generation problems are modelled.

N. Dang, Ö. Akgün, J. Espasa, I. Miguel, and P. Nightingale 18:9

Multi-Agent Collaborative Construction problem (macc) [26]. This is a planning problem
that involves constructing a building by placing blocks in a 3D map using multiple identical
agents. Ramps must be built to access the higher levels of the building. The objective is to
minimise the makespan (primary) and the total cost (secondary).

In addition to the basic parameters of a macc instance indicated in the problem specifica-
tion (i.e., the number of agents, the time horizon and the map sizes), the instance generation
process should include information about the building itself as this is likely to affect instance
difficulty. Therefore, two parameters and related constraints are added to the generator
model to represent the density of the building on the ground level and its average height.

Carpet Cutting problem (carpet-cutting). The Carpet Cutting Problem [40] is a packing
problem in which room and stair carpets composed of rectangular sections must be packed
onto a carpet roll of fixed width and whose length must be minimised. The problem is
complicated by the ability to rotate the carpets to aid in the packing process.

This problem requires substantial instance data, including the specification of the con-
stituent rectangles of each carpet, their dimensions, and the permitted carpet rotations.
There are several implicit constraints on this data that are not captured in the original
MiniZinc model and hence these must be injected into the instance generation process
through our generator specification. In particular, the rectangles that comprise a carpet
must not overlap and must form a contiguous shape, as well as have bounded sizes so as to
avoid trivially unsatisfiable instances.

Mario problem (mario). The Maximum Profit Subpath Problem is a routing problem
that requires us to find a path in a graph where the path endpoints are given. This path is
subject to two main constraints, where the sum of weights associated to arcs in the path is
restricted (fuel consumption), while the sum of weights associated to nodes in the path has
to be maximized (reward).

Regarding the instance generation process, in addition to the basic parameters, the amount
of reward per node is represented as a non-negative integer array, while the non-negative cost
for each arc is represented as a 2-dimensional matrix. There are a few implicit constraints
not represented in the MiniZinc model, where the initial and goal nodes are different and
have 0 reward, and the cost matrix is symmetric on the diagonal.

Resource Availability Cost Problem (racp). The Resource Availability Cost Problem [25]
is a scheduling problem with activities that are non-interruptible and have a fixed duration.
The problem includes precedence constraints between pairs of activities i, j (that require
activity i to be completed before activity j begins), arranged in a directed acyclic graph.
There are a set of renewable resources, and each activity (when running) requires a given
amount of each resource. All activities must be completed by a given deadline. Each resource
has a cost per unit, and the objective is to minimise the peak costs of the resources.

The durations of activities, unit costs of resources, and resource demands of activities
are all matrices of integers without complex constraints. However, the precedence graph
(represented as a set of successors for each activity) has implicit constraints that are not
represented in the MiniZinc model. Firstly, it must be acyclic, and we achieve this by
mapping activities to numbered layers and allowing only edges from lower to higher-numbered
layers. Secondly, we ensure that each activity has at least one predecessor and at least one
successor (except the dummy first and last activities).

CP 2022

18:10 A Framework for Generating Informative Benchmark Instances

Discrete Lot Sizing problem (lot-sizing). The Discrete Lot Sizing and Scheduling Problem
[22, 46] (CSPLib 58) requires us to find a production schedule for a set of orders, each with
a due date within a planning horizon. There are various costs associated with production,
such as setup, changeover and stocking costs, the sum of which must be minimised.

This problem requires substantial instance data including the type and due date of each
order, and moreover a table of changeover costs between orders. There are a number of
implicit constraints on this data, including a dummy order type 0 which incurs 0 cost to
change to/from, and the fact that the changeover costs for the remaining order must obey the
triangle inequality. Again, these are not captured in the original MiniZinc model and hence
must be injected into the instance generation process through our generator specification.

We investigate the performance of four solvers, also taken from the MiniZinc challenges,
on the problems described above using our framework. They are chosen such that a variety
of solving techniques and different competition rankings are included. The solvers are:
OR-Tools [2] (version 9.2) – a systematic solver from Google that combines CP, SAT, and
linear programming techniques; Picat-SAT [51] – a SAT compiler for the multi-paradigm
programming language Picat which uses kissat [12] as the underlying SAT solver; Chuffed [15]
(version 0.10.4) – a clause learning CP solver which was not a participant of the challenges
but was used in the score calculation process to rank participating solvers; and Yuck [31]
(version 20210501) – a constraint-based local search solver.

OR-Tools has consistently won the last several competitions and Picat-SAT has received
multiple silver medals. Yuck is the winning solver in the Local Search category of the 2020
and 2021 competitions. However, its ranking was generally low when compared to OR-Tools
and Picat-SAT. In particular, based on the competition data, it was completely dominated
by OR-Tools on the five problems considered.

5 Experimental Setup

The first set of experiments are on generating graded instances. For each problem, we first
generate graded instances for each solver via an AutoIG experiment with a budget of 2, 000
runs. Note that a run is an evaluation of a generator configuration. The gradedness criteria
is defined as being solvable by the given solver with the time ranging from 10 seconds (to
avoid trivial instances) to 20 minutes (the time limit used by the MiniZinc Challenge).
Following the competition approach, MiniZinc translation time is included in the total time
measured. Since Yuck is a local search solver, we use OR-Tools (with a budget of 1 hour)
for checking whether a solution returned by Yuck is optimal. After all graded instances
are collected, we then randomly select 50 graded instances from each experiment to get a
combined benchmark instance set for each problem. Finally, we evaluate the performance of
all four solvers on the combined instance set.

The second set of experiments are on generating discriminating instances. Since OR-Tools
has consistently shown very strong performance on the competition data, the main aim of
these experiments is to see whether we can find instances where OR-Tools is performing
worse than the other two participating solvers being considered. We do this without loss of
generality: our discriminating instance generation procedure can be applied to any pair of
solvers. We compare two solvers (Picat-SAT and Yuck) against OR-Tools. For each solver
we conduct two separate AutoIG experiments, one where we search for instances that are
solved more quickly by OR-Tools and one for the opposite case. The same AutoIG budget
and memory limit as in graded experiments are used. To avoid instances where the difference
between the performance of two solvers is due to fluctuations in running time measurement,
a minimum requirement of 10 seconds is imposed on the solving time of the base solver, i.e.
instances that can be trivially solved by the base solver are discarded.

N. Dang, Ö. Akgün, J. Espasa, I. Miguel, and P. Nightingale 18:11

Figure 3 Number of graded instances generated.

All experiments were performed on a computing node of the High Performance Computing
cluster [name omitted to preserve anonymity]. Each node is equipped with two 2.1 GHz, 18-
core Intel Xeon processors and 256 GB RAM. Each solver except Yuck is given a memory limit
of 8GB via the runsolver tool [38]. For Yuck, the memory limit is controlled directly via
the Java Runtime Environment (JRE). For solving the generator models, time limits of 5 and
10 minutes are given to savilerow and minion, respectively. In this work, we focus on the
Free Track of the competitions. Therefore, all solvers are called via the MiniZinc toolchain
with a single core and with the free search option being passed to the solver. Although
AutoIG supports focusing on generating either only SAT or only UNSAT instances, in this
work we allow both types of instances to be generated.

6 Results on graded instances

First we describe the sets of graded instances produced by AutoIG for the five problems
(Section 6.1) and discuss insights obtained from analysing the results. Then in Section 6.2
we combine the sets of graded instances for each problem, and re-evaluate the four solvers
using the combined sets of instances, showing substantially different relative performance in
some cases compared with the competition instances.

6.1 Graded instance generation
For each problem, Figure 3 shows the number of graded instances obtained per solver within
the given budget. While we can achieve more than a few hundred graded instances in most
cases, there are cases where we are only able to generate a small number of instances. For
example, with OR-Tools on carpet-cutting and mario, we generate only 4 and 1 graded
instances, respectively. In addition, the numbers are fairly small for Yuck on macc and
carpet-cutting. There is a large variation in the number of graded instances we are able
to generate for different problems and solvers (shown in Figure 3).

The differences in the number of graded instances returned by each experiment suggest
that the performance of the solvers varies significantly when solving instances drawn from
the same instance space. In order to better understand the performance distribution of
each solver we investigate the details of the search space of AutoIG. More specifically,
we check the status of each configuration evaluation run and measure their frequency, as
detailed in Figure 4. For OR-Tools on carpet-cutting and mario, only a small number
of graded instances are found, but this same outcome has entirely different causes. For
carpet-cutting, almost half of the runs are with unsolvable generator configurations, and
for the rest the candidate instances are mostly trivially proved unsatisfiable by OR-Tools.
For mario, the majority of the runs produce instances that are trivially satisfiable. Once
we understand the underlying reason for the lack of graded instances, we can rectify each

CP 2022

18:12 A Framework for Generating Informative Benchmark Instances

Figure 4 Frequency of all run statuses, including generator-unsolved (generator instance is UN-
SAT or unsolvable); graded (a graded instance is obtained); too-difficult (the candidate instance
is unsolvable by the considered solver within the time limit); too-easy-SAT and too-easy-UNSAT (the
candidate instance is too easy, i.e., solved within less than 10 seconds); and others (the considered
solver fails due to unexpected errors such as incorrect returned answers).

Figure 5 Solving time of graded instances generated for each pair of problems and solvers. Note
that the instances presented here are the graded instances found for each solver independently. The
performance of these solvers on the combined set of graded instances can be seen in Figure 6.

of these shortcomings: for carpet-cutting, expert knowledge on the problem may be
added as constraints to the generator model to avoid trivially unsatisfiable instances, while
for mario, the current instance space may be too easy for OR-Tools and we may want to
increase the upper bounds of some of the generator parameters. On the other hand, the
situation is completely different for Yuck: the small number of graded instances obtained
for macc and carpet-cutting is largely due to the fact that the majority of instances
generated are too difficult to solve.

In addition to the run statuses, the distribution of solving time of graded instances also
gives us interesting insights into the performance of different solvers, as illustrated in Figure 5.
Notably, many graded instances for mario and racp are close to the lower bound of graded
instances; this is true for all solvers. Nevertheless, AutoIG is able to find challenging graded
instances, which can take several hundred seconds to solve, for all solvers on those two
problems (except for OR-Tools on mario). For carpet-cutting, OR-Tools and Chuffed
can solve most graded instances quickly, while Picat-SAT and Yuck take more time in general.
Finally, for macc and lot-sizing, the solving time distributions of all four solvers are more
well-spread, indicating a good diversity of difficulties among the generated graded instances.

Note that for the majority of graded instances generated, the MiniZinc flattening times
are generally marginal compared to the time taken to solve them. This indicates that the
more difficult graded instances are actually challenging for the solvers themselves, and can
be useful for solver developers to improve their solver performance.

N. Dang, Ö. Akgün, J. Espasa, I. Miguel, and P. Nightingale 18:13

Figure 6 MiniZinc Borda (complete) scores of each solver on the MiniZinc Challenges instance
set (left) and on the combined graded instance set generated by AutoIG (right).

6.2 Comparison of Solver Performance on Graded Instances
We combine all graded instances to construct a diverse set of instances for each problem. We
then evaluate all four solvers on the combined set and rank them using the Borda (complete)
scoring method of the MiniZinc Challenge (https://www.minizinc.org/challenge2021/
rules2021.html). More specifically, for each problem, 50 graded instances are uniformly
sampled from the set of graded instances for each solver. In cases where there are less than
50 graded instances available, we just take them all. For comparison, we also evaluate those
solvers on the instances used in the competition. There are 5-10 instances per problem, as
some problems are re-used over two different competitions.

Figure 6 shows the scores on the competition instances (left) and on the combined graded
instances generated by AutoIG (right). There are similarities between results on the two
sets of instances. Performance of OR-Tools and Chuffed remain strong in most cases, followed
by Picat-SAT. For macc, carpet-cutting and mario, the overall rankings of the four
solvers on both groups are almost the same. However, results on the graded set do show
certain changes in relative performance of all solvers. For example, the scores of Yuck on
the graded instances are no longer zero for macc and carpet-cutting, and the score for
mario increases noticeably. This indicates that Yuck is actually not completely dominated
by all other solvers on those three problems as suggested by the competition data. For racp,
the ranking has changed significantly: OR-Tools swaps places with Chuffed, and Picat-SAT
swaps places with Yuck. For lot-sizing, Picat-SAT is no longer ranked higher than Chuffed.

Thanks to the solution checking process being integrated into each evaluation, we also
found a number of cases from the combined graded sets where incorrect answers are returned,
which can be of separate interest to the solver developers. There were 41 (out of 183) macc
instances and 90 (out of 154) carpet-cutting instances (from the subset of graded instances
generated for other solvers) where Yuck reports objective values of infeasible solutions.

Generating a larger number of graded instances for each solver and analysing them using
the presented methods gives more information in comparison to a typical competition’s result,
which would be a ranking of the solvers. In Section 7 we apply the discriminating instance
generation feature of AutoIG to gain even more insight into solver performance.

7 Results on Discriminating Instances

Results on MiniZinc competition data indicate that OR-Tools is a very strongly performing
solver on the 5 problems considered. It completely dominates Yuck, i.e., Yuck gets zero score
on all competition instances when compared directly to OR-Tools. OR-Tools also wins over
Picat-SAT on all instances of mario and racp, on 9 out of 10 instances of lot-sizing, and

CP 2022

https://www.minizinc.org/challenge2021/rules2021.html
https://www.minizinc.org/challenge2021/rules2021.html

18:14 A Framework for Generating Informative Benchmark Instances

Figure 7 Number of discriminating instances generated per favoured and base solver pair.

Figure 8 Distribution of scores (of the winning solver) on discriminating instances generated.

on 8 out of 10 instances of carpet-cutting. However, detailed results obtained from the
evaluation on graded instances suggest that this may not always be the case. For example,
there are 31 instances evaluated on racp where Picat-SAT performs better than OR-Tools,
and 58 macc instances where Yuck performs better. In this section, we use the discriminating
instance generation feature of AutoIG to get more insights into these cases.

Figure 7 shows the number of discriminating instances generated for the two pairs of
solvers. In the experiments on OR-Tools versus Yuck, AutoIG found 431 macc instances
and 110 racp instances where Yuck gets a better score than OR-Tools, which indicates
that Yuck is not completely dominated by OR-Tools on these two problems. On the other
hand, for carpet-cutting and mario, results suggest that Yuck may indeed be entirely
dominated by OR-Tools, as no instances were found in the experiments that favour Yuck.
Furthermore, for lot-sizing, only 3 discriminating instances favouring Yuck are found.
In the experiment on OR-Tools versus Picat-SAT, OR-Tools shows domination on both
carpet-cutting (only 2 instances where Picat-SAT is better than OR-Tools were found)
and mario (no instances favouring Picat-SAT was found). On the other three problems,
there are a good number of discriminating instances in both directions.

The number of discriminating instances tell us if winning instances for a solver can be
found, but it does not show the magnitude of the difference in performance. We can get
additional insights into comparative performance of the solvers by looking into the detailed
scores of the winning solver on discriminating instances for each experiment. As shown in
Figure 8, for macc, the median lines indicate that for all four cases, several discriminating
instances found have the highest “discriminating power”, i.e., the winning solver gets the
maximum score of 1 (the other solver, in turn, gets zero score). This type of instance is
probably the most interesting for understanding the shortcomings of a particular solver. For
carpet-cutting, on the only 2 discriminating instances where Picat-SAT has better score
than OR-Tools, the score distribution of the corresponding experiment (Picat-SAT>OR-
Tools) suggests that OR-Tools performance is not much worse. This suggests that OR-Tools
indeed dominates Picat-SAT on this problem. A similar conclusion can be reached for Yuck,

N. Dang, Ö. Akgün, J. Espasa, I. Miguel, and P. Nightingale 18:15

i.e., it is clear that OR-Tools is really the dominating solver on carpet-cutting since the
magnitude of the performance difference is very small even for the instances where Yuck is
faster. Similarly, for mario, OR-Tools very clearly dominates in comparison to Picat-SAT
and Yuck, as indicated by the discriminating score distributions. This is in line with what
was observed in the previous section’s results on the same problem.

Interestingly, for racp, although the number of discriminating instances of Picat-
SAT>OR-Tools is larger than of Yuck>OR-Tools as shown in Figure 7, the magnitude
of the performance difference of instances found for Yuck is generally much higher. This
observation gives a new insight that has not been revealed in all previous experiments on
gradedness: even though the performance of Yuck is dominated by other solvers in general
(i.e., it is ranked lower) and it has a smaller number of discriminating instances favouring it,
the magnitude of the performance difference is very large for these instances. This means
there exists a subset of the racp instances where Yuck’s performance is much better than
OR-Tools, while this does not seem to be the case for Picat-SAT.

The insights provided by discriminating instances could be useful in constructing a robust
portfolio of solvers for a given problem. For example, on racp, Yuck is the weakest solver by
a wide margin on the graded instances (see Figure 6) and second-weakest on competition
instances. On the graded instances, Picat-SAT performs considerably better than Yuck.
However, the results with discriminating instances show that Yuck would be a good candidate
to add to a portfolio (alongside OR-Tools) whereas Picat-SAT may not be.

8 Conclusions and Future Work

Assessing the performance of solving methods via benchmark problems is fundamental to
CP research. However, its utility is limited by the availability of problem instances that are
of suitable difficulty, and diverse (not inadvertently favouring one solver over another). We
have shown that our system AutoIG can generate large numbers of informative benchmark
instances graded for difficulty for a single solver, or that can discriminate between two solvers
(favouring one or the other). The only manual part of the AutoIG process is to capture (in
a generator model) any implicit constraints on the instances data.

The essential task of benchmarking is to compare multiple solvers and rank them.
As illustrated in our experiments, AutoIG can be used to generate graded instances
for each solver independently, and these can then be combined into one set of instances,
providing confidence that the generation process does not favour one solver or class of
solvers. Furthermore, we have shown that automatically generated instances can provide
more detailed insights than just a ranking. Instances generated by AutoIG can reveal cases
where a solver is weak or even faulty, providing valuable information to solver developers.
Finally, discriminating instances can reveal parts of the instance space where a generally weak
solver performs well relative to others, and therefore could be useful as part of a portfolio.

There are various directions for future improvement. First, the diversity of instances
found during search can be taken into account to increase the quality of the final instance set.
This would require a definition of diversity, which could be based on problem-specific instance
features or on general constraint programming features such as the fzn2feat features [7].
Secondly, similar to the series of work on Instance Space Analysis (e.g. [32, 24, 16]), a detailed
visualisation of the instance space based on performance data collected from the tuning and
evaluation process of AutoIG would provide further insights into performance of the solvers
under study. Again, instance features would be needed for such analysis.

CP 2022

18:16 A Framework for Generating Informative Benchmark Instances

References
1 essence modelling pipeline:. https://constraintmodelling.org/.
2 Google OR-Tools, 2021. Available from https://github.com/google/or-tools.
3 Özgür Akgün, Nguyen Dang, Ian Miguel, András Z Salamon, Patrick Spracklen, and Chris-

topher Stone. Discriminating instance generation from abstract specifications: A case study
with CP and MIP. In International Conference on Integration of Constraint Programming,
Artificial Intelligence, and Operations Research, pages 41–51. Springer, 2020.

4 Özgür Akgün, Nguyen Dang, Ian Miguel, András Z Salamon, and Christopher Stone. Instance
generation via generator instances. In International Conference on Principles and Practice of
Constraint Programming, pages 3–19. Springer, 2019.

5 Ozgur Akgun, Ian P. Gent, Christopher Jefferson, Ian Miguel, and Peter Nightingale. Breaking
conditional symmetry in automated constraint modelling with Conjure. In Proceedings of the
21st European Conference on Artificial Intelligence (ECAI), pages 3–8, 2014.

6 Ozgur Akgun, Ian Miguel, Christopher Jefferson, Alan M Frisch, and Brahim Hnich. Extensible
Automated Constraint Modelling. In Wolfram Burgard and Dan Roth, editors, AAAI 2011 -
Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2011, San
Francisco, California, USA, August 7-11, 2011. AAAI Press, 2011.

7 Roberto Amadini, Maurizio Gabbrielli, and Jacopo Mauro. An enhanced features extractor
for a portfolio of constraint solvers. In Proceedings of the 29th annual ACM symposium on
applied computing, pages 1357–1359, 2014.

8 Roberto Amadini, Maurizio Gabbrielli, and Jacopo Mauro. SUNNY-CP: a sequential CP
portfolio solver. In Proceedings of the 30th Annual ACM Symposium on Applied Computing,
pages 1861–1867, 2015.

9 Clark Barrett and Cesare Tinelli. Satisfiability modulo theories. In Handbook of model checking,
pages 305–343. Springer, 2018.

10 Thomas Bartz-Beielstein, Carola Doerr, Daan van den Berg, Jakob Bossek, Sowmya
Chandrasekaran, Tome Eftimov, Andreas Fischbach, Pascal Kerschke, William La Cava,
Manuel Lopez-Ibanez, et al. Benchmarking in optimization: Best practice and open issues.
arXiv preprint arXiv:2007.03488, 2020.

11 Vahid Beiranvand, Warren Hare, and Yves Lucet. Best practices for comparing optimization
algorithms. Optimization and Engineering, 18(4):815–848, 2017.

12 Armin Biere, Mathias Fleury, and Maximilian Heisinger. CaDiCaL, Kissat, Paracooba entering
the SAT competition 2021. In T Balyo, N Froleyks, M Heule, M Iser, M Järvisalo, and
M Suda, editors, Proceedings of SAT Competition 2021: Solver and Benchmark Descriptions.
Department of Computer Science Report Series B, vol. B-2021-1, Department of Computer
Science, University of Helsinki, Helsinki, 2021.

13 Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of satisfiability, volume 185.
IOS press, 2009.

14 Jakob Bossek and Markus Wagner. Generating instances with performance differences for
more than just two algorithms. In Proceedings of the Genetic and Evolutionary Computation
Conference Companion, pages 1423–1432, 2021.

15 Geoffrey Chu, Peter J. Stuckey, Andreas Schutt, Thorsten Ehlers, Graeme Gange, and Kathryn
Francis. Chuffed, 2018. Available from https://github.com/chuffed/chuffed/.

16 Arnaud De Coster, Nysret Musliu, Andrea Schaerf, Johannes Schoisswohl, and Kate Smith-
Miles. Algorithm selection and instance space analysis for curriculum-based course timetabling.
Journal of Scheduling, pages 1–24, 2021.

17 Luiz Henrique dos Santos Fernandes, Ana Carolina Lorena, and Kate Smith-Miles. Towards
understanding clustering problems and algorithms: an instance space analysis. Algorithms,
14(3):95, 2021.

18 Nils Froleyks, Marijn Heule, Markus Iser, Matti Järvisalo, and Martin Suda. SAT competition
2020. Artificial Intelligence, 301:103572, 2021.

https://github.com/chuffed/chuffed/

N. Dang, Ö. Akgün, J. Espasa, I. Miguel, and P. Nightingale 18:17

19 Nils Froleyks, Marijn Heule, Markus Iser, Matti Järvisalo, and Martin Suda. SAT competition
2020. Artificial Intelligence, 301:103572, 2021. doi:10.1016/j.artint.2021.103572.

20 Ian P. Gent, Christopher Jefferson, and Ian Miguel. Minion: A fast scalable constraint solver.
In Proceedings ECAI 2006, pages 98–102, 2006.

21 Jesús Giráldez-Cru and Jordi Levy. A modularity-based random SAT instances generator. In
Qiang Yang and Michael J. Wooldridge, editors, Proceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence, IJCAI, pages 1952–1958. AAAI Press, 2015. URL:
http://ijcai.org/Abstract/15/277.

22 Vinasétan Ratheil Houndji, Pierre Schaus, Laurence Wolsey, and Yves Deville. The stockingcost
constraint. In International conference on principles and practice of constraint programming,
pages 382–397. Springer, 2014.

23 Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential model-based optimization
for general algorithm configuration. In Carlos A. Coello Coello, editor, Learning and Intelligent
Optimization - 5th International Conference, LION 5, Rome, Italy, volume 6683 of Lecture
Notes in Computer Science, pages 507–523. Springer, 2011. doi:10.1007/978-3-642-25566-3_
40.

24 Lucas Kletzander, Nysret Musliu, and Kate Smith-Miles. Instance space analysis for a personnel
scheduling problem. Annals of Mathematics and Artificial Intelligence, 89(7):617–637, 2021.

25 Stefan Kreter, Andreas Schutt, Peter J Stuckey, and Jürgen Zimmermann. Mixed-integer
linear programming and constraint programming formulations for solving resource availability
cost problems. European Journal of Operational Research, 266(2):472–486, 2018.

26 Edward Lam, Peter J Stuckey, Sven Koenig, and TK Kumar. Exact approaches to the
multi-agent collective construction problem. In International Conference on Principles and
Practice of Constraint Programming, pages 743–758. Springer, 2020.

27 Kelvin Liu, Kate Smith-Miles, and Alysson Costa. Using instance space analysis to study the
bin packing problem, 2020.

28 Tong Liu, Roberto Amadini, Maurizio Gabbrielli, and Jacopo Mauro. sunny-as2: Enhancing
SUNNY for algorithm selection. Journal of Artificial Intelligence Research, 72:329–376, 2021.

29 Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Mauro Birattari, and
Thomas Stützle. The irace package: Iterated racing for automatic algorithm configuration.
Operations Research Perspectives, 3:43–58, 2016.

30 Oden Maron and Andrew W Moore. The racing algorithm: Model selection for lazy learners.
Artificial Intelligence Review, 11(1):193–225, 1997.

31 Michael Marte. Yuck, 2021. Available from https://github.com/informarte/yuck.
32 Mario A Muñoz, Laura Villanova, Davaatseren Baatar, and Kate Smith-Miles. Instance spaces

for machine learning classification. Machine Learning, 107(1):109–147, 2018.
33 Mario Andrés Muñoz, Tao Yan, Matheus R Leal, Kate Smith-Miles, Ana Carolina Lorena,

Gisele L Pappa, and Rômulo Madureira Rodrigues. An instance space analysis of regression
problems. ACM Transactions on Knowledge Discovery from Data (TKDD), 15(2):1–25, 2021.

34 Nicholas Nethercote, Peter J Stuckey, Ralph Becket, Sebastian Brand, Gregory J Duck,
and Guido Tack. Minizinc: Towards a standard CP modelling language. In International
Conference on Principles and Practice of Constraint Programming, pages 529–543. Springer,
2007.

35 Peter Nightingale, Özgür Akgün, Ian P Gent, Christopher Jefferson, Ian Miguel, and Patrick
Spracklen. Automatically improving constraint models in Savile Row. Artificial Intelligence,
251:35–61, 2017.

36 Eoin O’Mahony, Emmanuel Hebrard, Alan Holland, Conor Nugent, and Barry O’Sullivan.
Using case-based reasoning in an algorithm portfolio for constraint solving. In Irish conference
on artificial intelligence and cognitive science, pages 210–216, 2008.

37 David Pisinger. Where are the hard knapsack problems? Computers & Operations Research,
32(9):2271–2284, 2005.

CP 2022

https://doi.org/10.1016/j.artint.2021.103572
http://ijcai.org/Abstract/15/277
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-25566-3_40

18:18 A Framework for Generating Informative Benchmark Instances

38 Olivier Roussel. Controlling a solver execution with the runsolver tool. Journal on Satisfiability,
Boolean Modeling and Computation, 7(4):139–144, 2011.

39 Marius Schneider and Holger H Hoos. Quantifying homogeneity of instance sets for algorithm
configuration. In International Conference on Learning and Intelligent Optimization, pages
190–204. Springer, 2012.

40 Andreas Schutt, Peter J Stuckey, and Andrew R Verden. Optimal carpet cutting. In
International Conference on Principles and Practice of Constraint Programming, pages 69–84.
Springer, 2011.

41 Bart Selman, David G. Mitchell, and Hector J. Levesque. Generating hard satisfiability
problems. Artificial Intelligence, 81(1-2):17–29, 1996. doi:10.1016/0004-3702(95)00045-3.

42 Kate Smith-Miles, Jeffrey Christiansen, and Mario Andrés Muñoz. Revisiting where are the
hard knapsack problems? via instance space analysis. Computers & Operations Research,
128:105184, 2021.

43 Kate Smith-Miles and Jano van Hemert. Discovering the suitability of optimisation algorithms
by learning from evolved instances. Annals of Mathematics and Artificial Intelligence, 61(2):87–
104, 2011.

44 Peter J Stuckey, Ralph Becket, and Julien Fischer. Philosophy of the MiniZinc challenge.
Constraints, 15(3):307–316, 2010.

45 Alvaro Torralba, Jendrik Seipp, and Silvan Sievers. Automatic instance generation for
classical planning. In Proceedings of the International Conference on Automated Planning and
Scheduling, volume 31, pages 376–384, 2021.

46 Hafiz Ullah and Sultana Parveen. A literature review on inventory lot sizing problems. Global
Journal of Research In Engineering, 10(5), 2010.

47 Mauro Vallati, Lukás Chrpa, and Thomas Leo McCluskey. What you always wanted to know
about the deterministic part of the international planning competition (IPC) 2014 (but were too
afraid to ask). Knowledge Engineering Review, 33:e3, 2018. doi:10.1017/S0269888918000012.

48 Mario Vanhoucke and Broos Maenhout. On the characterization and generation of nurse
scheduling problem instances. European Journal of Operational Research, 196(2):457–467,
2009.

49 Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. SATzilla: portfolio-based
algorithm selection for sat. Journal of artificial intelligence research, 32:565–606, 2008.

50 Lin Xu, Frank Hutter, Jonathan Shen, Holger H Hoos, and Kevin Leyton-Brown. SATzilla2012:
Improved algorithm selection based on cost-sensitive classification models. Proceedings of SAT
Challenge, 2012, 2012.

51 Neng-Fa Zhou and Håkan Kjellerstrand. Optimizing SAT encodings for arithmetic constraints.
In International Conference on Principles and Practice of Constraint Programming, pages
671–686. Springer, 2017.

https://doi.org/10.1016/0004-3702(95)00045-3
https://doi.org/10.1017/S0269888918000012

Sequence Variables for Routing Problems
Augustin Delecluse #

TRAIL, ICTEAM, UCLouvain, Louvain-la-Neuve, Belgium

Pierre Schaus # Ñ

ICTEAM, UCLouvain, Louvain-la-Neuve, Belgium

Pascal Van Hentenryck # Ñ

Georgia Institute of Technology, Atlanta, GA, USA

Abstract
Constraint Programming (CP) is one of the most flexible approaches for modeling and solving vehicle
routing problems (VRP). This paper proposes the sequence variable domain, that is inspired by
the insertion graph introduced in [4] and the subset bound domain for set variables. This domain
representation, which targets VRP applications, allows for an efficient insertion-based search on a
partial tour and the implementation of simple, yet efficient filtering algorithms for constraints that
enforce time-windows on the visits and capacities on the vehicles. Experiment results demonstrate
the efficiency and flexibility of this CP domain for solving some hard VRP problems, including the
Dial-A-Ride, the Patient Transportation, and the asymmetric TSP with time windows.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming

Keywords and phrases Constraint Programming, Dial-A-Ride, Patient Transportation, TSPTW,
Vehicle Routing, Sequence Variables, Insertion Variables

Digital Object Identifier 10.4230/LIPIcs.CP.2022.19

Supplementary Material Software (Source Code): https://github.com/augustindelecluse/minicp
-sequences; archived at swh:1:dir:144eae8f012ef66bb6f2289b1419f48b6779e294

Funding Augustin Delecluse: This work was supported by Service Public de Wallonie Recherche
under grant n°2010235 – ARIAC by DIGITALWALLONIA4.A.

1 Introduction

Vehicle routing problems (VRP) [27] are of great importance for the distribution of goods in
the supply chain. In order to cope with increasing urbanization and ecological challenges, it
is also expected that flexible transport offers for people, such as on-demand transport, will
have to be further developed in the future [12]. This raises new challenges for optimization,
in particular the development of generic and reusable tools in many contexts and variants
of VRP.

Constraint Programming (CP) is one of the most flexible approaches for modeling vehicle
routing problems (VRP). One standard model consists in using the so-called successor model
with one variable for each visit that represents the next visit in the tour of a vehicle [3]. Due
to its simplicity, this model has two practical limitations involving both the modeling and
research components of CP. At the modeling level, it is not straightforward to represent the
optional aspect of some visits in the successor model. This requires the introduction of a fake
vehicle visiting all excluded visits. At the search level, sub-chains formed by fixed successors
do not allow any insertion in the middle of a partial tour during the search. Sub-chains that
are formed close to the root during the search are fixed with little information and hardly
reconsidered in large search spaces explored with a backtracking search. The goal of the
sequence variable is to address those two limitations.
1. It can easily model the exclusion of visits not inserted in a tour similarly to a set variable.
2. Inspired by the idea of the insertion graph [4], it allows the insertion of a visit in the

middle of the partial tour enabling the implementation of a depth first tree search insertion
© Augustin Delecluse, Pierre Schaus, and Pascal Van Hentenryck;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 19; pp. 19:1–19:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:augustin.delecluse@uclouvain.be
https://orcid.org/0000-0001-6285-6515
mailto:pierre.schaus@uclouvain.be
https://www.info.ucl.ac.be/~pschaus/
https://orcid.org/0000-0002-3153-8941
mailto:pvh@isye.gatech.edu
https://sites.gatech.edu/pascal-van-hentenryck/
https://orcid.org/0000-0001-7085-9994
https://doi.org/10.4230/LIPIcs.CP.2022.19
https://github.com/augustindelecluse/minicp-sequences
https://github.com/augustindelecluse/minicp-sequences
https://archive.softwareheritage.org/swh:1:dir:144eae8f012ef66bb6f2289b1419f48b6779e294;origin=https://github.com/augustindelecluse/minicp-sequences;visit=swh:1:snp:9ca127602400d115b955198b36eca5f67851c96e;anchor=swh:1:rev:5cc6eb225c2d8b3ce90dbe31b32b777252a362bb
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Sequence Variables for Routing Problems

exploration algorithm similar to the ones used in [4, 15] to reinsert optimally a set of
relaxed visits in a large neighborhood search (LNS).

We introduce the Sequence Variable domain as well as the mechanism to make the domain
reversible in a trail-based solver. Two important constraints and their associated filtering
algorithms are described: The TransitionTimes constraint links the time window constraints
of the visits to a distance matrix, removing insertions that would process a request outside
of its time window; The Cumulative constraint ensures that the load change performed in
each visit never exceeds the maximum capacity of a vehicle. We model three constrained
VRP problems with the Sequence Variable that are illustrative of the functionality offered
for both the modeling and the search flexibility: The Dial-A-Ride Problem (DARP) [8, 15],
the Patient Transportation Problem (PTP) [5, 19] and the Traveling Salesman Problem with
time windows (TSPTW). Experimental results demonstrate the effectiveness of the approach.
It obtains better results than baseline models with sequences of conditional task interval
variables in CP Optimizer [18] and obtains results competitive with the state-of-the art
results published in the literature on the DARP and PTP. For TSPTW we improve the best
know solutions for 32 out of the 205 instances tested in the standard benchmark suite [20].

The rest of the paper is organised as follows. Section 2 details related work on VRP and
existing Sequence Variables. Section 3 dives into the definition of a Sequence Variable, its
interface and implementation. Section 4 shows how VRP constraints are implemented using
the variable. Lastly, our models and experimental results for DARP, PTP and TSPTW are
presented in Section 5.

2 Related Work

In [26], the authors introduced a Sequence Variable for scheduling and routing problems.
This domain representation directly extends the subset bound domain representation for
set variables [14] by partitioning the visits into a required, possible and excluded set plus a
partial sequence and a set of insertion points. In this work we simplify this idea by getting
rid of the required set. As a consequence, a possible visit must be directly scheduled in
the partial sequence but cannot be required without being inserted in the sequence. This
modification, despite its simplicity, greatly eases the reasoning made by the constraints,
their time complexity and the implementation of search heuristics, while losing little to
no flexibility in practice. The proposed sequence domain can be seen as the making of
the insertion graph idea introduced in [4] more generic and encapsulated as the internal
implementation of the sequence variable domain.

Although not published, IBM ILOG CP Optimizer [18] also proposes sequence variables
to decide the order of visits. The functionalities and constraints of this sequence variable are
briefly described [16, 17], no details are given about the exact implementation. According to
their documentation [6, 7], they use a Head-Tail structure, maintaining a separate growing
head and tail to add new Interval variables to the beginning or end of the sequence, respectively.
The head and tail merge to form the final sequence once no Interval can be added to either
of them. This implementation appears to be similar to Google OR-Tools [23] and its own
Sequence Variables [24]. Although more targeted to scheduling problems, this sequence was
used for solving the PTP in [5] and [19], and is suitable for VRP.

3 Sequence Variable

We first introduce useful notations related to sequences and operations on these. We then
formally define the domain of a sequence variable before considering the practical algorithmic

A. Delecluse, P. Schaus, and P. Van Hentenryck 19:3

details for implementing this domain in a constraint programming solver.

3.1 Sequence notations
The notations are largely borrowed from [26] but reintroduced in this paper for reading
convenience. The set of locations that can be visited by a vehicle are referred to as nodes
and the set of all nodes is denoted as X . A sequence over X is denoted by −→S and the set
of all sequences of X by −→P (X). The sequence −→S defines an order over the elements of S.
The set of elements in the sequence −→S is denoted S. All the entries of the sequence are
different and therefore |−→S | = |S|. The notation p

−→
S

≺ q means that the node p precedes node q

in −→S and p
−→
S−→ q means that p directly precedes q in −→S . Those notations are simply written

p ≺ q and p −→ q when clear from the context. If the nodes can be equal, the relation is
written p ⪯ q. A sequence can be grown by using an insertion operation insert(−→S , p, q) with
p ∈ S, q /∈ S that results in inserting q just right after p in the sequence. More exactly
assuming −→S = −→S 1 · p ·

−→
S 2 the resulting super-sequence is −→S ′ = −→S 1 · p · q ·

−→
S 2. The operation is

also noted −→S =⇒
(p,q)

−→
S ′. Given I, a set of pairs of type (p, q), each corresponding to a potential

insertion in −→S , −→S =⇒
I

−→
S ′ means that −→S ′ could be produced by applying one insertion from

I on −→S : ∃(p, q) ∈ I | −→S =⇒
(p,q)

−→
S ′. More generally the zero or more derivation steps is defined

as −→S ∗=⇒
I

−→
S ′ ≡ −→S = −→

S ′ ∨
(
∃(p, q) ∈ I | −→S =⇒

(p,q)

−→
S ′′ ∧ −→S ′′ ∗=⇒

I\{(p,q)}

−→
S ′

)
. Note that I may

contain tuples that do not correspond to a possible insertion in −→S but instead to a possible
insertion in a super-sequence of −→S . Also note that several sequences of insertions in I may
lead to an identical super-sequence.

3.2 The sequence domain
The formal definition of a sequence domain is given next.

▶ Definition 1. The domain of a Sequence Variable Sq is represented as ⟨−→S , I, P, E⟩,
with −→S a sequence of nodes forming a partial tour, insertion points I ⊆ X × X and two
subsets of nodes P, E ⊆ X for nodes that can possibly be inserted and nodes that are
excluded from the sequence, respectively. The domain of Sq, also noted D(Sq), is defined as
⟨−→S , I, P, E⟩ ≡

{−→
S ′ ∈ −→P (P ∪ S) | −→S ∗=⇒

I

−→
S ′

}
and capture all the possible valid derivations

from the partial tour −→S using insertions of I.

At its initialization the Sequence Variable is composed of a partial tour of two nodes
α · ω for the beginning α and ending ω of the tour and no insertions are allowed after ω

to ensure ω remains the last visited node. P is thus equal to X \ {α, ω}, E = ϕ and the
set of insertions is I = {(p, q) ∈ P × X | p ̸= ω}. Imposing a first and last node in the
sequence conveniently allows the modeling of problems where the route taken by a vehicle
needs to end at its starting point (α lies at the same location as ω) or at another location
(α ≠ ω) and prevent the API to deal with the special case of empty sequences that require
the introduction of a dummy symbol as in [26]. This use of beginning and ending nodes is
also used in CP Optimizer and is described as sinks in their API [18].

Different forms of consistency could be imagined ensuring for instance that, for all pairs
of nodes (p, q) ∈ I, both p and q are reachable from α by using the arcs defined in I and −→S .
Checking this consistency would relax the constraint that sequences only visit each node at
most once.

CP 2022

19:4 Sequence Variables for Routing Problems

In practice we use an even weaker form of consistency on the sequence domain, that is
cheap to compute and is captured by the following invariant:

S ∪ P ∪ E = X ∧ S ∩ P = S ∩ E = P ∩ E = ϕ (1)
∀(p, q) ∈ I : p /∈ E ∧ q ∈ P (2)
∀q ∈ P : ∃p ∈ S ∪ P | (p, q) ∈ I (3)

(1) Nodes in the partial sequence S, in the possible set P and the set of excluded E form
a partition of X ; (2) valid insertions are constituted of possible nodes after non excluded
nodes (thus not necessarily present in the partial sequence); any excluded node cannot be
inserted in −→S and is not a valid predecessor; any possible element can be inserted after a
node (3). This weak consistency can for instance not detect situations where all the edges
in I are disconnected from the partial sequence S, forming a disconnected cluster of nodes
whose members should be excluded.

3.3 Implementation and data-structures
The implementation of the domain ⟨−→S , I, P, E⟩ should be reversible for trail-based solver
such as MiniCP [21] and most of the update and domain iteration operations should be as
efficient as possible.

The set partitioning between the sets S, P, E is implemented using a single reversible
sparse-sets data-structure as described in [10] ensuring removal and state restoration in
constant time.

The insertion points set I is partitioned with one set Ix = {p ∈ (S ∪ P) : (p, x) ∈ I} for
each node x ∈ X composed of the valid predecessors for node x. Those sets are implemented
using reversible sparse-sets ensuring removal and state restoration in constant time. The
lower-level consistency invariant expressed in terms of these data structures are given next
in equations (4) to (7).

S ∪ P ∪ E = X ∧ S ∩ P = S ∩ E = P ∩ E = ϕ (4)
p ∈ E =⇒ Ip = ϕ ∧ ∀x : p /∈ Ix (5)
p ∈ S =⇒ Ip = ϕ (6)
Ip = ϕ =⇒ p ∈ S ∨ p ∈ E (7)

Through the use of the reversible sparse-set, (1) is directly equivalent to (4). (2) is respected
through (5) (∀(p, q) ∈ I : p /∈ E) and through (4), (5), (6) and (7) (q ∈ E ∪ S ⇔ q /∈
P =⇒ Iq = ϕ =⇒ ∀(p1, q1) ∈ I : q1 ̸= q). Finally (3) is retrieved by combining (4) to (7)
(Ix ̸= ϕ =⇒ x /∈ (S ∪ E) ⇐⇒ x ∈ P).

The internal partial sequence −→S of nodes is implemented using an array of reversible
integers, as in [26]. This array stores the current successor of a node, and an element without
successor points towards itself.

Additionally, the implementation maintains two reversible integers for every node x ∈ X :
nx

s for the size of Ix ∩ S and nx
p for the size of Ix ∩ P . Those values are useful during the

search to implement heuristics, for instance when searching the node i ∈ P | ni
s ≤ nj

s ∀j ∈ P

having the least predecessors in the current ordering −→S .
A domain representation example for a Sequence Variable is depicted in Figure 1.
Table 1 highlights the most important operations available on a Sequence Variable and

their associated time complexity.
Any global constraint interested to be notified on domain modification of the Sequence

Variable can do it using the three following hookup events:

A. Delecluse, P. Schaus, and P. Van Hentenryck 19:5

α a b ω

c d e

node x Ix nx
s nx

p

a ϕ 0 0
b ϕ 0 0
c ϕ 0 0
d {α, a} 2 0
e {a, b, d} 2 1

dcωb e a α

a b c d e α ω

−→
S

P = {d, e}, E = {c}

α a b ω

c d e

node x Ix nx
s nx

p

a ϕ 0 0
b ϕ 0 0
c ϕ 0 0
d ϕ 0 0
e {b, d} 2 0

acωb e d α

a b c d e α ω

−→
S

′

P = {e}, E = {c}

Figure 1 Representation of the implementation of a Sequence Variable. The left part shows a
sequence ordering as well as possible insertions (dashed lines) for nodes x ∈ P . Below is a table
showing the insertions for the nodes, the successor of the sequence (only relevant for nodes /∈ P ∪ E)
and the split of nodes between S, P and E. The right part shows a modification −→

S =⇒
(α,d)

−→
S ′ where

node d has been inserted after node α, changing its status and removing insertion a from Ie due to
some constraint.

Table 1 Operations on a Sequence Variable Sq with domain ⟨−→
S , I, P, E⟩.

Operation Description Complexity
isBound(Sq) return true iff |P | = 0 Θ(1)
is{Member/Possible/Excluded}(Sq, x) return true iff x ∈ {S/P/E} Θ(1)
get{Member/Possible/Excluded}(Sq) enumerate over {−→

S /P/E} Θ(|{−→
S /P/E}|)

succ(Sq, x) return q | x −→ q Θ(1)
pred(Sq, x) return p | p −→ x Θ(1)
insert(Sq, p, x) insert x into Sq such that p −→ x holds Θ(P)
exclude(Sq, x) exclude x from Sq Θ(P)
nMemberInserts(Sq, x) return nx

s = |Ix ∩ S| Θ(1)
nPossibleInserts(Sq, x) return nx

p = |Ix ∩ P | Θ(1)
getMemberInserts(Sq, x) enumerate over Ix ∩ S Θ(min (|Ix|, |S|))
getPossibleInserts(Sq, x) enumerate over Ix ∩ P Θ(min (|Ix|, |P |))
canInsert(Sq, p, x) return true iff p ∈ Ix Θ(1)
removeInsert(Sq, p, x) remove p from Ix O(P)

The sequence is bound, that is the set of possible nodes is empty;

A node has been inserted / excluded and this node is provided as a parameter of the
event to allow incremental updates;

The number of elements within a set Ix has changed, and the corresponding node is
provided as a parameter of the event to allow incremental updates.

In the next section, we describe the filtering algorithms of some important constraints on
the sequence variables.

CP 2022

19:6 Sequence Variables for Routing Problems

4 Global constraints

This section defines and explains the filtering algorithm for some constraints on the Sequence
variables. Some were already introduced in [26] but the filtering algorithms are adapted to
reflect the removal of the required set. Some constraints reason over a list of values, written
[x] when x is a list, or a matrix of values, denoted by [[x]].

Dependency

Despite the removal of the required set, one might still want to require a particular node to
be inserted in one specific sequence. The Dependency constraint allows this. This constraint
takes a list Dep of nodes as parameter that must all be member of the sequence or excluded
from it. It is formally defined as

Dependency(Sq, [Dep]) ≡
{−→

S ∈ D(Sq) | Dep ∩ S ̸= ϕ⇔ Dep ∩ S = Dep
}

. (8)

Filtering. The filtering is triggered when a node d ∈ Dep is either excluded or inserted
into the sequence. If it is excluded, it excludes all other nodes d′ ∈ Dep | d ̸= d′. If it is
inserted, it ensures that excluding any other node d′ ∈ Dep | d ̸= d′ results in a failure. The
complexity of this filtering is O(|Dep|).

Disjoint

This constraint ensures that every node x ∈ X can be inserted once and only once across all
sequences Sq ∈ SQ:

Disjoint([SQ],X) ≡
∀Sq, Sq′ ∈ [SQ], ∀x ∈ X , Sq ̸= Sq′ =⇒ x ∈ Sq =⇒ x /∈ Sq′ (9)

Filtering. The filtering is triggered when a node i ∈ X is inserted in a Sequence Sq ∈ SQ.
It excludes i from all other Sequences Sq′ ∈ SQ | Sq ̸= Sq. As the constraint can be notified
of the value of i when an insertion occurs through the hookups events, we only need to
iterate over SQ for checking the consistency. The complexity of the filtering when a single
node is inserted is therefore O(|SQ|).

This constraint can optionally enforce that nodes must be inserted in exactly one of
the sequences: ∀x ∈ X ∃Sq ∈ SQ | x ∈ D(Sq). If this is the case, the constraint fails if a
mandatory node is excluded from all sequences .

Precedence

For some applications, visiting a set of nodes in a specific order is important and those nodes
must all be inserted or not at all. This constraint is similar to the Dependence constraint
but is done over an ordered set −→D of nodes, ensuring that the order in the set appears within
the sequence if some node n ∈ −→D belongs to the Sequence. It is formally defined as

Precedence(Sq,
−→
D) ≡

{
−→
S ∈ D(Sq) | −→S ∩ −→D ̸= ϕ =⇒ ∀i, j ∈ −→D : i

−→
D

≺ j =⇒ i
−→
S

≺ j

}
(10)

A. Delecluse, P. Schaus, and P. Van Hentenryck 19:7

Filtering. The filtering is triggered whenever a node is inserted into the sequence or excluded
from it. It iterates over the nodes in −→D and ensures that they appear in the same order in −→S
if they belong to D(Sq). It then removes the insertions that would prevent the order from
being respected:

∀i, j ∈ −→D ∀p ∈ −→S |
(

i
−→
D

≺ j ∧ p
−→
S

≺ i =⇒ p /∈ Ij

)
∧

(
i

−→
D

≺ j ∧ j
−→
S

≺ p =⇒ p /∈ Ii

)
(11)

Furthermore, if some node in −→D is excluded from the Sequence, all nodes from −→
D are

excluded as well. The time complexity is O(|D| · |S|) as the constraint considers the insertions
Ix ∩ S for every node x ∈ −→D .

Transition Times

The TransitionTimes constraint is used for problems where nodes are related to a time
window and where transitions from one node to another take a certain duration specified in
a distance matrix. This constraint ensures that the order defined by the successor set −→S is
feasible: all nodes in S must be visited within their time window.

More formally, each node x ∈ X is attached to a time window variable [startx] and
a duration durationx. A matrix trans ∈ Rn×n with n nodes defines the transition times
between elements and satisfies the triangular inequality. The sum of transition times when
following the path described by the sequence is defined by a variable transitionT ime. The
constraint is defined as

TransitionTimes(Sq, [start], [duration], [[trans]], transitionT ime) ≡{
−→
S ∈ D(Sq)

∣∣∣∣∣∀i, j ∈ −→S , i
−→
S
≺ j =⇒ starti + durationi + transi,j ≤ startj

transitionT ime =
∑

i,j∈−→
S | i−→j transi,j

}
(12)

We consider that waiting at a given node (i.e. reaching it before its time window without
beginning the task related to it) is possible, which is why (12) uses inequalities.

Filtering. The pseudo code for the filtering is shown in Algorithm 1. It first ensures that
a Sequence respects its time windows: an iteration over −→S is done, updating the bounds
for starti ∀i ∈

−→
S (line 2). No time window update is done for nodes ̸∈ −→S . Afterwards, it

computes the current length of the sequence as the sum of transitions between elements in
S and uses it to update the bounds of transitionT ime (line 4). Only the lower bound is
updated, as we could exclude all remaining nodes in P and still get a valid solution. Then,
the algorithm starts removing invalid insertions. An insertion p ∈ Ix ∩ S for a node x ∈ P is
invalid if reaching x through p would violate its time window (line 8), prevent the current
successor q | p −→ q of p to be reached within its own time window (line 13) or exceed the
maximum traveled distance (line 17). Line 12 uses a max because reaching a node before its
time window is possible: if reachingx < min(startx), the departure occurs at min(startx),
otherwise it happens at reachingx.

The time complexity of this filtering is O(|P | · |S|). However, the effective complexity
is slightly lower as Ix ∩ S is retrieved in Θ(min (|S|, |Ix|)). A similar pruning can also be
defined for predecessors p ∈ Ix ∩ P of x ∈ P , ensuring that doing the transition from p to
x would not exceed startx. Because we do not reason over a set of Required nodes as in
[26], we do not need to ensure that a valid transition exists among those Required nodes,
removing the NP-complete problem of checking such transition.

CP 2022

19:8 Sequence Variables for Routing Problems

Algorithm 1 TransitionTimes(Sq = ⟨−→
S , I, P, E⟩, [start], [duration], [[trans]], transitionT ime)

filtering.

1 for i ∈ −→S do
2 update time windows starti

3 length← current distance of the sequence
4 min (transitionT ime)← length

5 for x ∈ P do
6 for p ∈ Ix ∩ −→S do
7 reachingx ← min(startp) + durationp + transp,x

8 if reachingx > max(startx) then
9 remove p from Ix

10 else
11 q ← succ(Sq, p)
12 reachingq ← max (reachingx, min(startx)) + durationx + transx,q

13 if reachingq > max(startq) then
14 remove p from Ix

15 else
16 detour ← transp,x + transx,q − transp,q

17 if detour + length > max(transitionT ime) then
18 remove p from Ix

Cumulative

Common variations of VRP include pickup and delivery occurring at nodes, consuming
a certain amount of load available in a vehicle. By analogy to scheduling problems, this
constraint is called the Cumulative constraint: when providing a set of activity consuming a
certain load loadx, it ensures that a maximum capacity is never exceeded and filters insertions
that would exceed the available capacity. As our filtering is close to the one presented in [26]
but more enhanced, we will borrow their notation.

More specifically, let us define an activity i as a pair of nodes (si, ei) for its start (pickup)
and end (delivery), respectively. The set of all activities is written A. An activity i ∈ A

consumes a certain load loadi during its execution and can be in one of three states with
respect to a Sequence Variable: fully inserted if si ∈ S∧ei ∈ S, non-inserted if si /∈ S∧ei /∈ S,
and partially inserted otherwise (the pickup or the delivery is inserted but not both). The
Cumulative constraint with a maximum capacity C, with starts start and corresponding
ends end is defined as

Cumulative(Sq, [start], [end], [load], C) ≡−→S ∈ D(Sq) | ∀e ∈ −→S ,
∑

i∈A|starti⪯e⪯endi

loadi ≤ C

 (13)

Checking. The checking consists of verifying that an optimistic load profile does not exceed
the vehicle capacity. We introduce two sets of values that represent the accumulated capacity
at each node visited in the order of the partial sequence instead of one as in [26]. This allows
computing a more realistic load profile and filtering more insertion points. Those two sets
are denoted Cb = {Cb

x ∀x ∈
−→
S } for the accumulated capacity just before visiting a given

node and Ca = {Ca
x ∀x ∈

−→
S } for the accumulated capacity just after leaving a given node.

A. Delecluse, P. Schaus, and P. Van Hentenryck 19:9

The computing of those values is presented in Algorithm 2. It looks at the positions
of the start and end of fully inserted activities, and increases Ca from the start until the
node before the end node (line 7). For Cb, it is increased from the node after the start
until the end node, included (line 5). When encountering a partially inserted activity i, our
optimistic load profile considers that a sequence can be formed where starti −→ endi and
thus only increases the value of Ca (line 10) or Cb (line 12) at one node. This setting for
the load profile implies Cb

s < Ca
s for every inserted start s and Cb

e > Ca
e for every inserted

end e. An example load profile is shown in Figure 2. Note that we do not necessarily have
Ca

i = Cb
j | i −→ j, as illustrated in Figure 3.

Cb
s0

Ca
s0 Cb

s1
Ca

s1 Cb
e0

Ca
e0 Cb

e2
Ca

e2

s0 s1 e0 e2

−→
S

C

Figure 2 Load profile for the Cumulative constraint with C = 2 and −→
S = {α, s0, s1, e0, e2, ω}.

Each activity has a load of 1, activity 0 (s0, e0) is fully inserted (dark gray) and both activity 1 and
2 are partially inserted (light gray). e1 is considered to be inserted right after s1, whose load only
affects Ca

s1 . For activity 2, s2 is consider to be inserted before e2, affecting the value Cb
e2 .

Algorithm 2 LoadProfile(Sq, start, end, load, C) computation.

Input : start, end, load: start, end and load of activities, C: capacity,
Sq = ⟨−→S , I, P, E⟩: Sequence Variable.

Output : Cb, Ca: capacity before arriving at a node and after leaving a node,
respectively.

1 Cb, Ca ← 0
2 for i | starti ∈ S ∨ endi ∈ S do
3 if starti ∈ S ∧ endi ∈ S then
4 for x ∈ −→S | starti ≺ x ⪯ endi do
5 Cb

x ← Cb
x + loadi

6 for x ∈ −→S | starti ⪯ x ≺ endi do
7 Ca

x ← Ca
x + loadi

8 else
9 if starti ∈ S then

10 Ca
starti

← Ca
starti

+ loadi

11 else
12 Cb

endi
← Cb

endi
+ loadi

13 return Cb, Ca

Filtering. The filtering is triggered whenever new elements are inserted into the sequence. It
uses the load profile computed during the checking to filter two cases: the partially inserted
activities first and the non-inserted activities afterwards.

The partially inserted activities are considered first: we remove the insertions points for
their non-inserted node that would cause the maximum capacity to be exceeded. A filtering
example for removing insertions for starts whose corresponding end is inserted is shown
in Algorithm 3. We iterate over the sequence in backward order (line 9) and compute the

CP 2022

19:10 Sequence Variables for Routing Problems

capacity occurring at the node (line 6 and 10). As soon as the maximum capacity would
be exceeded if the start was inserted there, we remove the corresponding insertions (line 7
and 11). We inspect both the capacity before arriving at a node (line 7) and when leaving it
(line 11) to detect invalid insertions. A load profile example where such filtering is used is
shown in Figure 3. It detects that the starts of partially inserted activities cannot be inserted
everywhere in the sequence. This detection was not possible using the load profile from [26],
illustrated in Figure 4: it only includes the capacity when leaving the node, which is always
zero when no start is inserted. In this case, their algorithm produces an empty profile, which
can be enhanced and more representative, as in Figure 3.

For the non-inserted activities, we use a similar pruning as [26]: we look at every possible
insertions for the start of the activities and see if a matching end can be found. Start
positions that cannot be closed and end positions for which no corresponding start can be
found are removed. The time complexity is dominated by the complexity to check all the
activities, which is O(|S| · |A|).

Algorithm 3 CumulFiltering(Sq, start, end, load, C, Cb, Ca) for partially inserted activ-
ities with end inserted.

Input : Sq = ⟨−→S , I, P, E⟩: Sequence Variable, start, end, load: start, end and load of
activities, C: capacity, Cb: minimum capacity before reaching a node, Ca

minimum capacity after leaving a node.
1 for i | starti /∈ S ∧ endi ∈ S do
2 current← (x ∈ −→S | x −→ endi)
3 if Ca

current + loadi > C then
4 return failure
5 while current ̸= α do
6 if Cb

current + loadi > C then
7 remove all nodes x ∈ −→S | x ≺ current from Istarti

8 break
9 current← (x ∈ −→S | x −→ current)

10 if Ca
current + loadi > C then

11 remove all nodes x ∈ −→S | x ⪯ current from Istarti

12 break
13 return success

5 Experimental Results

The experiments reported in this section were conducted using two Intel(R) Xeon(R) CPU E5-
2687W with 128GB of RAM. The Sequence Variable was implemented in MiniCP solver [21].
The source code is available for the readers in this anonymous repository [1], or by contacting
the authors directly.

5.1 Dial-A-Ride Problem
We consider the problem described in [9, 15] and borrow the notations from [15]. This
problem consists of m vehicles that must process n requests. Each request has a maximum
ride time L, the vehicles have a maximum route duration D and the planning time is defined
by a value T , representing the time at which the vehicles must be returned back to their

A. Delecluse, P. Schaus, and P. Van Hentenryck 19:11

Cb
e0

Ca
e0 Cb

e1
Ca

e1 Cb
e2

Ca
e2

e0 e1 e2

−→
S

C

Figure 3 Load profile for a Sequence Variable with −→
S =

{α, e0, e1, e2, ω}, where only ends are inserted. Thanks to the
computation of Cb in addition to Ca and the use of Algorithm
3, we can remove invalid insertions when considering the
starts whose corresponding ends are inserted. This is the
case for the start of activity 2 s2 which cannot be inserted
right after e0, as the capacity before arriving at node e1

would be exceeded. This case would have not been detected
using only Ca, resulting in a load profile similar to Figure 4.

e0 e1 e2

−→
S

C

Figure 4 Load profile from [26]
for a Sequence Variable with −→

S =
{e0, e1, e2}, where only ends are in-
serted. Because the accumulated
capacity at each node is computed
only when leaving a node, partially
inserted activities might not con-
tribute to the profile. In this case,
it does not allow to detect that try-
ing to insert s2 after e0 is invalid.

origin. Each request i consists of an associated load and 2 nodes: a pickup pickupi and
delivery dropi that must be visited one before the other. Each node i has an associated
service duration dj ≥ 0 and belongs to one of two categories: non-critical nodes, having a time
window [0, T] and critical nodes having a tighter time window [si, ei] where si ̸= 0 ∨ ei ̸= T .
Each activity is composed of exactly one critical vertex and one non-critical vertex and
the set of all critical vertices is CV . The nodes define a complete graph: there is always a
transition from one node to another.

A solution for the DARP consists of finding a route such that all vehicles begin and end
at the depot; all requests are serviced; the maximum capacity of a vehicle is never exceeded;
the pickup and corresponding delivery of a request are serviced by the same vehicle; for all
requests i the difference between the arrival time at a dropi and the departure from pickupi

never exceeds L; each node is visited within its time window. The objective consists of
minimizing the routing cost: the sum of traveled distance by each vehicle.

This problem can be modeled easily by introducing one Sequence Variable per vehicle.
Only a few constraints are required, the most important ones being a Disjoint constraint
to ensure that nodes are visited once, a TransitionTimes to prevent visits of nodes outside
of their time window and a Cumulative to respect the maximum capacity of each vehicle.
We compare our results with [15], a state-of-the art approach for DARP and we use a similar
branching strategy, shown in Algorithm 4.

We begin by computing the number of insertions for every request (line 7) as the product
between the insertions for its critical node and for its non-critical node. This can be retrieved
in constant time for one node x through nx

s , introduced in section 3.3. We then select the
request having the least possible insertions (line 8) and branch on every pair of insertions for
its vertices (line 13). Those branching decisions are ordered by increasing value of a heuristic
h for inserting a node x ∈ P between nodes i, j ∈ −→S | i −→ j. This heuristic is defined in
equations (14)-(16), and is similar to [15].

h(x, i, j) = α · costIncrease(x, i, j)− β · slack(x, i, j) (14)
costIncrease(x, i, j) = disti,x + distx,j − disti,j (15)

slack(x, i, j) = max(timej)−min(timei)− disti,x − distx,j (16)

Where timex is an integer variable denoting the serving time of node x and disti,j the
distance between nodes i and j. The values for α and β were kept from [15] and are set to 80
and 1, respectively. We also use Large Neighborhood Search with First Feasible Probabilistic

CP 2022

19:12 Sequence Variables for Routing Problems

Algorithm 4 Branching for DARP with a set SQ of Sequence Variables.

1 if no unassigned requests left then
2 return solution
3 for r ∈ unassigned request do
4 nInsertr ← 0
5 cvr, ncvr ← critical node and non-critical node from request r

6 for S ∈ SQ do
7 nInsertr ← nInsertr + nMemberInserts(S, cvr) · nMemberInserts(S, ncvr)
8 r ← argmin {nInsertr | ∀r ∈ unassigned request}
9 branching ← {}

10 for S ∈ SQ do
11 for pcv ∈ getMemberInserts(S, cvr) do
12 for pncv ∈ getMemberInserts(S, ncvr) do
13 branching ← branching + (insert(S, cvr, pcv), insert(S, ncvr, pncv))
14 sort branching by increasing order of heuristic
15 return branching

Acceptance from [15]. For a fair comparison, we have implemented the COMET source code
provided by the authors of [15] in Java. Although not able to run it in COMET, we could
obtain solution quality similar to the ones reported in [15] with the translated source-code.
It is worth mentioning that the code for [15] is not generic, but custom and optimized for
this sole problem. The filtering of the insertions is done during the search procedure rather
than relying on the generic constraints executed in the fix-point of the solver.

We first compare the number of failures and solutions found using the exact search
described in [15] without LNS with the Sequence Variable implementation. This comparison
was made on a small instance with 2 vehicles and 20 requests and the corresponding results
are reported in Table 2. We observe that the search from [15] finds all solutions to the instance
in less time compared to the Sequence approach, which is ≈ 1.34 times slower. However,
the number of failures is halved using Sequence Variables, resulting in a doubled ratio of
solutions found per failure. This means that the approach performs better at removing
invalid candidates to insert into the routes, although its filtering is slower.

Table 2 Statistics for finding all solutions on an instance with m = 2 vehicles and n = 20 requests,
without using LNS. Choices refers to the number of branching decisions created during the search.
Best result for each metric are shown in bold.

Statistic Tree Search [15] Tree Search with Sequence
Time [s] 974.545 1307.447
Choices 153 864 380 120 593 739
Failures 70 033 356 35 751 093

Solutions 66 700 800 66 700 800
Failures / choices 0.455 0.296

Solutions / choices 0.434 0.553
Solutions / failure 0.952 1.866

The next experiment compares the different approaches against instances with more
requests and vehicles. It also includes a baseline comparison with a CP Optimizer model
described in [26]. The solutions found are reported in Table 3 when an initial solution was
provided. From the results, we see that our Sequence Variable does obtain results competitive

A. Delecluse, P. Schaus, and P. Van Hentenryck 19:13

with the approach from [15] with a slight advantage on smaller instances but not on larger
ones. For some instances such as the one with m = 8 vehicles and n = 108 requests, finding
a feasible solution is hard. This is why the Sequence Variables from CP Optimizer using a
black-box search that is not specific to this problem cannot always find a feasible solution.
However, even when providing an initial solution, CP Optimizer sometimes fails to improve
it, whereas our approach is able to get even better results by using it.

Table 3 Comparison between our LNS-FFPA implementation from [15] (LNS-FFPA), our
Sequence Variable implementation (Sequence) and the model using Sequence variables from CPop-
timizer (CPO). 10 runs per solver were done on each instance, the best results are shown in bold.
The left graph was produced when no initial solution was given, and the right when it was provided.
Time-outs or no improving solution found are indicated by “t/o”.

15 minutes run - no initial solution provided
class a LNS-FFPA Sequence CPO
m n Mean Best Mean Best Mean Best
3 24 191.59 191.40 190.99 190.79 198.19 198.19
4 36 291.71 291.71 294.48 292.75 313.33 313.33
5 48 308.26 305.98 308.02 305.48 t/o t/o
6 72 531.59 522.00 527.80 518.94 t/o t/o
7 72 553.26 546.63 551.45 544.64 t/o t/o
8 108 741.37 719.24 780.45 758.63 t/o t/o
9 96 625.09 616.47 622.86 612.74 t/o t/o
10 144 949.72 922.32 1005.12 951.33 t/o t/o
11 120 696.33 683.64 715.10 692.71 t/o t/o
13 144 878.10 863.15 913.60 899.12 t/o t/o

Avg. 576.70 566.25 590.99 576.71 t/o t/o

15 minutes run - initial solution provided
class a LNS-FFPA Sequence CPO
m n Mean Best Mean Best Mean Best
3 24 191.76 191.40 190.89 190.21 196.11 196.00
4 36 291.71 291.71 294.72 292.72 318.97 318.97
5 48 308.95 306.97 307.09 304.38 327.37 327.00
6 72 532.55 524.97 531.84 519.76 579.79 579.77
7 72 554.57 550.42 554.65 548.72 614.02 614.00
8 108 752.29 742.08 794.86 755.00 924.04 923.86
9 96 622.19 614.65 625.68 611.15 740.26 740.26
10 144 950.16 929.31 1011.42 962.21 t/o t/o
11 120 699.32 687.99 718.58 709.49 861.74 861.73
13 144 878.33 864.81 901.71 874.56 1042.82 1042.82

Avg. 578.18 570.43 593.14 576.82 t/o t/o

5.2 Patient Transportation Problem

This problem, described in [5], is an extension of the Dial-A-Ride problem introduced in
Section 5.1 with a few additional constraints. It considers the transport of patients to a
hospital (described as one activity) and possibly back to a given location (another activity)
by using a limited number of vehicles. The trip to the hospital must therefore always occur
before the return trip and some patients can only be transported in a particular type of
vehicle (patients in wheelchairs for instance). The objective consists of maximizing the
number of transported patients.

We introduce one Sequence Variable per vehicle. We then use a Cumulative constraint
to ensure that a vehicle never exceeds its maximum capacity and serves each activity as
well as a Precedence constraint to guarantee that the trip to the hospital occurs before the
transportation back home. As activities must be serviced within a specific time window,
we use a TransitionTimes constraint and finally a Disjoint constraint to ensure that the
patients are serviced at most once. For cases where a particular patient i can only be
transported in a given type of vehicle t, we simply exclude all nodes n related to i from
Sequence Variables whose related vehicle type is different from t. Our search and LNS uses
works similarly to the one from Section 5.1, by inserting all nodes related to a patient (for
their forward and possibly backward trip) before trying to serve another patient.

The comparison between our model and the results from [5] for the biggest available
instances are reported in Table 4. We have used the same time-out as the one reported in
their paper (30 minutes) and run their model on our setup, finding better solutions than the
ones they reported. We observe that we are able to improve the number of serviced patients
on the most difficult instances by using Sequence Variables.

CP 2022

19:14 Sequence Variables for Routing Problems

Table 4 Experimental results for the Patient Transportation Problem. |H|, |V |, |R| are the
number of hospitals, vehicles and requests, respectively. The objective is the number of patients
serviced (Sol). SCHED+MSS refers to the best model from [5] while our own model is denoted as
Sequence. Best results are shown in bold, the time-out was set to 30 minutes.

Instances SCHED+MSS Sequence
Difficulty Name |H| |V | |R| Sol Sol
Easy RAND-E-8 32 12 128 128 128
Easy RAND-E-9 36 14 144 144 143
Easy RAND-E-10 40 16 160 158 156
Medium RAND-M-8 64 8 128 89 91
Medium RAND-M-9 72 8 144 89 93
Medium RAND-M-10 80 9 160 109 113
Hard RAND-H-8 128 8 128 77 87
Hard RAND-H-9 144 8 144 78 84
Hard RAND-H-10 160 8 160 76 84

5.3 Traveling Salesman Problem With Time Windows
TSPTW is a variant of the Traveling Salesman Problem (TSP) where all the customers
must be visited within given time windows. Even finding a feasible solution was proved
NP-complete [25]. As only one vehicle is available, the problem is modeled with a single
Sequence Variable, the TransitionTimes constraint as well as a Disjoint constraint on the
variable with the option that all nodes must be inserted.

We use LNS to find better solutions over time. The relaxation used by LNS starts from an
initial solution and consists of removing a set C of n consecutive nodes from the solution after
a given node i. Those nodes are then only allowed to be inserted after node i or after another
node in C. To achieve this, we remove the insertions (p, q) | (p ̸= i ∨ p /∈ C ∨ q /∈ C) from
the sets of insertions I. Nodes not belonging to C are ordered according to their previous
best found ordering.

Our LNS, described in Algorithm 5 uses the same structure as the one from [15]. It starts
from an initial solution initSol and relaxes an increasing number of nodes n = i + j (line 7)
from it. This process is done numIter times before increasing the number of relaxed nodes.
minSize, maxSize and range provide bounds for the number of nodes that needs to be
relaxed. During our experiments, we have set minSize = 10, maxSize = number of nodes
in the problem, range = 5 and numIter = 300. The branching procedure at line 8 uses a
similar branching as the one from the DARP: the non-inserted node x with the least number
of member insertions nx

s = |Ix ∩ S| is selected and branched on according to a heuristic that
is the same as equation (14).

We tested the model on three sets of instances from [20], referred to as OhlmannThomas,
AFG and GendreauDumasExtended and adapted from [22, 11] for the first set, [2] for the
second set and from [13, 11] for the third set. The number of nodes in those instances varies
from 20 to 232. The LNS was initialized from the best known solutions reported on [20].
The improved solutions were tested using the checker from [20] to ensure their feasibility as
well as their cost.

A set of 20 of the 25 instances from the OhlmannThomas set could be improved, 10 of the
50 instances from the AFG set and 2 of the 130 instances from the GendreauDumasExtended
set. The new objective solutions as well as the solving time to reach them are reported in
Table 5. From our experiments we observe that we converge to a new solution sometimes
rapidly (6 new best solutions are reached in less than 5 seconds and not improved afterwards)
whereas some instances benefit more from the increasing number of nodes relaxed in the
LNS and are still improved after a longer period of time.

A. Delecluse, P. Schaus, and P. Van Hentenryck 19:15

Algorithm 5 LNS(Sq = ⟨−→
S , I, P, E⟩, initSol, minSize, maxSize, range, numIter, dist, timeLimit).

1 bestSol← initSol

2 for i ∈ {minSize . . . (maxSize− range)} do
3 if i = maxSize-range then
4 i← minSize

5 for j ∈ {0 . . . range− 1} do
6 for k ∈ {1 . . . numIter} do
7 relax(i + j) consecutive nodes from bestSol

8 sol← optimize(dist)
9 if the solution has been improved then

10 bestSol← sol

11 if timeLimit is reached then
12 return bestSol

Table 5 Improved routing cost values found for the TSPTW instances. Previous best objective
values (Previous) are retrieved from [20]. New best objective values discovered are indicated (New)
as well as the time to reach them. The time-out was set to 5 minutes. The Table on the left shows
the values for the OhlmannThomas instances, the top right for the AFG instances and the bottom
right for the GendreauDumasExtended.

Instance Previous New Time [s]
n150w120.001 735 734 0.50
n150w120.002 683 679 290.86
n150w120.003 748 747 41.45
n150w120.005 692 689 7.84
n150w140.001 767 762 134.96
n150w140.002 757 755 34.28
n150w140.003 620 613 64.28
n150w140.004 677 676 12.94
n150w140.005 665 663 167.10
n150w160.001 708 706 2.64
n150w160.002 712 711 162.35
n150w160.003 610 608 0.49
n200w120.001 801 799 194.56
n200w120.002 725 722 12.12
n200w120.003 885 880 51.44
n200w120.005 843 841 202.69
n200w140.001 837 834 35.23
n200w140.002 768 765 14.77
n200w140.003 764 758 298.95
n200w140.005 827 822 33.21

Instance Previous New Time [s]
rbg132.2 8200 8194 37.76
rbg132 8470 8468 0.76
rbg201a 12 967 12 948 152.53
rbg233.2 14 549 14 523 24.20
rbg092a 7160 7158 2.70
rbg152.3 9797 9796 0.41
rbg193.2 12 167 12 159 242.54
rbg193 12 547 12 538 55.57
rbg233 15 031 14 994 264.70
rbg172a 10 961 10 956 113.83

Instance Previous New Time [s]
n80w120.005 597 591 9.09
n100w160.005 587 586 19.59

6 Conclusions and future work

This paper introduced a simplified version of the Sequence domain introduced in [26] as a
flexible and effective approach for modeling and solving VRP with CP. The filtering algorithms
for constraints imposing time windows and vehicle capacity are described. Experimental
results on three problems show that our models are competitive with existing sequence based

CP 2022

19:16 Sequence Variables for Routing Problems

approaches while being effective enough to discover new best solutions to a well-studied
problem such as the TSPTW. Our proposed filtering algorithms are relatively simple and
could most certainly be improved. We plan to enhance them and study the use of Sequence
Variables in more vehicle routing problems, as well as scheduling problems.

References

1 MiniCP Sequences - Anonymous GitHub, September 2021. [Online; accessed 26. Feb. 2022].
URL: https://anonymous.4open.science/r/minicp-sequences-5EE3/README.md.

2 Norbert Ascheuer. Hamiltonian path problems in the on-line optimization of flexible manu-
facturing systems. Technical report, Konrad-Zuse-Zentrum für Informationstechnik Berlin,
1996.

3 Bruno De Backer, Vincent Furnon, Paul Shaw, Philip Kilby, and Patrick Prosser. Solving
vehicle routing problems using constraint programming and metaheuristics. Journal of
heuristics, 6(4):501–523, 2000.

4 Russell Bent and Pascal Van Hentenryck. A two-stage hybrid local search for the vehicle
routing problem with time windows. Transportation Science, 38(4):515–530, 2004.

5 Quentin Cappart, Charles Thomas, Pierre Schaus, and Louis-Martin Rousseau. A constraint
programming approach for solving patient transportation problems. In John Hooker, editor,
Principles and Practice of Constraint Programming, pages 490–506, Cham, 2018. Springer
International Publishing.

6 IBM Knowledge Center. Interval variable sequencing in CP Optimizer, March 2021. [On-
line; accessed 13. Jan. 2022]. URL: https://www.ibm.com/docs/en/icos/12.9.0?topic=
concepts-interval-variable-sequencing-in-cp-optimizer.

7 IBM Knowledge Center. Search API for scheduling in CP Optimizer, March 2021. [On-
line; accessed 13. Jan. 2022]. URL: https://www.ibm.com/docs/en/icos/12.9.0?topic=
c-search-api-scheduling-in-cp-optimizer#85.

8 Jean-François Cordeau and Gilbert Laporte. The dial-a-ride problem: models and algorithms.
Annals of operations research, 153(1):29–46, 2007.

9 Jean-François Cordeau and Gilbert Laporte. A tabu search heuristic for the static multi-vehicle
dial-a-ride problem. Transportation Research Part B: Methodological, 37:579–594, July 2003.
doi:10.1016/S0191-2615(02)00045-0.

10 Vianney le Clément de Saint-Marcq, Pierre Schaus, Christine Solnon, and Christophe Lecoutre.
Sparse-sets for domain implementation. In CP workshop on Techniques foR Implementing
Constraint programming Systems (TRICS), pages 1–10, 2013.

11 Yvan Dumas, Jacques Desrosiers, Eric Gelinas, and Marius M Solomon. An optimal algorithm
for the traveling salesman problem with time windows. Operations research, 43(2):367–371,
1995.

12 Interreg Europe. Demand-responsive transport. https://www.interregeurope.eu/sites/
default/files/2021-12/Policy%20brief%20on%20demand%20responsive%20transport.
pdf, June 2018.

13 Michel Gendreau, Alain Hertz, Gilbert Laporte, and Mihnea Stan. A generalized insertion
heuristic for the traveling salesman problem with time windows. Operations Research, 46(3):330–
335, 1998.

14 Carmen Gervet. Interval propagation to reason about sets: Definition and implementation of
a practical language. Constraints, 1:191–244, March 1997.

15 Siddhartha Jain and Pascal Van Hentenryck. Large neighborhood search for dial-a-ride
problems. In International Conference on Principles and Practice of Constraint Programming,
pages 400–413. Springer, 2011.

16 Philippe Laborie and Jerome Rogerie. Reasoning with conditional time-intervals. In FLAIRS
conference, pages 555–560, 2008.

https://anonymous.4open.science/r/minicp-sequences-5EE3/README.md
https://www.ibm.com/docs/en/icos/12.9.0?topic=concepts-interval-variable-sequencing-in-cp-optimizer
https://www.ibm.com/docs/en/icos/12.9.0?topic=concepts-interval-variable-sequencing-in-cp-optimizer
https://www.ibm.com/docs/en/icos/12.9.0?topic=c-search-api-scheduling-in-cp-optimizer#85
https://www.ibm.com/docs/en/icos/12.9.0?topic=c-search-api-scheduling-in-cp-optimizer#85
https://doi.org/10.1016/S0191-2615(02)00045-0
https://www.interregeurope.eu/sites/default/files/2021-12/Policy%20brief%20on%20demand%20responsive%20transport.pdf
https://www.interregeurope.eu/sites/default/files/2021-12/Policy%20brief%20on%20demand%20responsive%20transport.pdf
https://www.interregeurope.eu/sites/default/files/2021-12/Policy%20brief%20on%20demand%20responsive%20transport.pdf

A. Delecluse, P. Schaus, and P. Van Hentenryck 19:17

17 Philippe Laborie, Jerome Rogerie, Paul Shaw, and Petr Vilím. Reasoning with conditional
time-intervals. part ii: An algebraical model for resources. In FLAIRS Conference, 2009.

18 Philippe Laborie, Jérôme Rogerie, Paul Shaw, and Petr Vilím. Ibm ilog cp optimizer for
scheduling. Constraints, 23(2):210–250, April 2018. doi:10.1007/s10601-018-9281-x.

19 Chang Liu, Dionne M. Aleman, and J. Christopher Beck. Modelling and solving the senior
transportation problem. In Willem-Jan van Hoeve, editor, Integration of Constraint Program-
ming, Artificial Intelligence, and Operations Research, pages 412–428, Cham, 2018. Springer
International Publishing.

20 Manuel López-Ibáñez. Instances for the TSPTW, September 2020. [Online; accessed 15. Feb.
2022]. URL: https://lopez-ibanez.eu/tsptw-instances.

21 L. Michel, P. Schaus, and P. Van Hentenryck. Minicp: a lightweight solver for constraint
programming. Mathematical Programming Computation, 13(1):133–184, 2021. doi:10.1007/
s12532-020-00190-7.

22 Jeffrey W Ohlmann and Barrett W Thomas. A compressed-annealing heuristic for the traveling
salesman problem with time windows. INFORMS Journal on Computing, 19(1):80–90, 2007.

23 Laurent Perron and Vincent Furnon. Or-tools. URL: https://developers.google.com/
optimization/.

24 Laurent Perron and Vincent Furnon. Or-tools sequence var. URL: https://developers.
google.com/optimization/reference/constraint_solver/constraint_solver/SequenceVar.

25 Martin WP Savelsbergh. Local search in routing problems with time windows. Annals of
Operations research, 4(1):285–305, 1985.

26 Charles Thomas, Roger Kameugne, and Pierre Schaus. Insertion sequence variables for hybrid
routing and scheduling problems. In International Conference on Integration of Constraint
Programming, Artificial Intelligence, and Operations Research, pages 457–474. Springer, 2020.

27 Paolo Toth and Daniele Vigo. The Vehicle Routing Problem. SIAM, 2002.

CP 2022

https://doi.org/10.1007/s10601-018-9281-x
https://lopez-ibanez.eu/tsptw-instances
https://doi.org/10.1007/s12532-020-00190-7
https://doi.org/10.1007/s12532-020-00190-7
https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://developers.google.com/optimization/reference/constraint_solver/constraint_solver/SequenceVar
https://developers.google.com/optimization/reference/constraint_solver/constraint_solver/SequenceVar

CSP Beyond Tractable Constraint Languages
Jan Dreier #

Algorithms and Complexity Group, TU Wien, Austria

Sebastian Ordyniak #

Algorithms and Complexity Group, University of Leeds, UK

Stefan Szeider #

Algorithms and Complexity Group, TU Wien, Austria

Abstract
The constraint satisfaction problem (CSP) is among the most studied computational problems. While
NP-hard, many tractable subproblems have been identified (Bulatov 2017, Zuk 2017). Backdoors,
introduced by Williams, Gomes, and Selman (2003), gradually extend such a tractable class to all
CSP instances of bounded distance to the class. Backdoor size provides a natural but rather crude
distance measure between a CSP instance and a tractable class. Backdoor depth, introduced by
Mählmann, Siebertz, and Vigny (2021) for SAT, is a more refined distance measure, which admits
the parallel utilization of different backdoor variables. Bounded backdoor size implies bounded
backdoor depth, but there are instances of constant backdoor depth and arbitrarily large backdoor
size. Dreier, Ordyniak, and Szeider (2022) provided fixed-parameter algorithms for finding backdoors
of small depth into the classes of Horn and Krom formulas.

In this paper, we consider backdoor depth for CSP. We consider backdoors w.r.t. tractable
subproblems CΓ of the CSP defined by a constraint language Γ, i.e., where all the constraints use
relations from the language Γ. Building upon Dreier et al.’s game-theoretic approach and their
notion of separator obstructions, we show that for any finite, tractable, semi-conservative constraint
language Γ, the CSP is fixed-parameter tractable parameterized by the backdoor depth into CΓ plus
the domain size.

With backdoors of low depth, we reach classes of instances that require backdoors of arbitrary
large size. Hence, our results strictly generalize several known results for CSP that are based on
backdoor size.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability

Keywords and phrases CSP, backdoor depth, constraint language, tractable class, recursive backdoor

Digital Object Identifier 10.4230/LIPIcs.CP.2022.20

Funding Sebastian Ordyniak: Supported by the Engineering and Physical Sciences Research Council
(EPSRC, project EP/V00252X/1).

1 Introduction

To face the NP-completeness of the Constraint Satisfaction Problem (CSP), much effort
has been spent in identifying polynomial-time solvable subproblems [5]. Tractability can be
reached by
1. restricting the constraint language in terms of limiting the relations allowed to be used in

constraints (e.g., [3, 6, 10, 30, 33]),
2. restricting the graphical structure of how constraints and variables interact (e.g., [7, 21,

22]), or
3. restricting both language and structure with hybrid restrictions (e.g., [8, 9, 11]).

Some of the considered restrictions are gradual in the sense that they support an infinite
chain of classes C0 ⊊ C1 ⊊ C2 ⊊ . . . of instances, where each Ci can be solved in polynomial
time. When the order of polynomial bound on the solving time remains the same for all

© Jan Dreier, Sebastian Ordyniak, and Stefan Szeider;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 20; pp. 20:1–20:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dreier@ac.tuwien.ac.at
https://orcid.org/0000-0002-2662-5303
mailto:s.ordyniak@leeds.ac.uk
https://orcid.org/0000-0003-1935-651X
mailto:sz@ac.tuwien.ac.at
https://orcid.org/0000-0001-8994-1656
https://doi.org/10.4230/LIPIcs.CP.2022.20
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 CSP Beyond Tractable Constraint Languages

the i = 0, 1, 2, . . . one speaks about fixed-parameter tractability (FPT) [12, 13, 15, 26, 29].
Most structural restrictions like bounded treewidth or hypertree width are gradual by
definition [22, 22]. In contrast, language restrictions tend to be categorical by definition, as
either an instance belongs to a class CΓ defined by a tractable constraint language Γ or it
does not.

However, by means of (strong1) backdoors introduced by Williams, Gomes and Selman [31,
32], one can build a chain CΓ = C0 ⊊ C1 ⊊ C2 ⊊ . . . on top of such a class defined by a
language. A CSP instance belongs to Ci if there is a set of i variables, called a backdoor, such
that all possible instantiations of these variables move the instance into the base class CΓ.
The size of a smallest backdoor provides a distance measure between the considered CSP
instance and the base class.

The size of a smallest backdoor is a fundamental but still rather crude distance measure.
Samer and Szeider [28] therefore proposed backdoor trees, where one counts the number of
leaves of a decision tree ranging over all the variables of a backdoor; Ordyniak et al. [27]
obtained further fixed-parameter tractability results for backdoor trees. A backdoor of size k

over a Boolean domain can yield backdoor trees between k + 1 and 2k leaves, and so it is
more efficient to minimize the number of leaves than the size. Very recently, in the context
of SAT, Mählmann, Siebertz, and Vigny [23] proposed the concept of backdoor depth, which
extend backdoor trees by adding nodes where the tree branches into connected components.
The advantage of considering backdoors of small depth relies on the observation that if
an instance decomposes into multiple components, then each component can be treated
independently. This way, one is allowed to use in total an unbounded number of backdoor
variables. However, as long as the depth of the extended decision tree is bounded, one can
still utilize it for efficiently solving the instance. In the context of graphs, similar ideas are
used in the study of tree-depth [24, 25] and elimination distance [4, 16].

The challenging algorithmic question is to find a backdoor of small depth into a fixed base
class, if it exists. Mählmann et al. [23] gave an FPT algorithm for SAT with respect to the
base class Null consisting of formulas without variables; any bounded-depth backdoor into
that class must contain all the variables of the instance. Already for this simple base class,
there are instances of bounded backdoor depth that cannot be efficiently solved by other
known methods. Previously [14], we extended this FPT result to bounded-depth backdoors
into the classes of Horn (CNF formulas where each clause contains at most one positive
literal), dual Horn (each clause contains at most one negative literal), and Krom formulas
(each clause contains at most two literals).

Contribution. In this paper, we provide the first positive algorithmic results for utilizing
backdoors of bounded depth for CSP. Our main technical result covers all base classes CΓ
described by a finite semi-conservative constraint language Γ. As our main result, we show
the following (a formal statement is Corollary 20).

For any finite, tractable, semi-conservative constraint language Γ, the CSP is fixed-
parameter tractable parameterized by the smallest depth of a backdoor into CΓ plus the
domain size of the instance.

Thus, we indeed have a chain CΓ = C0 ⊊ C1 ⊊ C2 ⊊ . . . on top of any such class CΓ, where Ci

contains instances with a backdoor of depth i, and where the order of the polynomial-time
algorithm for solving Ci is of the same order as the polynomial that bounds the solving time
for CΓ.

1 We focus only on strong backdoors and do not consider weak backdoors.

J. Dreier, S. Ordyniak, and S. Szeider 20:3

Backdoor depth can capture and exploit structure in CSP instances that is not captured
by any other known method. In the following, we list here some known CSP parameters that
admit fixed-parameter tractable CSP solving. For each of these parameters, there are CSP
instances for which the parameter can be arbitrarily large, but where Γ-backdoor depth is
bounded by a constant:

backdoor size [20];
backdoor depth for SAT [14, 23];
backdoor size into heterogeneous and scattered base classes [19, 20];
backdoor treewidth [18].

We closely follow the approach we introduced in recent work on SAT [14]. On a high
level, we construct backdoors by simultaneously computing an upper bound in the form of
an approximate backdoor and a lower bound, using so-called obstructions, i.e., parts of the
instance that can be proven to be “far away” from the base class. As in our work on SAT,
we use two types of obstructions:
1. a slightly modified version of the obstructions trees that have been introduced by

Mählmann et al. [23] and
2. a new variant of separator obstructions that we introduced for SAT [14] to allow the

handling of base classes that admit arbitrary long paths (in the incidence graph of a CNF
formula).

This new variant of separator obstructions is tailor-made for CSP and base classes defined
via finite constraint languages. It allows us to improve the algorithm’s efficiency, from a
triple-exponential run-time dependency to a double-exponential run-time dependence on
backdoor depth.

We present our results using the game-theoretic framework for backdoor depth that we
introduced for SAT [14], which greatly simplifies the presentation of our algorithm.

Due to space constraints, we omit proofs of some technical claims, marked (⋆).

2 Preliminaries

2.1 CSP
Let D be a set and n and n′ be non-negative integers. An n-ary relation on D is a subset
of Dn. For a tuple t ∈ Dn, we denote by t[i], the i-th entry of t, where 1 ≤ i ≤ n. For two
tuples t ∈ Dn and t′ ∈ Dn′ , we denote by t ◦ t′, the concatenation of t and t′.

An instance of a constraint satisfaction problem (CSP) I is a triple ⟨V, D, C⟩, where V is
a finite set of variables over a finite set (domain) D, and C is a set of constraints.We assume
that D is given explicitly as a list of all domain values. A constraint c ∈ C consists of a
scope, denoted by V (c), which is an ordered list of a subset of V , and a relation, denoted by
R(c), which is a |V (c)|-ary relation on D; |V (c)| is the arity of c. To simplify notation, we
sometimes treat ordered lists without repetitions, such as the scope of a constraint, like sets.
For a variable v ∈ V (c) and a tuple t ∈ R(c), we denote by t[v], the i-th entry of t, where i

is the position of v in V (c). For a CSP instance I = ⟨V, D, C⟩ we sometimes denote by V (I),
D(I), and C(I), its set of variables V , its domain D, and its set of constraints C, respectively.
We usually assume, w.l.o.g, that each variable in V (I) appears in the scope of at least one
constraint in C(I). The size |I| of a CSP instance I is the sum of the sizes of its constraints,
where the size of a constraint of arity a with t tuples and domain size δ is at log δ. A solution
to a CSP instance I is a mapping τ : V → D such that ⟨τ(v1), . . . , τ (v|V (c)|)⟩ ∈ R(c) for
every c ∈ C with V (c) = ⟨v1, . . . , v|V (c)|⟩. A CSP instance is satisfiable if and only if it has
at least one solution.

CP 2022

20:4 CSP Beyond Tractable Constraint Languages

Let V ′ ⊆ V and τ : V ′ → D. For a constraint c ∈ C, we denote by c[τ], the constraint
whose scope is V (c) \ V ′ and whose relation contains all |V (c[τ])|-ary tuples t such that there
is a |V (c)|-ary tuple t′ ∈ R(c) with t[v] = t′[v] for every v ∈ V (c[τ]) and t′[v] = τ(v) for every
v ∈ V ′ ∩ V (c). We denote the assignment τ : {x} → D with τ(x) = q simply by x = q.

A constraint c ∈ C(I) of arity a is tautological if it contains all the |D|a possible tuples.
Obviously, removing a tautological constraint from a CSP instance does not change its
satisfiability. We denote by I[τ] the CSP instance with variables V \ V ′, domain D, and
constraints C[τ], where C[τ] contains all non-tautological constraints c[τ] for every c ∈ C.
We would like to point out that the removal of tautological constraints is important in the
context of backdoor depth as it makes the notion more powerful.

Let τ1 : V1 → D and τ2 : V2 → D be two assignments. We say that the two assignments
are compatible if τ1(v) = τ2(v) for every v ∈ V1 ∩ V2. Moreover, if τ1 and τ2 are compatible,
we denote by τ1 ∪ τ2 the assignment τ : V1 ∪ V2 → D given by τ(v) = τ1(v) if v ∈ V1 and
τ(v) = τ2(v) if v ∈ V2.

The incidence graph of a CSP instance I is the bipartite graph GI whose vertices are the
variables and constraints of I, and where a variable x and a constraint c are adjacent if and
only if x ∈ V (c). Via incidence graphs, graph theoretic concepts directly translate to CSP
instances. For instance, we say that I is connected if GI is connected, and I ′ is a connected
component of I if D(I ′) = D(I), and where V (I ′) and C(I ′) are maximal subsets of V (I)
and C(I), respectively, such that GI is connected. Conn(I) denotes the set of connected
components of I. Occasionally, we will also consider the primal graph of a CSP instance I,
which has as vertex set V (I), and has pairs of variables adjacent if they appear together in
the scope of a constraint.

A constraint language Γ over a domain D is a set of relations over D. D(Γ) is the set
of all the elements appearing in the relations in Γ. We denote by arity(Γ) the maximum
arity of any relation in Γ. CΓ denotes the class of CSP instances I with the property that
for each c ∈ C(I) we have R(c) ∈ Γ. CSP(Γ) refers to the CSP with instances restricted
to CΓ. A constraint language Γ is tractable if CSP(Γ) can be solved in polynomial time, Γ is
linear-time tractable if CSP(Γ) can be solved in linear time.

Γ is semi-conservative (or 1-conservative) [1, 17], if for each q ∈ D(Γ) one can express
with Γ the unary constraint x = q; more precisely, there is a satisfiable instance Iq of CSP(Γ)
and a variable x ∈ V (Iq) such that for each solution τ of Iq we have τ(x) = q. Semi-
conservative constraint languages are very natural, as one would expect in any reasonable
practical settings that the unary relations are present. Indeed, some authors (e.g., [10])
even define the CSP so that every variable can have its own set of domain values, making
(semi-)conservativeness a built-in property.

A constraint language Γ is closed under assignments if for every constraint c with R(c) ∈ Γ
and every assignment τ , it holds that R(c[τ]) ∈ Γ. For a constraint language Γ we denote
by Γ∗ the smallest constraint language that contains Γ and is closed under assignments.

▶ Lemma 1 ([17]). If a semi-conservative constraints language Γ is tractable, then Γ∗ is also
tractable.

We would like to point out that the original definition of a backdoor by Williams et al. [31, 32]
assumes the base class to be closed under assignments. Hence, it is natural to assume
this property in the context of backdoor depth, directly or indirectly by means of semi-
conservativeness of the considered language.

J. Dreier, S. Ordyniak, and S. Szeider 20:5

2.2 Backdoors
Backdoors are defined relative to some fixed base class C of instances of the problem under
consideration (i.e., CSP), for which satisfiability and membership in C are polynomial-time
decidable. In the context of CSP, we define a C-backdoor set of a CSP instance I as a
set B ⊆ V (I) of variables such that I[τ] ∈ C for every τ : B → D(I). For a constraints
language Γ, we usually denote the base class CΓ by Γ itself. Thus, for example, instead of
CΓ-backdoors, we talk of Γ-backdoors. If we know a C-backdoor set B of I, we can reduce
the satisfiability of I to the satisfiability of |D(I)||B| CSP instances in C. The challenging
problem is to find a C-backdoor set of a given instance that reduces the satisfiability problem
to instances from C.

3 Backdoor Depth

Component backdoor trees generalize backdoor trees as considered by Samer and Szeider [28]
by allowing an additional type of nodes, component nodes, where the current instance is split
into connected components. More precisely, let C be a class of CSP instances (called the base
class) and I a CSP instance. A component C-backdoor tree for I is a pair (T, φ), where T is
a rooted tree and φ is a mapping that assigns each node t a CSP instance φ(t) such that the
following conditions are satisfied:
1. For the root r of T , we have φ(r) = I.
2. For each leaf ℓ of T , we have φ(ℓ) ∈ C.
3. For each non-leaf t of T , there are two possibilities:

a. D(I) = {q1, . . . , qδ} and t has exactly δ children t1, . . . , tδ where for some variable
x ∈ V (φ(t)) we have φ(ti) = φ(t)[x = qi]; in this case we call t a variable node.

b. Conn(φ(t)) = {I1, . . . , Ik} for k ≥ 2 and t has exactly k children t1, . . . , tk with
φ(ti) = Ii; in this case we call t a component node.

Thus, a backdoor tree as considered by Samer and Szeider [28] is just a component backdoor
tree without component nodes. The depth of a backdoor is the largest number of variable
nodes on any root-leaf path in the tree. The C-backdoor depth depthC(I) of an instance I

into a base class C is the smallest depth over all component C-backdoor trees of I. If C is
defined in terms of a constraint language Γ, we simply write depthΓ(I).

Alternatively, we can define C-backdoor depth recursively as follows:

depthC(I) :=

0 if I ∈ C;
1 + minx∈V (I) maxa∈D(I) depthC(I[x = a]) if I /∈ C and I is connected;
maxI′∈Conn(I) depthC(I ′) if I /∈ C and I is not connected.

▶ Lemma 2. ategory=ssrbd,normal]lemma Let Γ be a constraint language such that CΓ can
be solved in time O(nc) for some constant c ≥ 1 and input size n. Assume we are given a
CSP instance I whose size is m, δ = |D(I)|, and a component Γ-backdoor tree (T, φ) of I of
depth d. Then, we can solve I in time O((δdm)c).

Proof. We start by showing that
∑

ℓ∈L(T) |φ(ℓ)| ≤ δdm, where L(T) denotes the set of
leaves of T , using induction on d and m. The statement holds if d = 0 or m ≤ 1. We show
that it also holds for larger d and m. If the root is a variable node, then it has δ children
c1, . . . , cδ, and the subtree rooted at any of these children represents a component backdoor
tree for the CSP instance φ(ci) of depth d − 1. Therefore, by the induction hypothesis, we
obtain that si =

∑
ℓ∈L(Ti) |φ(ℓ)| ≤ δd−1m, for every subtree Ti rooted at ci. Consequently,∑

ℓ∈L(T) |φ(ℓ)| =
∑

1≤i≤δ si ≤ δδd−1m = δdm, as required. If, on the other hand, the root is

CP 2022

20:6 CSP Beyond Tractable Constraint Languages

a component node, then its children, say c1, . . . , ck, are labeled with CSP instances of sizes
m1 + · · · + mk = m. Therefore, for every subtree Ti of T rooted at ci, we have that Ti is a
component backdoor tree of depth d for φ(ci), which using the induction hypothesis implies
that

∑
ℓ∈L(Ti) |φ(ℓ)| ≤ δdmi. Hence, we obtain

∑
ℓ∈L(T) |φ(ℓ)| ≤ δdm in total.

To solve the CSP instance I, we first solve all CSP instances associated with the leaves
of T . Because, as shown above, their total size is at most δdm, this can be achieved in
time O((δdm)c), because CΓ can be solved in time O(nc) for some constant c ≥ 1 and input
size n. Let us call a leaf true/false if and only it is labeled by a satisfiable/unsatisfiable CSP
instance, respectively. We now propagate the truth values upwards to the root, considering
a component node as the logical and of its children, and the a variable node as the logical
or of its children. I is satisfiable if and only if the root of T is true. We can carry out the
propagation in time linear in the number of nodes of T , which is linear in the number of
leaves of T , i.e., at most δdm. ◀

4 Technical Overview

On a high level, the approach of our algorithm is similar to the approach we employed for
SAT [14]. The critical difference lies in the exact definition of separator obstructions in
Section 5, which we adapt to CSP and base classes defined via finite constraint languages.
Apart from lifting the approach from SAT to CSP, our tailor-made separator obstructions
also allow us to obtain a more efficient algorithm. As our first order of business, we state an
equivalent formulation of backdoor depth using connector-splitter games, as we previously
introduced for SAT [14], allowing us to greatly simplify the exposition of our algorithm.

▶ Definition 3. Let Γ be a finite constraint language that is closed under assignments and
let I = ⟨V, D, C⟩ be a CSP instance. We denote by Game(I, Γ) the so-called Γ-backdoor
depth game on I. The game is played between two players, the connector and the splitter.
The positions of the game are CSP instances. At first, the connector chooses a connected
component of I to be the starting position of the game. The game is over once a position in
the base class C is reached. We call these positions the winning positions (of the splitter). In
each round the game progresses from a current position J to a next position as follows.

The splitter chooses a variable v ∈ V (J).
The connector chooses an assignment τ : {v} → D and a connected component J ′ of J [τ].
The next position is J ′.

In the (unusual) case that a position J contains no variables anymore but J is still not in CΓ,
the splitter looses. For a position J , we denote by τJ the assignment of all variables assigned
up to position J .

The following observation follows easily from the definitions of the game and the fact that
the (strategy) tree obtained by playing all possible plays of the connector against a given
strategy for the splitter forms a component backdoor tree and vice versa. In particular, the
splitter choosing a variable v at position J corresponds to a variable node and the subsequent
choice of the connector for an assignment τ of v and a component of J [τ] corresponds to a
component node (and a subsequent variable or leaf node) in a component backdoor tree.

▶ Observation 4. The splitter has a strategy for the game Game(I, Γ) to reach within at
most d rounds a winning position if and only if I has a Γ-backdoor of depth at most d.

Backdoor depth games mean that we no longer have to explicitly construct a backdoor.
Instead, in Section 6, we compute winning strategies for the splitter, which appear to be
easier to reason about. Such a strategy can then be automatically converted into a backdoor
algorithm (Lemma 6).

J. Dreier, S. Ordyniak, and S. Szeider 20:7

We start by describing these so called splitter-algorithms and how they can be turned
into an algorithm to compute backdoor depth. The algorithms will have some auxiliary
internal state that they modify with each move. Formally, a splitter-algorithm for a game
Game(I, Γ), where Γ is a finite constraint language that is closed under assignments, is a
procedure that

gets as input a (non-winning) position J of the game, together with an internal state
and returns a valid move for the splitter at position J , together with an updated internal
state.

Suppose we have a game Game(I, Γ) and some additional input S. For a given strategy of
the connector, the splitter-algorithm plays the game as one would expect: In the beginning,
an internal state is initialized with S (if no additional input is given, it is initialized empty).
Whenever the splitter should make its next move, the splitter-algorithm is queried using the
current position and internal state and afterwards the internal state is updated accordingly.

▶ Definition 5. We say a splitter-algorithm implements a strategy to reach for a game
Game(I, Γ) and input S within at most d rounds a position and internal state with some
property if and only if initializing the internal state with S and then playing Game(I, Γ)
according to the splitter-algorithm leads – no matter what strategy the connector is using –
after at most d rounds to a position and internal state with said property.

Using the following observation converts splitter-algorithms into algorithms for backdoors.
It builds backdoors by always trying out all the next moves of the connector.

▶ Lemma 6 (⋆). Assume there exists a function f(d, Γ) and a splitter-algorithm that
implements a strategy to reach for each game Game(I, Γ) and non-negative integer d within
at most f(d, Γ) rounds either a winning position or (an internal state representing) a proof
that the Γ-backdoor depth of I is larger than d.

Further assume this splitter-algorithm always takes at most O(|I|) time to compute its
next move. Then there exists an algorithm that, for a CSP instance I, a finite constraint
language Γ that is closed under assignments, and a non-negative integer d in time at most
|D(I)|2f(d,Γ)O(|I|) either returns a component Γ-backdoor tree of depth at most f(d, Γ) or
concludes that the Γ-backdoor depth of I is larger than d.

For improved readability, we may present splitter-algorithms as continuously running
algorithms that periodically output moves (via some output channel) and always immediately
as a reply get the next move of the connector (via some input channel). Such an algorithm
can easily be converted into a procedure that gets as input a position and internal state and
outputs a move and a modified internal state: The internal state encodes the whole state
of the computation, (e.g., the current state of a Turing machine together with the contents
of the tape and the position of the head). Whenever the procedure is called, it “unfreezes”
this state, performs the computation until it reaches its next move and then “freezes” and
returns its state together with the move.

Our main result is an approximation algorithm (Theorem 19) that either concludes
that there is no backdoor of depth d, or computes a component backdoor tree of depth at
most 2O(d). Using Lemma 6, we see that this is equivalent to a splitter-algorithm that plays
for 2O(d) rounds to either reach a winning position or a proof that the backdoor depth is
larger than d.

Here and in the following, we say that a constraint is Γ-bad for a finite constraint
language Γ if its relation is not in Γ; otherwise we say that the constraint is Γ-good. Note
that if Γ is close under assignments, then a Γ-good constraint remains Γ-good even after
assigning additional variables and a conversely a constraint that is Γ-bad in some subinstance
obtained by assigning some variables is also Γ-bad in the original instance.

CP 2022

20:8 CSP Beyond Tractable Constraint Languages

Our proofs of high backdoor depth come in the form of so-called obstruction trees, which
have first been introduced by Mählmann et al. [23]. These are trees in the incidence graph
of a CSP instance. Their node set therefore consists of both variables and constraints.
Obstruction trees of depth d describe parts of an instance for which the splitter needs more
than d rounds to win the backdoor depth game. For depth zero, we simply take a single
Γ-bad constraint that is not allowed by the base class. Roughly speaking, an obstruction tree
of depth d > 0 is built from two “separated” obstruction trees T1, T2 of depth d − 1 that
are connected by a path. Because the two obstruction trees are separated but in the same
component, we know that for any choice of the splitter (i.e., choice of a variable v), there is
a response of the connector (i.e., an assignment of v and a component) in which either T1
or T2 is whole. Then the splitter needs by induction still more than d − 1 additional rounds
to win the game.

▶ Definition 7. Let I be a CSP instance and Γ be a constraint language that is closed under
assignments. We inductively define Γ-obstruction trees T of increasing depth.

Let c be a Γ-bad constraint of I. The set T = {c} is a Γ-obstruction tree in I of depth 0.
Let T1 be a Γ-obstruction tree of depth i in I. Let β be a partial assignment of the
variables in I. Let T2 be an obstruction tree of depth i in I[β] such that that no variable
v ∈ V (I[β]) is contained both in a constraint of T1 and T2. Let further P be a path (in
the incidence graph) connecting T1 and T2 in I. Then T = T1 ∪ T2 ∪ V (P) ∪ C(P) is a
Γ-obstruction tree in I of depth i + 1.

▶ Lemma 8 (⋆). Let I be a CSP instance and Γ be a constraint language that is closed under
assignments. If there is a Γ-obstruction tree of depth d in I, then the Γ-backdoor depth of I

is at least d + 1.

Our splitter-algorithm will construct obstruction trees of increasing depth by a recursive
procedure (Lemma 18) that we outline now. We say a splitter-algorithm satisfies property i if
it reaches in each game Game(I, Γ) within gC(i, d) rounds (for some function gC(i, d)) either

i) a winning position, or
ii) a position J and a Γ-obstruction tree T of depth i in I such that no variable in var(J)

occurs in a constraint of T , or
iii) a proof that the Γ-backdoor depth of I is at least d.

A splitter-algorithm satisfying property d + 1 then directly implies our main result, the
approximation algorithm for backdoor depth, using Lemma 8 and Lemma 6. Assume we
have a strategy satisfying property i − 1, let us describe how to use it to satisfy property i.
If at any point we reach a winning position, or a proof that the Γ-backdoor depth of I is at
least d, we are done. Let us assume this does not happen, so we can focus on the much more
interesting case 2).

We use property i − 1 to construct a first tree T1 of depth i − 1, and reach a position J1.
We use it again, starting at position J1 to construct a second tree T2 of depth i − 1 that is
completely contained in position J1. Since T1 and T2 are in the same component of F , we
can find a path P connecting them. Let β be the assignment that assigns all the variables
the splitter chose until reaching position J1. Then T2 is an obstruction tree not only in J1
but also in I[β]. In order to join both trees together into an obstruction of depth i, we have
to show, according to Definition 7 that no variable v ∈ var(I[β]) occurs both in a constraint
of T1 and T2. Since no variable in var(J1) occurs in a constraint of T1 (property i − 1), and
T2 was built only from J1, this is the case. The trees T1 and T2 are “separated” and can be
safely joined into a new obstruction tree T of depth i (details also in proof of Lemma 18).

J. Dreier, S. Ordyniak, and S. Szeider 20:9

Finally, we need to ensure is that we reach a position J such that no variable in var(J)
occurs in a constraint of T . This then guarantees that T is “separated” from all future
obstruction trees that we may want to join it with to satisfy property i + 1, i + 2 and so
forth.

It is important to note here, that the exact notion of “separation” between obstruction
trees plays a crucial role and is one of the main differences between the approaches used by
Mählmann et al. [23] and Dreier et al. [14]. The former solve the separation problem in a
“brute-force” manner: If we translate their approach to the language of splitter-algorithms,
then the splitter simply selects all variables that occur in a clause of T . For their base class –
the class Null of formulas without variables – there are at most 2O(d) variables that occur
in an obstruction tree of depth d. Thus, in only 2O(d) rounds, the splitter can select all of
them, fulfilling the separation property. This completes the proof for the base class Null.

However, already for backdoor depth to Krom formulas (or equivalently backdoor depth
to some finite constraint language of arity at most two), this approach cannot work since
obstruction trees for Krom formulas can have arbitrarily many clauses. We solve this issue
by adapting the separator obstructions in [14] from SAT to CSP. We also exploit the fact
that our base classes have bounded arity (in contrast to, e.g., the class of Horn formulas)
to simplify their separator obstructions significantly allowing us to drop the complexity for
solving CSP using backdoor depth from triple to double exponential in the backdoor depth.

5 Separator Obstructions

Obstruction trees are made up of paths, therefore, it is sufficient to separate each new path P

that is added to an obstruction. Note that P can be arbitrarily long and therefore the
splitter cannot simply select all variables in (constraints of) P . Instead, given such a path P

that we want to separate, we will use separator obstructions to develop a splitter-algorithm
(Lemma 16) that reaches in each game Game(I, Γ) within a bounded number of rounds
either

i) a winning position, or
ii) a position J such that no variable in var(J) occurs in a constraint of P , or
iii) a proof that the backdoor depth of I is at least d.

Informally, a separator obstruction is a sequence ⟨P1, . . . , Pℓ⟩ of paths that form a tree Tℓ

together with an assignment τ of certain important variables occurring in Tℓ. The variables
of τ correspond to the variables chosen by the splitter-algorithm and the assignment τ

corresponds to the assignment chosen by the connector. Each path Pi adds (at least one) Γ-
bad constraint bi to the separator obstruction, which is an important prerequisite to increase
the backdoor depth by growing the obstruction. Moreover, by choosing the important
variables and the paths carefully, we ensure that the tree Tℓ has maximum degree at most
three and that every outside variable, i.e., any variable that is not an important variable
assigned by τ , can occur in at most four constraints of Tℓ. Therefore assigning any outside
variable can split Tℓ in only constantly many parts. Together with the assignment τ , which
we will use as a guide for the connector for the variables inside the obstruction, this will
allow us to show that the connector can play in such a way that after every round at least a
constant fraction of the separator obstruction remains intact. This means a large separator
obstruction is a proof that the backdoor depth is larger than d.

To illustrate the growth of a separator obstruction (and motivate its definition) suppose
that our splitter-algorithm is at position J of the game Game(I, Γ) and already has built
a separator obstruction X = ⟨⟨P1, . . . , Pi⟩, τ⟩ containing Γ-bad constraints b1, . . . , bi; note

CP 2022

20:10 CSP Beyond Tractable Constraint Languages

that τ is compatible with τJ . If J is already a winning position, then we are done. Therefore,
J has to contain a Γ-bad constraint. If no Γ-bad constraint has a path to Ti in J , then J

satisfies 2) and we are also done. Otherwise, let bi+1 be a Γ-bad constraint in J that is closest
to Ti and let Pi+1 be a shortest path from bi+1 to Ti in J . Then, we extend our separator
obstruction X by attaching the path Pi+1 to Ti (and obtain the tree Ti+1). Our next order
of business is to choose a bounded number of important variables occurring on Pi+1 that
we will add to X. Those variables need to be chosen in such a way that no outside variable
can destroy too much of the separator obstruction. Apart from destroying the paths of the
separator obstruction, we also need to avoid that assigning any outside variable makes too
many of the Γ-bad constraints b1, . . . , bi+1 Γ-good. Therefore, a natural choice is all variables
of bi+1 to X, i.e., to make those variables important. The following lemma shows that this is
possible, because the number of those variables is bounded.

▶ Lemma 9 (⋆). Let I be a CSP instance and Γ be a finite constraint language. If I

has Γ-backdoor depth at most some integer d, then every constraint of I has arity at most
d + arity(Γ).

The next thing that we need to ensure is that any outside variable can not destroy too
many paths. Note that by choosing a shortest path Pi+1, we have already ensured that no
variable occurs on more than two constraints of Pi+1 (such a variable would be a shortcut,
meaning Pi+1 was not a shortest path). Moreover, because Pi+1 is a shortest path from
bi+1 to Ti, we know that every variable that occurs on Ti and on Pi+1 must occur in the
constraint c in Pi+1 that is closest to Ti but not in Ti itself. Similarly, to how we dealt with
the Γ-bad constraints, we will now add all variables that occur in c to X. This ensures
that no outside variable can occur in both Ti and Pi+1 , which (by induction over i) implies
that every outside variable occurs in at most two constraints (either from Ti or from Pi+1).
However, since removing any single constraint can still be arbitrarily bad if the constraint
has a high degree in the separator obstruction, we further need to ensure that all constraints
of the separator obstruction have small degree. We achieve this by adding the variables
occurring in any constraint as soon as its degree (in the separator obstruction) becomes larger
than two, which happens whenever the endpoint of Pi+1 in Ti is a constraint. Finally, if the
endpoint of Pi+1 in Ti is a variable, we also add this variable to the separator obstruction to
ensure that no variable has degree larger than three in Ti+1. This leads us to the following
definition of separator obstructions (see also Figure 1 for an illustration).

▶ Definition 10. A Γ-separator obstruction for I is a tuple X = ⟨⟨P1, . . . , Pℓ⟩, τ⟩ satisfying
the following conditions.

P1 is a shortest Γ-good path between two Γ-bad constraints b0 and b1 in I.
For 1 ≤ i ≤ ℓ, let Ti =

⋃
1≤j≤i Pj.

For every i ∈ [2, ℓ], Pi is a shortest Γ-good path from Ti−1 to a Γ-bad constraint bi that
is closest to Ti−1 in I[τi−1], where for every i ∈ [0, ℓ], τi is the restriction of τ to the
variables in Vi given below.
For every i ∈ [2, ℓ], let ei be the constraint in Pi \ Ti−1 that is closest to Ti−1 and let fi be
the constraint Pi ∩ Ti−1 if Pi ∩ Ti−1 is a constraint, otherwise we set fi = ei. Moreover,
for every i ∈ [ℓ], let Bi be the set {b0, b1, b2, e2, f2, . . . , bi, ei, fi} of constraints and let Vi

be the set of all variables occurring in any constraint in Bi. Then, τi is the restriction of
τ to Vi and τ assigns exactly the variables in Vℓ.

We define the size of X to be the number of leaves of T = Tℓ.

We start by showing some simple but important properties of separator obstructions.

J. Dreier, S. Ordyniak, and S. Szeider 20:11

b0

f3

b1

e2 = f2

b2

e3

b3

P1

P2 P3

Figure 1 A separator obstruction containing three paths P1, P2, and P3. The figure shows the
vertices and edges of the incident graph. Variables are represented by circles and constraints are
represented by rectangles. Filled variables are contained in V3 (all other variables are not) and filled
rectangles are bad constraints (all other constraints are good). Only the black variables and edges
are part of the tree of the separator obstruction, grey variables and edges are not part of the tree
but are part of V3.

▶ Lemma 11 (⋆). Let Γ be a finite constraint language that is closed under assignments and
let X = ⟨⟨P1, . . . , Pℓ⟩, τ⟩ be a Γ-separator obstruction in I, then for every i ∈ [ℓ]:
(P1) Ti is a tree with leaves b0, . . . , bi.
(P2) Ti has maximum degree at most 3.
(P3) Every variable v ̸∈ Vi is contained in at most two constraints of Ti and moreover those

constraints are consecutive in Ti.
(P4) Every variable v ∈ Vi \ Vi−1 is contained in most 4 constraints of Ti.
(P5) If β is any assignment compatible with τ that does not assign any variable in Vi \ Vi−1,

then bi is a Γ-bad constraint in I[β].

Our next aim is to show that separator obstructions – just like obstruction trees – can be
employed to obtain a lower bound on the backdoor depth of a CSP instance. For this it is
important to show that assigning a single variable cannot sufficiently destroy a separator
obstruction.

Note that Lemma 11 already provides a first step in this direction. In particular, (P3)
limits the influence of variables outside of Vℓ to only two constraints and (P4) limits the
influence of variables inside Vℓ, at least towards the part of the separator obstruction that
was constructed before the variable was added. To limit the influence of variables in Vℓ also
on the remaining part of the separator obstruction, we show that even though these variables
can appear in arbitrary many constraints of the remaining part, their influence is still limited
as long as we only consider CSP instances obtained by assigning those variables according
to τ .

▶ Definition 12. Let X = ⟨⟨P1, . . . , Pℓ⟩, τ⟩ be a Γ-separator obstruction for I and let β be an
assignment that is compatible with τ . Moreover, let c be a constraint contained in T and let i

be minimal such that c is contained in Ti. We say that c is tainted by β, if V (β) contains a

CP 2022

20:12 CSP Beyond Tractable Constraint Languages

variable v in the scope of c such that v ̸∈ Vi−1. Otherwise we say that c is untainted by β.
Similarly, we say that a subtree T ′ is untainted by β if so is every constraint of T ′ and
moreover V (β) does not contain a variable of T ′.

▶ Lemma 13 (⋆). Let Γ be a finite constraint language that is closed under assignments and
let X = ⟨⟨P1, . . . , Pℓ⟩, τ⟩ be a Γ-separator obstruction in I, let β be an assignment that is
compatible with τ , and let T ′ be a subtree of T untainted by β. Then, I[β] contains T ′.

▶ Lemma 14 (⋆). Let T be a tree with n leaves and maximum degree g and let R ⊆ V (T).
Then, T − R has a component containing at least (n − |R|)/(g|R|) leaves of T .

We are now ready to show our main result of this subsection, namely, that separator
obstructions can be used to obtain lower bounds on the backdoor depth of a CSP instance.

▶ Lemma 15. Let Γ be a finite constraint language that is closed under assignments and
let I be a CSP instance. If I has a Γ-separator obstruction of size at least n = (d + 2)(15)d,
then I has Γ-backdoor depth at least d.

Proof. Let X = ⟨⟨P1, . . . , Pℓ⟩, τ⟩ be a Γ-separator obstruction for I of size at least n =
(d + 2)(15)d and let B = {b0, . . . , bℓ}.

Consider the following strategy S for the connector in the game Game(I, Γ). Suppose
that we have reached position J in the game and suppose that the splitter chooses a variable v

as his next move. We distinguish the following two cases:
1. If v /∈ Vℓ, then the connector plays an arbitrary assignment α for v and chooses a

component of J [α] containing a subtree untainted by τJ ∪ α of T containing the largest
subset of B among all components of J [α].

2. If v ∈ Vℓ, then the connector plays the assignment α(v) = τ(v) for v and chooses the
component of J [α] containing a subtree of T untainted by τJ ∪ α containing the largest
subset of B among all components of J [α].

Let J be a position reached in the game Game(I, Γ) against S at round i. We show
by induction on i that J contains a subtree of T untainted by τJ containing at least
ni = n/(15i) − 1 elements from B; note that because of Lemma 11 (P1) the elements of B

contained in the subtree are the leaves of the subtree.
The claim clearly holds for i = 0 since the connector chooses the component of I

containing T . Moreover, for i > 0 let J ′ be the predecessor (position) of J in Game(I, Γ).
By the induction hypothesis J ′ contains a subtree T ′ of T untainted by τJ′ containing at
least ni−1 = n/(15i−1) − 1 elements from B. Let v be the variable chosen by the splitter at
position J ′ and let α be the assignment of v chosen by the connector.

If v /∈ Vℓ, then it follows from Lemma 11 (P3) with i = ℓ that v is contained in at most 2
constraints of T and therefore α can taint at most 2 constraints of T . Otherwise let 1 ≤ i ≤ ℓ

be minimal such that v ∈ Vi. Assume for contradiction α taints a constraint c in T \ Ti.
Then let j be minimal such that c is contained in Tj . Obviously, j > i. But then v ̸∈ Vj−1, a
contradiction to our choice of i. This means α cannot taint any constraints in T \ Ti. Since
1 ≤ i ≤ ℓ is minimal with v ∈ Vi, we have v ∈ Vi \ Vi−1 and by (P4) v is contained in at
most 4 constraints of Ti. This means α can taint at most 4 constraints of Ti. In total, α

can taint at most 4 constraints of T and therefore also of T ′. Further, since T ′ is untainted
by τJ and τJ′ = τJ′ ∪ α, the assignment τJ taints at most 4 constraints of T ′.

Moreover, because of Lemma 13 and the fact that τJ′ ∪ α is compatible with τ , it
follows that every subtree of T ′ untainted by α is contained in some connected component
of J ′[α]. Since T ′ has maximum degree at most 3 due to Lemma 11 (P2), we obtain from

J. Dreier, S. Ordyniak, and S. Szeider 20:13

Observation 14 that after removing the at most 4 constraints together with the variable v

from J ′, there is a component of J ′[α] containing a subtree of T ′ untainted by τJ with at
least (ni−1 − 5)/(3 · 5) = (ni−1/15) − 1/3 ≥ (n/15i−1 − 1)/15 − 1/3 = n/15i − 2/5 ≥ ni

elements of B. Since the connector will choose such a component this concludes the proof of
the claim.

Therefore, we obtain that if J is a position reached after i rounds in the game Game(I, Γ)
against S, then J contains a subtree of T untainted by τJ containing at least ni = n/(15)i − 1
constraints from B. In particular, this implies that if J is a position reached after d rounds
against S, then J contains a subtree of T untainted by τJ containing at least n/(15)d−1 = d+1
constraints from B. Finally, because of Lemma 11 (P5) at least one of these constraints is
Γ-bad in J , which concludes the proof of the lemma. ◀

6 Winning Strategies and Algorithms

In this section, we will present our algorithmic results. In Section 4, we discussed that
separator obstructions are used to separate existing obstruction trees from future obstruction
trees. As all obstruction trees are built only from shortest paths, it is sufficient to derive a
splitter-algorithm that takes a shortest path P and separates it from all future obstructions.
By reaching a position J such that no variable in var(J) occurs in a constraint of P , we are
guaranteed that all future obstructions are separated from P , as future obstructions will only
contain constraints and variables from J .

▶ Lemma 16. Let Γ be a finite constraint language that is closed under assignments. There
exists a splitter-algorithm that implements a strategy to reach for each game Game(I, Γ),
non-negative integer d, and shortest Γ-good path P between two Γ-bad constraints in I within
at most (3 · arity(Γ) + d)(d + 2)(15)d rounds either:

i) a winning position, or
ii) a position J such that no variable in V (J) is contained in a constraint of P , or
iii) a proof that the Γ-backdoor depth of I is larger than d.

This algorithm takes at most O(|I|) time per move.

Proof. Let X = ⟨⟨P1, . . . , Pℓ⟩, τ⟩ be a Γ-separator obstruction for I and let τ ′ be a sub-
assignment of τ assigning at least all variables in Vℓ−1. Then, we call X = ⟨⟨P1, . . . , Pℓ⟩, τ ′⟩
a partial Γ-separator obstruction for I.

Consider the following splitter-algorithm, where for each position J of the game
Game(I, Γ), we additionally associate a partial Γ-separator obstruction denoted by X(J) =
⟨⟨P1, . . . , Pℓ⟩, τJ⟩ with P1 = P to every position J . We set X(S) = ⟨⟨P ⟩, ∅⟩ for the starting
position S of the game.

Then, the splitter-algorithm does the following for a position J in Game(I, Γ). If
X(J) = ⟨⟨P1, . . . , Pℓ⟩, τJ⟩ and there is at least one variable in Vℓ \ Vℓ−1 (assuming that
V0 = ∅) that has not yet been assigned by τJ , then the splitter chooses any such variable.
Otherwise, X(J) is a Γ-separator obstruction and we distinguish the following cases:
1. If there is a Γ-bad constraint in J that has a path to some vertex of Tℓ, then let b be a

Γ-bad constraint that is closest to any vertex of Tℓ in J and let P ′ be a shortest Γ-good
path from b to some vertex of Tℓ in J . Note that X = ⟨⟨P1, . . . , Pℓ, Pℓ+1⟩, τJ⟩, where
Pℓ+1 = P ′, is a partial Γ-separator obstruction for I. The splitter now chooses any
variable in Vℓ+1 \ Vℓ and assigns X ′ = ⟨⟨P1, . . . , Pℓ, Pℓ+1⟩, τJ′⟩ to the position J ′ resulting
from this move.

CP 2022

20:14 CSP Beyond Tractable Constraint Languages

2. Otherwise, X(J) can no longer be extended and either: (a) there is no Γ-bad constraint
in J , in which case we reached a winning position, i.e., we achieved case i), or (b) every
Γ-bad constraint of J has no path to Tℓ, which implies that no variable of J is contained
in a constraint of Tℓ and therefore also of P , i.e., we achieved case ii).

This completes the description of the splitter-algorithm. Moreover, if every play against the
splitter-algorithm ends after at most (3 · arity(Γ) + d)(d + 2)(15)d rounds, every position is
either of type i) or type ii) and we are done.

Otherwise, there is a position J that is reached after playing at least (3 · arity(Γ) + d)(d +
2)(15)d rounds. Then, X(J) has size at least (d + 2)(15)d because the size of the Γ-separator
obstruction increases by at least 1 after at most 3 · arity(Γ) + d steps. This is because every
time the Γ-separator obstruction increases by 1, we only add the at most arity(Γ) + d + 1
variables of at most one Γ-bad constraint bi (because of Lemma 9) and the at most 2 ·arity(Γ)
variables of at most two Γ-good constraints (ei and fi). Therefore, it follows from Lemma 15
that I has Γ-backdoor depth at least d.

Finally, the splitter-algorithm takes time at most O(|I|) per round since a Γ-bad constraint
that is closest to the current Γ-separator obstruction and the associated shortest path can
be found using a simple breadth-first search. ◀

Since selecting more variables can only help the splitter in archiving their goal, we
immediately also get the following statement.

▶ Corollary 17. Consider a finite constraint language Γ that is closed under assignments,
a game Game(I, Γ) and a position J ′ in this game, a non-negative integer d and shortest
Γ-good path P between two Γ-bad constraints in I. There exists a splitter-algorithm that
implements a strategy that continues the game from position J ′ and reaches within at most
(3 · arity(Γ) + d)(d + 2)(15)d rounds either:

i) a winning position, or
ii) a position J such that no variable in V (J) is contained in a constraint of P , or
iii) a proof that the Γ-backdoor depth of I is larger than d.

This algorithm takes at most O(|I|) time per move.

As described at the end of Section 4, we can now construct in the following lemma
obstruction trees of growing size, using the previous corollary to separate them from potential
future obstruction trees.

▶ Lemma 18 (⋆). Let Γ be a finite constraint language that is closed under assignments. There
is a splitter-algorithm that implements a strategy to reach for a game Game(I, Γ) and non-
negative integers i and d with 1 ≤ i ≤ d within at most (2i+1 − 1)(3 · arity(Γ) + d)(d + 2)(15)d

rounds either:
i) a winning position, or
ii) a position J and a Γ-obstruction tree T of depth i in I such that no variable in V (J) is

contained in a constraint of T , or
iii) a proof that the Γ-backdoor depth of I is larger than d.

This algorithm takes at most O(|I|) time per move.

Given Lemma 18, the remaining results now follow easily.

▶ Theorem 19. Let Γ be a finite constraint language that is closed under assignments. We
can, for a given CSP instance I and a non-negative integer d, in time at most |D(I)|2O(d) |I|
either:
1. compute a component Γ-backdoor tree of I of depth at most 2O(d), or
2. conclude that the Γ-backdoor depth of I is larger than d.

J. Dreier, S. Ordyniak, and S. Szeider 20:15

Proof. An obstruction tree of depth d is a proof that the backdoor depth is higher than d,
thus for the case i = d the output of the splitter-algorithm in Lemma 18 after 2O(d) rounds
reduces to either a winning position, or a proof that the Γ-backdoor depth of I is larger
than d. The algorithm takes at most O(|I|) time per move. The statement then follows from
Lemma 6. ◀

▶ Corollary 20. Let Γ be a tractable constraint language that is finite and semi-conservative.
The CSP can be solved in time δ2O(d)(|I|)O(1) for instances I with δ = |D(I)| and d =
depthΓ(I).

Proof. According to Lemma 1, the closure Γ∗ of Γ is also tractable. Furthermore, Γ∗ is
more permissive than Γ and therefore depthΓ∗(I) ≤ depthΓ(I) = d. We use Theorem 19 to
compute a component Γ∗-backdoor tree of depth 2O(d) in I and then use Lemma 2 to solve I

in time δ2O(d)(|I|)O(1). ◀

We would like to mention a corollary of Theorem 19 that we can derive very similarly
to Corollary 20. Consider the #CSP problem, which asks for the number of satisfying
assignments. A constraint language is #-tractable if #CSP is solvable in polynomial time
for instances from CΓ [2]. The proof of Lemma 2 can easily be adapted to #CSP, as at a
variable node, we have to add, and at a component node we have to multiply. Hence, we can
substitute in the statement of Corollary 20 CSP with #CSP and tractable with #-tractable.

7 Conclusion

In this work, we compute backdoors of bounded depth for the CSP to base classes defined
via finite semi-conservative constraint languages. Our approach via obstruction trees seems
to be fundamentally limited to semi-conservative languages. However, we are optimistic
that our techniques can be extended to base classes of unbounded arity. A first step in
this direction has already been obtained in the context of SAT for the base class of Horn
formulas [14]. In this setting, it is particularly interesting to consider tractable classes (of
unbounded arity) of CSPs based on restrictions on the graphical structure [7, 21, 22], as well
as hybrid restrictions [8, 9, 11].

Another interesting direction for future research, which has also been mentioned in the
context of SAT [14], are the so-called scattered and heterogeneous extensions of (strong)
backdoor sets [19, 20].

These extensions can be readily lifted to backdoor depth by allowing each component to
be in any of a given set of (heterogeneous) tractable base classes. Interestingly, while those
two notions lead to orthogonal tractable classes in the context of backdoor size, they lead
to the same notion for backdoor depth. Therefore, lifting these two extensions to backdoor
depth, would result in a unified and significantly more general approach. Moreover, we think
that obtaining a heterogeneous version of backdoor depth seems to be particularly promising
within the context of CSP. This is because, in contrast to SAT, there is a wide range of
tractable classes (even of bounded arity) that can be characterized in a unified manner via
algebraic properties.

References
1 Andrei A. Bulatov. Complexity of conservative constraint satisfaction problems. ACM Trans.

Comput. Log., 12(4):24:1–24:66, 2011. doi:10.1145/1970398.1970400.
2 Andrei A. Bulatov. The complexity of the counting constraint satisfaction problem. J. of the

ACM, 60(5):34:1–34:41, 2013. doi:10.1145/2528400.

CP 2022

https://doi.org/10.1145/1970398.1970400
https://doi.org/10.1145/2528400

20:16 CSP Beyond Tractable Constraint Languages

3 Andrei A. Bulatov. A dichotomy theorem for nonuniform CSPs. In Chris Umans, editor, 58th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA,
USA, October 15-17, 2017, pages 319–330. IEEE Computer Society, 2017. doi:10.1109/FOCS.
2017.37.

4 Jannis Bulian and Anuj Dawar. Graph isomorphism parameterized by elimination distance to
bounded degree. Algorithmica, 75(2):363–382, 2016.

5 Clément Carbonnel and Martin C. Cooper. Tractability in constraint satisfaction problems: a
survey. Constraints, 21(2):115–144, 2016.

6 David Cohen and Peter Jeavons. The complexity of constraint languages. In Francesca Rossi,
Peter van Beek, and Toby Walsh, editors, Handbook of Constraint Programming, volume I,
chapter 8, pages 245–280. Elsevier, 2006.

7 David Cohen, Peter Jeavons, and Marc Gyssens. A unified theory of structural tractability for
constraint satisfaction and spread cut decomposition. In International Joint Conferences on
Artificial Intelligence (IJCAI-05), pages 72–77, 2005.

8 David A. Cohen, Martin C. Cooper, Páidí Creed, Dániel Marx, and András Z. Salamon. The
tractability of CSP classes defined by forbidden patterns. J. Artif. Intell. Res., 45:47–78, 2012.

9 David A. Cohen, Martin C. Cooper, Peter G. Jeavons, and Stanislav Zivný. Tractable
classes of binary CSPs defined by excluded topological minors. In Qiang Yang and Michael J.
Wooldridge, editors, Proceedings of the Twenty-Fourth International Joint Conference on
Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pages 1945–
1951. AAAI Press, 2015.

10 Martin C. Cooper, David A. Cohen, and Peter Jeavons. Characterising tractable constraints.
Artificial Intelligence, 65(2):347–361, 1994. doi:10.1016/0004-3702(94)90021-3.

11 Martin C. Cooper, Philippe Jégou, and Cyril Terrioux. A microstructure-based family of
tractable classes for CSPs. In Gilles Pesant, editor, Principles and Practice of Constraint
Programming - 21st International Conference, CP 2015, Cork, Ireland, August 31 - September
4, 2015, Proceedings, volume 9255 of Lecture Notes in Computer Science, pages 74–88. Springer
Verlag, 2015.

12 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

13 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer Verlag, 2013.

14 Jan Dreier, Sebastian Ordyniak, and Stefan Szeider. SAT backdoors: Depth beats size. In
30th Annual European Symposium on Algorithms (ESA 2022), volume 244 of LIPIcs. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022. to appear. arXiv:2202.08326.

15 Jörg Flum and Martin Grohe. Parameterized Complexity Theory, volume XIV of Texts in
Theoretical Computer Science. An EATCS Series. Springer Verlag, Berlin, 2006.

16 Fedor V Fomin, Petr A Golovach, and Dimitrios M Thilikos. Parameterized complexity of
elimination distance to first-order logic properties. arXiv preprint arXiv:2104.02998, 2021.

17 Robert Ganian, M. S. Ramanujan, and Stefan Szeider. Discovering archipelagos of tractability
for constraint satisfaction and counting. In Robert Krauthgamer, editor, Proceedings of
the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016,
Arlington, VA, USA, January 10-12, 2016, pages 1670–1681. SIAM, 2016.

18 Robert Ganian, M. S. Ramanujan, and Stefan Szeider. Combining treewidth and backdoors
for CSP. In Heribert Vollmer and Brigitte Vallée, editors, 34th Symposium on Theoretical
Aspects of Computer Science (STACS 2017), volume 66 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 36:1–36:17, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. doi:10.4230/LIPIcs.STACS.2017.36.

19 Robert Ganian, M. S. Ramanujan, and Stefan Szeider. Discovering archipelagos of tractability
for constraint satisfaction and counting. ACM Transactions on Algorithms, 13(2):29:1–29:32,
2017. Full version of a SODA’16 paper. doi:10.1145/3014587.

https://doi.org/10.1109/FOCS.2017.37
https://doi.org/10.1109/FOCS.2017.37
https://doi.org/10.1016/0004-3702(94)90021-3
http://arxiv.org/abs/2202.08326
https://doi.org/10.4230/LIPIcs.STACS.2017.36
https://doi.org/10.1145/3014587

J. Dreier, S. Ordyniak, and S. Szeider 20:17

20 Serge Gaspers, Neeldhara Misra, Sebastian Ordyniak, Stefan Szeider, and Stanislav Zivny.
Backdoors into heterogeneous classes of SAT and CSP. J. of Computer and System Sciences,
85:38–56, 2017. doi:10.1016/j.jcss.2016.10.007.

21 Georg Gottlob, Nicola Leone, and Francesco Scarcello. A comparison of structural CSP
decomposition methods. Artificial Intelligence, 124(2):243–282, 2000.

22 Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree decompositions and tractable
queries. J. of Computer and System Sciences, 64(3):579–627, 2002.

23 Nikolas Mählmann, Sebastian Siebertz, and Alexandre Vigny. Recursive backdoors for SAT. In
Filippo Bonchi and Simon J. Puglisi, editors, 46th International Symposium on Mathematical
Foundations of Computer Science, MFCS 2021, August 23-27, 2021, Tallinn, Estonia, volume
202 of LIPIcs, pages 73:1–73:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPIcs.MFCS.2021.73.

24 Jaroslav Nesetril and Patrice Ossona de Mendez. Tree-depth, subgraph coloring and homo-
morphism bounds. European J. Combin., 27(6):1022–1041, 2006.

25 Jaroslav Nešetřil and Patrice Ossona de Mendez. Sparsity - Graphs, Structures, and Algorithms,
volume 28 of Algorithms and combinatorics. Springer, 2012.

26 Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in
Mathematics and its Applications. Oxford University Press, Oxford, 2006.

27 Sebastian Ordyniak, Andre Schidler, and Stefan Szeider. Backdoor DNFs. In Zhi-Hua
Zhou, editor, Proceeding of IJCAI-2021, the 30th International Joint Conference on Artificial
Intelligence, pages 1403–1409, 2021. doi:10.24963/ijcai.2021/194.

28 Marko Samer and Stefan Szeider. Backdoor trees. In AAAI 08, Twenty-Third Conference on
Artificial Intelligence, Chicago, Illinois, July 13–17, 2008, pages 363–368. AAAI Press, 2008.

29 Marko Samer and Stefan Szeider. Fixed-parameter tractability. In Armin Biere, Marijn Heule,
Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability, 2nd Edition, chapter 17,
pages 693–736. IOS Press, 2021. doi:10.3233/FAIA201000.

30 Thomas J. Schaefer. The complexity of satisfiability problems. In Conference Record of the
Tenth Annual ACM Symposium on Theory of Computing (San Diego, Calif., 1978), pages
216–226. ACM, 1978.

31 Ryan Williams, Carla Gomes, and Bart Selman. Backdoors to typical case complexity. In
Georg Gottlob and Toby Walsh, editors, Proceedings of the Eighteenth International Joint
Conference on Artificial Intelligence, IJCAI 2003, pages 1173–1178. Morgan Kaufmann, 2003.

32 Ryan Williams, Carla Gomes, and Bart Selman. On the connections between backdoors,
restarts, and heavy-tailedness in combinatorial search. In Informal Proc. of the Sixth Interna-
tional Conference on Theory and Applications of Satisfiability Testing, S. Margherita Ligure -
Portofino, Italy, May 5-8, 2003 (SAT 2003), pages 222–230, 2003.

33 Dmitriy Zhuk. A proof of CSP dichotomy conjecture. In Chris Umans, editor, 58th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October
15-17, 2017, pages 331–342. IEEE Computer Society, 2017. doi:10.1109/FOCS.2017.38.

CP 2022

https://doi.org/10.1016/j.jcss.2016.10.007
https://doi.org/10.4230/LIPIcs.MFCS.2021.73
https://doi.org/10.24963/ijcai.2021/194
https://doi.org/10.3233/FAIA201000
https://doi.org/10.1109/FOCS.2017.38

Explaining Propagation for Gini and Spread with
Variable Mean
Alexander Ek #

Dept. of Data Science & AI, Monash University, Melbourne, Australia
CSIRO Data61, Melbourne, Australia

Andreas Schutt #

CSIRO Data61, Melbourne, Australia

Peter J. Stuckey #

Dept. of Data Science & AI, Monash University, Melbourne, Australia

Guido Tack #

Dept. of Data Science & AI, Monash University, Melbourne, Australia

Abstract
In optimisation problems involving multiple agents (stakeholders) we often want to make sure that
the solution is balanced and fair. That is, we want to maximise total utility subject to an upper
bound on the statistical dispersion (e.g., spread or the Gini coefficient) of the utility given to different
agents, or minimise dispersion subject to some lower bounds on utility. These needs arise in, for
example, balancing tardiness in scheduling, unwanted shifts in rostering, and desired resources
in resource allocation, or minimising deviation from a baseline in schedule repair, to name a few.
These problems are often quite challenging. To solve them efficiently we want to effectively reason
about dispersion. Previous work has studied the case where the mean is fixed, but this may not
be possible for many problems, e.g., scheduling where total utility depends on the final schedule.
In this paper we introduce two log-linear-time dispersion propagators – (a) spread (variance, and
indirectly standard deviation) and (b) the Gini coefficient – capable of explaining their propagations,
thus allowing effective clause learning solvers to be applied to these problems. Propagators for
(a) exist in the literature but do not explain themselves, while propagators for (b) have not been
previously studied. We avoid introducing floating-point variables, which are usually not supported
by learning solvers, by reasoning about scaled, integer versions of the constraints. We show through
experimentation that clause learning can substantially improve the solving of problems where we
want to bound dispersion and optimise total utility and vice versa.

2012 ACM Subject Classification Computing methodologies → Artificial intelligence; Theory of
computation → Constraint and logic programming

Keywords and phrases Spread constraint, Gini index, Filtering algorithm, Constraint programming,
Lazy clause generation

Digital Object Identifier 10.4230/LIPIcs.CP.2022.21

Supplementary Material Software (Source Code): https://www.github.com/aekh/chuffed
Dataset (Instances, Models, and Results): https://www.github.com/aekh/CP22-Extras

Funding This research was partially funded by the Australian Government through the Australian
Research Council Industrial Transformation Training Centre in Optimisation Technologies, Integrated
Methodologies, and Applications (OPTIMA), Project ID IC200100009.

1 Introduction

In many real-world applications of combinatorial optimisation the statistical dispersion
(sometimes called variability or spread) of the variable assignments in the solutions are
important to consider. This is because some kind of balance or fairness within the solution

© Alexander Ek, Andreas Schutt, Peter J. Stuckey, and Guido Tack;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 21; pp. 21:1–21:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Alexander.Ek@monash.edu
https://orcid.org/0000-0002-8744-4805
mailto:Andreas.Schutt@data61.csiro.au
https://orcid.org/0000-0001-5452-4086
mailto:Peter.Stuckey@monash.edu
https://orcid.org/0000-0003-2186-0459
mailto:Guido.Tack@monash.edu
https://orcid.org/0000-0003-3357-6498
https://doi.org/10.4230/LIPIcs.CP.2022.21
https://www.github.com/aekh/chuffed
https://www.github.com/aekh/CP22-Extras
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Explaining Propagation for Gini and Spread with Variable Mean

is desired. As an example, consider a resource allocation problem, where a set A of agents
compete over a set R of resources under complex constraints. The utility that an agent
a ∈ A receives from being allocated a resource r ∈ R may completely depend on what other
resources a are also being allocated. For example, a woodworker gets little utility from being
allocated nails but not a hammer, or hammer and nails but not planks. In this situation, it
may be essential to balance the utilities (or metrics derived from the utilities) each agent
receives. A fixed mean is often assumed in the literature, simplifying the constraint; however,
fixing the mean is not possible in many contexts. Throughout this paper, we assume the
mean is variable.

The main contribution in this paper is the development of efficient and explaining
propagators, filtering the lower bound, for two kinds of dispersion measured over an array of
variables X: (i) spread (i.e., variance and standard deviation), explained in Section 3; and
(ii) the Gini coefficent, explained in Section 4. We only consider filtering the lower bound
because usually minimisation of dispersion or keeping dispersion under some upper bound is
of interest. Problems which require maximising dispersion or ensuring sufficient dispersion
need filtering algorithms for the upper bound, and require other types of approximations
and roundings than presented here, which we leave to future work.

A dispersion propagator can also be devised that propagates the bounds of the variables X

whose dispersion is being measured. Interestingly we performed some preliminary experiments,
where we implemented a naive domain consistent propagator for spread by checking each
possible assignment to the variables X, and removing unsupported values. This propagator,
which is the strongest possible, rarely removed values from the X variables before all but
one of them were fixed. This is because the X variables act in aggregate in a large sum,
and propagation is notoriously weak for reasoning about large sums. This is even more
pronounced in our case because of the squared differences in the sum for variance and absolute
differences in the sum for Gini. Hence, we decided not to pursue algorithms for this case,
since it was clear they would rarely help.

In Sections 3 and 4 we respectively present lower bounds on spread and the Gini coefficent
(Gini) and how to explain the propagation of those. We avoid introducing floating-point
variables, which are usually not supported by clause learning solvers, by reasoning over
appropriately scaled integer versions of the constraints. Selecting a scale is application-specific:
there is a trade-off between the size of integers and fidelity.

2 Background

We briefly introduce main concepts used in this paper starting with those ones in combinatorial
optimisation, statistics, and ending with real relaxations.

2.1 Combinatorial Optimisation
A constrained optimisation problem (COP) P = (X, D, C, o) consists of a set of variables X,
an initial domain D mapping each x ∈ X to a set of integer values x 7→ D(x) ⊆ Z, a set of
constraints C over the variables X and an objective function o to be minimised (w.l.o.g). An
assignment θ is a mapping from each variable x ∈ X to a value from its domain θ(x) ∈ D(x).
An assignment θ is a solution of COP P if it makes all constraints c ∈ C true. An assignment
θ is an optimal solution if θ(o) ≤ θ′(o) for all solutions θ′ of P .

An often effective way to solve COPs is the constraint programming (CP) solving tech-
nology [14]. In CP, each constraint c ∈ C has a propagator fc, which uses specialised
algorithms and logic to reduce the domains of the variables concerning c when invoked, i.e.,

A. Ek, A. Schutt, P. J. Stuckey, and G. Tack 21:3

fc(D)(x) ⊆ D(x). Only guaranteed non-solutions are removed. If fc(D)(x) = ∅ for some
x ∈ X, we say that we have reached a failure because there is no solution in D. When no
more inference can be made by the propagators, and we do not have a solution or failure yet,
we need to search for a solution. This can be done by arbitrarily reducing the domain of a
variable x ∈ X to D′(x) ⊊ D(x), creating a binary branch point in the search tree of the
constraints x ∈ D′(x) in one child and x ∈ D(x) \ D′(x) in the other.

We use l..u to denote the set of integers {l, l + 1, . . . , u − 1, u}, and for a decision variable
x with domain D(x), we use x to denote max(D(x)) and x to denote min(D(x)).

An often effective augmentation of CP is lazy clause generation (LCG), which combines
the techniques of Boolean satisfiability solving (SAT) and CP [9]. An LCG solver connects
Boolean variables concerning bounds (and fixed values, but they will not be needed here) to
the integer variables. The Boolean Jx ≥ dK holds if the integer variable x takes a value greater
than or equal to d. We use notation Jx < dK for ¬Jx ≥ dK and Jx ≤ dK for ¬Jx ≥ d − 1K. An
LCG solver tracks the reasons justifying all propagated domain changes happening during
search. We call such reasons for each propagation an explanation, represented as a set of
Boolean clauses, using the literals defined above, which were implied by the domains at the
time of propagation and imply the propagation. In case of a failure, these explanations are
used to find nogoods, which extract the reason for the failure as a new (previously implicit)
constraint, representing an erroneous choice made earlier during search and preventing it
from reoccurring. We can then backjump to the point just before this choice was made and
add the new constraint explicitly to prevent making the same erroneous choice again. A
popular LCG solver is Chuffed [3], which we will use and extend in this paper.

2.2 Statistical Preliminaries
Perhaps the most common statistical summary of a set of numbers is that of its central
tendency, and arguably the most prevalent of those is the arithmetic mean. Suppose we have
a population X of integer values x1, . . . , xn. We respectively denote the arithmetic mean and
the sum of these as:

µX = 1
n

∑n

i=1
xi, MX =

∑n

i=1
xi.

For brevity, we will omit the subscript “X” when there is little room for ambiguity.
A measure of dispersion is another kind of statistical summary of a set of numbers.

It describes how different or similar values of X are. The first measure of dispersion we
consider is the population variance, or simply variance. The variance of X is defined as the
average squared difference from the arithmetic mean, with its conventional and alternative
formulations as follows:

σ2
X = 1

n

∑n

i=1
(xi − µ)2

, σ2
X =

(
1
n

∑n

i=1
x2

i

)
− µ2. (1)

A related measure of dispersion is the standard deviation, which is the square-root of variance:

σX =
√

1
n

∑n

i=1
(xi − µ)2

,

Standard deviation is a monotonic transformation of variance. As such, minimising (and
maximising) standard deviation is equivalent to minimising (and maximising) variance.
Similarly, any constraints specified on the standard deviation can be squared to obtain the
equivalent constraint on the variance. As such we only need to define a propagator for
variance.

CP 2022

21:4 Explaining Propagation for Gini and Spread with Variable Mean

The second measure of dispersion we consider is the Gini coefficient. The Gini coefficient
of X is conventionally formulated as:

Gini(X) =
∑n

i=1
∑n

j=i+1 |xi − xj |
n

∑n
i=1 xi

.

Calculating this naïvely takes O(|X|2) time, but an alternative linear-time formulation is
well-known if X is sorted [4]:

Gini(X) =
∑n

i=1(2i − n − 1)xi

n
∑n

i=1 xi
. (2)

The Gini coefficient, originally developed for measuring income inequality, measures how far
a distribution X deviates from a totally equal distribution. Note that it is only meant to
apply when xi > 0, since otherwise the sum divisor can be zero.

2.3 Real Relaxation
We will examine the case of the dispersion constraints on a set of integer valued variables X.
It will often be useful to relax the integrality constraint in order to create lower bounds on
dispersion values.

In our lower bound calculations we relax the problem from integer variables to real
variables.

▶ Definition 1. An R-assignment of variables X is a mapping θ from X to R such that
x ≤ θ(x) ≤ x, ∀x ∈ X.

We further make use of ν-centred assignments as defined by [13].

▶ Definition 2. Given a real value ν, an R-assignment θ is ν-centred if

θ(x) =

x if x ≤ ν

x if x ≥ ν

ν otherwise

We denote the ν-centred assignment θν .

3 The Spread Constraint

The spread constraint [13] as initially introduced was defined as spread(X,µ,σ,x̃), where
µ is constrained to be the mean of the array of (say n) variables X = [x1, . . . , xn], σ the
standard deviation, and x̃ the median. We will examine a slightly different form.

Let spread(X,M ,n2V) be defined to constrain M to be the sum of X, i.e.,
∑n

i=1 xi, and
n2V to be equal to n2 times the variance of X, i.e., n2σ2. The advantage of this form is
that each of the variables takes integer values. By making use of the alternate expression of
variance, the following equations hold:

n2V = n
∑n

i=1
x2

i − M2 ∧ M =
∑n

i=1
xi, (3)

Since all the variables involved are integer, we can use this within a solver that does not
support floating-point variables, without difficulty.

A. Ek, A. Schutt, P. J. Stuckey, and G. Tack 21:5

But when n is large, the size of the n2V may often push the boundaries of integers that
most solvers can deal with. Thus, we also introduce a relaxed version of the spread constraint
that works with a given fixed positive scaling factor s defined as follows.

spread(X,M ,v,s) constrains M to be the sum of X and v = ⌊σ2 · s⌋, where σ2 is the
variance of X scaled (by s) and rounded down. For instance, s = 1 means whole number and
s = 100 means percentage. Note when this is used as a lower bound it is always correct. The
benefit of this relaxed form of the constraint is that it, again, only involves integer variables.

We can define this as a decomposition in MiniZinc using Equation (3), as follows:
1 predicate spread (array [int] of var int:X, var int:M, var int:v, int:s) =
2 let { int: n= length (X);
3 array [int] of var 0.. infinity : sq = [x * x | x in X];
4 var 0..n*ub(sum(sq)): v_ = n*sum(sq);
5 var 0.. max(lb(M)*lb(M),ub(M)*ub(M)): Msq = M*M;
6 var 0.. ub(v_): v__ = v_ - Msq;
7 var 0.. ub(v__)*s: v___ = v__*s; }
8 in v = v___ div (n*n) /\ M = sum(X);

Note that lb and ub return the best known, at compile time, lower and upper bound
respectively of the argument expression. Note that the first version we defined is implemented
by spread(X,M ,n2v) = spread(X,M ,n2v,n2).

3.1 Lower Bound on Variance
In this section we present a log-linear-time propagator for filtering the lower bound of the
variance variable using binary chop.

We define a real-value relaxed lower bound formula for the variance:

LBV (X, M) =
M

min
m=M

LBV ′(X,
m

n
), where LBV ′(X, ν) = 1

n

∑n

i=1
(θν(xi) − ν)2

Essentially, we pick the ν-centred assignment with the lowest variance. From a previous
result by [13] we know that a variance-minimal solution to the spread constraint must be a
ν-centred assignment.

▶ Lemma 3. LBV (X, M) is a lower bound on σ2, i.e., LBV (X, M) ≤ σ2.

Proof. Let Y = {y1, . . . , yn} be an arbitrary assignment of the variables in X where yi ∈
D(xi) and ν = MY /n be the mean of Y where MY =

∑n
i=1 yi. Now, we only need to prove

that LBV ′(X, ν) ≤ 1
n

∑n
i=1(yi −ν)2, i.e., the variance of the ν-centred assignment is less than

or equal to the variance of the assignment Y . We do so by proving (θν(xi) − ν)2 ≤ (yi − ν)2

for every i. By construction of the ν-centred assignment (see Definition 2), for any i, where
1 ≤ i ≤ n, it holds either that yi ≤ θν(xi) ≤ ν for the case xi ≤ ν, that ν ≤ θν(xi) ≤ yi

for the case xi ≥ ν, or that ν = θν(xi) (i.e., (θν(xi) − ν)2 = 0 otherwise). Thus, it holds
(θν(xi) − ν)2 ≤ (yi − ν)2 in all cases. Hence, the lemma holds. ◀

We can calculate LBV in log-linear time, because LBV ′ is convex in ν.

▶ Lemma 4. LBV ′(X, ν) is a convex function in ν.

Proof. Since a sum of convex functions is convex, we only need to prove for each i, where
1 ≤ i ≤ n, that the function f(ν) = (θν(xi) − ν)2 is convex in ν. By construction of θν (see
Definition 2), the difference θν(xi) − ν is strictly decreasing until ν = xi, then zero until
ν = xi, and strictly decreasing again. Since the difference is squared, the function f is a
quadratic function with a flat bottom of some length. Hence, it is convex and LBV ′(X, ν)
as well. ◀

CP 2022

21:6 Explaining Propagation for Gini and Spread with Variable Mean

Algorithm 1 Only run if not all fixed. n = |X|.

1: procedure SpreadLb(X, M , v, s)
2: L, R←M, M
3: while L < R do
4: mL ← L + ⌊(R− L)/2⌋
5: mR ← mL + 1
6: VL, VR ← LBV ′(X, mL/n), LBV ′(X, mR/n)
7: if min(VL, VR) = 0 then return true
8: if VL = VR then
9: V, m← VL, mL

10: break
11: if VL < VR then
12: V, m, R← VL, mL, mL

13: else if VL > VR then
14: V, m, L← VR, mR, mR

15: Vs ← ⌊V × s⌋
16: if Vs ≤ v then return true
17: EX ← {Jxi ≤ xiK | xi < m/n} ∪ {Jxi ≥ xiK | m/n < xi}
18: if m = M then EX ← EX ∪ {JM ≤MK}
19: if m = M then EX ← EX ∪ {JM ≥MK}
20: if Vs > v then
21: return Jv < V sK ∧

∧
l∈EX l→ false

22: else
23: return

∧
l∈EX l→ Jv ≥ VsK

Hence, we can use binary search on the values m in M to find a minimum value for LBV ′.
Thus, only the mean values ν = m

n with M ≤ m ≤ M have to be considered. This follows
from the proof of Lemma 3 since the use of ν value is set to the mean of an arbitrary
assignment.

3.2 Algorithm and Clause Learning Explanations
Algorithm 1 defines our approach to finding and asserting a lower bound on (scaled) variance.
Note that when all x ∈ X are fixed, we can simply calculate the actual variance in O(n)
time.1 It returns a clause which is a consequence of the constraint, and whose right-hand
side gives the new propagation of the lower bound, otherwise it returns the vacuous true

clause.
The algorithm searches through the integer range L..R of values for the sum m that

results in the minimum value for LBV ′(X, m/n). We compute the values VL of LBV ′ for
the (integer) midpoint mL of L..R and VR for the position one to the right of mL, namely
mR. If either of VL or VR give 0, then the overall variance bound is 0 and hence we return,
since no propagation is possible. If VL and VR are equal, then we have found the lowest value
and break from the loop, since two variance-equal and neighbouring points can only occur if
they are both minima – this follows from convexity. Otherwise, we use the relative values
of VL and VR to decide which half of the interval to keep. We store the best value found
V and the sum value m where it occurs and update the appropriate bound L or R. If the
interval ever shrinks to a singleton, then the loop exits. We compute the lower bound Vs on
the scaled version of the variance v. If the lower bound is already subsumed, then we return
a trivial clause true. Otherwise, we collect the literals that will appear in the explanation for
the bound change or failure in EX . We collect all the lower and upper bounds that appear in

1 In this case we still scale and round down, for consistency.

A. Ek, A. Schutt, P. J. Stuckey, and G. Tack 21:7

the ν-centred valuation, but not the bounds of the overlapping variables, in the explanation.
If the optimal m value resides at one of the extremes of the sum M , then we collect the
appropriate literal. Finally, if the new bound will cause unsatisfiability, then we add in the
current upper bound for v and return an explanation for failure. Otherwise, we return an
explanation for the new bound v ≥ Vs.

This algorithm runs in O(n log d) time, where n = |X| and d = M − M . We can assume
this algorithm is O(n log n) when d is of size O(nk) for any reasonably small constant k.

▶ Lemma 5. Algorithm 1 returns a clause which is a consequence of spread(X,M ,v,s).

Proof. The result clearly holds for the trivial clause true. The correctness of the value
V = LBV ′(X, m/n) computed by Algorithm 1 follows from Lemma 3 and Lemma 4. We
now show that the explanation collected in EX is correct, i.e., EX → s × σ2 ≥ ⌊s × V ⌋
is universally true, which is the clausal explanation in both non-trivial cases. Assume to
the contrary that there is a solution η of spread(X,M ,v,s) satisfying EX that has smaller
variance. We can assume η is ν-centred for some ν and bounds on X (not necessarily the
current bounds) [13]. But then η must set all xi variables not appearing in EX to ν, otherwise
there is an assignment allowed by EX which would be better. But η as a function of ν is
identical to LBV ′(X, ν) around the minima m/n. That is, all variables with upper bound
below m/n are set to their upper bound, which is part of EX , and similarly for variables
with lower bound above m/n, and the remaining variables take value ν. If m is not the upper
or lower bound of the sum M , then m/n is a local (and global) minima of LBV ′(X, ν), and
hence also of η. If m is the upper or lower bound of M , then this bound is included in EX,
and again m/n is the minima for LBV ′(X, ν) and η. Contradiction. ◀

▶ Example 6. Consider an execution of the algorithm where X = [x1, x2, x3, x4] with current
domains [0, 0..4, 2..3, 4..6], M has domain 6..10, v has domain 0..400 and s = 100. We start
with L = 6, R = 10. Then mL = 8 and mR = 9. We compute VL = LBV ′(X, 2) = 2 and
VR = LBV ′(X, 2.25) = 2.015625. We set V = VL, m = 8 and R = 8. We compute mL = 7
and mR = 8, and compute VL = LBV ′(X, 1.75) = 2.0123 and VR = LBV ′(X, 2) = 2. We set
V = VR, m = 8 and L = 8. We exit the loop, computing Vs = 200. We collect the explanation
EX = {Jx1 ≤ 0K, Jx4 ≥ 4K} returning the explanation clause Jx1 ≤ 0K∧Jx4 ≥ 4K → Jv ≥ 200K.
Note that we do not collect Jx3 ≥ 2K. This is because if the domain of x3 is extended arbitrarily
much in either or both directions, then it would still overlap with 2, and if it were reduced
arbitrarily much from either or both directions, then the resulting minimal variance would
increase. Thus, the lower bound holds regardless of the value of x3. ◀

4 The Gini Coefficient

Suppose we have an array X of n variables x1, . . . , xn. Define the Gini constraint gini(X,
M, g, s) to constrain M to be the sum of X (i.e.,

∑n
i=0 xi) and g = ⌊Gini(X) × s⌋ to be

the Gini coefficient variable expressed as an integer scaled by s and rounded down. We can
define this as a decomposition in MiniZinc as follows:
1 predicate gini(array [int] of var int:X, var int:M, var int:g, int:s) =
2 let { int: n= length (X);
3 int: range_size = ub_array (X) - lb_array (X);
4 array [int] of var 0.. range_size : diffs
5 = [abs(X[i]-X[j]) | i,j in index_set (X) where i<j];
6 var 0..s*(n div 2 + 1)*(n div 2)*(range_size): tot_diff
7 = sum(diffs) * s;
8 var 0.. ub(tot_diff) div n: result_ = tot_diff div n;
9 var 0.. ub(result_): result = result_ div M }

10 in v = result /\ M = sum(X);

CP 2022

21:8 Explaining Propagation for Gini and Spread with Variable Mean

Note that we try to bound the initial domains reasonably tightly, to reduce overhead in
the solver. The function lb_array (and ub_array) returns the least (and greatest) possible
value known at compile time of an array of decision variables. The upper bound on the
sum of differences of numbers in the range min X.. max X is to have half at each end, thus
⌈ n

2 ⌉ × ⌊ n
2 ⌋ × (range_size) where range_size is the difference between the minimum and

maximum possible values of X.
Before going into the details of the propagator algorithm, we will prove a lemma that

will help us. The formulation from Equation (2) will be used, since it is faster to calculate
for ν-centred assignments and will simplify the proofs in this section. We show that the
minimum Gini coefficient of the problem arises for a ν-centred assignment.

▶ Lemma 7. For a given fixed mean value µ of variables X, a ν-centred assignment leads to
the minimal value of the sum of absolute values of pairwise differences.

Proof. We prove the lemma by contradiction. Assume w.l.o.g., that a non-ν-centred assign-
ment ϕ for X is presented in non-decreasing order, i.e., ϕ(xi) ≤ ϕ(xi+1) for 1 ≤ i < n, with
the mean µ = 1

n

∑n
i=1 ϕ(xi), and let A =

∑n
i=1(2i − n − 1)ϕ(xi) be the sum of the absolute

values (by Equation (2)). Assume to the contrary that ϕ leads to a minimum sum A. Since
the mean µ is fixed, we need not analyse the denominator of the Gini coefficient.

At least one variable must be unfixed, otherwise ϕ must be ν-centred. There must be
at least one variable xj with ϕ(xj) < xj , otherwise ϕ is ν-centred with ν = maxn

i=1 ϕ(xi).
Furthermore, there must be at least one variable xk with xk < ϕ(xk) (analogously) and
1 ≤ j < k ≤ n (otherwise ϕ must be ν-centred). W.l.o.g., we can assume that ϕ(xj) < ϕ(xj+1)
and ϕ(xk−1) < ϕ(xk), because one can reorder the variables having the same value in ϕ,
so that indices j and k are the greatest and least one with the values ϕ(xj) and ϕ(xk),
respectively.

We construct a new assignment ϕ′ for X, having the same mean as ϕ, as follows:
ϕ′(xi) = ϕ(xi) for 1 ≤ i ≤ n with i /∈ {j, k}, ϕ′(xj) = ϕ(xj)+δ, and ϕ′(xk) = ϕ(xk)−δ where
δ ∈ R and δ > 0 is chosen, so that ϕ(xj) + δ ≤ min{ϕ(xj+1), xj} and max{ϕ(xk−1), xk} ≤
ϕ(xk) − δ. Note that ϕ′ is also in non-decreasing order, thus, its sum of absolute values
is A′ =

∑n
i=1(2i − n − 1) by Equation (2). If A is the minimal sum of absolute values

then 0 ≥ A − A′. Since ϕ and ϕ′ only differ in the variable values for xj and xk, it
holds 0 ≥ (2j − n − 1)(ϕ(xj) − ϕ′(xj)) + (2k − n − 1)(ϕ(xk) − ϕ′(xk)), which is 0 ≥
(2j − n − 1)(−δ) + (2k − n − 1)δ = 2(k − j)δ. Due to j < k, we have 2(k − j)δ > 0, which
contradicts the assumption that A is the minimal sum of absolute values. ◀

Since fixing the mean fixes the divisor of the Gini coefficient, we have the following obvious
consequence. Given a fixed mean µ, the ν-centred assignment θν where µ = 1

n

∑n
i=1 θν(xi)

leads to minimal Gini coefficient. And this must hold for any mean.

▶ Corollary 8. A Gini-minimal assignment of X must be ν-centred.

4.1 Lower Bound on Gini Coefficient
In this section we present a log-linear time propagator for filtering the lower bound of the
Gini coefficient using binary chop.

We will now, similarly to the approach used for variance, show how to calculate a lower
bound on the Gini Coefficient. The key to this is, again, finding the best ν-centred assignment,
which we know must be a lower bound.

A. Ek, A. Schutt, P. J. Stuckey, and G. Tack 21:9

Let L = minn
i=1 xi be the least lower bound and U = maxn

i=1 xi be the greatest upper
bound, then we can define a real-value relaxed lower bound on the Gini coefficient of X as

LBG(X) =
U

min
β=L

Gini(X, β), where Gini(X, ν) =
∑n

i=1
∑n

j=i+1 |θν(xi) − θν(xj)|
n

∑n
i=1 θν(xi)

.

By Equation (2) and given a non-decreasingly sorted list of the bounds of X, we can calculate
Gini(X , ν) in linear time over |X|. Next, we show that we do not have to consider all values
between L and U .

▶ Lemma 9. The minimum Gini coefficient occurs at a ν-centred assignment where ν ∈
∪n

i=1{xi, xi}.

Proof. By Corollary 8, we know that the minimum Gini coefficient occurs with a ν-centred
assignment. We need to show that there are no local minima in any segment between two
consecutive bounds, which, if true, will allow us to disregard any point that is not a bound of
one of the variables when searching for the lower bound on Gini. Consider a segment between
two consecutive bounds l and u. Since no other bound occurs in between l and u, the three
sets of variables in X that will be set to their upper bounds, their lower bounds, and to ν,
respectively, will remain constant across all ν-centred assignments when l ≤ ν ≤ u. Assume
these variables in X, and what they are set to, occur sorted such that B = 1..j − 1 are the
indices of the variables below the segment (i.e., where xi ≤ l), the indices C = j..j + k − 1
are of the variables that cover the segment (i.e., where xi ≤ l ≤ u ≤ xi), and A = j + k..n

are the indices of the variables above the segment (i.e., where xi ≥ u). Using Equation (2),
the formula for the Gini coefficient across this segment G(ν) is hence

G(ν) ≡
∑

i∈B(2i − n − 1)xi +
∑

i∈C(2i − n − 1)ν +
∑

i∈A(2i − n − 1)xi

n
(∑

i∈B xi +
∑

i∈A xi + kν
)

Let D =
∑

i∈B(2i − n − 1)xi +
∑

i∈A(2i − n − 1)xi, N =
∑

i∈B xi +
∑

i∈A xi and c =∑
i∈C(2i − n − 1). Differentiating G(ν) w.r.t. to ν, we get the following by the quotient rule

∂

∂ν

D + cν

n(N + kν) = cn(N + kν) − (D + cν)nk

n2(N + kν)2 = cN − kD

n(N + kν)2

Note that the sign of the slope is determined by the numerator, and does not depend on ν.
Hence there can be no local minima in the segment. ◀

From the above result, it follows that we need not even consider the real-relaxed case for
Gini, as all values ν of importance are integers. Next, we prove that we can use binary chop
to find the ν-centred assignment that minimises the Gini coefficient.

▶ Lemma 10. Going though the segments of LBG in increasing order of the sorted end-points,
a positive slope is not (directly or indirectly) followed by a negative slope.

Proof. Let us revisit the derivative of each segment, i.e., cN−kD
n(N+kν)2 . The sign of its slope is

determined by the numerator cN − kD. We can rewrite c to a closed form formula because it
is an arithmetic sum. We get k ((2j−n−1)+(2(j+k−1)−n−1))

2 which simplifies to k(k +2j −n−2).
Rewriting the numerator we get k(k + 2j − n − 2)N − kD, which we can simplify to
k((k +2j −n−2)N −D). Because k is always non-negative, the outer k cannot determine the
sign of the slope, only its magnitude, thus we can safely ignore it for our purposes. Ignoring
the outer k and expanding N and D we get

(∑
i∈B(k + 2j − n − 2)xi − (2i − n − 1)xi

)
+(∑

i∈A(k + 2j − n − 2)xi − (2i − n − 1)xi

)
. This simplifies to

∑
i∈B(k + 2j − 2i − 1)xi +

CP 2022

21:10 Explaining Propagation for Gini and Spread with Variable Mean

Algorithm 2 Only run if not all fixed. n = |X|.

Require: B = [β1, . . . , β2n] is a sorted array of bounds of X

1: procedure GiniLb(X, M , g, s)
2: L, R← 1, 2n
3: while L < R do
4: l← L + ⌊(R− L)/2⌋
5: r ← l + 1
6: Gl ← Gini(X, βl)
7: Gr ← Gini(X, βr)
8: while Gl = Gr do
9: if l > L then

10: l, Gl ← l − 1, Gini(X, βl−1)
11: else
12: L← r
13: break
14: if Gl < Gr then
15: R← l
16: else
17: L← r
18: m, G← R, Gini(X, βR)
19: Gs ← ⌊G× s⌋
20: if Gs ≤ g then return true
21: EX ← {Jxi ≤ xiK | xi ≤ βm} ∪ {Jxi ≥ xiK | βm ≤ xi}
22: if Gs > g then
23: return Jg < GsK ∧

∧
l∈EX

l→ false
24: else
25: return

∧
l∈EX

l→ Jg ≥ GsK

∑
i∈A(k + 2j − 2i − 1)xi. Let us denote the first term by TB and the second term by TA. The

maximum value of i ∈ B is j − 1; thus, all terms of TB are non-negative; and the minimum
value of i ∈ A is j + k; thus, all terms of TA are non-positive. At any segment where the
slope is positive, we must have that TB > |TA|. Moving to the next segment variables could
move from A to the overlap part, or from the overlap part to B, or both. Let us consider
two cases: (1) at least one variable moves from A to the overlap and (2) at least one variable
moves from the overlap to B.

Case (1): In this case, |TA| will decrease because at least one negative term will be
removed, and k will increase by at least one. And TB will increase because k will increase by
at least one.

Case (2): In this case, |TA| will decrease because k + 2j will increase by at least one
(while k decreases, j must increase the same amount) and TB will increase because at least
one more positive term will be introduced and k + 2j will increase by at least one.

As a result, moving from one segment where TB > |TA| to the next, we must maintain
that TB > |TA|. Hence, once the slope is positive it cannot become negative. ◀

▶ Corollary 11. LBG has no local minima that is not a global minima.

Given this result we can again use binary chop to find the global minimum of Gini(X, ν).

4.2 Algorithm and Clause Learning Explanations
The algorithm for computing a lower bound on the (scaled) Gini coefficient is given in
Algorithm 2. It does a binary chop across the sorted list of bounds of the x variables:
β1, . . . β2n. L and R hold the left and right bound of indices into this array, for where the
rightmost minimum lies. We compute the midpoint l of L and R and its neighbour r and

A. Ek, A. Schutt, P. J. Stuckey, and G. Tack 21:11

compare the Gini values. If they are identical in value, we extend the interval l..r to the left
until we find a difference, or fill the entire region from L to r, in which case we chop and set
L = r. We can incrementally compute Gini(X, βi−1) from Gini(X, βi) in constant time with
a little care. Otherwise we update the L or R to keep the rightmost minimum between them.
The loop terminates when L = R. We calculate the Gini value G, and its scaled version Gs.
Note that we use the rightmost ν-value when we find a range of bounds with the same Gini
value. If the new lower bound is not stronger than the current bound we return a true clause.
Otherwise we collect as explanation: all lower bounds where x is less than or equal to the ν

value βm, and all upper bounds where x is greater than or equal to the ν-value βm. If the
new bound causes a violation we return an explanation for the violation, otherwise we return
(an equivalent clause) explanation for the new bound. Overall the algorithm is O(n log n)
since the initial sorting is of this complexity, the while loop can only execute O(log n) times,
and the Gini calculations are linear (using Equation (2)).

Note also that the scaling and rounding to integer takes place after the binary chop has
terminated. This is important, since not having the best accuracy when calculating the
slopes can lead to the algorithm terminating with a solution that is only optimal given the
rounding to integer. Using this can then lead to incorrect explanations.

▶ Lemma 12. Algorithm 2 returns a clause which is a consequence of gini(X,M ,g,s).

Proof. The result clearly holds for the trivial clause true. The correctness of the value
G computed by Algorithm 1 follows from Lemma 7, Lemma 9 and Lemma 10. We now
show that the explanation collected in EX is correct. Assume to the contrary that there
is a solution η of gini(X,M ,g,s) satisfying EX that has Gini coefficient G′ < G. We can
assume η is ν-centred for some ν and some bounds on X (not necessarily the current bounds)
by Lemma 7. But then η must set all xi variables not appearing in EX to ν, otherwise there
is an assignment allowed by EX which would be no worse. So we can consider η as defined
by ν and the bounds appearing in EX . Hence, it has the same properties as the Gini(X, ν)
but with fewer bounds: importantly it has negatively sloped and flat segments, followed
by positively sloped and flat segments. If we move ν smoothly up from βm then because
the slope of the curve G(ν) defined in Lemma 9 is positive by construction (this is why
it is important to take the rightmost point with the least Gini value), and this slope only
depends on the bounds in EX , the Gini value for η must increase. If we move ν smoothly
from βm downwards then the slope on G(ν) defined in Lemma 9 is either negative or zero by
construction. Since the slope only depends on the bounds in EX , if it is negative the Gini
value of η must increase. If it is zero then the Gini value must stay the same. This holds
until we cross a lower bound in xi not in EX , until then the Gini values for η are the same
as Gini(X, ν). But once we cross this bound the sum defined by solution η is smaller than
that for Gini(X, ν) and overall the Gini value must be larger. Contradiction. ◀

5 Experimental Evaluation

For both dispersion constraints we use four configurations: The decomposition (Dcmp);
the simple minimal propagator (Simp), which only propagates on the dispersion once all
variables X are fixed; the binary chop lower-bound propagator with the proposed (LB)
and trivial (LB-TL) nogood learning. The trivial learning simply uses all bounds of all the
variables as explanation. We implemented the above propagators in Chuffed and ran the
below experiments using MiniZinc [8] on an Intel Xeon 8260 CPU (24 cores) with 268.55
GB of RAM. A single core, 8 GB of RAM, and a 20 minute timeout was allocated for the
solving of each instance.

CP 2022

21:12 Explaining Propagation for Gini and Spread with Variable Mean

Table 1 Summary of the results of the propagators for the 195 dispersion-only instances.

prob prop proved best no solution
total first sole total first sole total sole

Spread Dcmp 38 17 2 43 22 7 127 127
Spread Simp 25 2 0 85 60 58 0 0
Spread LB-TL 38 12 0 59 30 14 0 0
Spread LB 40 25 3 115 96 71 0 0

Gini Dcmp 33 11 0 37 17 6 97 97
Gini Simp 25 10 0 171 154 144 0 0
Gini LB-TL 40 15 0 42 32 11 0 0
Gini LB 47 40 6 26 20 2 0 0

5.1 Dispersion Only
Let’s first start off with a simple problem to get a good understanding of the general
performance. We have n variables x1, . . . , xn ∈ X, each with domain li..ui. For each i, two
integers are uniformly randomly drawn from the range −n2..n2 (if equal, the second gets
redrawn until not equal). The lower number becomes li and the higher becomes ui. For each
n ∈ {2, 3, . . . , 40}, we create five instances, resulting in 5 × 39 = 195 instances. The goal is
to minimise dispersion. Since Gini is ill-defined for negative values, all numbers of all Gini
instances are uniformly incremented (if needed) until the least one reaches 1.

For these simple benchmarks using learning with the global propagators simply adds
overhead, since the search is so simple that little is repeated. Learning does improve the
decomposition though, since it can learn on intermediate variables. We show the results for
the learning versions since we expect those to be used in real benchmarks.

The results are shown in Table 1. The table shows, for each method, the total number of
instances where it proved optimality, the number of times the algorithm proved optimality
first on an instance, and the number of instances where it was the sole algorithm to prove
optimality. It then shows for all instances the total number of instances where the algorithm
found the best solution of any found, the number of instances where it did this first of
all algorithms, and the number of times it was the sole method to find this best solution.
Finally we show the total number of instances where the method found no solution, and
for how many it was the sole method to do so. Clearly for spread, LB is the best method
in all categories. It finds the best solution for all instances, and is fastest on almost all.
The decomposition fails on most instances because the sizes of the intermediate values it
computes with get quickly too large for the solver to deal with. For gini, perhaps somewhat
surprisingly, the simple propagator is best at finding solutions. For Gini, the best solutions
are usually found early in the search, so the fast simple propagator will find good solutions
very quickly compared to more expensive propagators LB and LB-TL. For gini the size
of intermediate values is smaller, since numbers are not squared. The decomposition is
competitive in terms of optimality, but still fails on many instances.

5.2 Job-Shop Scheduling
The dispersion only problems are not complex enough to illustrate why we need learning for
dispersion propagators. Let us, instead, run experiments on a type of problem where using a
learning solver is often desirable, namely, a scheduling problem.

Consider a job-shop scheduling problem but with multiple agents. The goal is to schedule
a set of jobs J on a set of machines M . Each job j ∈ J consists of one task per machine,
where each task can only be processed by a given machine and takes a given amount of time

A. Ek, A. Schutt, P. J. Stuckey, and G. Tack 21:13

to be processed. A machine can only process one task at a time, and the tasks within each
job have to be processed in order (task t must finish before task t + 1 starts). In addition,
we have a set of agents A that submit these jobs. More formally, each job j ∈ J belongs to
exactly one agent a ∈ A.

We consider a limited horizon (after which scheduling jobs is pointless due to zero utility)
with optional jobs (because not all jobs will fit within the limited horizon). The utility of
a given agent is the machine-hours used by their jobs. We further assume that each agent
submits more jobs than can be accommodated. This results in comparable utility functions.

The objective of the overall problem is either to maximise efficiency (use as many machine-
hours as possible) or minimise dispersion (give similar amounts of machine-hours to each
agent), respectively denoted MaxEff and MinDis. In either case, a bound on the other metric
is used to ensure some solution quality in the other aspect. For example, giving no one
anything is a minimal dispersion schedule, but not very efficient.

We use the large instances (30 or more jobs) of [18] (resulting in 50 instances),2 and
for each instance split the jobs uniformly across n agents, for every n such that each agent
has between 10 and 20 jobs (resulting in 20 × 2 + 20 × 3 + 10 × 6 = 160 instances). We
perform this uniform split three times to generate a more diverse instance space (resulting in
160 × 3 = 480 instances). We run these on the two configurations (MaxEff and MinDis); the
resulting number of instances to test each propagator with is 960.

We first run, with a 20 minute time-out for each instance, a variation of the problem
where the objective is to minimise the makespan when all jobs are scheduled. The result of
this will be a good indication of how long to set our limited horizon for each instance such
that no agent can fit all their jobs. We set the limited horizon for the instance in question to
be half of this minimum makespan.

Next, we run, again with a 20 minute time-out for each instance, a variation of the problem
where the objective is to maximise machine-hour utilisation given the limited horizon. This
will give a good indication of the optimal utilisation possible for each instance. We will
then use this number H to calculate our machine-hour utilisation bounds and dispersion
bounds. For spread we use scale 1, because the numbers are already large, and for Gini we
use scale 10000. For both spread and Gini with MinDis we use ⌈H × 0.8⌉ as a lower bound on
efficiency, allowing 20% slack on efficiency; for spread with MaxEff we use

⌊
(0.2 × H/|A|)2

⌋
as an upper bound on spread, allowing a 20% standard deviation from the per-agent average
machine-hour utilisation. For Gini and MaxEff we use 2000 as an upper bound on Gini,
allowing a 20% inequal Gini distribution.

The cactus plots in Figure 1 show the number of problems solved to optimality at different
times for the different variations: using the spread problems on top, the Gini problems on
bottom, the MaxEff problems on the left, and the MinDis problems on the right. In general,
the MaxEff problems are much harder than the minimisation problems.

Clearly for spread the decomposition is very weak, this is because the size of intermediates
involved is very large, and often goes outside the range that solvers can handle. The simple
propagator is much better, and the full spread propagators much better again. Interestingly
our small explanations are only slightly more effective than the trivial explanations.

The results for gini are quite different. The decomposition is actually capable of proving
optimality more than other methods on the minimisation problems. This is because it can
use learning on the intermediate variables in the decomposition. Having a richer language

2 There are 20 instances with 30 jobs (the first half of which have 15 machines and the rest have 20
machines), 20 instances with 50 jobs (again, the first half of which have 15 machines and the rest have
20 machines), and 10 instances with 100 jobs, all with 20 machines.

CP 2022

21:14 Explaining Propagation for Gini and Spread with Variable Mean

Gini, MaxEff Gini, MinDis

Spread, MaxEff Spread, MinDis

5 10 15 0 25 50 75

5 10 15 0 25 50 75
0

5

10

15

20

0

5

10

15

20

0

2

4

6

0

2

4

6

instances solved

m
in

ut
es

propagator

Dcmp

Simp

LB−TL

LB

Figure 1 Cactus plot of instances solved to proof of optimality of the propagators for jobshop.

Table 2 Summary of the results of the propagators for the 960 jobshop instances.

prob prop proved best no solution
total first sole total first sole total sole

Spread Dcmp 5 3 0 10 8 5 927 904
Spread Simp 67 14 0 270 137 100 15 0
Spread LB-TL 102 48 12 433 250 148 18 0
Spread LB 104 53 16 695 558 412 18 0

Gini Dcmp 109 46 15 264 123 82 104 86
Gini Simp 69 11 0 249 130 108 16 1
Gini LB-TL 85 25 1 345 197 131 19 0
Gini LB 92 30 2 620 500 402 19 0

of learning can often improve proofs of optimality/unsatisfiability. The propagator with
our small explanations is the second best. For the MaxEff problems, the decomposition is
performing the worst and the other methods are roughly equivalent.

For a more detailed comparison we examine Table 2 which is organised like Table 1.
Table 2 clearly illustrates the power of the global propagators. For spread, the propagator
with our small explanations dominates all methods. For gini, while the decomposition is
best for proving optimality, overall, it is much weaker than the global propagator, which
finds the best solution in over twice as many instances, and almost always finds a solution.
It also more clearly illustrates the importance of small explanations, LB is far better than
LB-TL in terms of best solutions. We also ran with no learning on all four methods, but it
simply timed out on all instances.

6 Related Work

The spread constraint was introduced by [13]. Many previous methods assume that the mean
is fixed, e.g. [17]. This is no impediment when the problem is about allocating a given set
of resources without mutual exclusions and without uncertainties, but not for the general
case where the amount of resource available, or the amount that can be used is not fixed.

A. Ek, A. Schutt, P. J. Stuckey, and G. Tack 21:15

[12] introduce a domain consistent propagator for dispersion constraints (including spread)
but again assume a fixed/given mean. While an extension for a bounded (variable) mean is
proposed, the main criticism is that that algorithm basically runs the domain propagator
for each value in the mean, essentially adding another factor to the time complexity. The
resulting time complexity is essentially O(|X|3 · |D(X)| · |D(µ)|), which is impractical in
many cases. An MDD-formulation of the spread constraint is presented in [11]. They, again,
assume a fixed mean. They extend their algorithm to work on variable means, but do not
fully answer the question for unknown means. Their use of a probability density function
cannot guarantee correct propagation when the mean is fully unknown.

An earlier paper by [13] introduces a bounds consistent propagator for the spread
constraint, which covers mean, median, and standard deviation (and thus indirectly variance).
They assume finite-domain variables X and bounded continuous domains for mean and
standard deviation. They introduce two propagators, one which runs in O(|X| + |D(X)|2)
time and one (bounds consistent) that runs in O(|X|2). One criticism (posed in [17] which
have one author in common) is that the latter has never been implemented, is hard to
understand, and contains mathematical errors. Thus, we do not compare against it. The
former assumes that |X| dominates |D|2, but it does not hold in our use cases. In our jobshop
instances, |X| (between 2 and 10) is much smaller than |D(X)| (between 0 and 47186).

Propagators for several other statistical constraints have been introduced in the literature.
These include, the deviation constraint [16], mean, median, and weighted mean constraints [2],
an occurence balancing constraint [1], the two-sum constraint [7] (which subsumes spread), and
many other constraints [15]. [10] provide a review of when to use what balancing/dispersion
constraint, depending on the nature of the situation.

Note that in all of the spread propagators above, none generate explanations of their
propagation, as required if we want to use them in a learning CP solver [9].

To the best of our knowledge, we are not aware of any propagators for the Gini coefficient.
Bounds on the Gini coefficient have been established in the statistics literature [5, 6]; however,
these approaches concern obtaining bounds on the actual Gini coefficient of an existing, large
population from relatively few samples, and not about filtering possibilities of an unknown
population.

7 Conclusion

In this paper we define efficient propagators for propagating the lower bound on variance and
the Gini coefficient that also generate explanations of their propagations, allowing them to be
used in learning CP solvers. Propagating the lower bound is the critical case to consider for
measures of dispersion, since the typical requirement is to bound or minimize dispersion to
generate fair solutions. We do not consider propagating the bounds of the X variables being
measured, since preliminary experimentation indicated this happens very late in the search
tree, and hence cannot lead to significant speedups. Note however that if we stored the
explanations generated by the propagator as clauses, some propagation on the X variables
could occur.

References

1 Christian Bessiere, Emmanuel Hebrard, George Katsirelos, Zeynep Kiziltan, Émilie Picard-
Cantin, Claude-Guy Quimper, and Toby Walsh. The balance constraint family. In Barry
O’Sullivan, editor, CP’14, pages 174–189. Springer, 2014.

2 Alessio Bonfietti and Michele Lombardi. The weighted average constraint. In Michela Milano,
editor, CP’12, pages 191–206. Springer, 2012.

CP 2022

21:16 Explaining Propagation for Gini and Spread with Variable Mean

3 Geoffrey Chu. Improving Combinatorial Optimization. PhD thesis, Department of Computing
and Information Systems, University of Melbourne, Australia, 2011.

4 Philip M. Dixon, Jacob Weiner, Thomas Mitchell-Olds, and Robert A. Woodley. Bootstrapping
the Gini coefficient of inequality. Ecology, 68:1548–1551, 1987. (Erratum in Ecology, 69:1307,
1987).

5 Joseph L Gastwirth. The estimation of the Lorenz curve and Gini index. The review of
economics and statistics, pages 306–316, 1972.

6 Farhad Mehran. Bounds on the Gini index based on observed points of the Lorenz curve.
Journal of the American Statistical Association, 70(349):64–66, 1975.

7 Jean-Noël Monette, Nicolas Beldiceanu, Pierre Flener, and Justin Pearson. A parametric
propagator for pairs of sum constraints with a discrete convexity property. AIJ, 241:170–190,
December 2016. doi:10.1016/j.artint.2016.08.006.

8 Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J. Duck, and
Guido Tack. MiniZinc: Towards a standard CP modelling language. In CP’07, LNCS 4741,
pages 529–543. Springer, 2007.

9 Olga Ohrimenko, Peter Stuckey, and Michael Codish. Propagation via lazy clause generation.
Constraints, 14:357–391, 2009.

10 Philippe Olivier, Andrea Lodi, and Gilles Pesant. Measures of balance in combinatorial
optimization. 4OR, June 2021. doi:10.1007/s10288-021-00486-x.

11 Guillaume Perez and Jean-Charles Régin. MDDs are efficient modeling tools: An application
to some statistical constraints. In Domenico Salvagnin and Michele Lombardi, editors,
CPAIOR’17, pages 30–40. Springer, 2017.

12 Gilles Pesant. Achieving domain consistency and counting solutions for dispersion constraints.
INFORMS J. Comput., 27(4):690–703, 2015. doi:10.1287/ijoc.2015.0654.

13 Gilles Pesant and Jean-Charles Régin. SPREAD: A balancing constraint based on statistics.
In Peter van Beek, editor, CP’05, LNCS 3709, pages 460–474. Springer, 2005. doi:10.1007/
11564751_35.

14 Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of Constraint Program-
ming. Elsevier, 2006.

15 Roberto Rossi, Özgür Akgün, Steven Prestwich, and S. Armagan Tarim. Declarative statistics,
2017. arXiv:1708.01829.

16 Pierre Schaus, Yves Deville, and Pierre Dupont. Bound-consistent deviation constraint. In
Christian Bessière, editor, CP’07, pages 620–634. Springer, 2007.

17 Pierre Schaus and Jean-Charles Régin. Bound-consistent spread constraint. EURO J. Comput.
Optim., 2(3):123–146, 2014. doi:10.1007/s13675-013-0018-8.

18 Eric Taillard. Benchmarks for basic scheduling problems. European Journal of Operational
Research, 64(2):278–285, 1993.

https://doi.org/10.1016/j.artint.2016.08.006
https://doi.org/10.1007/s10288-021-00486-x
https://doi.org/10.1287/ijoc.2015.0654
https://doi.org/10.1007/11564751_35
https://doi.org/10.1007/11564751_35
http://arxiv.org/abs/1708.01829
https://doi.org/10.1007/s13675-013-0018-8

Plotting: A Planning Problem with Complex
Transitions
Joan Espasa #

School of Computer Science, University of St Andrews, UK

Ian Miguel #

School of Computer Science, University of St Andrews, UK

Mateu Villaret #

Department of Computer Science, Applied Mathematics and Statistics, University of Girona, Spain

Abstract
We focus on a planning problem based on Plotting, a tile-matching puzzle video game published by
Taito. The objective of the game is to remove at least a certain number of coloured blocks from a
grid by sequentially shooting blocks into the same grid. The interest and difficulty of Plotting is due
to the complex transitions after every shot: various blocks are affected directly, while others can be
indirectly affected by gravity. We highlight the difficulties and inefficiencies of modelling and solving
Plotting using PDDL, the de-facto standard language for AI planners. We also provide two constraint
models that are able to capture the inherent complexities of the problem. In addition, we provide
a set of benchmark instances, an instance generator and an extensive experimental comparison
demonstrating solving performance with SAT, CP, MIP and a state-of-the-art AI planner.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming;
Computing methodologies → Planning and scheduling

Keywords and phrases AI Planning, Modelling, Constraint Programming

Digital Object Identifier 10.4230/LIPIcs.CP.2022.22

Supplementary Material Software (Source Code and Data): https://github.com/stacs-cp/CP2022-
Plotting; archived at swh:1:dir:8bb3fab72f1db2cac9715651ed05528cd2cf24c8

Funding This work uses the Cirrus UK National Tier-2 HPC Service at EPCC (http://www.cirrus.
ac.uk) funded by the University of Edinburgh and EPSRC (EP/P020267/1).
Ian Miguel: funded by EP/V027182/1.
Mateu Villaret: funded by grant RTI2018-095609-B-I00 (MCIU/AEI/FEDER, UE).

1 Introduction

Automated planning is a fundamental discipline in Artificial Intelligence [14]. Given a model
of the environment, a planning problem is to find a sequence of actions to progress from an
initial state of the environment to a goal state while respecting some constraints. Examples
of planning problems in industry and academia are numerous, such as drilling operations [22],
logistics [25] or chemistry [23]. Among other techniques, Constraint Programming has been
successfully used to solve planning problems [5, 6]. It is especially suited when the problem
requires a certain level of expressivity, such as temporal reasoning or optimality [31, 3].

Herein, we focus on finding optimal solutions for a discrete time and space puzzle, Plotting,
a puzzle video game published by Taito in 1989 and ported to many platforms. The objective
is to reduce a given grid of coloured blocks to a goal number or fewer (Figure 1). This is
achieved by the avatar character repeatedly shooting the block it holds into the grid. It is
also known as Flipull in Japan as well as in versions for the Famicom and Game Boy.

Plotting is naturally characterised as a planning problem, to find a sequence of positions
from which to fire such that enough blocks are removed to beat the current scenario. It is of
interest because of the complexity of the state transitions after every shot: some blocks are

© Joan Espasa, Ian Miguel, and Mateu Villaret;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 22; pp. 22:1–22:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jea20@st-andrews.ac.uk
https://orcid.org/0000-0002-9021-3047
mailto:ijm@st-andrews.ac.uk
https://orcid.org/0000-0002-6930-2686
mailto:mateu.villaret@udg.edu
https://orcid.org/0000-0002-8066-3458
https://doi.org/10.4230/LIPIcs.CP.2022.22
https://github.com/stacs-cp/CP2022-Plotting
https://github.com/stacs-cp/CP2022-Plotting
https://archive.softwareheritage.org/swh:1:dir:8bb3fab72f1db2cac9715651ed05528cd2cf24c8;origin=https://github.com/stacs-cp/CP2022-Plotting;visit=swh:1:snp:e7cd26f7d420f5cdcb3deb5e0b4ddf9d62357420;anchor=swh:1:rev:6eb4e1e9d9613427be8b3cb1a0d8c248862bb5f1
http://www.cirrus.ac.uk
http://www.cirrus.ac.uk
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Plotting: A Planning Problem with Complex Transitions

Figure 1 Plotting (Taito, 1989). The avatar is seen on the left, holding a green block. The
objective is to reduce the number of blocks in the middle pile up to the goal. In this particular case
there are 16 left (see center-right of the image), and the goal is 8 or less (see top-right of image).

affected directly, while others can be indirectly affected by gravity, as explained in Section 3.
Modelling the complex dynamics of the game in the de-facto standard modelling language for
planning problems, PDDL [17], is difficult, as we will demonstrate. The resulting complexity
of the model severely hinders the ability of planning systems to produce a valid plan.

Constraint modelling languages can be used to express planning problems [3, 6, 9, 30].
They are richer than PDDL and, while still a challenge to formulate, permit a more concise
representation of Plotting. We present two models of the game in Essence Prime [27] and
employ Savile Row [26] to transform them into SAT, MIP, and CP instances for solution.

Plotting is also of interest as an example application in the video games industry, which
last year was last year valued at over USD 300 billion [1]. Puzzle games are perennially
popular, with other examples similar to Plotting including Puzznic (Taito, 1989) and
Lumines (Q Entertainment, 2004). Constraint Programming can provide a tool to assist
game designers [16]. Randomly generated levels are commonly used either to save developer
time or to generate more content for players. The ability to model game mechanics and
solve generated levels provides the opportunity to check if they have a solution, or to get an
impression as to how difficult they are [20]. This paper contributes to this growing effort; in
addition to the constraint and PDDL models we provide a parameterised instance generator,
and an empirical evaluation of the proposed models with a variety of solving back-ends.

2 Background

A classical planning problem is a tuple
∏

= ⟨F, A, I, G⟩, where: F is a set of propositional
state variables, A is a set of actions, I is the initial state and G is the goal. A state is a
variable-assignment (or valuation) function over state variables F , which maps each variable
of F into a truth value. An action a ∈ A is defined as a tuple a = ⟨Prea, Eff a⟩, where Prea

refers to the preconditions and Eff a to the effects of the action. Preconditions (Pre) and the
goal G are first-order formulas over propositional state variables. Action effects (Eff) are
sets of assignments to propositional state variables.

An action a is applicable in a state s only if its precondition is satisfied in s (s |= Prea).
The outcome after the application of an action a will be the state where variables that are
assigned in Eff a take their new value, and variables not referenced in Eff a keep their current
values. A sequence of actions ⟨a0, . . . , an−1⟩ is called a plan. We say that the application
of a plan starting from the initial state I brings the system to a state sn. If each action is

J. Espasa, I. Miguel, and M. Villaret 22:3

applicable in the state resulting from the application of the previous action and the finalstate
satisfies the goal (i.e., sn |= G), the sequence of actions is a valid plan. A planning problem
has a solution if a valid plan can be found for the problem.

The Planning Domain Definition Language (PDDL) [17] is the de-facto standard modelling
language for planning problems, supported by most planning systems. Its widespread
use started thanks to the collaborative efforts and desire of the community to facilitate
benchmarking and applications of planning systems. When using PDDL, the user describes
the problem in terms of predicates, actions and functions with parameters. In turn, these
parameters are instantiated with a set of defined objects.

2.1 Planning as Satisfiability

When a planning problem has a fixed length, such as peg solitaire [19], modelling in a
constraint language is simplified to deciding a fixed-length sequence of actions. Otherwise,
the modeller must consider how to find a plan of unknown length. There have been various
successful approaches to encoding a planning problem into SAT [21, 29] and to CP [6, 30, 3, 24],
amongst others. When encoding these problems, it is common in this situation to solve the
planning problem by considering a sequence of satisfaction problems ϕ0, ϕ1, ϕ2, . . . , where
ϕi encodes the existence of a plan that reaches a goal state from the initial state in i steps.

As described in Section 5, in constructing each ϕ herein we take the common approach
[6, 19] of formulating a “state and action” constraint model of the planning problem, where
we employ decision variables to capture both the state of the puzzle at each time step and the
action taken to transform the preceding into the succeeding state. Constraints ensure that
when an action is executed, its preconditions hold with respect to the problem variables and
its effects are applied to modify the state. Constraints on the variables representing the state
of the final step require that the goal conditions are met. Finally, frame axioms are made
explicit, i.e. constraints specify that if no action has modified a variable, it keeps its value
between steps. There are semantics such as the ∀ and ∃-step [29], or transition-systems [15]
that allow more than one action per step. Since we are interested in optimal plans in the
total number of actions, we consider sequential plans, i.e., one action per step.

3 Plotting

Plotting is played by one agent with full information of the state, and the effects of each
action are deterministic. This situation is common in puzzle-style video games, and similar
to pen and paper puzzles [10], some variants of patience like Black Hole [12], and board
games such as peg solitaire [19] or the knight’s tour [2]. The objective in Plotting is to reduce
a given grid of coloured blocks down to a goal number or fewer. This is achieved by the
avatar character shooting the block it holds into the grid, either horizontally directly into the
grid, or by shooting at the wall blocks above the grid, and bouncing down vertically onto the
grid. When shooting a block, if it hits a wall as it is travelling horizontally, it falls vertically
downwards. In a typical level, additional walls are arranged to facilitate hitting the blocks
from above. Alternatively, if it falls onto the floor, it rebounds into the avatar’s hand. The
rules for a shot block S colliding with a block B in the grid are a bit more complex:

If the first block S hits is of a different type from itself, S rebounds into the avatar’s
hand and the grid is unchanged – a null move.
If S and B are of the same type, B is consumed and S continues to travel in the same
direction. All blocks above B fall one grid cell each.

CP 2022

22:4 Plotting: A Planning Problem with Complex Transitions

If S, having already consumed a block of the same type, hits a block B of a different type,
S replaces B, and B rebounds into the avatar’s hand.

A simple horizontal shot is depicted in Figure 2. A red block is shot, consuming the two
red blocks of the second row and traversing the empty space between them. It replaces the
green block, which rebounds to the avatar’s hand, ready for the next action. Blocks above
the two removed red blocks fall. A more complex shot is depicted in Figure 3, where a green
block consumes an entire row of the grid, hits the wall, and continues to consume blocks as
it falls until it finds a differently colored block (red). Finally, the block shot replaces the
final red block, which rebounds to the avatar’s hand. As before, blocks above the consumed
green blocks fall. If, after making a shot, the block that rebounds into the avatar’s hand is
such that there is now no possible shot that can further reduce the grid, we reach a dead end
and the block in the avatar’s hand is transformed into a wildcard block, which transforms
into the same type as the first block it hits. However, in our models we consider the task of
finding a solution without reaching any dead end. Each level also begins with the avatar
holding a wildcard block.

Considered as a planning problem, Plotting’s initial state is the given grid, and there are
usually multiple goal states where the grid is sufficiently reduced to meet the target. We
abstract the avatar’s movement to consider the key decisions: the rows or columns chosen at
which to shoot the held blocks. Therefore, the sequence of actions to get us from the initial
to the goal state is comprised of individual shots at the grid, either horizontally or vertically.

4 Modelling Plotting in PDDL

As Plotting is naturally characterised as a planning problem, we start by modelling it in
PDDL [17], the de-facto standard language for AI planners. Due to its length, the full PDDL
model can be found in the supplementary material. PDDL is an expressive and modular
modelling language, able to encode many real-life problems with complex dynamics. However,
the complexity of its many features resulted in most AI planners lagging behind, supporting
only a small core set of features.

To compactly model the sets of state variables F and actions A as described in Section 2,
PDDL models use parameterised representations with types. PDDL is action-oriented: a
PDDL model mainly defines the possible actions at each step. Also for each action, we must
define the precondition over the state of the previous time step required to perform the
action, and the effect over the state when that action is performed.

G G
R G G
R R G
G R R R

Hand: R →

G G
R G G
R R G
G R R R

Hand: ∅
G G G
R G R
G R R R

Hand: G

Figure 2 Diagram of a horizontal shot. R and G denote red and green blocks respectively. The
initial state is shown on the left figure. The middle figure shows the blocks directly affected: the
two light-red crossed out blocks will be removed, and all of the blocks on top will fall downwards.
Finally, the right figure shows the resulting state after the shot, having swapped the hand’s initial
colour for the first one found in the trajectory that is not equal. A vertical shot works similarly.

J. Espasa, I. Miguel, and M. Villaret 22:5

G G R
G G G G
R R R G
G R R R

Hand: G →
G G R
G G G G
R R R G
G R R R

Hand: ∅ G G
R R R R
G R R G

Hand: R

Figure 3 A more complex shot where the firing block reaches the end and goes downwards. Note
the top right red block has to fall a variable number of positions (two in this case), depending on
the state of the board and the colour of the shot.

4.1 On Numeric Planning
Naturally, one would gravitate towards the PDDL versions for numeric planning to be able
to use numeric indexing. In [11], where PDDL is extended with numeric features, it is said:

Numeric expressions are not allowed to appear as terms in the language (that is, as
arguments to predicates or values of action parameters) . . . Functions in PDDL2.1
are restricted to be of type Objectn → R, for the (finite) collection of objects in a
planning instance, Object and finite function arity n.

Namely, no action, predicate or function can have a number as a parameter. Sadly, these
severe limitations render numeric planning useless for our needs.

In addition, an essential construct in the preconditions and effects of the actions would
be the usage of arithmetic to deal with indices of rows and columns. For example, when
we remove a block in a given row and col, if there was a block above it, this block would
fall and we would need to refer to its color. As we will see, this can be easily expressed
in Essence Prime by arithmetically operating on the indices of the matrix: grid[row+1,
col]. Unfortunately, since row cannot be a number in PDDL, here we are forced to use
quantifiers to be able to refer to the “block that is above it” (i.e., its row is equals to row+1).
Therefore, we must define predicates to simulate some basic arithmetic on indices.

4.2 The PDDL Model
In this section we provide fragments of the model to illustrate the main drawbacks of PDDL
for modelling Plotting. The game board is abstracted as a grid of coloured cells. The colour
of the cell is the colour of the block it contains, or null if empty. Therefore, the full viewpoint
(or state F) is the colour of each cell and the colour of the block in the avatar’s hand.

To parameterise the actions and the predicates defining the state, we use two types of
objects: colour and number, where number is the name of a type used to manually encode
the basic required numerical properties. The predicate hand has one colour parameter, and
encodes if the avatar has a block of the given colour. Given parameters row, col and c, the
coloured predicate expresses if the block in that row and column has the given colour.
(hand ?c - colour)
(coloured ?row ?col - number ?c - colour)

Auxiliary predicates such as islastcolumn or isbottomrow are added for perspicuity and
to reduce the use of quantifiers and so the burden on the planner’s preprocessor.
(isfirstcolumn ?n - number)
(islastcolumn ?n - number)
(istoprow ?n - number)
(isbottomrow ?n - number)

Moreover, we need to encode some integer relations as Boolean predicates:

CP 2022

22:6 Plotting: A Planning Problem with Complex Transitions

(succ ?p1 ?p2 - number) ; p1 is successor of p2
(lt ?p1 ?p2 - number) ; p1 is less than p2
(distance ?p1 ?p2 ?p3 - number) ; p3 is p2 - p1

These predicates must be defined in each instance file, along with the specific scenario
information. For instance, when dealing with a 5 × 5 board we need to state succ for every
pair of successive numbers between 1 and 5, and lt and distance for every pair of two
numbers (p1, p2) between 1 and 5 such that p1 < p2.

Listing 1 Fragment of the action shoot-partial-row of the the PDDL model. Note that the when
operator has two parameters: the condition and the effect.

1 (:action shoot-partial-row
2 ;; ?r - what row we are shooting at, ?t - the end cell, ?c - the colour we are removing
3 :parameters (?r - number ?t - number ?c - colour)
4 :precondition (and
5 ;; ?col is the successor of ?t with a different colour than ?c
6 (exists (?col - number)
7 (and (succ ?col ?t)
8 (not (coloured ?r ?col ?c))
9 (not (coloured ?r ?col null))))

10 ...
11 ;; all the blocks up to ?t have either the colour ?c or are null
12 (forall (?col - number)
13 (or (lt ?t ?col)
14 (and (= ?col ?t) (coloured ?r ?t ?c))
15 (or (coloured ?r ?col ?c)
16 (coloured ?r ?col null)))))
17 :effect (and
18 ;; Change hands colour and the next cell that we cannot remove gets the colour from hand
19 (forall (?nextcolumn - number ?nextcolour - colour)
20 (when
21 (and (succ ?nextcolumn ?t)
22 (coloured ?r ?nextcolumn ?nextcolour))
23 (and (not (coloured ?r ?nextcolumn ?nextcolour))
24 (coloured ?r ?nextcolumn ?c)
25 (hand ?nextcolour)
26 (not (hand ?c)))))
27 ;; Move everything downwards. Consider 2 cases: base case (top row), and general case (rest).
28 (forall (?currentrow ?nextrow ?currentcol - number)
29 (and ;; First, the general case. Any row except the top one
30 (forall (?currentcolor ?nextcolor - colour)
31 (when
32 (and (lt ?currentrow ?r)
33 (succ ?nextrow ?currentrow)
34 (or (lt ?currentcol ?t) (= ?currentcol ?t))
35 ;; We ensure that the cells have the pertaining colours
36 (coloured ?currentrow ?currentcol ?currentcolor)
37 (coloured ?nextrow ?currentcol ?nextcolor)
38 (not (= ?currentcolor ?nextcolor))) ; avoids a contradiction
39 (and (not (coloured ?nextrow ?currentcol ?nextcolor))
40 (coloured ?nextrow ?currentcol ?currentcolor))))))))
41 ; Then, the base case of firing on the top row.
42 ...))

Listing 1 is an excerpt of the action consisting of partially removing blocks of colour ?c in
row ?r until column ?t, i.e. not reaching the last column. One of the principal difficulties is in
identifying successors and predecessors of particular rows or columns (e.g. Lines 6,12,19,28),
which could have been alleviated through support for arithmetic expressions on parameters.

The lack of support for multi-valued variables makes the encoding of some transitions
difficult. For example, when changing the colour held by the avatar we must state: remove
previous colour in the hand and set the new colour (lines 25-26). Multi-valued variables would
make this change straightforward. Due to the lack of support for function symbols in the
considered PDDL fragment, we must also employ quantification to name specific objects. For
instance, the column of the cell next to ?t (?nextcolumn) and its colour (?nextcolour) have
to be discovered. This quantification is introduced in line 19, and the values of ?nextcolumn
and ?nextcolour are discovered in lines 20-22 as a condition for the effect to take place.

J. Espasa, I. Miguel, and M. Villaret 22:7

If we could use function symbols and arithmetic, we could remove variables ?nextcolumn
and ?nextcolour, changing the coloured symbol to a function that, given a row and column,
maps to the colour in that cell. Overall, lines 19-26 could theoretically be simplified to:

(assign (hand (coloured ?r (?t + 1))))
(assign (coloured ?r (?t + 1)) ?c)

Unfortunately, as per the previous subsection, functions can not have numeric expressions as
parameters. Essence Prime naturally deals with these kinds of statements (see Section 5).

Finally, we must define the initial and goal states for every instance. The initial state
is simply stated with a coloured statement for each cell. However, the goal state is more
complex to express if we do not have arithmetic or aggregate functions to count the number
of cells coloured with null. In our instances we define the goal as follows. Let g be the
maximum allowed number of non-null cells in order to satisfy the goal state. We require
that there exist g different cells such that any other cell is null. For instance, requiring at
most 2 non-null cells creates the following statement:

(:goal ;; at most 2 cells are not null, i.e., g=2
(exists (?x1 ?x2 ?y1 ?y2 - number)

(and (or (not (= ?x1 ?x2))
(not (= ?y1 ?y2)))

(forall (?x3 ?y3 - number)
(or ; Or is one of cell 1 or cell 2, or is null

(and (= ?x1 ?x3) (= ?y1 ?y3))
(and (= ?x2 ?x3) (= ?y2 ?y3))
(coloured ?x3 ?y3 null))))))

The length of this goal is Θ(g2), since the g cells must be pair-wise different. Again, this is
much simpler to state in a constraint language with, for example, an atleast constraint.

5 Constraint Models in ESSENCE PRIME

Rendl et al. [28] provide a brief description of an incomplete constraint model of Plotting, as
it does not support the difficult case of a shot travelling horizontally all the way through the
grid and then continuing to consume blocks in the final column. We present two complete
models of the problem, formulated in a state and action style, as noted in Section 2.1. Here,
the state is the current grid configuration and the contents of the hand of the avatar, and
the single action is a shot along a particular row or column.

5.1 A Common Viewpoint
Our models share a common viewpoint, i.e. the choice of variables and domains, which we
summarise before describing each individual model.

Each block type is identified with a colour, and the colours are represented by a contiguous
range of natural numbers in Essence Prime. Empty grid cells are represented by 0. Step 0
is the initial state, with the action chosen at step 1 transforming the initial state into the
state at step 1, and so on. Hence, the parameters and constants for the models are:
given initGrid : matrix indexed by[int(1..gridHeight), int(1..gridWidth)] of int(1..)
letting GRIDCOLS be domain int(1..gridWidth)
letting GRIDROWS be domain int(1..gridHeight)
letting NOBLOCKS be gridWidth * gridHeight
letting COLOURS be domain int(1..max(flatten(initGrid)))
letting EMPTY be 0
letting EMPTYANDCOLOURS be domain int(EMPTY) union COLOURS
given goalBlocksRemaining : int(1..NOBLOCKS)
given noSteps : int(1..)
letting STEPSFROM1 be domain int(1..noSteps)
letting STEPSFROM0 be domain int(0..noSteps)

CP 2022

22:8 Plotting: A Planning Problem with Complex Transitions

We capture the current state of the grid and the contents of the avatar’s hand at each
time step with a time-indexed 2d array of decision variables and an individual variable per
time step respectively. Only one action is possible per time step, which is the decision as
to where to fire the block held. Here we introduce a pair of variables per time step, one
representing the column fired down (if any) and one representing the row fired along (if any):

find fpRow : matrix indexed by[STEPSFROM1] of int(0..gridHeight)
find fpCol : matrix indexed by[STEPSFROM1] of int(0..gridWidth)
find grid : matrix indexed by[STEPSFROM0, GRIDROWS, GRIDCOLS] of EMPTYANDCOLOURS
find hand : matrix indexed by[STEPSFROM0] of COLOURS

5.2 Common Constraints

The two models also share some constraints on the viewpoint described above, which we
describe in what follows. The initial state constrains the 0th 2d array of grid to be equal to
the parameter initGrid. The goal state counts the number of empty grid cells:

$ Initial state:
forAll gCol : GRIDCOLS .

forAll gRow : GRIDROWS .
grid[0, gRow, gCol] = initGrid[gRow, gCol],

$ Goal state:
atleast(flatten(grid[noSteps,..,..]), [NOBLOCKS - goalBlocksRemaining], [EMPTY]),

Having transformed Plotting into a decision problem that asks if there is a plan with a
fixed number of steps, we might take the view that moves that do not alter the state of the
puzzle (e.g. firing the held block into one of a different colour) might be used to “pad” a
short plan to the given length. This is of little benefit and could lead to redundant search,
so we disallow moves that do not progress the solution of the puzzle:

$ Each move must do something useful:
forAll step : STEPSFROM1 .

sum(flatten(grid[step-1,..,..])) > sum(flatten(grid[step,..,..])),

Care will be necessary with our frame constraints, which we will describe in the context of
the two individual models. Any cell unconstrained will be vulnerable to the solver assigning
an arbitrary (low-numbered) colour so as to satisfy the sum constraint above.

The other constraint we consider here states that we must fire horizontally or vertically
(a shot at the wall blocks above the grid that then bounces down) but not both:

forAll step : STEPSFROM1 . $ Exactly one fp axis must be 0. (XOR, only ONE fired angle)
(fpRow[step] * fpCol[step]) = 0 /\ (fpRow[step] + fpCol[step]) > 0,

5.3 An Action-focused Constraint Model of Plotting

Our two models differ in the way they describe the transition from one state to another via
the action selected. We start describing a model that focuses on the action selected and
what must therefore be true of the grid at the preceding step (the action’s preconditions)
and of the grid subsequently (the action’s effects). Due to the complexity of the state
changes, this model is quite substantial in size and is provided in full in the supplementary
material. Herein, we give an overview along with some illustrative fragments of the model.
The constraints in this model are divided into two, depending on whether the shot is down a
column or along a row. The column shot is simpler, as it only affects the selected column:

J. Espasa, I. Miguel, and M. Villaret 22:9

forAll step : STEPSFROM1 .
(fpCol[step] > 0) ->
$ All other columns are untouched.
(forAll col : GRIDCOLS .
(col != fpCol[step]) ->
(forAll row : GRIDROWS . grid[step,row,col] = grid[step-1,row,col])

) /\
$ Must exist a row where grid[step-1,row,fpCol[step]] = hand.
(exists row : GRIDROWS .
(grid[step-1,row,fpCol[step]] = hand[step-1]) /\
$ Everything above is empty or same colour as the hand.
(forAll above : int(1..row-1) .

grid[step-1,above,fpCol[step]] = EMPTY \/
grid[step-1,above,fpCol[step]] = hand[step-1]) /\

$ Effect is to make everything down to this row empty
(forAll clear : int(1..row) . grid[step,clear,fpCol[step]] = EMPTY) /\
($ Either this is bottom in which case hand remains same.
(row = gridHeight) /\ (hand[step] = hand[step-1])
\/
$ Or the next row down is of a different colour, swaps with hand.
(grid[step-1,row+1,fpCol[step]] != hand[step-1] /\
grid[step,row+1,fpCol[step]] = hand[step-1] /\
hand[step] = grid[step-1,row+1,fpCol[step]] /\
forAll below : int(row+2..gridHeight) .

grid[step,below,fpCol[step]] = grid[step-1,below,fpCol[step]]))
),

The row shot is considerably more complex, since its effects typically include blocks
falling as a result of gravity. We must also support a horizontal shot reaching the wall on the
right and falling. We sub-divide into three cases: the shot block is exchanged with another
in the same row; the block is exchanged with another in the final column, having hit the
wall and fallen; and the block travels all the way to the rightmost column and falls to the
floor, consuming only blocks of the same colour, resulting in the same colour block returning
to the hand. For brevity we show the first of these below. The two remaining can be found
in the full model contained in the supplementary material.

forAll step : STEPSFROM1 .
(fpRow[step] > 0) ->
(exists col : GRIDCOLS .
$ Preconds: col with a block different from hand.
((grid[step-1,fpRow[step],col] != hand[step-1]) /\

(forAll left : int(1..col-1) . $Left, empty/hand colour, must exist a block of hand colour.
grid[step-1,fpRow[step],left] = EMPTY \/
grid[step-1,fpRow[step],left] = hand[step-1]) /\

(exists left : int(1..col-1) .
grid[step-1,fpRow[step],left] = hand[step-1]))

/\
$ Effects:
($ left: Blocks falling, staying fixed.
(forAll left : int(1..col-1) .

$ Everything below is fixed
(forall below : GRIDROWS .

(below > fpRow[step]) ->
(grid[step,below,left] = grid[step-1,below,left])) /\

(grid[step,1,left] = EMPTY) /\ $ Top row guaranteed to be empty.
$ Otherwise fall from above.
((fpRow[step] > 1) ->
(forAll above : int(2..gridHeight) .

above <= fpRow[step] -> grid[step,above,left] = grid[step-1,above-1,left]))
) /\
$ this col: all fixed apart from fprow, which exchanges with the hand
(hand[step] = grid[step-1, fpRow[step], col]) /\
(grid[step, fpRow[step], col] = hand[step-1]) /\
(forAll colBlock : GRIDROWS .

(colBlock != fpRow[step]) ->
(grid[step,colBlock,col] = grid[step-1,colBlock,col])) /\

$ right: all fixed
(forAll right : int(col+1..gridWidth) .

forAll colBlock : GRIDROWS .
grid[step,colBlock,right] = grid[step-1,colBlock,right])))

CP 2022

22:10 Plotting: A Planning Problem with Complex Transitions

5.4 A State-focused Constraint Model of Plotting
We now describe an alternative model that focuses on the state of the hand and each cell
of the grid, how each might change or remain the same, and the valid reasons for doing so.
Again, due to its substantial size we give an overview along with some illustrative model
fragments. The full model is provided in the supplementary material.

We found it expedient to introduce a time-indexed set of auxiliary variables to this model
to capture the distance travelled in the final column when a block is shot horizontally, reaches
the wall, then consumes blocks as it falls down the last column. We use these auxiliary
variables throughout the model to simplify the statement of the constraints.
find wallFall : matrix indexed by[STEPSFROM1] of int(0..gridHeight)

The constraints to make the calculation enumerate each possible value for the wallFall
variable and stipulate what must be true for that value to be valid:
forAll step : STEPSFROM1 .
forAll i : int (1..gridHeight) .
(wallFall[step] = i)
=
(exists row : int(1..gridHeight) .

(fpRow[step] = row) /\
$ Travelled to the rightmost column
(forAll col : int(1..gridWidth) .

grid[step-1,row,col] = EMPTY \/
grid[step-1,row,col] = hand[step-1]) /\

$ Travelled i in the last column
(forAll underRow : int (row..row+i-1) .

grid[step-1,underRow,gridWidth] = hand[step-1] \/
grid[step-1,underRow,gridWidth] = EMPTY) /\

$ And no more
((grid[step-1,row+i,gridWidth] != hand[step-1]) \/
(row+i > gridHeight)) /\

$ And consumed a block somewhere, otherwise not a progressing move.
((exists col : GRIDCOLS .

grid[step-1,row,col] = hand[step-1]) \/
(exists underRow : int(row..row+i-1) .

grid[step-1,underRow,gridWidth] = hand[step-1]))
),

The constraints in the state-focused model are subdivided into four cases: The hand
is unchanged, a grid cell becomes empty, a grid cell stays the same and grid cell changes
colour to something other than empty, which can affect the hand. These are all stated in an
if-and-only-if form to ensure that no part of the state (hand or grid) is left unconstrained
and therefore vulnerable to the solver assigning arbitrary values.

There are two scenarios leaving the hand unchanged when we require a progressing move.
First, firing down a column of the same colour blocks as the block fired. Second, along a row
of the same colour, hitting the wall, then consuming everything beneath on the rightmost
column before hitting the floor. The wallFall variables simplify this second scenario:
forAll step : STEPSFROM1 .

(hand[step-1] = hand[step])
=
($ Fired down col, hitting wall

((forAll colBlock : GRIDROWS .
((grid[step-1,colBlock,fpCol[step]] = hand[step-1]) \/
(grid[step-1,colBlock,fpCol[step]] = EMPTY)))

) \/
$ Fired row, hitting wall, dropping through hand-colour only. Test by comparing wallFall with fpRow:
(wallFall[step] = gridHeight-fpRow[step]+1)

),

A grid cell remains empty if it was empty at the previous time step. Otherwise it becomes
empty if the block that was occupying it is deleted by the chosen shot, or the block that was
occupying it falls through the action of gravity. In both of these scenarios we must check

J. Espasa, I. Miguel, and M. Villaret 22:11

that another block has not fallen into this cell and of course we must cater for the fact that
in the rightmost column several blocks can be consumed or fall. We present an illustrative
fragment below, again exploiting wallFall, and refer the reader to the full model for the
complete constraint covering this case:

forAll step : STEPSFROM1 .
forAll gRow : GRIDROWS .

forAll gCol : GRIDCOLS .
(grid[step,gRow,gCol] = EMPTY)
=
($ When a cell is EMPTY, it stays EMPTY

(grid[step-1,gRow,gCol] = EMPTY) \/
...
$ Final Column shot along a row consuming several blocks underneath
($ Only the final column

(gCol = gridWidth) /\
$ There was a wallfall - this implies a successful row shot.
(wallFall[step] > 0) /\
$ The shot was beneath here
(fpRow[step] > gRow) /\
$ Nothing there to fall into here
(grid[step-1,gRow-wallFall[step],gridWidth] = EMPTY \/
gRow-wallFall[step] < 1)

) \/ ...
)

A grid cell remains unchanged from one time step to the next primarily if it is unaffected
by the action chosen. This may be, for example, because a shot was fired down a different
column or along a row above. A more subtle scenario is when a block falls down from the
current cell, but another of the same colour falls from above to take its place. In all, we
have subdivided this case into nine such scenarios, which can be seen in the full model. An
illustrative fragment is shown below:

forAll step : STEPSFROM1 .
forAll gRow : GRIDROWS .

forAll gCol : GRIDCOLS .
(grid[step,gRow,gCol] = grid[step-1,gRow,gCol])
=
($ Fired along row above, last col. Something in way on row or last col.

((gCol = gridWidth) /\
(fpRow[step] != 0) /\
(fpRow[step] < gRow) /\
((exists rowBlock : int(1..gridWidth) .

((grid[step-1, fpRow[step], rowBlock] != EMPTY) /\
(grid[step-1, fpRow[step], rowBlock] != hand[step-1]))

) \/
(exists colBlock : int(1..gRow-1) .
((colBlock >= fpRow[step]) /\
(grid[step-1, colBlock, gridWidth] != EMPTY) /\
(grid[step-1, colBlock, gridWidth] != hand[step-1]))

)
)

) \/
$ This row or below. Same colour block falls here. Last col.
((gCol = gridWidth) /\

(fpRow[step] >= gRow) /\
(wallFall[step] > 0) /\
(grid[step-1,gRow-wallFall[step],gCol] = grid[step-1,gRow,gCol])

) \/ ...
)

Finally, the contents of a grid cell change to something other than empty either as a result
of an exchange with the hand or if a different coloured block. Here, we have subdivided into
five scenarios, depending on whether a row or column shot was selected, and whether the
final column is involved. A fragment is shown below:

CP 2022

22:12 Plotting: A Planning Problem with Complex Transitions

R G
G R

Hand: R

(a) A game state with non-inter-
changeable column shots.

R R
G G

Hand: R

(b) A game state with non-inter-
changeable column shots.

G
R G

Hand: R

(c) A state that can only lead to
dead ends.

Figure 4 Illustrative Plotting game situations.

forAll step : STEPSFROM1 .
forAll gRow : GRIDROWS .

forAll gCol : GRIDCOLS .
((grid[step,gRow,gCol] != grid[step-1,gRow,gCol]) /\
(grid[step,gRow,gCol] != EMPTY))

=
(...

$ Cell swaps with hand: row then down last col.
($ rightmost col

(gCol = gridWidth) /\
$ WallFall implies travel row then col.
(wallFall[step] > 0) /\
$ and this cell must be at fpRow+wallFall
(gRow = wallFall[step] + fpRow[step]) /\
$ Exchanges with hand
(hand[step] = grid[step-1,gRow,gridWidth]) /\
(hand[step-1] = grid[step,gRow,gridWidth]) /\
$ Which was a different colour

(hand[step-1] != grid[step-1,gRow,gridWidth])
) \/ ...

)

5.5 Symmetry Breaking
Shooting along an empty row has the same effect as shooting down the last column. These
two actions are interchangeable, so we can disallow the former:

forAll step : STEPSFROM1 .
$ Assume bottom row not going to be empty.
forAll gRow : int(1..gridHeight-1) .

((sum gCol : int(1..gridWidth) . grid[step-1,gRow,gCol]) = 0) -> (fpRow[step] != gRow),

This remains true if the row is empty except for the last column, and the block in the last
column on that row has nothing above it:

forAll step : STEPSFROM1 .
$ Assume bottom row not going to be empty.
forAll gRow : int(1..gridHeight-1) .

((sum gCol : int(1..gridWidth-1) . grid[step-1,gRow,gCol]) = 0) /\
((gRow = 1) \/ (grid[step-1,gRow-1,gridWidth] = EMPTY))
->
(fpRow[step] != gRow),

Since they do not interfere with each other in terms of the grid state, it is tempting to
think that we can freely permute a sequence of consecutive column shots. This is to ignore
the state of the hand, however. Consider Figure 4a we can shoot down the left column,
resulting in a green block in the hand, followed by the right column - but not vice versa. If
the column “prefix” is the same, as per Figure 4b, we can now shoot down either column.
However, after one such shot we could not immediately fire down the other column because
the hand would now contain a green block. Therefore, there can be no consecutive column
shots (with this pair of columns) to permute. If, however, the columns are monochrome,
consecutive column shots are possible, and so we can insist that they are ordered:

J. Espasa, I. Miguel, and M. Villaret 22:13

forAll step : int(1..noSteps-1) .
forAll gCol : int(1..gridWidth-1) .

forAll gCol2 : int(gCol+1..gridWidth) .
$ Monochrome
(forAll gRow : int(1..gridHeight) .

((grid[step-1,gRow,gCol] = EMPTY) \/
(grid[step-1,gRow,gCol] = hand[step-1])) /\

((grid[step-1,gRow,gCol2] = EMPTY) \/
(grid[step-1,gRow,gCol2] = hand[step-1])))

-> ($ If consecutive must be left to right
fpCol[step] = gCol2 -> fpCol[step+1] != gCol),

5.6 An Implied Constraint
Consider an arbitrary grid with one red block. If that red block is transferred to the avatar’s
hand then there is no possible move. Hence, this state is only permissible following the final
shot in the sequence. If red is already in the hand then the next move must shoot at the red
block in the grid, again resulting in another colour in the hand and one red block in the grid,
except in a situation like Figure 4c, where we could shoot down the first column, consume
the red block and keep red in the hand. Again, however, there will be no possible move. So,
the implied constraint is: given a single block of colour c in the grid at time step t, then
colour c cannot be in the hand until the goal state (when no further shots are necessary):

forAll step : int(0..noSteps-2) .
forAll colour : COLOURS .

atmost(flatten(grid[step,..,..]), [1], [colour]) ->
forAll step2 : int(step+1..noSteps-1) . hand[step2] != colour,

It might be conjectured that a similar condition holds for two blocks of a particular
colour remaining. Consider an arbitrary grid with two red blocks. When one is hit, having
consumed a block of another colour, it appears in the hand. The next shot must be at the
other red block. That seems to suggest that red can appear at most once in the hand in the
remainder of the sequence. Consider, however, Figure 5a. If we shoot on the bottom row the
red block is consumed and the shot block hits the wall, rebounding into the hand, resulting
in Figure 5b. Similarly, if we again shoot on the bottom row, the result is Figure 5c. Hence,
a counterexample: red appears twice in the hand when there are only two blocks in the grid.
Note that the constraints in Section 5.5 and this implied constraint are applicable to models
in Sections 5.3 and 5.4 as they both share the same viewpoint.

6 Empirical Evaluation

We have created a dataset of 200 instances using our parameterised instance generator. These
have similar properties to the original game levels in terms of size, number of colours and
goals: their sizes range from 2 × 4 to 7 × 7, the number of colours range from 2 to 4 and
the maximum allowed remaining blocks (goal) range from 5 to 2. In the original game, the
scenario sizes range from 4 × 4 to 6 × 6 with 4 colors. The goal objectives also depend on the

G
R
RHand: R →

(a) State 1.

G
RHand: R →

(b) State 2.

G
Hand: R

(c) State 3.

Figure 5 With two red blocks remaining, red can appear in the hand twice.

CP 2022

22:14 Plotting: A Planning Problem with Complex Transitions

0 500 1000 1500 2000 2500 3000 3500
Time in seconds

0

25

50

75

100

125

150

175
Nu

m
be

r o
f s

ol
ve

d
in

st
an

ce
s

Fast Downward
SAT+S
SAT+S+all
SAT+A
SAT+A+all
Chuffed+S
Chuffed+S+all
Chuffed+A
Chuffed+A+all
CPLEX+S
CPLEX+S+all
CPLEX+A
CPLEX+A+all

Figure 6 Cumulative instances solved for each model and solver. The all variant of the state- (S)
and action-focused (A) constraint models includes implied and symmetry-breaking constraints.

difficulty level but usually range from 7 to 3. The only difference in our synthetic instances
is that we always allow firing on all rows and columns. Five of our synthetic instances are
unsolvable, i.e., you always reach a state where you cannot make a progressing move.

Our experiments were executed on a cluster of compute nodes with two 2.1 GHz 18-core
Intel Xeon (Broadwell) processors each. Each process was given a limit of 8GB of memory
and 1-hour timeout. We used Savile Row [26] 1.9.1 with three different backend solvers:
CaDiCaL [7], Chuffed [8] and CPLEX Optimisation Studio 20.10. We also used the Fast
Downward [18] 20.06+ planner. We did consider all planners present in the last IPC and only
9 claimed to support the features required. Of those, 7 were based on the Fast Downward
preprocessor and the others crashed when given the instances. We opted to include only
results on Fast Downward because pre-processing for all planners based on Fast Downward
is the same, and for the successfully pre-processed instances the search time is very small.

Fast Downward is the best-known, supported and reused state-of-the-art planning system,
winning the last International Planning Competition (IPC) using some of its portfolio
configurations. Its preprocessing module performs sophisticated transformations from PDDL
to the more solver-amenable SAS+ format [4], and is reused by many state-of-the-art
planners. Still, planning benchmarks do not usually require the expressivity in the language
that Plotting does. The extensive use of quantifiers and complex conditional effects in
the PDDL model are a heavy burden on the preprocessor, preventing the planner from
pre-processing grids greater than 3 × 3 within the given time-out and memory constraints.

The longest satisfiable instance solved within the time and memory limits has 26 steps.
As per Section 2.1, when not using Fast Downward, for each instance we consider a sequence
of decision problems from 1 to (width × height) − goal steps. We generally observe a phase
transition around the first satisfiable step. In most cases pre-processing by Savile Row
is significant. For the solved instances, an average of 54% of the total time is spent on
preprocessing for CPLEX, 51% for SAT and 53% for Chuffed. For some intermediate steps,
Savile Row can prove an instance unsatisfiable before encoding it for the backend solver.

J. Espasa, I. Miguel, and M. Villaret 22:15

Table 1 Number of instances solved and PAR2 score per solver and model. Column none
is performance without the extra constraints. Columns de, em and mo show the differences in
performance with the dead end implied constraint, the empty column and monochrome symmetry
breaking constraints respectively. Column all shows their combined effect. A decreasing value for the
PAR2 score signals that problems are solved faster, and so a negative value is better. For example,
CPLEX+A solves more instances when separately adding the de and em constraints to the base
model, but solves less instances when adding mo or all of them in combination. The PAR2 score
summarizes how this affects solving times in all instances.

#instances PAR2 Score
none de em mo all none de em mo all

SAT+S 174 0 0 0 0 248764 -428 +1129 +1093 +3714
Chuffed+S 139 +5 +5 +1 +4 493458 -34174 -42729 -15553 -28534
CPLEX+S 93 +7 +6 +5 +5 788953 -36517 -32037 -25446 -26264

SAT+A 176 0 -1 -1 0 213866 +1674 +7078 +6875 +3994
Chuffed+A 154 -15 -12 -10 -4 371833 +96809 +76535 +63611 +28808
CPLEX+A 107 +1 +4 -1 -3 719877 -8118 -15288 +10127 +29473

We refer to the action-focused (Section 5.3) state-focused (Section 5.4) as models A and
S. Figure 6 shows a cactus plot, considering both with and without additional constraints.
The plot clearly splits the solvers in four performance profiles. SAT solves most instances,
followed by Chuffed, CPLEX and finally Fast Downward. Comparing models S and A, we see
three different behaviours. With SAT, the number of solved instances converges regardless
of the model, with model A slightly faster. For Chuffed, there is a clear performance gap
between them throughout. CPLEX seems to work better with model S until around the 1500
second mark, where model A overtakes it. Overall, model A performs consistently better.

Table 1 summarises performance with and without the extra constraints. The PAR2
score is equal to the CPU time of the solver when the instance is solved, and 2 times the
timeout when the instance is unsolved for any reason. Considering the PAR2 scores, the
extra constraints are generally slightly harmful for SAT, with only one exception: the dead
end implied constraint when using SAT+S. Chuffed and CPLEX show a notable difference
between models: Adding additional constraints to the S model consistently help, while if we
do the same for model A it generally hinders solving efficiency.

Breaking symmetries in the PDDL model would require even more involved preconditions.
For instance, we must state that when shooting a monochrome column there is no (same-
coloured) monochrome column in a precedent position. Unfortunately, preprocessing time in
the planner is critical in comparison to solving time. Therefore we have not implemented
symmetry breaking in PDDL. The native way of handling these is using the constraints
PDDL3.0 extension [13], sadly with no support among state-of-the-art planners.

7 Conclusions and Further Work

Although Plotting is a planning problem, we have shown that automated planners cannot
deal efficiently with a natural PDDL model. The lack of support for some crucial PDDL
features such as multi-valued variables, functional symbols and numeric reasoning makes the
modelling of problems with complex transitions a cumbersome and error-prone process.

We have presented alternative models in Essence Prime and, in an extensive empirical
analysis supported by a new instance generator, experimentally validated that this approach
is efficient using a variety of solving technologies. Although both planning and constraint

CP 2022

22:16 Plotting: A Planning Problem with Complex Transitions

models are quite involved, since Essence Prime is a more expressive language most key
points in the model are easier to encode. Native constructs for Essence Prime to express
planning-specific primitives would further aid the encoding of planning problems.

References
1 Accenture. The Global Gaming Industry Value Now Exceeds $300 Billion, New Accenture Re-

port Finds. https://newsroom.accenture.com/news/global-gaming-industry-value-now-
exceeds-300-billion-new-accenture-report-finds.htm, 2021. [Online; accessed 2-Feb-
2022].

2 Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian Miguel, Peter Nightingale, and András Z.
Salamon. Automatic discovery and exploitation of promising subproblems for tabulation.
In Principles and Practice of Constraint Programming - 24th International Conference, CP,
volume 11008, pages 3–12, 2018. doi:10.1007/978-3-319-98334-9_1.

3 Behrouz Babaki, Gilles Pesant, and Claude-Guy Quimper. Solving classical AI planning
problems using planning-independent CP modeling and search. In Daniel Harabor and Mauro
Vallati, editors, Proceedings of the Thirteenth International Symposium on Combinatorial
Search, SOCS, pages 2–10. AAAI Press, 2020.

4 Christer Bäckström and Bernhard Nebel. Complexity Results for SAS+ Planning. Comput.
Intell., 11:625–656, 1995. doi:10.1111/j.1467-8640.1995.tb00052.x.

5 Roman Barták, Miguel A Salido, and Francesca Rossi. Constraint satisfaction techniques in
planning and scheduling. Journal of Intelligent Manufacturing, 21(1):5–15, 2010.

6 Roman Barták and Daniel Toropila. Reformulating constraint models for classical planning.
In David Wilson and H. Chad Lane, editors, Proceedings of the Twenty-First International
Florida Artificial Intelligence Research Society Conference, May 15-17, 2008, pages 525–530.
AAAI Press, 2008.

7 Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian Heisinger. CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition 2020. In Tomas Balyo,
Nils Froleyks, Marijn Heule, Markus Iser, Matti Järvisalo, and Martin Suda, editors, Proc. of
SAT Competition 2020 – Solver and Benchmark Descriptions, volume B-2020-1 of Department
of Computer Science Report Series B, pages 51–53. University of Helsinki, 2020.

8 Geoffrey Chu, Peter J. Stuckey, Andreas Schutt, Thorsten Ehlers, Graeme Gange, and Kathryn
Francis. Chuffed 0.10.4. https://github.com/chuffed/chuffed, 2019 (accessed 03-05-2022).

9 Joan Espasa, Ian Miguel, Jordi Coll, and Mateu Villaret. Towards lifted encodings for numeric
planning in essence prime. Proceedings of the 18th International Workshop on Constraint
Modelling and Reformulation (ModRef), 2019.

10 Joan Espasa Arxer, Ian P Gent, Ruth Hoffmann, Christopher Jefferson, Matthew J McIlree,
and Alice M Lynch. Towards generic explanations for pen and paper puzzles with MUSes. In
Proceedings of the SICSA eXplainable Artifical Intelligence Workshop, 2021.

11 Maria Fox and Derek Long. PDDL2.1: an extension to PDDL for expressing temporal planning
domains. Journal of Artificial Intelligence Research, 20:61–124, 2003. doi:10.1613/jair.1129.

12 Ian P Gent, Chris Jefferson, Tom Kelsey, Inês Lynce, Ian Miguel, Peter Nightingale, Barbara M
Smith, and S Armagan Tarim. Search in the patience game ‘black hole’. AI Communications,
20(3):211–226, 2007.

13 Alfonso Gerevini and Derek Long. Plan constraints and Preferences in PDDL3. Technical
report, Technical Report 2005-08-07, Department of Electronics for Automation, University of
Brescia, Brescia, Italy, 2005, 2005.

14 Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: theory and practice.
Elsevier, 2004.

15 Nina Ghanbari Ghooshchi, Majid Namazi, M. A. Hakim Newton, and Abdul Sattar. Encoding
domain transitions for constraint-based planning. Journal of Artificial Intelligence Research,
58:905–966, 2017. doi:10.1613/jair.5378.

https://newsroom.accenture.com/news/global-gaming-industry-value-now-exceeds-300-billion-new-accenture-report-finds.htm
https://newsroom.accenture.com/news/global-gaming-industry-value-now-exceeds-300-billion-new-accenture-report-finds.htm
https://doi.org/10.1007/978-3-319-98334-9_1
https://doi.org/10.1111/j.1467-8640.1995.tb00052.x
https://github.com/chuffed/chuffed
https://doi.org/10.1613/jair.1129
https://doi.org/10.1613/jair.5378

J. Espasa, I. Miguel, and M. Villaret 22:17

16 Gaël Glorian, Adrien Debesson, Sylvain Yvon-Paliot, and Laurent Simon. The dungeon vari-
ations problem using constraint programming. In Laurent D. Michel, editor, 27th International
Conference on Principles and Practice of Constraint Programming, CP 2021, Montpellier,
France, volume 210 of LIPIcs, pages 27:1–27:16. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021. doi:10.4230/LIPIcs.CP.2021.27.

17 Patrik Haslum, Nir Lipovetzky, Daniele Magazzeni, and Christian Muise. An Introduc-
tion to the Planning Domain Definition Language. Synthesis Lectures on Artificial In-
telligence and Machine Learning. Morgan & Claypool Publishers, 2019. doi:10.2200/
S00900ED2V01Y201902AIM042.

18 Malte Helmert. The Fast Downward Planning System. J. Artif. Intell. Res., 26:191–246, 2006.
doi:10.1613/jair.1705.

19 Christopher Jefferson, Angela Miguel, Ian Miguel, and Armagan Tarim. Modelling and
solving english peg solitaire. Comput. Oper. Res., 33(10):2935–2959, 2006. doi:10.1016/
j.cor.2005.01.018.

20 Christopher Jefferson, Wendy Moncur, and Karen E Petrie. Combination: Automated
generation of puzzles with constraints. In Proceedings of the 2011 ACM Symposium on Applied
Computing, pages 907–912, 2011.

21 Henry A. Kautz and Bart Selman. Planning as Satisfiability. In ECAI, pages 359–363, 1992.
22 Derek Long. Drilling down: Planning in the field. Invited Talk, Twenty-Ninth International

Conference on Automated Planning and Scheduling, (ICAPS), Berkeley, CA, USA, 2019.
23 Arman Masoumi, Megan Antoniazzi, and Mikhail Soutchanski. Modeling Organic Chemistry

and Planning Organic Synthesis. In Global Conference on Artificial Intelligence (GCAI), pages
176–195, 2015.

24 Ian Miguel, Peter Jarvis, and Qiang Shen. Flexible graphplan. In ECAI, pages 506–510, 2000.
25 Tim Niemueller, Erez Karpas, Tiago Vaquero, and Eric Timmons. Planning competition

for logistics robots in simulation. In Workshop on Planning and Robotics (PlanRob) at
International Conference on Automated Planning and Scheduling (ICAPS), 2016.

26 Peter Nightingale, Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian Miguel, and Patrick
Spracklen. Automatically improving constraint models in Savile Row. Artificial Intelligence,
251:35–61, 2017.

27 Peter Nightingale and Andrea Rendl. Essence’ description. CoRR, abs/1601.02865, 2016.
arXiv:1601.02865.

28 Andrea Rendl, Ian Miguel, Ian P. Gent, and Peter Gregory. Common subexpressions in
constraint models of planning problems. In Eighth Symposium on Abstraction, Reformulation,
and Approximation, SARA. AAAI, 2009.

29 Jussi Rintanen, Keijo Heljanko, and Ilkka Niemelä. Planning as Satisfiability: Parallel Plans
and Algorithms for Plan Search. Artificial Intelligence, 170(12-13):1031–1080, 2006.

30 Peter van Beek and Xinguang Chen. CPlan: A Constraint Programming Approach to Planning.
In Sixteenth National Conference on AI and Eleventh Conference on Innovative Applications
of AI, pages 585–590, 1999.

31 Vincent Vidal and Héctor Geffner. Branching and pruning: An optimal temporal POCL
planner based on constraint programming. Artificial Intelligence, 170(3):298–335, 2006.

CP 2022

https://doi.org/10.4230/LIPIcs.CP.2021.27
https://doi.org/10.2200/S00900ED2V01Y201902AIM042
https://doi.org/10.2200/S00900ED2V01Y201902AIM042
https://doi.org/10.1613/jair.1705
https://doi.org/10.1016/j.cor.2005.01.018
https://doi.org/10.1016/j.cor.2005.01.018
http://arxiv.org/abs/1601.02865

Nucleus-Satellites Systems of OMDDs for
Reducing the Size of Compiled Forms
Hélène Fargier #

IRIT, Université de Toulouse, CNRS, Toulouse INP, UT3, France

Jérôme Mengin #

IRIT, Université de Toulouse, CNRS, Toulouse INP, UT3, France

Nicolas Schmidt #

IRIT, Université de Toulouse, CNRS, Toulouse INP, UT3, France

Abstract
In order to reduce the size of compiled forms in knowledge compilation, we propose a new ap-
proach based on a splitting of the main representation into a nucleus representation and satellite
representations. Nucleus representation is the projection of the original representation onto the
“main” variables and satellite representations define the other variables according to the nucleus. We
propose a language and a method, aimed at OBDD/OMDD representations, to compile into this
split form. Our experimental study shows major size reductions on configuration- and diagnosis-
oriented benchmarks.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Constraint and logic programming

Keywords and phrases Knowledge representation, knowledge compilation, ordered multivalued
decision diagram

Digital Object Identifier 10.4230/LIPIcs.CP.2022.23

Funding The authors gratefully acknowledge the support of the Artificial and Natural Intelligence
Toulouse Institute – ANITI. ANITI is funded by the French ”Investing for the Future – PIA3”
program under grant agreement ANR-19-PI3A-0004.

Acknowledgements We thank anonymous reviewers for the CPAIOR and CP conferences for their
numerous comments and suggestions that helped improve the paper.

1 Introduction

Knowledge compilation aims at translating (off line) a problem expressed in some language
into a target language in which operations which are important for the application targeted can
be performed efficiently [4, 8]. Decision diagrams for instance (OBDDs [3], OMDDs [17, 12],
ordered MDDGs [23, 18]) have shown to be a good target language for many problems
expressed as constraint satisfaction problem or as CNF, and in particular for product
configuration problems [26, 1, 13].

The size of the compiled form being a main criterion in knowledge compilation, its
reduction is a major issue in the field. This is magnified by the fact that many information
redundancies can be observed. Indeed, caching and the detection of isomorphic nodes allow
the detection of equivalent sub-graphs, but not of all redundant information. This last
aspect is why, in this paper, we propose a method for reducing the size of the compiled form,
up to an additional (but polynomial) computational cost for the handling of queries and
transformations. Because targetting interactive configuration problems, we focus our work on
OBDD/OMDD [3, 28, 17, 12] representation languages, and show that the method proposed
allows a quickest compilation of the original problem, leads to a much smaller compiled form
and above all to an important saving in time when the compiled form is exploited.

© Hélène Fargier, Jérôme Mengin, and Nicolas Schmidt;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 23; pp. 23:1–23:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:helene.fargier@irit.fr
mailto:jerome.mengin@irit.fr
mailto:nicolas-schmidt@taleur.net
https://doi.org/10.4230/LIPIcs.CP.2022.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Nucleus-Satellites Systems of OMDDs for Reducing the Size of Compiled Forms

This article is structured as follows. The next section introduces necessary background
and notations. The “satellite system” approach we propose is developed in Section 3. We then
evaluate the succinctness of this language from an experimental point of view in Section 4.
We relate in Section 5 the theoretical concept on which our approach is based to the notion
of “definability”, as it has been studied in propositional logic.

2 Background and notations

2.1 Representation languages

Consider a finite set X of variables, each variable x ranging over a finite domain Dx. For any
set X ⊆ X , #—x denotes an assignment to the variables from X. DX is the set of all assignments
of X (the Cartesian product of the domains of the variables in X). The concatenation of two
assignments #—x and #—y of disjoint subsets X and Y is an assignment to X ∪ Y denoted #—x · #—y .

We consider functions f of variables from a subset Scope(f) ⊆ X to a set V. We write
Df to denote the domain of f , i.e. Df = DScope(f). For any Z ⊆ Scope(f), f #—z denotes the
restriction (or semantic conditioning) of f by #—z , that is, the function on Scope(f) \ Z such
that for any #—x ∈ DScope(f)\Z , f #—z (#—x) = f(#—z · #—x). Slightly abusing notations, if X and Y

are two disjoint sets of variables, f is a function such that Scope(f) = X, and #—x · #—y is an
assignment of a super set X ∪ Y of X, then we write f(#—x · #—y) for f(#—x).

A representation language over X w.r.t a valuation set V is a set of data structures
equipped with an interpretation function that associates with each data structure a mapping
from DX to V. This mapping is called the semantics of the data structure, and the data
structure is a representation of the mapping.

▶ Definition 1 (representation language; inspired by [11]). A representation language L over
X w.r.t V, is a 4-tuple ⟨CL, ScopeL, f

L, ||L⟩, where:
CL is a set of data structures ϕ (also referred to as L representations or “formulæ”),
ScopeL : CL → 2X is a scope function associating with each L representation the subset of
X it depends on,
fL is an interpretation function associating with each L representation ϕ a mapping fL

ϕ

from the set of all assignments over ScopeL(ϕ) to V,
||L is a size function from CL to N that provides the size |ϕ|L of any L representation ϕ.

Two formulæ ϕ and ψ (possibly from different languages) are equivalent iff they have the
same scope and semantics; this is denoted ϕ ≡ ψ.

In the following, X is a set of discrete variables and V = {⊤,⊥}. Given two functions f
and g, the assignments x⃗ of X such that f(#—x) = ⊤ are said to be “models” (or “solutions”)
of f and g is said to be a consequence of f (denoted f |= g) if any model #—x of ϕ can be
extended to a model of ψ: f(#—x) = ⊤ implies ∃ #—y ∈ DScope(g)\Scope(f) such that g(#—x . #—y) = ⊤.
Given two L representations ϕ and ψ, x⃗ is a model (or “solution”) of ϕ iff it is a model of fL

ϕ,
x⃗ is then said to be consistent with f . ψ is said to be a consequence of ϕ (denoted ϕ |= ψ) iff
any model of ϕ can be extended to a model of ψ (i.e. fL

ϕ |= fL
ψ).

For any function f from (a subset of) X to V and any partition (Y,Z) of Scope(f), ∃Z.f
is the function on Y which maps y⃗ to ⊤ iff there exist a z⃗ such that f(y⃗.z⃗) = ⊤. ∃Z.f is the
projection of f on X \ Z. Finally, f ∧ g denotes the conjunction of f and g: (f ∧ g)(x⃗) = ⊤
iff f(x⃗) = ⊤ and g(x⃗) = ⊤; and f ∨ g denotes their disjunction: (f ∨ g)(x⃗) = ⊤ iff f(x⃗) = ⊤
or g(x⃗) = ⊤.

H. Fargier, J. Mengin, and N. Schmidt 23:3

2.2 CSPs
A CSP formula is a set ϕ = {f1, . . . , f|ϕ|} of functions fi (also called “constraints”) mapping
assignments of subsets of X to {⊤,⊥}. For any #—x in DScope(fi), fi(#—x) = ⊤ means that #—x

satisfies the constraint. A model (a solution) of the CSP is an assignment of X satisfying all
the constraints – ϕ is a representation of the function fCSP (ϕ) =

∧
fi∈ϕ fi. No assumption

is made on the way constraints are represented – it is simply assumed that fi(#—x) can be
computed quickly (generally, in linear or constant time).

2.3 Propositional Logic, CNFs
Given a set of Boolean variables X , a literal over X is either a variable of X or the negation of
a variable of X . Well formed logical formulae are defined as usual using the logical connectors
¬, ∨, ∧. For any well formed formula ϕ, fPROPϕ obeys the classical semantic. For instance a
clause is a disjunction cli = l1∨· · ·∨ l|cli| of literals; Scope(cli) is the set of variables on which
the literals of cli bear; the semantics of cli is the Boolean function fClausecli

from DScope(cli)
to {⊤,⊥} defined by fPROPcli

(#—x) = ⊤ iff #—x maps value ⊤ to at least one positive literal of ϕ
or value ⊥ to at least one negative literal of ϕ. Likewise, a CNF over X is a conjunction
ϕ = cl1 ∧ · · · ∧ cl|ϕ| of clauses; then Scope(ϕ) =

⋃
cli∈ϕ Scope(cli) and ϕ is a representation

of the function fCNF (ϕ) =
∧
cli∈ϕ f

Clause
cli

– it is satisfied iff all the clauses of ϕ are satisfied.

2.4 Decision diagrams
A decision diagram (DD) is a directed acyclic graph with a single root node denoted root(ϕ)
and two leaf nodes labelled with ⊤ and ⊥ respectively. Non-leaf nodes can be of two kinds,
“AND” nodes and decision nodes.

Decision nodes are labelled with variables of X ; if v is a decision node labelled with
x ∈ X , then v has as many children w as there are values in Dx, and the edges (v, w)
are univocally labelled with the values in Dx. We write a = label(v, w) to indicate that
edge (v, w) is labelled with value a. For every a ∈ Dx, next(v, a) will denote the child of
v selected by value a, i.e. next(v, a) = w iff edge (v, w) is labelled with value a. next(v)
denotes the set of children of v.
The paths of the DD are often assumed to satisfy the read-once property: no path from
the root to the ⊤ leaf node contains a given variable label more than once.
“AND” nodes are labelled with ∧. An AND node v can have any number of children, and
if w is one of them then the edge (v, w) is not labelled;

The scope of a decision diagram is naturally defined as the set of variables that label its
decision nodes.

The interpretation function of decision diagrams is defined as follows. Let v be the root
node of ϕ. If ϕ contains only one node (v is aleaf), it is necessarily labelled with a constant
c ∈ {⊤,⊥}; then fDDϕ (#—x) = c. If v is an AND node, then fDDϕ (#—x) =

∧
v′∈next(v) f

DD
ϕ(v′)(

#—x).
If v is a decision node with label xi, then fDDϕ (#—x) = fDDnext(v,a)(

#—x) where a is the value
assigned to xi by #—x .

A decision diagram is in reduced form iff all isomorphic subgraphs are merged. The
reduction of a decision diagram can always be performed in linear time. We assume in the
following that the decision diagrams are in reduced form. Several valuable categories of
decision diagrams have been identified:

CP 2022

23:4 Nucleus-Satellites Systems of OMDDs for Reducing the Size of Compiled Forms

x1

x2

x2

x3

x3

x4

x4

x5 ⊤

Figure 1 An OBDD equivalent to the logical formula ϕ =
[
(x1∧x3)∨(¬x1∧((x2∧x3)∨(¬x2∧

¬x3∧¬x4)))
]
∧¬x5; dashed edges are implicitly labelled with value 0, plain edges with value 1.

A MDDG is a decision diagram the AND nodes of which are decomposable, meaning that
if w and w′ are two distinct children of AND node v, then the two sets of variables that
appear in the two decision diagrams rooted at w and w′ respectively must be disjoint.
Let < be total order on X . A DD is ordered by < iff for any pair (v, v′) of decision
nodes in ϕ, if v′ can be reached from v, then label(v) < label(v′) (on a path, the nodes
are encountered according to <) – as a consequence the DD does not contain any AND
node. Such graphs are called Ordered Multivalued Decision Diagrams (OMDD). They
constitute a generalization of well-known Ordered Binary Decision Diagrams (OBDD),
and allow Boolean functions of discrete variables, instead of Boolean variables only.

In the “logical” definition of OMDDs given above, there are two sink nodes labelled
with ⊤ and ⊥, and every node has an outgoing edge for every value of the domain of the
variable that labels the node; but when implementing OMDDs, and when drawing them, it
is sufficient to implement / draw only the paths that lead to ⊤ – every “dead-end” then
corresponds to a path to ⊥; the sink node labelled ⊥ is implicit. We adopt this convention
for OMDDs throughout. This means that for every node v, if next(v) ̸= ∅ then v has ⊤
as one of its descendants; if there is no node next(v, a) for a value a in the domain of the
variable labeling v, this is equivalent to having next(v, a) = ⊥.

▶ Example 2. Figure 1 depicts an OBDD over X = {x1, x2, x3, x4, x5} that is equivalent to
the following formula of propositional logic:

ϕ =
[
(x1∧x3)∨(¬x1∧((x2∧x3)∨(¬x2∧¬x3∧¬x4)))

]
∧¬x5

2.5 Operations
In the following, we will use several basic operations on formulae. Let ϕ and ψ be two
representations in a language L.

CD: The conditioning of ϕ by the assignment z = a of variable z computes a L representation
of f(x⃗) = fL

ϕ(x⃗.a)
FO: the forgetting of a set of variables X ⊆ X in ϕ computes a L representation of ∃x⃗.fLϕ∧

BC: the conjunction of two L representations ϕ and ψ computes a L representation of the
function fLϕ ∧ fLψ∨

BC: the disjunction of two L representations ϕ and ψ computes a L representation of the
function fLϕ ∨ fLψ

GIC: A value a ∈ Dx is Globally Inversely Consistent for some L representation ϕ if there
exist at least an assignment x⃗ for which the value of x is a and fϕ(x⃗) = ⊤. Ensuring
Global Inverse Consistency of a formula consists in computing, for each variable, the set
of all its globally inversely consistent values.

H. Fargier, J. Mengin, and N. Schmidt 23:5

Operations CD and GIC are particularly useful in the domain of interactive product
configuration, where ϕ represent a configurable product (each model is a feasible product):
at each step, the user chooses a variable and the system then computes the set of its
globally consistent values. The user then chooses one of these values and the corresponding
conditioning is performed.

These two operations can be performed in linear time on decision diagrams – hence
their attractiveness as a target language for compilation. Moreover, the forgetting, bounded
conjunction and bounded disjunction are tractable when considering OMDD (O(|ϕ|) for the
former, O(|ϕ| × |ψ|) for the latter two).

2.6 Compilation of CSP/CNF into OMDD/OBDDs
Knowledge compilation aims at translating a formula ϕ expressed in some language into
a language in which operations which are important for the application targeted can be
performed efficiently – of course, there is no free lunch: there may exist some instances for
which this process in not tractable.

In this paper, we consider the compilation of Constraint Satisfaction Problems (resp.
CNF) into Ordered Multivalued (resp. Boolean) Decision Diagrams. Several compilers exist
in this context, that preserve the set of models of the original representation; that is, if ϕ is
the CSP representation of a problem, and ψ the Decision Diagram representation computed,
any model of ϕ is a model of ψ and reciprocally.

Existing compilers are either top-down compilers or bottom-up compilers. Roughly, top-
down compilers [18, 7, 27, 20, 24] perform a backtrack search of the models, adding the (set
of) models reached to the current compiled form. These compilers make use of a SAT or
CSP solver.

On the other hand, bottom-up compilers [28, 10, 5] start by separately compiling the
constraints of the CSP representation, using a common order of the variables; the conjunction
of these compiled constraints is then computed, using the Apply∧ algorithm [3]. Each bounded
conjunction is realized in polytime – the resulting form can be smaller than the former one,
but it may also grow (polynomially) at each step. There is thus a risk of explosion when the
number of conjunctions is not limited.

3 Nucleus-Satellites System of OMDD

The overall approach that we propose in this paper consists in reducing the size of one OMDD
ϕ by extracting the information about some variable y. This information is represented in
another formula ϕy, and y is deleted from ϕ (ϕ becomes ∃yϕ). This can induce a direct and
moderate gain on the depth of the OMDD, and an indirect and bigger gain in the width of
the structure. In many cases, repeated applications of this process can significantly reduce
the size of the overall structure, if the information about the variables deleted from the
original OMDD depends on a limited number of variables (in which case, ϕy will be small).
ϕy is called a satellite and the reduced OMDD is a nucleus of the formula. This is illustrated
on Figure 2.

Formally, we propose a new language, which we call Nucleus-Satellites System of OMDDs:

3.1 Definition
▶ Definition 3. A Nucleus-Satellites System (NSS) of OMDDs is a triple Φ = (ϕn, Yϕ,
{(y, ϕy) | y ∈ Yϕ}) where Yϕ is a set of variables, ϕn and the ϕy’s are OMDDs on subsets of
X , such that:

CP 2022

23:6 Nucleus-Satellites Systems of OMDDs for Reducing the Size of Compiled Forms

Figure 2 From an OMDD ϕ to a Nucleus-Satellites System.

1. ϕn does not involve any of the y’s in Yϕ and each y ∈ Yϕ appears only in ϕy (∀y ∈ Yϕ,
y /∈ Scope(ϕn) and ∀y′ ̸= y ∈ Yϕ, y′ /∈ Scope(ϕy);

2. ϕn and the ϕy’s obey the same order on X \ {y} and y labels the root of ϕy;
3. for any model x⃗ of ϕn, there exists an assignment y⃗ of the y’s such that x⃗.y⃗ is a model of

each ϕy.

ϕn is called the nucleus of the system, and the ϕy’s are its satellites.
A satellite system represents the conjunction of all its element, i.e. for any x⃗ ∈ DX\Yϕ

and any y⃗ = y⃗1.y⃗m ∈ DYϕ
:

fNSSϕ (x⃗.y⃗) = fOMDD
ϕn

(x⃗) ∧ fOMDD
ϕ1

(x⃗.y⃗1) ∧ · · · ∧ fOMDD
ϕm

(x⃗.y⃗m)
Scope(Φ) = Scope(ϕn) ∪ (

⋃
y∈Yϕ

Scope(ϕy))
size(Φ) = size(ϕ) + Σyi∈Yϕ

size(ϕyi
).

A satellite system can be viewed as a tree of OMDDs [9] of depth 1 where each edge
ϕyi

uniquely defines the value of a variable yi (not present in the nucleus nor in the other
satellites).

Given some input L representation ϕ, we want to compute a Nucleus-Satellites System
Φ = (ϕn, Yϕ, {(y, ϕy) | y ∈ Yϕ}) that is much smaller than ϕ but equivalent to it: that is, we
want that fLϕ ≡ fNSSΦ . As we shall see shortly:

Yϕ will be a set of variables such that ∃Yϕ.ϕ is easy to compute;
ϕn ≡ ∃Yϕ.ϕ;
for each y ∈ Yϕ, ϕy retains enough information about y in order to be able to answer
some queries of interest.

Because ϕ and the ϕy’s are OMDDs, the fact that the nucleus ϕn and each satellite ϕy
obey the same variable ordering (condition 2 in Definition 3) guarantees that the conjunction
of these two OMDDs can be performed in quadratic time – this will be important for the
online exploitation of the data structure.

In the next section, we describe a method for computing an NSS that is equivalent to,
and hopefully much smaller than, an initial OMDD.

3.2 Computing a satellite system
We first show how it is possible to easily recognise, in an OMDD ϕ, some variables that will
turn out to be easily forget from ϕ, and are therefore good candidates to be in the satellites.

▶ Definition 4. A node v in an OMDD ϕ is passive iff it has at most one child different
from ⊥. Variable y is passive in ϕ iff each node labelled with y is passive.

H. Fargier, J. Mengin, and N. Schmidt 23:7

Algorithm 1 Satellisation.

Input: OMDD ϕ;
Output: satellite system equivalent to ϕ
1. Yϕ = ∅; XN = ∅;
2. for all y ∈ X :

a. if y is passive in ϕ: add y to Yϕ;
b. else: add y to XN ;

3. for all y ∈ Yϕ:
a. compute weak definition ϕy of y in ϕ

b. compute a representation of ∃y.ϕ
c. ϕ← ∃y.ϕ

4. return((ϕ, Yϕ, {(y, ϕy) | y ∈ Yϕ}))

In other words, node v labelled by y is passive iff for every pair a, b ∈ Dy, if next(v, a) ̸= ⊥
and next(v, b) ̸= ⊥, then next(v, a) = next(v, b). For instance, x3 and x4 are passive in the
OMDD of Figure 1.

The set of passive variables in a given OMDD ϕ can be computed with a single traversal
of ϕ (simply checking, for each variable y whether all the nodes labelled by y have at most
one child different from ⊥).

▶ Proposition 5. If y is a passive variable of an OMDD ϕ, an OMDD ψ that represents
∃y.fϕ can be computed in linear time and size(ψ) ≤ size(ϕ).

Proof. Let us apply the classical algorithm processing the forgetting of one variable. When
forgetting a node labelled by some y, this algorithm performs the disjunction (by a pass of
the Apply∨ algorithm on all the children of this node, except on the ⊥ node).

By definition if y is passive each node v labelled by y has at most two children: ⊥ and
another node u. So there is no need to perform the apply∨ stage and node v is directly
replaced by node u (all the edges pointing at v now point at u).

So, ϕ can be transformed into a representation of ∃y.fϕ by replacing every node m labelled
with y, by its unique child different from ⊥. ◀

So we have a way to identify variables that can be easily forgotten in an OMDD of interest.
Our next step is to provide a way to retain enough information about such a variable y , in
another, hopefully small, OMDD, in order to be able to reason about y.

▶ Definition 6. Given a formula ϕ of some representation language L over X , and some
variable y ∈ Scope(ϕ), a L formula ϕy over some subset Z ⊆ X \ {y} weakly defines 1 y in ϕ

iff fL
ϕ = (∃y.fL

ϕ) ∧ fL
ϕy

.

We are now ready to describe the computation of the Nucleus-Satellites System that
correspond to some input formula ϕ. It is formalized in Algorithm 1. The set of passive
variables of the input OMDD ϕ is computed at step 2. Then, at step 3, for every passive
variable y, a weak definition ϕy for y in ϕ is computed with Algorithm 2, described below; y
is then forgotten in ϕ.

1 As we shall see in section 5, this notion is close to the notion of definability as it has been studied in
propositional logic.

CP 2022

23:8 Nucleus-Satellites Systems of OMDDs for Reducing the Size of Compiled Forms

Note that at the end of Algorithm 1 the main OMDD ϕ only bears on the variables in
X \ Yϕ, since all variables in Yϕ have been forgotten in ϕ. The succession of forgetting at
step 3b of this algorithm never increases the size of the nucleus (Proposition 5), and can
significantly reduce the size of ϕ: the height of ϕ is lowered by 1 every time a variable is
forgotten; and the recovery of a reduced form (the fusion of isomorphic nodes) that follows
can lower its breadth.

After Algorithm 1 has been executed on some OMDD , the “satellite” variables – i.e.
those in Yϕ – do not appear in the nucleus anymore. Moreover, it can easily be checked that
if y, y′ are two satellite variables, then y′ does not appear in ϕy: either y′ is below y in the
variable ordering (and will thus not appear in the satellite) or the value of y is independent
of that of y′ (because y′ is passive): it will never appear in the y satellite.

We now turn to the computation of the satellites. The main idea is that when a small set
Z of variables defines some y in ϕ, ϕy should be small. Importantly the size of ϕy is bounded
by |Dy| · size(ϕ), because, as we shall see below, ϕy is a disjunction of |Dy| formulas, each of
which being no larger than ϕ.

The main loop of Algorithm 2, at step 2, iterates over all values a ∈ Dy: it computes
the part of a weak definition of y in ϕ that pertains to value a. For every value a ∈ Dy, ϕ
is simplified so as to retain just enough information to decide when an instantiation of the
variables in ϕn is consistent with y = a. A fresh copy of ϕ is made at step 2a. Non-sink nodes
below y-nodes are bypassed at step 2b, since they do not influence the consistency of value a
for y. Then the ancestors of y nodes, and that are not relevant w.r.t. y and a, are bypassed
at step 2c; they are called undecisive, see definition 7 below, their parents are redirected to
one of their children (function redirect); finally y nodes are bypassed at steps 2d and 2e.

▶ Definition 7. Given an OMDD ϕ over X , given y ∈ X and a ∈ Dy, we say that a node v
of ϕ is undecisive w.r.t. variable y ∈ X and a ∈ Dy in ϕ if v is not labelled with y and:
1. | next(v)| = 1; or
2. for all w ∈ next(v), w is labelled with y and next(w, a) ̸= ⊥; or
3. for all w ∈ next(v), w is labelled with y and next(w, a) = ⊥.

▶ Example 8. Figure 3 describes the computation of a satellite system for the OBDD of
Figure 1, with Yϕ = {x3, x4}. Figure 3a describes in details step 2 for y = x4, a = 1: at
step 2b, the plain edge x4 x5 is redirected to ⊤ ; at step 2c, there are 3 passive nodes :
the two nodes labelled x3, and the one labelled x2 on the bottom path, they are bypassed ;
finally, at steps 2e and 2d, we bypass variable x4, keeping only the paths that go through
an edge where x4 = 1. Note that x5 is passive too: the “bottom” variable of an OMDD is
always passive, according to our definition. However, in practice, all variables do not have to
be “sent into orbit”, passive variables disappear from the satellites anyway.

▶ Proposition 9. Given some OMDD ϕ over X , y ∈ X passive in ϕ, let ψy be the OMDD
returned by Algorithm 2 when called with ϕ, y.Then fϕ = (∃y.fϕ) ∧ fψy

.

The proof of the proposition is based on the following lemma. Its proof is in the appendix,
and shows that equation (I) below is an invariant of the main loop in Algorithm 2.

▶ Lemma 10. Given OMDD ϕ, y passive in ϕ, a ∈ Dy, if ψa is the OMDD computed at
steps 2a to 2e in Algorithm 2 then

ϕ ∧ (y = a) |= ψa and ψa ∧ (y = a) ∧ ∃y.ϕ |= ϕ (I)

H. Fargier, J. Mengin, and N. Schmidt 23:9

Algorithm 2 Computation of a weak definition.

Input : OMDD ϕ; y passive in ϕ and s.t. every path from root to ⊤ has a y-node;
Output : OMDD ψ s.t. ϕ ∧ (y = a) |= ψ and ψ ∧ (y = a) ∧ ∃y.ϕ |= ϕ.
1. ϕy ← ⊥;
2. for every a ∈ Dy do:

a. ψa ← a fresh copy of ϕ; // nodes below y = a edges are bypassed
b. for every node v labelled with y, if next(v, a) ̸= ⊥: next(v, a)← ⊤;
c. while there is some undecisive node w.r.t. y, a in ψa do:
//nodes not “relevan” w.r.t. which models are possible when y = a are bypassed;

i. v ← a node of ψa undecisive w.r.t. y, a;
ii. w ← some node ∈ next(v);
iii. redirect(v, w);

//y nodes are bypassed, keeping only information pertaining to value a
d. for every node v labelled with y s.t. next(v, a) = ⊤: redirect(v,⊤);
e. for every node v labelled with y s.t. next(v, a) = ⊥: redirect(v,⊥);
f. delete from ψa every node that is not accessible from the root anymore;
g. ϕy ← ϕy ∨ (y = a ∧ ψa); //compute disjunction of diagrams computed for all y values

3. return ϕy.
Uses function redirect(v, w): for every u, b such that next(u, b) = v: next(u, b)← w.

Proof of the proposition. Let ψy =
∨
a∈Dy

(y = a∧ψa). We must prove that ϕ |= ψy and
that ψy∧(∃y.ϕ) |= ϕ. Consider some assignment x⃗ of X , and let a be the value assigned to y
in x⃗. We know, from lemma 10, that ϕ∧(y = a) |= ψa and ψa∧(y = a)∧∃y.ϕ |= ϕ.

Suppose first that fϕ(x⃗) =⊤: ϕ∧(y = a) |= ψa, fψa(x⃗) =⊤, thus fψy (x⃗) =⊤. For the
converse, suppose that fψy

(x⃗) = f∃y.ϕ(x⃗) =⊤. Then fy=a′(x⃗) =⊥ for every a′ ∈Dy with
a′ ̸= a, thus it must be the case that fψa

(x⃗) =⊤, hence, because of equation (I), fϕ(x⃗) =⊤. ◀

In practice, making a fresh copy of the main OMDD ϕ at step 2a of Algorithm 2 is
not efficient (nodes are created in the unique tables that will be destroyed immediately).
Our implementation, used for the experiments described in Section 4, starts from an empty
OMDD for ϕa, performs a bottom-up traversal of ϕ, starting at the y nodes, and adds decisive
nodes (the ones that are not undecisive) to ϕa as they are encountered. Decisive nodes are
recognised with some colouring scheme applied during this bottom-up traversal of ϕ.

3.3 Conditioning and maintaining GIC of an NSS of OMDDs
The application we target, interactive product configuration, mainly relies on two operations,
the conditioning of one variable by the user and the maintaining of the global inverse
consistency (GIC): if ϕ represents the current set of possible products, and if value a is chosen
by the user for some currently unassigned variable y, then some representation of ϕ∧ (y = a)
must be computed that satisfies global inverse consistency (so that the user cannot choose,
for the next assignment, a value that cannot lead to a feasible product). In the case of partial
conditioning, the set of admissible values for y is restricted to, say, {a1, . . . , ak}, and some
representation of ϕ ∧ (y = a1 ∨ . . . ∨ y = ak) must be computed and GIC restored.

By definition the GIC property holds for OMDDs. When constructing an OMDD, or when
applying some transformation on it (

∧
BC, CD, etc), GIC is ensured during the reduction

phase, by suppressing inconsistent values from the domains of their respective variables.

CP 2022

23:10 Nucleus-Satellites Systems of OMDDs for Reducing the Size of Compiled Forms

2b: x5 bypassed on the x4 = 1 path

x1

x2

x2

x3

x3

x4

x4

x5 ⊤

2c: x3 nodes are undecisive ⇒ bypassed

x1

x2

x2

x3

x3

x4

x4

x5 ⊤

2c: x2 on the x1 = 1 branch is undecisive

x1

x2

x2

x3

x3

x4

x4

x5 ⊤

2d,2e: x4 nodes are bypassed,
keeping only paths with x4 = 1

x1

x2

x2

x3

x3

x4

x4

x5 ⊤

(a) Step by step exec. of step 2 for x4 = 1.

After 2f:
for x4 = 1: for x4 = 0:

x1
x2

⊤ ⊤

⇒ satellite for x4:

x4

x1

x2 ⊤

After 2f:
for x3 = 1: for x3 = 0:
x1 x2

⊤ x1 x2 ⊤

⇒ satellite for x3:

x3

x1 x2

⊤

x1 x2

Nucleaus, after forgetting x4, then x3,
then reducing:

x1 x2 x5 ⊤

(b) Satellites for x3, x4 and nucleus.

Figure 3 Execution of Algorithm 2 on the OBDD of figure 1, with Yϕ = {x3, x4}.

A satellite system (ϕ, Yϕ, {(y, ϕy)|y ∈ Yϕ}) returned by Algorithm 1 has the GIC property,
because it is logically equivalent to the input OMDD, which has the GIC property, and no
new value has been introduced for any variable during satellisation.

Now, consider a satellite system that satisfies GIC, and a variable y on which a conditioning
(possibly partial) must be performed :

if y ∈ Yϕ: conditioning is first performed on the satellite ϕy; then a new nucleus must be
computed which is a representation of ϕn ∧ ϕy.
if y /∈ Yϕ: conditioning is only performed on the nucleus ϕn.

In both cases, the nucleus has been modified, so GIC may then be lost for the satellite
variables; in order to restore it, one can perform a “blank” computation of ϕy ∧ ϕn for each
ϕy (where ϕn is now the conditioned nucleus), without returning a new OMDD but just to
check which values of y are not “GIC” anymore, in order to remove them from ϕy.

Now, recall that the computation of the conjunction of two OMDDs takes time at most
quadratic in their size [3, 8]. As a consequence, the worst-time complexity of the conditioning
of a satellite system is not linear in its size but quadratic. However, if the satellisation
significantly reduces the size of the nucleus and leads to small satellites, then the effective
time taken to perform conditioning is reduced too. Furthermore, recall that the size of a
nucleus is necessarily smaller than the one of the OMDD equivalent to the full NSS. So the
conjunction of a nucleus and a satellite leads to a new nucleus, and the maximal space taken
by the conjunction of the original nucleus and the satellite cannot be higher than the one of
the OMDD obtained if no satellisation were to be performed. This is because the nucleus is
identical to the original OMDD except for the nodes corresponding to the satellites variables,
that are passive in the original OMDD and can be forgotten by just by-passing them; the
satellites are also obtained by bypassing irrelevant nodes.

H. Fargier, J. Mengin, and N. Schmidt 23:11

Table 1 Configuration benchmarks – size (number of nodes) of the OMDD, nucleus-satellites
system of OMDD and MDDG representation of the configuration instances. Column “Biggest”
provide the maximal size reached during compilation process.

CSP OMDD nucleus-satellites system of OMDD MDDG
final biggest time Nucleus Satellites sum biggest time size

Small 321 328 0.05s 13 58 71 73 0.04s 22
Medium 829 941 0.6s 81 118 199 299 0.5s 64
Big 13,916 14,312 10s 1,475 220 1,695 1,723 8s 2,552
Master 41,190 42,343 13s 2,495 397 2,892 4,601 10s 4,129
Megane 146,295 150,506 18s 1,576 753 2,329 5,002 4s 10,922

4 Experimental results

In order to evaluate the efficiency of the approach, we have implemented a bottom-up OMDD
compiler and an NSS bottom-up compiler which computes directly a nucleus-satellites system
from a CSP given as input. The passive variables are detected on the fly, as early as possible
during the compilation process, that is to say, as soon as they do not appear in any remaining
uncompiled constraint. This method reduces the size of the maximal memory needed (recall
that in a bottom-up approach, the size of the current data structure may increase and
decrease with the addition of new constraints) – and as a side effect, the compilation time.
This method leads to the same final NSS as the naive one (building the full OMDD first and
satellizing the passive variables in a second step). Only the compilation time and maximal
memory occupation may differ.

The following experiments are based on two families of benchmarks, configuration bench-
marks2, one the one hand, and diagnosis benchmarks3, on the other hand. More precisely,
we have compiled each instance (i) as an NSS and (ii) as an OMDD, and we have measured
the sizes in terms of number of nodes, as this number is representative of the size of the
diagram. We also measured the CPU time used by each compilation. Each instance has also
be given to the CN2MDDG top-down compiler [18, 21] as a base line for the evaluation in
terms of size spatial evaluation of the compiled form. Compilation times with CN2MDDG
seem irrelevant here (different programming language C++ vs Java, valued vs non valued
compilation, different programmers...) The experiments were performed on an Intel(R)
Core(TM) i5-8265U CPU 1.60GHz 1.80 GHz, with 32Go of RAM.

4.1 Product configuration benchmarks

Product configuration benchmarks are CSPs representing real products (car) provided by
the french car manufacturer Renault.

Table 1 gives the results on configuration instances: it shows a good spatial efficiency of
nucleus-satellites systems. The bigger the problem gets, the more efficient they seem to be
compared to OMDD. For example the size is divided by 5 on smaller instances and by 50 on
bigger ones. This reduction in size makes it competitive with the MDDG language and even
smaller on some benchmarks.

2 https://www.irit.fr/~Helene.Fargier/BR4CP/benches.html
3 http://www.cril.univ-artois.fr/KC/benchmarks/cnf/circuit.tgz

CP 2022

https://www.irit.fr/~Helene.Fargier/BR4CP/benches.html
http://www.cril.univ-artois.fr/KC/benchmarks/cnf/circuit.tgz

23:12 Nucleus-Satellites Systems of OMDDs for Reducing the Size of Compiled Forms

Table 2 Diagnosis benchmarks – size (number of nodes) of the OMDD, nucleus-satellites system
of OMDD and MDDG representation of the configuration instances. Column “biggest” provides the
maximal size reached during compilation process.

CNF OMDD nucleus-satellites system of OMDD MDDG
final biggest time nucleus satellites sum biggest time size

s344 197,284 293,972 59s 3,838 1,620 5,458 168,611 33s 215
s400 23,014 70,830 13s 1,340 2,341 3,681 40,235 9s 429
s444 20,485 27,081 5s 1,969 1,885 3,854 17,666 3s 325
s420 35,900 1,040,643 155s 5,697 1,653 7,350 348,317 78s 316
c499 2,117,382 2,117,382 101s 62,746 56,749 119,495 167,674 52s 23,424,571
s938 Memory out >3,000,000 3,668 6,617 10,285 237,570 182s 669

4.2 Diagnosis benchmarks
As to diagnosis benchmarks (see Table 2), the NSS approach leads to a huge gain in time and
space (one order of magnitude) with respect to the pure OMDD approach. Moreover, the
NSS compiler makes it possible to compile a benchmark that cannot be compiled under the
OMDD form (out of memory) – it should be noticed that the NSS representation obtained
on this instance is much smaller (several orders of magnitude) than the OMDD built when
the OMDD compiler ran out of memory.

4.3 Exploitation of the compiled form
Finally, since the goal of compilation is to be able to perform some operations on the compiled
form, the present section compares the performances of OMDD and nucleus-satellites systems
on a protocol of product configuration [2]. Namely, the compiled form is submitted to
a sequence of succession of variable conditioning, each followed by a GIC closure. Each
conditioning represents a choice made by a user on the product : at each step, the user
chooses whichever variable and assigns a value to this variable. For each variable, the GIC
closure then suppresses every non-consistent value of its domain. Since this kind of operation
is done online by a user, a quick answer is necessary.

For the experiment4, at every step, variables were chosen randomly among variables
that still have at least 2 consistent values. Time differences between various sequences of
user choices where very small. We experimented with the configuration protocol on all car
instances, and obtained similar results in terms of comparison between OMDDs and NSSs.
The results reported in Figure 4 for the “big” instance show that despite the necessity of
additional computations induced by nucleus-satellites representation when processing a CD
operation, there is a global gain in CPU time. The reduction in size obtained by the use of
an NSS largely compensates the additional processing.

Note that our compiler can handle partial conditioning. We ran experiments on this
point, and did not notice sizeable difference in the response time.

5 Related work

The idea of extracting, from some initial formula ϕ, information about a particular y has
been studied in propositional logic with the notions of functional dependency [14, 15, 16]
and definability [22]. Definability has recently been used by [19] to facilitate model counting
in propositional logic.

4 We did not experiment the configuration protocol with MDDGs since CN2MDDG is not a solver.

H. Fargier, J. Mengin, and N. Schmidt 23:13

Figure 4 Processing time (in ms) at each iteration (conditioning + GIC closure) during a product
configuration protocol (on 1000 tries) with the instance “big”, compiled as an OMDD (in yellow) or
as an nucleus-satellites system (in blue).

▶ Definition 11 ([22]). Let ϕ be a formula of propositional logic, Z ⊆ X , y ∈ X \ Z, then ϕ

(explicitly) defines5 y in terms of Z if and only if there is a formula ψ of propositional logic
with Scope(ψ) ⊆ Z such that ϕ |= ψ ↔ y. ψ is then called a definition of y on Z in ϕ.

The following result shows that definability in the sense of [22] is a sufficient condition to
build a Nucleus-Satellites System.

▶ Proposition 12. If ϕ is a propositional formula on X , and if ψ is a definition of y on Z

in ϕ, then ϕ ≡ ∃y.ϕ ∧ (y ↔ ψ).

Proof. It is well-known that ϕ |= ∃V.ϕ for any set of variables V , thus ϕ |= ∃y.ϕ. And
ϕ |= y ↔ ψ by definition of a “definition”. Suppose now that m |= ∃y.ϕ ∧ y ↔ ψ. Let
m′ be the interpretation identical to m except that m′ |= ¬y if and only if m |= y. Since
m |= y ↔ ψ, m |= y if and only if m |= ψ, if and only if m′ |= ψ since m and m′ give the same
interpretation to all variables that appear in ψ. Thus m′ |= ¬y iff m′ |= ψ, or, equivalently,
m′ |= ¬y ↔ ψ, or, equivalently, m′ |= ¬(y ↔ ψ). But by assumption ϕ |= y ↔ ψ, thus
m′ |= ¬ϕ. But, since m |= ∃y.ϕ, it must be the case that m |= ϕ or m′ |= ϕ. Thus m |= ϕ. ◀

However, definability, as studied in propositional logic, is not guaranteed; whereas it is
always possible to extract enough information about a variable from a given formula in order
to “satellize” it. The next example illustrates this.

▶ Example 13. Consider the propositional logic formula ϕ of Example 2:

ϕ =
[
(x1 ∧ x3) ∨ (¬x1 ∧ ((x2 ∧ x3) ∨ (¬x2 ∧ ¬x3 ∧ ¬x4)))

]
∧ ¬x5

Considering the OBDD of Figure 1 equivalent to ϕ, it is easy to check that x4 is not definable
in the sense of [22] in ϕ: when x1 = false and x2 = true, x4 can be true but can also be false.

On the other hand, consider the formulas ϕy = (x4 → (x1 ∨ x2)) ∧ (¬x4 → ⊤) and
ψ =

[
(x1 ∧x3)∨ (¬x1 ∧ ((x2 ∧x3)∨ (¬x2 ∧¬x3)))

]
∧¬x5. It is easy to check that ϕ ≡ ϕy ∧ψ.

[29] propose a similar approach, called macro extraction and expansion, for optimising
the size of BDDs used for symbolic model checking. Their experimental results also indicate
important gains when using this optimisation.

5 [22] also introduce a notion of implicit definability, but they prove that, because of the projective Beth’s
theorem, both notions are equivalent in proposition logic.

CP 2022

23:14 Nucleus-Satellites Systems of OMDDs for Reducing the Size of Compiled Forms

6 Conclusion

This paper has proposed a method that allows to detect, on an OMDD, a set of variables
that can be defined apart in several satellites, according to another common set of variables
called the nucleus. We experimentally observe that it can lead to huge reductions of size and
allows the compilation of benchmarks that could not be compiled as classical OMDDs.

Nucleus-satellites systems have to be studied further. First, satellites could also define
a variable only partially (for example define and forget only passive nodes of a variable,
and keep active nodes in the nucleus; the satellite would only be used when the variable
is missing on path). A satellite could also represent a group of variables. With additional
online computing, satellites could use variables defined in an other satellite to define a new
variable, and create a satellite of “higher degree”.

Finally, the approach can directly apply to any sub-languages of the d-DNNF family
for which the operation of bounded conjunction is tractable under some conditions, e.g.
structured d-DNNFs [25] or Sentential Decision Diagrams [6] – this is possible when (i) the
order is computed on the basis on the original CSP and (ii) the operations targeted (here, the
conditioning) do not modify the constraint graph. The question of the efficiency of satellite
system based on other languages – and in particular of satellite systems of MDDG – is less
easy to address; the question of the on line conditioning indeed becomes more tricky, although
such structures can be easily defined and satellisation algorithms could be developed (the
definition remain quasi unchanged and the notion of passive variable still applies).

References
1 Jérôme Amilhastre, Hélène Fargier, and Pierre Marquis. Consistency restoration and explana-

tions in dynamic CSPs - Application to configuration. Artificial Intellligence, 135(1-2):199–234,
2002.

2 Jean-Marc Astesana, Laurent Cosserat, and Hélène Fargier. Constraint-based vehicle configur-
ation: A case study. In ICTAI 2010, pages 68–75. IEEE Computer Society, 2010.

3 Randall E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers (TC), 38.8:677–691, 1986.

4 Marco Cadoli and Francesco M. Donini. A survey on knowledge compilation. AI Communica-
tions, 10(3-4):137–150, 1997.

5 Arthur Choi and Adnan Darwiche. Dynamic minimization of sentential decision diagrams. In
AAAI’2013, pages 187–194, 2013.

6 A. Darwiche. SDD: A new canonical representation of propositional knowledge bases. In
IJCAI’2011, pages 819–826, 2011.

7 Adnan Darwiche. New Advances in Compiling CNF into Decomposable Negation Normal
Form. In ECAI 2004, pages 328–332, 2004.

8 Adnan Darwiche and Pierre Marquis. A Knowledge Compilation Map. Journal of Artificial
Intelligence Research (JAIR), 17:229–264, 2002.

9 Hélène Fargier and Pierre Marquis. Knowledge Compilation Properties of Trees-of-BDDs,
Revisited. In IJCAI 2009, pages 772–777, 2009.

10 Hélène Fargier, Pierre Marquis, and Nicolas Schmidt. Semiring Labelled Decision Diagrams,
Revisited: Canonicity and Spatial Efficiency Issues. In IJCAI 2013, pages 884–890, 2013.
URL: http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6623.

11 Goran Gogic, Henry Kautz, Christos Papadimitriou, and Bart Selman. The Comparative
Linguistics of Knowledge Representation. In IJCAI’1995, pages 862–869, 1995.

12 Tarik Hadzic, Henrik Reif Andersen, John N. Hooker, and Peter Tiedemann. A constraint
store based on multivalued decision diagrams. In CP 2007, pages 118–132, 2007.

http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6623

H. Fargier, J. Mengin, and N. Schmidt 23:15

13 Tarik Hadzic, Rune Jensen, and Henrik Reif Andersen. Calculating Valid Domains for BDD-
Based Interactive Configuration. Computing Research Repository (CoRR), 0704.1394, 2007.
arXiv:0704.1394.

14 Toshihide Ibaraki, Alexander Kogan, and Kazuhisa Makino. Functional dependencies in horn
theories. Artificial Intelligence, 108(1-2):1–30, 1999.

15 Toshihide Ibaraki, Alexander Kogan, and Kazuhisa Makino. On functional dependencies in
q-horn theories. Artificial Intelligence, 131(1-2):171–187, 2001.

16 Toshihide Ibaraki, Alexander Kogan, and Kazuhisa Makino. Inferring minimal functional
dependencies in horn and q-horn theories. Annals of Mathematics and Artificial Intelligence,
38(4):233–255, 2003.

17 T. Kam, T.Villa, R.K. Brayton, and A.L Sangiovanni-Vincentelli. Multi-valued decision
diagrams: Theory and applications. International Journal of Multiple-Valued Logic, 4:9–12,
1998.

18 Frédéric Koriche, Jean-Marie Lagniez, Pierre Marquis, and Samuel Thomas. Compiling
constraint networks into multivalued decomposable decision graphs. In IJCAI 2015, 2015.

19 Jean-Marie Lagniez, Emmanuel Lonca, and Pierre Marquis. Definability for model counting.
Artificial Intelligence, 281:103229, 2020.

20 Jean-Marie Lagniez and Pierre Marquis. An improved decision-DNNF compiler. In IJCAI’2017,
volume 17, pages 667–673, 2017.

21 Jean-Marie Lagniez, Pierre Marquis, and Anastasia Paparrizou. Defining and evaluating
heuristics for the compilation of constraint networks. In CP 2017, pages 172–188. Springer,
2017.

22 Jérôme Lang and Pierre Marquis. On propositional definability. Artificial Intelligence,
172(8):991–1017, 2008.

23 Robert Mateescu and Rina Dechter. Compiling Constraint Networks into AND/OR Multi-
valued Decision Diagrams (AOMDDs). In CP 2006, pages 329–343, 2006.

24 Christian Muise, Sheila A McIlraith, J Christopher Beck, and Eric I Hsu. D sharp: fast
d-DNNF compilation with sharpsat. In CCAI’12, pages 356–361, 2012.

25 Knot Pipatsrisawat and Adnan Darwiche. New compilation languages based on structured
decomposability. In AAAI 2008, pages 517–522, 2008.

26 Carsten Sinz. Knowledge compilation for product configuration. In Proceedings of the Workshop
on Configuration at the 15th European Conference on Artificial Intelligence (ECAI), pages
23–26, 2002.

27 Takahisa Toda and Takehide Soh. Implementing efficient all solutions SAT solvers. ACM
Journal of Experimental Algorithmics, 21(1):1.12:1–1.12:44, 2016.

28 Nageshwara Rao Vempaty. Solving Constraint Satisfaction Problems Using Finite State
Automata. In AAAI’92, pages 453–458, 1992.

29 Bwolen Yang, Reid G. Simmons, Randal E. Bryant, and David R. O’Hallaron. Optimizing
symbolic model checking for constraint-rich models. In Nicolas Halbwachs and Doron A. Peled,
editors, Proceedings of the 11th International Conference on Computer Aided Verification
(CAV’99), volume 1633 of Lecture Notes in Computer Science, pages 328–340. Springer, 1999.
doi:10.1007/3-540-48683-6_29.

A Appendix: Proof of the main lemma

▶ Lemma 10. Given OMDD ϕ, y passive in ϕ, a ∈Dy, if ψa is the OMDD computed at
steps 2a to 2e in Algorithm 2 then

ϕ∧(y = a) |= ψa and ψa∧(y = a)∧∃y.ϕ |= ϕ (I)

We will show that equation (I) is an invariant of the loop main loop of the algorithm, at
step 2. For x⃗ ∈DX , variable z and b ∈Dz, we write x⃗[z] = b when x⃗ assigns value b to z.

CP 2022

http://arxiv.org/abs/0704.1394
https://doi.org/10.1007/3-540-48683-6_29

23:16 Nucleus-Satellites Systems of OMDDs for Reducing the Size of Compiled Forms

Step 2a: That (I) holds just after ψ has been created is trivial, since at that point ψ = ϕ.

For the remainder of the proof, we define three predicates, for OMDD ψ and x⃗ ∈DX
(w.r.t. some fixed OMDD ϕ):
I1(ψ,x⃗) is true iff x⃗[y] ̸= a or fϕ(x⃗) =⊥ or fψ(x⃗) =⊤;
I2(ψ,x⃗) is true iff x⃗[y] ̸= a or fψ(x⃗) =⊥ or ∃y.fϕ(x⃗) =⊥ or fϕ(x⃗) =⊤.
I3(ψ,x⃗) is true iff x⃗[y] ̸= a or ∃y.fϕ(x⃗) =⊥ or ∃y.fψ(x⃗) =⊤.
We will prove that after every transformation that happen at steps 2b, 2c, 2d or 2e, ψ is
such that for every x⃗ ∈DX , I1(ψ,x⃗), I2(ψ,x⃗) and I3(ψ,x⃗) hold; and that I1(ψ,x⃗) and I2(ψ,x⃗)
still hold after steps 2d and 2e.

In the remainder of the proof, x⃗ ∈DX denotes a model such that x⃗[y] = a. We write that
x⃗ “passes through” some node v in some OMDD ψ if the path in that diagram from the
root to either ⊤ or ⊥ that corresponds to the assignments in x⃗ contains v.

Step 2b: Let ψ denote the OMDD that is obtained after step 2a is executed: for every
node v such that label(v) = y and nextϕ(v,a) ̸=⊥, nextψ(v,a) =⊤.

y
v wb

aX ⊤

Suppose that x⃗ passes through such a node v in ϕ. (Otherwise, trivially fψ(x⃗) = fϕ(x⃗)).
Note that x⃗ passes through v in ψ too, since the transformation applied here does not change
the OMDD above y nodes).
I1(ψ,x⃗): by construction, fψ(x⃗) =⊤. (Recall that we assume that x⃗[y] = a.)
I2(ψ,x⃗): if ∃y.fϕ(x⃗) =⊤, there must be some b ∈Dy such that fϕ(x⃗′) =⊤, where x⃗′ is
obtained by replacing with b the value, a, assigned to y in x⃗. But y is passive in ϕ, and
nextϕ(v,a) ̸=⊥, nextϕ(v,b) ̸=⊥, so nextϕ(v,a) = next(v,b) so necessarily fϕ(x⃗) =⊤.
I3(ψ,x⃗): that ∃y.fψ(x⃗) =⊤ follows from the fact that fψ(x⃗) =⊤.

We now turn to the transformations that take place at steps 2c. ψ will denote the current
OMDD that is being built before such a transformation takes place, and ψ′ will denote the
OMDD just after the transformation has been applied. At every iteration of step 2c, an
undecisive node v of ψ is picked, a child w ∈ next(v) is picked, and for every parent u of v in
ψ labelled with variable z, for every b ∈Dz such that nextψ(u,b) = v, nextψ′(u,b) = w. We
must prove that for every x⃗ ∈DX that passes through u and v (and thus such that x⃗[z] = b),
if I1(ψ,x⃗), I2(ψ,x⃗) and I3(ψ,x⃗) hold, then I1(ψ′,x⃗), I2(ψ′,x⃗) and I3(ψ′,x⃗) hold too.

Step 2c, undecisive node of type 1: label(v) ̸= y, and |next(v)|= 1.

z
u v

b
X

w
y

v′
x⃗

⊥

⊤
b

a

I1(ψ′,x⃗): if fϕ(x⃗) =⊤, since I1(ψ,x⃗) holds it must be the case that fψ(x⃗) =⊤, so the path
in ψ from w to a leaf that corresponds to x⃗ ends at ⊤, and this path is unchanged in ψ′; so
fψ′(x⃗) =⊤.
I2(ψ′,x⃗): suppose that fψ′(x⃗) =⊤; then the path in ψ′ from w to a leaf that corresponds
to x⃗ ends at ⊤, passing through à node v′ labelled by y. Suppose too that ∃y.fϕ(x⃗) =⊤;
then, since I3(ψ,x⃗) is true, ∃y.fψ(x⃗) =⊤: there is some x⃗′ identical to x⃗ except possibly that

H. Fargier, J. Mengin, and N. Schmidt 23:17

x⃗′[y] = b for some other b ∈Dy, such that fψ(x⃗′) =⊤. Since y is passive, and Step 2 has
been executed, it implies that nextψ(v′,a) =⊤, and that fψ(x⃗) =⊤. But then, since I2(ψ,x⃗)
holds, it must be the case that fϕ(x⃗) =⊤.
I3(ψ′,x⃗): suppose that ∃y.fϕ(x⃗) =⊤; it implies that ∃y.fψ(x⃗) =⊤, because I3(ψ,x⃗) holds;
but then ∃y.fψ′(x⃗) =⊤ must also be true because ψ′ creates a simple “shortcut” for x⃗.

Step 2c, undecisive node of type 2: v is a node of ψ, whose children, except ⊥ if it is a
child of v, are all y-nodes that are consistent with y = a.

zu

v

b
X

y
w

y ⊥

⊤

a

a

Note that fψ′(x⃗) =⊤.
I1(ψ′,x⃗): fψ′(x⃗) =⊤ is true by construction.
I2(ψ′,x⃗) Suppose that ∃y.fϕ(x⃗) =⊤. Since I3(ψ,x⃗) holds, t cannot be the case that

nextψ(v,a) =⊥ because ∃y.fψ(x⃗) =⊤, so nextψ(v,a) is one of the y node consistent
with y = a, hence fψ(x⃗) =⊤. As a consequence, since I2(ψ,x⃗) holds, fϕ(x⃗) =⊤.

I3(ψ′,x⃗) That ∃y.fψ′(x⃗) =⊤ is a simple consequence of the fact that fψ′(x⃗) =⊤.

Step 2c, undecisive node of type 3: Let v be a node of ψ such that for all w ∈ next(v), w
is labelled with y and next(w,a) =⊥.

zu

z′
v

b
X

y
w

y ⊥a
a

Note that fψ(x⃗) = fψ′(x⃗) =⊥.
I1(ψ′,x⃗): since I1(ψ,x⃗) holds and fψ(x⃗) =⊥, it must be the case that fϕ(x⃗) =⊥.
I2(ψ′,x⃗): holds because fψ′(x⃗) =⊥.
I3(ψ′,x⃗): Let z′ be the variable at v. If nextψ(v,x⃗[z′]) =⊥, then ∃y.fψ(x⃗) =⊥, thus, since
I3(ψ,x⃗), ∃y.fϕ(x⃗) =⊥. Otherwise, nextψ(v,x⃗[z′]) is a y node, and we assume that the input
OMDD is “normalized”, so every node has at least one successor different from ⊥, so w has
a successor ̸=⊥; thus ∃y.fψ′(x⃗) =⊤.

Step 2d: Let v be a node of ψ labelled with y such that next(v,a) =⊤. Let u be a parent
of v in ψ labelled with variable z, let b ∈Dz such that nextψ(u,b) = v, then nextψ′(u,b) =⊤.

u

y
v

b
X

⊤

a

Suppose that x⃗ passes through u and v in ψ (otherwise, trivially fψ(x⃗) = fψ′(x⃗)), so that
x⃗ directly goes from u to ⊤ in ψ′. Note that fψ(x⃗) = fψ′(x⃗) =⊤.
I1(ψ′,x⃗): holds because fψ′(x⃗) =⊤.
I2(ψ′,x⃗): since I2(ψ,x⃗) holds and fψ(x⃗) =⊤, ∃y.fϕ(x⃗) =⊥ or fϕ(x⃗) =⊤.

CP 2022

23:18 Nucleus-Satellites Systems of OMDDs for Reducing the Size of Compiled Forms

Step 2e: Let v be a node of ψ labelled with y such that next(v,a) =⊥. Let u be a parent
of v in ψ labelled with variable z, let b ∈Dz such that nextψ(u,b) = v, then nextψ′(u,b) =⊥.

u

y
v

b
X

⊥

a

Suppose that x⃗ passes through u and v in ψ (otherwise, trivially fψ(x⃗) = fψ′(x⃗)). Note
that fψ(x⃗) = fψ′(x⃗) =⊥.

I1(ψ′,x⃗): since I1(ψ,x⃗) holds and fψ(x⃗) =⊥, it must be the case that fϕ(x⃗) =⊥.
I2(ψ′,x⃗): true because fψ′(x⃗) =⊥.

Heuristics for MDD Propagation in HADDOCK

Rebecca Gentzel #

University of Connecticut, Storrs, CT, USA

Laurent Michel #

Synchrony Chair in Cybersecurity, University of Connecticut, Storrs, CT, USA

Willem-Jan van Hoeve #

Carnegie Mellon University, Pittsburgh, PA, USA

Abstract
Haddock, introduced in [11], is a declarative language and architecture for the specification and the
implementation of multi-valued decision diagrams. It relies on a labeled transition system to specify
and compose individual constraints into a propagator with filtering capabilities that automatically
deliver the expected level of filtering. Yet, the operational potency of the filtering algorithms strongly
correlate with heuristics for carrying out refinements of the diagrams. This paper considers how to
empower Haddock users with the ability to unobtrusively specify various such heuristics and derive
the computational benefits of exerting fine-grained control over the refinement process.

2012 ACM Subject Classification Mathematics of computing → Decision diagrams; Theory of
computation → Constraint and logic programming

Keywords and phrases Decision Diagrams

Digital Object Identifier 10.4230/LIPIcs.CP.2022.24

Supplementary Material Software (Source Code): https://bitbucket.org/ldmbouge/minicpp/
src/v1.1/

Funding Laurent Michel and Rebecca Gentzel were partially supported by Synchrony. Willem-Jan
van Hoeve was partially supported by Office of Naval Research Grant No. N00014-21-1-2240 and
National Science Foundation Award #1918102.

1 Introduction

Heuristics are a key ingredient in Constraint Programming. They have been at the core
of search procedures for decades. The first-fail heuristic [15] is probably the most well-
known representative of how one can affect the performance of a constraint solver with a
mere influence on the search strategy that guides the branching process towards the most
promising variables. Modern constraint programming solvers typically offer a full complement
of such heuristics including weighted degree [8], impact-based search [23], activity-based
search [21], conflict-driven search [25], or counting-based search [13] to name just a few. This
practice is equally common in mathematical programming with strong branching [3, 1] or
pseudo-cost branching [10] or even machine learning based heuristics [5]. This is also true in
Boolean satisfiability, with LRB (Learning Rate Branching) [20] and VSIDS (Variable State
Independent Decaying Sum) [22] being two of the most regarded such heuristics.

Yet, all these heuristics operate on the level of the entire model and exploit “global
behaviors” of the solvers. In constraint programming, for instance, the propagators of
most constraints use a prescribed level of consistency when they execute, which dictates
the fixpoint they reach. This often leaves little to no room for heuristics to play a role
within the propagators themselves; however, this is not always true. Cost-based filtering
propagators [9, 24] can make use of relaxations to derive bounds on the objective function
of a model and use that signal to filter variable domains. Recently, [7] showed how to seek
specific Lagrangian multipliers that improve filtering. It is notable that the adoption of
relaxations within propagators creates opportunities for heuristics.

© Rebecca Gentzel, Laurent Michel, and Willem-Jan van Hoeve;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 24; pp. 24:1–24:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rebecca.gentzel@uconn.edu
mailto:ldm@engr.uconn.edu
https://orcid.org/0000-0001-7230-7130
mailto:vanhoeve@andrew.cmu.edu
https://orcid.org/0000-0002-0023-753X
https://doi.org/10.4230/LIPIcs.CP.2022.24
https://bitbucket.org/ldmbouge/minicpp/src/v1.1/
https://bitbucket.org/ldmbouge/minicpp/src/v1.1/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Heuristics for MDD Propagation in HADDOCK

Decision diagrams present similar opportunities. When applied to optimization problems,
multi-valued decision diagrams (MDDs) typically adopt a bounded width (the maximum
number of nodes in a layer) and therefore employ some form of relaxation to merge nodes
of the diagram [2, 14, 6]. Such merging decisions induce the presence of paths in the MDD
that no longer correspond to solutions, necessitating a search process to seek solutions.
During the search, internal nodes belonging to layers of the MDD propagator get filtered
out (possibly leading to the filtering of variable domains) which reduces the layer size and
prompts refinement phases. Indeed, a depleted layer has room to accommodate more nodes
that only currently exist in a latent form as part of another, merged node within the layer.
Merging and refining nodes are core operations that raise key questions about the impact
of choices made on the quality of the obtained relaxation. The purpose of this paper is to
explore the impact of such choices and provide the solver user with a way to dictate the
policies that govern relaxation-inducing choices. Our findings can potentially be applied to
any solver that uses relaxed decision diagrams [6, 11, 12].

Haddock [11] provides a specification language and implementation architecture for
automatic decision diagram compilation. Haddock provides the rules for refining (splitting)
and filtering (propagating) MDD abstractions. The filtering rules are determined by the
properties and functions detailed in the specification language, but the refinement process is
more abstract. While the filtering rules give valuable tools to remove arcs and states from
the MDD, how the MDD is split determines whether filtering rules are able to find infeasible
arcs and states and to ultimately filter domains [14].

Contributions. This paper presents an approach to MDD refinement containing configurable
heuristics that integrate into Haddock such that all existing Haddock solutions still fit
the framework. These heuristics allow the tailoring of refinement rules to specific constraints
or models. The rules for refinement play a large role in MDD propagation, and we present
insights into why certain refinement rules outperform others.

Paper Structure. The remainder of the paper is organized as follows. Section 2 introduces
a motivating example using among constraints. Section 3 reviews the relevant preliminaries,
including the formalization used in Haddock. Section 4 discusses the heuristics that
parameterize the refinement strategy. Section 5 treats the aggressiveness of the refinement
process across layers through the reboot hyper-parameter, while Section 6 reports on the
empirical results, and Section 7 concludes the paper.

2 Motivating Example

The following example explores the impact that state selection can have on the accuracy of
the relaxation produced by an MDD propagator.

▶ Example 1. Recall the definition of the among global constraint on an ordered set X of n

variables [4]. It counts the number of occurrences of values taken from a given set Σ and
ensures that the total number is between l and u, i.e.,

among(X, l, u, Σ) := l ≤
n∑

i=1
(xi ∈ Σ) ≤ u.

Consider two constraints c1 = Among({x1, x2, x3}, l1 = 1, u1 = 2, Σ1 = {1}) and
c2 = Among({x1, x2, x3}, l2 = 1, u2 = 2, Σ2 = {2}) where each variable has domain {0, 1, 2}.
An MDD for these constraints is a layered directed acyclic graph with four layers (L0, . . . , L3),
a source s⊥, and a sink s⊤. Arcs flow from a node in layer Li−1 to a node in layer Li and

R. Gentzel, L. Michel, and W.-J. van Hoeve 24:3

x1

x2

x3

(0, 0, 0, 3)
(0, 0, 0, 3)

(0, 1, 0, 2)
(0, 1, 0, 2)

(0, 2, 0, 1)
(0, 2, 0, 1)

(0, 3, 0, 0)
(0, 3, 0, 0)

0 1 2

0 1 2

0 1 2

a. Initial MDD with width 1

(0, 0, 0, 3)
(0, 0, 0, 3)

(0, 0, 0, 2)
(0, 0, 0, 2)

(1, 1, 0, 2)
(0, 0, 0, 2)

(0, 0, 0, 2)
(1, 1, 0, 2)

(0, 2, 0, 1)
(0, 2, 0, 1)

(0, 3, 0, 0)
(0, 3, 0, 0)

0 1 2

0 1 2 0 1 2 0 1 2

0 1 2

b. After splitting L1

x1

x2

x3

(0, 0, 1, 2)
(0, 0, 1, 2)

(0, 0, 1, 1)
(0, 0, 1, 1)

(1, 1, 0, 1)
(0, 0, 1, 2)

(0, 0, 1, 2)
(1, 1, 0, 1)

(0, 0, 0, 1)
(0, 0, 0, 1)

(1, 1, 0, 0)
(0, 0, 1, 1)

(0, 0, 1, 1)
(1, 1, 0, 0)

(2, 2, 0, 0)
(0, 0, 1, 1)

(1, 1, 0, 1)
(1, 1, 0, 1)

(0, 0, 1, 1)
(2, 2, 0, 0)

(1, 2, 0, 0)
(1, 2, 0, 0)

0 1 2

0 1 20 1 20 1 2

0 12 0 12 0 1 2 0 1 2 0 12 0 12

c. If a full split of L2 were possible

Figure 1 Exact refinement process. Dashed nodes and arcs can be filtered.

are labeled with a domain value v, stating the assignment xi = v. Every s⊥-s⊤ path denotes
a candidate solution. Each node carries a state s = ⟨s1, s2⟩ with s1 = ⟨L↓

1, U↓
1 , L↑

1, U↑
1 ⟩ and

s2 = ⟨L↓
2, U↓

2 , L↑
2, U↑

2 ⟩ with the properties of c1 and c2. Intuitively, L↓
i and U↓

i denote the
lower and upper bound, respectively, on the number of occurrences of values from Σi on any
s⊥-s paths in the MDD. L↑

i and U↑
i are similarly defined on s-s⊤ paths.

Figure 1(a) depicts the MDD at width 1. Assume one imposes a maximum width of 3.
Refinement begins by splitting L1. As shown in Figure 1(b), L1 can be fully split into three
states. Next, refinement is performed on L2. A full split is shown for this layer in Figure
1(c). While the state on the far left is infeasible and can be deleted, five states remain with
a maximum width of 3. A splitting of this layer partitions the five states into three groups.
One partitioning strategy is to solely rely on L↓

1. Since there are exactly three values for L↓
1

in these five states (0, 1, 2), the five states group neatly. The result is shown in Figure 2(a).
An alternative is depicted in Figure 2(b) the grouping is based on the labels of outgoing arcs
to s⊤ ({1}, {2}, and {0, 1, 2} after filtering infeasible arcs). While the first partition strategy
still has s⊥-s⊤ paths representing infeasible assignments, e.g. x1 = 0, x2 = 1, x3 = 1, the
second partition provides an exact MDD despite L2 still harboring merged states. It is clear
that choices made during refinement impact the accuracy of the MDD and its ability to filter.

CP 2022

24:4 Heuristics for MDD Propagation in HADDOCK

x1

x2

x3

(0, 0, 1, 2)
(0, 0, 0, 2)

(0, 0, 1, 2)
(0, 0, 0, 1)

(1, 1, 0, 1)
(0, 0, 0, 2)

(0, 0, 1, 2)
(1, 1, 0, 1)

(0, 0, 1, 1)
(1, 2, 0, 0)

(1, 1, 0, 1)
(0, 1, 0, 1)

(2, 2, 0, 0)
(0, 0, 1, 1)

(1, 2, 0, 0)
(0, 2, 0, 0)

0 1 2

1 201 2 01 2

0 120 1 20 12

a. Splitting L2 by L↓
1

(0, 0, 1, 2)
(0, 0, 1, 2)

(0, 0, 1, 1)
(0, 0, 1, 1)

(1, 1, 0, 1)
(0, 0, 1, 2)

(0, 0, 1, 2)
(1, 1, 0, 1)

(0, 0, 1, 1)
(1, 2, 0, 0)

(1, 2, 0, 0)
(0, 0, 1, 1)

(1, 1, 0, 1)
(1, 1, 0, 1)

(1, 2, 0, 0)
(1, 2, 0, 0)

0 1 2

1 20
1 2 01 2

0 120 12 0 1 2

b. Splitting L2 by outgoing arcs

Figure 2 Options for partitioning L2. Dashed arcs can be filtered.

3 Background

Following [11], we formally define an MDD as a labeled transition system [17]:

▶ Definition 2. A labeled transition system is a triplet ⟨S, →, Λ⟩ where S is a set of states,
→ is a relation of labeled transitions between states from S, and Λ is a set of labels used to
tag transitions.

▶ Definition 3. Given an ordered set of variables X = {x1, . . . , xn} with domains D(x1)
through D(xn), a multi-valued decision diagram (MDD) on X is an LTS ⟨S, →, Λ⟩ in which:

the state set S is stratified in n + 1 layers L0 through Ln with transitions from →
connecting states between layers i and i + 1 exclusively;
the transition label set Λ is defined as

⋃
i∈1..n D(xi);

a transition between two states a ∈ Li−1 and b ∈ Li carries a label v ∈ D(xi) (i ∈ 1..n);
the layer L0 consists of a single source state s⊥;
the layer Ln consists of a single sink state s⊤.

An MDD M can represent a constraint set with specific state definitions and transition
functions. If each solution in the constraint set is represented by an s⊥-s⊤ path in M , and
vice-versa, M is exact. If M represents a superset of the solutions of the constraint set, it
is relaxed. In Haddock, states consist of integer-valued sets of properties to represent the
constraints. We next describe how these are used to automatically compile the LTS, using
the Among constraint as an illustration. For a complete description, we refer to [11].

State Properties. As mentioned in Example 1, a state for Among(X, l, u, Σ) carries four
properties, i.e., ⟨L↓, U↓, L↑, U↑⟩, for each node v in the MDD:

L↓ ∈ Z: minimum number of times a value in Σ is taken from s⊥ to v.
U↓ ∈ Z: maximum number of times a value in Σ is taken from s⊥ to v.
L↑ ∈ Z: minimum number of times a value in Σ is taken from v to s⊤.
U↑ ∈ Z: maximum number of times a value in Σ is taken from v to s⊤.

We initialize the state for the source s⊥ as ⟨0, 0, −, −⟩ and the sink s⊤ as ⟨−, −, 0, 0⟩.

R. Gentzel, L. Michel, and W.-J. van Hoeve 24:5

Transition Functions. The transition between a node a ∈ Li−1 and b ∈ Li is an arc (a, b)
labeled by a value ℓ ∈ D(xi). We use transition functions T ↓(a, b, i, ℓ) and T ↑(b, a, i, ℓ) to
derive the property values (the states) for b and a, respectively. For each individual property p,
we use the function f(s, p, ℓ) for a given state s. For Among, we apply f(s, p, ℓ) = p(s)+(ℓ ∈
Σ) for each property p in ⟨L↓, U↓, L↑, U↑⟩. For example, we define L↓(b) = f(a, L↓, ℓ),
i.e., L↓(a) + (ℓ ∈ Σ). We likewise define L↑(a) = f(b, L↑, ℓ), U↓(b) = f(a, U↓, ℓ) and
U↑(a) = f(b, U↑, ℓ). The state-level transition functions T ↓ and T ↑ compute all the down or
up properties of the next state as follows:

T ↓(a, b, i, ℓ) = ⟨f(a, L↓, ℓ), f(a, U↓, ℓ), −, −⟩
T ↑(b, a, i, ℓ) = ⟨−, −, f(b, L↑, ℓ), f(b, U↑, ℓ)⟩.

Note that slight variants of both functions that preserve the properties of states b and a,
respectively, in the opposite directions are equally helpful. Those are:

T ↓(a, b, i, ℓ) = ⟨f(a, L↓, ℓ), f(a, U↓, ℓ), L↑(b), U↑(b)⟩
T ↑(b, a, i, ℓ) = ⟨L↓(a), U↓(a), f(b, L↑, ℓ), f(b, U↑, ℓ)⟩.

Transition Existence Function The transition existence function Et(a, b, i, ℓ) specifies
whether an arc (a, b) with label ℓ ∈ D(xi) exists in the LTS. For Among, this function
should ensure that the lower bound l is met and the upper bound u is not exceeded, i.e.:

U↓(a) + (ℓ ∈ S) + U↑(b) ≥ l ∧ L↓(a) + (ℓ ∈ S) + L↑(b) ≤ u.

Node Relaxation Functions Two states a and b in the same layer Li can be relaxed (merged)
to produce a new state s′ according to a relaxation function relax(a, b). For Among, we
can use:

relax(a, b) = ⟨ min{L↓(a), L↓(b)}, max{U↓(a), U↓(b)},

min{L↑(a), L↑(b)}, max{U↑(a), U↑(b)} ⟩.

We also call such relaxed states approximate states.
State relaxation generalizes to an ordered set of states {s0, s1, . . . , sk−1} as follows:

relax(s0, relax(s1, relax(..., relax(sk−2, sk−1)...))).

For Among, we maintain MDD-bounds consistency on this expression, i.e., we only maintain
a lower and upper bound on the count to ensure feasibility and rely on the above relaxation
function to merge nodes and bound the width of the MDD to at most w states. The usage of
a relaxation is precisely why we maintain bounds (L and U) in both up and down directions.
Note that full MDD consistency for Among can be established in polynomial time by
maintaining a set of exact counts [16].

Notation. For any state s ∈ Li with 1 ≤ i ≤ n, let δ−(s) denote the set of inbound arcs
from layer Li−1. Likewise let δ+(s) denote the set of outbound arcs into Li+1. We sometimes
overload notation and use δ−(s) and δ+(s) to also refer to the set of states in Li−1 and Li+1,
respectively, one can reach from s via those arcs.

4 Decision Diagram Refinement

Haddock [11] provides an abstract definition for refining an MDD. For refining one layer,
it takes a single state, orders all of that state’s incoming arcs, groups these arcs based on
equivalence classes, and creates new states for each of these equivalence classes [14]. This

CP 2022

24:6 Heuristics for MDD Propagation in HADDOCK

Algorithm 1 refineLayer(Li, [L0, . . . , Li−1], w, ⟨Y, Q, W ⟩).
Require: |Li| ≤ w

Ensure: |Li| = w ∨ appx(Li) = ∅
1: while |Li| < w ∧ appx(Li) ̸= ∅ do
2: let s∗ = arg maxs∈appx(Li) Y (s)
3: let cs = partition(refine(s∗), Q)
4: if |cs| ≤ w − |Li| + 1 then
5: Li = Li \ {s∗} ∪

⋃|cs|
j=1 relax(csj)

6: else
7: let π = permutation(cs) | ∀j, k ∈ 1..|cs| : j ≤ k ⇒ W (sπj

) ≤ W (sπk
)

8: Li = Li \ {s∗} ∪
⋃w−|Li|

j=1 relax(csπj) ∪ relax(
⋃|cs|

j=w−|Li|+1 csπj
)

process introduces space for multiple heuristics. Which relaxed state is selected for splitting?
How should the results of the splitting be ordered and partitioned? This section turns these
choices into definable heuristic functions building off of the framework of Haddock.

Algorithm 1 gives the pseudo-code of the layer refinement. It takes as input layer Li, a
target width w and three functions Y , W , and Q (shown in red) that are the embodiment
of the user-definable heuristics. The algorithm makes use of several sub-routines (appx,
refine, partition, and permutation) that will be explained below. Algorithm 1 refines a
layer by repeatedly pulling out states that can be refined (if any) and replacing them in the
layer by more precise versions given the availability of space in the targeted layer. The Y

function drives the selection of the approximate state to replace, while Q and W govern the
mechanisms to synthesize the replacement. The section closes with an in-depth discussion of
refineLayer once all its components are laid out.

4.1 State Selection with Y

The first step is to select which state in the layer Li should be refined (line 2 in Alg. 1).
When the MDD is first constructed, each layer only has one state, so this is trivial. We
therefore assume that 1 < |Li| < w. Li may contain both exact and approximate states as
a result of prior merging. The function call appx(Li) returns the subset of states that are
the results of prior approximations (merges). Ideally, one would wish to refine the layer and
replace all approximate nodes with exact ones until |Li| = w. The order in which we select
an approximate state s∗ for refinement is driven by state priority functions:

▶ Definition 4. A state priority function Y : S → Z takes as input state s = ⟨P0, . . . , Pk−1⟩
and returns an integer value representing its priority where the larger is the more preferable.

The refinement will retract the selected state s∗ from the layer and replace it with an
expansion that consists of one or more new states. The size of this expansion drives the
remainder of the algorithm. Focusing on Y , several natural choices come to mind. Some
are based on the local topology of the MDD around the selected state s∗, while others are
semantics driven and leverage the properties held within s∗. Recall that the layer is an
ordered set (states are ordered within the layer and have a rank between 0 and the cardinality
of the set) and that states have topological properties such as the sets of incoming (δ−(s))
and outgoing (δ+(s)) arcs. While purely syntactic, these properties may be attractive. As
the newest states are the ones most recently refined, the age of states may be a useful metric:

▶ Example 5 (Rank heuristics). Let Y (s) = −rank(s) be the heuristic to first select the
oldest states inserted in the layer. Likewise, one can define Y (s) = rank(s) to first select the
nodes that were most recently inserted in the layer.

R. Gentzel, L. Michel, and W.-J. van Hoeve 24:7

Another natural option is to consider the in-degree of the state in the MDD to get:

▶ Example 6 (Degree heuristics). Let Y (s) = −δ−(s) be the heuristic to first select low
in-degree states, i.e., states that have few parents in the prior layer.

▶ Example 7 (Semantics-based heuristic). Consider the constraint Among(X, l, u, Σ) using
state s = (L↓, U↓, L↑, U↑) with L↓ and U↓ as specified earlier. Define the state selection
heuristic Y (s) = L↓(s) + L↑(s) to preferentially select a state with the largest lower bound
on the number of occurrences of values from Σ on any path s⊤ to s⊥. Likewise, the heuristic
Y (s) = −(U↓(s) + U↑(s)) would select the state with the smallest upper bound on the
number of occurrences of values from Σ along those paths.

4.2 Candidate Selection with Q and W

Once line 2 of Algorithm 1 has executed, state s∗ needs to be refined. To evaluate its
incoming arcs, we define the function A(s) that collects the set of arcs leading to state s

from the prior layer:

A(s) = {pj
ℓj−→ s | pj ∈ Li−1 ∧ ℓj ∈ D(xi)}

Equipped with A(s∗) one can compute what the true endpoint of each arc should have been
without relaxation. The outgoing arcs of these endpoints are a subset of δ+(s∗) built by
removing infeasible arcs from δ+(s∗). Namely for a true descendent s′ computed from an
endpoint in A(s), we have

δ+(s′) = {s′ ℓj−→ cj | s
ℓj−→ cj ∈ δ+(s) ∧ Et(s′, cj , i, ℓj)}

If δ+(s′) = ∅, then the corresponding arc in A(s∗) can be removed from the MDD. With this,
we can compute K(s∗), the multiset of true descendants according to the remaining arcs in
A(s∗) thanks to the forward state transition rule T ↓:

K(s) = {s′ = T ↓(pj , s, i, ℓj) | pj
ℓj−→ s ∈ A(s) ∧ δ+(s′) ̸= ∅}.

Note how relax(K(s∗)) = s∗ since K(s∗) is none other than the multiset of states that
would yield s∗ if merged. The refine(s∗) function in Algorithm 1 (line 3) is responsible
for producing the multiset K(s∗). With unbounded width, one could retain the unique
states in K(s∗) and add all of them into Li \ {s∗} to upgrade s∗. Otherwise, we need to
group together states in K(s∗) to be merged. The generic partition function (line 3 in
Alg. 1) returns a partition of K(s∗) into multisets S1, . . . , Sp, each of which representing an
approximately equivalent multiset of states. That is, Si ⊆ K(s∗) for 1 ≤ i ≤ p, Si ∩ Sj = ∅
for 1 ≤ i < j ≤ p, and

⋃p
i=1 Si = K(s∗). The heuristic function Q determines which states

should be grouped together. For example, if Q is a binary relation that encodes equality,
partition(K(s∗), Q) must ensure that Q(a, b) holds for all a, b ∈ Si (1 ≤ i ≤ p) and Q(a, b)
does not hold for all a ∈ Si, b ∈ Sj (1 ≤ i < j ≤ p).

Whenever |Si| > 1, we can apply the relax function to collapse Si into a single state.
The resulting states can all be added to the layer if it would not exceed maximum width
(lines 4-5 in Alg. 1). Otherwise, we need to determine which states to add and which to
merge. To do this, we use heuristic function W to compute a sorted permutation of the
partition S1, . . . , Sp. The permutation induced by W identifies the first (and most promising)
w − |Li| collapsed states for inclusion and merges the remaining ones into a single state.

To formalize the description above, let us adopt the following definitions:

CP 2022

24:8 Heuristics for MDD Propagation in HADDOCK

▶ Definition 8 (Equivalence class). A state equivalence function takes the form Q : S ×S → B.
It takes as input states a = ⟨A0, . . . , Ak−1⟩ and b = ⟨B0, . . . , Bk−1⟩ and returns whether the
two states are considered similar enough.

So long as Q is an equivalence relation (reflexive, symmetric, and transitive), Q can generate
a partition of K(s∗). Naturally, the most direct example is pure equality.

▶ Example 9 (Equality). Let Q(a, b) be a binary state equivalence function that holds over
states a = ⟨A0, . . . , Ak−1⟩ and b = ⟨B0, . . . , Bk−1⟩ when all properties are point-wise
equal, i.e., Q(a, b) holds if and only if

∧k−1
i=0 Ai = Bi.

While combining equal states is helpful, one may wish to group states that are similar
but not identical. We refer to all other types of state equivalence as approximate equivalence.
Which properties are used for determining equivalence may be problem dependent. Hence
the desire to make it programmable. Any states that are deemed approximately equivalent
are relaxed together by virtue of being members of the same class. The desire to preserve a
strong relaxation should bias the design of Q to induce the weakest possible losses as a result
of applying the relax function. To appreciate this semantic use, consider this example:

▶ Example 10 (Bound Slackness). Consider the constraint Among(x, l, u, Σ) using state
s = (L↓, U↓, L↑, U↑) as before. It is easy to assess how close the current bounds on the
number of occurrences of values in Σ are compared to l and u. Given two states a, b ∈ K(s),
a = T ↓(pa, s, i, ℓa) and b = T ↓(pb, s, i, ℓb). If L↓(a) + L↑(a) and L↓(b) + L↑(b) are equally
close to l, one would incur a weak loss of precision when merging a with b since merging uses
min on property L↓, and L↑(a) = L↑(b) = L↑(s) because a and b are derived by only calling
the forward state transition rule. The same argument applies to the U↓, U↑ properties and
the distance to the upper bound u. Therefore, let Qt(a, b) be a parametric approximate
equivalence class (with parameter t) defined as

Q(a, b) =((l − (L↓(a) + L↑(a)) > t) = (l − (L↓(b) + L↑(b)) > t))
∧((u − (U↓(a) + U↑(a)) > t) = (u − (U↓(b) + U↑(b)) > t))

Interestingly, setting t = 0 means that states a and b are equivalent as soon as both bounds
have any amount of slack while t = +∞ means that the inequalities are never satisfied forcing
each state to stand in a separate class (no relaxations as a result of similar slackness).

▶ Definition 11 (Weight function). A candidate weight function takes the form W : S → Z.
It takes as input a state and returns an integer value representing its desirability (smaller is
better).

The weight function is used to derive a permutation of K(s∗). Consider the following
examples that leverage simple structural properties:

▶ Example 12 (Number of arcs heuristic). Let W (s) = |δ−(s)| be the heuristic that favors
nodes with fewer antecedents in the layer above.

▶ Example 13 (Parent rank heuristic). Let W (s) = − maxp∈δ−(s) rank(p) be the heuristic
that favors nodes with parents that were created in the parent layer the most recently.

4.3 Composing Heuristics
Haddock delivers a framework to automatically deliver MDD-driven propagators for con-
straints through specifications that use state definitions together with several functions to
capture transition, transition existence, state existence, and relaxations. Perhaps even more

R. Gentzel, L. Michel, and W.-J. van Hoeve 24:9

interestingly, Haddock provides a composition mechanism to produce MDD specifications
from the conjunction of multiple high-level constraints. Such composite specifications then
drive the generation of the MDD propagator.

The addition of heuristics (Y , Q, and W) to modulate the behavior of the underlying
propagator raises a natural question. When each constraint brings its own preferred heuristics,
how does one combine them into a single composite heuristic for the propagator? We extend
the definition of an MDD language from [11] to incorporate the bundle of 3 heuristics:

▶ Definition 14 (MDD Language). Given a constraint c(x1, . . . , xn) over an ordered set
of variables X = {x1, . . . , xn} with domains D(x1), . . . , D(xn) the MDD language for c is
a tuple Mc = ⟨X, P, s⊥, s⊤, T ↓, T ↑, U, Et, Es, R, H = ⟨Y, Q, W ⟩⟩ where P is the set of
properties used to model states, s⊥ is the source state, s⊤ is the sink state, T ↓ is the forward
state transition rule, T ↑ is the reverse state transition rule, U is the state update function, Et

is the transition existence function, Es is the state existence function [11], and H = ⟨Y, Q, W ⟩
is the trio of heuristics controlling the refinement process.

4.3.1 Direct Composition
Consider two MDD languages M1 and M2 for constraints c1 and c2 defined over overlapping
ordered sets of variables X and Y (X ∩ Y ≠ ∅). Let the language M1 ∧ M2 denote the
composition of M1 and M2 and associate to it a heuristic bundle HM1∧M2 defined as:

▶ Definition 15. Given heuristic bundles Hc1 = ⟨Yc1 , Qc1 , Wc1⟩ and Hc2 = ⟨Yc2 , Qc2 , Wc2⟩,
let HM1∧M2 = ⟨Yc1 +Yc2 , Qc1 ∧Qc2 , Wc1 +Wc2⟩ denote the heuristic bundle of the composition.

4.3.2 Portfolio Composition
While direct composition can be effective, it may be sometimes too restrictive. An MDD may
encapsulate several constraints that disagree on the guidance that they offer individually. In
such circumstances, it might be preferable instead to base the refinements on the advice of
a portfolio in which the heuristic bundles coming from each constraint are prioritized. To
allow for this, we define the refinement portfolio as:

▶ Definition 16. A refinement portfolio is an ordered list (h1, . . . , hk) of heuristic bundles
with hi = ⟨Yi, Qi, Wi⟩ for each i ∈ {1, . . . , k}.

To understand how the portfolio is leveraged, consider the fixpoint algorithm used within
an MDD propagator for the conjunction of m constraints ∧m

i=1ci shown in Algorithms 2
and 3. Blue text can be ignored at first as it relates to the reboot and maximum refinement
described in Section 5. Algorithm 2 is the core of the fixpoint in the MDD propagator. It
first collects into the list HP all the heuristic bundles to be used. It then proceeds in lines
3-9 to carry out passes over the layers of the MDD. Each iteration starts with a backwards
pass going over layers Ln−1 to L0 to update the “up” properties of all states. This can lead
to the deletion of arcs and states. It then proceeds (line 5) with a down pass to update
the forward properties of the states that changed, but also to replenish layers that are no
longer full. Finally, lines 6-7 trim the variable domains to echo the changes done to the
MDD representation. Any changes prompt another iteration. Algorithm 3 is the crux of the
forward pass over layers L1 to Ln. The loop in lines 3-8 does the layer refinement while lines
9-10 compute the update and the pruning of each layer. While Algorithm 3 implies that the
process iterates over all layers, this is a simplification as the implementation only considers
changed states in changed layers. That simplification does not affect the layer refinement.

CP 2022

24:10 Heuristics for MDD Propagation in HADDOCK

Algorithm 2 mddFixpoint(Mc1∧···∧cm , [x1, . . . , xn], width, reboot, maxRef).
1: let HP = [⟨Y1, Q1, W1⟩, . . . , ⟨Yk, Qk, Wk⟩]
2: let iter = 0
3: repeat
4: changed = computeUp(Mc1∧···∧cm)
5: changed = computeDown(Mc1∧···∧cm

, width, HP, iter, reboot, maxRef) ∨ changed

6: for i ∈ 1..n do
7: trimVariable(xi)
8: iter = iter + 1
9: until ¬changed

Algorithm 3 computeDown(Mc1∧···∧cm , width, HP, iter, reboot, maxRef).
1: let changed = false

2: if iter < maxRef then
3: for hp ∈ HP do
4: let i = 1
5: repeat
6: l = refineLayer(Li, [L0, . . . , Li−1], width, hp)
7: i = (l < i) ? max(l, i − reboot) : (i + 1)
8: until i = n

9: for i ∈ 1..n do
10: changed = pruneLayer(Li) ∨ changed

11: return changed

4.3.3 Refinement Portfolio Options
Different choices for Q are possible. One could use (for a given constraint c) either an
approximation Q̃ or pure state equality Q. Alternatively, both can be used in a portfolio
[⟨Y, Q̃, W ⟩, ⟨Y, Q, W ⟩] that uses them in a round-robin style. This first conservatively expands
with a coarse equivalence, and, if room is still available, uses the finer grain equality.

4.3.4 Refinement Portfolio with Constraint Ranking
Another option is to populate the portfolio with heuristic bundles from each constraint
embedded in the MDD. Given the constraint set {c1, . . . , cm}, one can produce a portfolio
HP = [⟨Yπ0 , Qπ0 , Wπ0⟩, . . . ⟨Yπm−1 , Qπm−1 , Wπm−1⟩] that permutes the bundles according to
a user defined ordering π. This can be taken a step further by grouping constraints. Groups
have a single heuristic bundle obtained through composition. This grouping of constraints
for MDD refinement bears similarities to propagator groups [18]. Both ideas for portfolios
compose, expanding HP to include two bundles for each constraint, one that uses Q̃πi

and
one that uses Qπi

. This preserves the ranking goal by prioritizing constraints with a higher
rank above constraints of lower rank while always first splitting with Q̃ before Q.

5 Layer Processing

5.1 Reboot Distance
The refinement of a layer in Algorithm 1 may terminate with a full layer (|Li| = w) that
still hosts approximate states and has the potential for further refinements. As refinements
proceed through layers, a call to refineLayer(Li, . . . that causes the deletion of nodes in Li

R. Gentzel, L. Michel, and W.-J. van Hoeve 24:11

x1

x2

x3

(0, 0, 0, 3)
(0, 0, 0, 3)

(0, 0, 0, 2)
(0, 0, 0, 2)

(0, 1, 0, 2)
(0, 1, 0, 2)

(0, 2, 0, 1)
(0, 2, 0, 1)

(0, 3, 0, 0)
(0, 3, 0, 0)

0 1 2

0 1 2 0 1 2

0 1 2

a. A refinement of L1

(0, 0, 0, 3)
(0, 0, 0, 3)

(0, 0, 0, 2)
(0, 0, 0, 2)

(0, 1, 0, 2)
(0, 1, 0, 2)

(1, 1, 0, 1)
(0, 0, 0, 1)

(0, 0, 0, 1)
(1, 1, 0, 1)

(0, 2, 0, 1)
(0, 2, 0, 1)

(0, 3, 0, 0)
(0, 3, 0, 0)

0 1 2

1 2 0 1 2

0 1 2 0 1 2 0 1 2

b. Beginning refinement of L2

Figure 3 Two Among constraints with maximum width=2. Highlighted nodes are approximate.

and in some preceding layers Ll can trigger a return to the shallowest layer Ll to immediately
refine it again as opposed to continuing onward from i. When this happens, the referenced
loop would “reboot” to layer Ll. It may be desirable to bound how far one might reboot
with a maximum reboot distance between l and i. To reflect this, we add to computeDown
the changes in blue on lines 6-7 of Algorithm 3. We further assume that refineLayer is
modified to return the index of the highest layer l changed during the function call.

▶ Example 17. Consider an MDD similar to Example 1 with l2 = 2 and maximum width 2.
After splitting L1, we obtain the graph in Figure 3(a). Nodes are highlighted if their state is
relaxed. After refining L1 the right state is still relaxed and cannot be refined due to lack of
space in the layer. While splitting L2, two states in K(s) have no feasible children leading to
the deletion of the corresponding arcs in A(s). As a result, a state in L1 can be removed as
shown in Figure 3(b). Without reboot (or reboot = 0), L2 would continue being refined. If
reboot ≥ 1, the refinement will instead elect to further refine L1 first.

5.2 Maximum Refinement Iterations
Algorithm 2 iterates until a fixpoint is reached. It may be wise to bound the number of
times refinement can occur within one call to the fixpoint. We denote this the maximum
refinement iterations. The refinement in Algorithm 3 is conditional (line 2) and keeps track
of the iteration number in Algorithm 2 (lines 2, 8).

6 Empirical Evaluation

Haddock is part of MiniC++, a C++ implementation of the MiniCP specification [19]. All
benchmarks were executed on a Macbook Pro with a 3.1 GHz Intel Core i7-5557U processor
and 16GB. This section explores the effects of several heuristics on the behavior of the
Haddock propagator. Specifically, we consider the following experiments:
Experiment 1 Investigate the impact of the Y and W heuristics.
Experiment 2 Explore the merits of Q̃, Q, and a portfolio using first Q̃, then Q.

CP 2022

24:12 Heuristics for MDD Propagation in HADDOCK

Table 1 CPU time (seconds) to obtain all solutions for Nurse Rostering using HP =
[⟨Y, Q̃, W ⟩, ⟨Y, Q, W ⟩] for different Y (columns) and W (rows) heuristics.

Instance Width 16 Width 32 Width 64
HR LR HD LD HR LR HD LD HR LR HD LD

C-I

MA 1.9 3.4 3.6 6.2 2.2 1.5 1.0 1.9 2.1 1.1 0.6 1.1
LA 5.4 1.5 6.0 2.5 2.3 1.0 1.1 0.9 1.7 0.8 0.6 0.9
MinPI↓ 2.1 0.6 1.4 1.0 1.0 0.7 1.1 0.9 0.4 0.9 0.7 0.8
MinPI↑ 2.2 4.3 5.0 7.9 1.0 1.1 1.2 1.2 1.0 0.9 0.8 1.0
MaxPI↓ 1.7 2.7 1.6 2.2 0.9 1.4 0.9 1.3 0.5 0.6 0.6 0.6
MaxPI↑ 3.7 3.2 5.2 6.7 1.0 1.1 0.8 1.1 1.4 1.0 1.0 0.9

C-II

MA 12.4 9.3 10.6 10.5 5.8 4.5 6.7 4.3 3.8 3.0 4.2 3.2
LA 19.1 14.2 12.3 12.9 5.7 4.9 4.2 4.7 5.0 2.0 3.9 2.7
MinPI↓ 8.1 5.9 5.2 5.2 2.2 6.5 1.4 5.5 2.0 1.0 1.4 0.8
MinPI↑ 8.2 9.9 10.5 10.1 4.0 2.0 4.7 2.1 3.0 1.5 2.8 1.5
MaxPI↓ 6.7 5.7 4.8 4.2 4.7 4.5 1.4 3.2 1.5 1.9 1.3 1.8
MaxPI↑ 7.7 9.0 10.1 9.2 3.8 3.0 3.6 3.4 2.6 2.9 3.2 2.8

C-III

MA 21.2 28.8 27.2 18.4 19.6 20.7 13.7 19.1 15.9 18.6 14.8 19.8
LA 17.7 27.7 30.0 24.7 18.7 14.5 15.6 14.1 19.9 14.4 15.1 16.0
MinPI↓ 16.5 18.1 20.1 15.4 16.7 11.1 10.8 11.2 16.1 11.4 13.9 11.5
MinPI↑ 19.5 29.1 23.8 23.6 16.7 16.3 12.8 16.9 17.1 15.8 12.8 15.4
MaxPI↓ 15.5 21.5 13.4 19.5 17.1 12.9 11.9 16.8 13.7 14.8 13.8 17.0
MaxPI↑ 22.4 26.0 27.0 23.5 16.5 11.8 11.9 11.4 16.4 12.7 12.7 12.4

Experiment 3 Explore portfolios where constraint groups are prioritized.
Experiment 4 Investigate the impact of reboots.
Experiment 5 Investigate how results carry over to MDD propagators with other constraints.

Experiment 1: Role of Y and W . First, we evaluate the performance of the Y and W

heuristics on three “nurse rostering” problems from [16], which ask to schedule nurse work
shifts over a horizon of 40 days, subject to a collection of Among constraints. There are
three classes of instances: Class C-I requires at most 6 out of 8 consecutive work days and at
least 22 out of 30 consecutive work days. C-II uses 6 out of 9 and 20 out of 30, while C-III
uses 7 out of 9 and 22 out of 30. Each instance also requires 4 or 5 work days each week.

The portfolio was set to use [⟨Y, Q̃, W ⟩, ⟨Y, Q, W ⟩]. Namely, layer refinement is driven by
approximate equivalence first, followed by strict equality when space is still available. Y and
W are selected among the following options:
HR Define Y (s) = rank(s) to select the most recent state first.
LR Define Y (s) = −rank(s) to select the oldest state first.
HD Define Y (s) = |δ−(s)| to select the state with largest in-degree.
LD Define Y (s) = −|δ−(s)| to select the state with lowest in-degree.
MA W (s) = −|δ−(s)| ranks nodes according to decreasing arc set cardinality.
LA W (s) = |δ−(s)| ranks nodes according to increasing arc set cardinality.
MinPI↓ W (s) = − minp∈δ−(s) rank(p) ranks nodes with decreasing age of oldest parent.
MinPI↑ W (s) = minp∈δ−(s) rank(p) ranks nodes with increasing age of oldest parent.
MaxPI↓ W (s) = − maxp∈δ−(s) rank(p) ranks nodes with decreasing age of youngest parent.
MaxPI↑ W (s) = maxp∈δ−(s) rank(p) ranks nodes with increasing age of youngest parent.

Table 1 shows the CPU time taken for each combination of Y and W above. The state
equivalence function used for approximate equivalence is from example 10 using t = 3,
maximal reboot distance is 0 and maximum refinement is 10.

R. Gentzel, L. Michel, and W.-J. van Hoeve 24:13

0 20 40 60
Width

100

101

102
CP

U
Ti

m
e

(s
ec

on
ds

)

0 20 40 60
Width

100

101

102

103

104

105

Ba
ck

tra
ck

s

Classic, C-I
Classic, C-II
Classic, C-III
HADDOCK HP = Q, C-I
HADDOCK HP = Q, C-II
HADDOCK HP = Q, C-III
HADDOCK HP = Q, C-I
HADDOCK HP = Q, C-II
HADDOCK HP = Q, C-III
HADDOCK HP = [Q, Q], C-I
HADDOCK HP = [Q, Q], C-II
HADDOCK HP = [Q, Q], C-III

Figure 4 CPU time (left) and backtracks (right) for finding all solutions for amongNurse using
different equivalence functions.

0 20 40 60
Width

10 1

100

101

CP
U

Ti
m

e
(s

ec
on

ds
)

0 20 40 60
Width

100

101

102

103

104

105

Ba
ck

tra
ck

s

Classic, C-I
Classic, C-II
Classic, C-III
HADDOCK maxW First, C-I
HADDOCK maxW First, C-II
HADDOCK maxW First, C-III
HADDOCK minW First, C-I
HADDOCK minW First, C-II
HADDOCK minW First, C-III
HADDOCK resW First, C-I
HADDOCK resW First, C-II
HADDOCK resW First, C-III

Figure 5 CPU time (left) and backtracks (right) for finding all solutions for amongNurse with
different constraint group portfolios.

These results indicate that both Y and W have a clear impact on the method. While no
single pair Y ,W dominate, the LR option for Y seems to fare particularly well. Likewise,
MinPI↓ and MaxPI↓ appear to be consistently effective. We also observe that implementing
this generic heuristic framework introduces minimal, if not negligible, overhead.

Experiment 2: Role of Q̃ vs. Q. Consider the role of the two equivalence heuristics.
Figure 4 graphs the shortest time and least number of backtracks when Q̃ is used alone, Q is
used alone, or as a portfolio [Q̃, Q]. At higher widths, the heuristic bundle with Q̃ stagnates
since the approximate equivalence prevents it from making full use of the width. The bundle
using Q improves as the width increases, which is good. Yet, the best results come from the
portfolio which suggest that coarser equivalence is helpful to more judiciously make use of
the space in each layer and rely on the stricter Q when space is plentiful.

Experiment 3: Portfolio with constraint groups. Given the three classes of constraints
that model different aspects (lower bounding the number of work days: minW , upper
bounding the number of work days: maxW and restricting the number of work days to
4 or 5 in any given week: resW) it is tempting to rely on 3 constraint groups and use a
portfolio based on the three bundles of heuristics {H(minW), H(maxW), H(resW)}. To
simplify, we test three portfolios: minW First ([H(minW), H(maxW ∧ resW)]), maxW

CP 2022

24:14 Heuristics for MDD Propagation in HADDOCK

Figure 6 CPU time (left) and backtracks (right) for proving infeasibility for Multiple
AllDifferent across different reboot values using HP = ⟨HR, Q, MinP I ↓⟩.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Maximum Reboot

100

101

102

103

CP
U

Ti
m

e
(s

ec
on

ds
)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Maximum Reboot

100

101

102

103

104

105

Ba
ck

tra
ck

s

C-I
C-II
C-III
Auto, C-I
Auto, C-II
Auto, C-III
INF, C-I
INF, C-II
INF, C-III

First ([H(maxW), H(minW ∧ resW)]), and resW First ([H(resW), H(minW ∧ maxW)]).
Figure 5 shows the results while using ⟨LR, Q, MinPI↓⟩ for each bundle; the results are quite
spread out. The best performance, on all of C-I, C-II, and C-III, occurs whenever resW is
the first entry in the portfolio, giving it the first opportunity to drive refinements.

The characteristics of constraints in resW do explain such a behavior. First, these always
have the tightest bounds (l = 4 and u = 5). Refining on the tightest constraints may give
better opportunities for filtering. Second, the resW constraint groups are always the smallest.
Last, resW constraints are stated over disjoint variable sets and since refinements occur on
a layer basis (layers are associated to variables) the refinements are more focused.

Table 2 Multiple AllDifferent for different reboot values using HP = ⟨HR, Q, MinP I ↓⟩ and
a width of 16. Each row reports the fraction of full reboots and runtime (in seconds).

reboot 1 2 3 4 5 6 7 8 Auto INF

A-I Full 39.2% 66.7% 54.5% 83.8% 94.3% 98.0% 98.1% 98.6% 99.5% 100%
Time 671.6 430.7 447.0 0.3 0.5 0.6 1.9 4.0 6.2 452.5

A-II Full 52.2% 66.1% 90.5% 82.5% 94.8% 97.3% 99.3% 99.4% 97.3% 100%
Time 303.5 226.8 435.4 0.4 1.6 1.3 1.8 3.6 1.3 33.0

A-III Full 48.8% 46.8% 27.3% 69.6% 66.7% 97.5% 99.1% 99.4% 99.5% 100%
Time 1834.0 2036.0 1387.2 1202.5 622.6 1.0 1.4 4.4 3.0 725.8

Experiment 4: Reboot for Multiple AllDifferent. The assessment of the reboot heuristic
is done with randomly generated CSPs that use allDifferent constraints, are infeasible and
take a non-negligible amount of time to solve with a classic solver. The generator uses the
parameters ⟨n, d, [(s1, f1, p1), . . . , (sk, fk, pk)]⟩ where n is the number of variables, d is the
domain size, and each (si, fi, pi) tuple describes a single group of constraints. Group i uses
(si, fi, pi) to produce a set of AllDifferent constraints. Each constraint ck in that set ranges
over a random subset (of size ≥ 2) of variables sampled from {xk·fi+1, . . . , xk·fi+si

} where each
variable has a probability pi of being included. Three instances (available online at http://
hidden.url.domain) were created from ⟨50, 7, [(3, 1, 1), (6, 6, 1), (10, 1, .3), (8, 5, .6), (20, 7, .2)].
Performance is measured with time and backtracks to prove infeasibility.

Figure 6 shows the performance using a heuristic bundle of ⟨HR, Q, MinPI↓⟩ for different
maximum reboot values with INF representing an unlimited reboot. A dramatic improvement
in performance occurs around reboots between 4 and 6 that gets erased as the maximum
reboot increases. When a reboot occurs, the refinement either moves as far back as possible or
is stopped by the maximum reboot distance (Algorithm 3, line 7). To shed light on Figure 6,
consider Table 2 that gives the percentage of full reboots across all calls to computeDown

http://hidden.url.domain
http://hidden.url.domain

R. Gentzel, L. Michel, and W.-J. van Hoeve 24:15

Table 3 CPU time (sec.) to prove infeasibility for Multiple AllDifferent using Q for different
Y (columns) and W (rows) heuristics with the MDD width = 16.

HR LR HD LD

A-I

MA 755.98 920.56 899.14 917.74
LA 746.80 939.54 925.50 933.94

MinPI↓ 0.91 0.91 0.90 .91
MinPI↑ 795.84 949.96 923.89 935.30
MaxPI↓ 0.90 0.92 0.91 0.92
MaxPI↑ 808.84 961.56 923.37 931.59

A-II

MA 224.45 311.54 304.52 302.08
LA 228.62 318.84 303.10 308.09

MinPI↓ 1.28 1.29 1.33 1.28
MinPI↑ 203.46 267.36 260.42 270.50
MaxPI↓ 1.29 1.29 1.29 1.31
MaxPI↑ 206.10 268.60 259.29 261.77

A-III

MA 2594.93 3240.10 3553.28 3546.93
LA 2595.43 3138.61 3481.61 3622.81

MinPI↓ 1.00 390.37 0.87 0.89
MinPI↑ 2420.01 2926.05 3256.71 3316.82
MaxPI↓ 0.98 375.55 0.87 0.85
MaxPI↑ 2507.99 2938.20 3275.93 3321.35

Table 4 AIS (n = 11) for different reboot with HP = ⟨HR, Q, MinP I↓⟩ and width = 16.

reboot 0 1 2 3 4 5 6 7 8 Auto INF
Total 0% 14% 44% 54% 66% 75% 85% 87% 93% 49% 100%

CPU Time 5.99 7.29 6.24 7.85 6.72 8.79 9.14 8.77 12.38 6.31 16.12
Backtracks 2960 3682 2672 2848 2187 2280 1735 2030 633 2416 13

during the search, that is, reboots that were not cut short. The gains occurs when around
80 − 90%. By the time reboot = 7, 98% of reboots are full meaning any further increase
is unlikely to improve refinements but may still add overhead. In the benchmarks, each
AllDifferent constraint has at most 7, sometimes fewer, variables. Hence, the reboot may
benefit from staying within the scope of the constraint. A tempting Auto strategy for limiting
reboots for any variable xi associated to layer Li is as follows. As usual, let vars(c) denote
the set of variables appearing in c and cstr(x) be the set of constraints mentioning variable
x. Let L(x) be the layer of variable x. Then,

related(xi) =
⋃

c ∈ cstr(xi) | |vars(c)|≤ |X|
2

vars(c)

in reboot(i) = miny∈related(xi) index(L(y)) denotes the layer that the propagator should
return to when refinement aborts early. The rationale is to consider the shallowest layer of
variables directly related to xi provided that the constraint connecting them does not cover
a majority of the variables in the CSP. Figure 6 and Table 2 give the results. While the Auto
strategy does not beat the best static reboot value shown, it performs quite well and avoids
the risk of setting the maximum reboot too small or too large.

Experiment 5: Similarities across benchmarks. Last, we check how the heuristics behave
across benchmarks. Table 3 gives results for different Y and W using the All Different
benchmarks with a reboot of 6. While MinPI↓ and MaxPI↓ are again the clear favorites
for W , HR appears to be the best option for Y . This differs from Nurse Rostering and
underlines the usefulness of having programmable heuristics.

To assess whether Auto performs on other benchmarks, it is tested on the All-Interval
Series problem (#007 on CSPLIB) measuring the time, number of backtracks, and percentage
of full reboots when looking for all solutions. Table 4 shows the results with n = 11. Auto
picks a good compromise somewhere between 2 and 3 which matches the arity of the absolute
value constraints. Using an infinite reboot pays off in backtracks, but not in run time.

CP 2022

24:16 Heuristics for MDD Propagation in HADDOCK

7 Conclusion

Heuristics can have a significant impact on the filtering ability of an MDD propagator and
ultimately on the efficiency of a model. This paper introduces several heuristics that govern
such behaviors, formalized their integration into a generic framework, and reported on the
impact they have in practice. Interestingly it led to an automatic setting for the reboot
heuristic. The keystone of the paper is the recognition that such heuristics should be user
programmable to get the most out of decision diagram technologies.

References
1 Tobias Achterberg, Thorsten Koch, and Alexander Martin. Branching rules revisited. Opera-

tions Research Letters, 33, 2005. doi:10.1016/j.orl.2004.04.002.
2 H. R. Andersen, T. Hadzic, J. N. Hooker, and P. Tiedemann. A Constraint Store Based on

Multivalued Decision Diagrams. In Proceedings of CP, volume 4741 of LNCS, pages 118–132.
Springer, 2007.

3 David L. Applegate, Robert E. Bixby, Vašek Chvátal, and William Cook. Finding cuts in the
tsp. Annals of Physics, 54, 1995.

4 N. Beldiceanu and E. Contejean. Introducing Global Constraints in CHIP. Journal of
Mathematical and Computer Modelling, 20(12):97–123, 1994.

5 Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial
optimization: A methodological tour d’horizon. European Journal of Operational Research,
290:405–421, April 2021. doi:10.1016/J.EJOR.2020.07.063.

6 D. Bergman, A. A. Cire, W.-J. van Hoeve, and J. N. Hooker. Decision Diagrams for
Optimization. Springer, 2016.

7 Raphaël Boudreault and Claude-Guy Quimper. Improved cp-based lagrangian relaxation
approach with an application to the tsp. In Proceedings of the Thirtieth International Joint
Conference on Artificial Intelligence, IJCAI, volume 21, pages 1374–1380, 2021.

8 Frédéric Boussemart, Fred Hemery, and Christophe Lecoutre. Revision ordering heuristics for
the constraint satisfaction problem. In First International Workshop: Constraint Propagation
and Implementation, 2004. URL: http://www.cril.univ-artois.fr/~lecoutre/research/
publications/2004/CPW2004.ps.

9 T Fahle and M Sellman. Cost based filtering for the constrained knapsack problem. Annals of
Operations Research, 115:73–93, 2002.

10 J. M. Gauthier and G. Ribière. Experiments in mixed-integer linear programming using
pseudo-costs. Mathematical Programming, 12, 1977. doi:10.1007/BF01593767.

11 R. Gentzel, L. Michel, and W.-J. van Hoeve. Haddock: A language and architecture for
decision diagram compilation. In Principles and Practice of Constraint Programming. CP
2020, volume 12333 of Lecture Notes in Computer Science, pages 531–547. Springer, Cham,
2020.

12 X. Gillard, P. Schaus, and Coppé. Ddo, a Generic and Efficient Framework for MDD-Based
Optimization. In Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), 2020.

13 Gilles Pesant Gilles, Claude Guy Quimper, and Alessandro Zanarini. Counting-based search:
Branching heuristics for constraint satisfaction problems. Journal of Artificial Intelligence
Research, 43, 2012. doi:10.1613/jair.3463.

14 T. Hadžić, J. N. Hooker, B. O’Sullivan, and P. Tiedemann. Approximate compilation of
constraints into multivalued decision diagrams. In P. J. Stuckey, editor, Principles and Practice
of Constraint Programming (CP 2008), volume 5202 of Lecture Notes in Computer Science,
pages 448–462. Springer, 2008.

15 R M Haralick and G L Elliot. Increasing tree search efficiency for constraint satisfaction
problems. Artificial Intelligence, 14:263–313, 1980.

https://doi.org/10.1016/j.orl.2004.04.002
https://doi.org/10.1016/J.EJOR.2020.07.063
http://www.cril.univ-artois.fr/~lecoutre/research/publications/2004/CPW2004.ps
http://www.cril.univ-artois.fr/~lecoutre/research/publications/2004/CPW2004.ps
https://doi.org/10.1007/BF01593767
https://doi.org/10.1613/jair.3463

R. Gentzel, L. Michel, and W.-J. van Hoeve 24:17

16 S. Hoda, W.-J. van Hoeve, and J. N. Hooker. A Systematic Approach to MDD-Based Constraint
Programming. In Proceedings of CP, volume 6308 of LNCS, pages 266–280. Springer, 2010.

17 R. M. Keller. Formal Verification of Parallel Programs. Communications of the ACM,
19(7):371–384, 1976.

18 M. Lagerkvist and C. Schulte. Propagator groups. In Ian Gent, editor, Fifteenth International
Conference on Principles and Practice of Constraint Programming, Lisbon, Portugal, volume
5732 of Lecture Notes in Computer Science, pages 524–538. Springer-Verlag, 2009.

19 Laurent Michel, Pierre Schaus, Pascal Van Hentenryck. MiniCP: A lightweight solver for
constraint programming, 2018. Available from https://minicp.bitbucket.io.

20 Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki. Learning rate based
branching heuristic for sat solvers. In Theory and Applications of Satisfiability Testing - SAT
2016 - 19th International Conference, Bordeaux, France, July 5-8, 2016, Proceedings, volume
9710, 2016. doi:10.1007/978-3-319-40970-2_9.

21 Laurent Michel and Pascal Van Hentenryck. Activity-based search for black-box constraint
programming solvers. In Nicolas Beldiceanu, Narendra Jussien, and Éric Pinson, editors,
Integration of AI and OR Techniques in Contraint Programming for Combinatorial Optimzation
Problems, volume 7298 of Lecture Notes in Computer Science, pages 228–243. Springer Berlin
Heidelberg, 2012. doi:10.1007/978-3-642-29828-8_15.

22 Matthew W Moskewicz, Conor F Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: engineering an efficient sat solver. In Proceedings of the 38th Design Automation
Conference, DAC 2001, Las Vegas, NV, USA, June 18-22, 2001, pages 530–535. ACM, 2001.
doi:10.1145/378239.379017.

23 Philippe Refalo. Impact-based search strategies for constraint programming. In Mark Wallace,
editor, CP, volume 3258 of Lecture Notes in Computer Science, pages 557–571. Springer,
2004. URL: http://springerlink.metapress.com/openurl.asp?genre=article{&}issn=
0302-9743{&}volume=3258{&}spage=557.

24 Meinolf Sellmann, Thorsten Gellermann, and Robert Wright. Cost-based filtering for shorter
path constraints. Constraints, 12, 2007. doi:10.1007/s10601-006-9006-4.

25 Guni Sharon, Roni Stern, Ariel Felner, and Nathan R. Sturtevant. Conflict-based search for
optimal multi-agent pathfinding. Artificial Intelligence, 219, 2015. doi:10.1016/j.artint.
2014.11.006.

CP 2022

https://doi.org/10.1007/978-3-319-40970-2_9
https://doi.org/10.1007/978-3-642-29828-8_15
https://doi.org/10.1145/378239.379017
http://springerlink.metapress.com/openurl.asp?genre=article{&}issn=0302-9743{&}volume=3258{&}spage=557
http://springerlink.metapress.com/openurl.asp?genre=article{&}issn=0302-9743{&}volume=3258{&}spage=557
https://doi.org/10.1007/s10601-006-9006-4
https://doi.org/10.1016/j.artint.2014.11.006
https://doi.org/10.1016/j.artint.2014.11.006

An Auditable Constraint Programming Solver
Stephan Gocht #

Lund University, Sweden
University of Copenhagen, Denmark

Ciaran McCreesh #

University of Glasgow, UK

Jakob Nordström #

University of Copenhagen, Denmark
Lund University, Sweden

Abstract
We describe the design and implementation of a new constraint programming solver that can produce
an auditable record of what problem was solved and how the solution was reached. As well as a
solution, this solver provides an independently verifiable proof log demonstrating that the solution is
correct. This proof log uses the VeriPB proof system, which is based upon cutting planes reasoning
with extension variables. We explain how this system can support global constraints, variables with
large domains, and reformulation, despite not natively understanding any of these concepts.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Discrete optimization

Keywords and phrases Constraint programming, proof logging, auditable solving

Digital Object Identifier 10.4230/LIPIcs.CP.2022.25

Supplementary Material Source code for the solver described in this paper can be found here:
Software (Source Code): https://doi.org/10.5281/zenodo.6514093

Funding Stephan Gocht: Supported by the Swedish Research Council grant 2016-00782.
Ciaran McCreesh: Supported by a Royal Academy of Engineering research fellowship.
Jakob Nordström: Supported by the Swedish Research Council grant 2016-00782 and the Independent
Research Fund Denmark grant 9040-00389B.

1 Why Trust a Constraint Programming Solver?

Proof logging is now a standard practice in the Boolean satisfiability (SAT) community:
alongside a solution, solvers are expected to produce a proof, in a standard format called
DRAT [19, 18, 33], that can be verified independently to ensure that the correct answer was
reached through legitimate reasoning. As well as reducing the number of bugs in solvers, this
has been vital for the social acceptability of computer-generated mathematical proofs [21].
These successes mean that proof logging is now being considered in other areas, including
mixed integer programming [9] and subgraph-finding algorithms [14, 13], and a similar
paradigm known as certifying algorithms exists for polynomial-time solvable problems [23].

We believe that a practical proof logging system would also be extremely useful for the
constraint programming (CP) community. In the 2021 MiniZinc challenge, at least 45 out
of 3,500 claimed solutions were incorrect (either through falsely claiming unsatisfiability
or optimality, or by providing infeasible “solutions”), and previous years saw similar rates.
Furthermore, this was not limited to one solver, one problem, or one global constraint.
Although this high error rate does not necessarily reflect what we might see in practice, it
strongly suggests that we should not be complacent. And even if we are completely convinced
that our solvers are correct, thanks to extensive testing using domain-specific methods [1, 12],

© Stephan Gocht, Ciaran McCreesh, and Jakob Nordström;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 25; pp. 25:1–25:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:stephan.gocht@cs.lth.se
https://orcid.org/0000-0002-5459-3134
mailto:ciaran.mccreesh@glasgow.ac.uk
https://orcid.org/0000-0002-6106-4871
mailto:jn@di.ku.dk
https://orcid.org/0000-0002-2700-4285
https://doi.org/10.4230/LIPIcs.CP.2022.25
https://doi.org/10.5281/zenodo.6514093
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 An Auditable Constraint Programming Solver

there are still benefits to be had from proof logging. When CP is used for life-affecting
decision-making, having a solver that can produce an independently verifiable record of
what the problem was and how it was solved would be much better for public confidence in
algorithms than saying “trust us, we tested it carefully”. In effect, we would be making the
solving process auditable, and removing the need for trust.

In some applications, compiling a CP model to SAT and re-using SAT proof logging might
be a viable approach for auditability. However, this is not a universal solution: even if the
loss of solving power from switching representations is not a problem, why should we trust
that a complex compilation process is correct? And what if we need to solve enumeration or
optimisation problems, neither of which are supported by DRAT? Nor is it practical to make
CP solvers output DRAT proofs, even for decision problems: attempts at expressing the
strong reasoning carried out by simple global constraints like all-different have introduced
intolerable overheads [28, 10], and DRAT does not seem well-suited even for the parity
reasoning done by some modern SAT solvers [15]. One alternative would be to introduce a
much stronger and more complex proof format, that is aware of the meaning of every global
constraint and every kind of propagation that could be performed [31] and every kind of
reformulation ever invented – but why should we trust such a complicated proof logging
system, and how would we even know that it is consistent? This is not a trivial concern:
even the relatively simple DRAT format has had issues in this respect [26].

This paper describes an alternative approach to proof logging which addresses all of these
problems. It uses an existing proof verifier, VeriPB, which was designed for pseudo-Boolean
models. VeriPB’s proof format uses cutting planes reasoning [5] and redundance-based
strengthening [15], which is only a small step up in complexity from the DRAT approach of
using Boolean models and extended resolution. However, this small change in underlying
proof system suddenly means that proof logging for many kinds of constraint becomes both
efficient and easy to implement, despite the system not having any explicit notion of global
constraints or even non-binary variables. Thanks to this, we have been able to implement
a new prototype constraint programming solver which can produce proof logs for all of
its reasoning, with support for global constraints like all-different, integer linear inequality
(including for variables with very large domains), table, minimum / maximum of an array,
element, and absolute value, as well as some simple automatic reformulation.

Our aim in this work is not to produce the world’s fastest solver, but rather to explore
the design decisions necessary to provide auditable solving when operating with diverse
constraints, and to explain how to understand and adopt proof logging technology. The main
differences between our solver and a basic conventional solver such as MiniCP [24] are:

The solver can describe the semantics of variables and each constraint in a low-level
format, which is discussed in Section 2.1. We give examples in Section 3. This is the only
part of the process that is not directly auditable: we discuss this further in Section 5.1.
Whenever the solver backtracks during search, it creates a proof step asserting that
its current sequence of guesses “obviously” (but verifiably) implies a contradiction, as
described in Section 2.3. When enumerating or optimising, solutions must also be logged.
Any piece of code that potentially removes a value from a variable’s domain (or instantiates
it, or changes its bounds) must be able to provide a justification that can be added
to the proof log. This justification can be “this is immediately obvious”, “use reverse
unit propagation” (Section 2.3), or occasionally, “use the following explicit proof steps”
(Section 2.2). In many ways this resembles lazy clause generation solvers [25], except
that justifications must be derived in a sound and verifiable manner, rather than being
introduced from nowhere. We give examples in Section 4.
Finally, some constraints make use of reformulations, which must also be justified;
examples are in Section 4.5.

S. Gocht, C. McCreesh, and J. Nordström 25:3

Together, these additions mean that if the solver ever produces an incorrect answer, this can
be detected – even if it is due to a compiler or hardware fault rather than a solver bug. Our
results demonstrate that proof logging for constraint programming is rapidly becoming a
technologically viable approach, and one that will be worth adopting in other solvers. We
conclude by outlining how we might realise this goal of auditable constraint solving.

2 The VeriPB Proof System

We begin with an overview of the relevant parts of the model and proof system used by
VeriPB.1 It is important to stress immediately that solvers do not need to understand or
implement this proof system (in the same way that most SAT solvers do not “know” that
they are searching for resolution proofs). Indeed, the prototype solver we describe later in
this paper produces proofs through templates, never manipulates proof steps directly, and
does not know enough about the VeriPB proof system to be able to verify its own proofs.

In this section we will primarily be talking about proofs of unsatisfiability. Both VeriPB
and our solver also support optimisation, enumeration, and satisfiable decision problems,
but the core of the proof system concerns unsatisfiability. The idea behind a proof is that
we start off with known facts, which come from the input model. Then, at each step in
the proof, we derive a new fact which is “obviously” a consequence of some combination of
previous facts. We finish by deriving a fact which is clearly a contradiction, which in turn
means it must be the case that the input is unsatisfiable.

2.1 Pseudo-Boolean Models
VeriPB takes as input a pseudo-Boolean model, which is a very restricted kind of constraint
programming model. A pseudo-Boolean model is defined by a set {xi} of {0, 1} integer
variables, and a set of integer linear inequalities

∑
i cixi ≥ n for integers ci and n. In

this paper we will use lowercase variable names to refer to pseudo-Boolean variables, and
uppercase variable names to refer to constraint programming variables. We will also write
some constraints using ≤ instead of ≥, and will write

∑
i cixi = n as shorthand for two

inequalities. We use the convention that x = 0 means false, and x = 1 means true; we write
x to mean 1 − x. Observe that Boolean satisfiability constraints in conjunctive normal form
(CNF) can easily be written as pseudo-Boolean constraints, because e.g. (x1 ∨x2 ∨x3) holds if
and only if (x1 + x2 + x3 ≥ 1). For clarity we will sometimes mix logical and pseudo-Boolean
notation, and write expressions like (x1 ∧ x2 ∧ x3) → (2x4 + 3x5 + −4x6 ≥ 7) rather than
the more cumbersome 11x1 + 11x2 + 11x3 + 2x4 + 3x5 + −4x6 ≥ 7.

There is a standard textual file format for pseudo-Boolean models, known as OPB [27].
VeriPB supports this format, with extensions: for example, it allows variables to have
descriptive names, which is convenient for readability, and can include implications to avoid
the need for solver authors to calculate appropriate coefficients manually.

2.2 Cutting Planes
Alongside an OPB file, VeriPB takes a proof log file that claims to show that the pseudo-
Boolean model is unsatisfiable, and checks the proof’s validity. This proof log is a text file,
which describes a sequence of steps using the cutting planes proof system [5]. In cutting

1 https://gitlab.com/MIAOresearch/VeriPB

CP 2022

https://gitlab.com/MIAOresearch/VeriPB

25:4 An Auditable Constraint Programming Solver

planes, we can add two constraints together, multiply a constraint by a non-negative integer
constant, and divide existing constraints by a positive integer constant (with rounding);
we may also assert that any literal is non-negative. The aim is to derive a constraint
saying that 0 ≥ 1, which serves as a contradiction. The cutting planes proof system is
complete for pseudo-Boolean models, in the same way that resolution is complete for Boolean
models. However, it is exponentially stronger than resolution: for example, resolution requires
exponential length proofs for all-different constraints, whereas cutting planes can justify
Hall set reasoning in (small) polynomial length [10]. For more details on the theoretical
background, see, e.g., the survey by Buss and Nordström [3].

2.3 Unit Propagation and Reverse Unit Propagation
For solver authors, working directly with cutting planes can be difficult, and would require
every part of a solver to keep careful track of every operation carried out. This difficulty can
be avoided through the use of reverse unit propagation (RUP) proof steps [16, 30, 10], which
are in effect shorthand for a sequence of cutting planes steps.

For CNF clauses, unit propagation means identifying any clause where all but one of its
literals has already been set the wrong way, and propagating the remaining literal to the
value that avoids violating the clause, repeating until either a contradiction is reached or no
further unit clauses exist. This notion generalises to pseudo-Boolean constraints, where unit
propagation means achieving integer bounds consistency [4]. A constraint C is said to be
RUP if asserting its negation leads to a contradiction via unit propagation; in such a case, it
is obviously permissible to introduce C as a new constraint without altering whether the
underlying model is satisfiable.

RUP steps in a Boolean setting form the core part of the DRAT proof format. This is
useful for solver authors because for a typical CDCL SAT solver, every learned clause is
RUP, and so writing a proof log requires only that a solver output every clause it learns in
turn. In our constraint programming setting, RUP clauses will similarly form the backbone
of the proofs we generate, with a RUP clause being written every time a solver backtracks.
However, we will also use explicit cutting planes steps where necessary, to justify complex
propagations. In one sense, RUP is purely a convenience for solver authors, in that with more
work, cutting planes steps could be used instead; however, this would require substantially
more book-keeping in the solver.

The following pieces of intuition may be helpful in what follows: a fact follows from unit
propagation if it is so immediately obvious that it is not worth stating. A fact follows from
reverse unit propagation if, once you have been told that it is a fact, it is obviously true (but
that it might not be immediately obvious if you are not told). In some ways this resembles
failed literal probing, or the difference between generalised arc consistency and singleton arc
consistency; this intuition may become clearer following the example in Section 4.1.

2.4 Extension Variables and Redundance-Based Strengthening
An extension variable is a new variable introduced as part of a proof. In VeriPB, extension
variables are supported using a rule called redundance-based strengthening (which, for readers
familiar with SAT proof logging, is the natural analogue of the RAT rule in DRAT) [15]. We
do not need the full power or definition of that rule for this paper. It suffices to say that,
for an arbitrary pseudo-Boolean constraint C and a new variable y that has not previously
appeared in the model or proof, we are allowed to introduce the reified constraints y ↔ C

at any point during the proof. As well as being extremely convenient for solver authors,
extension variables also give an exponential increase in reasoning power [3].

S. Gocht, C. McCreesh, and J. Nordström 25:5

2.5 Satisfiable Instances, Enumeration, Optimisation, and Deletions
For satisfiable decision problems, VeriPB supports solution checking by including a solution
in a proof log. Enumeration problems may also be verified this way: whenever a solution is
logged, VeriPB treats this as introducing a new constraint saying “but not this solution”,
and so a proof is effectively a proof by contradiction that there are no solutions other than
the ones listed. Optimisation is handled similarly, via an optional objective expression in the
OPB file. Finally, in practice it is important to delete constraints from the proof that will
not be re-used later on. This is straightforward, but will not be discussed in this paper.

3 Encoding Constraint Programming Models

In the previous section, we learned that if we wish to use VeriPB to verify constraint
programming proofs then we must provide two things: a pseudo-Boolean model in OPB
format, and a proof log. We now discuss how the first of these two steps may be generated
by a CP solver, looking first at how we turn CP variables into pseudo-Boolean variables, and
then at how we represent constraints. When compiling CP to a lower level format for solving,
selecting a good encoding involves considering propagation and consistency; in contrast, for
proof logging we need only something that is simple and reasonably compact.

3.1 Variables
The most straightforward way of encoding an integer variable X with domain ℓ . . . u is to
create u − ℓ + 1 pseudo-Boolean variables x=i, where x=i is true if and only if X = i, together
with supporting constraints saying that

∑
x=i = 1. Such an approach was used for proof

logging the all-different constraint by Elffers et al. [10]. However, this is impractical for
variables with large domains that are only involved in bounds-consistent constraints such
as integer linear inequalities. Instead, we define a binary encoding. Let h be the least
strictly positive number such that 2h−1 ≥ max(1, |u|, |ℓ|). Then we introduce variables xbi

for i ∈ 0 . . . h − 1, and, if ℓ < 0, we additionally introduce an xneg variable to give us a two’s
complement style representation. The two constraints ℓ ≤ −2hxneg +

∑h−1
i=0 2ixbi ≤ u then

define the meaning and bounds of these variables (with the leading sum term omitted if
ℓ ≥ 0). For example, if we have a constraint programming variable A with domain {−3 . . . 9},
we would define

−32aneg + 1ab0 + 2ab1 + 4ab2 + 8ab3 + 16ab4 ≥ −3 and
32aneg + −1ab0 + −2ab1 + −4ab2 + −8ab3 + −16ab4 ≥ −9.

Although compact, experienced modellers know that such an encoding often leads to extremely
poor propagation. This is a problem if the encoding is to be used for solving, but for proof
logging this is not an issue because the encoding only restricts how we write a proof, not how
a solution is reached. However, when expressing constraints or propagation, it is often useful
to be able to use variables x=i and x≥i for selected values of i. If these variables are used
when the constraints appear in the pseudo-Boolean model, we can define them immediately.
We have found the most convenient way of expressing these variables to be

x≥i ↔ −2hxneg +
h−1∑
i=0

xbi ≥ i

and similarly for x≥i+1. Additionally, we constrain that x≥i+1 → x≥i, and force x≥i to be true
or false respectively if i defines a lower or upper bound. We then define x=i ↔ x≥i ∧ x≥i+1.

CP 2022

25:6 An Auditable Constraint Programming Solver

However, what if these values are only used for branching or propagation, such as when
dealing with linear inequalities (discussed below)? The whole point of using a binary encoding
was to avoid having to define variables for values that never appear in a constraint or a
proof. Fortunately, it is possible to introduce these additional variables as extension variables
with the same defining constraints, so long as it is done in exactly the order described
above. In such a case, we also introduce the RUP constraints x≥i → x≥j and x≥h → x≥i for
the closest two values h and j that already have equality variables, if they exist. Finally,
when propagating certain constraints such as all-different, it is also convenient to have an
at-least-one constraint

∑u
i=ℓ x=i ≥ 1. If all the x=i variables are defined, then this constraint

can also be introduced via RUP as needed, and does not need to be defined in the model.
This can make the pseudo-Boolean model much more manageable: for example, for the
implementation of the “cake” problem discussed in Section 5, our solver introduces a total of
one hundred x=i or x≥i variables in the proof, rather than defining several hundred thousand
of them in the OPB file.

Note finally that the details of this encoding are largely irrelevant to most constraints. In
particular, it is possible for the part of a solver that deals with proof logging to treat 0/1
variables separately with almost no impact on the rest of its code.

3.2 Constraints
Next, we must represent every constraint in pseudo-Boolean form. This topic is relatively
well-understood, because pseudo-Boolean constraints are a superset of CNF – and again, it
is not necessary to find a good encoding, only a simple and correct one. We now give some
examples that illustrate general concepts.

Integer linear inequalities. Integer linear inequalities can easily be expressed in pseudo-
Boolean form by adding multiples of the bit encodings together. For example, suppose we
have the CP constraint 2A+3B +4C ≤ 42, where each of the variables has domain {−3 . . . 9}.
This would be translated into

−64aneg + 2ab0 + 4ab1 + 8ab2 + 16ab3 + 32ab4

+ − 96bneg + 3bb0 + 6bb1 + 12bb2 + 24bb3 + 48bb4

+ − 128cneg + 4cb0 + 8cb1 + 16cb2 + 32cb3 + 64cb4 >= 42.

We may use a pair of such constraints to define equality and sum constraints. If we were
solving using these constraints, we would get very weak propagation, but we will explain
why this does not matter in the following section.

Not equals. Not equals constraints can be expressed using two half-reified linear inequalities:
we introduce a Boolean flag f , and define the constraints f → (A−B > 0) and f → (B −A >

0). These can be expressed in pseudo-Boolean form as integer linear inequalities with the
addition of a suitably large coefficient on the negation of the flag to handle the implication.
A similar encoding can be used for the absolute value constraint.

All-different. All-different can be expressed by a set of at-most-one constraints, such as
a=2 + b=2 + c=2 ≤ 1, or by a clique of not-equals constraints. Again, solving using either
kind of constraint would give weaker propagation than the usual GAC all-different constraint,
but this is not a concern for proof logging.

S. Gocht, C. McCreesh, and J. Nordström 25:7

Table constraints. Table constraints can be expressed in terms of an auxiliary vari-
able, which selects which tuple is matched. For example, given the tuple sequence
[(1, 2, 3), (1, 3, 4), (2, 2, 5)] applied as a table constraint to the variables [A, B, C], we could
express this by adding an auxiliary variable T ∈ {0 . . . 2} (called the tuple selector variable),
and using implication constraints t=0 → (a=1 ∧ b=2 ∧ c=3) etc.

Element constraints. Element constraints come in a variety of forms. For example, consider
a 2D element from constants constraint, which says that a variable V takes the [I, J]th entry
in a two dimensional m × n array A of constants. This shows up in various places, such as
the MiniCP quadratic assignment problem benchmark discussed in Section 5 (where solvers
are expected to achieve generalised arc consistency on the two index variables, and bounds
consistency on the assigned variable) [24]. The only constraints we will define are the unary
constraints i≥0, i≥m, j≥0 and j≥n, and then (i=x ∧j=y) → v=A[x,y] for each array entry. Such
constraints, on their own, obviously do not enforce the desired consistency levels, but they
have the advantage of being simple. This technique also generalises. For example, if the array
A is not constant then the implication constraints can become half-reified equalities instead –
and this in turn makes it easy to define array minimum and array maximum constraints.

Other constraints. Other constraints are usually similarly easy to express. The critical
point is that encodings need only be correct, not good, and so if we know how to express the
constraint at all in CNF or as integer linear inequalities then that is sufficient. Similarly,
if a constraint easily fits in a table, then it can be handled that way. Combined with the
ability to use auxiliary variables, even constraints like “forms a connected subgraph” are
manageable [13].

4 Proofs for Search and Propagation

The core of a proof for an unsatisfiable constraint satisfaction problem is a description of the
solver’s search tree. This is expressed as a RUP statement for every backtrack, and ends
with a contradiction when we backtrack from the root node. The idea is that whenever the
constraint solver backtracks, it should be “obvious” that the sequence of guesses made leads
to a dead end, and is thus a RUP clause. Gocht et al. [13] provide a worked example of this
process in a branch and bound setting for a clique algorithm.

In order to make this process work with global constraints, we will need to include
additional proof statements to justify non-obvious propagations (in the same way that Gocht
et al. had to justify the clique algorithm’s bounds). The core invariant we use is that at every
backtrack, any variable-value deletion that is known to the CP solver (and thus part of the
decision to backtrack) must be visible to the proof verifier either through unit propagation,
or through reverse unit propagation of the backtrack clause. This section elaborates on what
this means for various global constraints.

4.1 RUP Justifications and Table Constraints
Achieving generalised arc consistency for table constraints involves two kinds of inference:
detecting when a tuple becomes infeasible, and detecting when a variable’s value is no longer
supported by any feasible tuple. There are several different propagation algorithms for
performing this inference [29, 22, 7, 20, 32], but from a proof logging perspective it does not
matter how the inference is performed, only what is inferred.

CP 2022

25:8 An Auditable Constraint Programming Solver

A tuple becoming infeasible requires no justification. Recall that tuples are defined with
constraints like t=0 → (a=1 ∧ b=2 ∧ c=3). If, for example, A loses the value 1 from its domain,
this constraint will unit propagate, setting t=0 to false. This also holds when assignments are
guessed: by the core invariant, asserting through RUP that the guessed assignments imply
false will propagate the value loss, which in turn propagates the tuple becoming infeasible.

In contrast, suppose we have only two tuples supporting A = 1, and these are both made
infeasible by other variables, so a solver infers A ̸= 1. Let G be the set of equality variables
corresponding to our current set of guessed assignments (for example, {b=2, c=5}). Then
the assignment a=1 does not follow by unit propagation in the proof under the assertion of
∧G, which means it must be justified in some way. Fortunately, this is very simple, and we
need only give a small hint to the proof verifier: we claim that ∧G → a=1 will be a RUP
constraint. Indeed, its negation is (∧G) ∧ a=1. Now consider each tuple t supporting a=1 in
turn. There must be some constraint derived that, under ∧G, falsifies a different variable in
this tuple, which in turn forces the tuple selector variable to not equal t. Additionally, we
know that A must take at most one value, and so for each i ̸= 1, a=i will propagate to false;
this in turn propagates every other tuple selector variable to false. Finally, we know that
the tuple selector variable must take at least one value, but we have ruled out every value it
could take, giving the desired contradiction.

Putting these facts together, the only proof logging needed for a table constraint is to
log one RUP step whenever a variable loses a value due to lack of support. Intuitively,
infeasibility of tuples is so obvious that we need not mention it. In contrast, loss of support is
not immediately obvious to detect, but if we tell the proof verifier that it has in fact occurred
then it is easy to check that we are telling the truth.

4.2 Explicit Justifications and Integer Linear Inequalities

Some constraints require more work. Elffers et al. [10] have already shown how both
propagation and failure detection for the all-different constraint can be justified using cutting
planes proofs. Their approach works in our setting, with one caveat: they require at-least-one
constraints for certain CP variables, which we do not have in our model. However, recall
that these constraints can be introduced using RUP where needed.

Integer linear inequalities are a similar case. Suppose we have a constraint 2A+3B+4C ≤
42, with all three variables non-negative. In a typical CP solver, this constraint will achieve
integer bounds consistency [17, 4]. As an example, suppose we know that under some set of
guessed assignments G that A ≥ 5 and C ≥ 3, then a CP solver will infer that ∧G → B ≤ 6.
We can derive this fact in a proof as follows. By assumption, we either have or can introduce
RUP constraints that ∧G → a≥5 and ∧G → c≥3. This in turn means we either have or can
introduce RUP constraints for the binary representation, saying that ∧G →

∑h−1
i=0 2iabi ≥ 5

and ∧G →
∑h′−1

i=0 2icbi ≥ 3 for appropriate values of h and h′. Now using cutting planes
steps, we can multiply the first of these by 2 and the second by 4 (their coefficients in the
original linear inequality), add both to the constraint defining the linear inequality, and
divide the result by the coefficient of B, 3. It can be verified that the resulting mess is
now sufficient to make ∧G → b≥7 a RUP constraint. It is also routine to prove that this
example generalises to arbitrary integer linear inequalities (although negative variables and /
or coefficients require several awkward case by case analyses).

S. Gocht, C. McCreesh, and J. Nordström 25:9

4.3 Element Constraints
Recall the special case of a two-dimensional element from constants constraint, where a
variable V takes the [I, J]th entry in a two dimensional m × n array A of constants. In the
interests of having a simple pseudo-Boolean encoding, we defined this using (i=x ∧ j=y) →
v=A[x,y] constraints. However, we wish for our solver to achieve generalised arc consistency
on I and J , and bounds consistency on V . One way to proof log this reasoning is as follows.
As a one-time operation at the start of search, we will use extension variables to turn this
into a one-dimensional element constraint. We will introduce m × n new variables sk, each
of which is true if and only if a different i=x ∧ j=y holds. We will then build an at-least-one
constraint over the sk variables via a sequence of O(m × n) RUP steps, as follows. For each
value x for the first index variable I, we are going to derive via RUP that

∑
k sk + i=x ≥ 1.

For this to hold, we first derive via RUP that for each value y for the second index variable
J , that

∑
k sk + i=x + j=y ≥ 1. The desired at-least-one constraint now follows via RUP; in

effect, we have performed an exhaustive backtracking search over the pair of variables I and
J under the assertion that the desired at-least-one constraint does not hold, and shown that
no solution satisfying I and J exists. From this point forwards, we are effectively dealing
with a one-dimensional element constraint.

(Of course, one could ask why we convert from two dimensions to one dimension in the
proof, and not in the model when we define the element constraint. We could certainly do
things this way. However, our point here is to demonstrate that we don’t have to handle
model reformulations by changing the model: instead, we can use the most straightforward
low-level model imaginable, and then prove that our reformulations are valid as part of the
proof. We will explore this further below.)

We can also view our new encoding as being like a table constraint, but where the tuple
selector variable is channeled to the two index variables. If we wished to achieve generalised
arc consistency on the assigned variable V , we would simply reuse the inference techniques
discussed in Section 4.1. However, this would require introducing a pseudo-Boolean equality
variable v=n for each value in V ’s domain. This is potentially not what is desired, if the
range of the constants is large and V is only otherwise used in a bounds-consistent manner.
Therefore, instead of justifying that V does not take each value no longer present in feasible
parts of A in turn, we would like to assert a bounds change using a v≥n variable. This
does not immediately follow by RUP on its own, although it will if we repeat the iteration
technique used in creating the index variable, but iterating only over feasible array entries.

A downside to this approach is that it produces a proof containing O(m × n) steps to
justify each bounds propagation. As Michel et al. [24] explain, by storing the array in a
sorted manner, it is possible for a propagator to avoid looking at most array entries most of
the time, and so have better than O(m × n) performance in the typical case. We suspect
that this algorithm can be replicated in a proof efficiently, if we are prepared to establish a
set of ordering constraints at the start of the proof.

Finally, an observant reader might have noticed that deletions on the one-dimensional
array index will not unit propagate backwards to I and J . In fact, these deletions are RUP.

4.4 Not Equals
At this point, it should be clear how the not equals constraint can be handled: when one
variable A is instantiated to a value v, it follows using RUP that the other variable B cannot
also be v since the flag f would have to be both true and false to allow f → (A − B > 0) and
f → (B − A > 0) to hold simultaneously. However, there is another alternative, which we

CP 2022

25:10 An Auditable Constraint Programming Solver

will see is more efficient in some scenarios. Instead of deriving under a sequence of guesses
G that ∧G ∨ a=v → b=v, we could simply introduce the RUP constraint a=v + b=v ≥ 1,
independently of the guesses. Propagation of the not equals constraint for v would then
follow by simple unit propagation.

4.5 Autotabulation and Other Reformulations

Linear equality constraints can be defined and propagated as two linear inequalities. However,
sometimes a solver may wish to achieve generalised arc consistency on a linear equality.
This is NP-hard, but is still a good idea sometimes for small variables – for example, if
2X + 2Y + Z = 7 then Z must be odd, but this will not be inferred from the inequalities.
One way a solver might handle such constraints is by automatically turning the two linear
inequalities into a table constraint. An implementation of this process might, of course, be
buggy, and so we would like to prove that this tabulation is valid, rather than simply defining
the table constraint in the pseudo-Boolean model. This is indeed possible, using a more
advanced form of the kind of argument previously used to turn a 2D element constraint into
a 1D element constraint.

Let us start by finding the set of solutions to the constraint. For each solution, we
introduce an extension variable ts which is true if and only if that solution is selected, in the
same way as for a table constraint. We also introduce an extension variable g which is true if
and only if at least one of these ts variables is true. Next we perform and log a backtracking
search to find all of the solutions to the constraint, except that we use g as an additional
guessed assignment at every stage. At the end of the search, we have a proof that g must be
true, which in turn gives us an at-least-one constraint over the ts variables. We have now
created all the constraints we need to define a table constraint.

We expect that similar techniques will be useful for many other kinds of reformulation
as well, re-emphasising our ability to prove more than just the core solving process. One
modelling technique that likely cannot easily be handled this way is symmetry breaking
constraints. However, Bogaerts et al. [2] show that a slight extension to the VeriPB proof
system would make this possible: this raises the intriguing possibility of taking a symmetry
breaking lex or ordering constraint that is defined in a high level model, omitting it from the
pseudo-Boolean model, and then efficiently proving that the constraint is in fact valid.

5 An Implementation

We have implemented a basic constraint programming solver which supports proof logging
(see supplementary material). Our solver generally follows a conventional design, similar to
MiniCP [24], although we have chosen for novelty reasons to make use of some modern C++
features like lambdas and variant types instead of a pure object-oriented design. We were
not aiming for sheer speed, and so our solver does not include optimisations like multiple
propagation queues, backtrackable variables, stateful or support-tracking propagators, or
special handling of binary variables. The solver supports only integer variables, and imple-
ments the absolute value, all different, comparison (with half and full reification), element,
linear equality and inequality, minimum and maximum, and table constraints. We include
example programs implementing four of the five MiniCP benchmarks (a quadratic assignment
problem, n-queens, magic series, and magic square; the TSP example is not included because

S. Gocht, C. McCreesh, and J. Nordström 25:11

we do not yet have a circuit constraint), as well as the MiniZinc cake optimisation problem2,
the classic “send more money” and Crystal Maze problems, the world’s hardest Sudoku
puzzle3, and an odd-even sum problem using an auto-tabulated GAC sum constraint.

Throughout the development process, we have not tried particularly hard to produce a
solver which is free from bugs. Instead, our goal is to produce a solver that will not produce
undetectable incorrect outputs. The rest of this section describes the key aspects of the solver
design that involve proof logging, discusses what we have learned from using the VeriPB
system in a constraint programming setting, and evaluates its performance.

5.1 Constraint Compilation, or Why Trust the OPB File?
To create the OPB file, we use a single pass approach, outputting definitions as soon as
variables and constraints are generated. Variables are handled centrally, whilst each constraint
is responsible for providing its own pseudo-Boolean encoding. OPB creation is done purely
using text, and the solver stores only the model line numbers for certain constraints – it does
not explicitly store any pseudo-Boolean information.

An obvious difficulty with our proposed process is that this compilation from a CP model
to an OPB model is not verified. This is somewhat offset by the deliberate use of extremely
simple encodings, but one must ask: “why are the authors so sure that they have designed
and implemented the encoding correctly, particularly for fiddly global constraints?”. The
answer to this question is that we are not sure at all, and so we rely upon a special test system,
as follows. For a given constraint, we generate many different possible input domains for its
variables. For each set of inputs, we use a small generate-and-test program that provides
the full set of solutions to the constraint, making no use of the constraint programming
solver or any clever logic or programming. (This can be moderately slow, for example for
the element constraint.) We then use the constraint solver to solve the problem consisting
of just that constraint on those inputs, and verify that the set of solutions found this way
is identical. Finally, we verify the proof produced by this solving process: because this is
an enumeration problem, this verifies that the OPB file also has exactly the same set of
solutions (and additionally that the propagator found them all legitimately, although this is
not the main point of the test).

This process is not perfect, but it does severely reduce the scope for errors: for example, it
immediately flagged a typo where a reified greater than or equal constraint had accidentally
been implemented as a reified greater than constraint, and a bug when the index constraint
for an element constraint contained only out-of-range values.

5.2 Producing the Proofs
Recall that to produce a proof, we need to log our backtracking search, and certain variable-
value eliminations. In the design of our solver, we opted for a careful separation of the notion
of a variable and its current state: the former we represent as a handle, whilst the latter is
stored separately in a central location to allow for easy backtracking. It was therefore natural
to force every modification to a variable’s values to go through a common set of functions,
and to make these functions take a mandatory argument that can be either “no justification
needed”, “output a RUP statement for this”, or “call the following piece of code to produce
an explicit set of proof steps”. Making this argument mandatory forces constraint authors to
think explicitly about justifications, and avoids the potential for illicit modifications to be
hiding in places where they can not easily be found by inspecting a proof log.

2 https://www.minizinc.org/doc-2.5.5/en/modelling.html#an-arithmetic-optimisation-example
3 https://abcnews.go.com/blogs/headlines/2012/06/can-you-solve-the-hardest-ever-sudoku

CP 2022

https://www.minizinc.org/doc-2.5.5/en/modelling.html#an-arithmetic-optimisation-example
https://abcnews.go.com/blogs/headlines/2012/06/can-you-solve-the-hardest-ever-sudoku

25:12 An Auditable Constraint Programming Solver

For backtracking search, we treat guessing on a branching variable to be a special kind of
inference. Outputting the proof log then simply consists of tracing the search as backtracks
are performed. Again, at no point was it necessary to manipulate pseudo-Boolean constraints
or proof steps as anything other than simple strings created using a template.

5.3 Identifying Solver Bugs
Our experience has been that once the core solver is working and producing proofs for simple
problems, it is somewhat more common to have bugs in the proof-producing code for new
propagators than in the propagators themselves. Usually these bugs are extremely easy to
fix, because VeriPB immediately flags the faulty line of the proof, and our solver can include
a comment line immediately above any proof line saying exactly where in its source code that
line originated. Similarly, propagator bugs are usually obvious from proof logs. For example,
when we first implemented propagation for linear inequalities, we did not yet have a full
proof logging setup for variables with large domains. We therefore used a VeriPB feature
which allows for unchecked assertions to be included in the proof log (subject to an angry
warning being issued at the end of the verification process) so that the remainder of the
proofs could be verified. However, our implementation contained a bug, because one of the
authors did not realise they did not understand the rules for rounding and integer division
when both a variable and its coefficient are negative. Throughout conventional testing on
the remainder of the solver, we never saw a single wrong answer being produced by this bug
– but as soon as proof logging was implemented, we were told the exact line of code in our
solver that was incorrect, even though correct sets of solutions were still being produced. Of
course, one could claim that better testing would have identified this, but this relies upon
the tester having intimate knowledge of how the propagator works and remembering that
integer division of negative numbers could be a source of errors.

It can sometimes be harder to understand the problem when faulty proofs arise from
insufficient justifications. For example, for the absolute value constraint, one of the authors
had originally lazily assumed that its propagations would follow by a single RUP step in the
same way as for not equals – and indeed this is often but not quite always the case. (This
experience has left us extremely envious of the skills of authors of lazy clause generation
solvers, who are able to write similar propagators without the benefit of machine verification.)
This can lead to a proof verification error that only occurs several propagation steps later
than the actual bug: the verifier always tells us if something is wrong, but does not always
make it trivial to figure out where. However, because our solver forces all propagations to go
through a central function call, it is easy to change the way proof logs are written so that all
propagations are checked, including those which would usually be implicit.

5.4 Performance and Overheads
Having discussed the design and implementation of proof logging, we now talk about actually
using it. This section answers two questions: “does proof logging work at all?”, and “how
expensive is proof logging in practice when used on large problems?”.

To answer the second question, we must first establish whether our solver is “fast enough”
that its results are likely representative of what would be seen if proof logging were introduced
into a mature solver. For MiniCP, Michel et al. [24] include five benchmarks that are designed
to test solver speed: they specify an exact search order, and propagation strength for global
constraints, so that every solver is producing the same search tree for a fair speed comparison.
Their aim was not to have the best model or search for a problem, but rather to benchmark

S. Gocht, C. McCreesh, and J. Nordström 25:13

Table 1 Experimental results from our anonymous solver on six different problem instances. The
first four problems are from the MiniCP benchmark suite and have a fixed model, search order, and
propagation strength, to allow for a fair comparison between solvers. The final two problems are
relatively simple, but use further global constraints that are not supported in MiniCP.

QAP: a quadratic assignment optimisation problem with linear inequalities, not equal constraints,
a 2D element constraint, and large variables.
Runtimes: MiniCP: 16.9s OscaR: 7.1s Choco: 11.3s

Anon: 5.6s logging: 149.5s VeriPB: 232,655.1s
Statistics: propagators: 355 recursions: 125,805 inferences: 4,521,801

OPB size: 6.4MBytes log size: 19GBytes
RUP steps: 39,170,568 RPN steps: 413,295 red steps: 101,394

Magic Series: finding the only magic series of length 300, and proving it is unique. Uses linear
equality and reified equality constraints.
Runtimes: MiniCP: 29.6s OscaR: 8.8s Choco: 29.8s

Anon: 8.2s logging: 425.2s VeriPB: est. 39 days
Statistics: propagators: 90,301 recursions: 1,193 inferences: 15,584,073

OPB size: 108MBytes log size: 12GBytes
RUP steps: 7,923,342 RPN steps: 342,401 red steps: 358,800

Magic Square: finding the first 10,000 magic squares of size 5. Uses sum, not equal, and less
than constraints.
Runtimes: MiniCP: 61.1s OscaR: 32.3s Choco: 32.9s

Anon: 31.0s logging: 1894.1s VeriPB: 108,772.8s
Statistics: propagators: 315 recursions: 6,042,079 inferences: 92,891,165

OPB size: 145KBytes log size: 100GBytes
RUP steps: 141,528,806 RPN steps: 70,946,952 red steps: 2,550

Queens: finding the first solution to the 88 queens problem. Uses not equals constraints.
Runtimes: MiniCP: 876.2s OscaR: 477.8s Choco: 438.8s

Anon: 410.0s logging: 3450.5s VeriPB: 60,643.7s
Statistics: propagators: 11,484 recursions: 49,339,390 inferences: 535,852,330

OPB size: 8.9M log size: 104GBytes
RUP steps: 50,130,687 RPN steps: 0 red steps: 31,152

Crystal Maze on the usual 8-vertex graph, all solutions. Uses GAC all-different, absolute
value, and sum constraints.
Runtimes: Anon: 0.01s logging: 0.13s VeriPB: 6.3s
Statistics: propagators: 35 recursions: 259 inferences: 8,737

OPB size: 60K log size: 2.6MBytes
RUP steps: 32,903 RPN steps: 6,685 red steps: 1,496

With autotabulation and GAC propagation on the sum constraints:
Runtimes: Anon: 0.01s logging: 0.06s VeriPB: 3.9s
Statistics: propagators: 52 recursions: 139 inferences: 2,601

OPB size: 60K log size: 2.0MBytes
RUP steps: 29,467 RPN steps: 102 red steps: 2,958

Sudoku on Arto Inkala’s “world’s hardest Sudoku puzzle”, all solutions. Uses GAC all-different
and equals constraints.
Runtimes: Anon: 0.03s logging: 0.05s VeriPB: 0.52s
Statistics: propagators: 48 recursions: 103 inferences: 1,388

OPB size: 320K log size: 484KBytes
RUP steps: 4,561 RPN steps: 460 red steps: 0

CP 2022

25:14 An Auditable Constraint Programming Solver

solvers performing the same well-defined task. We support enough global constraints (linear
inequalities, sum, not equals, reified equals, a special element constraint, and less than) to
implement four of these five benchmarks; we do not yet support the circuit global constraint
for the fifth. In the first four rows of Table 1 we present computational results from a machine
with dual Intel Xeon E5-2697A v4 CPUs, 512GBytes RAM, and a pair of solid state drives
in a RAID 0 configuration, running Ubuntu 20.04.3 LTS, and benchmarking against the
versions of the other solvers included in the supplementary material provided by Michel et al.
In each case our solver is faster than the fastest of MiniCP, OscaR, and Choco, although
sometimes only by a few percent. We therefore believe that the results that follow cannot be
said to be unfairly optimistic due to the use of a slow solver.

Table 1 also shows runtimes for running our solver with proof logging enabled, together
with statistics showing the size of the OPB models and VeriPB proof logs produced, and
the number of RUP steps, groups of cutting planes steps (VeriPB works with sequences of
cutting planes steps in reverse Polish notation, RPN, rather than one step per line), and
redundance-based strengthening steps (red; two such steps are used to introduce an extension
variable). On the four MiniCP benchmarks we see a slowdown of between 8.4 and 61.1 from
proof logging. This should not be particularly surprising: without proof logging, our solver is
making between eight hundred thousand and three million successful inferences per second,
and the proof logs to justify these inferences range from ten to over a hundred GBytes in
size. Furthermore, our implementation of proof logging is deliberately pessimal. We make
use of C++ text output streams for file writing, which are notoriously inefficient. We write
comments for most proof log lines generated, we make use of expressive variable names
(which require several string concatenation operations and a hash table lookup for each
variable written out), and proof lines are manipulated as strings for ease of implementation;
all of these decisions are extremely helpful for exploratory research, but not for performance.
Finally, these MiniCP benchmarks make use of only relatively simple and extremely fast
propagators, which is where proof logging is most expensive. We therefore consider these
performance results to be close to a worst case scenario, and would not be surprised if the
overheads could be cut by at least a factor of five for some problems if implemented in a
production solver that aimed purely for performance rather than for research and teaching.

Returning to the first question, we were able to verify the entire proofs for three of the
four MiniCP problems; based upon the first ten percent of the proof for the remaining magic
series problem, VeriPB estimates it will take 39 days to verify. We were able to verify entire
proofs for smaller instances of the magic series problem. We have also produced and verified
proofs for a range of other problems that make heavier use of global constraints – we show
two of these in the bottom of Table 1, and other example problems and per-constraint tests
are included in our supplementary material. Considering these results, and all the bugs that
have been identified during development, we are comfortable in claiming that proof logging
can be effective in practice. Although it may not (yet) scale practically to some of the more
challenging combinatorial benchmark instances, it is already able to handle moderately sized
problems involving several different global constraints, large variables, and reformulation.

6 Conclusion and Future Work

Proof logging gives us a way to trust outputs, not solvers. Trusting solvers seem to be a long
way from being a practical reality for for constraint programming: even relatively simple
propagators like all different have resisted attempts at formally verified implementation [8]
even without the extensive optimisations used by modern solvers [11]. In contrast, we have

S. Gocht, C. McCreesh, and J. Nordström 25:15

shown that, with the right proof format, it is relatively easy to add proof logging to a wide
variety of propagators, without requiring the proof verifier to understand anything about
constraint programming – and this does not stand in the way of propagator optimisations
such as greediness and incrementality.

There is still a lot of work to do before proof logging can be used by everyone all of the
time. Firstly, there are many more global constraints and propagators to consider. Most of
these will be straightforward, and will re-use existing strategies for proof logging in familiar
ways. However, some will not be, and it is an open question as to whether cutting planes
with extension variables give a sufficiently strong system to provide practical proof logging in
every situation. We expect that recent work in proof logging for symmetry and dominance
relations [2] might be necessary to justify certain propagators, as well as for reformulations
involving symmetries, and would be interested in a deeper investigation into the relationship
between constraint programming propagators and proof systems (with the caveat that “this
system polynomially simulates natural deduction and so it can do everything” is not a helpful
answer unless the polynomial is of very low order and with small constants).

Secondly, we must think about performance. Using formatted text output and string
lookups to produce proof logs is useful for development and exploratory purposes, but for a
production solver a better approach is probably needed. Verification performance is also a
concern, although we have many reasons to be optimistic that this will improve. For example,
very small changes to how proofs are written can give a huge improvement to verification
times. We discussed two different ways of proof logging the not equals constraint, one of
which involved justifying every propagation subject to the current guessed assignments, and
the other which produced new clauses to assist unit propagation. On the MiniCP queens
benchmark, using the former would have produced a 1.1TByte proof log that would take an
estimated 138 days to verify, rather than a 100GByte proof that could be verified in under
a day. If we are prepared to put slightly more cleverness into a solver, and abandon the
gratuitous use of RUP steps in favour of a little more logic, we expect that proof sizes for
some other constraints can be reduced by a similar factor.

An automated tool that performs proof minimisation would also be useful in this respect.
Although potentially expensive to run, this would be very useful for auditability where proofs
are to be stored, shared, and potentially verified more than once by different people. Such
a tool could also provide annotations that would make RUP steps much quicker to verify –
such an approach is already used for formally verified verifiers for DRAT, which actually
verify a simplified format called LRAT [6].

On the other hand, relatively slow verification is not a fatal flaw. Proof logging is
very good at catching solver bugs that will not be detected by conventional testing, even
on relatively small instances. Because the same logic and code paths in a solver can be
used whether or not proof logging is enabled, it is a useful feature to support even if it is
not enabled all of the time. And, of course, many useful problems with serious real-world
consequences derive most of their difficulty from the variety of constraints involved, rather
than from being close to the limit of what we can solve computationally.

And thirdly, although we have a reasonably good solution for being confident in our
translation from a constraint programming model into OPB, we have not discussed the
further difficulty of verifying compilation from high level languages like Essence or MiniZinc.
Perhaps it would be worth investigating techniques from formally-verified compilers to help
with this translation.

CP 2022

25:16 An Auditable Constraint Programming Solver

References
1 Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian Miguel, and Peter Nightingale. Meta-

morphic testing of constraint solvers. In John N. Hooker, editor, Principles and Practice of
Constraint Programming - 24th International Conference, CP 2018, Lille, France, August
27-31, 2018, Proceedings, volume 11008 of Lecture Notes in Computer Science, pages 727–736.
Springer, 2018. doi:10.1007/978-3-319-98334-9_46.

2 Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Certified symmetry
and dominance breaking for combinatorial optimisation. In Thirty-Sixth AAAI Conference on
Artificial Intelligence, AAAI 2022, 2022.

3 Samuel R. Buss and Jakob Nordström. Proof complexity and SAT solving. In Armin Biere,
Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability,
volume 336 of Frontiers in Artificial Intelligence and Applications, chapter 7, pages 233–350.
IOS Press, 2nd edition, February 2021.

4 Chiu Wo Choi, Warwick Harvey, J. H. M. Lee, and Peter J. Stuckey. Finite domain bounds
consistency revisited. In AI 2006: Advances in Artificial Intelligence, 19th Australian Joint
Conference on Artificial Intelligence, Hobart, Australia, December 4-8, 2006, Proceedings, pages
49–58, 2006. doi:10.1007/11941439_9.

5 William J. Cook, Collette R. Coullard, and György Turán. On the complexity of cutting-
plane proofs. Discrete Applied Mathematics, 18(1):25–38, 1987. doi:10.1016/0166-218X(87)
90039-4.

6 Luís Cruz-Filipe, Marijn J. H. Heule, Warren A. Hunt Jr., Matt Kaufmann, and Peter Schneider-
Kamp. Efficient certified RAT verification. In Leonardo de Moura, editor, Automated Deduction
- CADE 26 - 26th International Conference on Automated Deduction, Gothenburg, Sweden,
August 6-11, 2017, Proceedings, volume 10395 of Lecture Notes in Computer Science, pages
220–236. Springer, 2017. doi:10.1007/978-3-319-63046-5_14.

7 Jordan Demeulenaere, Renaud Hartert, Christophe Lecoutre, Guillaume Perez, Laurent Perron,
Jean-Charles Régin, and Pierre Schaus. Compact-table: Efficiently filtering table constraints
with reversible sparse bit-sets. In Michel Rueher, editor, Principles and Practice of Constraint
Programming - 22nd International Conference, CP 2016, Toulouse, France, September 5-9,
2016, Proceedings, volume 9892 of Lecture Notes in Computer Science, pages 207–223. Springer,
2016. doi:10.1007/978-3-319-44953-1_14.

8 Catherine Dubois. Formally verified constraints solvers: a guided tour. CICM. Invited talk,
2020.

9 Leon Eifler and Ambros M. Gleixner. A computational status update for exact rational mixed
integer programming. In Mohit Singh and David P. Williamson, editors, Integer Programming
and Combinatorial Optimization - 22nd International Conference, IPCO 2021, Atlanta, GA,
USA, May 19-21, 2021, Proceedings, volume 12707 of Lecture Notes in Computer Science,
pages 163–177. Springer, 2021. doi:10.1007/978-3-030-73879-2_12.

10 Jan Elffers, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Justifying all differ-
ences using pseudo-Boolean reasoning. In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence
Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial
Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 1486–1494. AAAI
Press, 2020. URL: https://aaai.org/ojs/index.php/AAAI/article/view/5507.

11 Ian P. Gent, Ian Miguel, and Peter Nightingale. Generalised arc consistency for the alldifferent
constraint: An empirical survey. Artif. Intell., 172(18):1973–2000, 2008. doi:10.1016/j.
artint.2008.10.006.

12 Xavier Gillard, Pierre Schaus, and Yves Deville. SolverCheck: Declarative testing of con-
straints. In Thomas Schiex and Simon de Givry, editors, Principles and Practice of Constraint
Programming - 25th International Conference, CP 2019, Stamford, CT, USA, September 30
- October 4, 2019, Proceedings, volume 11802 of Lecture Notes in Computer Science, pages
565–582. Springer, 2019. doi:10.1007/978-3-030-30048-7_33.

https://doi.org/10.1007/978-3-319-98334-9_46
https://doi.org/10.1007/11941439_9
https://doi.org/10.1016/0166-218X(87)90039-4
https://doi.org/10.1016/0166-218X(87)90039-4
https://doi.org/10.1007/978-3-319-63046-5_14
https://doi.org/10.1007/978-3-319-44953-1_14
https://doi.org/10.1007/978-3-030-73879-2_12
https://aaai.org/ojs/index.php/AAAI/article/view/5507
https://doi.org/10.1016/j.artint.2008.10.006
https://doi.org/10.1016/j.artint.2008.10.006
https://doi.org/10.1007/978-3-030-30048-7_33

S. Gocht, C. McCreesh, and J. Nordström 25:17

13 Stephan Gocht, Ross McBride, Ciaran McCreesh, Jakob Nordström, Patrick Prosser, and
James Trimble. Certifying solvers for clique and maximum common (connected) subgraph
problems. In Helmut Simonis, editor, Principles and Practice of Constraint Programming -
26th International Conference, CP 2020, Louvain-la-Neuve, Belgium, September 7-11, 2020,
Proceedings, volume 12333 of Lecture Notes in Computer Science, pages 338–357. Springer,
2020. doi:10.1007/978-3-030-58475-7_20.

14 Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Subgraph isomorphism meets
cutting planes: Solving with certified solutions. In Christian Bessiere, editor, Proceedings of
the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, pages
1134–1140. ijcai.org, 2020. doi:10.24963/ijcai.2020/158.

15 Stephan Gocht and Jakob Nordström. Certifying parity reasoning efficiently using pseudo-
Boolean proofs. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021,
Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The
Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual
Event, February 2-9, 2021, pages 3768–3777. AAAI Press, 2021. URL: https://ojs.aaai.
org/index.php/AAAI/article/view/16494.

16 Evguenii I. Goldberg and Yakov Novikov. Verification of proofs of unsatisfiability for CNF
formulas. In Design, Automation and Test in Europe Conference (DATE), pages 10886–10891.
IEEE Computer Society, 2003.

17 Warwick Harvey and Joachim Schimpf. Bounds consistency techniques for long linear con-
straints. In Proceedings of TRICS: Techniques foR Implementing Constraint programming
Systems, pages 39–46, 2002.

18 Marijn Heule, Warren A. Hunt Jr., and Nathan Wetzler. Trimming while checking clausal proofs.
In Formal Methods in Computer-Aided Design, FMCAD 2013, Portland, OR, USA, October
20-23, 2013, pages 181–188. IEEE, 2013. URL: http://ieeexplore.ieee.org/document/
6679408/.

19 Marijn Heule, Warren A. Hunt Jr., and Nathan Wetzler. Verifying refutations with exten-
ded resolution. In Maria Paola Bonacina, editor, Automated Deduction - CADE-24 - 24th
International Conference on Automated Deduction, Lake Placid, NY, USA, June 9-14, 2013.
Proceedings, volume 7898 of Lecture Notes in Computer Science, pages 345–359. Springer,
2013. doi:10.1007/978-3-642-38574-2_24.

20 Linnea Ingmar and Christian Schulte. Making compact-table compact. In John N. Hooker,
editor, Principles and Practice of Constraint Programming - 24th International Conference,
CP 2018, Lille, France, August 27-31, 2018, Proceedings, volume 11008 of Lecture Notes in
Computer Science, pages 210–218. Springer, 2018. doi:10.1007/978-3-319-98334-9_14.

21 Evelyn Lamb. Two-hundred-terabyte maths proof is largest ever. Nature, 545:17–18, 2016.
22 Christophe Lecoutre. STR2: optimized simple tabular reduction for table constraints. Con-

straints An Int. J., 16(4):341–371, 2011. doi:10.1007/s10601-011-9107-6.
23 Ross M. McConnell, Kurt Mehlhorn, Stefan Näher, and Pascal Schweitzer. Certifying al-

gorithms. Comput. Sci. Rev., 5(2):119–161, 2011. doi:10.1016/j.cosrev.2010.09.009.
24 Laurent D. Michel, Pierre Schaus, and Pascal Van Hentenryck. MiniCP: a lightweight

solver for constraint programming. Math. Program. Comput., 13(1):133–184, 2021. doi:
10.1007/s12532-020-00190-7.

25 Olga Ohrimenko, Peter J. Stuckey, and Michael Codish. Propagation = lazy clause generation.
In Christian Bessiere, editor, Principles and Practice of Constraint Programming - CP 2007,
13th International Conference, CP 2007, Providence, RI, USA, September 23-27, 2007, Pro-
ceedings, volume 4741 of Lecture Notes in Computer Science, pages 544–558. Springer, 2007.
doi:10.1007/978-3-540-74970-7_39.

26 Adrian Rebola-Pardo and Luís Cruz-Filipe. Complete and efficient DRAT proof checking. In
Nikolaj Bjørner and Arie Gurfinkel, editors, 2018 Formal Methods in Computer Aided Design,
FMCAD 2018, Austin, TX, USA, October 30 - November 2, 2018, pages 1–9. IEEE, 2018.
doi:10.23919/FMCAD.2018.8602993.

CP 2022

https://doi.org/10.1007/978-3-030-58475-7_20
https://doi.org/10.24963/ijcai.2020/158
https://ojs.aaai.org/index.php/AAAI/article/view/16494
https://ojs.aaai.org/index.php/AAAI/article/view/16494
http://ieeexplore.ieee.org/document/6679408/
http://ieeexplore.ieee.org/document/6679408/
https://doi.org/10.1007/978-3-642-38574-2_24
https://doi.org/10.1007/978-3-319-98334-9_14
https://doi.org/10.1007/s10601-011-9107-6
https://doi.org/10.1016/j.cosrev.2010.09.009
https://doi.org/10.1007/s12532-020-00190-7
https://doi.org/10.1007/s12532-020-00190-7
https://doi.org/10.1007/978-3-540-74970-7_39
https://doi.org/10.23919/FMCAD.2018.8602993

25:18 An Auditable Constraint Programming Solver

27 Olivier Roussel and Vasco M. Manquinho. Input/output format and solver requirements for
the competitions of pseudo-Boolean solvers. Revision 2324. Available at http://www.cril.
univ-artois.fr/PB16/format.pdf, January 2016.

28 Peter J. Stuckey. Certifying optimality in constraint programming, February 2019. Talk at
KTH Royal Institute of Technology.

29 Julian R. Ullmann. Partition search for non-binary constraint satisfaction. Inf. Sci.,
177(18):3639–3678, 2007. doi:10.1016/j.ins.2007.03.030.

30 Allen Van Gelder. Verifying RUP proofs of propositional unsatisfiability. In 10th
International Symposium on Artificial Intelligence and Mathematics (ISAIM), 2008.
http://isaim2008.unl.edu/index.php?page=proceedings.

31 Michael Veksler and Ofer Strichman. A proof-producing CSP solver. In Maria Fox and David
Poole, editors, Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010. AAAI Press, 2010. URL: http:
//www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1754.

32 Hélène Verhaeghe. The extensional constraint. PhD thesis, Catholic University of Louvain,
Louvain-la-Neuve, Belgium, 2021. URL: http://hdl.handle.net/2078.1/252859.

33 Nathan Wetzler, Marijn Heule, and Warren A. Hunt Jr. DRAT-trim: Efficient checking and
trimming using expressive clausal proofs. In Carsten Sinz and Uwe Egly, editors, Theory
and Applications of Satisfiability Testing - SAT 2014 - 17th International Conference, Held
as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014.
Proceedings, volume 8561 of Lecture Notes in Computer Science, pages 422–429. Springer,
2014. doi:10.1007/978-3-319-09284-3_31.

http://www.cril.univ-artois.fr/PB16/format.pdf
http://www.cril.univ-artois.fr/PB16/format.pdf
https://doi.org/10.1016/j.ins.2007.03.030
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1754
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1754
http://hdl.handle.net/2078.1/252859
https://doi.org/10.1007/978-3-319-09284-3_31

From Cliques to Colorings and Back Again
Marijn J. H. Heule #

Carnegie Mellon University, Pittsburgh, PA, USA

Anthony Karahalios #

Carnegie Mellon University, Pittsburgh, PA, USA

Willem-Jan van Hoeve #

Carnegie Mellon University, Pittsburgh, PA, USA

Abstract
We present an exact algorithm for graph coloring and maximum clique problems based on SAT
technology. It relies on four sub-algorithms that alternatingly compute cliques of larger size and
colorings with fewer colors. We show how these techniques can mutually help each other: larger
cliques facilitate finding smaller colorings, which in turn can boost finding larger cliques. We evaluate
our approach on the DIMACS graph coloring suite. For finding maximum cliques, we show that our
algorithm can improve the state-of-the-art MaxSAT-based solver IncMaxCLQ, and for the graph
coloring problem, we close two open instances, decrease two upper bounds, and increase one lower
bound.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming;
Mathematics of computing → Graph coloring

Keywords and phrases Graph coloring, maximum clique, Boolean satisfiability

Digital Object Identifier 10.4230/LIPIcs.CP.2022.26

Supplementary Material Software (Source Code and Log Files of Experiments):
https://github.com/marijnheule/clicolcom

archived at swh:1:dir:2e1f585e920ed0805002916e31263acdd04746ea

Funding Marijn J. H. Heule: Partially supported by NSF under grant CCF-2006363.
Anthony Karahalios: Partially supported by Office of Naval Research Grant No. N00014-21-1-2240.
Willem-Jan van Hoeve: Partially supported by Office of Naval Research Grant No. N00014-21-1-2240
and National Science Foundation Award #1918102.

1 Introduction

Given a graph, the vertex coloring problem asks to label each vertex of the graph with a
color such that adjacent vertices have different labels, using the minimum number of colors
(the coloring number). A closely related problem is the maximum clique problem, which asks
to find a subset of vertices that are pairwise adjacent, of maximum size (the clique number).
Both are NP-hard combinatorial optimization problems at the heart of practical applications
including scheduling, timetabling, and network analysis [11, 36].

Many different algorithms have been proposed to solve vertex coloring and maximum
clique problems in practice. One stream of research focuses on dedicated exact and heuristic
algorithms (e.g., Cliquer [19] and DSATUR [1]), while another stream uses generic meth-
odologies, such as integer programming and column generation (e.g., [7, 17,18]), constraint
programming (e.g., [4,21]), or Boolean satisfiability (e.g., [6,13,32]). An important milestone
for these developments was the second DIMACS challenge on cliques, coloring, and satis-
fiability that was launched in 1993 [11]. To our knowledge, for the DIMACS graph coloring
challenge, several instances remain unsolved and in the past eight years only a few instances
were closed: wap01a in 2021 [26], 5-FullIns_4 in 2021 [31], and 4-FullIns_5 in 2014 [14,38].
Our method solves these instances as well (and quickly). Similarly, only a few improved
bounds have been found that do not close instances: C2000.9 in 2021 [33] and DSJC250.1 in
2020 [20]. Before this, many instances were closed around 2012 [4,8,15,27–29,35] and earlier.

© Marijn J. H. Heule, Anthony Karahalios, and Willem-Jan van Hoeve;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 26; pp. 26:1–26:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:marijn@cmu.edu
mailto:akarahal@andrew.cmu.edu
https://orcid.org/0000-0001-9479-4080
mailto:vanhoeve@andrew.cmu.edu
https://orcid.org/0000-0002-0023-753X
https://doi.org/10.4230/LIPIcs.CP.2022.26
https://github.com/marijnheule/clicolcom
https://github.com/marijnheule/clicolcom
https://archive.softwareheritage.org/swh:1:dir:2e1f585e920ed0805002916e31263acdd04746ea;origin=https://github.com/marijnheule/clicolcom;visit=swh:1:snp:e404d8f51c434223d70d294d9eeb6eb27b1dd262;anchor=swh:1:rev:2270043e92e88aee5763ecec48e53f5dc441ba2b
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 From Cliques to Colorings and Back Again

input
graph

find initial clique:
IncMaxCLQ [13]

find smaller
coloring: SAT-I

find larger
clique: SAT-II

find minimum
coloring: SAT-III

minimum
coloring

maximum clique

k-cliquek-clique

coloring

clique

maximum
clique

Figure 1 Illustration of the CliColCom algorithm to find a maximum clique and a minimum
vertex coloring. The solver IncMaxCLQ is based on MaxSAT. The SAT-I encoding uses a given
clique to quickly find colorings. The SAT-II encoding uses these colorings to find a larger clique.
Once the maximum clique is found, encoding SAT-III is used to find the minimum coloring.

In this work, we first revisit the performance of Boolean satisfiability (SAT) solvers on
graph coloring and maximum clique problems. The best known maximum clique solver
called IncMaxCLQ [13] is based on MaxSAT technology, which is able to close all but four
instances of the DIMACS Clique benchmark suite and find maximum cliques for all but eight
instances of the DIMACS Coloring benchmark suite. For graph coloring, the best known
solver is the branch-and-bound hybrid CP/SAT solver gc-cdcl [6]. We show that a direct
encoding coupled with either the local search SAT solver DDFW [9] or CaDiCaL [3] provides
surprisingly strong results. For the 69 DIMACS coloring instances where the coloring number
equals the clique number, combining IncMaxCLQ and one of DDFW or CaDiCaL solves 54
instances in under ten minutes.

We therefore concentrate on two cases – finding stronger colorings for instances where
we quickly have a maximum clique, and improving both cliques and colorings for instances
where we do not quickly find a maximum clique, which are often those where the coloring
number does not equal the clique number. We propose an algorithm, named CliColCom,
(derived from “cliques, colorings, and communication”) that consists of four sub-algorithms
with an inner loop that alternates between finding cliques of larger size and colorings with
fewer colors (see Fig. 1). Specifically, we use cliques to define a symmetry-breaking predicate
based on a variable ordering for the coloring problem (using encoding SAT-I), similar to
ones used by Van Gelder [32] and Velev [34]. Conversely, we use colorings to formulate
the maximum clique problem (using encoding SAT-II), similar to the MaxSAT encoding
by Li [13]. We continue this alternating process until a maximum clique is found, which
serves as input to the final sub-algorithm that finds a minimum coloring (using encoding
SAT-III). This approach can be viewed as a new form of communication between SAT solvers.
While one way that SAT solvers communicate is through exchanging learned clauses like in
portfolio-based parallel SAT [5], we demonstrate how SAT solvers can also pass solutions
back and forth, using the other solver’s solution in its problem’s clauses.

We show that CliColCom can find larger cliques than IncMaxCLQ for two of the eight
DIMACS Coloring instances that IncMaxCLQ cannot solve, and for the vertex coloring
problem closes two open instances (wap02a, wap08a), improves one lower bound (r1000.1c),
and improves two upper bounds (wap03a, wap04a).

The rest of this paper is organized as follows. In Section 2 we provide formal definitions
and notation for graph coloring and maximum clique problems. Section 3 presents the details
of our algorithm. In Section 4 we provide an overview of the used tools. The experimental
evaluation is presented in Section 5, and we conclude in Section 6.

M. J. H. Heule, A. Karahalios, and W.-J. van Hoeve 26:3

2 Graph Coloring and Maximum Clique Problems

We first recall the definitions of cliques and colorings [22]. Let G = (V, E) be an undirected
graph with vertex set V and edge set E. A k-clique is a subset of k vertices that are pairwise
adjacent. A maximum clique of G is a clique in G of maximum size. The size of a maximum
clique is called the clique number of G.

An independent set is a subset of vertices that are pairwise non-adjacent. A k-coloring of
G is a partition of V into k independent sets V1, V2, . . . , Vk. The independent sets represent
the color classes of the coloring. The coloring number of G is the size of a coloring that uses
the minimum number of colors.

The existence of a k-clique proves a lower bound of k on the clique number, and a
k-coloring proves an upper bound of k on the coloring number. To prove the dual bounds,
one must show that a k + 1-clique and k − 1-coloring do not exist. The existence of a k-clique
proves a lower bound of k for the coloring number. Both the vertex coloring and max clique
problems are NP-hard, so computational results of algorithms are of interest [12,16,36].

3 CliColCom Algorithm

In this section we present an exact algorithm for graph coloring that also contains an exact
algorithm for the maximum clique problem. It consists of four sub-algorithms as in Fig. 1.
The algorithm for the maximum clique problem is obtained by omitting sub-problem SAT-III.
We next describe each of the sub-algorithms below.

3.1 IncMaxCLQ: Find an Initial Clique
The input to the first sub-algorithm is a graph G = (V, E). To obtain an initial clique, we
run an exact MaxSAT solver called IncMaxCLQ [13] with a time limit; we use one second in
our experiments. If IncMaxCLQ finds a maximum clique and proves optimality, then we
immediately go to step SAT-III using this maximum clique. Otherwise the clique returned
by IncMaxCLQ will be used for the SAT-I encoding.

3.2 SAT-I: Find a Coloring
The next sub-algorithm called SAT-I takes as input a graph G = (V, E), a k-clique C, and
an upper bound b ≥ k. Its purpose is to find a coloring of good quality. When we first enter
this sub-algorithm, we determine b by running the DSATUR graph coloring heuristic. In
subsequent calls, b will be the best known coloring number.

The SAT-I encoding is optimized for local search solvers and asks for the existence of
a b-coloring of G. It has two sets of constraints: 1) each vertex has at least one color; and
2) adjacent vertices are colored differently. The direct encoding uses color variables xv,i

which denote that vertex v ∈ V has color i ∈ {1, . . . , b}. The first constraint consists simply
of a single clause of b literals per vertex:

(xv,1 ∨ · · · ∨ xv,b) for v ∈ V.

Note that this only enforces that there is at least one color per vertex instead of exactly one
color per vertex. The latter would include clauses of the form (xv,i ∨ xv,j) for 1 ≤ i < j ≤ b.
These clauses however are known to be “blocked” and top-tier SAT solvers eliminate them [10].

The second constraint uses the following clauses:

(xu,i ∨ xv,i) for (u, v) ∈ E, i ∈ {1, . . . , b}.

CP 2022

26:4 From Cliques to Colorings and Back Again

To break the color symmetry, we add unit clauses that assign a different color to each
vertex in the given clique C, which is a common practice [32].

The encoding is used as follows. We start with bound b − 1 and run a local search solver
for a limited time (or number of flips). If no coloring is found within the limit, we report
the previously found b-coloring. Otherwise, we decrease b by one unit and repeat. We thus
return the best coloring we can find within a limited time. Note that if the encoding for
b = |C| is satisfiable, then we have found the coloring number of G.

3.3 SAT-II: Find a Larger Clique
The third sub-algorithm uses the fact that a vertex coloring is a partition of the graph into
independent sets. The coloring from SAT-I is used to define these independent sets. For a
graph G = (V, E) and a p-partition {V1, . . . , Vp} of V into independent sets, the encoding
SAT-II asks whether there exists a clique of size c, where c ≤ p.

This encoding uses clique variables vi,s, which denote that the s-th vertex in Vi is part of
the clique. Apart from the clique variables, the encoding uses relaxation variables ri denoting
that no vertex from partition Vi is used in the clique. The clauses have the following form:

(ri ∨ vi,1 ∨ · · · ∨ vi,|Vi|) for i ∈ {1, . . . , p}.

Additionally we have constraints between partitions enforcing that two vertices from
different partitions cannot be in a clique if there is no edge between them in the graph:

(vi,s ∨ vj,t) for 1 ≤ i < j ≤ p, s ∈ {1 . . . , |Vi|}, t ∈ {1, . . . , |Vj |}, (vi,s, vj,t) /∈ E.

We could have included similar clauses for pairs of vertices within a partition. However,
these clauses are blocked as well and top-tier solvers would remove them.

Finally, we have a constraint stating that at most k = p − c of the relaxation variables
can be assigned to true. We use the sequential counter encoding proposed by Sinz to enforce
the “at most p − c” constraint [25]. This encoding introduces O(pk) auxiliary variables and
O(pk) additional clauses.

The sub-algorithm starts with c = |C| + 1 where C is the largest clique found so far by
either IncMaxCLQ or SAT-II itself. We solve the encoding with an exact CDCL solver (see
Section 4). If the formula is unsatisfiable, then the largest clique has size c−1. Otherwise, we
have found a clique C ′ of size c and continue by increasing the bound c += 1 and repeating
this sub-algorithm. If the SAT-II encoding cannot be solved within a certain time limit, we
return to sub-algorithm SAT-I to find a smaller vertex coloring, using the improved clique
C ′. Due the time limits imposed on SAT-I and SAT-II, we could in theory repeatedly solve
them with the same clique and the same coloring. For that reason, we increase the time limit
for SAT-II with a multiplicative factor when the coloring and the clique have not changed,
so that sub-algorithm SAT-II becomes exact. Therefore, SAT-II will eventually return a
maximum clique, unless a global time limit on the overall algorithm is exceeded.

3.4 SAT-III: Find an Optimal Coloring
The final sub-algorithm uses encoding SAT-III, which generalizes SAT-I and is optimized for
CDCL solvers. The sub-algorithm takes as input a graph G = (V, E), a k-clique C, and a
lower bound b. The first part of the encoding is identical to the SAT-I encoding with G, C,
and b as input.

We additionally add clauses to break color symmetries. To this end, we first construct a
vertex ordering O, by starting with the vertices in C in arbitrary order. We then iteratively
extend the ordering by adding the vertex with the most neighbors in O, breaking ties by

M. J. H. Heule, A. Karahalios, and W.-J. van Hoeve 26:5

highest degree. We break the color symmetries for the vertices from k + 1 to |O| in the
ordering. Let vi denote the i-th vertex in ordering O. The encoding enforces that if none of
the first i − 1 vertices in O uses the color c, then vertex vi must have a color less or equal to
c. The clauses have the following form:

(xv1,c ∨ xv2,c ∨ · · · ∨ xvi−1,c ∨ xvi,d) for d ∈ {c + 1, . . . , b}, i ∈ {k + 1, . . . , |O|}.

The sub-algorithm uses this encoding as follows: starting with b = k, we solve the formula
using an exact CDCL solver. If the formula is found to be unsatisfiable, meaning that G

requires more than b colors, the bound is increased b += 1 and we repeat. This is continued
until the formula is satisfiable. The final bound equals the coloring number of G.

3.5 Example Run
We illustrate the flow between the sub-algorithms using graph r1000.1c. This instance has
clique number 92, while the best known lower and upper bound on the coloring number are
96 and 98, respectively [4]. We first run IncMaxCLQ, which returns a clique of size 82 within
one second (which it cannot improve within reasonable time).

We next run the SAT-I encoding with bound b = 110 (from the coloring found by
DSATUR). The local search solver UBCSAT with the WalkSAT algorithm lowers the upper
bound one by one until it reaches b = 102 and times out (i.e., reaching a million flips without
finding a coloring). Each step takes a few seconds. The 103-coloring is used in the SAT-II
encoding. We start with c = 83 (the size of the clique + 1). The solver CaDiCaL finds a
satisfying assignment in a fraction of a second. This also holds for the bounds c ∈ {84, . . . , 92}.
The bound c = 93 times out (reaches a million conflicts).

We return to SAT-I using the 92-clique. This helps the local search solver and now it can
find a coloring for b = 102 and can even lower it to 98 before timing out on b = 97. The
98-coloring is used in SAT-II. This time CaDiCaL can prove optimality of c = 92 (the c = 93
instance is unsatisfiable). Now that the maximum clique has been determined, we switch
to SAT-III to determine the coloring number. The clique of size 92 is extended to a vertex
ordering. The solver CaDiCaL is used to solve the instances with bounds b ∈ {92, . . . , 97}.
The bounds up to b = 96 are unsatisfiable, while b = 97 times out (24 hours). Therefore, we
report an improved lower bound of 97 on the coloring number for this open instance.

4 SAT Solving Paradigms

The best SAT-solving paradigm differs for each of the encodings proposed in the prior
section. Because some sub-algorithms work by solving a sequence of SAT instances, the use
of MaxSAT solvers could be also be explored. Below we will discuss the ones used during
our experiments.

Conflict-Driven Clause Learning. The most effective and well-known exact SAT-solving
paradigm is conflict-driven clause learning (CDCL) [24]. In the context of maximum clique
and graph coloring, CDCL is mostly effective for unsatisfiability results. In particular, we use
this paradigm to increase the lower bound results after the maximum clique was determined.
Although the default heuristics in CDCL solvers are in general effective on a broad range
of formulas, we observed that using negative branching instead of phase saving improves
performance on graph coloring instances. We will use the CDCL solver CaDiCaL during the
experiments and turn on negative branching (options –forcephase=1 –phase=0).

CP 2022

26:6 From Cliques to Colorings and Back Again

0 10 20 30 40 50 60 70 80 90
10−1

101

103

bound

ru
nt

im
e

(s
)

CDCL SAT-II w/ partition
CDCL SAT-II w/o partition
IncMaxCLQ
Cliquer
maximum clique number

Figure 2 Performance of different maximum clique techniques to compute a large clique of
r1000.1c. The method SAT-II uses the partition obtained from a 98-coloring obtained by SAT-I.

Local Search. An almost obscure, yet quite effective local search solving paradigm is called
Divide and Distribute Fixed Weights (DDFW) [9]. In DDFW, all clauses have weights. The
algorithm flips variable assignments if the weighted sum of the satisfied clauses improves. If
no such variable exists (i.e., a local minimum is reached), then a random falsified clause is
selected which is increased in weight by pulling weight of its neighboring satisfiable clauses.
This is repeated until a satisfying assignment is found. We use the implementation of DDFW
in UBCSAT [30] for the experiments with SAT-III.

A well-known local search algorithm is WalkSAT [23]. Given a random assignment, the
algorithm picks a random falsified clause and flips one of its literals to satisfy the clause. This
is repeated until a satisfying assignment is found. WalkSAT is much more greedy compared
to DDFW. This is helpful to reduce upper bounds in SAT-I. However, it is not effective to
find a coloring for graphs when the coloring number equals the clique number. We use the
implementation of WalkSAT in UBCSAT.

5 Experiments

We tested the performance of our method on solving both the maximum clique and vertex
coloring problems on the 137 DIMACS Graph Coloring instances. This benchmark consists
of a variety of instances with different sizes and densities – some random graphs and
some from real world problems. We chose this sets of instances even for maximum clique
performance because the DIMACS Maximum Clique and BHOSLIB [37] instances are almost
all solved. The source code and log files of the experiments are available in the repository
https://github.com/marijnheule/clicolcom. We will note when we run experiments on
one of two different CPUs: Intel Xeon 2.33GHz CPU or AMD EPYC 7742 CPU [2].

5.1 Maximum Clique Results
As a baseline, we first ran IncMaxCLQ which solved 129 instances to optimality within one
hour on the Intel Xeon 2.33GHz CPU. IncMaxCLQ failed to produce and prove a maximum
clique for only eight graphs: C2000.5, C2000.9, C4000.5, latin_square_10, DSJC500.9,
DSJC1000.9, DSJR500.1c, and r1000.1c. For the last two instances, the largest found cliques
were of size 78 and 82, respectively. Our method is able to compute the maximum clique of
them in a few minutes: 83 and 92, respectively. We are not aware of any other tool that can
compute (and prove optimality) of the maximum cliques for these two instances.

Figure 2 illustrates the effectiveness of the SAT-II encoding. It shows for the open instance
r1000.1c the runtimes of various techniques to find a large clique. We only find the maximum
clique of size 92 with the SAT-II encoding that uses a 98-coloring obtained via SAT-I using

https://github.com/marijnheule/clicolcom

M. J. H. Heule, A. Karahalios, and W.-J. van Hoeve 26:7

100 101 102 103

60
70
80
90

runtime (s)

nu
m

in
st

an
ce

s
so

lv
ed

CliColCom
gc-cdcl

Figure 3 Performance profile of the number of DIMACS graph coloring instances gc-cdcl and
CliColCom can prove to optimality over time.

local search. The instance with b = 93 is unsatisfiable, hence the larger runtime. IncMaxCLQ
can compute a clique of size 82, while Cliquer gets only to 58. Without a coloring (i.e., each
vertex is an independent set), SAT-II performance poorly and finds cliques up until size 74.

5.2 Comparison with State-of-the-Art Graph Coloring

We run these experiments on an Intel Xeon 2.33GHz CPU. We use gc-cdcl as a baseline
because it is the SAT-based solver that performs best on this problem domain.1

We ran gc-cdcl for 1 hour and it proved the optimal solution for 83 instances. We compare
this to our method in Fig. 3, which shows that we can solve 88 instances in 1 hour. The
differences are as follows: gc-cdcl solves myciel7, queens9_9, and qg.order60 and CliColCom
does not. CliColCom solves 4-FullIns_5, 1-Insertions_4, DSJR500.1c, le450_15c, le450_15d,
wap01a, wap02a, wap06a and gc-cdcl does not.

We observed strong performance of our setup on the wap0* graphs. We therefore ran each
instance on a cluster of AMD EPYC 7742 CPUs with 128 seeds. The results are reported in
Table 1. We improve the upper bound on four graphs, which includes closing two instances.
The DDFW algorithm was crucial to obtain these results. The wap01 instance was recently
closed with a method that requires significantly more time [26].

Table 1 DDFW runtimes in seconds for wap0* instances using 128 seeds (no timeout). The
second and third column show the lower and upper bounds. The bold bounds are improvements.

instance LB UB min mean max

wap01a 41 41 291.19 736.01 1855.56
wap02a 40 40 195.45 382.85 883.02
wap03a 40 43 9612.49 15865.50 21963.13
wap04a 40 41 29757.11 65609.40 91501.84
wap05a 50 50 1.37 1.59 2.11
wap06a 40 40 9.21 26.44 92.54
wap07a 40 41 211.26 632.63 2207.33
wap08a 40 40 1016.65 6742.98 12096.61

1 The paper “An Incremental SAT-Based Approach to the Graph Colouring Problem” published in CP
2019 claims strong computational results. Although these are reported in an aggregated form, they
imply that several challenging open instances would have been solved. The GitHub repository linked in
the paper was deleted. We contacted the authors, who were unfortunately unable to share the code or
reproduce the published results. We therefore omit a comparison with that work.

CP 2022

26:8 From Cliques to Colorings and Back Again

5.3 Robustness, Variations, and Discussion
Naturally, our algorithm is sensitive to variations in its design. Below we discuss some
extensions and variants to provide additional insights.

Robustness. Replacing the CDCL solver by any modern CDCL solver would hardly change
runtime. The use of negative branching in CDCL slightly improves performance and is
available in most SAT solvers. Increasing the timeout has little to no impact.

For the improved upper bounds of the wap graphs, we tried many local search solvers
and only the implementation of DDFW in UBCSAT seems to be able to obtain them. The
key aspects that impact the performance are: 1) fix only the clique for local search (full
symmetry breaking significantly hurts local search solvers); 2) use full symmetry breaking
for CDCL (otherwise unsatisfiable instances become impossible to solve); and 3) use the
communication (otherwise hard problems cannot be solved).

Multiple colorings for SAT-II. The presented SAT-II encoding for finding a larger clique
uses one vertex coloring in its clauses. This encoding can be extended to use multiple colorings
by introducing corresponding sets of literals and clauses for each coloring. Taking DSJC250.9
as an example, we show that using multiple colorings can be beneficial to the runtime. We
ran experiments using CaDiCaL for SAT-II that used either 1, 2, or 5 74-colorings to solve
for a 43-clique. Using 40 trials for each number of colorings, the mean runtimes were 450,
62, and 202 respectively. This indicates that using two colorings may improve runtimes
compared to one coloring, but using five colorings can perform worse than two colorings.

Vertex ordering for SAT-III. Encoding SAT-III for finding a minimum coloring uses a
vertex ordering that begins with a maximum clique, assuming that starting with a maximum
clique is effective. Although useful in most cases, this heuristic does not always result in
the most effective ordering. For example, consider the graph coloring instance queen9_9,
i.e., the n-queens instance of size 9. Its largest clique has size 9 while its coloring number
is 10. Finding a clique of size 9 and a coloring of size 10 is easy. However, showing the
absence of a 9-coloring (unsatisfiable, thus CaDiCaL was used) is hard: solving the SAT-III
encoding starting with a border 9-clique (e.g., the top row) requires roughly 3 hours solving.
Starting with a diagonal 9-clique reduces the runtime to 400 seconds. But, if one starts
with a non-optimal 5-clique in the center (the + shaped clique that cannot be extended to a
6-clique), the runtime reduces to 100 seconds.

Heavy cliques for SAT-III. IncMaxCLQ is very effective in finding a maximum clique.
However, we observed that when using a clique to generate a vertex ordering for SAT-III,
performance of SAT-III may be enhanced by using the heaviest maximum clique, i.e., the
maximum clique with the maximum sum of the vertex degrees. For example, for the queen
instances the heaviest maximum clique is a diagonal, which we find to generate an ordering
leading to better runtime when solving SAT-III compared to using a border row or column.
Enhancing IncMaxCLQ to produce such a clique would further strengthen the results.

6 Conclusion

We were able to achieve state-of-the-art performance on the well-known DIMACS Coloring
benchmark suite by combining off-the-shelf (Max)SAT-solving tools and a combination of
three SAT encodings. Our algorithm, called CliColCom, uses the encodings to alternate

M. J. H. Heule, A. Karahalios, and W.-J. van Hoeve 26:9

between finding larger cliques and smaller colorings until a maximum clique and minimum
coloring is found. We closed two open instances of the DIMACS benchmark suite and
improved bounds on three others.

References
1 D. Brélaz. New methods to color the vertices of a graph. Communications of the ACM,

22(4):251–256, 1979.
2 Shawn T. Brown, Paola Buitrago, Edward Hanna, Sergiu Sanielevici, Robin Scibek, and

Nicholas A. Nystrom. Bridges-2: A Platform for Rapidly-Evolving and Data Intensive Research,
pages 1–4. Association for Computing Machinery, New York, NY, USA, 2021. doi:10.1145/
3437359.3465593.

3 Armin Biere Katalin Fazekas Mathias Fleury and Maximilian Heisinger. Cadical, kissat,
paracooba, plingeling and treengeling entering the sat competition 2020. SAT COMPETITION,
2020:50, 2020.

4 Stefano Gualandi and Federico Malucelli. Exact solution of graph coloring problems via
constraint programming and column generation. INFORMS Journal on Computing, 24(1):81–
100, 2012.

5 Youssef Hamadi, Said Jabbour, and Lakhdar Sais. Manysat: a parallel sat solver. Journal on
Satisfiability, Boolean Modeling and Computation, 6(4):245–262, 2010.

6 Emmanuel Hébrard and George Katsirelos. Constraint and satisfiability reasoning for graph
coloring. Journal of Artificial Intelligence Research, 69:33–65, 2020.

7 S. Held, W. Cook, and E. C. Sewell. Maximum-weight stable sets and safe lower bounds for
graph coloring. Mathematical Programming Computation, 4(4):363–381, 2012.

8 Stephan Held, William Cook, and Edward C Sewell. Safe lower bounds for graph coloring.
In International Conference on Integer Programming and Combinatorial Optimization, pages
261–273. Springer, 2011.

9 Abdelraouf Ishtaiwi, John Thornton, Abdul Sattar, and Duc Nghia Pham. Neighbourhood
clause weight redistribution in local search for sat. In Peter van Beek, editor, Principles
and Practice of Constraint Programming - CP 2005, pages 772–776, Berlin, Heidelberg, 2005.
Springer.

10 Matti Järvisalo, Armin Biere, and Marijn Heule. Blocked clause elimination. In Javier Esparza
and Rupak Majumdar, editors, Tools and Algorithms for the Construction and Analysis of
Systems, 16th International Conference, TACAS 2010, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28,
2010. Proceedings, volume 6015 of Lecture Notes in Computer Science, pages 129–144. Springer,
2010.

11 David S Johnson and Michael A Trick. Cliques, coloring, and satisfiability: second DIMACS
implementation challenge, October 11-13, 1993, volume 26. American Mathematical Soc.,
1996.

12 Richard M Karp. Reducibility among combinatorial problems. In Complexity of computer
computations, pages 85–103. Springer, 1972.

13 Chu-Min Li, Zhiwen Fang, and Ke Xu. Combining maxsat reasoning and incremental upper
bound for the maximum clique problem. In 2013 IEEE 25th International Conference on
Tools with Artificial Intelligence, pages 939–946. IEEE, 2013.

14 Shadi Mahmoudi and Shahriar Lotfi. Modified cuckoo optimization algorithm (mcoa) to solve
graph coloring problem. Applied soft computing, 33:48–64, 2015.

15 Enrico Malaguti, Michele Monaci, and Paolo Toth. An exact approach for the vertex coloring
problem. Discrete Optimization, 8(2):174–190, 2011.

16 Enrico Malaguti and Paolo Toth. A survey on vertex coloring problems. International
transactions in operational research, 17(1):1–34, 2010.

17 A. Mehrotra and M. A. Trick. A Column Generation Approach for Graph Coloring. INFORMS
Journal on Computing, 8(4):344–354, 1996.

18 I. Méndez-Díaz and P. Zabala. A Branch-and-Cut algorithm for graph coloring. Discrete
Applied Mathematics, 154:826–847, 2006.

CP 2022

https://doi.org/10.1145/3437359.3465593
https://doi.org/10.1145/3437359.3465593

26:10 From Cliques to Colorings and Back Again

19 Patric RJ Östergård. A fast algorithm for the maximum clique problem. Discrete Applied
Mathematics, 120(1-3):197–207, 2002.

20 Daniel Porumbel. Projective cutting-planes. SIAM Journal on Optimization, 30(1):1007–1032,
2020.

21 Jean-Charles Régin. Using Constraint Programming to Solve the Maximum Clique Problem.
In Proceedings of CP, pages 634–648, 2003.

22 Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer, 2003.
23 Bart Selman, Henry A. Kautz, and Bram Cohen. Noise strategies for improving local search. In

Barbara Hayes-Roth and Richard E. Korf, editors, Proceedings of the 12th National Conference
on Artificial Intelligence, Seattle, WA, USA, July 31 - August 4, 1994, Volume 1, pages
337–343. AAAI Press / The MIT Press, 1994.

24 João P. Marques Silva, Inês Lynce, and Sharad Malik. Conflict-driven clause learning SAT
solvers. In Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook
of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications, pages
131–153. IOS Press, 2009.

25 Carsten Sinz. Towards an optimal CNF encoding of boolean cardinality constraints. In
International conference on principles and practice of constraint programming, pages 827–831.
Springer, 2005.

26 Wen Sun, Jin-Kao Hao, Yuhao Zang, and Xiangjing Lai. A solution-driven multilevel approach
for graph coloring. Applied Soft Computing, 104:107174, 2021.

27 Olawale Titiloye and Alan Crispin. Graph coloring with a distributed hybrid quantum
annealing algorithm. In KES International Symposium on Agent and Multi-Agent Systems:
Technologies and Applications, pages 553–562. Springer, 2011.

28 Olawale Titiloye and Alan Crispin. Quantum annealing of the graph coloring problem. Discrete
Optimization, 8(2):376–384, 2011.

29 Olawale Titiloye and Alan Crispin. Parameter tuning patterns for random graph coloring with
quantum annealing. PloS one, 7(11):e50060, 2012.

30 Dave A. D. Tompkins and Holger H. Hoos. UBCSAT: an implementation and experimentation
environment for SLS algorithms for SAT and MAX-SAT. In Holger H. Hoos and David G.
Mitchell, editors, Theory and Applications of Satisfiability Testing, 7th International Confer-
ence, SAT 2004, Vancouver, BC, Canada, May 10-13, 2004, Revised Selected Papers, volume
3542 of Lecture Notes in Computer Science, pages 306–320. Springer, 2004.

31 R. P. van der Hulst. A branch-price-and-cut algorithm for graph coloring. Master’s thesis,
University of Twente, 2021.

32 Allen Van Gelder. Another look at graph coloring via propositional satisfiability. Discrete
Applied Mathematics, 156(2):230–243, 2008.

33 Willem-Jan van Hoeve. Graph coloring with decision diagrams. Mathematical Programming,
pages 1–44, 2021.

34 Miroslav N Velev. Exploiting hierarchy and structure to efficiently solve graph coloring as
sat. In 2007 IEEE/ACM International Conference on Computer-Aided Design, pages 135–142.
IEEE, 2007.

35 Qinghua Wu and Jin-Kao Hao. Coloring large graphs based on independent set extraction.
Computers & Operations Research, 39(2):283–290, 2012.

36 Qinghua Wu and Jin-Kao Hao. A review on algorithms for maximum clique problems. European
Journal of Operational Research, 242(3):693–709, 2015.

37 Ke Xu. Bhoslib: Benchmarks with hidden optimum solutions for graph problems, 2004.
38 Zhaoyang Zhou, Chu-Min Li, Chong Huang, and Ruchu Xu. An exact algorithm with learning

for the graph coloring problem. Computers & operations research, 51:282–301, 2014.

On the Enumeration of Frequent High Utility
Itemsets: A Symbolic AI Approach
Amel Hidouri 1 #

CRIL – CNRS UMR 8188, University of Artois, France
LARODEC, University of Tunis, Tunisia

Said Jabbour #

CRIL – CNRS UMR 8188, University of Artois, France

Badran Raddaoui #

SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris, France

Abstract
Mining interesting patterns from data is a core part of the data mining world. High utility mining,
an active research topic in data mining, aims to discover valuable itemsets with high profit (e.g., cost,
risk). However, the measure of interest of an itemset must primarily reflect not only the importance
of items in terms of profit, but also their occurrence in data in order to make more crucial decisions.
Some proposals are then introduced to deal with the problem of computing high utility itemsets
that meet a minimum support threshold. However, in these existing proposals, all transactions in
which the itemset appears are taken into account, including those in which the itemset has a low
profit. So, no additional information about the overall utility of the itemset is taken into account.
This paper addresses this issue by introducing a SAT-based model to efficiently find the set of all
frequent high utility itemsets with the use of a minimum utility threshold applied to each transaction
in which the itemset appears. More specifically, we reduce the problem of mining frequent high
utility itemsets to the one of enumerating the models of a formula in propositional logic, and then
we use state-of-the-art SAT solvers to solve it. Afterwards, to make our approach more efficient, we
provide a decomposition technique that is particularly suitable for deriving smaller and independent
sub-problems easy to resolve. Finally, an extensive experimental evaluation on various popular
datasets shows that our method is fast and scale well compared to the state-of-the art algorithms.

2012 ACM Subject Classification Computing methodologies → Artificial intelligence; Information
systems → Data mining

Keywords and phrases Data Mining, High Utility Itemsets, Propositional Satisfiability

Digital Object Identifier 10.4230/LIPIcs.CP.2022.27

1 Introduction

The broad topic of data mining research aims to discover a set of relevant patterns that
together represent the properties of the data. The successful use of data mining in e-commerce
and e-marketing became a core practice in the retail industry. Pattern discovery, one of
the most important sub-fields of data mining, involves computing interesting patterns in
databases. Retailers are using such patterns to find customer habits in order to provide better
services and increase sales. Traditional itemset mining models can be characterized into two
lines of work. The first one, known as Frequent Itemsets Mining (in short, FIM), is based
on the popular metric of support (i.e., the number of transactions involving the itemset) to
determining how interesting a motif is. Specifically, FIM seeks to identify patterns whose
frequency exceeds a predefined threshold. Nevertheless, frequency alone is often considered as
a poor measure of interestingness [29]. In fact, frequent itemsets have a significant bottleneck

1 Corresponding author

© Amel Hidouri , Said Jabbour, and Badran Raddaoui;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 27; pp. 27:1–27:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hidouri@cril.fr
mailto:jabbour@cril.fr
mailto:badran.raddaoui@telecom-sudparis.eu
https://doi.org/10.4230/LIPIcs.CP.2022.27
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 SAT-Based Frequent HUIM

in that they only reflect the occurrence of items in a database and miss their importance,
e.g., items that can be rare but generate more profit. Typically, the significance of an item in
each transaction can be different. The second line of research consists of High Utility Itemset
Mining (HUIM, for short), which is an extension of FIM. Basically, HUIM is a research area
designed to address the shortcomings of frequency-based algorithms by taking in addition to
the item frequency the significance/interestingness of items into account, such as the price,
the quantity, etc., when mining patterns. A high utility itemset is then an itemset whose
utility value is greater than a user-specified threshold. Generally speaking, the utility can be
quantified in terms of cost, risk, profit or any other user preference relations among items.
The HUIM task has emerged as a key data mining primitive in many practical applications,
including market analysis, customer trend analysis and financial analysis [13]. The two
aforementioned lines of research, however, are generally considered separately. To be precise,
the two frameworks were designed with different goals in mind, either for mining the set of
items that occur frequently while ignoring their profit, or for computing the set of items that
yield the highest gain values as a sole criterion while avoiding the frequency measure. In
the last case, non-frequent itemsets could be considered as high utility itemsets. In recent
years, with ever-advancing technology, one may be more interested in finding at the same
time frequently purchased items with high gain values. In fact, computing such itemsets
can help sales managers understand customer research behavior and what she/he needs,
as well as provide appropriate product combinations. For example, a retail store manager
can use this knowledge to make decisions to keep products neighboring or also to promote
products. These itemsets can also be used to assess the risk of selling a product by removing
for instance very seldom interesting products from the market.

In the literature, a number of frequent utility-driven mining methods have been studied,
each with its own advantages. Specifically, Wei et al. [30] proposed a novel algorithm, called
FCHUIM, that combines the frequency and utility constraints to find frequent high utility
itemsets. This approach considers a candidate itemset as frequent if and only if it is covered
by a minimum number of transactions and his utility in these transactions is greater than a
user-specified minimum utility value. FCHUIM is based on a closed high utility representation
and it employs a nested list to eliminate non-frequent itemsets. Furthermore, HU-FIMi [28]
is another single phase algorithm to compute efficiently high utility frequent itemsets in
transactional databases. It exploits different orderings of items and introduces two new
pruning measures (cutoff and suffix utility) in order to reduce the search space exploring
cost. Another specialized form of frequent utility-based data mining field is to extract only
the itemsets with the highest utility values (i.e., above a fixed threshold value). As a result,
transactions involving the itemset with the lowest utility value are not considered as covers
for this itemset because no valuable information is added to the itemset’s overall utility value
in the database. 2P-UF algorithm [32] was the first to address the problem of computing such
patterns. It considers utility frequent motifs to be a subset of the high utility itemset problem.
This approach is a two-phases algorithm based on a quasi-support measure that addresses
the issue of the support-utility measure’s non-monotonicity. Consequently, this algorithm
is not suitable to handle large-scale databases. In contrast to 2P-UF, FUFM algorithm [27]
was introduced to handle the frequent-utility task as a subset of the frequent itemset mining
problem. To find such patterns among frequent itemsets, it employs a metric known as
extended support. Since it is based primarily on the frequent itemset mining approach,
this algorithm is very simple and fast. A parallel version of FUFM, called P-FUFM [26], is a
two-phases based algorithm that aims to reduce the running time of the FUFM algorithm. In
the first step, this algorithm generates candidates, and in the second phase, it computes

A. Hidouri, S. Jabbour, and B. Raddaoui 27:3

utilities. The scheme is to implement a parallel generation of candidates as well as the
corresponding utilities. Unfortunately, all these designed algorithms suffer from a degradation
in scalability for large scale databases.

In this paper, we are mainly interested in mining more efficiently frequent high utility
itemsets from transaction databases in the case when the frequency metric is applied to
transactions in which the itemset appears, and also when such metric is restricted to
the transactions with highest gain value. To address these two problems, we propose a
novel symbolic framework based on propositional logic to efficiently extract a concise set
of itemsets that are frequently encountered while yielding the highest profit margins in
a transaction database. In fact, symbolic Artificial Intelligence (AI) approaches, such as
Boolean Satisfiability (SAT) and Constraint Programming (CP), are applied in data mining
by translating the problem of mining patterns in terms of constraints and then delegate the
enumeration of solutions to the appropriate solver (e.g., [2, 9, 14, 16, 20]). The application
of symbolic AI to data mining is supported by its theoretical and algorithmic foundations
and the flexibility it affords, i.e., the ability to add new user-specified constraints to control
interesting patterns without the need to modify, from scratch, the underlying algorithms.
Furthermore, the close relationship between constraint-based languages and pattern discovery
enables data mining problems to benefit from a variety of powerful propositional satisfiability-
based solving techniques in order to improve the efficiency of such approaches. In this paper,
we propose two SAT-based approaches: the first aims to compute the set of frequent high
utility itemsets, while the second is for identifying all patterns that are local high utility
frequent itemsets.

2 Formal Preliminaries

2.1 High Utility Itemset Mining

Let Ω denote a universe of items (or symbols), called alphabet. The elements of Ω are
denoted by the letters a, b, c, etc. A subset of Ω (I ⊆ Ω) is called an itemset. The set of all
itemsets over Ω are denoted as 2Ω, and the capital letters I, J, K, etc. are used to represent
the elements of 2Ω. Typically, a transaction is an ordered pair (i, I) where 1 ≤ i ≤ m, called
the transaction identifier (TID, for short), and I an itemset, i.e., (i, I) ∈ N× 2|Ω| \ ∅. When
there is no confusion, a transaction will be simply denoted as Ti. A transaction database D

is defined as a finite non-empty set of transactions where each transaction identifier refers
to a unique itemset. Given a transaction database D and an itemset I, the cover of I in
D is defined as follows: Cover(I, D) = {i ∈ N | (i, J) ∈ D and I ⊆ J}. The support of I

in D is then defined as the cardinality of Cover(I, D), i.e., Supp(I, D) = |Cover(I, D)|. A
high utility itemset I ⊆ Ω s.t. Supp(I, D) ≥ 1 is closed if and only if for any itemset J with
I ⊂ J , Supp(J, D) < Supp(I, D).

In the high utility setting, each item a ∈ Ω is associated with a positive number that
indicates its external utility (e.g., unit profit). We write wext(a) for the external utility of a.
In addition, each item a in a transaction Ti is associated with a positive value wint(a, Ti),
called its internal utility. Based on these two kinds of utility, the utility of an item a in
a transaction Ti, written u(a, Ti), is computed as follows: u(a, Ti) = wint(a, Ti) × wext(a).
Now, the utility of an itemset I in a transaction Ti, denoted by u(I, Ti), is defined as
u(I, Ti) =

∑
a∈I⊆Ti

u(a, Ti). Then, the utility of an itemset I in the entire database D is
defined as u(I, D) =

∑
Ti∈D | I⊆Ti

u(I, Ti).

CP 2022

27:4 SAT-Based Frequent HUIM

Given a transaction database D and a user-specified utility threshold θ, the classical high
utility itemset mining problem aims at finding the set of all itemsets in D whose utility value is
no less than θ. More formally, the aim is to compute the set {I : u(I, D) | I ⊆ Ω, u(I, D) ≥ θ}.
An itemset with a utility greater than the minimum utility threshold θ is called a high utility
itemset (HUI, for short).

In order to prune the search space, existing proposals of HUIM use the so-called Transac-
tion Weighted Utilization (TWU, for short), which is an upper bound of the utility measure,
together with the property of anti-monotonicity in order to filter out the candidate itemsets
that are not high utility [22]. More formally, the transaction utility of a transaction Ti in D,
denoted by TU(Ti), is the sum of the utility of all items in Ti, i.e., TU(Ti) =

∑
a∈Ti

u(a, Ti).
Then, the transaction weighted utilization of an itemset X in a transaction database D,
denoted by TWU(X, D), is defined as: TWU(X, D) =

∑
(i,Ti)∈D | X⊆Ti

TU(Ti).
Another task in data mining related to HUIM problem consists in enumerating the set

of HUIs by taking into account the frequency. Such itemsets are called frequent high utility
itemsets (FHUIs, for short). To be precise, given a support and utility minimum thresholds
δ and θ respectively, an itemset I is a FHUI in D iff. Supp(I, D) ≥ δ and u(I, D) ≥ θ. We
denote by FHUIM the task of computing the set of FHUIs in D. Clearly, the HUIM task is
a particular case of FHUIM where δ is set to 1.

▶ Example 1. Consider the transaction database shown in Table 1 (which will be used
throughout the paper). For the sake of simplicity, we set the external utility of each item to
1. In fact, every transaction database can be represented as a single table by multiplying the
internal and external utilities of items. In that sense, each item has a single number that
represents its utility in the transaction. Let θ = 20 be a minimum utility threshold, and
δ = 2 be a minimum support threshold. Then, the set of FHUIs in D are {a}, {a, b}, and
{a, b, g}.

Table 1 Sample Transaction Database.

TID Items
T1 (a, 8) (b, 2) (g, 1)
T2 (b, 6) (c, 3) (e, 2)
T3 (c, 4) (d, 3)
T4 (a, 6) (d, 4) (e, 1)
T5 (a, 8) (b, 7) (f, 2) (g, 1)

Now, we wish to emphasize that the utility of itemsets is over-estimated when mining
FHUIs from transaction databases. In other words, all transactions containing the candidate
itemset are considered without regard for their utility value in these transactions: even if
the utility of an itemset I in a transaction T is low, T is chosen if it contains I. To be
precise, the utility measure of an itemset I (i.e., u(I, D)) takes into account the utility of I

in all the transactions where I appears. To alleviate such over-estimation in the problem of
mining FHUIs, another specialized form of HUIM is to restrict the cover of the candidate
itemset I to only the transactions in which the utility of I (i.e., u(I, Ti)) is greater than a
local minimum utility threshold. Such HUIs will be called frequent local high utility itemsets
(FLHUIs, for short). To define such sets, we need the following additional terminology.

▶ Definition 2. Assume D is a transaction database, and θ′ a local minimum utility threshold.
Then, the utility-based cover of an itemset I in D is defined as: Coveru(I, D) = {(i, Ti) ∈
D, I ⊆ Ti, and u(I, Ti) ≥ θ′}. Then, the utility-based support of I is the cardinality of its
utility-based cover, i.e., Suppu(I, D) = |Coveru(I, D)|.

A. Hidouri, S. Jabbour, and B. Raddaoui 27:5

▶ Property 3. Let D be a transaction database, I an itemset, and δ a minimum support
threshold. Then, if Suppu(I, D) ≥ δ, then Supp(I, D) ≥ δ.

Given a support and local minimum utility thresholds δ and θ′ respectively, an itemset I

is a FLHUI in D iff. u(I, D) ≥ θ′.

▶ Example 4. Let us consider again Example 1. For the minimum support threshold δ = 2
and the local minimum utility threshold θ′ = 10, the sets {a, b} and {a, b, g} are FLHUIs.

To avoid ambiguity, we will refer to the second problem of enumerating all FLHUIs from
transaction databases as FLHUIM. This paper deals with a suitable reduction of both the
problems of FHUIM and FLHUIM to the propositional satisfiability model enumeration task,
and then the use of state-of-the-art SAT solvers to solve these two problems.

2.2 Propositional logic
Let L be a propositional language built up inductively from a countable set PS of propositional
variables, the boolean constants ⊤ (true or 1) and ⊥ (false or 0) and the classical logical
connectives {¬,∧,∨,→,↔} in the usual way. We use the letters x, y, z, etc. to range over
the elements of PS. Propositional formulas of L are denoted by Φ, Ψ, etc. A literal is
a propositional variable (x) of PS or its negation (¬x). A clause is a (finite) disjunction
of literals. For any formula Φ from L , P(Φ) denotes the symbols of PS occurring in Φ.
A formula in conjunctive normal form (CNF, for short) is a finite conjunction of clauses.
A Boolean interpretation ∆ of a CNF formula Φ is defined as a function from P(Φ) to
{0, 1}. A model of a formula Φ is an interpretation ∆ that satisfies Φ, i.e., if there exists an
interpretation ∆ : P(Φ)→ {0, 1} that satisfies all clauses in Φ. The formula Φ is satisfiable
if it has at least one model. In the sequel, we write |= for the logical consequence relation
and |=UP for the consequence relation restricted to the application of unit propagation2.

The propositional satisfiability problem (SAT, for short) is a decision problem used to
solve constraint satisfaction problems. Specifically, given a CNF formula Φ, SAT determines
whether exists a model for each clauses in Φ. The application of SAT solvers in a range of real-
world scenarios, e.g., electronic design automation, software and hardware verification [25],
data mining [4], overlapping community detection in networks [17–19], has resulted from
the progress of this NP-Complete problem over the previous decade. SAT technology has
widely been used mainly in decision problems and its extensions such as SAT Modulo Theory
(SMT), Maximum Satisfiability (Max-SAT), Quantified Boolean Formulas (QBF) but also
recently in model enumeration problems built on top of modern SAT solvers such as Conflict
Driven Clause Learning (CDCL) solver.

3 Computing High Utility Itemsets with Propositional Satisfiability

3.1 A SAT Approach to Frequent High Utility Itemset Mining
In this subsection, we deal with the translation of the FHUIM problem into propositional
logic, so that SAT solvers can be used to enumerate FHUIs from transaction databases. We
recall first that the traditional HUIM task has been recently reduced to SAT [15]. Specifically,
in order to have a one-to-one mapping between the set of HUIs and the models of the

2 Unit propagation is a kind of inference technique based on resolution with unit clauses (i.e., clauses
containing exactly a single literal), e.g., Φ ∧ x ∧ (¬x ∨ α) |=UP α.

CP 2022

27:6 SAT-Based Frequent HUIM

underlying propositional formula, a set of propositional variables and logical constraints have
been introduced. More formally, given a transaction database D, the proposed encoding
associates to each item a (resp. transaction identifier i) of D a propositional variable referred
to as pa (resp. qi). Figure 1 depicts the different constraints that accomplish the SAT-based
encoding scheme of the HUIM problem. To be precise, Constraint 1 encodes the candidate
itemset’s cover. This constraint expresses the presence of the itemset in the ith transaction,
i.e., qi = 1. More specifically, the candidate itemset is not supported by the ith transaction
(i.e., qi is false), when there exists an item a (i.e., pa is true) that does not belong to the
transaction (a ∈ Ω\Ti); when qi is false. This means that at least one item not appearing
in the transaction i is set to true. Constraint (3) captures the closedness requirement of
HUIs. It ensures that if the candidate itemset is involved in all transactions containing the
item a ∈ Ω, then a must be added to the itemset (i.e., a must be propagated to true). The
constraint over the utility of the candidate itemset in the database D is expressed using
the linear inequality (4) w.r.t. the user threshold θ. Notice that Constraint (4) takes into
account the TWU property to prune the search space.

In contrast to the work of [15], we tackle in this paper the problem of mining the set of all
FHUIs from transaction databases. To do this, the previous encoding (Constraints (1), (3),
and (4)) should be extended with Constraint 2. In fact, Constraint (2) requires that at least δ

transactions involves the candidate itemset to be considered as a frequent HUI. Consequently,
the problem of FHUIM is encoded in propositional logic with the propositional formula
Φfhuim = (1) ∧ (2) ∧ (4). Moreover, a user can be interested in a more concise representation
of FHUIs, called closed FHUIs (in short CFHUIs). Recall that the closedness constraint is
encoded as Constraint 3. We shall note the formula encoding the computation of CFHUIs as
Φcfhuim = Φfhuim ∧ (3).

m∧
i=1

(¬qi ↔
∨

a∈Ω\Ti

pa) (1)
m∑

i=1
qi ≥ δ (2)

∧
a∈Ω

(pa ∨
∨

a̸∈Ti

qi) (3)

m∑
i=1

∑
a∈Ti

u(a, Ti)× (pa ∧ qi) ⩾ θ (4)

Figure 1 SAT-based Encoding Scheme for the FHUIM Problem.

▶ Proposition 5. Let D be a transaction database, θ a minimum high utility threshold, and
δ a minimum support threshold. Let Φcfhuim = Φfhuim ∧ (3) be a propositional formula. Then,
there exists a one-to-one mapping between the models of Φcfhuim and the set of CFHUIs in D.

3.2 A SAT Approach to Frequent Local High Utility Itemset Mining
This subsection presents our formulation of the problem of FLHUIM into propositional
satisfiability. First, recall that a FLHUI in a transaction database D is a local high utility
itemset and it meets a minimum support threshold. In contrast to the previous SAT-based
encoding (see Figure 1), three subsets of propositional variables are introduced, namely
{pa, a ∈ Ω}, {qi, i ∈ [1..m]}, and {ri, i ∈ [1..m]}. Afterwards, to restrict the frequency metric
to the transactions with highest gain value, we consider the new Constraint (5). Specifically,
this constraint states that an itemset I is covered by a transaction Ti if it is contained in Ti

and the utility of I in Ti meets the required utility threshold. Alternatively, Constraint (5)
can be rewritten as the following formula:

∧m
i=1 ri ↔

∑
a∈Ti

u(a, Ti)(qi ∧ pa) ≥ θ′. Now, to

A. Hidouri, S. Jabbour, and B. Raddaoui 27:7

constrain the candidate itemset to be frequent, i.e., to be covered by at least δ transactions,
we add the cardinality constraint (Constraint (6)). If that is the case, we call such candidate
itemset as a FLHUI.

m∧
i=1

(ri ↔ qi ∧ (
∑
a∈Ti

u(a, Ti) pa ≥ θ′)) (5)
m∑

i=1

ri ≥ δ (6)

Figure 2 SAT Encoding Scheme for Frequent Local High Utility Itemset Mining Problem.

▶ Proposition 6. Let D be a transaction database, θ′ a local minimum utility threshold, and
δ a minimum support threshold. Let Φcflhuim = (1)∧ (5)∧ (6)∧ (3) be a propositional formula.
Then, there exists a one-to-one mapping between the models of Φcflhuim and the set of closed
FLHUIs in D.
▶ Example 7. Let us consider the transaction database depicted by Table 1. Then, the
formula that encodes the problem of enumerating all closed FLHUIs in D with θ′ = 10 and
δ = 2 is written as follows:

¬q1 ↔ (pc ∨ pd ∨ pe ∨ pf) pa ∨ q2 ∨ q3
¬q2 ↔ (pa ∨ pd ∨ pf ∨ pg) pb ∨ q3 ∨ q4
¬q3 ↔ (pa ∨ pd ∨ pf ∨ pg) pc ∨ q1 ∨ q4 ∨ q5
¬q4 ↔ (pb ∨ pc ∨ pf ∨ pg) pd ∨ q1 ∨ q2 ∨ q5
¬q5 ↔ (pc ∨ pd ∨ pe) pe ∨ q1 ∨ q3 ∨ q5
r1 ↔ q1 ∧ (8pa + 2pb + pg ≥ 10) pf ∨ q1 ∨ q2 ∨ q3 ∨ q4
r2 ↔ q2 ∧ (6pb + 3pc + 2pe ≥ 10) pg ∨ q2 ∨ q3 ∨ q4
r3 ↔ q3 ∧ (4pc + 3pd ≥ 10)
r4 ↔ q4 ∧ (6pa + 4pd + pe ≥ 10)
r5 ↔ q5 ∧ (8pa + 7pb + 2pf + pg ≥ 10)

r1 + r2 + r3 + r4 + r5 ≥ 2

The SAT encodings of FHUIM and FLHUIM tasks involve the so-called Pseudo-Boolean
constraints3 (e.g. Constraints (2), (4) and (6)). Solving such kind of constraints has received
an important attention by the SAT community since Pseudo-Boolean constraints naturally
arise in many propositional encodings of real-world problems, including classical pattern
mining, product configuration and community discovery in networks. A common way to
solve Pseudo-Boolean constraints is by transformation into a SAT equivalent propositional
formula and then use SAT solvers in order to verify satisfiability using various state-of-the-art
encoding techniques [11]. Another way is to handle Pseudo-Boolean-constraints directly in
the SAT solver [1]. Pseudo-Boolean problems can also be modeled as an integer program, in
which the nonlinear constraints are linearized like [6] which used cutting resolution. The
solver bsolo [23] also combines integer programming techniques with SAT-solving. On the
other hand, cutting resolution has also been used to solve Pseudo-Boolean constraints [6].
Conflict analysis, introduced by Marques-Silva and Sakallah [24], is an important component
of modern SAT-solvers. It allows SAT solvers to learn conflict clauses from intractable
sub-problems. These clauses allow the solver to prune other branches of the search tree and
use non-chronological backtracking. However, its extension to Pseudo-Boolean constraints is
not obvious [5, 8].

In our case, each transaction gives rise to a Pseudo-Boolean constraint. Moreover, we
deal with an enumeration based problem. Consequently, due to some scalability concerns, we
choose to manage these constraints lazily as in [21]. As described in Constraint (6), the PB

3 A Pseudo-Boolean constraint is an expression of the form
n∑

i=1

aixi op b, where ai and b are real

coefficients, xi (1 ≤ i ≤ n) are propositional variables, and the operator op belongs to {=, ≤, <, >, ≥}.

CP 2022

27:8 SAT-Based Frequent HUIM

constraint allows to catch the conditions under which ri is propagated particularly to false:
either when qi is false, or when the utility of the candidate itemset in Ti is less than the fixed
utility threshold θ′. The latter is managed thanks to the use of counters that allow to check
if the sum of the utilities of items in the transaction Ti not assigned to false is less than θ′.

3.3 SAT-based Enumeration for High Utility Mining
In this subsection, we present our method based on the classical DPLL procedure [7] to
enumerating the set of FHUIs and FLHUIs in transaction databases. We use a DPLL
procedure to avoid adding blocking clauses and then to circumvent the growing up of the
sub-formulas size. The enumeration is performed by a simple backtrack at each found model.
This is motivated by the fact that the number of models can be large particularly in pattern
mining. Algorithm 2 (See appendix) illustrates the pseudo-code of the enumeration process.
As mentioned previously, since our encoding includes both clauses and Pseudo-Boolean
constraints, the latter are managed lazily following [21]. As will be shown in the empirical
evaluation, the encoding of all Pseudo-Boolean constraints into CNF can make the resolution
inefficient for large databases, since each variable ri implies a Pseudo-Boolean constraint,
which can be huge depending on the number of transactions in the database. This can make
the SAT-based encoding intractable in practice. To address this issue, we propose a slight
modification of the DPLL-based algorithm by employing propagators, a key component of
CSP and SMT (Satisfiability Modulo Theory) solvers. The propagator is based on counters.
In fact, it proceeds in the same manner as the well-known TWU measure used in the HUIM
literature. When the propositional variable pa becomes false, the utility of the item a

is subtracted from the sum of the utility of the sub-tables in which the item a appears.
Propagators are used in Constraint (2). We use counters to detect when the total weight
of a transaction is less than the fixed threshold. If it is the case, then the variable qi is
propagated to false. As a result, our algorithm is divided into two parts: unit propagation for
the propositional part and propagators for dealing with Pseudo-Boolean constraints to handle
frequency and utility based constraints. Furthermore, propagators’ primary function is to
check the satisfiability of the Pseudo-Boolean constraint. The idea behind using propagators
within our DPLL based approach is mainly to check the consistency of the Pseudo-Boolean
constraints or to infer useful propagation. More precisely, for a Pseudo-Boolean constraint of
the form

∑n
i=1 wixi ≥ k, a counter is initialized with the value w =

∑n
i=1 wi. Each time an

xi is assigned to false, its corresponding weight wi is subtracted from w leading to w − wi.
If such value is less than k, then a backtrack is performed. Note that the FHUIM task
involves a cardinality and a Pseudo-Boolean constraints, while in the FLHUIM problem
we can rewrite the encoding using conditional Pseudo-Boolean Constraints of the form
y →

∑n
i=1 wixi ≥ k [3]. Such constraints allows to capture conditions under which ¬y can

be propagated. It is also worth noting that assigning the variables representing items (pa,
a ∈ Ω) allows to fix the remaining variables via propagation, i.e., pa, a ∈ Ω is a strong
backdoor [31]. Then, from an heuristic point of view, it is better to assign such variables first.

3.4 A Decomposition-based Approach for FHUIM & FLHUIM
In practice, the DPLL based enumeration algorithm suffers from scalability issues, particularly
when the size of the propositional encoding is very large. This can have a significant impact
on the approach’s efficiency, as stated by [15]. In fact, without decomposition the number of
clauses of the encoding is equal to |Ω| × |D| − (

∑
Ti∈D |Ti|). This is equivalent to the number

of missing items in the database. This value can be very huge for large datasets (.e.g., for

A. Hidouri, S. Jabbour, and B. Raddaoui 27:9

Kosarak for δ = 1000, the number of non missing items is 34009483, then the number of clauses
that represent Constraint (5) is 41270× 990002− 34009483, which exceeds 40 billion clauses).
To address this issue, we apply a decomposition scheme to split the transaction databases
into numerous bases of reasonable size. Using decomposition, the size of each sub-problem is
significantly reduced. For instance, Constraint (5) leads to 31205214 clauses for Kosarak,
which is the total number of clauses of the different sub-problems instead of 40 billion clauses.
The main idea of decomposition is to avoid encoding the entire database in favor of solving
many independent sub-problems of small size rather than a single large problem. Basically,
given a propositional formula Φ and a variable x1 ∈ PS(Φ), the models of Φ are those of
Φ∧ x1 and Φ∧¬x1. By generalizing such principle for a subset of variables {x1, . . . , xn}, the
models of Φ are those of Ψ1, . . . , Ψn where Ψi = Φ ∧ xi ∧

∧
1≤j<i ¬xj . In our case, we have

{x1, . . . , xn} = {pa1 , . . . , pan
} and Φ corresponds to Φfhuim (or Φcfhuim for closed patterns) or

Φflhuim (or Φcflhuim for closed patterns). Hence, solving Ψi = Φ ∧ pai ∧
∧

1≤j<i ¬paj can be
obtained by considering only transactions containing the item ai. In fact, since the variable
pai is true, the models of Φi is restricted to those containing pai , which means the itemset
including ai. Clearly, splitting the CNF formula generates a set of independent sub-formulas
that encode subsets of a specific subset of transactions of the original database. Consequently,
this allows to avoid modeling the entire database and without causing too large number of
clauses as well as the associated computational problems. It is important to note here that
the order in which we solve the generated sub-problems has further a tremendous impact
on the effectiveness of our approach. In particular, we believe that starting from the last
sub-problem Φ ∧Ψn is the best choice since it is the simplest one. In fact, all the variables
representing items are assigned to false except one. This results to a smaller encoding
size for the current sub-problem compared to the previous sub-problems. Interestingly, the
declarativity of our SAT approach is preserved when applying the decomposition technique.
Thus, one just need to add the user-specific constraints to each sub-formula encoding the
sub-table obtained by decomposition.

▶ Example 8. Let us reconsider the transaction database in Table 1. Figure 3 depicts the
sub-tables obtained by applying the decomposition principle.

a8 b2 g1

a6 d4 e1

a8 b7 f2 g1

pa ¬pa

��a
8 b2 g1

b6 c3 e2

��a
8 b7 f2 g1

pb ¬pb

��b6 c3 e2

c4 d3

pc ¬pc

��c4 d3

��a
6 d4 e1

pd ¬pd

��b6 ��c3 e2

��a
6

��d
4 e1

pe

Figure 3 Item-based decomposition tree of the database in Table 1.

Algorithm 1 depicts our decomposition-based algorithm for mining frequent (local) high
utility itemsets from transaction databases. This algorithm takes a transaction database, a
(local) minimum utility threshold and a minimum support threshold as input, and returns all
(closed) frequent (local) high utility itemsets. Based on the previously stated decomposition
principle, our algorithm splits the transaction table into multiple independent sub-problems
and restricts the encoding to a sub-table each time in order to enumerate all models

CP 2022

27:10 SAT-Based Frequent HUIM

corresponding to motifs of interest using the enumeration procedure described in Algorithm 2.
To reduce the search space and, probably the encoding size, a pre-processing process is
used to prune all itemsets that cannot be included in the final output. More specifically,
in both FHUIM and FLHUIM, infrequent items are ignored. For the FHUIM method, if
TWU(a, D) < θ, then the item a is discarded, whereas for FLHUIM task, if

∑
a∈T u(a, T) < θ′

with T ∈ D, then the transaction is not considered to be part of the search space.

Algorithm 1 SAT based Frequent (Local) High Utility Itemset Mining Approach.

Input: D: a transaction database, θ: utility threshold, δ: support threshold
Output: S: the set of frequent (local) high utility itemsets

1 S ← ∅;
2 for i ∈ [1..n] do
3 if Suppu(ai, D) ≥ δ then
4 Di ← {(k, Tk) ∈ D | ai ∈ Tk}, Ω = ⟨a1, . . . , an⟩ ← items(Di), Γ← ∅;
5 for Tj ∈ Di do
6 if

∑
c∈Tj

u(c, Tj) < θ then

7 Γ← Γ ∧ ¬ri, Di ← Di \ {Tj};
8 end
9 end

10 for b ∈ items(Di) do
11 if Suppu(b, Di) < δ then
12 Γ← Γ ∧ ¬pb;
13 end
14 end
15 Ψ← pai

∧
∧

1≤j<i

¬paj ;

16 Φ← Φfhuim(Di, θ, δ) ∧Ψ ∧ Γ ; /* Φflhuim for FLHUIM */

17 S ← S ∪ DPLL_Enum(Φ)
18 end
19 end
20 return S;

4 Empirical Investigation

4.1 Experimental setup

Algorithm 1 is implemented in C++ language top-on the SAT solver MiniSAT [10], which is
adapted to compute all models of a propositional formula by performing a DPLL procedure [7]
as explained above. Our motivation here relies on the fact that we face on the problem of
enumerating a huge number of models. For this, we adapt MiniSAT solver by keeping watched
literals for unit propagation. Obviously, the restart and clause learning components can be
disabled for better scalability and also to avoid growing the sub-formulas size. Note that the
decomposition is performed by considering the frequency of items in ascending order, and the
resulting sub-problems are addressed in a sequential manner. We have compared our proposed

A. Hidouri, S. Jabbour, and B. Raddaoui 27:11

approaches against two baselines, namely HU-FIMi [28] and FUFM [27]4. In our empirical
evaluation, we conduct experiments over different commonly used benchmark datasets in the
HUIM setting. These datasets are downloaded from the open-source data mining library
SPMF [12]. All characteristics of both real and synthetic datasets are summarised in Table 4:
the number of transaction (#Trans), the number of items (#Items), the average length of
transactions (AvgTransLen), and the density (Density(%) for each dataset (see appendix).

Our experiments were performed on a machine with Intel Xeon quad-core processors with
32GB of RAM running at 2.66 GHz on Linux CentOS. Timeout was set to two hours for each
run of an algorithm on a dataset. All experiments were conducted by varying the minimum
support (δ) and the minimum high utility (θ) thresholds. It should also be mentioned that for
our proposed algorithms, the computation time includes both the time needed for generating
the CNF formulas and that for computing all models (i.e., itemsets of interest) of these
formulas. We also note that the reported runtime in all the experiments is in seconds.

4.2 Results on Mining FHUIs
To evaluate the performance of our approach for mining frequent high utility itemsets,
we consider a representative sample of real-world datasets (Chess, Retail, Kosarak, and
Chainstore). We compared our SATFHUIM algorithm to the existing method named HU-FIMi
[28]5. Our approach is compared to this baseline according to running time and memory
consumption for different minimum support and utility thresholds. Table 2 summarizes
the empirical performance of our method against HU-FIMi on each dataset for each θ and
δ values. Notice that the symbol (–) means that the algorithm is not able to complete the
mining process under the fixed time out (i.e., TO). The size of FHUIM encoding in terms of
the number of variables (#Var) and clauses (#Clauses) is given in Table 2.

According to our experimental results, our method outperforms the baseline across all
datasets. In fact, SATFHUIM achieves interesting results on all databases when δ and θ are
varied. For Retail, Chainstore and Kosarak datasets, SATFHUIM was respectively up to 39, 30
and 70 times faster than HU-FIMi. It can also be observed that on Chess dataset, HU-FIMi
was enable to mine the target itemsets under the timeout except for δ = 50% and θ = 400k
where the baseline took more than 4000 seconds to mine all FHUIs. However, for the same
dataset SATFHUIM is able to scale for all minimum support and utility threshold values with
a maximum running time of 1300 seconds. In terms of memory usage, SATFHUIM performs
very well on both dense and sparse datasets, except for Retail and Kosarak datasets. This
can be explained by the fact that even if the size of the generated sub-bases is small, the
sub-problems could be numerous for these two datasets.

In our experiments, we also investigate the behavior of our SAT-based proposal SATFHUIM
w.r.t. the running time and the number of FHUIs while varying both the values of θ and δ

thresholds. The empirical results are depicted in Figures 4 and 5. The results show that
SATFHUIM is able to solve all datasets even for small support and utility thresholds values
where the number of obtained itemsets is huge. As illustrated in Figure 4, it is clear that the
performance of our algorithm depends on the overall dataset characteristics. In addition, the
minimum support δ as well as the minimum utility θ thresholds have a strong impact on the
performance of the mining process. Specifically, for low values of θ and δ, SATFHUIM needs
more time to discover all itemsets. The density value also has an impact on the execution

4 We have used the C++ implementation for HU-FIMi, and the Python implementation for FUFM.
5 We did not provide a comparison with FCHUIM because the source code is not public.

CP 2022

27:12 SAT-Based Frequent HUIM

Table 2 Experimental results using different values of θ and δ.

SATFHUIM HU-FIMi

Dataset δ(%) θ Time(s) Memory
(MB) #conf #Var #Clauses Time(s) Memory

(MB) #cand

Chess

30
200k 1341.21 118 5417007

75
4003366 – – –

300k 380.89 117 3722143 4003184 – – –
400k 250.98 118 539285 4002718 – – –

40
200k 363.171 117 673551

75
3240897 – – –

300k 192.04 117 1071967 3240897 – – –
400k 47.32 117 426604 3240870 4022.47 149.16 1064837

50
200k 102.33 87 103010

75
2930270 – – –

300k 70.14 87 212158 2930270 3650.06 169.83 2485694
400k 28.15 87 170565 2930243 1786.03 96.87 634997

Retail

0.2
1k 1.83 290 3167

16470
5835070 195.87 145.44 95912

8k 1.6 207 1529 5500626 100.68 146.92 5877
30k 3.7 156 1049 5084829 46.52 131.91 958

0.4
1k 0.96 125 163

16470
2696209 61.48 123.78 30167

8k 0.92 125 325 2650864 36.74 123.22 2652
30k 0.81 124 402 2520038 18.95 122.71 482

0.6
1k 1.99 125 163

16470
1785564 30.02 118.44 14591

8k 0.71 105 121 1764079 20.64 117.87 1624
30k 0.64 105 217 1710400 12.99 118.4 318

Kosarak

0.2
200k 38.91 3011 21977

41270
117031877 – – –

400k 32.20 3004 4887 115627789 5348.66 876.24 191819
600k 28.71 2986 1425 111434918 4002.07 870.56 75344

0.4
200k 18.23 1514 1174

41270
49791548 1231.01 860.74 56174

400k 17.10 1516 1306 49636024 849.15 858.98 18521
600k 16.03 1509 816 49166188 652.24 856.3 7198

0.6
200k 12.79 1154 446

41270
31646467 540.8 839.82 16552

400k 12.37 1153 594 31594030 385.69 826.5 5531
600k 11.78 1156 514 31498639 294.35 826.89 2358

Chainstore

0.2
1M 7.8 754 234

46086
15404456 245.79 939.4 1095

1.4M 7.5 752 288 15184184 208.97 933.56 670
1.8M 7.19 747 313 14899579 462.76 932.04 500

0.4
1M 5.44 523 42

46086
7915721 123.13 896.05 503

1.4M 5.34 523 69 7915721 117.42 877.91 346
1.8M 5.17 523 89 7915721 269.54 887.14 240

0.6
1M 4.24 465 10

46086
4481837 81.33 841.47 292

1.4M 4.16 465 15 4481837 77.11 839.75 181
1.8M 4.08 465 22 4481837 77.15 838.29 141

time. To be precise, SATFHUIM becomes slow on dense datasets, for instance it takes more
than 1000 seconds to find all FHUIs for Chess dataset. In contrast, on sparse datasets, it
is become easier to compute all FHUIs even for low thresholds values. This is the case for
Chainstore dataset where the time needed to enumerate all patterns is only 80 seconds for
low threshold values.

Figure 4 Running time of SATFHUIM w.r.t. minimum support threshold on real-world datasets.

A. Hidouri, S. Jabbour, and B. Raddaoui 27:13

Figure 5 Number of FHUIs w.r.t. minimum support threshold on real datasets.

According to Figure 5, it is clear that the number of FHUIs always depends on the chosen
values of θ and δ. In fact, for lowest threshold values this number becomes huge even for
small datasets. For instance, on Chess and Retail the number can be more than 107 and
104, respectively, but still clearly small compared with the number of itemsets generated
by HUIM algorithms6 as the support constraint allows to discard an important number of
patterns. Overall, we note that the number of FHUIs is always less to the number of HUIs.

4.3 Results on Mining FLHUIs
The second experiment was conducted to evaluate the performance of our SATFLHUIM al-
gorithm and compare it with the state-of-the-art method FUFM [27]. This experiment was
carried on the real datasets (i.e., Chess, Retail, Mushroom, Accidents, and Chainstore) and
also on a synthetic one called T60D10kI1k. Note that T60D10kI1k was constructed using
the transaction database generator in SPMF [12] (see Table 4 for the characteristics of this
dataset). For this dataset, the internal (resp. external) utility values was generated using
a uniform distribution in range [1,10] (resp. [1,6]). The parameters θ′ and δ values were
varied for the different datasets. Similarly to the previous experiment, we compare our
approach against the baseline FUFM on both running time and memory usage for mining
FLHUIs, followed by the number of generated FLHUIs. As our SATFLHUIM algorithm allows
us also to mine closed FLHUIs, we add in the last column of Table 3 the number of closed
FLHUIs (#CFLHUIs). Table 3 shows in addition the encoding size in terms of the number
of variables (#var) and clauses (#Clauses). All experimental results are shown in Table
3. According to this latter, both algorithms produced the same output. On running time,
SATFLHUIM performs well on all of datasets. Interestingly enough, our method outperforms
the baseline FUFM for low values of δ and θ′ where the number of generated FLHUIs is large.
For instance, on Chess dataset and θ′ = 100 and δ = 70%, FUFM takes more than 1 hour to

6 If the minimum support threshold δ = 1, the set of FHUIs correspond exactly to the set of HUIs.

CP 2022

27:14 SAT-Based Frequent HUIM

find all FLHUIs whereas SATFLHUIM does not exceed 2 seconds for the same task. This is
primarily due to the fact that FUFM is a candidate generation-based method with a large
number of candidates. Furthermore, as the support and minimum utility thresholds decrease,
FUFM’s runtime increases dramatically. From a memory usage point of view, there is a gap in
terms of memory between SATFLHUIM and FUFM. For instance, FUFM consumes up to 18 times
more memory than SATFLHUIM for Chess dataset. Roughly speaking, when the parameters δ

and θ′ decrease, the overall performance of the two algorithms begin to decrease, and vice
versa. When compared to the number of FLHUIs, it can be seen that the number of closed
FLHUIs does not decrease significantly for almost datasets, except for Mushroom and Chess
where the number of closed FLHUIs decreases to half w.r.t. the number of FLHUIs.

Table 3 Experimental results using different values of θ′ and δ.

SATFLHUIM FUFM

Dataset δ(%) θ′ Time(s) Memory
(MB) #Var #Clauses Time(s) Memory

(MB) #FLHUIs #CFLHUIs

Chess

70
100 2.51 68

75
1594175 3784.971 1469 17201 9167

130 1.36 68 1590608 3741.68 1214 6004 3469
150 0.83 68 1587442 3752.159 1071 2197 1378

75
100 1.04 68

75
1476874 1434.251 577 5347 3343

130 0.57 68 1472986 1420.615 530 1366 959
150 0.37 68 1469384 1431.31 420 350 277

80
100 0.42 54

75
1165792 541.532 259 1176 880

130 0.25 54 1161235 540.855 271 147 129
150 0.19 54 1157227 539.979 279 9 9

Retail

2
10 0.4 104

16470
814001 3108.718 186 39 39

15 0.39 104 785221 3139.677 186 31 31
20 0.38 104 763051 3106.071 186 28 28

4
10 0.32 96

16470
554031 372.061 155 16 16

15 0.3 96 531227 375.671 155 14 14
20 0.3 96 514102 376.369 155 13 13

6
10 0.29 96

16470
494337 256.184 148 14 14

15 0.29 95 473078 254.18 148 12 12
20 0.27 95 456605 255.564 148 7 7

8
10 0.3 96

16470
494337 232.043 145 12 12

15 0.28 95 473078 230.931 145 8 8
20 0.28 95 456605 230.95 145 1 1

Mushroom

30
30 0.67 91

119
2205546 88.592 59 2286 383

40 0.64 91 2200604 88.75 65 1869 343
50 0.61 91 2193490 88.957 65 1390 282

40
30 0.32 72

119
1554782 46.279 55 268 84

40 0.31 72 1548637 45.725 55 146 53
50 0.28 72 1539823 46.191 59 59 30

50
30 0.15 58

119
806424 17.389 49 45 19

40 0.15 58 799408 17.575 46 18 11
50 0.16 58 790047 17.316 47 2 2

Accidents

70
40 21.46 2544

468
69675386 6798.121 3178 133 133

45 19.92 2555 69542270 6950.867 3177 86 86
48 19.23 2553 69466628 6841.843 3176 67 67

75
40 14.97 1977

468
55728869 4190 3893 42 42

45 14.44 1977 55599338 4216.008 3892 24 24
48 14.16 1976 55523819 4259.47 2335 17 17

80
40 10.15 1851

468
36447084 2238.2 1051 13 18

45 9.96 1844 36271268 2170.082 1488 4 4
48 9.96 1843 36177935 2133.187 1488 2 2

Chainstore

0.2
100 10.49 929

46086
18210234 777.52 1257 407 407

500 9.84 909 16437597 775.13 1257 51 51
800 9.61 903 16199306 768.64 1259 10 10

0.4
100 6.22 769

46086
9475966 530.86 1263 142 142

500 5.94 672 8255824 531.46 1265 18 18
800 5.91 668 8101301 515.35 1266 3 3

0.6
100 4.26 676

46086
5617273 206.81 1256 79 79

500 4.08 611 4711977 212.15 1256 9 9
800 4.02 608 4596272 198.97 1256 1 1

Figure 6 provides the execution times on the different datasets in the first line followed by
the variation of the number of patterns in the second line. Due to space limitation, we did
not provide the results for all θ′ and δ values. Instead, each bar corresponds to the average
number of FLHUIs for each δ threshold in terms of the average of all fixed θ′ values.

According to these experimental results, the performance of our proposal is highly
dependent on the dataset characteristics, and also on the thresholds values chosen. In fact,
when θ′ and δ are set to large values the runtime is quite similar for almost all datasets. This
is understandable as the number of discovered patterns is small. However, for small threshold
values there is a gap between the runtimes. It is also worth noting that the output size (i.e.,
the set of FLHUIs) is significantly decreased when compared to our SATFHUIM algorithm
w.r.t. θ′ threshold values. For instance, on Chess, the average number of FLHUIs is about
21744362 for all fixed θ′ values and δ = 30%, whereas the number of FHUIs is 24081372 for
the same δ value and θ′ = 200k.

A. Hidouri, S. Jabbour, and B. Raddaoui 27:15

Figure 6 Experimental results of SATFLHUIM on several datasets.

5 Conclusion

In this paper we investigated how to solve the problem of mining (closed) FHUIs and FLHUIs
from transaction databases using propositional logic. For the FHUIM task, we extended the
existing approach of [15] with the frequency constraint, while for the FLHUIM problem we
provided a new encoding using the well-known Pseudo-Boolean constraints. We extended
the DPLL procedure to deal with both clauses and Pseudo-Boolean constraints in order to
compute all models of CNF formulas. To scale up, a decomposition approach was presented,
which allows the problem to be divided into several sub-problems of reasonable size. Empirical
evaluation have shown how our approaches are very promising w.r.t. state-of-the-art.

In the future, we plan to investigate how to use propositional satisfiability to implement
a limited but efficient clause learning in the context of patterns mining. In addition, by
extending our approach for multi-objective optimization, we plan to investigate the problem
of computing skyline HUIs from transaction databases using the two measures of interest
(i.e., utility and frequency).

CP 2022

27:16 SAT-Based Frequent HUIM

References
1 Fadi A Aloul, Arathi Ramani, Igor Markov, and Karem Sakallah. Pbs: a backtrack-search

pseudo-boolean solver and optimizer. In International Symposium on Theory and Applications
of Satisfiability, pages 346–353, 2002.

2 Mohamed-Bachir Belaid, Christian Bessiere, and Nadjib Lazaar. Constraint programming for
mining borders of frequent itemsets. In IJCAI, pages 1064–1070, 2019.

3 Abdelhamid Boudane, Saïd Jabbour, Badran Raddaoui, and Lakhdar Sais. Efficient sat-based
encodings of conditional cardinality constraints. In LPAR, pages 181–195, 2018.

4 Abdelhamid Boudane, Saïd Jabbour, Lakhdar Sais, and Yakoub Salhi. SAT-based data mining.
Int. J. Artif. Intell. Tools, pages 1840002:1–1840002:24, 2018.

5 D. Chai and A. Kuehlmann. A fast pseudo-boolean constraint solver. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, pages 305–317, 2005.

6 W. Cook, C.R. Coullard, and Gy. Turán. On the complexity of cutting-plane proofs. Discrete
Applied Mathematics, pages 25–38, 1987.

7 Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem-
proving. Commun. ACM, pages 394–397, 1962.

8 Heidi E. Dixon and Matthew L. Ginsberg. Inference methods for a pseudo-boolean satisfiability
solver. In AAAI, pages 635–640, 2002.

9 Imen Ouled Dlala, Saïd Jabbour, Badran Raddaoui, and Lakhdar Sais. A parallel SAT-based
framework for closed frequent itemsets mining. In CP, pages 570–587, 2018.

10 Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In SAT, pages 502–518, 2004.
11 Niklas Eén and Niklas Sörensson. Translating pseudo-boolean constraints into sat. J. Satisf.

Boolean Model. Comput., pages 1–26, 2006.
12 Philippe Fournier-Viger, Jerry Chun-Wei Lin, Antonio Gomariz, Ted Gueniche, Azadeh Soltani,

Zhihong Deng, and Hoang Thanh Lam. The spmf open-source data mining library version
2. In Joint European conference on machine learning and knowledge discovery in databases,
pages 36–40, 2016.

13 Wensheng Gan, Jerry Chun-Wei Lin, Philippe Fournier-Viger, Han-Chieh Chao, Vincent S.
Tseng, and Philip S. Yu. A survey of utility-oriented pattern mining. IEEE Transactions on
Knowledge and Data Engineering, pages 1306–1327, 2021.

14 Tias Guns, Anton Dries, Siegfried Nijssen, Guido Tack, and Luc De Raedt. Miningzinc: A
declarative framework for constraint-based mining. Artif. Intell., pages 6–29, 2017.

15 Amel Hidouri, Said Jabbour, Badran Raddaoui, and Boutheina Ben Yaghlane. Mining closed
high utility itemsets based on propositional satisfiability. DKE, page 101927, 2021.

16 Saïd Jabbour, Fatima Ezzahra Mana, Imen Ouled Dlala, Badran Raddaoui, and Lakhdar Sais.
On maximal frequent itemsets mining with constraints. In CP, pages 554–569, 2018.

17 Saïd Jabbour, Nizar Mhadhbi, Badran Raddaoui, and Lakhdar Sais. Triangle-driven community
detection in large graphs using propositional satisfiability. In AINA, pages 437–444, 2018.

18 Saïd Jabbour, Nizar Mhadhbi, Badran Raddaoui, and Lakhdar Sais. Sat-based models for
overlapping community detection in networks. Computing, 102(5):1275–1299, 2020.

19 Saïd Jabbour, Nizar Mhadhbi, Badran Raddaoui, and Lakhdar Sais. A declarative framework
for maximal k-plex enumeration problems. In AAMAS, pages 660–668, 2022.

20 Saïd Jabbour, Lakhdar Sais, and Yakoub Salhi. Mining Top-k motifs with a SAT-based
framework. Artif. Intell., pages 30–47, 2017.

21 Daniel Le Berre and Anne Parrain. The SAT4J library, Release 2.2, System Description.
Journal on Satisfiability, Boolean Modeling and Computation, pages 59–64, 2010.

22 Ying Liu, Wei-keng Liao, and Alok Choudhary. A two-phase algorithm for fast discovery of
high utility itemsets. In Pacific-Asia Conference on Knowledge Discovery and Data Mining,
pages 689–695, 2005.

23 Vasco Manquinho and J. Marques-Silva. On using cutting planes in pseudo-boolean optimiza-
tion. Journal on Satisfiability, Boolean Modeling and Computation, 2006.

A. Hidouri, S. Jabbour, and B. Raddaoui 27:17

24 João P. Marques-Silva and Karem A. Sakallah. Grasp: A search algorithm for propositional
satisfiability. IEEE Trans. Comput., pages 506–521, 1999.

25 A Morgado and J Marques-Silva. Algorithms for propositional model enumeration and counting.
Technical report, Citeseer, 2005.

26 A Sakthi Nathiarasan and M Manikandan. Performance oriented mining of utility frequent
itemsets. In International Conference on Circuits, Communication, Control and Computing,
pages 317–321, 2014.

27 Vid Podpecan, Nada Lavrac, and Igor Kononenko. A fast algorithm for mining utility-frequent
itemsets. Constraint-Based Mining and Learning, page 9, 2007.

28 R Uday Kiran, T Yashwanth Reddy, Philippe Fournier-Viger, Masashi Toyoda,
P Krishna Reddy, and Masaru Kitsuregawa. Efficiently finding high utility-frequent itemsets
using cutoff and suffix utility. In Pacific-Asia Conference on Knowledge Discovery and Data
Mining, pages 191–203. Springer, 2019.

29 Jilles Vreeken and Nikolaj Tatti. Interesting patterns. In Frequent Pattern Mining, pages
105–134. Springer, 2014.

30 Tianyou Wei, Bin Wang, Yuntian Zhang, Keyong Hu, Yinfeng Yao, and Hao Liu. FCHUIM:
Efficient frequent and closed high-utility itemsets mining. IEEE Access, pages 109928–109939,
2020.

31 Ryan Williams, Carla Gomes, and Bart Selman. On the connections between backdoors,
restarts, and heavy-tailedness in combinatorial search. structure, 23(4), 2003.

32 Jieh-Shan Yeh, Yu-Chiang Li, and Chin-Chen Chang. Two-phase algorithms for a novel
utility-frequent mining model. In Emerging Technologies in Knowledge Discovery and Data
Mining, pages 433–444, 2007.

A Appendix

Algorithm 2 DPLL_Enum: A DPLL backtrack search for Model Enumeration.
Input: Φ: a CNF formula
Output: S: the set of all models of Φ

1 ∆ = ∅; S = ∅;
2 if (Φ |=UP p) then
3 return DPLL_Enum(Φ ∧ p) ; /* unit clause */
4 end
5 if (Φ |=UP ⊥) then
6 return ∅ ; /* conflict */
7 end
8 if check_Pseudo_Boolean_constraint() == F alse then
9 return ∅;

10 end
11 if (∆ |= Φ) then
12 S ← S ∪ {∆} ; /* new found model */
13 return ∅
14 end
15 p = select_variable(V ar(Φ));
16 ∆← ∆ ∪ {p}; S ← S ∪ DPLL_Enum(Φ ∧∆);
17 ∆← ∆ ∪ {¬p}; S ← S ∪ DPLL_Enum(Φ ∧∆);
18 return S;

Table 4 Datasets Characteristics.

Instance #Trans #Items AvgTransLen Density(%)
Chess 3196 75 37 49.33

Mushroom 8124 119 23 19.33
Retail 88162 16470 10.3 0.06

Accidents 340183 468 33.8 7.22
Kosarak 990002 41270 8.1 0.02

Chainstore 1112949 46086 7.23 0.02
T60D10kI1k 10000 1000 30.4 3.04

CP 2022

Understanding How People Approach Constraint
Modelling and Solving
Ruth Hoffmann # Ñ

School of Computer Science, University of St Andrews, UK

Xu Zhu #

School of Computer Science, University of St Andrews, UK

Özgür Akgün # Ñ

School of Computer Science, University of St Andrews, UK

Miguel A. Nacenta # Ñ

Department of Computer Science, University of Victoria, Canada

Abstract
Research in constraint programming typically focuses on problem solving efficiency. However, the
way users conceptualise problems and communicate with constraint programming tools is often
sidelined. How humans think about constraint problems can be important for the development of
efficient tools that are useful to a broader audience. For example, a system incorporating knowledge
on how people think about constraint problems can provide explanations to users and improve the
communication between the human and the solver.

We present an initial step towards a better understanding of the human side of the constraint
solving process. To our knowledge, this is the first human-centred study addressing how people
approach constraint modelling and solving. We observed three sets of ten users each (constraint
programmers, computer scientists and non-computer scientists) and analysed how they find solutions
for well-known constraint problems. We found regularities offering clues about how to design systems
that are more intelligible to humans.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming;
Human-centered computing → Empirical studies in interaction design

Keywords and phrases Constraint Modelling, HCI, User Study, Grounded Theory

Digital Object Identifier 10.4230/LIPIcs.CP.2022.28

Supplementary Material Dataset (Artefacts, Raw Observation Data, Intercoder Data, Code Explan-
ations): https://doi.org/10.5281/zenodo.6519841

Funding This work is partially funded by NSERC Discovery Grant 2020-04401 (Canada).
Xu Zhu: University of St Andrews and EPSRC grant DTG1796157.

1 Introduction

Research in constraint programming (CP) techniques and algorithms during the last few
decades have resulted in significant advances in how a large number of problems of practical
significance can be addressed. For example, companies routinely use CP to schedule delivery
routes [34], educational authorities leverage CP to match medical students to training
positions [5] and administrators of high-performance computing clusters use CP for scheduling
jobs [15]. CP has been used in commercial settings for several decades [13].

Despite the demonstrated value of CP in these and many other applications, CP remains
the domain of a relatively small set of specialists and, arguably, an underappreciated area of
computer science. In his seminal paper from 1996 [11], Freuder identifies the potential of
CP technology for widespread adoption. In his recent paper from 2018 [12] he recognises
the significant progress made by the field and identifies the next challenge as ease of use.

© Ruth Hoffmann, Xu Zhu, Özgür Akgün, and Miguel A. Nacenta;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 28; pp. 28:1–28:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rh347@st-andrews.ac.uk
https://rh347.host.cs.st-andrews.ac.uk
https://orcid.org/0000-0002-1011-5894
mailto:xz32@st-andrews.ac.uk
https://orcid.org/0000-0002-2801-3271
mailto:ozgur.akgun@st-andrews.ac.uk
https://ozgur.host.cs.st-andrews.ac.uk
https://orcid.org/0000-0001-9519-938X
mailto:nacenta@uvic.ca
https://nacenta.com
https://orcid.org/0000-0002-9864-9654
https://doi.org/10.4230/LIPIcs.CP.2022.28
https://doi.org/10.5281/zenodo.6519841
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 Understanding How People Approach Constraint Modelling and Solving

We believe that an increase in awareness of the hard-won knowledge in CP and increased
accessibility of its techniques and tools (e.g., solvers, constraint modelling languages and
modelling tools) can deliver positive improvements for individuals and communities.

For example, consider how a programmer might be able to generate a more efficient
solution to a problem if they recognize a subproblem as a constraint satisfaction problem
(CSP) for which they can include a CP solver library. Similarly, a person without specialist
programming knowledge who identifies a problem as a CSP is more likely to learn how to
access existing knowledge and software to find a solution.

One of the barriers to this wider awareness and better understanding of CP by a wider
population is that CP tends to be approached from a mathematical, logical or computational
point of view and this can be conceptually challenging. To make progress towards this goal
we instead approach this problem from a human-centered point of view. In this work we
study how people with different levels of expertise with respect to computer programming
and CP think about CP and the process of solving constraint problems. Our assumption is
that we can leverage a better understanding of how people think about constraint problems
and their solutions to create tools such as CP languages or CP applications that are easier
to access and use by non-specialists. For example, a programming language that uses core
concepts closer to people’s default conceptual approach to their problem will, presumably,
require less effort to learn and co-opt as a personal tool [16]. Although we do not explicitly
focus on improving the teaching of CP technology, this same information can help improve
the teaching of constraint programming to novices because it offers a model of how people
are likely to think about constraint problems.

We present a qualitative study of 30 participants with different degrees of familiarity
with computer science and CP attempting to solve constraint problems. Our analysis shows
that non-experts are not aware of the implications of the problem representation and will
gravitate to simpler visualisations. Similarly, the visualisation/representation of solving
strategies is something that has an impact on the understanding of a solving step. Finally, we
found that there is a general belief that constraint problems are solved strategically (almost
mathematical), rather than through search. The results from our analysis represent an initial
step towards a better understanding of people’s conceptual models of constraint problems
and solvers. We also discuss ways in which this analysis is relevant for the design of CP
languages and tools.

2 Overarching Goal

The overarching goal of this research is to gain knowledge into how people think about
constraint problems and their solution. We work under the assumption that gaining this
knowledge will help researchers and practitioners in CP in several meaningful ways: 1) A
better understanding of how people think about CP can support designers of the languages
and interfaces that users of CP come in contact with. For example, an end-user CP language
could use terms or constructs that are more likely to be correctly understood by the user.
In turn, this could result in more usable, easier to learn or faster to write languages. 2)
Communication between the solver software and the end user is likely to benefit from a
better understanding of the end-user’s expectations. For example, an end-user could benefit
from explanations provided by the solver software when performance is likely to mismatch
the end-user’s expectations (e.g., if an additional constraint results in computation times
orders of magnitude larger). In the future, solvers might be able to provide explanations of
performance that support the user’s modeling activity, but to do this it is important to also

R. Hoffmann, X. Zhu, Ö. Akgün, and M. A. Nacenta 28:3

understand how the user thinks about the problem. 3) Learners and future practitioners of
CP, including future researchers in the area, can benefit from courses and instructors that
are aware of which concepts, techniques and procedures come more naturally to learners of
different backgrounds.

3 Methodology

To make progress towards the goal stated in the previous section, we designed a controlled
observation experiment in which people attempt to visually model, solve, and program or
constraint model constraint problems as described in a previous paper [40].

3.1 Participants
We recruited 30 participants from local universities, 10 belonging to each of the three
expertise groups: non-computer scientists (identified as non-CS), computer scientists (CS),
and constraint programmers (CP). Non-CS participants (7 female & 3 male, between 19 and
28 years in age), were non-computer scientists with negligible or no programming experience.
Of the non-CS participants, 1 was studying towards a degree in a science faculty, 2 in a
medicine faculty, and 7 in an art faculty. CS participants (4 female & 6 male, between 19
and 42 years in age) were students in a computer science degree with little or no experience
in constraint programming but with experience of computer programming. CP participants
(1 female & 9 male, between 21 and 64 years in age) were a mixture of students and staff
who have either taken a constraint programming module, taught one or conduct research
in that area. Participants received gift vouchers as compensation for their time. The three
distinct groups were chosen because the way in which people solve problems is likely to be
influenced by their experience and formal education, and they represent a range of levels of
familiarity with formal problem specifications.

3.2 Procedure, Tasks and Problem Selection
In the experiment, participants were asked to visually model, solve, and program or model
specific constraint problem instances by hand. Each participant provided written consent and
was then assigned two problems. Problems were selected from a pool of constraint problems
collected from CSPLib [21]. The selected problems are: Word Crypto, Subset Sum, Sudoku,
Scheduling, Magic Square, and Knapsack. The exact formulations are in the supplementary
materials. For the exact problem selection criteria, see the previous paper [40].

Out of all the participants, Sudoku and Subset Sum were attempted by two participants
from each of the expertise groups while the rest were each attempted by 4 participants in
each of the groups. For each of the two problems assigned to them, participants had to carry
out a visual modelling task as well as a problem solving task, in sequence. Programmers in
the CS and CP groups had to perform an additional programming/constraint programming
task after. Participants always completed the tasks in order, which precludes bias due to
the additional tasks performed by the CS and CP groups. Participants had 14 minutes to
complete each task.

The visual modelling task was analysed in the previous paper [40]. For the solving task,
participants were given the same problem they had during the modelling task and asked to
try to solve the problem by hand, without computer aid. In this paper we focus exclusively
on the solving task, although parts of the analysis is influenced by the visual modelling
task from the previous paper. In this task, participants were encouraged to talk aloud their

CP 2022

28:4 Understanding How People Approach Constraint Modelling and Solving

Raw
Participant

Video
Transcoding Transcoded

Video

Codes from
Modelling

Study

Initial
Coding
Scheme

Refined
Codes

Intercoder
Refined
Codes

Informed

Initial pass Intercoder
Reliability

Iterative
Refinements

Figure 1 Flowchart of the different steps of the analysis methodology.

thought processes and decisions to allow the experimenter to more accurately understand
what they were doing [39]. However, participants did not always do this and often needed
prompting to describe their thoughts as they were trying to solve the problems. Occasionally,
the experimenter would ask for clarifications or offered short reminders of the task. As part
of the analysis, we try to infer thought processes from their actions.

We had trouble persuading one of the participants to solve the problems by hand. We
have included their data as the participant was persuaded to describe how they would attempt
to solve the problem.

3.3 Analysis Methodology
The analysed data consists of two streams of video for each of the participants (resulting in a
total of around 32 hours of video per stream), and the paper output from their specifications
(scans available in the Supplementary Materials). The two video streams captured two
different views, one directly overhead and one pointing diagonally onto the workspace.
Snippets from these materials in the remainder of this paper appear marked with the
expertise group (non-CS, CS, CP), the number of the participant within that group (from 1
to 10) and whether this was their first or second problem (e.g., CS 7.2).

We followed a bottom-up open coding approach inspired by grounded theory [17]. We
analysed both the artefacts from each participant (written notes and solutions) and the
video recording of the solving process. An overview of the analysis workflow can be seen in
Figure 1. As a preliminary step, we transcoded the two video streams to allow simultaneous
viewing of the different camera angles. In a first analysis step, we analysed the artefacts
and video produced by creating an affinity diagram of common occurrences and general
themes. We then iteratively coded the features that appear within the artefacts and video
using Microsoft Excel, refining the code list on each pass. A subset of the codes were initially
adopted from the previous analysis from the visual modelling task [40], but were then refined
for this analysis. However, most of the final codes (briefly summarised in Subsection 3.4)
ended up being specific to this task. The authors met several times during this period to
clarify any ambiguities in the codes and refine them.

3.4 A summary of the codes used in the analysis
The codes for annotating the participant behaviour are split into 3 categories. These categories
are Visual Elements (VE), Memory related visual elements (MEM), and Solving Approaches
(SA). In Table 1 we provide a small selection of codes to preserve space, the full list of codes
can be found in the Supplementary Materials.

The VE codes describe what the participants wrote or drew on the paper, for example if
they used the representation they were given in the problem statement (VE1.9) or if they
crossed out/scribbled out any of the work they had written down at this point (VE1.11).

R. Hoffmann, X. Zhu, Ö. Akgün, and M. A. Nacenta 28:5

MEM codes indicate concepts written on the paper as well but they are used to keep
track of information, such as keeping track of temporary solutions (MEM3) or having a
representation of globally available values (MEM4.1).

Finally, the SA codes are a combination of behavioural observations and what is being
written down or said by the participant in relation to their solving steps. The SA codes were
split into problem specific strategies and universal strategies which can be found or used in
any of the problems. Two examples in the universal strategy category are codes that identify
whether a participant restarted solving the problem from scratch without remembering
anything from their previous attempt (SA1.2), or if the participants followed a trial and error
approach through random partial assignments of values to the variables without any rhyme
or reason (SA1.3). For the problem specific strategies, we coded not only the strategies that
made sense for the problem (such as SA4.2 where in the Subset Sum problem participants
did brute force matching by creating all possible set sizes and then evaluated them), but also
strategies that the participants used but which would not lead to a solution (such as SA2.5,
where the participants packed the knapsack by the weight or value of the product, rather
than the more traditional ratio).

3.5 Coding Validation Analysis
The bulk of the coding was performed by one of the authors. In order to ensure the robustness
of the process, the remaining three authors performed an independent coding pass of a subset
of 3 of the 60 videos. The inter-coder reliability ratio (the number of agreements divided by
the total number of codes from the results of the independent coding pass) and the Cohen
Kappa statistic [25] (calculated using the scikit-learn python library [32]) measured an
inter-coder reliability ratio of 79% and a Cohen Kappa statistic of 0.50.

In an iterative second stage, all authors discussed any ambiguities and discrepancies
between codings and resolved some of their differences. Some of these differences resulted
from either lack of clarity regarding the scope of a particular code, or lack of familiarity with
the video and missing a briefly appearing code. The authors then prepared another code
pass based on this discussion. The post-discussion codes have a 92% agreement. The Cohen
Kappa statistic post-discussion is 0.80, which is a significant improvement from pre-discussion
result. The Supplementary Materials contain the CSV files and python code used to carry
out the Kappa calculations.

4 Findings

We describe the regularities that we found in how people approach the constraint problem
solving process roughly in chronological solving order. We split the process into three stages.

In the first stage, participants needed to decide how to represent the problem. When
presenting the problem statement to them, we have a problem representation as part of the
statement. Participants might reuse this representation or they may choose to re-represent
the problem in a way that is more intuitive to them before they start operating on it. We
discuss this process in the Representation section (Subsection 4.1).

Solving the problem usually involves proposing candidate (partial or complete) solutions
and noting this solution on the chosen representation. Participants use several different
approaches at this stage (Process and Strategies, Subsection 4.2).

Finally, delivering a solution might involve verifying that the candidate solution is correct
and, in the case of solution enumeration or optimisation problems, whether there are other
valid (or better) solutions (Solution Verification and Multiple Solutions, Subsection 4.3).

CP 2022

28:6 Understanding How People Approach Constraint Modelling and Solving

Table 1 Representative sample codes for the four groups of codes used in the analysis. We have
a total of 77 codes in the four groups listed above. The breakdown is 23 in the VE group, 6 in the
MEM group, 11 in the SA1 group and 48 in the SA2 group. SA2 is the largest since it contains
problem specific codes for the 6 problems. Full list of codes can be found in supplementary materials.

Group Code Name Description

V
is

ua
le

le
m

en
ts VE1.9 Recreating Instance Use of the visual element given in the problem

description or recreation of the representation
used in the previous part of the experiment.

VE1.11 Crossing out Line(s) through a single or more characters,
or scribbles over a larger area.

M
em

or
y

el
em

en
ts

MEM3 Temporary solution Noting and pointing out a temporary solution.
This solution could be incorrect or partially
valid. A temporary solution is one where
there is a majority of variable and value as-
signments, and is written out as such.

MEM4.1 Visual representation of
globally possible values

Note (or a mark) of possible values that can
be assigned to a variable. The assessment of
the possibilities was made with all variables
or values in consideration.

So
lv

in
g

ap
pr

oa
ch

es

SA1.2.1 Restart remembering
(no)goods

The participant has decided to give up on
their current partial (or full) solution. It is
irrelevant whether that solution is correct.
They then start the solving from the begin-
ning and remember something they about the
variables and values.

SA1.3 Random Partial Assign-
ment

A strategy of randomly assigning a few vari-
able value pairs.

P
ro

bl
em

sp
ec

ifi
c

SA SA2.5 By weight value product The set of object will be sorted into a highest
to lowest weight by value product. A subset
of the highest products will be chosen.

SA4.2 Brute force by set size The participant creates all sets of a given set
size and checks which have the correct sum.
This set enumeration can be done explicitly
or implicitly.

At each step we found similarities and differences between the different groups of par-
ticipants; we introduce these as appropriate. Note that, due to the design of the study,
participants were exposed to different subsets of problems and some regularities belong to
specific problems or problem types (see Section 3 for details). To facilitate the interpretation
of the results in Section 6 we mark the notable observations of this Section with labels (e.g.,
O1, O2, etc.).

In some cases we provide aggregate measures about problems across different participant
groups. Unless otherwise stated, aggregate numbers (e.g., 5 in the CS group and 21 in the
CP group) refer to problems, not participants. Since participants did two problems each, the
total counts are out of 20 for each of the groups or out of 60 for the whole data set.

R. Hoffmann, X. Zhu, Ö. Akgün, and M. A. Nacenta 28:7

Figure 2 Artefacts from our user study that support the observations regarding representations.
These are explained in Subsection 4.1. Each sub-figure is labelled with the name of the observation.
Each image is labelled with the anonymised identifier of the relevant participant.

4.1 Representation
Participants were given an initial written problem statement (the exact problem statements
are included the Supplementary Materials). In itself, the problem statement can be seen
as a representation of the structure of the problem. Sometimes, these representations are
adequate to directly operate on (Sudoku and Magic Square can be solved by filling the
numbers on the grid provided and Word Crypto allows the reuse of the same shape used in
the problem statement for the summation), whereas in other problems the participants need
to come up with a representation that is not given in the problem statement itself (e.g., to
solve the Knapsack problem one has to create some kind of list or sequence of objects).
(O1) When solving a problem, participants attempted to solve most problems (70%) using

a representation they already had. That is, participants used a verbatim copy of the
representation from the problem statement or, when this was not available, the represent-
ation that they themselves created in the modelling part of the study. See Figure 2.O1
for an example of reusing a given representation when solving a Sudoku instance. It has
been long known that how a problem is first framed or presented to a human solver can
have an effect on how it gets solved (e.g., [19, 35]), due the differing representation of the
problem by people [37]. We refer to this issue as framing or representational inertia.

(O2) It is still key to highlight that framing has a sizeable effect on how the problem is
understood, at least initially. Participants in the CS and CP groups were more likely to
adopt alternative and more sophisticated representations of the problems such as using a
multi-column table for the Knapsack problem (See Figure 2.O2), which is akin to using
more sophisticated data structures to address the problem. This suggests that one of
the key differences between experts and non-experts is the awareness of representational
alternatives.

CP 2022

28:8 Understanding How People Approach Constraint Modelling and Solving

Figure 3 Artefacts from our user study that support the observations regarding process and
strategies. These are explained in Subsection 4.2. Each sub-figure is labelled with the name of the
observation. Each image is labelled with the anonymised identifier of the relevant participant.

(O3) Beyond the structure of the representation itself, some of the problems allowed for
alternative choices in the focus of the representation. For example, the scheduling problem
could be solved either by modelling the problem from the perspective of the people or
focusing on a representation of a timetable. Figure 2.O3 gives an example of these two
perspectives ((a) focusing on people, (b) using a timetable). This choice is likely to have
an impact on the ability of the participant to solve the problem and correctly understand
it. Additionally, the choice is likely to be affected by the semantics of the problem. That
is, depending on the nature of the problem, participants might be inclined to model in a
way that is not necessarily the most efficient. We suspect that in a problem which involves
people a model that puts the person at the center might be preferred at least initially to
a more “abstract” way to model the situation. This is consistent with our observation of
the scheduling problem, where we saw all participants using a people-centric view of the
problem.

4.2 Process and Strategies
Once participants have settled on a representation (or re-representation) they need to get into
the process of finding solutions. This is where we find that the assumptions and attitudes
towards the problem solving process can have the most dramatic effects.

R. Hoffmann, X. Zhu, Ö. Akgün, and M. A. Nacenta 28:9

(O4) We observed, for example, that many participants in the non-CS and CS groups thought
that there is an ideal way of finding the solution that does not include too much guesswork.
Their assumption is that there is some kind of mathematical formula, algorithm, hidden
insight, or an optimal sequence of steps through the solution space that will lead them
to a solution without much effort and, presumably, with some level of satisfaction. We
find evidence of this attitude in some of the approaches of the participants where they
attempt to use a mathematical approach instead of trying to make progress with the
puzzle with more intuitive steps of inference. In one case a participant says “there must
be a mathematical approach to this”. In another case, when solving the Magic Square
problem, we observed a participant who turned the grid into a system of equations, which
were then meant to be solved to find the common sum of the rows, columns and diagonals
(see Figure 3.O4).

(O5) Some people simply apply a trial and error approach, in a similar fashion to a random
partial (or full) assignment. This seems to be more prevalent among non-CS participants,
7 apply trial and error, in comparison to 5 and 3 in CS and CP categories respectively.
For example, one of the non-CS participants, who has never solved a Sudoku puzzle
before, started by filling the squares with seemingly random numbers (see Figure 3.O5.a).
They then started noticing the implications of the filled in numbers (almost in the style of
propagation) and picked up on more common solving strategies such as block/row/column
elimination. Another participant from the non-CS group started by assigning a subset of
the numbers of the Word Crypto problem randomly and trying to fill in the rest greedily
(see Figure 3.O5.b).

(O6) As seen above trial and error is a natural first approach when one does not have a
good understanding of the structure of the problem or lacks experience in how to address
it. However, we found that participants can have quite different reactions to the almost
inevitable discovery that the first trial does not comply with the constraints. In some
cases participants use a backtracking process in which they undo a certain number of
steps (one or more) that they have found to be incorrect or undesirable (e.g., because
it might be, or be perceived as, a dead end), to then try a different alternative. This
is a fairly sophisticated approach that generally requires keeping a more sophisticated
tally of the options tried and the order they occurred in. In general we found that
CP participants were less likely to backtrack as they might have a better grasp of the
inference of a solution step, we observed 6 CP backtracking whereas 9 CS and 10 non-CS
backtracked. But when the CP participants were to backtrack they were generally more
likely to employ more sophisticated backtracking. Figure 3.O6 shows an example of this,
in which the participant greedily populates the knapsack to find an intermediate solution.
Then, they undo some of their decisions and replace the items with higher value items to
improve the total value of the solution.

(O7) The alternative to backtracking is a restart of the solving problem process. This seemed
to be the preferred approach for many, especially in the non-CS group where we observe
restarts 12 times, in comparison to 7 and 2 in the CS and CP groups. In Figure 3.O7
we can see how the participant restarted the Word Crypto problem twice, while still
remembering some of the information from their last approach. Similarly Figure 3.O4.b
shows a participant who attempted the problem a few times from scratch with different
strategies, even though they did not make any mistakes. Participants from the CP group
seem to have a more realistic understanding of the solving process, and we observed many
of them systematically exploring the solution space instead of prematurely restarting
from scratch.

CP 2022

28:10 Understanding How People Approach Constraint Modelling and Solving

Figure 4 Artefacts from our user study that support the observations regarding how participants
check their candidate solutions. These are explained in Subsection 4.3. Each sub-figure is labelled
with the name of the observation. Each image is labelled with the anonymised identifier of the
relevant participant.

(O8) Amongst participants who applied restart approaches we observed two main subsets.
A majority (17 vs 8 spanning all groups) restart the process without any evident sign of
having learned anything from the previous approach. In Figure 3.O8 we have observed
the participant attempting to solve the Magic Square problem, by doing four consecutive
trials without making any substantial changes to their solving approach.

(O9) In contrast, other participants seem to learn about the structure of the problem after
the first attempt and seamlessly transition into a more structured approach. For example,
in Figure 3.O9.a we see a participant who started solving the Subset Sum problem by
choosing a seemingly random set of numbers. They then realised that they can split
the numbers into two groups (positive and negative numbers) and attempt to balance
their selection across the two groups. Note that this is more likely to happen for certain
kinds of problems due to their more obvious solution space structure. As seen above this
is applicable in the Subset Sum problem, but also in the Magic Sum problem, where
participants filled in the grid partially to see that in fact some numbers cannot be (or vice
versa have to be) in certain cells. In some cases participants transitioned to approaches
that are not necessarily useful; for example, in Figure 3.O9.b a participant attempted to
create a formal system of equations for solving the Magic Square problem as opposed to
trying to develop an intuition for the puzzle – this made the problem harder to solve for
them.

4.3 Solution Verification and Multiple Solutions
Once the participants finish solving the problem, either by declaring that they have finished
or by giving up, we found regularities in whether they attempted to verify their solutions
and whether they attempted to find multiple solutions (where appropriate).
(O10) When participants arrive to a potential solution there is a strong tendency to declare

the problem solved. We assumed that participants would naturally seek to validate the
results (e.g., check the constraints), yet not everybody did this, only 3 non-CS, 8 CS and
6 CP validated their solutions, in total that is only 28% of problem instances.

(O11) Despite O10, only in 2 instances participants announced that what they have found
is the solution, did not validate it and in fact the solution was not correct.

(O12) Our scheduling problem happened to have two correct solutions (while it only asked
for one). Here 9 out of the 11 participants who finished solving this problem found both
solutions. How the participants decided to arrange the results seemed to have an effect
on their ability to find more solutions.

R. Hoffmann, X. Zhu, Ö. Akgün, and M. A. Nacenta 28:11

(O13) In Figure 4.O13.a we can see an example of how the participant’s representation of
the solution failed to make it possible for them to see the multiple solutions, as the week
tables are separate for each meeting. Whereas, when the representation combines all
information bundled into a single table, the compact overview allows a precise insight
into the options, as shown in Figure 4.O13.b.

(O14) Amongst our problems there is an additional solution type category. The Knapsack
problem is an optimisation problem, which requires a confirmation as to whether one has
found the best solution. 11 participants claimed to have finished solving the problem,
while only 8 of these actually found the correct solution, and 1 of them was lucky as they
did not validate their solution yet they did find the correct one.

(O15) In the Subset Sum problem we asked the participants to find as many solutions as
possible. This prompted a majority of the participants to find multiple solutions, but not
everyone managed to find all solutions. In general it is difficult for a participant to know
when they found all solutions. This is comparable to knowing whether a solution to an
optimisation problem is indeed optimal. None of the participants validated their solutions,
yet 3 announced that they were finished with the solving process. All participants who
attempted to solve the problem found some of the correct solutions, while 4 of the 6
found all solutions.

5 Limitations

Before we move on to interpret our observations, it is important to highlight the limitations
implied by the methodological and study design choices. First, the study uses methodologies
appropriate for an initial exploratory assessment of the research questions (i.e., a grounded
theory approach). This choice, justified in Section 3, prioritises identifying phenomena over
reliably assessing their prevalence. Although we provide proportions and counts which serve
as an initial estimation of how reliable or broadly represented an observation is likely to
be in the general populations under study, the numbers of participants and problems that
we sampled are not enough to make strong claims about the frequency of their occurrence,
let alone run statistical analysis. The much higher participant numbers required for this
would be prohibitive timewise, or would have led to a coarser analysis, which would not have
exposed the most interesting phenomena. Instead, our findings should be more generally
interpreted as a “prove of existence” of these effects. This is in the same spirit as Nielsen’s
observation that a relatively small number of participants in a user study (5 in their case)
can surface a majority of usability issues in an interface design [29, 20].

Another limitation of our study is also inherent to the limits of observation methodologies.
Although we can be reasonably sure of the actions that participants carry out on paper
or express verbally, it is not possible to assess with certainty the internal motivations of
participants. We endeavor to keep observations factual; nevertheless, readers must be aware
that some interpretation and error are unavoidable.

Practitioners should also be aware that the problems that our participants faced, although
representative of a reasonable variety of existing constraint programming types, only partially
match the variety and complexity of problems that actual users will face in their real lives.
We believe that it is useful and productive to start at the lower end of complexity for an initial
study of the topic. Nevertheless, further study of the challenges and barriers encountered by
users when facing more complex constraint problems is granted.

When interpreting or applying our findings, practitioners should be aware that, although
we aimed at a representative sample of participants with different levels of computing
expertise, the majority of the participants had a high level of educational achievement. This

CP 2022

28:12 Understanding How People Approach Constraint Modelling and Solving

means that populations with average levels of formal education are likely underrepresented.
Despite this, we do not believe that this invalidates our results or makes them less valuable;
if constraint modelling and programming are to become more widely used, it is likely that
the broadening will take place first for non-CP computer scientists and then for professionals
with high levels of education, before it can be further democratised. This is akin to how
spreadsheet tools spread in the 1980’s (see e.g., [27]).

Similarly, we agree that the presence of people with mathematical or scientific modeling
expertise in the non-CS cohort could be a potential source of bias for the results. However, in
our experience we cannot appreciate a difference between people with science and non-science
backgrounds in the non-CS group. In fact, we suspect that it is the computational background
of participants in the CS and CP groups is what makes the biggest difference. Whether this
kind of modelling is more natural for scientists than non-scientists is an interesting question
in itself which is, to the best of our knowledge, still unresolved in the scientific literature.

Finally, the interpretations, suggestions and lessons for practitioners that we offer in the
next section, although evidence based, will still need to be validated after being put into
practice through real modelling languages and tools. We see this study as an initial step to
inform the design of a new generation of CP tools that are more aware of the human factor,
not as a full characterisation of human behavior in relationship with constraint problems.

6 Discussion

In this section we interpret the observations from Section 4 and indicate how these might
affect the design of user interfaces that solve constraint problems or communicate with users
about constraint problems. There are two main categories of design decisions in which we
imagine the findings being applied. The first category involves design of human-facing parts
of existing constraint solving technologies such as constraint modelling languages, editors or
graphical interfaces. The second is the design of system-provided automatic explanations
or guidance that exposes the working of solvers to make it more intelligible to their users,
perhaps to address issues of human trust and accountability in artificial intelligence systems.
This is in line with the broader current push for intelligible, explainable or interpretable
artificial intelligence (e.g., [1, 9]).

We group our discussion into three main topics, one about the importance of representa-
tions, one about people’s mental models of the operations involved in the solving of constraint
problems, and one about the larger context in which constraint solving takes place.

6.1 Representation, Representational Competence and Visualisation
Solving constraint problems can be characterised, at least in part, as a representational
problem. When people recognise a world state that could benefit from calculating a solution
based on constraints, the challenge is often for them to achieve a sufficiently accurate
representation of the structure of the problem. Observations O1, O2 and O3 directly
highlight some of the challenges of an efficient human-machine interface for constraint solving.
The initial representation in which a problem appears to a person might lock their thinking
to representations that might be suboptimal or even pernicious to the overall objective. We
use a fictional (but plausible) example here to illustrate the different challenges. Consider
a university administrator trying to schedule a series of rooms for exams of a group of
students; the same student should not be required to be in two rooms at the same time,
but different students take different combination of courses, whose associated exams should
take place simultaneously and preferably in the same room. Our observations suggest that

R. Hoffmann, X. Zhu, Ö. Akgün, and M. A. Nacenta 28:13

people will tend to adopt the most salient representation of the problem. In this case, it
is likely that the administrator would naturally use a room-centric representation of the
problem, since booking of rooms is their most visible required action. But a room-based
representation can make it difficult for the administrator to express some of the student-
centric constraints, and might also not be the best way to express the problem in a modelling
language to obtain a solution efficiently. The ability of the problem holder to consider
different representations might be a key element in the success of the modelling activity, yet
we observed that non-CS people seem to have very little awareness of the importance of
representations. Representational awareness and the related concepts of representational and
meta-representational competence [23, 31, 8, 35] (i.e., the idea that people’s ability to create
different representations of a problem and translate between different representations is a
fundamental skill for its understanding and solution) have been identified in other areas such
as chemistry and physics education as key elements of expertise and solving skills [22].

The issue of representation is also likely to have an influence in the other direction as
well. Once people get used to specific ways of representing problems (e.g., because they get
used to a particular language or interface), the representation could become their default
way of expressing this type of problems. If the representation is powerful and efficient
for computation, this can be useful, but if the representation is unduly constrained or
inappropriate it can prevent people from even recognizing a problem as such.

Our observations also bring a reminder that how solutions are represented is also important
(O13). Ideally, constraint solving software should be able to present results in ways that are
readily accessible to the problem holder. In fact, how the solutions are represented might
have an influence on how they understand the solution space (see also Subsection 6.3) and
whether they will try to iterate their modelling and choose solutions when multiple are
available (this is discussed further in Subsection 6.2).

Overall, we believe that the design of representation specification tools and solution
visualization are both areas of inquiry that can leverage significant benefit towards the goals
stated in Section 2.

6.2 The Larger Context of Constraint Solving
Current tools for modelling and solving constraint problems (such as Conjure [2],
SavileRow [30] and MiniZinc [28]) assume a programming workflow where the focus is
on the sequence of a) model writing; b) model running/execution; c) output. However, some
of our observations above suggest that there is benefit in considering the other surrounding
activities in which the problem holder is involved. We have already indirectly mentioned
two: users might need to switch representations (based on O2 and O3), and users will need
to interpret the solutions to see if they fit their needs (O13).

Our findings indirectly point to other parts of the process that might be also important.
One is the need for validation of solutions (O10, O11); even if we can safely assume that the
software will only provide solutions that are correct, it is possible that a human error occurred
elsewhere (e.g., in the modelling, or when specifying to the solver whether the problem should
be treated as a satisfaction problem – any solution will do – vs. an optimisation problem).
An effective user interface can facilitate user validation that the solutions actually address
the intended problem (not only the problem that the user managed to model). The need
for validation is also recognised in previous work on using animation and model checking to
allow users to gain confidence in their specifications [24].

In general, our observations of the process lead us to an understanding of the process
of constraint problem solving that is less compartmentalised than what current interfaces
assume. The iterative process of trying to solve a problem often drives people to improve

CP 2022

28:14 Understanding How People Approach Constraint Modelling and Solving

their solution finding strategies (O9), but also to a better general understanding of the
structure of the problem itself. For people, it might not be until they try to solve a problem
that they start understanding whether the problem can have a single, more than one or even
no solutions. Similarly, insights acquired by trying to manually solve the problem might lead
to re-modeling (re-representations) of the problem, which could lead to improved efficiency.
This follows findings in the domain of data analysis that shows that manual (and often
tedious) specification of visualizations can enhance understanding of data [26]. Additionally,
we have very little doubt that the general process of constraint problem solving with human
intervention most often requires multiple iterations of modelling, execution and verification
(note, however, that our study did not offer sufficient context to expose this larger loop).

6.3 Human Thinking about Constraint Solving
At first sight it might seem gratuitous to study how people solve constraint problems
manually. After all, modern computers running modern solvers are more accurate and orders
of magnitude faster than humans at this task. However, we think that there are several
reasons why our observations can be beneficial for the design of future systems.

One such reason is that the user’s expectations matter. For example, we observed that
many participants in the non-CS and CS groups expected problems to have a “happy”,
straightforward, or analytical solution (O4). Users which assume that every problem has
this kind of solution might expect fewer solving steps, even when the state space is large
and even an efficient solver can take seconds or even hours to find a solution, let alone all
solutions or demonstrate that there are none. It is not clear where this assumption comes
from, but it might be from how people often encounter constraint problems as puzzles or
exam questions, which are usually designed precisely to avoid the trial-error-backtracking
process that can be inevitable in many problems.

Through the study of how people attempt to solve these problems we have also observed
that many non-CP experts have very little understanding of the size of the state space and
the task of solving some of these problems, even when they have some background in CS.
This presents a problem for systems integrating constraint solvers because interfaces will
often not be instantaneous, which is the current expectation for most applications. We see
two possible ways to ameliorate this problem. The system could explain and communicate
with users why a solution can not be arrived at very fast. Beyond this, systems could educate
the user to recognise the type of modeling structures that cause the delay in the first place,
and perhaps suggest alternatives that preserve the meaning of the model but are faster to
solve. A very sophisticated system that enables this kind of human-CP solver dialogue likely
requires maintaining in the solver some kind of user model that incorporates knowledge
about regularities of the kind that we found in our study (e.g., preference for modelling from
a certain point of view – O3).

7 Related Work

Previous work considers the interaction of constraint programming and its users in the
context of teaching, visualisation and explainable AI.

A typical way of teaching constraint programming is beginning with its theoretical
foundations, which often takes a mathematical approach. For example the “Essentials of
Constraint Programming” book [14] contains chapters on logic, Boolean algebra, linear
polynomial equations and non-linear equations. Similarly, the “Principles of Constraint
Programming” book [3] defines constraint programming as a linear equation solver and a

R. Hoffmann, X. Zhu, Ö. Akgün, and M. A. Nacenta 28:15

unification algorithm. On the other hand, in his invited talk at CP 2014, Prosser explains
his experiences with teaching constraint programming [33]. According to this talk1, getting
students to solve problems as soon as possible increases their engagement as opposed to
starting with a more theoretical background. Chan et al. [7] presents a unique approach to
teaching CP in a MOOC (Massive Online Open Course) setting. They use a Fable-Based
learning approach and present the topics in the course using a coherent story plot and through
problem solving. Both Prosser and Chan et al. describe benefits gained from listening to the
learners and explain how they improved their teaching style upon feedback.

There are several examples of visualisation tools for the solving process, we describe
a small selection here. Bauer et al. [4] presented an integrated development environment
(IDE) for constraint programming. The IDE provides a visual debugger which displays the
search tree that is explored by the constraint solver. The debugger is solver-independent,
with minor modifications it can support any solver. However, their system only focuses on
visualising the solving process and not modelling. Recently Goodwin et al. [18] described a
user-centred design process for tools that visualise the solving process, building on earlier
work by Shishmarev et al. [36]. From an Information Visualisation perspective, Goodwin
et al. [18] looked at how different visualisations could be useful in the process of profiling
constraint models. This allows users of constraint programming to refine their models or test
different parameters.

Constraint programming lends itself to automatically creating explanations for unsat-
isfiable problems, as well as explanations for how certain inferences or decisions are made.
This is mainly due to the model-based nature of CP: typically users write a declarative model
when applying CP technology and this explicitly captures the requirements of the task at
hand. Sqalli et al. [38] produce explanations for inference-based CSPs, Bogaerts et al. [6]
extend this work to multiple steps in the context of logic puzzles, and Espasa et al. [10] show
human-like solving steps in a variety of pen and paper puzzles.

8 Conclusion

This paper presents a user-centric qualitative study, aiming to understand how people
approach constraint modelling and solving. The study is done on three groups of participants
(30 in total), and hence we are able to explore regularities within and across distinct groups
of people. To the best of our knowledge this paper presents the first user-study of its kind:
recording participants model and solve constraint problems with maximum freedom in their
approach, analysing 32+ hours of video recordings, coding each recording to characterise it,
and using grounded theory to offer an analysis of the codes we produce.

Some directions for future work are related to the limitations in our study. Further exper-
iments are necessary to statistically quantify the preponderance of the different phenomena
that we observed (our study did not have sufficient numbers for it, since it was designed
for identifying the phenomena instead), to ascertain possible sub-populations of interest in
the non-CS cohort (e.g., see whether people with and without science backgrounds show
differences in how they think about constraint problem solving – this could have biased
our results, since three participants in our non-CS group had science backgrounds) and to
generalize to people without formal tertiary education (including children). More advanced
CP-specific aspects during modelling (like the use of global constraints, the effect of implied
constraints and symmetry/dominance breaking constraints) and during the solving process

1 Available online: http://www.dcs.gla.ac.uk/~pat/presentations/CP2014.pptx

CP 2022

http://www.dcs.gla.ac.uk/~pat/presentations/CP2014.pptx

28:16 Understanding How People Approach Constraint Modelling and Solving

(like search heuristics and clause learning) that affect the efficiency of solving need to be
studied further as well. Another direction of future work is the development of prototype
user interface systems that build on top of our findings and a thorough evaluation of such
user interfaces.

References
1 Amina Adadi and Mohammed Berrada. Peeking inside the black-box: A survey on explainable

artificial intelligence (XAI). IEEE Access, 6:52138–52160, 2018. doi:10.1109/ACCESS.2018.
2870052.

2 Özgür Akgün, Ian Miguel, Christopher Jefferson, Alan M. Frisch, and Brahim Hnich. Extensible
automated constraint modelling. In AAAI 2011. AAAI Press, 2011. URL: http://www.aaai.
org/ocs/index.php/AAAI/AAAI11/paper/view/3687.

3 Krzysztof R. Apt. Principles of constraint programming. Cambridge University Press, 2003.
4 Andreas Bauer, Viorica Botea, Mark Brown, Matt Gray, Daniel Harabor, and John K. Slaney.

An integrated modelling, debugging, and visualisation environment for G12. In CP 2010.
Springer, 2010. doi:10.1007/978-3-642-15396-9_42.

5 Amine Benamrane, Imade Benelallam, and El-Houssine Bouyakhf. Constraint programming
based techniques for medical resources optimization: medical internships planning. J. Ambient
Intell. Humaniz. Comput., 11(9):3801–3810, 2020. doi:10.1007/s12652-019-01587-6.

6 Bart Bogaerts, Emilio Gamba, Jens Claes, and Tias Guns. Step-wise explanations of constraint
satisfaction problems. In ECAI 2020. IOS Press, 2020. doi:10.3233/FAIA200149.

7 Mavis Chan, Cecilia Chun, Holly Fung, Jimmy H. M. Lee, and Peter J. Stuckey. Teaching
constraint programming using fable-based learning. In AAAI. AAAI Press, 2020. URL:
https://aaai.org/ojs/index.php/AAAI/article/view/7059.

8 Andrea A. diSessa. Metarepresentation: Native Competence and Targets for Instruction.
Cognition and Instruction, 22(3):293–331, 2004. doi:10.1207/s1532690xci2203_2.

9 Mengnan Du, Ninghao Liu, and Xia Hu. Techniques for interpretable machine learning.
Commun. ACM, 63(1):68–77, 2020. doi:10.1145/3359786.

10 Joan Espasa, Ian P. Gent, Ruth Hoffmann, Christopher Jefferson, and Alice M. Lynch. Using
small muses to explain how to solve pen and paper puzzles. CoRR, abs/2104.15040, 2021.
arXiv:2104.15040.

11 Eugene C. Freuder. In pursuit of the holy grail. Constraints An Int. J., 2(1):57–61, 1997.
doi:10.1023/A:1009749006768.

12 Eugene C. Freuder. Progress towards the holy grail. Constraints An Int. J., 23(2):158–171,
2018. doi:10.1007/s10601-017-9275-0.

13 Eugene C. Freuder and Mark Wallace. Constraint technology and the commercial world
(interview). IEEE Intell. Syst., 15(1):20–23, 2000. doi:10.1109/MIS.2000.820324.

14 Thom W. Frühwirth and Slim Abdennadher. Essentials of constraint programming. COGTECH.
Springer, 2003. URL: http://www.springer.com/computer/swe/book/978-3-540-67623-2.

15 Cristian Galleguillos, Zeynep Kiziltan, and Ricardo Soto. A job dispatcher for large and
heterogeneous HPC systems running modern applications. In CP 2021. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.CP.2021.26.

16 James H. Gerlach and Feng-Yang Kuo. Understanding human-computer interaction for
information systems design. MIS Q., 15(4):527–549, 1991. URL: http://misq.org/
understanding-human-computer-interaction-for-information-systems-design.html.

17 Barney G Glaser and Anselm L Strauss. The discovery of grounded theory: Strategies for
qualitative research. Routledge, 2017.

18 Sarah Goodwin, Christopher Mears, Tim Dwyer, Maria Garcia de la Banda, Guido Tack,
and Mark Wallace. What do constraint programming users want to see? exploring the
role of visualisation in profiling of models and search. IEEE Trans. Vis. Comput. Graph.,
23(1):281–290, 2017. doi:10.1109/TVCG.2016.2598545.

https://doi.org/10.1109/ACCESS.2018.2870052
https://doi.org/10.1109/ACCESS.2018.2870052
http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3687
http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3687
https://doi.org/10.1007/978-3-642-15396-9_42
https://doi.org/10.1007/s12652-019-01587-6
https://doi.org/10.3233/FAIA200149
https://aaai.org/ojs/index.php/AAAI/article/view/7059
https://doi.org/10.1207/s1532690xci2203_2
https://doi.org/10.1145/3359786
http://arxiv.org/abs/2104.15040
https://doi.org/10.1023/A:1009749006768
https://doi.org/10.1007/s10601-017-9275-0
https://doi.org/10.1109/MIS.2000.820324
http://www.springer.com/computer/swe/book/978-3-540-67623-2
https://doi.org/10.4230/LIPIcs.CP.2021.26
http://misq.org/understanding-human-computer-interaction-for-information-systems-design.html
http://misq.org/understanding-human-computer-interaction-for-information-systems-design.html
https://doi.org/10.1109/TVCG.2016.2598545

R. Hoffmann, X. Zhu, Ö. Akgün, and M. A. Nacenta 28:17

19 Francis Heylighen. Formulating the Problem of Problem-Formulation. In Cybernetics and
Systems ’88, pages 949–957. Kluwer Academic Publishers, Dordrecht, 1988.

20 Wonil Hwang and Gavriel Salvendy. Number of people required for usability evaluation: the
10+/-2 rule. Commun. ACM, 53(5):130–133, 2010. doi:10.1145/1735223.1735255.

21 Christopher Jefferson, Ian Miguel, Brahim Hnich, Toby Walsh, and Ian P Gent. CSPLib: A
problem library for constraints, 1999. URL: http://www.csplib.org.

22 Antje Kohnle and Gina Passante. Characterizing representational learning: A combined
simulation and tutorial on perturbation theory. Physical Review Physics Education Research,
13(2):020131, 2017. doi:10.1103/PhysRevPhysEducRes.13.020131.

23 Robert Kozma and Joel Russell. Students Becoming Chemists: Developing Representational
Competence. In Visualization in Science Education, Models and Modeling in Science Education,
pages 121–145. Springer Netherlands, Dordrecht, 2005. doi:10.1007/1-4020-3613-2_8.

24 Michael Leuschel and Michael Butler. Prob: A model checker for b. In International symposium
of formal methods europe, pages 855–874. Springer, 2003.

25 Mary L McHugh. Interrater reliability: the kappa statistic. Biochemia Medica, 22(3):276–282,
2012. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3900052/.

26 Gonzalo Gabriel Méndez, Uta Hinrichs, and Miguel A. Nacenta. Bottom-up vs. top-down:
Trade-offs in efficiency, understanding, freedom and creativity with infovis tools. In CHI 2017.
ACM, 2017. doi:10.1145/3025453.3025942.

27 Bonnie A. Nardi. A Small Matter of Programming: Perspectives on End User
Computing. MIT press, 1993. URL: https://books.google.co.uk/books?hl=en&
lr=&id=0drDRT370eoC&oi=fnd&pg=PR11&dq=nardi+small+matter+of+programming&ots=
eFmV2hPujA&sig=ddWW4jgU1jebzDZpk7plDRCtcoU.

28 Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J. Duck, and
Guido Tack. Minizinc: Towards a standard CP modelling language. In CP 2007. Springer,
2007. doi:10.1007/978-3-540-74970-7_38.

29 Jakob Nielsen. Estimating the number of subjects needed for a thinking aloud test. Int. J.
Hum. Comput. Stud., 41(3):385–397, 1994. doi:10.1006/ijhc.1994.1065.

30 Peter Nightingale, Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian Miguel, and Patrick
Spracklen. Automatically improving constraint models in savile row. Artif. Intell., 251:35–61,
2017. doi:10.1016/j.artint.2017.07.001.

31 Orit Parnafes and Andrea A. diSessa. Relations between types of reasoning and com-
putational representations. Int. J. Comput. Math. Learn., 9(3):251–280, 2004. doi:
10.1007/s10758-004-3794-7.

32 Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake
VanderPlas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and
Edouard Duchesnay. Scikit-learn: Machine learning in python. J. Mach. Learn. Res., 12:2825–
2830, 2011. URL: http://dl.acm.org/citation.cfm?id=2078195.

33 Patrick Prosser. Teaching constraint programming. In CP 2014. Springer, 2014. doi:
10.1007/978-3-319-10428-7_2.

34 Bochra Rabbouch, Foued Saâdaoui, and Rafaa Mraihi. Constraint programming based
algorithm for solving large-scale vehicle routing problems. In HAIS 2019. Springer, 2019.
doi:10.1007/978-3-030-29859-3_45.

35 S I Robertson. Problem Solving. Psychology Press, 2001.
36 Maxim Shishmarev, Christopher Mears, Guido Tack, and Maria Garcia de la Banda.

Visual search tree profiling. Constraints An Int. J., 21(1):77–94, 2016. doi:10.1007/
s10601-015-9202-1.

37 Herbert A Simon and John R Hayes. The understanding process: Problem isomorphs. Cognitive
psychology, 8(2):165–190, 1976.

CP 2022

https://doi.org/10.1145/1735223.1735255
http://www.csplib.org
https://doi.org/10.1103/PhysRevPhysEducRes.13.020131
https://doi.org/10.1007/1-4020-3613-2_8
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3900052/
https://doi.org/10.1145/3025453.3025942
https://books.google.co.uk/books?hl=en&lr=&id=0drDRT370eoC&oi=fnd&pg=PR11&dq=nardi+small+matter+of+programming&ots=eFmV2hPujA&sig=ddWW4jgU1jebzDZpk7plDRCtcoU
https://books.google.co.uk/books?hl=en&lr=&id=0drDRT370eoC&oi=fnd&pg=PR11&dq=nardi+small+matter+of+programming&ots=eFmV2hPujA&sig=ddWW4jgU1jebzDZpk7plDRCtcoU
https://books.google.co.uk/books?hl=en&lr=&id=0drDRT370eoC&oi=fnd&pg=PR11&dq=nardi+small+matter+of+programming&ots=eFmV2hPujA&sig=ddWW4jgU1jebzDZpk7plDRCtcoU
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1006/ijhc.1994.1065
https://doi.org/10.1016/j.artint.2017.07.001
https://doi.org/10.1007/s10758-004-3794-7
https://doi.org/10.1007/s10758-004-3794-7
http://dl.acm.org/citation.cfm?id=2078195
https://doi.org/10.1007/978-3-319-10428-7_2
https://doi.org/10.1007/978-3-319-10428-7_2
https://doi.org/10.1007/978-3-030-29859-3_45
https://doi.org/10.1007/s10601-015-9202-1
https://doi.org/10.1007/s10601-015-9202-1

28:18 Understanding How People Approach Constraint Modelling and Solving

38 Mohammed H. Sqalli and Eugene C. Freuder. Inference-based constraint satisfaction supports
explanation. In AAAI/IAAI 1996. AAAI Press / The MIT Press, 1996. URL: http://www.
aaai.org/Library/AAAI/1996/aaai96-048.php.

39 Maarten Van Someren, Yvonne F. Barnard, and J. Sandberg. The think aloud method: A
practical approach to modelling cognitive processes. London: AcademicPress, 11, 1994.

40 Xu Zhu, Miguel A. Nacenta, Özgür Akgün, and Peter Nightingale. How people visually
represent discrete constraint problems. IEEE Trans. Vis. Comput. Graph., 26(8):2603–2619,
2020. doi:10.1109/TVCG.2019.2895085.

http://www.aaai.org/Library/AAAI/1996/aaai96-048.php
http://www.aaai.org/Library/AAAI/1996/aaai96-048.php
https://doi.org/10.1109/TVCG.2019.2895085

Learning Constraint Programming Models from
Data Using Generate-And-Aggregate
Mohit Kumar #

KU Leuven, Belgium

Samuel Kolb #

KU Leuven, Belgium

Tias Guns #

KU Leuven, Belgium

Abstract
Constraint programming (CP) is used widely for solving real-world problems. However, designing
these models require substantial expertise. In this paper, we tackle this problem by synthesizing
models automatically from past solutions. We introduce COUNT-CP, which uses simple grammars
and a generate-and-aggregate approach to learn expressive first-order constraints typically used in
CP as well as their parameters from data. The learned constraints generalize across instances over
different sizes and can be used to solve unseen instances – e.g., learning constraints from a 4 × 4
Sudoku to solve a 9 × 9 Sudoku or learning nurse staffing requirements across hospitals. COUNT-CP
is implemented using the CPMpy constraint programming and modelling environment to produce
constraints with nested mathematical expressions. The method is empirically evaluated on a set of
suitable benchmark problems and shows to learn accurate and compact models quickly.

2012 ACM Subject Classification Applied computing → Operations research

Keywords and phrases Constraint Learning, Constraint Programming, Model Synthesis

Digital Object Identifier 10.4230/LIPIcs.CP.2022.29

Supplementary Material Software (Source Code): https://github.com/ML-KULeuven/COUNT-CP

Funding This project was partially funded by the Research Foundation – Flanders (FWO) project
G0G3220N and FWO-S007318N, as well as the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (Grant No. 101002802: CHAT-
Opt, and 694980: SYNTH). Samuel Kolb is supported by the “Agentschap Innoveren & Ondernemen”
(VLAIO) as part of the innovation mandate HBC.2021.0246.

1 Introduction

Constraints play an important role in modelling many real-world decision problems. They are
used widely in fields like cryptography [13, 15], complexity theory [1] and automatic theorem
proving [14]. However, identifying the constraints of a problem and encoding them into a
mathematical model requires both domain knowledge and modelling expertise. This non-
trivial task is often the major bottleneck for the widespread application of constraint-based
methods and solvers.

Consider, for instance, the case of scheduling nurses in a hospital, where the aim is to
create a schedule for nurses every week. Modeling this problem requires domain knowledge to
identify relevant constraints, such as, every shift requires at least three nurses or nurses may
work at most five days a week. Next, these constraints have to be encoded as a mathematical
model, e.g., a Constraint Satisfaction Problem (CSP). The skills required to achieve both
these steps makes powerful techniques for efficiently solving such problems inaccessible to
people without a mathematical or computer science background.

© Mohit Kumar, Samuel Kolb, and Tias Guns;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 29; pp. 29:1–29:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mohitkrg@gmail.com
mailto:samuel.kolb@cs.kuleuven.be
mailto:tias.guns@cs.kuleuven.be
https://doi.org/10.4230/LIPIcs.CP.2022.29
https://github.com/ML-KULeuven/COUNT-CP
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 Learning Constraint Progr. Models from Data Using Generate-And-Aggregate

Constraint learning approaches aim to overcome this issue by instead learning constraint
models from past solutions [19]. In the example of nurse scheduling, this means learning
the constraint model from manually created past schedules. By automating the modeling
step, constraint learning makes constraint solving techniques more accessible and makes
the modeling process faster and cheaper. In the CP community there are a number of
existing approaches to learn constraints from solutions [10, 2, 4] and – in some cases – non-
solutions [17, 18]. A popular approach to learning constraint is the so called generate-and-test
approach [21]. The idea behind generate-and-test is to generate candidate constraints and
apply them to various subsets of the decision variables and test whether the constraint holds
in the training data.

Most of these approaches learn constraints at the level that a constraint solver accepts:
individual constraints, such as predicates with a fixed number of arguments. By listing
all possible predicates and their signature, different predicate/variable combinations can
be generated and tested. Learning more expressive constraints, however, often requires
generating prohibitively large combinations of predicates and makes constraint learning very
time-consuming. As a result several approaches design their constraint space instead as
a flat catalog of more expressive candidate constraints, learning global constraints [2] or
relational spreadsheet formulas [10]. By modeling constraints using an expressive, richer
language, rather than acquiring individual lower-level constraints, these approaches are able
to synthesize high quality models quickly. The key limitations are that only constraints from
these catalogs can be learned and that parameters can only be inferred using constraint-
specific parameter inference methods.

A recent approach (COUNT-OR [11]) to learning constraints for OR models, such as
nurse scheduling problems, offered an alternative: Using a simple grammar of aggregation
operators, different aggregation expressions are generated and applied to various slices of
matrices and in general tensors of decision variables. By simply computing the lower and
upper bounds of these expressions across all training examples, the method automatically
identifies relevant parameters from data and learns constraints quickly.

We built on this approach to design a constraint learner (COUNT-CP) that applies the
ideas of bounded expressions to learn CP constraints. First, we observe that constraint models
over finite domain integers usually consist of Boolean expressions and numeric expressions
with a comparison (e.g., x = y and x <= y). Because Boolean expressions in this context
can be seen as a special case of numeric expressions that are equal to 1, we can use suitable
bounded numeric expressions lb <= expr <= ub to express common types of constraints
(e.g., abs(x-y) <= 0 and x-y <= 0). Second, we observe that first-order constraints such
as each nurse works at most 5 days a week or global constraints such as alldifferent can
be decomposed into multiple bounded-expression constraints.

Based on these observations, we suggest to learn bounded-expressions using a COUNT-OR
style approach which offers an obvious mechanism to infer the constants. COUNT-CP uses a
simple grammar to generate suitable nested mathematical expressions and computes their
lower and upper bounds. However, to produce expressive, first-order constraints, the learned
bounded-expression constraints are then grouped together over structured sets of variables
using simple grammars of foreach statements. This step also serves as an inductive bias in
selecting which constraints should make up the final learned model. As a result, COUNT-CP
is able to assemble first-order constraints, such as each nurse works at most 5 days a week and
global constraints such as alldifferent. COUNT-CP allows users to provide background
knowledge in the form of sets of variables that the user considers related – e.g., connected
edges in a graph or shared skill levels of nurses – and adds these sets to the grammar used
for grouping constraints.

M. Kumar, S. Kolb, and T. Guns 29:3

Our developments have been inspired by the PTHG-21 Holy Grail Challenge, which
contains variable-sized problem instances over the integer domain, and where a preliminary
version of our approach was the winning (and only) entry. In principle, first-order constraints
are independent of the instance size and can be used to solve different instances of unseen
sizes. However, the numeric constants fitted by approaches such as COUNT-OR may be
instance size dependent and would not apply to unseen instances. To resolve this issue, we
propose to fit a symbolic bound expression across training instances, using generic problem
features as well as semantic constants provided by a domain expert – e.g., minimal staffing
requirements of a hospital.
To summarize, the key contributions of this paper are:

Learning first-order bounded-expression constraints, which are expressive enough to
capture many complicated constraints and can be learned using a simple and fast
generate-and-aggregate procedure.
Defining the language bias for constraints using simple and simple-to-extend grammars
that are combined to learn intricate constraints.
Replacing constants in the learned constraints by symbolic expressions, which allows
learned model to generalise to different and unseen problem sizes.
Allowing users to provide background knowledge using a simple interaction protocol: sets
of related variables and semantic instance-level constants.
Providing an effective strategy for removing redundant constraints to improve the inter-
pretability and speed of learned models.

This paper is structured as follows: First, we review related work on constraint learning
(Section 2). Second, we present our constraint learning approach (COUNT-CP, Section 3)
by discussing its links to COUNT-OR, how it learns propositional constraints, first-order
constraints and how we filter out constraints to produce compact models. Third, we
empirically evaluate our approach on a set of suitable benchmark problems (Section 4).
Fourth, and finally we summarize our conclusions (Section 5).

2 Related Work

Learning constraints from a given set of feasible examples has a long history. The first
algorithm in this regard was given by Valiant [21], back in 1984. Given a set of feasible
examples, this algorithm learns Boolean formulas consistent with the given examples. To do
so, it enumerates all possible formulas upto a pre-defined complexity and keeps only those
which are satisfied by all feasible examples. This is essentially a generate-and-test approach,
where the algorithm generates all possible constraints and then tests whether they hold on
the given dataset. This approach was later extended to first order logic under the banner
of inductive logic programming [8]. Although important, these early works are limited to
Boolean variables and logical formulas.

More recent works, like the series of work by Bessiere et al [4, 5, 6] extend these approaches
to integer variables. For instance, Conacq [4] learns constraints, typically using the basic
comparison relations (=, <, ≤, ≥, >, ̸=). The relations considered is called the bias. It
basically searches for such constraints over every compatible subset of variables (called
scope, e.g. all pairs) and defines a lattice structure of the comparison relations, based
on the generalisation/specialisation relation between them. Feasible examples are used to
remove relations from the lattice. Infeasible examples only say that there has to exist one
constraint over all possible variable combinations that is violated; which is expressed as a
meta constraint. The authors use the concept of convergence to denote if a lattice for a

CP 2022

29:4 Learning Constraint Progr. Models from Data Using Generate-And-Aggregate

pair of variables only contains a single relation; if not, the default action is to take the most
specific relation as constraints, e.g. in case of ≥, ≤ and =, = is taken. The concept of the
lattice comes from the version space algorithm where a lattice is defined over the whole
program space. When considering a separate lattice for every variable pair, arguably its
main purpose may be to identify which relations are redundant, e.g. subsumed by others.
None of these works can learn the bounds in the data, let alone symbolic bounds. This work
was later extended to learn generalized constraints [3], however, the assumption here was
that the user knows which variables are supposed to be grouped together. It was further
extended to detect the groups automatically in [7].

Another well known approach is ModelSeeker [2], which is also a generate-and-test
approach; it does not just consider basic comparison relations, but a subset of all global
constraints in the global constraint catalog. Furthermore, it does not search over all subsets
of variables, but instead has candidate generator expressions that uses the structure of the
decision variables (e.g. a list or matrix) to group the variables into meaningful subsets
(e.g. per row, per column, all pairs). It then generates and tests which constraints are
satisfied in each of the groups, over all positive instances. The use of “generators” matches
the programming style of “foreach s in ...: constraint(s)” that CP modellers often use. If
the constraint has additional parameters, then these need to be inferred separately using
custom rules for every constraint. However, ModelSeeker requires the constraint catalog to
be provided beforehand and does not learn symbolic parameters/bounds.

Finally the CPS [12] approach uses inductive logic programming (ILP) to find logic
programming rules of the form condition =⇒ constraint. The condition can be seen as a
generator too, for the learned logical rules have to be flattened into low level constraints for
every possible substitution of the condition.

Our proposed approach does not go as far as ModelSeeker in considering a bias of
a wide range of generic to very specialized global constraints. We do go beyond simple
comparison relations between pairs of variables, by considering a comparison relation on
a mathematical expression over variables. We use a grammar to generate the possible
mathematical expressions. This captures the basic comparison relations, but also captures
linear (unweighted) expressions and the use of constants such as in x + y ≥ 2. This approach
of mathematical expressions turned into constraints by identifying bounds on them, also
generalizes well to the use of generator expressions.

A recent approach used for learning hard constraints given a set of feasible and infeasible
examples is to encode the learning problem itself as a mathematical model [10, 17]. For
instance, Pawlak et al. [17] learn constraints with linear, quadratic and trigonometric terms
by encoding the learning as a MILP. The hard constraints of this MILP ensure that each
example is correctly classified by the learnt model, while the objective tries to minimise the
complexity of the learnt model. This ensures that the learnt model is concise and easily
readable. This work was later extended to work with positive only training instances [16],
where the idea is to fit a Gaussian mixture model on the given set of feasible points and use
this model to sample infeasible points, the learning strategy then uses both feasible and the
sampled infeasible instances to learn a model. The main drawback of these methods is that
they do not learn symbolic expressions, and thus can not generalise to unseen problem sizes.

3 Learning constraints using COUNT-CP

3.1 Background on COUNT-OR
Our approach for learning constraints is inspired by COUNT-OR [11], a constraint learning
approach for acquiring personnel rostering constraints from example schedules. Instead of
generating and testing a set of possible constraints, COUNT-OR instead generates a set of

M. Kumar, S. Kolb, and T. Guns 29:5

expressions that capture useful quantities in the data by applying aggregates to various slices
of matrices and tensors. We use the term tensor for a multi-dimensional matrix, basically a
matrix is a 2D tensor and a tensor can have more than 2 dimensions.

▶ Example 1. Consider a Boolean matrix of nurses (rows) and days (columns) that encodes
whether a given nurse works on a given day (1) or not (0). Summing over values in a row of
such a weekly schedule expresses the number of working days for a nurse.

By comparing the values of these expressions across different example schedules, COUNT-
OR finds upper and lower bounds for every expression. Together, these bounds and expressions
can be translated to constraints. For example, if the number of working days of nurse i in
the example schedules is always between 0 and 5, COUNT-OR produces a constraint

0 <= sum(X[i, :]) <= 5

COUNT-OR also compares values across tensor slices, e.g., comparing working days for
different nurses, to find generalized constraints, such as

foreach i: 0 <= sum(X[i, :]) <= 6

These generalized constraints can then be applied to schedules with different numbers of
nurses.

We will adopt a similar strategy for learning CP models, however, we use specialized
grammars to generating different types of expressions and to find slices that can be used for
generalized constraints. Given the conceptual similarity to COUNT-OR, we call our approach
COUNT-CP. First, we will explain how COUNT-CP generates propositional expressions for
fixed problem sizes, that is, individual constraints that involve specific subsets of variables
(their scope) and a relation between those variables. Second, we describe how to group these
propositional expressions to find generalized constraints that can also be carried over to
unknown problem sizes.

3.2 Learning propositional constraints
In this work, we consider the case of learning constraints of the following form:

lb <= expr <= ub

where expr is a mathematical expression over variables, such as X[i] + X[j], or an aggregate
expression over a group of variables, such as sum(X[:]). To learn these constraints, we
defined a grammar that captures expressions frequently occurring in CP problems, and a
mechanism to find suitable lower and upper bounds.

Our approach is different from current constraint learning approach in that our bias, the
set of possible constraints that can be learned, is not determined by a fixed set of constraints
(whose parameters might have to be infererd later). Rather, our bias consists of mathematical
expressions on the one hand, and bound-constraints on these expressions on the other hand.

Expression grammar

To construct our grammar, we look at unary, binary and aggregate expressions that can be
expressed in CP modelling languages such as MiniZinc and CPMpy. We consider the unary
identity expression, the binary expressions addition, subtraction and absolute difference, and
the aggregate sum expression.

Observe how this grammar does not include the “traditional” constraint biases x != y,
x <= y, x < y, etc. The reason is that we have constraints that subsume those, namely
abs(x - y) >= 1, x - y <= 0 and x - y <= -1, respectively. Hence, our constraint bias

CP 2022

29:6 Learning Constraint Progr. Models from Data Using Generate-And-Aggregate

– inequalities over the expression grammar – can learn those traditional constraints. But
it can also learn other constraints, like abs(x - y) > 2, as the bounds are automatically
determined and not sequentially tested based on a predetermined list.

One of the few unary/binary constraints it can not learn is x != c, for some constant c
which lies between (exclusive) the lower and upperbound of x. We believe it will be very
rare that a constraint model intentionally excludes one individual value, without that value
being specified as the “input data” (more on this later). Hence, it is not part of our bias.

The bias also does not include n-ary global constraints such as alldifferent() or
increasing(), however, these have decompositions into binary constraints, meaning that
we can learn the decomposed versions. In Subsection 3.3 we will see how to group these
decomposed constraints into generalized constraints that recreate such global constraints.

Also currently not included are tertiary constraints, such as x + y = z or, equivalently,
bounds on x + y - z for arbitrary triples. We leave it open whether these constructs are
commonly used, and how to best manage the large number of candidates.

This simple grammar already allowed us to learn a varied set of constraints. However, for
more complicated problems, the grammar can trivially be extended with additional unary
(e.g., X[i]*X[i], mod(X[i], 2)), binary or n-ary operators. This increased expressiveness
would, however, incur an additional computational cost during learning.

Learning algorithm

Our learning algorithm learns from a set of positive examples T , i.e., given true solutions. For
the propositional learner, which learns individual constraints on specific subsets of variables,
we expect all examples to have the same size and hence the same number of decision variables.
Every positive example consists of a set of tensors which contain assignments to a given set of
decision variables. For the sake of exposition we limit our discussion in this paper to at most
two dimensional tensors (lists and matrices) and use lists for illustration whenever possible.

▶ Example 2. Consider the problem of graph coloring: Given a list of nodes, assign a color
to every node such that nodes that share an edge are assigned different colors. This problem
can be encoded using a list of n integer decision variables X – one per node – whose values
corresponds to colors. Positive examples would be assignments to X that satisfy the graph
coloring constraints. For an instance with 5 nodes and edges 1−2, 1−3, 2−4, 3−5, examples
could be assignments t1 = [1, 2, 3, 1, 1] and t2 [1, 2, 2, 1, 1].

To turn an expression into a constraint, COUNT-CP first generates all expressions in
its grammar and computes their result for different decision variables. Unary expressions
are simply applied to every single decision variable X[i]. Binary expressions are applied to
every possible pair of decision variables (X[i], X[j]). In general, for n-ary expressions,
all tuples of n variables are generated. We use lexicographical ordering to ensure pairs are
not enumerated multiple times to avoid redundant constraints. For asymmetric expressions
this optimization cannot be used as the position of variables are important. However,
substraction is a special case because it holds that lb <= a - b <= ub can be rewritten as
-ub <= b - a <= -lb which simply results in different bounds being learned.

Aggregates are applied to logical groups of variables, such as individual rows and columns of
matrices or user provided groupings (see partitions in Subsection 3.3). For every expression e

and set of variables V , COUNT-CP then computes the minimum and maximum result
across all training examples. We represent these local lower- and upper-bounds as tuples
⟨e, V, lb, ub⟩, where – denoting the values of variables V in example t as V t:

lb = min{e(V t) | t ∈ T} ub = max{e(V t) | t ∈ T} (1)

M. Kumar, S. Kolb, and T. Guns 29:7

It follows that, by design, the constraints learned by COUNT-CP are always satisfied by
all training examples. In a sense, our approach learns the convex hull of all mathematical
expressions that can be expressed by the grammar.

▶ Example 3. Let us apply this approach to the graph coloring example. For the binary
expression abs(X[i] - X[j]), COUNT-CP would compute the result of the expression for
every pair in every example and then compute the bounds for every pair across the examples:

Pair t1 t2 lb ub Pair t1 t2 lb ub
X[1], X[2] 1 1 1 1 X[2], X[4] 1 1 1 1
X[1], X[3] 2 1 1 2 X[2], X[5] 1 1 1 1
X[1], X[4] 0 0 0 0 X[3], X[4] 2 1 1 2
X[1], X[5] 0 0 0 0 X[3], X[5] 2 1 1 2
X[2], X[3] 1 0 0 1 X[4], X[5] 0 0 0 0

For all pairs of nodes with an edge between them, COUNT-CP will learn a constraint
abs(X[i] - X[j]) >= 1, i.e., the nodes must have different colors.

3.3 Learning first-order constraints
Until now we have focused on learning propositional constraints for individual instances
of a problem type. These local constraints can capture constraints over specific subsets of
variables, however, these constraints cannot be used to find solutions for instances of different
sizes (and hence different numbers of variables) and are prone to overfitting the training
examples. Our goal is to address these shortcomings by learning first-order constraints that
are independent of the instance size. That is, constraints of the form foreach V in ...:
lb <= expr(V) <= ub This will allow us to learn constraints from, e.g., a 4 × 4 Sudoku and
use these constraints to solve a 9 × 9 Sudoku. Additionally, we can find constraints, e.g., that
the number of working days of nurses is at most 5, by generalizing across different nurses in
a single example, even if some nurses always worked fewer days in the training examples.

Grouping constraints

The propositional constraint learning approach can learn constraints such as alldifferent
by learning individual constraints abs(X[i] - X[j]) >= 1 between each pair of decision
variables. However, these local pairwise constraints are hardcoded for individual pairs of
variables, and will not generalize to instances of different sizes that, for example, have more
or less decision variables.

To overcome this limitation and learn constraints that are independent of the problem
size, we find index groups, groups of decision variables or pairs of variables, that share a
constraint. The concept is akin to the concept of generator expressions in ModelSeeker [2].

In this setting, for example, alldifferent can be encoded as:
foreach pairs (x[i], x[j]) in X:

abs(x[i] - x[j]) >= 1

For a given expression e, e.g., absolute difference, and the set of learned local constraints C

COUNT-CP uses a sequence grammar to generate sequences, i.e., sets V of decision variables
to group over. For example, the sequence all pairs generates all pairs of decision variables.
Next, COUNT-CP aggregates all the lower- and upper-bounds that had been found for local
constraints to obtain a grouped or first order constraint ⟨e, V, lb, ub⟩, where:

CP 2022

29:8 Learning Constraint Progr. Models from Data Using Generate-And-Aggregate

lb = min{l | V ∈ V ∧ ⟨e, V, l, u⟩ ∈ C} (2)
ub = max{u | V ∈ V ∧ ⟨e, V, l, u⟩ ∈ C} (3)

Our COUNT-CP implementation includes the following sequences: all) all individual
unary variables; all pairs) all pairs of variables; and full) a singleton set with all variables.
These sequences are used for unary, binary and aggregate expressions, respectively. The
implementation can easily be extended with additional sequences, such as, variables with
even indices, sequential pairs of variables, etc.

Partitioning groups

An alldifferent constraint will not usually be applied to all possible variables. A common
pattern, instead, is that the variables are partitioned into groups with an alldifferent over
each group. This pattern is used both by COUNT-OR, as well as the constraint learning
system ModelSeeker [2]. For example, consider the example of Sudoku where the decision
variables are arranged in a matrix. In this case the variables can be partitioned into rows,
columns or blocks and within each partition the variables will be alldifferent.

COUNT-CP follows this pattern, too, and first considers different ways to partition the
decision variables before searching for sequences and corresponding bounds within each
partition. By default, COUNT-CP considers arbitrary slices of tensors as partitions. In
the case of matrices this would be rows, columns as well as the entire matrix. Additionally,
COUNT-CP allows users to provide custom partitions. Custom partitions are a powerful
way for users to interact with the system and provide high-level background knowledge, such
as blocks for Sudoku or edges of a graph coloring problem.

For an expression e, a partition P and a sequence s, COUNT-CP iterates over all
partitions p ∈ P and generates sets of indices by applying the sequence to obtain sets of
indices Vp = s(p). Using the tuples ⟨e, V, lb, ub⟩ found in the grouping step, it aggregates
the bounds across partitions to obtain tuples ⟨e, P, s, lb, ub⟩, where:

lb = min{l | p ∈ P ∧ ⟨e, s(p), l, u⟩ ∈ C} (4)
ub = max{u | p ∈ P ∧ ⟨e, s(p), l, u⟩ ∈ C} (5)

The combination of partitions, sequences and bounded expressions allow us to learn com-
plicated sets of first-order constraints, e.g., that the variables in columns are alldifferent
or that each of the sums over rows never exceed an upper bound.

▶ Example 4. Building on the graph coloring problem introduced above, a user can provide
a custom partition Pedges for each instance that corresponds to the edge E of the graph used
in an instance: Pedges = {{X[i], X[j]} | (X[i], X[j]) ∈ E}.

foreach group in P_edges:
foreach (X[i], X[j]) in pairs(group):

abs(X[i] - X[j]) >= 1

3.4 Symbolic expressions for bounds
So far, we talked about grouping constraints using partitions and sequence generators. In
some cases, e.g., the column-wise all different, this grouping step is enough to learn first-order
constraints that can be applied to instances of any size. However, in some cases the lower-
and upper-bounds depend on the particular instance.

M. Kumar, S. Kolb, and T. Guns 29:9

▶ Example 5. Reconsider the nurse scheduling example. When learning across schedules
from different hospitals, the minimal staffing requirement, i.e., how many nurses have to work
each day might differ and are an instance (hospital) dependent constant. Simply learning
the smallest minimal staffing requirement across all hospitals will produce poor results.

To address this issue, COUNT-CP attempts to express bounds using symbolic expressions.
These symbolic expressions can use computed features, e.g., the number of rows and columns,
or custom features that the user provides for every instance, e.g., the minimal staffing
requirements for hospitals. To keep the discussion clear, we focus on finding a symbolic
expression for the upper-bound of a single first-order constraint ⟨e, P, s, lbi, ubi⟩ across
instances i. The steps are repeated for each constraint and are analogous for lower-bounds.

COUNT-CP aims to find a simple, univariate symbolic expression of the form f +b, where
f is a computed feature, a custom feature or 0, and b is a fixed offset. Given m candidate
features fj the goal is to find the feature and offset that minimize the error across all instances.
By denoting the value of feature fj in instance i as f i

j and using a binary indicator variable αj

to select a feature, we can express the error Ei of a single instance as:

Ei =
m∑

j=1
αjf i

j + b − ubi (6)

Finding the best symbolic expression now corresponds to finding the assignment to the
indicator variables αj and offset b that minimizes the overall error: sum(|Ei|). COUNT-CP
imposes an additional constraint that the symbolic bound must be an upper bound of the
learned bounds. In other words, Ei cannot be negative. This ensures that learned constraints
will be satisfied by every training example. We can now write the optimization problem as:

min
αj

∑
i

Ei s.t.
∑

j

αj = 1 ∧ αj ∈ {0, 1} ∧ ∀i : Ei ≥ 0 (7)

In practice, this problem can be solved easily by computing the optimal offset bj and
resulting error Eij for each feature fj and picking the index j∗ with the smallest error:

bj = max{ubi − f i
j | i} (8)

Eij = f i
j + bj − ubi (9)

j∗ = argminjEij (10)

The resulting expression will then be: fj∗ + bj∗ . Since COUNT-CP also includes the
constant 0 as a feature, it will still return a numeric bound for expressions that do not depend
on a symbolic feature. In fact, in these cases the fitted expression will simply be maxi ubi,
the aggregation operation we have already applied for aggregating bounds across examples,
sequences and partitions.

▶ Example 6. For the nurse scheduling example, given a custom feature minimal-staffing-
requirement (msr), COUNT-CP can now learn that the sum of every column (=nurses working
on a day) is lower bounded by the msr leading to foreach column: sum(column) >= msr.

This approach can be applied on any of the lb or ub of the tuples ⟨e, ·, lb, ub⟩ found.

CP 2022

29:10 Learning Constraint Progr. Models from Data Using Generate-And-Aggregate

3.5 Filtering constraints

Filtering out useless constraints

By computing bounds over expressions, COUNT-CP ensures that learned constraints are
always satisfied by training examples. However, by computing bounds over every expression,
partition and sequence, COUNT-CP will always find valid lower- and upper-bounds. This
can cause COUNT-CP to return many constraints which are true by default or trivially
entailed by another constraint.

First, let us have a look at trivial constraints. As an example of a constraint that is
true by default, consider x[i] + x[j] <= c, where c is the sum of the maximal values
of the domains of variables x[i] and x[j]. COUNT-CP filters out trivial constraints by
detecting them during the propositional learning step. Whenever COUNT-CP learns a local
constraint ⟨e, V, lb, ub⟩, it also computes the minimal and maximal values of the expression e

for the variables V and their domains: l = min e(V), u = max e(V). If lb = l (or ub = b)
the bound is marked as trivial and the corresponding constraint, as well as any first-order
constraint that includes that bound, is removed.

Second, let us consider trivial entailment. Consider two constraints: 1) for each
column, the absolute difference of every pair of variables in the column in at least 1
(⟨abs, columns, all pairs, 1, _⟩); and 2) for the entire matrix, the absolute difference of
every pair of variables in the matrix in at least 1 (⟨abs, all, all pairs, 1, _⟩). Because the
pairs of variables in the first constraint is a subset of the pairs of variables in the second
constraint, the first constraint is entailed by the second one, unless it has a stricter bound.

Consider two first-order constraints c1 = ⟨e, P1, s1, l, u⟩ and c2 = ⟨e, P2, s2, l, u⟩ with
shared bounds (in practice entailment is computed for upper and lower bounds separately).
If both constraints share the same partition P = P1 = P2 but one of the sequences is a
subset of the other sequence: ∀p ∈ P : s1(p) ⊂ s2(p), then c1 is entailed by c2. Since
the sequence grammar is fixed, entailment between sequences can easily be computed in
an offline step before learning. More generally, c1 is entailed by c2 if the union of sets of
indices from c1 is a subset of the union of sets of indices from c2 (as in the example above):⋃

p∈P1
s1(p) ⊂

⋃
p∈P2

s2(p). Because we allow users to provide custom partitions, the more
general entailment cannot be fully pre-computed. COUNT-CP uses these entailment checks
to filter out entailed constraints.

Because first-order constraints are made up of many local constraints, filtering out first-
order constraints can drastically reduce the number of local constraints. This decreases the
time it takes to solve a learned model and find new solutions, without affecting the quality
of the model.

Filtering out overly restrictive constraints

COUNT-CP learns constraints that are satisfied by all training examples. However, there
is a risk that the learned constraints exclude valid unseen solutions. Ideally, unconstrained
expressions are detected by the trivial constraint detection step. However, given few training
instances, COUNT-CP might find spurious constraints and produce bounds for unconstrained
expressions. This may lead to the incorrect rejection of valid solutions.

Unfortunately, this problem is much more pertinent when learning constraints across
instances and extrapolating to unseen instances. An incorrect, loose bound for an uncon-
strained expression might reject a few unseen solutions of the same size, however, it may reject
large amounts of solutions for larger, unseen instances. COUNT-CP attempts to alleviate
this issue by monitoring the errors Ei computed during the symbolic bound computation. If

M. Kumar, S. Kolb, and T. Guns 29:11

Table 1 List of problems used in the experiments along with the background knowledge provided
as the user input to COUNT-CP.

Problem User Input
Custom partitions Semantic constants

Sudoku Blocks of variables –
Magic Square – –
N-Queens Diagonals –
Graph Coloring Edges of the graph –
Nurse Rostering – Staffing requirements

the errors exceed a given threshold, COUNT-CP opts to reject the bound and produce no
constraint instead.

In theory, this type of filtering can occur at every step where different bounds are
aggregated – over training examples, over sequences, across partitions – however, since
bounds naturally vary, a lot of training data is required to avoid rejecting valid bounds.

4 Experiments

In this section, we empirically answer the following research questions:
Q1 How well does COUNT-CP perform on instances used during training?
Q2 Do models learned by COUNT-CP generalize to unseen instances?
Q3 How does the performance change with the size of the training set?
Q4 How fast is COUNT-CP and how does the run-time scale with the number of training

examples?
Q5 How effective is the filtering step in COUNT-CP?

To answer these questions, we use COUNT-CP to learn models for a set of benchmark
problems and evaluate its performance according to different metrics. The code is available
online1 and uses the CPMpy modeling library [9]. The benchmark problems (see Table 1)
consist of problems selected from CSPLib2, which is a library of test problems for constraint
solvers, and an adapted nurse scheduling problem used to evaluate COUNT-OR [11]. The
language bias used in COUNT-CP is not expressive enough to model all the CSBLib problems,
therefore, we selected problems that COUNT-CP should be able to learn successfully. We
hope these experiments will showcase the capabilities of our approach and the viability of
our architecture across different problem domains. The language bias of our approach can
be extended to cover more complicated constraints by adding building blocks to the various
grammars at the cost of increasing the run-time. We leave the exercise of crafting biases to
cover larger benchmarks to future work.

Performance measures

The performance of the learned models are measured in terms of Precision and Recall.
Precision tells us what percentage of the learned feasible region is actually feasible in the
target model, while recall tells us what percentage of the target feasible region is captured
by the learned model. Ideally, having high precision is more desirable, as it ensures that the
solutions generated using learned model have higher chances of being feasible, while high
recall means we can generate many feasible solutions.

1 https://github.com/ML-KULeuven/COUNT-CP
2 https://www.csplib.org/

CP 2022

https://github.com/ML-KULeuven/COUNT-CP
https://www.csplib.org/

29:12 Learning Constraint Progr. Models from Data Using Generate-And-Aggregate

Table 2 Performance of COUNT-CP across different problems and different training sizes. The
results are shown only for training instances.

Training Size 1 5 10
Precision Recall Precision Recall Precision Recall

Sudoku 100% 100% 100% 100% 100% 100%
Magic Square 100% 100% 100% 100% 100% 100%
N-Queens 100% 100% 100% 100% 100% 100%
Graph Coloring 100% 57.5% 100% 100% 100% 100%
Nurse Rostering 100% 15.5% 100% 100% 100% 100%

Calculating these performance measures is not trivial. We sample 100 solutions from the
learned model and compute how many satisfy the target model – this gives us precision. The
recall is computed by instead sampling 100 solutions from the target model and computing
how many satisfy the learned model. Sampling uniformly from the feasible region of a
model is extremely hard [20], however, the CPMPy constraint modeling framework3 allows
us to instruct the constraint solver to find solutions close to a given starting point. By
generating each of the 100 solutions using different random starting points, we try to obtain
a representative sample, which provides better estimates of the true precision and recall.

Setup

For each problem, we include two different training instances to learn from and another
unseen test instance to evaluate the performance on unseen instances. Problems instances
are instantiations of problems to a specific size or setting. For example, for the Sudoku
problem, the training instances are of size 4 × 4 and 9 × 9, while the test instance is of size
16 × 16. For nurse rostering, different instances correspond to different hospitals, which have
different staffing requirements and numbers of nurses.

For every problem instance, e.g., a 9 × 9 Sudoku, we use a set of training examples –
solutions of the problem instance – to learn from. Specifically, we learn from 1, 5 or 10
examples per instance. The performance is then evaluated using the sampling procedure
described above.

Q1. How well does COUNT-CP perform on instances used during training?

To answer Q1, we report the precision and recall on the training instances (see Table 2).
Using just a single training example per instance, COUNT-CP already learns models that
have 100% precision. For two of the problems, a single example is not enough to obtain 100%
recall. However, when given 5 training examples, COUNT-CP achieves 100% recall for all
benchmark problems.

Q2. Do models learned by COUNT-CP generalize to unseen instances?

By measuring the precision and recall of models learned by COUNT-CP for unseen test
instances (see Table 3), we can observe that the performance is similar to the performance seen
on training instances: Learning from just one example per training instance, our approach
obtains 100% precision – even for unseen instances – and given 5 examples, COUNT-CP
achieves 100% recall, as well.

3 https://github.com/CPMpy/cpmpy

https://github.com/CPMpy/cpmpy

M. Kumar, S. Kolb, and T. Guns 29:13

Table 3 Performance of COUNT-CP across different problems and different training sizes. The
results are shown only for test instances.

Training Size 1 5 10
Precision Recall Precision Recall Precision Recall

Sudoku 100% 100% 100% 100% 100% 100%
Magic Square 100% 100% 100% 100% 100% 100%
N-Queens 100% 100% 100% 100% 100% 100%
Graph Coloring 100% 61% 100% 100% 100% 100%
Nurse Rostering 100% 18% 100% 100% 100% 100%

In this paper, we argued for the need to introduce symbolic bounds in constraints in order
for them to be able to generalize to unseen instances. We evaluate this claim qualitatively
by comparing the scores obtained by COUNT-CP on the Nurse Rostering problem with a
modified version that simply keeps numeric bounds. As expected, we see that the learned
model cannot generalize well to unseen instances with different staffing requirements (see
Table 4).

Table 4 Comparison of COUNT-CP against a naive version which learns numerical bounds
instead of symbolic expressions.

Training Size 1 5 10
Precision Recall Precision Recall Precision Recall

COUNT-CP 100% 18% 100% 100% 100% 100%
Naive version 0% 100% 0% 100% 0% 100%

Q3. How does the performance change with the size of the training set?

The change in performance across different training sizes is shown in Table 2 and Table 3.
When we use more training examples, COUNT-CP learns less tight bounds, which in turn
would lead to improved recall, and that is exactly what we observe in the results as well. In
most cases we learn perfect model with just one example, and in cases where this is not the
case (last two rows in both tables), the performance improves as the size of the training set
increases.

Table 5 COUNT-CP learns all problems in less than a minute except nurse rostering where it
takes close to 5 minutes.

Problem Time Taken (in seconds)
Sudoku 2.5
Magic Square 58.3
N-Queens 8.5
Graph Coloring 22.6
Nurse Rostering 328.3

CP 2022

29:14 Learning Constraint Progr. Models from Data Using Generate-And-Aggregate

1 10 50 100
training_size

0

10

20

30

40
Ti

m
e

Ta
ke

n
(in

 se
co

nd
s)

Graph Coloring Magic Square N-Queens Nurse Rostering Sudoku

Figure 1 The learning time of COUNT-CP remains consistent when increasing the number of
training examples.

Graph Coloring Sudoku N-Queens Magic Square Nurse Rostering

102

103

104

105
total_constraints
learned_constraints

Figure 2 Filtering step in COUNT-CP leads to more than 96% reduction in the total number of
learned constraints.

Q4. How fast is COUNT-CP and how does the run-time scale with the number of
training examples?

COUNT-CP learns most problems in a less than a minute, except for the Nurse Rostering
problem, for which it requires close to 5 minutes (see Table 5). Considering the time taken
by experts to model a problem and the fact that once learnt, these models can be used to
solve problems of different sizes, we can characterize our learning time as lightning fast in
comparison. The run-time depends mainly on the number of decision variables and since
COUNT-CP enumerates all pairs of variables, the run-time increases quadratically with the
number of decision variables. Here, again, the ability to learn models from small instances
and apply them to much larger instances makes COUNT-CP useful in practice.

COUNT-CP scales linearly with the number of training examples, however, by evaluating
candidate expressions efficiently using vectorized operations, the impact of the number of
training instances is negligible in most cases (see Figure 1). This, again, is good news, as it
allows the user to provide large number of training examples to learn more accurate models,
while avoiding long learning times.

Q5. How effective is the filtering step in COUNT-CP?

In Subsection 3.5, we discussed the importance of filtering out useless and overly restrictive
constraints. Unnecessary constraints make the learned models less interpretable and slower
to solve. Filtering out these constraints, however, has a cost: It significantly increases the
learning time by adding overhead for every single local constraint learned.

To answer Q5 and evaluate the effectiveness of the filtering step, we compare the total
number of possible constraints produced by COUNT-CP with the constraints included
in the learned model after the filtering step. Our experiments show that COUNT-CP is

M. Kumar, S. Kolb, and T. Guns 29:15

able to drastically reduce the number of constraints it outputs (see Figure 2). On average,
COUNT-CP filters out 96.7% of the constraints, significantly improving the interpretability
and solving time of learned models.

5 Conclusion

In this paper, we presented the novel constraint learner COUNT-CP, which uses simple
grammars and a generate-and-aggregate approach to generate mathematical expressions,
compute their bounds across training examples and group the learned constraints to obtain
first-order constraints that can generalize to unseen instances. A symbolic expression fitting
step is used to obtain symbolic bounds for expressions, making them instance-independent.
Additionally, COUNT-CP uses an effective filtering step to remove useless and spurious
constraints. We empirically evaluated our approach on a set of suitable benchmark problems.
This evaluation showed that, indeed, COUNT-CP is able to learn compact, high quality
models quickly. The learned models achieve high precision and recall, even when only trained
on a handful of examples. Because the learned models contain first-order constraints and
support bound expressions, these results also hold true for unseen instances. Finally, our
simple interaction protocol allows users to provide relevant background knowledge without
requiring any specialized knowledge about the underlying constraint language. We believe
that the COUNT-CP architecture is a promising approach to constraint learning that can be
further tuned to learn a wide range of constraint problems.

References

1 Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, Mass., 1974.

2 Nicolas Beldiceanu and Helmut Simonis. A Model Seeker: Extracting global constraint models
from positive examples. In International Conference on Principles and Practice of Constraint
Programming, 2012.

3 Christian Bessiere, Remi Coletta, Abderrazak Daoudi, Nadjib Lazaar, Younes Mechqrane, and
El-Houssine Bouyakhf. Boosting constraint acquisition via generalization queries. In ECAI,
pages 99–104, 2014.

4 Christian Bessiere, Remi Coletta, Eugene C. Freuder, and Barry O’Sullivan. Leveraging
the learning power of examples in automated constraint acquisition. In Mark Wallace,
editor, Principles and Practice of Constraint Programming – CP 2004, pages 123–137, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg.

5 Christian Bessiere, Remi Coletta, Frédéric Koriche, and Barry O’Sullivan. A sat-based version
space algorithm for acquiring constraint satisfaction problems. In Machine Learning: ECML
2005, pages 23–34, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

6 Christian Bessiere, Remi Coletta, Barry O’Sullivan, and Mathias Paulin. Query-driven
constraint acquisition. In Manuela M. Veloso, editor, IJCAI 2007, Proceedings of the 20th
International Joint Conference on Artificial Intelligence, Hyderabad, India, January 6-12,
2007, pages 50–55, 2007. URL: http://ijcai.org/Proceedings/07/Papers/006.pdf.

7 Abderrazak Daoudi, Nadjib Lazaar, Younes Mechqrane, Christian Bessiere, and El Houssine
Bouyakhf. Detecting types of variables for generalization in constraint acquisition. In 2015
IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI), pages
413–420. IEEE, 2015.

8 Luc De Raedt and Sašo Džeroski. First-order jk-clausal theories are PAC-learnable. Artificial
Intelligence, 70(1-2):375–392, 1994.

CP 2022

http://ijcai.org/Proceedings/07/Papers/006.pdf

29:16 Learning Constraint Progr. Models from Data Using Generate-And-Aggregate

9 Tias Guns. Increasing modeling language convenience with a universal n-dimensional array,
cppy as python-embedded example. In The 18th workshop on Constraint Modelling and
Reformulation at CP, pages 1–8. ModRef, 2019.

10 Samuel Kolb, Sergey Paramonov, Tias Guns, and Luc De Raedt. Learning constraints in
spreadsheets and tabular data. Mach. Learn., 106(9-10):1441–1468, 2017. doi:10.1007/
s10994-017-5640-x.

11 Mohit Kumar, Stefano Teso, Patrick De Causmaecker, and Luc De Raedt. Automating
personnel rostering by learning constraints using tensors. In 2019 IEEE 31st International
Conference on Tools with Artificial Intelligence (ICTAI), pages 697–704, 2019. doi:10.1109/
ICTAI.2019.00102.

12 Arnaud Lallouet, Matthieu Lopez, Lionel Martin, and Christel Vrain. On learning constraint
problems. In 22nd IEEE International Conference on Tools with Artificial Intelligence, ICTAI
2010, Arras, France, 27-29 October 2010 - Volume 1, pages 45–52. IEEE Computer Society,
2010. doi:10.1109/ICTAI.2010.16.

13 Fabio Massacci and Laura Marraro. Logical cryptanalysis as a sat problem. Journal of
Automated Reasoning, 24(1):165–203, 2000. doi:10.1023/A:1006326723002.

14 Ralph Eric Mcgregor. Automated Theorem Proving Using Sat. PhD thesis, Clarkson University,
USA, 2011. AAI3471671.

15 Ilya Mironov and Lintao Zhang. Applications of sat solvers to cryptanalysis of hash functions.
In Armin Biere and Carla P. Gomes, editors, Theory and Applications of Satisfiability Testing
- SAT 2006, pages 102–115, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

16 Tomasz Pawlak. Synthesis of mathematical programming models with one-class evolutionary
strategies. Swarm and Evolutionary Computation, 44, May 2018. doi:10.1016/j.swevo.2018.
04.007.

17 Tomasz Pawlak and Krzysztof Krawiec. Automatic synthesis of constraints from examples
using mixed integer linear programming. European Journal of Operational Research, 261,
February 2017. doi:10.1016/j.ejor.2017.02.034.

18 Tomasz Pawlak and Krzysztof Krawiec. Automatic synthesis of constraints from examples
using mixed integer linear programming. EJOR, 2017.

19 Luc De Raedt, Andrea Passerini, and Stefano Teso. Learning constraints from examples. In
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence - AAAI 18, pages
7965–7970. AAAI Press, 2018. URL: https://www.aaai.org/ocs/index.php/AAAI/AAAI18/
paper/view/17229.

20 Shubham Sharma, Rahul Gupta, Subhajit Roy, and Kuldeep S. Meel. Knowledge compilation
meets uniform sampling. In Proceedings of International Conference on Logic for Programming
Artificial Intelligence and Reasoning (LPAR), November 2018.

21 L. G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, November 1984.
doi:10.1145/1968.1972.

https://doi.org/10.1007/s10994-017-5640-x
https://doi.org/10.1007/s10994-017-5640-x
https://doi.org/10.1109/ICTAI.2019.00102
https://doi.org/10.1109/ICTAI.2019.00102
https://doi.org/10.1109/ICTAI.2010.16
https://doi.org/10.1023/A:1006326723002
https://doi.org/10.1016/j.swevo.2018.04.007
https://doi.org/10.1016/j.swevo.2018.04.007
https://doi.org/10.1016/j.ejor.2017.02.034
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17229
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17229
https://doi.org/10.1145/1968.1972

Combining Reinforcement Learning and Constraint
Programming for Sequence-Generation Tasks with
Hard Constraints
Daphné Lafleur # Ñ

Polytechnique Montréal, Canada
Quebec Artificial Intelligence Institute (Mila), Canada

Sarath Chandar #

Polytechnique Montréal, Canada
Quebec Artificial Intelligence Institute (Mila), Canada
Canada CIFAR AI Chair, Toronto, Canada

Gilles Pesant #

Polytechnique Montréal, Canada

Abstract
While Machine Learning (ML) techniques are good at generating data similar to a dataset, they lack
the capacity to enforce constraints. On the other hand, any solution to a Constraint Programming
(CP) model satisfies its constraints but has no obligation to imitate a dataset. Yet, we sometimes
need both. In this paper we borrow RL-Tuner, a Reinforcement Learning (RL) algorithm introduced
to tune neural networks, as our enabling architecture to exploit the respective strengths of ML and
CP. RL-Tuner maximizes the sum of a pretrained network’s learned probabilities and of manually-
tuned penalties for each violated constraint. We replace the latter with outputs of a CP model
representing the marginal probabilities of each value and the number of constraint violations. As
was the case for the original RL-Tuner, we apply our algorithm to music generation since it is a
highly-constrained domain for which CP is especially suited. We show that combining ML and
CP, as opposed to using them individually, allows the agent to reflect the pretrained network while
taking into account constraints, leading to melodic lines that respect both the corpus’ style and the
music theory constraints.

2012 ACM Subject Classification Software and its engineering → Constraint and logic languages;
Theory of computation → Reinforcement learning; Applied computing → Sound and music computing

Keywords and phrases Constraint programming, reinforcement learning, RNN, music generation

Digital Object Identifier 10.4230/LIPIcs.CP.2022.30

Supplementary Material Software (Source Code): https://github.com/chandar-lab/RL-Tuner-CP

Funding Financial support for this research was provided by an IVADO Fundamental Research
grant.

Acknowledgements We would like to thank all the members of Chandar Lab, Laboratoire Quosséça,
family and friends who gave very useful feedback and improvements before the submission. We
would also like to thank the CP 2022 reviewers for their constructive criticism.

1 Introduction

Recurrent Neural Networks (RNNs) [14] are a class of Machine Learning (ML) algorithms
renowned for their ability to extract structural information from a corpus in order to generate
sequences that mimic said corpus’ style. However, some sequence-generation tasks require
the final output to respect a set of rules. Music generation, especially applied to Renaissance

© Daphné Lafleur, Sarath Chandar, and Gilles Pesant;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 30; pp. 30:1–30:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:daphne.lafleur@mila.quebec
https://dalafh.github.io/
https://orcid.org/0000-0002-7225-7660
mailto:sarath.chandar@mila.quebec
https://orcid.org/0000-0002-9678-2830
mailto:gilles.pesant@polymtl.ca
https://orcid.org/0000-0001-9797-0780
https://doi.org/10.4230/LIPIcs.CP.2022.30
https://github.com/chandar-lab/RL-Tuner-CP
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Combining RL and CP for Sequence-Generation Tasks with Hard Constraints

music, is a perfect example of these kinds of tasks. Given a series of melodic lines, RNNs are
able to produce sequences that resemble the style of a given composer. Nonetheless, RNNs
are not easy to control and it is hard to make them enforce music rules without injecting
domain knowledge. It is akin to asking someone with no musical training to extract rules
just from analyzing a pile of scores.

RL-Tuner [7] is an algorithm that uses Reinforcement Learning (RL) to bridge the gap
between RNNs and hard constraints, resulting in samples that both better respect the
constraints and are representative of the data the algorithm was trained on. However, the
constraints are enforced by manually tuning a reward for each rule. In this work we use
Constraint Programming (CP) with Belief Propagation (BP) to learn better how to satisfy
constraints. By using CP instead of checking each rule individually, we benefit from the
interactions between all the constraints and may anticipate violations. Furthermore, the
addition of BP is a recent advance in CP that provides marginal probabilities for every
selected value [12]. These marginals take into account the entirety of the sequence and act as
a metric to determine if choosing an action could potentially lead to a complete sequence with
no added constraint violations. This information is crucial in increasing what we introduce
as the constraint satisfaction of the generated sequences.

We illustrate our framework by applying it to contrapuntal music writing in the style of
the Renaissance period. We design two closely-related CP models implementing the rules of
counterpoint for melody writing according to a standard textbook [15]. We train our RNN
model using a Bach chorale corpus, a widely available source that is compatible to some degree
with the constraints we enforce.1 We combine our CP and RNN models within RL-Tuner
and analyze the evolution of the reward to show that our algorithm retains its acquired
knowledge from the Bach corpus while more-closely following the rules of counterpoint we
added. We also discuss why some constraints may be harder to learn than others.

Our main contribution with this paper is to show that RL can be used to combine RNNs
and CP in order to fine-tune training so that it generates sequences that reflect the corpus
while enforcing constraints. Even though we applied it here to music generation, such a
combination can be useful for other sequence-generation tasks with hard constraints.

In the rest of the paper, Section 2 provides some necessary background on RNNs, RL,
CP/BP, and music theory. Section 3 surveys related work. Section 4 describes the core of our
contribution: each component, how they interact, their specialization for melody generation.
Section 5 presents an empirical evaluation of our contribution. Section 6 discusses our present
and future work. Finally we conclude with Section 7.

2 Background

2.1 Recurrent Neural Network

Recurrent Neural Networks (RNN) [5] are a family of ML algorithms able to generate
sequences. At every iteration, a token is passed through the network and used to predict the
next token. After each prediction, the history is updated to make sure that the next token
takes into account the whole sequence.

ht = f(Whxt + Uhht−1 + bh) ŷt+1 = g(Wyht + by)

1 Even though Bach belongs to the Baroque period, he would have been (heavily) influenced by Renaissance
music.

D. Lafleur, S. Chandar, and G. Pesant 30:3

In the first equation, we obtain the current history ht by updating the old history ht−1
with the current token xt. Weights Wh and Uh and a bias bh are applied to control the
importance of xt and ht−1 in the update. The activation function f makes the update process
non-linear. In the second equation, we compute ŷt+1, a vector indicating the probability
distribution of each possible value for the next token using the current history ht. Once
again, weights, a bias and a non-linear activation function are used for the prediction. With
this distribution, we can select the value with the highest probability as x̂t+1. All the weights
and biases are adjusted and learned during the training of the RNN (see below) to produce
the best tokens. To measure how good an RNN is, we use the cross-entropy loss function

L = −
∑

t ytlog(ŷt).

For each token xt in the dataset, we feed the previous tokens to the RNN and obtain the
predicted distribution ŷt. yt represents the target distribution. It is a one-hot vector where
all the components are 0, except for the component representing xt, which is equal to 1.

Training is done with gradient descent by modifying the weights and the biases to decrease
the loss. Once training is over, we use the final weights and biases to predict new sequences.

2.2 Reinforcement Learning and DDQNs
The basic idea of Reinforcement Learning [8] is to learn through interaction with an environ-
ment, in order to maximize the sum of the rewards. The agent will sample from the policy
(state-dependent probability distribution) to pick an action. Once an action has been picked,
the environment will update its state based on said action and return a reward, indicating
how good the action is. This reward will then be used to update the estimated value of that
state-action pair. Once the value has been updated, the policy will be adjusted to encourage
actions that have a higher value.

Different families of RL algorithms define ways to compute state-action values. For
example, in Q-Learning, the following equation is used:

Q(s, a) = [1 − α]Q(s, a) + α[r + γ max
a′

Q(s′, a′)]

In this equation, state-action value Q(s, a) is updated by summing the reward r and the
maximum value of the next state s′. Two hyper-parameters α and γ control the magnitude
of the update.

In Deep Q-Networks (DQN) [9], a neural network is used to compute the state-action
value from the current state. To update the state-action values, we can compute the loss of
the network by using the difference between the current value Q(s, a) and the update part of
the Q-learning equation (see above):

δ = r + γ max
a′

Q(s′, a′) − Q(s, a)

We can then adjust the parameters by applying one iteration of gradient descent per
update to decrease this loss. However, since Q-Learning uses the maximum value of the next
state (maxa′ Q(s′, a′)), overestimated values will be encouraged. Double Deep Q-Networks
(DDQN) [17] reduce this effect by adding a second network to compute the state-action
values:

δA = r + γQB(s′, argmaxa′QA(s′, a′)) − QA(s, a)

Here we use network A to pick the best next action with argmaxa′QA(s′, a′). However,
instead of using A to compute its value, we will use network B, mitigating A’s possible
overestimation. Once δA has been computed, only the parameters of network A will be
updated. Note that these two roles (A and B) are assigned randomly every time.

CP 2022

30:4 Combining RL and CP for Sequence-Generation Tasks with Hard Constraints

2.3 CP-Based Belief Propagation
CP-based Belief Propagation, introduced in [12], offers a new way to propagate constraints.
Instead of simply removing unsupported values from domains, the solver computes the
probability that each value will respect a given constraint. These partial probabilities
are then sent as messages to the other constraints through their shared variables, which
makes them update and refine their own probabilities. Out of these interactions, marginal
probabilities are derived for each variable-value pair. These marginals approximate the
probability that, if a variable is assigned a given value, all the constraints will be satisfied.
They also provide information as to how many possible values respect the constraints.

2.4 Music Basics
We provide a brief introduction to music concepts essential to the understanding of this
paper. Generally, music is built from musical notes each having a pitch and a duration.
Pitches an octave apart are grouped in a pitch class. A scale is an organized subset of pitch
classes. There are many kinds of scales – we will consider diatonic scales and in particular
the major scale featuring the seven natural pitch classes (c, d, e, f, g, a, b). We loosely use
the term melody for a sequence of notes (pitch, duration) sounded consecutively. An outline
in a melody is a maximal subsequence of notes between a temporary high point and the next
temporary low point (in terms of pitch) or vice-versa. The distance between two pitches
is called an interval, identified by the integral number of pitch steps from one to the other
(e.g. a third between c and e) and by the quality of the interval based on the number of
semitones between them (e.g. a major third between c and e; a minor third between d and
f). The melodic motion between two consecutive notes can either be by step, if the notes are
adjacent in the scale, or by skip.

3 Related Work

The abundance of previous work on music generation, both in ML and in CP, shows that the
task we are tackling is especially well suited for both these approaches. Surveys from Briot et
al. [1], Fernandez Rodriguez and Vico [13], and the book edited by Truchet and Assayag [16]
provide an extensive view on ML and CP being applied to music. In this literature review,
we focus on the most relevant ones to us.

RL-Tuner [7] has been the greatest source of inspiration for our work. In the paper,
the authors present a Reinforcement Learning algorithm that combines probabilities from
an RNN with a reward function measuring how much the generated sequence respects a
set of rules. They apply it to music generation. The RL agent used is a Double Deep
Q-Network (DDQN). The authors show that RL-Tuner enforces both the music theory laws
and the similarity to the RNN. The main difference from our work is that they compute the
music theory reward by checking each rule individually in an ad hoc fashion based only on
the previous notes. We argue that we can improve this algorithm by using CP with belief
propagation to compute marginals that take into account the whole sequence and not just
the previous notes.

On the ML side, C-RNN-GAN [10] is a classical music generation system that uses a
generative adversarial network (GAN). GANs work by having two networks: the generator
that creates the piece and the discriminator that tries to distinguish between fake and real
music. The goal of the generator is to fool the discriminator, so it learns to create music
that is as similar as possible to the dataset.

D. Lafleur, S. Chandar, and G. Pesant 30:5

DeepBach [4] combines two LSTMs (a type of RNN) and one neural network. The first
LSTM picks a note based on the previous notes. The second one picks a note based on the
future notes. The neural network picks a note based on the notes that will be played at the
same time on other voices. Finally, these three note candidates are sent to another neural
network, which will choose the note to be added to the piece.

Coconet [6] uses a Convolutional Neural Network (CNN) to generate Bach chorales. CNNs
are usually used for image classification tasks because they are able to handle 2D patterns
(whereas RNNs are limited to linear sequences). Combining all four voices of a chorale creates
a 2D structure that is well suited for CNNs. Coconet’s CNN is used to compute probabilities
of a note with respect to its context. Once the probabilities have been computed, Gibb’s
sampling is applied to populate the music piece. To remove bad choices due to less context
information, a window of notes is resampled, with the window’s size decreasing over time.

Anticipation-RNN [3] combines two RNNs to enforce unary constraints. In this algorithm,
the first RNN is used to predict a unary constraint based on the future notes. This constraint
is then used to condition the output of the second RNN, which will pick the note based on
the partial sequence and the future constraints.

Young et al. [19] introduce a generative model able to generate music with relational
constraints. What is really interesting about this work is that the constraints are synthesized
from the dataset instead of being hard-coded. These constraints include equality of different
notes and transposition of a sequence of notes (repeating the same pattern with each note
transposed by the same amount). They try three different techniques to incorporate the
constraints: sampling from the model and rejecting if the token doesn’t respect the constraints,
representing the constraints in a graph convolutional network, and using MIP to maximize
an objective function.

4 Sequence Generation with Hard Constraints

Figure 1 gives an overview of our architecture. We describe the training process:
(i) The partial sequence is sent to the DDQN.
(ii) The DDQN produces the next note.
(iii) The RNN computes p(a|s) from both the partial sequence s and the next note a. The

CP models do the same to obtain the marginals and the violations.
(iv) The output of the RNN and of the CP models are used to compute the reward.
(v) The DDQN’s weights are updated based on that reward and the next note is added to

the sequence.
The different components are detailed below. Our code is publicly available2.

4.1 CP models
Among several textbooks that teach counterpoint, the relatively recent “Modal Counterpoint,
Renaissance Style” by P. Schubert [15] is of particular interest to create our CP models. It
gathers rules from several treatises, including the seminal Fux, draws from the works of many
period composers, and pays much attention to the quality of melodic lines. But foremost
it strongly appeals to the constraint programmer: rules are declarative and classified as

2 https://github.com/chandar-lab/RL-Tuner-CP

CP 2022

https://github.com/chandar-lab/RL-Tuner-CP

30:6 Combining RL and CP for Sequence-Generation Tasks with Hard Constraints

Figure 1 An overview of our training architecture.

hard and soft. The constraint models we built are based on the rules in this book. We
implemented our models using the MiniCPBP solver3 in order to have access to marginal
probabilities.

4.1.1 Variables and domains
Even though rhythm is an important part of a melody, these rules (and those typical of the
period, aside from the general recommendation that there should be rhythmic variety) do
not take it into consideration. Accordingly, we represent a melody as a sequence of n pitches
(notes). As is standard practice, we transpose the melodic lines from the corpus so that they
are all in the same key (c major) and generate sequences in that same key.

Pitches should belong to the key, though we allow an accidental b♭ to avoid tritone
intervals (i.e., augmented fourth or diminished fifth) from f. We also want a melody to stay
within the octave range of its key, possibly extending it by one note below and above that
range (resp. b♭ and d). The pitch values represent the number of semi-tones above the
lowest pitch in the dataset (value 0 is g). Because of the range restriction explained above,
the lowest value allowed in the CP domain is 3 (or b♭). We define our variables as:

pitch[i] ∈ {3, 4, 5, 7, 9, 10, 12, 14, 15, 16, 17, 19} 1 ≤ i ≤ n

Schubert’s book adds restrictions about the permitted values of the intervals. An interval
can span no more than a sixth (9 semi-tones), except that an octave is also allowed and that
a tritone is not. That interval can be sung up or down. We also want to avoid intervals of a
sixth, except for an ascending minor sixth. Finally, two consecutive notes should not have
the same pitch:

interval[i] ∈ {±1, ±2, ±3, ±4, ±5, ±7, +8, ±12} 1 ≤ i ≤ n − 1

An interval is computed as the number of semi-tones between two consecutive notes. In
other words:

interval[i] = pitch[i + 1] − pitch[i] 1 ≤ i ≤ n − 1

3 https://github.com/PesantGilles/MiniCPBP

https://github.com/PesantGilles/MiniCPBP

D. Lafleur, S. Chandar, and G. Pesant 30:7

Figure 2 A legal augmented fifth outline (left) and two forbidden ones (right).

4.1.2 Constraints
Now that the main variables have been defined, we describe the melodic constraints we
consider. Though some of them are considered soft by Schubert, here all are expressed as
hard constraints for our system to learn.

(i) End on the tonic.

pitch[n] = c

(ii) End by stepwise descent.

−2 ≤ interval[n − 1] < 0

(iii) Use more steps than skips.∑n−1
i=1 (interval[i] < −2 ∨ interval[i] > 2) < n−1

2

(iv) An accidental b♭ should be followed by a descending interval.

pitch[i] ̸= b♭ ∨ interval[i] < 0 1 ≤ i ≤ n − 1

(v) Tritone outlines. An outline of an augmented fourth is prohibited. An outline of
a diminished fifth is allowed only if it is completely filled in by step (interval smaller
than 2) and then followed by a step in the opposite direction. Fig. 2 gives examples
of one legal and two forbidden tritone outlines. This rule is not as straightforward to
express and requires that we consider several consecutive notes.
A useful observation is that the only allowed tritone outline spans four steps (which
could correspond to more than five notes if we have repeated notes). We express this
using a regular [11] constraint on interval variables with an automaton recording in
its states the number of steps and semi-tones in a potential outline. Fig. 3 gives the
automaton for ascending outlines – the case of a descending outline is similar. Though
admittedly a little hard to decipher, it shows our ability to model complex rules.

(vi) A skip should be preceded or followed by a step in the opposite direction.
(vii) Avoid more than two successive skips.
(viii) Avoid skipping on both sides of a temporary high or low point.
(ix) Two successive skips in the same direction should be small. We consider a

skip of a third or fourth to be small.
(x) “Pyramid” rule. An ascending outline should not have large skips following smaller

skips or steps; a descending outline should not have large skips preceding smaller skips
or steps. As when building a pyramid, larger blocks should be used at the bottom and
smaller ones at the top. (Keep in mind that such rules are derived from practice at
that time according to aesthetics and “singability”.)
Because they are closely related, the previous five rules ((vi) to (x)) are handled together,
through a single cost-regular [2] constraint on a characterization of individual intervals
as ascending/descending steps, small skips (a third or a fourth), and skips (fifth, sixth,

CP 2022

30:8 Combining RL and CP for Sequence-Generation Tasks with Hard Constraints

start 1; 3

1; 2

1; 1

1; 4

1; 5

2; 3

2; 4

2; 5

2; 6

3; 5

3; 6

4; 6

ok

0
1

2
3

4

5

≥ 7

0

2

3

4

5

≥ 7

0
1

2

3

4

≥ 50
1

2

3

≥ 4
0

1

2

≥ 3

0
1

≥ 2

0

2

3

≥ 4

0
1

2

≥ 3

0
1

≥ 20

≥ 1

0

1

≥ 2

0

≥ 1

0

≥ 1

≥ 0

Figure 3 Automaton to check for ascending tritone outlines. Negative transitions to descending
tritone states are not shown.

or octave). It is sufficient to create a state for each pair of characterizations of intervals.
All states are accepting but each transition carries a cost corresponding to the sum of the
penalties for every rule broken on that transition. An interval value of 0, corresponding
to a repeated note, loops to the same state. In the interest of clarity, we do not show
this automaton.

(xi) Modal range. A melody must cover (include notes from) the whole octave range.
Longer melodies are encouraged to cover that range every so many notes. Through a
single gcc constraint on pitch variables, we express the requirement that each pitch in
that range should appear at least once (setting their minimum number of occurrences
to 1).

(xii) Minimum number of modal skips. The final of the mode (c) and the pitch class
four steps above it (g) are more important than the other pitch classes. Skips between
these two pitches are characteristic of the mode and help establish it. We can enforce
it by lower bounding to 3 the sum of reified constraints expressing modal skips.∑n−1

i=1 [(pitch[i] = c ∧ pitch[i + 1] = g) ∨ (pitch[i] = g ∧ pitch[i + 1] = c)] ≥ 3

We thus have a total of 12 constraints − 4 (because 5 constraints are handled together)
+ 4 constraints (the ones used to restrict the domains of our variables) = 12.

4.1.3 Marginals model
Our goal is to have a model that, given a sequence of notes, will compute the marginal
probabilities of the next note. Since that sequence is provided by the RL-Tuner, it is possible
that there have already been constraint violations. To clearly measure the impact of the
next note, regardless of previous violations, we apply the constraints and domain restrictions
only on the future notes. However, this requires some adjustments in our constraints. For
instance, since our automata can no longer start at the beginning of our sequence, we need
to modify the starting state according to the previous notes. Furthermore, if we want to
respect a certain lower bound (for example, the minimum number of modal skips in constraint
(xii)), we need to adjust that bound based on the input to the CP model. After the first
propagation of the constraints, we compute the marginals using belief propagation and return
the corresponding value for the chosen next note, provided by the RL agent.

D. Lafleur, S. Chandar, and G. Pesant 30:9

4.1.4 Violations model
This model is very similar to the one presented above. The main difference is that, instead
of enforcing the constraints, we use reified constraints to count the number of violations
for each constraint. This causes a little bit of a challenge for some constraints. The tritone
outline constraint (v) is limited to 25 different interval values (the domain of the intervals
is from -12 to +12). However, if we allow the possibility of any interval, which we must
since no constraints are enforced, we have a total of 57 different interval values (from -28
to +28). To deal with values not supported by the automaton, we use a soft version of
that constraint [18]. If the interval is illegal, the tritone outline constraint will return one
constraint violation.

Something similar is done for the other automaton (constraints (vi) to (x)). However,
since this is a cost-regular constraint, we cannot assign to it a single violation. To compute
the number of violations for this constraint, in case of an invalid interval, we decompose
the cost in two sections. First, we compute the cost associated to the current transition by
averaging the costs associated to transitions from the current state. Afterwards, we compute
the cost of the future transitions with the same cost-regular constraint, but applying it
only on the future transitions and modifying the current state.

For the rest of the constraints, we use reified constraints. For example, instead of
restricting the domain of the notes, we compute the number of notes that are outside of this
domain. The number of violations for each constraint is then a variable, and we return the
smallest value in its domain.

This model receives as input the note sequence and the value of the chosen note. It will
then only return the minimum number of violations for each of the twelve constraints, for
that chosen note.

4.2 Training the RNN
We extracted melodic lines from the Boulanger-Lewandowski corpus of Bach chorales4. We
used publicly-available code5 to preprocess our midi files. During this preprocessing, we check
every repeated note (midi files having a really small granularity, every repeated note has to
be a note that is held) and replace the subsequent repetitions with a special token, indicating
which notes are held. We then extracted melodic lines using a quarter-note granularity,
where we ignored the hold token since we do not take into account the note duration. We
transposed all sequences in the key of c and kept only the chorales in c major, for a total of
200 sequences. That dataset was split into 150 examples for training and 50 examples for
validation. In order to have notes in similar ranges, we used only the soprano voice which
usually represents the main melody. Since the RNN used in the RL-Tuner was trained with
the Magenta library, we created our own set of inputs and outputs, using one-hot encoding
of length 29 – two and a half octaves, similar to the vocal range – for the input representing
the last note and a single value for the output representing the predicted note. We trained
the RNN on 1000 iterations using the basic-rnn configuration provided by Magenta6 with a
batch size of 64 and two layers of 64. These hyperparameters were tailored to our dataset.
The loss function used is the softmax cross-entropy loss (softmax meaning that the activation
function used to compute the probability distribution is the softmax function).

4 http://www-ens.iro.umontreal.ca/~boulanni/icml2012
5 https://medium.com/analytics-vidhya/convert-midi-file-to-numpy-array-in-python-

7d00531890c
6 https://github.com/magenta/magenta/tree/main/magenta/models/melody_rnn

CP 2022

http://www-ens.iro.umontreal.ca/~boulanni/icml2012
https://medium.com/analytics-vidhya/convert-midi-file-to-numpy-array-in-python-7d00531890c
https://medium.com/analytics-vidhya/convert-midi-file-to-numpy-array-in-python-7d00531890c
https://github.com/magenta/magenta/tree/main/magenta/models/melody_rnn

30:10 Combining RL and CP for Sequence-Generation Tasks with Hard Constraints

Though we were able to reach a training accuracy of 90%, the final validation accuracy
obtained was 50% (compared to 92% in the original paper). This is likely due to the size of
our dataset (200 sequences vs 30 000), which is substantially smaller than the one used in
the RL-Tuner (more on that in Section 7).

4.3 RL-Tuner
We copy the weights of the RNN to initialize the DDQN. Before training, the value of each
action (or note) is equal to the probability returned by the RNN since it is exactly the same
network. During training, the next note, sampled from this distribution by the DDQN, is
used to compute the reward, by using the probability returned by the RNN and evaluating
with respect to each constraint applied. With the final reward, the weights (and the policy)
of the DDQN are updated, without changing the original RNN, thus making the DDQN able
to learn independently from the RNN.

The architecture briefly described above can also be found in the original RL-Tuner
paper [7]. The sections below explain the changes we made to the RL-Tuner in order to
include our CP models.

4.3.1 Restricting sampling to the feasible domain
In the original paper, a note is chosen either randomly or sampled from the DDQN prob-
abilities. This leads to a lot of bad choices with respect to the constraints. That is why
we considered an additional option, where the output of the DDQN is restricted according
to the number of violations, at training time only. In other words, the algorithm can only
sample from notes that have 0 violations. We called this option “restrict domain”.

4.3.2 Reward functions
We implemented seven different reward functions. Here v represents the number of violations
for each constraint, m is the marginal for the chosen note and p(a|s) is the probability of the
chosen note a according to the RNN, based on s, the partial note sequence. We added two
constants, k and c to weigh the different parts of the reward and bring them to a similar
range 7.

violations = −
∑

v

marginals = km

marginals_violations = km −
∑

v

rnn = log(p(a|s))
rnn_violations = log(p(a|s)) − c

∑
v

rnn_marginals = log(p(a|s)) + ckm

rnn_marginals_violations = log(p(a|s)) + c(km −
∑

v)

5 Experiments

We ran experiments to answer the following research questions:
1. Can CP reduce the number of constraint violations?
2. Can this be done without forgetting stylistic knowledge acquired by the RNN?
3. What is the impact of restricting the domain while sampling notes?
4. Are all constraints as easy to learn?

7 Unlike for the RNN probabilities we do not use log-marginals because several marginals are null, which
would generate −∞ rewards.

D. Lafleur, S. Chandar, and G. Pesant 30:11

Table 1 Hyper-parameters of our RL-Tuner.

Parameter Value Parameter Value
random_action_probability 0.1 one_hot_length 29
store_every_nth 1 algorithm q
train_every_nth 5 reward_scaler (c) 2
minibatch_size 32 cp_reward_scaler (k) 40
discount_rate 0.5 output_every_nth 5000
max_experience 100000 num_notes_in_melody 32
target_network_update_rate 0.01 num_steps 50000
rnn_layer_sizes [64, 64] exploration_period 25000

5.1 Experimental Setup
We performed experiments for each reward function twice, one where we restricted the
domain and one where we did not. We chose the same constant c as in the original paper [7],
since it allegedly produced better samples. The value for k was set to 40, converting our
marginals to values between 0 and 40. Table 1 presents the hyper-parameters chosen to train
our model as named in the RL-Tuner configuration.

Each experiment was averaged across 10 different seeds for a total of 50 000 iterations.
Every 5000 iterations, we generated 10 sequences of 32 notes to evaluate our model and
measure the evolution of our metrics. We focused mainly on two performance metrics. To
answer Question 1, we measure the constraint satisfaction, a value between 0 and 1
indicating how good the algorithm is at following constraints (1 being perfection):

constraint_satisfaction =

∑n
i=1(1 − vi

vmax
i

)
n

where n is the number of constraints, vi is the number of violations for constraint i,
summed over all 10 sequences, and vmax

i is the maximum number of potential violations for
that constraint during all the 10 sequences.

The second metric used to answer Question 2 is log(p(a|s)), the rnn reward. For each
chosen note, we check the RNN probability and compute an average reward over every note
and every sequence. The higher it is, the closer the generated sequence is to the trained
model. This metric was also used in the RL-Tuner paper to show that the model does not
“forget” the stylistic knowledge learnt from the corpus while enforcing the constraints.

Question 3 can be answered by comparing our two metrics, while restricting the domain
or not. To answer Question 4, we analyze the number of violations for each constraint
separately by plotting the values returned by the violations model.

Table 2 presents the final constraint satisfaction and average rnn reward for each of our
reward functions.

5.2 Comparing metrics to the RL-Tuner
Since we have a different corpus (Bach instead of pop music) and different constraints, we
cannot compare our results directly with those in the RL-Tuner paper. However, line 4
without domain restriction allows us to compare to the RL-Tuner approach because we only
count the number of violations. We can see here that line 4 is better than line 7. This is
similar as what was showed in the paper. However, we can also see that adding the marginals
in the mix offers another improvement of 4%.

CP 2022

30:12 Combining RL and CP for Sequence-Generation Tasks with Hard Constraints

Table 2 Constraint satisfaction (sat) and average rnn reward (log(p(a|s))) with different reward
functions. Takeaway: rnn + marginals + violations yields the best constraint satisfaction and its
rnn reward is still higher than without using CP.

Restrict domain
No Yes

Reward function sat (%) log(p(a|s)) sat (%) log(p(a|s))

1. violations 60.1 -4.9 62.1 -4.5
2. marginals 75.1 -2.1 75.8 -2.2
3. marginals + violations 76.9 -1.8 74.3 -2.3
4. rnn + violations (similar to RL-Tuner) 77.2 -1.8 74.7 -2.4
5. rnn + marginals 77.4 -1.4 76.6 -2.0
6. rnn + marginals + violations 81.6 -1.9 75.4 -2.3
7. rnn 74.5 -2.2 76.9 -2.0

5.3 Without domain restrictions
Without domain restrictions, as we expected, most of our CP models yield a better constraint
satisfaction than just using the output from the RNN (lines 2 to 6 vs 7). This shows that,
overall, CP helps the agent to respect the constraints. However, it is not the case for the
violations reward function, which does a lot worse than the RNN alone (line 1 vs 7). Further
experimentations would be required to understand if it simply takes more iterations to see
an improvement in that case.

We wondered if CP and the RNN would counteract each other, the RNN wanting to stay
close to the corpus and CP aiming to constrain the algorithm. On the contrary, combining
them yields better constraint satisfaction than using them separately (lines 4 to 6 vs 1 to
3). This could be due to our choice of corpus: it is likely that Bach generally followed the
music rules we imposed and so the RNN learnt them to some degree. However, adding
the marginals and the violations gave the model a second push towards a better constraint
satisfaction. The same can be said for the rnn reward. Yet again, it seems like the CP model
generally helps the RNN to stylistically represent the corpus (lines 4 to 6 vs 1 to 3). This is
once again due to concordance between our corpus and our constraints.

5.3.1 Combining violations and marginals
The reward function yielding the best constraint satisfaction is the rnn + marginals +
violations function (line 6). Both CP models are necessary because the marginals provide
information about how good the chosen note is to respect the constraints in the long run and
the violations provide information about how big the constraint violation is. If a note does
not break any constraint, the violations will be 0 but the marginals will give new information
(it could return 100% if the chosen note is the only good choice). If a note breaks some
constraints, the marginals will be 0 but the violations will provide new information on the
number of constraints that were violated, in other words, how bad this choice is. That’s why
the best performance is obtained by combining marginals and violations, both providing
information in different contexts.

The algorithm with the highest rnn reward is the rnn + marginals (line 5). It appears
that adding the violations to this function increases the constraint satisfaction at the expense
of the rnn reward. However, even if the rnn reward of line 6 (best constraint satisfaction) is
lower than line 5, it is still an improvement over the initial rnn (line 7).

D. Lafleur, S. Chandar, and G. Pesant 30:13

Figure 4 Number of violations for each constraint for different reward functions without domain
restriction (red = rnn + violations, blue = rnn + marginals, green = rnn + marginals + violations,
gray = rnn). Takeaway: For most of the constraints, the green curve quickly learns to produce close
to no violations, better than the other curves.

5.4 With domain restriction
Now if we compare with the right part of Table 2, we see that adding domain restriction
seems to have a mixed effect on both performance metrics. Only for lines 1, 2 and 7, we
can see some improvement. What is interesting is that these three reward functions are the
functions with only one of our three components (rnn, marginals and violations). It seems as
if domain restriction has a good impact when the reward function is simple, but is harmful
when the complexity increases.

Another interesting fact is that generally both metrics evolve in the same direction. Indeed,
when we compare both halves of Table 2 on the same line, there is only one occurrence of the
constraint satisfaction increasing and the rnn reward decreasing. This shows an alignment
between the corpus and the constraints.

5.5 Comparing constraints
Figure 4 shows the number of violations during all 50 000 iterations, for each constraint
enforced, averaged over 10 seeds. We are mostly interested in the green curve, representing the
rnn + marginals + violations reward function. As we can see, the first seven constraints
and the last constraint have a very similar behavior. Indeed, the number of violations drops
close to 0 at around step 100 (20 000th iteration). However, constraints 8 to 11 seem to be a
lot harder to learn. This can be explained by the fact that these constraints create violations
only at the end of the sequence. For two of these four constraints, the best reward function

CP 2022

30:14 Combining RL and CP for Sequence-Generation Tasks with Hard Constraints

Figure 5 Evolution of our four metrics with different reward functions (red = rnn + violations,
blue = rnn + marginals, green = rnn + marginals + violations, gray = rnn). The domains were not
restricted. The origin of each curve shows the initial value before training the DDQN. Takeaway:
All of the CP curves improve on the gray curve for all the metrics. The green curve achieves the
best constraint satisfaction and the best violations reward.

is the rnn itself, which could mean that constraints only having an impact at the end are
easier to learn from data than by using CP. We can also see that the green curve yields fewer
violations for 9 out of 12 constraints.

The unexpected increase of the blue curve for constraint avoidSixths could be a sign that
an agent keeping track only of the marginals doesn’t hesitate to break more constraints when
the marginals are already 0. That could explain why this behavior is not seen for reward
functions that take into account the number of violations.

5.6 Comparing rewards
Figure 5 shows the evolution of the constraint satisfaction and the three rewards averaged
over 10 seeds. By looking at these plots, it is obvious that adding CP outputs improves all
four metrics. The great improvement for the constraint satisfaction, the marginals reward and
the violations rewards is not surprising since the CP outputs are added to enforce constraints.
However, even the rnn reward is increasing, showing that satisfying constraints also improves
the capacity of the RL agent to reflect what the RNN learned from the corpus. We can also
see that the rnn + marginals + violations function (green curve) is the winner for half
of the metrics.

6 Discussion and future work

Even though our algorithm is an extension of the RL-Tuner, our results cannot be compared
directly with those in the original paper. This is mainly due to our choice of corpus and
constraints. However, the violations returned by the CP model are similar in spirit to
evaluating each constraint one by one as is done in the original paper. We can then consider
the rnn + violations reward function as reflecting what the original paper would have
obtained, had the authors used the same RNN and constraints. If we use this reward function
as a baseline for comparison, we see that the marginals provide an advantage and that the
best performance is achieved by combining them with violations. Furthermore, we see that
most of our constraints reach 0 violations in the first 20 000 iterations which decreases the
number of steps required for convergence (more than 50 000 iterations for the red curve).

Experiments on the number of BP iterations required for convergence of the marginals
could be useful to increase the speed of the CP model. As of now, it takes around 500
ms to compute either the marginals or the violations for each partial note sequence. The
full training process for all 50 000 iterations takes a few hours. To increase efficiency, we

D. Lafleur, S. Chandar, and G. Pesant 30:15

store a list of marginals and violations to reuse them. With the marginals and violations
already computed, the training process takes a few minutes. Unfortunately the length of the
sequences prevents us from precomputing them for each possible note sequence.

It would also be relevant to evaluate our algorithm with a human study (e.g. Turing
test or Likert scale). Given that our task was to generate melodic lines, we could not create
samples without rhythmic information. Ongoing work adds rhythmic constraints to convert
melodic lines to note sequences with pitches and durations. This will allow us to generate
samples and conduct human studies.

We are aware that the performance of our RNN is not nearly as high as that of the one
used in the RL-Tuner paper. However, our goal here was to show that the RL agent is able
to combine the RNN’s predictions with the constraints, and this goal is not affected by the
initial RNN performance. To evaluate the aesthetic quality of generated sequences, we would
need to have an RNN with a higher accuracy.

We also plan to investigate such a combination of ML and CP for sequence generation
tasks in other application domains.

7 Conclusion

In this work, we presented an extension of the RL-Tuner algorithm: adding the output
of CP models to the reward function in order to learn hard constraints. We applied our
algorithm to the generation of melodic lines. We showed that combining the pretrained
RNN’s probability with the marginals and the number of constraint violations yields the
best constraint satisfaction, while increasing the rnn reward obtained by the model without
CP. This shows that combining ML and CP yields generated sequences that are better at
both reflecting the corpus and respecting constraints than using only ML (or CP). We also
studied each constraint individually and showed that for most of the constraints, the best
reward function quickly converged to no violations. Our work allowed us to generate melodic
lines that respect constraints without forgetting structural knowledge obtained from the
Bach corpus.

References
1 Jean-Pierre Briot, Gaëtan Hadjeres, and François Pachet. Deep learning techniques for music

generation - A survey. CoRR, abs/1709.01620, 2017. arXiv:1709.01620.
2 Sophie Demassey, Gilles Pesant, and Louis-Martin Rousseau. A Cost-Regular based Hybrid

Column Generation Approach. Constraints, 11(4):315–333, December 2006. doi:10.1007/
s10601-006-9003-7.

3 Gaëtan Hadjeres and Frank Nielsen. Anticipation-rnn: enforcing unary constraints in sequence
generation, with application to interactive music generation. Neural Comput. Appl., 32(4):995–
1005, 2020. doi:10.1007/s00521-018-3868-4.

4 Gaëtan Hadjeres, François Pachet, and Frank Nielsen. Deepbach: a steerable model for bach
chorales generation. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th
International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11
August 2017, volume 70 of Proceedings of Machine Learning Research, pages 1362–1371. PMLR,
2017. URL: http://proceedings.mlr.press/v70/hadjeres17a.html.

5 Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9:1735–80, December 1997. doi:10.1162/neco.1997.9.8.1735.

6 Cheng-Zhi Anna Huang, Tim Cooijmans, Adam Roberts, Aaron C. Courville, and Douglas
Eck. Counterpoint by convolution. CoRR, abs/1903.07227, 2019. arXiv:1903.07227.

CP 2022

http://arxiv.org/abs/1709.01620
https://doi.org/10.1007/s10601-006-9003-7
https://doi.org/10.1007/s10601-006-9003-7
https://doi.org/10.1007/s00521-018-3868-4
http://proceedings.mlr.press/v70/hadjeres17a.html
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1903.07227

30:16 Combining RL and CP for Sequence-Generation Tasks with Hard Constraints

7 Natasha Jaques, Shixiang Gu, Richard E. Turner, and Douglas Eck. Tuning recurrent
neural networks with reinforcement learning. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Workshop Track Proceedings.
OpenReview.net, 2017. URL: https://openreview.net/forum?id=Syyv2e-Kx.

8 Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforcement learning:
A survey. CoRR, cs.AI/9605103, 1996. arXiv:9605103.

9 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig
Petersen, Charlie Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforce-
ment learning. Nature, 518:529–533, 2015.

10 Olof Mogren. C-RNN-GAN: continuous recurrent neural networks with adversarial training.
CoRR, abs/1611.09904, 2016. arXiv:1611.09904.

11 Gilles Pesant. A regular language membership constraint for finite sequences of variables. In
Mark Wallace, editor, Principles and Practice of Constraint Programming – CP 2004, pages
482–495, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

12 Gilles Pesant. From support propagation to belief propagation in constraint programming. J.
Artif. Intell. Res., 66:123–150, 2019. doi:10.1613/jair.1.11487.

13 Jose David Fernández Rodriguez and Francisco J. Vico. AI methods in algorithmic composition:
A comprehensive survey. CoRR, abs/1402.0585, 2014. arXiv:1402.0585.

14 Robin M. Schmidt. Recurrent neural networks (rnns): A gentle introduction and overview.
CoRR, abs/1912.05911, 2019. arXiv:1912.05911.

15 Peter Schubert. Modal Counterpoint, Renaissance Style. Oxford University Press, 2nd edition,
2008.

16 Charlotte Truchet and Gérard Assayag, editors. Constraint Programming in Music. Wiley,
2011.

17 Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double
q-learning. CoRR, abs/1509.06461, 2015. arXiv:1509.06461.

18 Willem Jan van Hoeve, Gilles Pesant, and Louis-Martin Rousseau. On global warming:
Flow-based soft global constraints. J. Heuristics, 12(4-5):347–373, 2006. doi:10.1007/
s10732-006-6550-4.

19 Halley Young, Maxwell Du, and Osbert Bastani. Neurosymbolic deep generative models for
sequence data with relational constraints, 2021. URL: https://openreview.net/forum?id=
Y5TgO3J_Glc.

https://openreview.net/forum?id=Syyv2e-Kx
http://arxiv.org/abs/9605103
http://arxiv.org/abs/1611.09904
https://doi.org/10.1613/jair.1.11487
http://arxiv.org/abs/1402.0585
http://arxiv.org/abs/1912.05911
http://arxiv.org/abs/1509.06461
https://doi.org/10.1007/s10732-006-6550-4
https://doi.org/10.1007/s10732-006-6550-4
https://openreview.net/forum?id=Y5TgO3J_Glc
https://openreview.net/forum?id=Y5TgO3J_Glc

Exploiting Functional Constraints in Automatic
Dominance Breaking for Constraint Optimization
Jimmy H. M. Lee # Ñ

Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Shatin, China

Allen Z. Zhong # Ñ

Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Shatin, China

Abstract
Dominance breaking is an effective technique to reduce the time for solving constraint optimization
problems. Lee and Zhong propose an automatic dominance breaking framework for a class of
constraint optimization problems based on specific forms of objectives and constraints. In this
paper, we propose to enhance the framework for problems with nested function calls which can be
flattened to functional constraints. In particular, we focus on aggregation functions and exploit
such properties as monotonicity, commutativity and associativity to give an efficient procedure for
generating effective dominance breaking nogoods. Experimentation also shows orders-of-magnitude
runtime speedup using the generated dominance breaking nogoods and demonstrates the ability of
our proposal to reveal dominance relations in the literature and discover new dominance relations
on problems with ineffective or no known dominance breaking constraints.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming

Keywords and phrases Constraint Optimization Problems, Dominance Breaking

Digital Object Identifier 10.4230/LIPIcs.CP.2022.31

Supplementary Material Software (Source Code): https://github.com/AllenZzw/auto-dom

Funding We acknowledge the financial support of a General Research Fund (RGC Ref. No. CUHK
14206321) by the University Grants Committee, Hong Kong.

Acknowledgements We are grateful to the anonymous referees of CP-22 for their useful comments
and suggestions.

1 Introduction

Dominance relations [7, 18] in Constraint Optimization Problems (COPs) describe relations
between two full assignments where one is known to be subordinate compared with another
concerning satisfiability and/or objective value. Dominance breaking, which adds additional
constraints to remove dominated full assignments, is known to be effective in a range of
problems [1, 16, 22, 31] but also demands sophisticated insights into the problem structures.
Lee and Zhong [25, 24] give the method of automatic dominance breaking for a class of
COPs, which can identify dominance relations and generate dominance breaking constraints
automatically. Yet, the method is restricted to COPs with only objectives and constraints that
are all provably efficiently checkable. For example, in order to apply automatic dominance
breaking to a COP, the objective is required to be either a separable function or a submodular
function. This prevents the use of automatic dominance breaking for COPs with varying
objectives and constraints, especially the ones with nested function calls.

Functional expressions are ubiquitous in problem modelling, while the objective and con-
straints with functional expressions are usually not efficiently checkable. In practice, however,
COPs are usually specified in a high-level modeling language [10, 28] and normalized/flattened
into a form with only standard constraints.

© Jimmy H. M. Lee and Allen Z. Zhong;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 31; pp. 31:1–31:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jlee@cse.cuhk.edu.hk
http://www.cse.cuhk.edu.hk/~jlee/
https://orcid.org/0000-0001-9526-5850
mailto:zwzhong@cse.cuhk.edu.hk
https://allenzzw.github.io/
https://orcid.org/0000-0001-8807-8600
https://doi.org/10.4230/LIPIcs.CP.2022.31
https://github.com/AllenZzw/auto-dom
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 Exploiting Functional Constraints in Automatic Dominance Breaking

▶ Example 1. Consider a simple COP which minimizes the objective max(z1, z2) + 4z3
subject to the constraint 2z1−3z2 ∗z3 ≤ 5, where z1, z2, z3 ∈ {1, 2, 3}. The objective with the
max function and the constraint with the multiplying function are not efficiently checkable.
After normalization, the COP can become:

minimize obj

subject to y2 ≤ 5, obj = y1 + 4z3, y1 = max(z1, z2),
y2 = 2z1 − 3y3, y3 = z2 ∗ z3,

z1, z2, z3 ∈ {1, 2, 3}, y1, y2, y3, obj ∈ Z

(1)

Note that y1, y2, y3 and obj are newly introduced variables, and are functionally defined by
y1 = max(z1, z2), y2 = 2z1 − 3y3, y3 = z2 ∗ z3 and obj = y1 + 4z3 respectively. We call these
functional constraints, while y2 ≤ 5 is a non-functional constraint.

In this paper, we propose to exploit functional constraints to identify useful dominance
relations in COPs with nested function calls. We first generalize the theory of dominance to
normalized COPs which contain functionally defined variables and functional constraints.
We present a method for automatic derivation of sufficient conditions for dominance relations
in COPs based on functional constraints and common properties such as monotonicity,
commutativity and associativity. The proposed method is implemented on top of the MiniZinc
compiler [28]. Experimentation on various benchmarks confirms the superior efficiency of
the generated nogoods to solve problems with ineffective or no known dominance breaking
constraints in the literature. Even when nogoods are costly to generate, we give two case
studies on the Steel Mill Slab Design Problem [11] and the Balanced Academic Curriculum
Problem [5] to show how we can discover dominance relations and compact dominance
(symmetry) breaking constraints by studying the nogood patterns of small instances.

2 Background

A variable x is an unknown. A domain D maps each variable x to the finite set D(x) which
contains the possible values for x. An assignment θ on a set of variables S = {x1, . . . , xk} is
a tuple (v1, . . . , vk) ∈ DS = D(x1)× · · · ×D(xk), where vj = θ[xj] is the value assigned to
xj in θ, and S = var(θ) is the scope of θ. We abuse notations to use θ[S′] to denote the tuple
formed by projecting θ ∈ DS onto S′ ⊂ S. A constraint c is a subset of the Cartesian product
DS where S = var(c) is the scope of c. An assignment θ satisfies a constraint c if θ[var(c)] ∈ c,
where var(θ) ⊇ var(c). We define a nogood ¬θ for an assignment θ to be a constraint of
the form ∨x∈var(θ)(x ̸= θ[x]), and its length is always equal to the scope size |var(θ)|. A
functional constraint is of the form y = h(x1, . . . , xk) where h : D{x1,...,xk} 7→ D{y} is a
function mapping any assignment on variables {x1, . . . , xk} to a unique assignment on y.

A Constraint Satisfaction Problem (CSP) is a tuple (X, D, C) where X is a set of variables,
D is a domain for X and C is a set of constraints. A Constraint Optimization Problem
(COP) (X, D, C, obj) extends a CSP with an objective variable obj which is to be minimized.
Let θ̄ ∈ DX denote a full assignment whose scope is X. A solution of a COP/CSP P is
a full assignment θ̄ ∈ DX such that θ̄ satisfies all constraints c ∈ C. We let sol(P) ⊆ DX

denote the set of all solutions of P . The goal of solving a COP is to find an optimal solution
θ̄∗ ∈ sol(P) such that θ̄∗[obj] ≤ θ̄[obj] for all solutions θ̄ ∈ sol(P), and θ̄∗[obj] is the optimal
value of P .

A dominance relation ≺ over DX [7] is a transitive and irreflexive relation such that
∀θ̄, θ̄′ ∈ DX , if θ̄ ≺ θ̄′ with respect to P , then either: (1) θ̄ ∈ sol(P) and θ̄′ /∈ sol(P), or
(2) θ̄, θ̄′ ∈ sol(P) and θ̄[obj] ≤ θ̄′[obj], or (3) θ̄, θ̄′ /∈ sol(P) and θ̄[obj] ≤ θ̄′[obj]. Dominance

J. H. M. Lee and A. Z. Zhong 31:3

relations can be generalized [25] to assignments over DS where S ⊆ X. Let DX
θ = {θ̄ ∈

DX | θ̄[var(θ)] = θ} be a subset of DX . We say that θ dominates θ′ with respect to P

iff ∀θ̄′ ∈ DX
θ′ , ∃θ̄ ∈ DX

θ such that θ̄ ≺ θ̄′ for some dominance relation ≺ with respect to P .
When the context is clear, we abuse notations and let θ ≺ θ′ denote θ dominates θ′.

▶ Theorem 2 ([25]). Suppose θ, θ′ ∈ DS are assignments of P = (X, D, C, obj) where
S ⊆ X. If θ ≺ θ′ with respect to P , then removing all assignments in DX

θ′ preserves the same
satisfiability and optimal value of P .

Note that removing all dominated full assignments in DX
θ′ only requires to add a nogood ¬θ′

to P . While generating all dominance breaking nogoods is impractical, Lee and Zhong [25]
formulate it as constraint satisfaction to identify and exploit only a subset of such nogoods.
The constraints in the generation CSPs are sufficient conditions over pairs (θ, θ′) of assign-
ments such that θ ≺ θ′ with respect to P . The key step is to derive constraints in the
generation CSP automatically as sufficient conditions for dominance relations. Lee and
Zhong [25] give such constraints directly based on the objective and constraint types, but it
is not easily extensible especially when there are nested function calls as shown in Example 1.
To tackle this problem, we generalize the theory of dominance in Section 3 and present a
method for automatic sufficient condition derivation in Section 4.

3 Functional Constraints and Dominance

In this paper, we assume that a COP P = (X, D, C, obj) is the result of applying some sort
of flattening procedure, such as the one used in the MiniZinc compiler [26] and similar to
that shown in Example 1, to a problem model. Therefore, we have a set CY of functional
constraints, each defining a variable y ∈ Y , and a set of non-functional constraints. Our
proposed method utilizes the functional constraints and the properties of functions to derive
sufficient conditions for dominance as shown in the following example.

▶ Example 3. Consider the COP in (1) and θ, θ′ ∈ DS where S = {z1, z2}. Our aim is to
find sufficient conditions over θ and θ′ that imply all full assignments in DX

θ′ can be removed.
Suppose we only consider full assignments that satisfy all functional constraints in (1). For
each full assignment θ̄′ ∈ DX

θ′ , we focus on a corresponding θ̄ ∈ DX
θ where θ̄[z3] = θ̄′[z3]. By

definition of dominance relations, if we have (a) betterment: θ̄[obj] ≤ θ̄′[obj], (b) implied
satisfaction: θ̄[y2] ≤ θ̄′[y2], and (c) θ ̸= θ′, then θ̄′ is dominated by θ̄ and hence can be
removed. We can find sufficient conditions for betterment as follows:

Variable obj is defined by obj = y1 + 4z3. If we have θ̄[y1] + 4θ̄[z3] ≤ θ̄′[y1] + 4θ̄′[z3], then
θ̄[obj] ≤ θ̄′[obj] must hold since θ̄ and θ̄′ satisfy all functional constraints.
Variable y1 is defined by y1 = max(z1, z2). It suffices to show that

max(θ̄[z1], θ̄[z2]) + θ̄[z3] ≤ max(θ̄′[z1], θ̄′[z2]) + θ̄′[z3]. (2)

The summation function is monotonically increasing, (2) must be true if we have

max(θ̄[z1], θ̄[z2]) ≤ max(θ̄′[z1], θ̄′[z2]) ∧ θ̄[z3] ≤ θ̄′[z3] (3)

Since θ̄ ∈ DX
θ and θ̄′ ∈ DX

θ′ , we have θ̄[z1] = θ[z1], θ̄[z2] = θ[z2], θ̄′[z1] = θ′[z1], and
θ̄′[z2] = θ′[z2]. The condition (3) is equivalent to

max(θ[z1], θ[z2]) ≤ max(θ′[z1], θ′[z2]) (4)

Inequality (θ̄[z3] ≤ θ̄′[z3]) must hold since θ̄[z3] = θ̄′[z3]. Thus, if θ and θ′ satisfy (4), the
betterment condition must hold.

CP 2022

31:4 Exploiting Functional Constraints in Automatic Dominance Breaking

Similarly, we can find the sufficient condition for implied satisfaction as follows:
Variable y2 is defined by y2 = 2z1 − 3y3, θ̄[y2] ≤ θ̄′[y2] must be true if

2θ̄[z1] ≤ 2θ̄′[z1] ∧ 3θ̄[y3] ≥ 3θ̄′[y3] (5)

Variable y3 is defined by y3 = z2 ∗ z3. Since z2, z3 ≥ 0, 3θ̄[y3] ≥ 3θ̄′[y3] must hold if

θ̄[z2] ≥ θ̄′[z2] ∧ θ̄[z3] ≥ θ̄′[z3] (6)

Since θ̄[z3] = θ̄′[z3], the latter condition must hold.
By definitions, we have θ̄[z1] = θ[z1], θ̄[z2] = θ[z2], θ̄′[z1] = θ′[z1], and θ̄′[z2] = θ′[z2], and
therefore (5) and (6) must hold if

θ[z1] ≤ θ′[z1] ∧ θ[z2] ≥ θ′[z2] (7)

The generation CSP for θ and θ′ contains (4) and (7). To ensure the compatibility of
generated nogoods, we can follow Lee and Zhong [25] to add the lexicographic ordering
constraint (θ[z1], θ[z2]) <lex (θ′[z1], θ′[z2]). One possible solution of the generation CSP is
the pair (θ, θ′) where θ = (1, 2) and θ′ = (2, 1), and the constraint ¬θ′ ≡ (z1 ̸= 2 ∨ z2 ̸= 1)
is a dominance breaking nogoods in (1). Similar derivation can also be applied to pairs of
assignments over other scopes to obtain more dominance breaking nogoods.

As shown in Example 3, our method identify nogoods by the following process:
1. Choose a cardinality of a scope S

2. Enumerate all possible scope S with the chosen cardinality. For each S:
a. Derive sufficient conditions and synthesize a generation CSP for S

b. Solve all solutions of the generation CSP
c. Collect the derived nogoods from the solutions (one nogood from each solution)

3. Add all the collected nogoods to the COP before solving

The key step is to synthesize a generation CSP considering the functional constraints. In the
following, we give a theory of dominance for normalized COPs.

For ease of presentation, we associate each non-functional constraint c ∈ (C \ CY) with a
reified variable b ∈ {0, 1}, where a full assignment θ̄ satisfies c iff θ̄[b] = 01. In other words,
we treat each constraint c ∈ (C \ CY) as a function returning 0/1 and define a (reified)
functional constraint cb ≡ (b = c(xi1 , . . . , xik

)). If θ̄[b] ≤ θ̄′[b] for two full assignments θ̄ and
θ̄′, then θ̄′ satisfies c implies that θ̄ also satisfies c. We let CB denote the set of (reified)
functional constraints and B denote the set of reified variables.

Without loss of generality, let (Z, Y, B) and (CB , CY) be a partition of variables X and
constraints C respectively in a normalized COP, where Z ∪ Y ∪B = X, CB ∪ CY = C and
obj ∈ Y . Note that Z, Y, B are pairwise disjoint and CB ∩ CY = ∅. In case a variable y ∈ Y

is introduced by the flattening procedure, we set the domain for y to be the largest possible
set, and therefore, a constraint cy ∈ CY must be satisfied if the value of y ∈ Y is computed
from the assignments over variables xi1 , . . . , xik

. Note that when there is no flattening and
reification, our definition of a COP degenerates to the classical definition [34].

We say that a full assignment θ̄ is functionally valid iff (a) θ̄[b] = c(θ̄[xi1], . . . , θ̄[xik
]) for

(b = c(xi1 , . . . , xik
)) ∈ CB and (b) θ̄[y] = h(θ̄[xi1], . . . , θ̄[xik

]) for (y = h(xi1 , . . . , xik
)) ∈ CY .

Note that θ̄ in a normalized COP will correspond to a full assignment in the original non-
flattened problem model iff θ̄ is functionally valid. The value for y ∈ Y (respectively b ∈ B)

1 Note that this is different from the convention that 0 means false and 1 means true.

J. H. M. Lee and A. Z. Zhong 31:5

in a functionally valid full assignment are determined by cy ∈ CY (respectively cb ∈ CB) as
well as values for variables in Z. We define the set of determining variables A(x) ⊆ Z of a
variable x ∈ X is

A(z) = {z} for a variable z ∈ Z,
A(y) = ∪x∈var(cy)\yA(x) for a variable y ∈ Y , and
A(b) = ∪x∈var(cb)\bA(x) for a variable b ∈ B.

In the remainder of the paper, we assume that P = (X, D, C, obj) is a normalized COP
and consider only functionally valid full assignments in DX . Our aim is to find sufficient
conditions for a pair of assignments θ and θ′ over S ⊆ Z such that θ ≺ θ′ with respect to
P . Recall that θ ≺ θ′ requires ∀θ̄′ ∈ DX

θ′ , ∃θ̄ ∈ DX
θ such that θ̄ ≺ θ̄′ for some dominance

relation over DX . It is expensive to check whether there exists θ̄ for each θ̄′ in DX
θ′ . Instead,

we propose to check only if a specific θ̄ dominates θ̄′ by utilizing a mutation mapping for two
assignments θ and θ′ over the same scope.

▶ Definition 4. The mutation mapping µθ→θ′ for two assignments θ, θ′ over the scope S

maps a full assignment θ̄ ∈ DX
θ to another full assignment θ̄′ ∈ DX

θ′ such that:
θ̄′[z] = θ′[z] for z ∈ var(θ),
θ̄′[z] = θ̄[z] for z ∈ Z \ var(θ),
θ̄′[y] = h(θ̄′[xi1], . . . , θ̄′[xik

]) where y ∈ Y is defined by y = h(xi1 , . . . , xik
) ∈ CY ,

θ̄′[b] = c(θ̄′[xi1], . . . , θ̄′[xik
]) where b ∈ B is defined by b = c(xi1 , . . . , xik

) ∈ CB.
In other words, µθ→θ′ “mutates” the θ component of θ̄ to become θ′ and assigns the values
of variables in Y ∪B accordingly. The mutation mapping µθ→θ′ is a bijection, and thus the
inverse mapping (µθ→θ′)−1 = µθ′→θ always exists. The following proposition characterizes
some useful properties of the mutation mapping.

▶ Proposition 5. The followings are true for all full assignments θ̄ ∈ DX
θ and θ̄′ = µθ→θ′(θ̄):

If z ∈ S, then θ̄[z] = θ[z] and θ̄′[z] = θ′[z].
If z ∈ Z \ S, then θ̄[z] = θ̄′[z].

The following result gives a sufficient condition governing when θ ≺ θ′ with respect to P .

▶ Theorem 6. If a pair of assignments θ, θ′ ∈ DS satisfies:
empty intersection: DX

θ ∩ DX
θ′ = ∅,

betterment: ∀θ̄ ∈ DX
θ , θ̄[obj] ≤ µθ→θ′(θ̄)[obj], and

implied satisfaction: ∀b ∈ B, ∀θ̄ ∈ DX
θ , θ̄[b] ≤ µθ→θ′(θ̄)[b],

then θ dominates θ′ with respect to P .

Theorems 2 and 6 imply that ¬θ′ is a dominance breaking nogood to remove all dominated
solution in DX

θ′ . To further ensure that all generated nogoods are compatible in the sense that
not all optimal solutions of P are eliminated, a lexicographic ordering constraint θ <lex θ′

is also added to the generation CSP [25]. What remains is to find constraints over θ and
θ′ that are sufficient conditions for empty intersection, betterment and implied satisfaction.
Empty intersection is trivially satisfied if θ ̸= θ′. In Section 4, we will focus on finding
sufficient conditions for betterment and implied satisfaction. Note that the above definitions
and results degenerate to those by Lee and Zhong [25] when Y and CY are empty.

4 Automatic Sufficient Condition Derivation

In this section, we describe formally how functional constraints and their properties are used
for deriving effective sufficient conditions for betterment and implied satisfaction, which are
predicates requiring an inequality to hold for all θ̄ ∈ DX

θ . When it is clear from the context,

CP 2022

31:6 Exploiting Functional Constraints in Automatic Dominance Breaking

Algorithm 1 Deriving sufficient conditions for betterment and implied satisfaction.

1: Q← {(∀θ̄ ∈ DX
θ , θ̄[obj] ≤ θ̄′[obj])} ∪ {(∀θ̄ ∈ DX

θ , θ̄[b] ≤ θ̄′[b]) | b ∈ B}, F ← ∅
2: while Q ̸= ∅ do
3: Remove a predicate p ≡ (∀θ̄ ∈ DX

θ , tθ̄ ◁ tθ̄′) from Q

4: if var(t) ∩ (Y ∪B) ̸= ∅ then
5: Let x ∈ var(t) ∩ (Y ∪B) be a variable defined by x = f(xi1 , . . . , xik

)
6: β ← {x/f(xi1 , . . . , xik

)}
7: Q← Q ∪ {(∀θ̄ ∈ DX

θ , (tβ)θ̄ ◁ (tβ)θ̄′)} // Replacement
8: else if var(t) ⊆ S ⊆ Z then
9: F ← F ∪ {(tθ ◁ tθ′)} // Binding

10: else if var(t) ⊆ (Z \ S) then
11: Continue // Deletion
12: else
13: Let p be (∀θ̄ ∈ DX

θ , f(t1θ̄, . . . , tkθ̄) ◁ f(t1θ̄′, . . . , tkθ̄′))
14: Q← Q ∪ {(∀θ̄ ∈ DX

θ , tiθ̄ = tiθ̄
′) | ∀i ∈ {1, . . . , k}} // General Decomposition

15: end if
16: end while
17: return F

we let θ̄′ = µθ→θ′(θ̄) denote the image by the mutation mapping of θ and θ′. We first present
a general algorithm which only utilizes functional constraints, followed by rules that exploits
the functional properties of monotonicity, associativity and commutativity.

4.1 General Decomposition
To formalize the derivation of sufficient conditions, we use the inductive definition of terms [2]:

a variable x is a term, and
if f is a k-ary function and t1, . . . , tk are terms, then f(t1, . . . , tk) is a term.

By abusing notations, we define var(t) = {x} when t ≡ x, and var(t) = ∪k
i=1var(ti)

when t ≡ f(t1, . . . , tk). Note that f can either be the constraint c in a reified constraint
b = c(xi1 , . . . , xik

) or the function h in a functional constraint y = h(xi1 , . . . , xik
). We say

that a variable x is fixed in an assignment θ when the set of determining variables A(x)
of x is a subset of var(θ). A term t is fixed in θ iff all variables of t are fixed in θ, i.e.,
∧x∈var(t)(A(x) ⊆ var(θ)); otherwise t is a free.

A substitution is a finite mapping from variables to terms which assigns to each variable
x a term t different from x. We write a substitution as β = {xi1/t1, . . . , xik

/tk} where
xi1 , . . . , xik

are different variables, and t1, . . . , tk are terms such that ∀j ∈ {1, . . . , k}, xij ̸≡ tj .
A substitution β can be applied to a term t to obtain tβ by replacing every occurrence of
variable xij

in t by the term tj for all j ∈ {1, . . . , k}.
Let ◁ be an operator in {≤,≥, =}. The betterment and implied satisfaction condition

in Theorem 6 are predicates in the form of quantified inequalities, i.e., (∀θ̄ ∈ DX
θ , tθ̄ ◁ tθ̄′),

where tθ̄ and tθ̄′ are obtained by substituting each variable in t with its values in θ̄ and θ̄′

respectively. Algorithm 1 shows an automatic process that derives predicates as sufficient
conditions for the betterment and implied satisfaction, and all variables in the sufficient
conditions are fixed in θ and θ′. The algorithm maintains two sets of predicates Q and
F , where Q consists of predicates that have to be further processed, and F is the set of
predicates whose variables are all in S. The while loop continues until Q is empty and all
predicates has been processed. In each iteration of the while loop, a predicate is removed

J. H. M. Lee and A. Z. Zhong 31:7

from Q and processed by replacement (lines 4 to 7), binding (lines 8 to 9), deletion (lines 10
to 11) and general decomposition (lines 12 to 14) rules respectively. Finally, F is returned for
synthesizing the generation CSP. Note that t must be a function term of the form f(t1, . . . , tk)
in line 13, since var(t) is a subset of Z and var(t) has non-empty intersection with both
S and Z \ S. The following theorem states an important property of Algorithm 1. For
simplicity, let Q ∧ F denote the conjunction of all predicates in Q and F .

▶ Theorem 7. Algorithm 1 preserves the invariant that Q∧F is always a sufficient condition
for betterment and implied satisfaction of P .

Proof. Since Q is initialized with the betterment and implied satisfaction, the statement
holds at the beginning. By induction, it suffices to show that when Q ∧ F is still a sufficient
condition after an iteration in the while loop. There are four rules in the iteration:

Replacement: the predicate ∀θ̄ ∈ DX
θ , tθ̄ ◁ tθ̄′ is equivalent to ∀θ̄ ∈ DX

θ , (tβ)θ̄ ◁ (tβ)θ̄′,
because we assume that full assignments are all functionally valid.
Binding: the predicate (∀θ̄ ∈ DX

θ , tθ̄◁tθ̄′) is equivalent to (tθ◁tθ′) by Proposition 5, since
a variable x in var(t) also belongs to S ⊆ Z, and we have θ̄[x] = θ[x] and θ̄′[x] = θ′[x].
Deletion: by Proposition 5 again, ∀x ∈ var(t) where x ∈ Z and x /∈ S, we have θ̄[x] = θ̄′[x].
Therefore, the predicate tθ̄ = tθ̄′ must hold and imply that tθ̄ ≤ tθ̄′ and tθ̄ ≥ tθ̄′.
General decomposition: the conjunction ∧k

i=1(∀θ̄ ∈ DX
θ , tiθ̄ = tiθ̄

′) implies (∀θ̄ ∈
DX

θ , f(t1θ̄, . . . , tkθ̄) ◁ f(t1θ̄′, . . . , tkθ̄′)) by definitions of functional and reified constraints.
Therefore, the invariant is preserved in Algorithm 1. ◀

Note that the replacement, binding and deletion rules are equivalent transformation of predic-
ates, while general decomposition replaces p ≡ (∀θ̄ ∈ DX

θ , f(t1θ̄, . . . , tkθ̄) ◁ f(t1θ̄′, . . . , tkθ̄′))
into a set of predicates that are sufficient conditions for p.

▶ Theorem 8. Algorithm 1 always terminates.

Proof. Without loss of generality, we assume that each variable y ∈ Y appears only in at
most one constraint other than the functional constraint y = h(xi1 , . . . , xik

). By definition
of a COP, Y ∪B and CY ∪ CB are finite sets. We maintain three natural numbers:

v1: the number of variables in Y ∪B that have not been substituted in replacement,
v2: the number of occurrences of function symbols in Q, and
v3: the sum of |var(t)| for all predicates (∀θ̄ ∈ DX

θ , tθ̄ ◁ tθ̄′) ∈ Q.
We claim that applying each rule reduces the triple (v1, v2, v3) in a lexicographic sense. Indeed,
each variable x ∈ Y ∪B is only substituted when x is in the flattened constraint or the reified
constraint, replacement must decrease v1 by 1. General decomposition decreases v2 while
keeping v1 unchanged. Further, binding and deletion remove one predicate (∀θ̄ ∈ DX

θ , tθ̄◁tθ̄′)
from Q and therefore decrease v3 by var(t). The termination follows from the fact that there
is no infinite descending sequence of triples of natural numbers. ◀

The set Q is empty upon termination, and the following corollary is a direct consequence
of Theorems 7 and 8.

▶ Corollary 9. When Algorithm 1 terminates, the conjunction of predicates in F is a sufficient
condition for the betterment and implied satisfaction of P .

In other words, Algorithm 1 is sound in the sense that F consists of predicates that are
sufficient conditions for betterment and implied satisfaction in Theorem 6. The general
decomposition considers that a function f is general without any properties, but this may
result in too restrictive sufficient conditions. For example, if we use Algorithm 1 for the

CP 2022

31:8 Exploiting Functional Constraints in Automatic Dominance Breaking

COP in (1), the resulting sufficient conditions for betterment and implied satisfaction will be
θ[z1] = θ′[z1] and θ[z2] = θ′[z2], which is in conflict with the empty intersection condition in
Theorem 6. No solution can be found by solving the generation CSP, and no nogoods can be
generated. Therefore, we want more relaxed sufficient conditions as far as possible.

We say that a predicate α is stronger than another predicate β iff α ⇒ β, and β is
weaker than α. The weaker the sufficient conditions in the generation CSP, the more
pairs of assignments will satisfy all the conditions and the more nogoods can be found by
Theorem 6. The idea is to apply different decomposition rules to derive weaker sufficient
conditions based on properties of functions in functional and reified constraints. Aggregation
functions [17], such as summation, maximum and minimum, combine multiple values into a
single representative value. They are common in modeling COPs and enjoy useful properties
such as monotonicity, commutativity and associativity.

4.2 Decomposition for Monotonic Functions
The first property of interest is monotonicity. A function f : Rk 7→ R is monotonically
increasing if (∀i, ai ≤ bi) ⇒ f(a1, . . . , ak) ≤ f(b1, . . . , bk) and is monotonically decreasing
if (∀i, ai ≥ bi) ⇒ f(a1, . . . , ak) ≥ f(b1, . . . , bk) where ai, bi ∈ R. We also define the reverse
operators of ≤, ≥ and = to be ≥, ≤ and = respectively. When the function f is monotonically
increasing or monotonically decreasing, we have the following rules.

▶ Definition 10. Let p ≡ (∀θ̄ ∈ DX
θ , f(t1θ̄, . . . , tkθ̄) ◁ f(t1θ̄′, . . . , tkθ̄′)) be a predicate where

◁ ∈ {≤,≥, =} is a comparison operator and ▷ is the reverse operator of ◁.
Increasing decomposition: when f is monotonically increasing, the predicate p is replaced
by {(∀θ̄ ∈ DX

θ , tiθ̄ ◁ tiθ̄
′) | ∀i ∈ {1, . . . , k}}.

Decreasing decomposition: when f is monotonically decreasing, the predicate p is replaced
by {(∀θ̄ ∈ DX

θ , tiθ̄ ▷ tiθ̄
′) | ∀i ∈ {1, . . . , k}}.

Recall that all full assignments are functionally valid. The following theorem follows
directly the definition of monotonically increasing and monotonically decreasing functions.

▶ Theorem 11. The increasing decomposition and decreasing decomposition rules preserve
that Q ∧ F is a sufficient condition for betterment and implied satisfaction of P .

Utilizing the property of monotonicity, increasing decomposition and decreasing decomposi-
tion can return weaker sufficient conditions than general decomposition.

▶ Theorem 12. The conjunction of predicates in {(∀θ̄ ∈ DX
θ , tiθ̄ ◁ tiθ̄

′) | ∀i ∈ {1, . . . , k}}
(respectively {(∀θ̄ ∈ DX

θ , tiθ̄ ▷ tiθ̄
′) | ∀i ∈ {1, . . . , k}}) is weaker than the conjunction of

predicates {(∀θ̄ ∈ DX
θ , tiθ̄ = tiθ̄

′) | ∀i ∈ {1, . . . , k}} returned by general decomposition.

Proof. A predicate (∀θ̄ ∈ DX
θ , tiθ̄ = tiθ̄

′) is always a sufficient condition for both (∀θ̄ ∈
DX

θ , tiθ̄ ◁ tiθ̄
′) and (∀θ̄ ∈ DX

θ , tiθ̄ ▷ tiθ̄
′). ◀

By Theorems 11 and 12, rules in Definition 10 can obtain a weaker sufficient condition for the
betterment and implied satisfaction, and the general decomposition in Algorithm 1 should
be replaced by them whenever possible.

4.3 Decomposition for Associative and Commutative Functions
In this section, we take advantage of associativity and commutativity so that the general,
decreasing and increasing decomposition can obtain even weaker sufficient conditions. An
aggregation function [17] f can take an arbitrary non-zero number of arguments, and we use

J. H. M. Lee and A. Z. Zhong 31:9

a special notation to denote it. Let t = ⟨t1, . . . , tk⟩, t1 = ⟨t1, . . . , tj⟩ and t2 = ⟨tj+1, . . . , tk⟩
where 1 ≤ j ≤ k, and the followings denote the same function call: f(t1, . . . , tk), f(t) and
f(t1, t2). Two common properties of aggregation functions are:

Commutativity: f(t1, . . . , tk) = f(ti1 , . . . , tik
) where {1, . . . , k} = {i1, . . . , ik}.

Associativity: f(t) = t and f(t1, t2) = f(f(t1), t2).
By commutativity, we can always permutate the arguments of f(t) so that all fixed terms
are clustered together.

▶ Proposition 13. Let f be a commutative function and θ ∈ DS be an assignment where
S ⊆ Z. If there are l ≥ 1 fixed terms among t1, . . . , tk, then we can always find a permutation
{i1, . . . , ik} = {1, . . . , k} and a partition t1 = ⟨ti1 , . . . , til

⟩ and t2 = ⟨til+1 , . . . , tik
⟩ such that

f(t) = f(t1, t2) and all fixed arguments in t are in t1.

The proof directly follows the definition of commutativity. We have the following rule for a
commutative and associative aggregation function.

▶ Definition 14. Let p ≡ (∀θ̄ ∈ DX
θ , f(t1θ̄, . . . , tkθ̄) ◁ f(t1θ̄′, . . . , tkθ̄′)) be a predicate such

that there are l ≥ 1 fixed terms among t1, . . . , tk.
Aggregation: when f is commutative and associative, p is replaced by the predicate
(∀θ̄ ∈ DX

θ , f(f(t1), t2)θ̄ ◁ f(f(t1), t2)θ̄′), where all fixed terms are in t1.

The following theorem follows directly that aggregation is an equivalent transformation.

▶ Theorem 15. The aggregation rule preserves the invariant that Q ∧ F is a sufficient
condition for the betterment and the implied satisfaction conditions.

The aggregation rule allows decomposition to obtain weaker sufficient conditions.

▶ Theorem 16. Let f be a commutative and associative function. Suppose p ≡ (∀θ̄ ∈
DX

θ , f(t1, t2)θ̄ ◁ f(t1, t2)θ̄′) and p′ ≡ (∀θ̄ ∈ DX
θ , f(f(t1), t2)θ̄ ◁ f(f(t1), t2)θ̄′) such that

all fixed terms are in t1. The conjunction of predicates resulting from applying general
decomposition to p is weaker than that to p′.

Proof. After general decomposition, p is replaced by {(∀θ̄ ∈ DX
θ , tij θ̄ = tij θ̄′) | ∀j ∈

{1, . . . , k}}, while p′ is replaced by {(∀θ̄ ∈ DX
θ , f(t1)θ̄ = f(t1)θ̄′)} ∪ {(∀θ̄ ∈ DX

θ , tij
θ̄ =

tij θ̄′) | ∀j ∈ {l + 1, . . . , k}}. The claim directly follows from the fact that the conjunction of
{(∀θ̄ ∈ DX

θ , tij
θ̄ = tij

θ̄′) | ∀j ∈ {1, . . . , l}} implies (∀θ̄ ∈ DX
θ , f(t1)θ̄ = f(t1)θ̄′) since all full

assignments are functionally valid. ◀

Similar results can also be proved for the increasing decomposition and decreasing decompos-
ition rules in Definition 10. Algorithm 2 gives decomposition rules considering the properties
of monotonicity, associativity and commutativity.

▶ Example 17. Suppose we want to find sufficient conditions for θ and θ′ where var(θ) =
var(θ′) = {z1, z3}. Let p ≡ (∀θ̄ ∈ DX

θ , min(θ̄[z1], θ̄[z2], θ̄[z3]) ≤ min(θ̄′[z1], θ̄′[z2], θ̄′[z3])) be a
predicate in Q. If we apply increasing decomposition to p directly, then we get

{(∀θ̄ ∈ DX
θ , θ̄[zi] ≤ θ̄′[zi]) | i ∈ {1, 2, 3}} (8)

Since the function min is commutative and associative, we can obtain

{∀θ̄ ∈ DX
θ , min(min(θ̄[z1], θ̄[z3]), θ̄[z2]) ≤ min(min(θ̄′[z1], θ̄′[z3]), θ̄′[z2])} (9)

by the aggregation rule. Then by increasing decomposition, we get

{(∀θ̄ ∈ DX
θ , min(θ̄[z1], θ̄[z3]) ≤ min(θ̄′[z1], θ̄′[z3])), (∀θ̄ ∈ DX

θ , θ̄[z2] ≤ θ̄′[z2])} (10)

CP 2022

31:10 Exploiting Functional Constraints in Automatic Dominance Breaking

Algorithm 2 New decomposition rules.
1: Let t1, t2 be a partition of arguments in t where all fixed terms are in t1
2: if f is commutative and associative and |t1| ̸= 0 then
3: p← (∀θ̄ ∈ DX

θ , f(f(t1), t2)θ̄ ◁ f(f(t1), t2)θ̄′) // Aggregation
4: end if
5: Let p be (∀θ̄ ∈ DX

θ , f(t1θ̄, . . . , tk′ θ̄) ◁ f(t1θ̄′, . . . , tk′ θ̄′))
6: if f is monotonically increasing then
7: Q← Q ∪ {(∀θ̄ ∈ DX

θ , tiθ̄ ◁ tiθ̄
′) | ∀i ∈ {1, . . . , k′}} // Increasing decomposition

8: else if f is monotonically decreasing then
9: Q← Q ∪ {(∀θ̄ ∈ DX

θ , tiθ̄ ▷ tiθ̄
′) | ∀i ∈ {1, . . . , k′}} // Decreasing decomposition

10: else
11: Q← Q ∪ {(∀θ̄ ∈ DX

θ , tiθ̄ = tiθ̄
′) | ∀i ∈ {1, . . . , k′}} // General decomposition

12: end if

Note that after applying binding and deletion to (8) and (10) respectively, we obtain
θ[z1] ≤ θ′[z1]∧ θ[z3] ≤ θ′[z3] and min(θ[z1], θ[z3]) ≤ min(θ′[z1], θ′[z3]) as sufficient conditions
for p, and the former condition is stronger than the latter one.

The new derivation algorithm replaces line 14 in Algorithm 1 with Algorithm 2, and it
has the following properties.

▶ Theorem 18. The new algorithm always terminates.

Proof. We define a tuple (v1, v2, v3) which is the same as that of Theorem 8 except that
v2 is now the number of free function terms in Q. The values v1 and v3 decrease similarly,
while we argue that v2 also decreases in the decomposition in Algorithm 2.

When f is not commutative and associative, decomposition in lines 5 to 11 will decrease
the number of function terms, and hence v2 is also reduced.
When the function f is commutative and associative, the predicate p is written into
(∀θ̄ ∈ DX

θ , f(f(t1), t2)θ̄ ◁ f(f(t1), t2)θ̄′) by the aggregation rule, where f(f(t1), t2) is
free and f(t1) is fixed. The follow-up decomposition in lines 5 to 11 in Algorithm 2 will
decrease v2 while keeping v1 unchanged.

Hence, the termination follows directly from the fact that there is no infinite decreasing
sequence of triples of natural numbers. ◀

▶ Theorem 19. When the new algorithm terminates, the conjunction of predicates in F is a
sufficient condition for the betterment and implied satisfaction of P .

Proof. By Theorem 7, replacement, binding, deletion and general decomposition all preserve
the invariant that Q ∧ F is a sufficient condition for the betterment and implied satisfaction.
Algorithm 2 also preserve the invariant by Theorems 11 and 15. The statement holds since
Q must be empty upon termination. ◀

We note that the alldifferent constraint [32], which enforces variables taking distinct
values, is commutative but not associative or monotonic. Rules in Definitions 10 and 14
are not applicable at first glance. We can decompose alldifferent(xi1 , . . . , xik

) into a set of
constraints dv =

∑k
j=1 bool2int(xij

= v) and dv ≤ 1, one for each value v ∈ ∪j=1...,kD(xij
).

The variable dv is a newly introduced variable whose value is the number of variables
in {xi1 , . . . , xik

} assigned value v. After decomposition, the set of constraints enjoys the
properties of monotonicity, commutativity and associativity, and thus rules in Definitions 10

J. H. M. Lee and A. Z. Zhong 31:11

and 14 are now applicable. The idea can be applied similarly to support other global
constraints like the global cardinality constraint [33, 30] and the bin packing constraint [35].
Note that global constraints are decomposed only in synthesizing the generation CSPs, and
are untouched in problem solving.

5 Experimental Evaluation

In this section, we give experimental results to show the utility of our proposal. All
experiments are run on Xeon E5-2630 2.60GHz processors. We use MiniZinc [28] as the
high-level modeling language and implement our nogood generation method by modifying2

the publicly available MiniZinc compiler with version 2.6.2. In a compiled model, we treat
constraints with the annotation “defines_var” as functional constraints, while others are
non-functional constraints that should be reified. The generated nogoods for each problem
are output as text and then appended to the MiniZinc model of the corresponding problem.

The augmented models are submitted to MiniZinc for solving using the Chuffed solver [29]
with version 0.10.4. Note that our method aims to analyze a user-defined model, not
necessarily that of the best model, and we specify the search strategies for all problems to
demonstrate the effect of the additional dominance breaking nogoods in search space pruning.
We use six benchmark problems, 20 random instances for each problem size. The models for
the following three problems are from public benchmark suites:

Talent-n. The Talent Scheduling Problem [6] is problem 039 in CSPLib [15]. Each actor
appears in several scenes and is paid a fixed cost per day if they are present. They need
to be present on location from the first scene they are in till the last scene they are in. We
need to schedule n scenes to minimize the total cost for a set of actors. The dominance
breaking constraints for manual are by Chu and Stuckey [7].
Warehouse-n. The Warehouse Location Problem [37] is problem 034 in CSPLib [15]. We
need to choose a subset of possible warehouses in different locations to supply a set of n

existing customers such that the sum of building costs for warehouses and supply costs
for customers is minimized.
Team-n-m. The Team Assignment Problem appears in MiniZinc Challenge 2018 [36].
The problem consists of n×m players, where players have different ratings and need to
be assigned to n teams. There are requests regarding which pair of players want to be in
the same team. The objective is to satisfy as many requests as possible while balancing
the total rating among all teams.

In addition to publicly available models, we also model three more problems in MiniZinc:
MaxCover-n. The Budgeted Maximum Coverage Problem [21] is a variant of the set
cover problem. There is a ground set U and a collection T consisting of n subsets of U ,
where each subset is associated with a cost ci. The goal is to find a subset of T such that
the union covers the maximum number of elements subject to the constraint that the
total cost does not exceed a given budget. The search strategy is to select the unfixed
subset in T with the smallest cost first.
PartialCover-n. The Partial Set Cover Problem [20] is another variant of the set cover
problem. Given a ground set U and a collection T consisting of n subsets of U , the goal
is to find a subset of T with the minimum total cost, whose union covers at least K

elements in U . The search strategy is also to select the subset with the smallest cost first.

2 We modify the embedded Geas solver and use the free search option for solving the generation CSPs.
Our implementations are available at https://github.com/AllenZzw/auto-dom.

CP 2022

https://github.com/AllenZzw/auto-dom

31:12 Exploiting Functional Constraints in Automatic Dominance Breaking

Table 1 Comparison of solving time for the basic, manual and L-dom methods.

basic manual 2-dom 3-dom 4-dom
Problem Total Total Solving Total Solving Total Solving Total
Talent-16 187.79 5929.75 189.95 192.16 130.78 148.91 256.46 1988.75
Talent-18 1575.51 7200.00 1565.89 1568.29 672.26 713.55 1864.68 5760.68
Talent-20 5013.10 7200.00 4936.18 4960.54 2856.33 2960.09 3268.72 7006.10
Warehouse-35 7200.00 N/A 10.29 52.11 8.53 2442.71 8.51 3619.87
Warehouse-40 7200.00 N/A 46.08 111.43 32.93 3652.15 32.55 3657.33
Warehouse-45 7200.00 N/A 69.41 140.92 45.45 3690.84 46.19 3694.63
Team-6-5 24.48 N/A 10.57 12.49 9.70 32.00 8.88 427.73
Team-7-5 276.84 N/A 138.88 146.15 130.71 225.19 150.83 1745.96
Team-8-5 1983.53 N/A 819.58 829.05 767.52 1024.43 724.63 5191.70
MaxCover-45 75.91 N/A 53.47 53.79 5.07 9.96 0.27 83.93
MaxCover-50 615.04 N/A 464.81 465.53 26.31 34.92 1.12 134.99
MaxCover-55 3576.98 N/A 2859.60 2860.27 78.37 91.53 2.54 199.11
PartialCover-45 2383.20 N/A 366.17 368.03 59.44 70.64 2.49 90.25
PartialCover-50 3769.26 N/A 780.80 781.73 74.86 88.45 6.86 153.90
PartialCover-55 4640.06 N/A 1769.31 1770.42 211.83 234.41 15.23 240.68
Sensor-50 156.84 N/A 138.65 139.44 94.05 108.99 57.34 297.18
Sensor-60 595.46 N/A 404.27 405.52 269.61 296.56 172.43 709.37
Sensor-70 1615.18 N/A 1144.17 1145.83 810.01 854.61 651.72 1724.70

Sensor-n. The Sensor Placement Problem [23] is a variant of the facility location
problem [8], where we need to select a fixed cardinality subset of n locations to place
sensors in order to provide service for customers. If we place a sensor at location i, then it
provides service to a subset of reachable customers, and the service value for customer j

is Mij . Each customer chooses the facility with the highest service value from the opened
sensors, and the goal is to maximize the total service value. The search strategy is to
select the unfixed location with the highest service value to the set of customers that are
reachable by the sensor placed at the location.

Note that the original method by Lee and Zhong [25] can handle none of the benchmarks
effectively because of nested function calls in either the objective or constraints. For all
benchmarks, we attempt to generate all dominance breaking nogoods of length up to L

(L-dom), and compare our method to the basic problem model (basic) and the model with
manual dominance breaking constraints (manual) whenever they are available. The timeout
for the whole solving process (nogood generation + problem solving) is set to 7200 seconds,
while we reserve at most 3600 seconds for nogood generation and use the remaining time for
problem solving in L-dom. If nogood generation times out, we augment the problem model
with all nogoods generated before the timeout.

In Table 1, we report the geometric mean of the problem solving time (Solving) and
the total time (Total) for all benchmarks, where “N/A” in the manual column indicates
that there are no dominance breaking constraints for the problem. We first compare the
problem solving time of L-dom against basic to evaluate the usefulness of the generated
nogoods, and we observe that the generated dominance breaking nogoods can significantly
reduce the solving time in all benchmarks. As the maximum nogood length L increases and
more generated nogoods are added to the problem model, the solving time is usually shorter
except for Talent-n. We note that the solving time of 4-dom is larger than that of 3-dom
for Talent-n due to the overhead caused by a large amount of generated nogoods of length 4.

J. H. M. Lee and A. Z. Zhong 31:13

We also compare the total time (generation time + solving time) of L-dom against basic
and manual. For each set of benchmarks, we highlight the fastest time in bold. We observe
that the nogood generation time of L-dom increases with the maximum nogood length L of
the generated nogoods, and there is a trade-off between search space pruning and generation
time. The optimal nogood length depends on the problem structure. For Warehouse-n and
Team-n-m, 2-dom is the best and reduces up to 99.27% and 58.20% less time than basic
respectively. In Talent-n, MaxCover-n, PartialCover-n and Sensor-n, 3-dom usually comes
on top, and the percentage decrease in runtime is up to 54.71%, 97.44%, 96.95% and 80.48%
respectively compared with basic. The performance gain of L-dom in problem solving
usually outweighs the generation time in a range of problems when the maximum length L

of nogoods is set appropriately.
We note that the solving time of manual is even larger than that of basic in Talent-n.

Expressing manual dominance breaking for Talent-n in the MiniZinc model requires additional
variables and introduces overheads for propagation. Chu and Stuckey [7] implement the
manual dominance breaking constraints in Chuffed, which requires sophisticated and bespoke
techniques to reduce the overhead. The generated nogoods by our method only involve
variables in the original model, and they can be posted in the high-level modeling language
without modifying the backend solver.

6 Discovering Dominance Relations

Our method, which is based on that of Lee and Zhong [25, 24] attempts to generate all
dominance breaking nogoods before problem solving, and sometimes the number of nogoods
is so large that generating all nogoods will cost too much time for each problem instance.
We observe that nogoods are the most basic units of constraints. Every high-level constraint
can be decomposed into a group of nogoods, and vice versa. By examining the patterns
of the generated nogoods, we could discover the embedded high-level dominance breaking
constraints. We give two case studies in this section.

The first case study is the Steel Mill Slab Design Problem [19], which is problem 039 in
CSPLib [15]. The problem is to assign colored production orders with different sizes to slabs
where each slab has a finite number of possible sizes. The total size of orders assigned to a
slab cannot exceed the chosen slab size, and each slab cannot contain orders with more than
2 colors. The loss of each slab is the difference between the chosen slab size and the total
size of orders assigned to the slab, and the objective is to minimize the total loss of all slabs.

Previous works study different classes of symmetries, one of which is order symmetries [12],
that is, two orders with identical size and color are equivalent. We apply our method to
generate nogood of length 2 for the model from MiniZinc Challenge 2017 [36], which introduces
one variable xi to specify the slab that orders i is assigned to. The generation always times
out within 3600 seconds, and the overhead always outweighs the benefit. Although a single
nogood means relatively little, a bunch of them together can derive a meaningful constraint
collectively. However, we investigate the semantics of nogoods and discover a new class
of symmetries. By generating the nogoods of length 2, we observe that we can group all
nogoods involving the same set of variables and find that for some pairs of orders i and j,
the nogoods are xi ̸= vi ∨ xj ̸= vj for all vi ∈ D(xi), vj ∈ D(xj) s.t. vi > vj , which can be
combined into one single inequality constraint xi ≤ xj . These symmetry breaking constraints
force the order i to be on a slab whose index is less than or equal to the slab index of order
j when orders i and j are equivalent. The surprise is that two orders are identical not only
when they have the same size and the same color, but also when they have the same size
and their colors are unique. To the best of our knowledge, previous studies never reveal and
exploit such a symmetry relationship.

CP 2022

31:14 Exploiting Functional Constraints in Automatic Dominance Breaking

1 10 100 1,000 10,000

1

10

100

1,000

10,000

Solving time without new constraints

So
lv

in
g

tim
e

w
ith

ne
w

co
ns

tr
ai

nt
s

Figure 1 Solving time comparison with/without new symmetry breaking constraints in Steel
Mill Slab Design Problem.

We take a constraint model of the steel mill slab design problem from a public benchmark
suite3 and augment it with constraints to break the newly discovered symmetry relationship.
Figure 1 shows the solving time for all 380 instances from the steel mill slab library4, and
the dots below the diagonal line represent the instance benefiting from the newly discovered
constraints. We observe that the solving time is reduced in the majority of cases, especially
more so when the solving time of the original model requires more than 10 seconds. The
hard instances are represented by dots in the shaded region in Figure 1. Note that both
axes are in log scale, and the speed-up of new constraints is up to two orders of magnitude.
Several outliers require substantially more solving time after adding the new symmetry
breaking constraints. This is due to the conflict between the search heuristic and the static
symmetry breaking constraints [13]. We believe the solving time can be reduced further by
using dynamic symmetry breaking methods such as SBDS [14] or SBDD [9].

The other case study is the Balanced Academic Curriculum Problem [5], which is problem
030 in CSPLib [15]. There are n courses each associated with several credits representing the
effort required to complete the course, and courses need to be assigned to academic periods
subject to the course prerequisite constraints. The workload of each period is the sum of all
credits of courses that are assigned to the period. The objective is to minimize the maximum
academic load for all periods to balance the loads among academic periods.

We perform experiments using the same experimental setting as that in Section 5 and
report the results for problems with different course numbers in Table 2. The dominance
breaking constraints for manual are by Monette, Jean-Noël et al. [27]. In general, the
problem solving time of our method is smaller than that of basic but larger than that of
manual. The overhead of L-dom mainly comes from the generation of dominance breaking
nogoods before solving the COP. In addition, the dominance breaking constraints in manual
are in the form of inequalities, which can be handled more efficiently than nogoods added by
L-dom in a propagation-based constraint solver. Nevertheless, by analyzing the nogoods of

3 https://github.com/MiniZinc/minizinc-benchmarks/tree/master/steelmillslab
4 http://becool.info.ucl.ac.be/steelmillslab

https://github.com/MiniZinc/minizinc-benchmarks/tree/master/steelmillslab
http://becool.info.ucl.ac.be/steelmillslab

J. H. M. Lee and A. Z. Zhong 31:15

Table 2 Comparison of solving time for the Balance Academic Curriculum Problem.

basic manual 2-dom 3-dom 4-dom
Problem Total Total Solving Total Solving Total Solving Total

Curriculum-60 61.82 23.76 27.80 77.44 21.88 3667.22 20.45 3673.27
Curriculum-65 291.35 62.14 71.26 160.95 62.57 3779.78 66.41 3785.61
Curriculum-70 518.31 133.54 148.84 242.62 126.19 3836.27 126.23 3837.26

a small instance, we find that the generated nogoods of length 2 can also be combined into
inequality constraints similar to the case of the steel mill slab design problem. The inequality
constraints we consider are the same as those proposed by Monette, Jean-Noël et al. [27],
which shows that our method can also reveal dominance breaking constraints written by
experts in the literature.

7 Concluding Remarks

In this work, we generalize the framework of automatic dominance breaking to constraint
optimization problems with nested functions, where the derivation of sufficient conditions
in a generation CSP is formulated formally. We identify that common function properties
such as monotonicity, commutativity and associativity are useful in deriving weaker sufficient
conditions such that more dominance breaking nogoods can be generated. We implement the
tool for automatic dominance breaking using the MiniZinc compiler. The experimentation
shows that the tool can discover dominance breaking nogoods for COPs with more varying
objectives and constraints, and the generated nogoods are effective in pruning the search
space and reducing the time for problem solving.

Our tool can compile and synthesize the generation CSPs for problems in the MiniZinc
benchmarks5. Whether a benchmark can benefit from our method, however, cannot be
guaranteed, since solving the generation CSP may sometimes incur a large overhead, or the
generated nogoods do not help with problem solving. Our method requires a full constraint
instance to synthesize generation CSPs. The automatic detection of dominance relations from
constraint models alone is an interesting line of future work. As shown in the case studies
in Section 6, nogoods with relevant semantics can be combined into high-level constraints
that can be efficiently handled. One direction of future work is to automate the process of
deriving high-level constraints by the techniques of automatic discovery of constraint from
example solutions [3, 4], where the generated nogoods can be used as examples to learn
and discover the desired constraints. The acquired constraints can help users to further
understand the target COP and improve the efficiency of the existing models.

References
1 Tariq Aldowaisan. A new heuristic and dominance relations for no-wait flowshops with setups.

Computers & Operations Research, 28(6):563–584, 2001.
2 Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge University Press,

1998.
3 Nicolas Beldiceanu and Helmut Simonis. ModelSeeker: Extracting global constraint models

from positive examples. In Data Mining and Constraint Programming: Foundations of a
Cross-Disciplinary Approach, pages 77–95. Springer International Publishing, Cham, 2016.

5 https://github.com/MiniZinc/minizinc-benchmarks

CP 2022

https://github.com/MiniZinc/minizinc-benchmarks

31:16 Exploiting Functional Constraints in Automatic Dominance Breaking

4 Christian Bessiere, Frédéric Koriche, Nadjib Lazaar, and Barry O’Sullivan. Constraint
acquisition. Artificial Intelligence, 244:315–342, 2017.

5 Carlos Castro and Sebastian Manzano. Variable and value ordering when solving balanced
academic curriculum problem. In Proceedings of the ERCIM Working Group on Constraints,
2001.

6 TCE Cheng, JE Diamond, and Bertrand MT Lin. Optimal scheduling in film production to
minimize talent hold cost. Journal of Optimization Theory and Applications, 79(3):479–492,
1993.

7 Geoffrey Chu and Peter J Stuckey. A generic method for identifying and exploiting dominance
relations. In International Conference on Principles and Practice of Constraint Programming,
pages 6–22. Springer, 2012.

8 Gérard Cornuéjols, George Nemhauser, and Laurence Wolsey. The uncapicitated facility
location problem. Technical report, Cornell University Operations Research and Industrial
Engineering, 1983.

9 Torsten Fahle, Stefan Schamberger, and Meinolf Sellmann. Symmetry breaking. In Inter-
national Conference on Principles and Practice of Constraint Programming, pages 93–107.
Springer, 2001.

10 Alan M Frisch, Warwick Harvey, Chris Jefferson, Bernadette Martinez-Hernandez, and Ian
Miguel. Essence: A constraint language for specifying combinatorial problems. Constraints,
13(3):268–306, 2008.

11 A.M. Frisch, I. Miguel, and T. Walsh. Modelling a steel mill slab design problem. In Proceedings
of the IJCAI-01 Workshop on Modelling and Solving Problems with Constraints, pages 39–45,
2001.

12 A.M. Frisch, I. Miguel, and T. Walsh. Symmetry and implied constraints in the steel mill slab
design problem. In Proceedings of the CP’01 Workshop on Modelling and Problem Formulation,
pages 8–15, 2001.

13 Antoine Gargani and Philippe Refalo. An efficient model and strategy for the steel mill
slab design problem. In International Conference on Principles and Practice of Constraint
Programming, pages 77–89. Springer, 2007.

14 Ian P Gent and Barbara M Smith. Symmetry breaking in constraint programming. In
Proceedings of the 14th European Conference on Artificial Intelligence, pages 599–603, 2000.

15 Ian P Gent and Toby Walsh. CSPLib: a benchmark library for constraints. In International
Conference on Principles and Practice of Constraint Programming, pages 480–481. Springer,
1999.

16 Lise Getoor, Greger Ottosson, Markus Fromherz, and Björn Carlson. Effective redundant
constraints for online scheduling. In Proceedings of the 14th National Conference on Artificial
Intelligence and 9th Conference on Innovative Applications of Artificial Intelligence, pages
302–307, 1997.

17 Michel Grabisch, Jean-Luc Marichal, Radko Mesiar, and Endre Pap. Aggregation Functions.
Encyclopedia of Mathematics and its Applications. Cambridge University Press, 2009.

18 Toshihide Ibaraki. The power of dominance relations in branch-and-bound algorithms. Journal
of the ACM (JACM), 24(2):264–279, 1977.

19 Jayant R Kalagnanam, Milind W Dawande, Mark Trumbo, and Ho Soo Lee. Inventory
matching problems in the steel industry. Technical report, IBM TJ Watson Research Center,
1998.

20 Michael J. Kearns. Computational Complexity of Machine Learning. MIT Press, Cambridge,
MA, USA, 1990.

21 Samir Khuller, Anna Moss, and Joseph Naor. The budgeted maximum coverage problem.
Information Processing Letters, 70(1):39–45, 1999.

22 Richard E Korf. Optimal rectangle packing: New results. In Proceedings of the Fourteenth
International Conference on Automated Planning and Scheduling (ICAPS 2004), pages 142–149,
2004.

J. H. M. Lee and A. Z. Zhong 31:17

23 Andreas Krause, Jure Leskovec, Carlos Guestrin, Jeanne VanBriesen, and Christos Faloutsos.
Efficient sensor placement optimization for securing large water distribution networks. Journal
of Water Resources Planning and Management, 134(6):516–526, 2008.

24 Jimmy H. M. Lee and Allen Z. Zhong. Towards more practical and efficient automatic
dominance breaking. In Proceedings of the 35th AAAI Conference on Artificial Intelligence
(AAAI 2021), pages 3868–3876, 2021.

25 Jimmy H.M. Lee and Allen Z. Zhong. Automatic generation of dominance breaking nogoods
for a class of constraint optimization problems. In Proceedings of the 29th International Joint
Conference on Artificial Intelligence, pages 1192–1200, 2020.

26 Kevin Leo. Making the Most of Structure in Constraint Models. PhD thesis, Monash University,
2018.

27 Jean-Noël Monette, Pierre Schaus, Stéphane Zampelli, Yves Deville, and Pierre Dupont. A
CP approach to the balanced academic curriculum problem. In Symcon’07, The Seventh
International Workshop on Symmetry and Constraint Satisfaction Problems, 2007.

28 Nicholas Nethercote, Peter J Stuckey, Ralph Becket, Sebastian Brand, Gregory J Duck, and
Guido Tack. MiniZinc: towards a standard CP modelling language. In International Conference
on Principles and Practice of Constraint Programming, pages 529–543. Springer, 2007.

29 Olga Ohrimenko, Peter J Stuckey, and Michael Codish. Propagation via lazy clause generation.
Constraints, 14(3):357–391, 2009.

30 A Oplobedu, J Marcovitch, and Y Tourbier. Charme: Un langage industriel de programmation
par contraintes, illustré par une application chez renault. In Ninth International Workshop on
Expert Systems and their Applications: General Conference, volume 1, pages 55–70, 1989.

31 Steven Prestwich and J Christopher Beck. Exploiting dominance in three symmetric problems.
In Fourth International Workshop on Symmetry and Constraint Satisfaction Problems, pages
63–70, 2004.

32 Jean-Charles Régin. A filtering algorithm for constraints of difference in csps. In Proceedings
of the 12th National Conference on Artificial Intelligence, pages 362–367, 1994.

33 Jean-Charles Régin. Generalized arc consistency for global cardinality constraint. In Proceedings
of the 13th National Conference on Artificial intelligence, volume 1, pages 209–215, 1996.

34 Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of constraint programming
(foundations of artificial intelligence), 2006.

35 Paul Shaw. A constraint for bin packing. In International Conference on Principles and
Practice of Constraint Programming, pages 648–662. Springer, 2004.

36 Peter J Stuckey, Ralph Becket, and Julien Fischer. Philosophy of the MiniZinc challenge.
Constraints, 15(3):307–316, 2010.

37 Pascal Van Hentenryck. The OPL optimization programming language. MIT press, 1999.

CP 2022

A Portfolio-Based Approach to Select Efficient
Variable Ordering Heuristics for Constraint
Satisfaction Problems
Hongbo Li #

School of Information Science and Technology, Northeast Normal University, Changchun, China

Yaling Wu #

School of Information Science and Technology, Northeast Normal University, Changchun, China

Minghao Yin #

School of Information Science and Technology, Northeast Normal University, Changchun, China

Zhanshan Li1 #

College of Computer Science and Technology, Jilin University, Changchun, China

Abstract
Variable ordering heuristics (VOH) play a central role in solving Constraint Satisfaction Problems
(CSP). The performance of different VOHs may vary greatly in solving the same CSP instance. In
this paper, we propose an approach to select efficient VOHs for solving different CSP instances. The
approach contains two phases. The first phase is a probing procedure that runs a simple portfolio
strategy containing several different VOHs. The portfolio tries to use each of the candidate VOHs to
guide backtracking search to solve the CSP instance within a limited number of failures. If the CSP
is not solved by the portfolio, one of the candidates is selected for it by analysing the information
attached in the search trees generated by the candidates. The second phase uses the selected VOH to
guide backtracking search to solve the CSP. The experiments are run with the MiniZinc benchmark
suite and four different VOHs which are considered as the state of the art are involved. The results
show that the proposed approach finds the best VOH for more than 67% instances and it solves
more instances than all the candidate VOHs and an adaptive VOH based on Multi-Armed Bandit.
It could be an effective adaptive search strategy for black-box CSP solvers.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming

Keywords and phrases Constraint Satisfaction Problem, Variable Ordering Heuristic, Adaptive
Search Heuristic, Portfolio

Digital Object Identifier 10.4230/LIPIcs.CP.2022.32

Supplementary Material Software (Source Code): https://github.com/lihb905/sevoh
archived at swh:1:dir:566338d2739577697c51179e2071e6bf0bea108f

Funding Hongbo Li: The National Natural Science Foundation of China (61802056). The Plan
of Science and Technology Development in Jilin Province (20210101470JC). Key Laboratory of
Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University.
Minghao Yin: The National Natural Science Foundation of China under Grant NO. 61976050.
Zhanshan Li: Open Research Fund of Key Laboratory of Space Utilization, Chinese Academy of
Sciences under Grant NO. LSU-KFJJ-2019-08.

1 Introduction

The challenge in a Constraint Satisfaction Problem (CSP) is to find an assignment of values
to all variables that satisfies the constraints defined over the variables, or otherwise, to prove
that there is no such an assignment. Backtracking search is a complete method for solving

1 Corresponding author

© Hongbo Li, Yaling Wu, Minghao Yin, and Zhanshan Li;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 32; pp. 32:1–32:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lihb905@nenu.edu.cn
https://orcid.org/0000-0002-2664-4117
mailto:wuyl316@nenu.edu.cn
mailto:ymh@nenu.edu.cn
mailto:lizs@jlu.edu.cn
https://doi.org/10.4230/LIPIcs.CP.2022.32
https://github.com/lihb905/sevoh
https://archive.softwareheritage.org/swh:1:dir:566338d2739577697c51179e2071e6bf0bea108f;origin=https://github.com/lihb905/sevoh;visit=swh:1:snp:0bed1aa2d533dd6708b13866055929c02dbfec41;anchor=swh:1:rev:6dd35ce93523aaee14c400651f6e16d68acf6f35
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 A Portfolio-Based Approach to Select Efficient Variable Ordering Heuristics for CSPs

CSPs. It performs a depth-first traversal of a search tree to solve CSPs. At each node of
the search tree, an unassigned variable is selected to assign a value. The ordering in which
the variables are assigned is crucial to the efficiency of backtracking search for solving CSPs.
Thus, variable ordering heuristics (VOH) play a central role in solving CSPs.

In the past decades, much effort has been done in developing effective variable ordering
heuristics [3, 21, 16, 23, 7, 25, 13]. There is no VOH dominating all the others in solving
all CSP instances. In other words, different VOHs have different performances on different
problems. The performances of different VOHs can vary greatly while solving the same
CSP instance. Thus, if we can find the best VOHs for different CSP instances, then the
overall performance of a black-box CSP solver will be significantly improved. In recent years,
determining an efficient VOH for a given CSP instance has attracted much attention. For
instance, a reinforcement learning technique, Multi-Armed Bandit (MAB), has been used to
design adaptive VOHs for CSPs [27, 24]. In these approaches, MAB is employed to select
VOHs to make decisions and the candidate VOHs are switched over during the search.

In this paper, we propose a new approach to select efficient VOHs for solving different
CSP instances. The approach contains two phases. The first phase is a probing procedure
that checks how each candidate VOH behaves when trying to solve the CSP instance within
limited resources. It runs a portfolio strategy containing the candidate VOHs and monitors
the searching process. In each run with a candidate, a search tree will be generated within a
limited number of failures. If the failure number reaches the limit, it restarts the search to try
the next candidate. For each candidate VOH, the maximum depth and the failure depth of
the search trees are collected. If the CSP is not solved during the probing, some measurements
utilizing the collected information are used to select an efficient VOH. In the second phase,
the selected VOH is used to guide backtracking search until the search completes. Extensive
experimentation with the MiniZinc benchmark suite are performed to examine the efficiency
of the proposed approach. Four modern VOHs including activity-based search (ABS) [16],
conflict-history search (CHS) [7], refined weighted degree (WDEG) [25] and failure rate based
VOH (FRBA) [13] are used as candidates. The results show that the proposed approach finds
the best VOH from four candidates for more than 67% instances and it solves more instances
than all the candidates and an adaptive strategy based on MAB. The approach does not need
an offline training and it is easy to be implemented in constraint solvers, so it could be an
effective adaptive search strategy for black-box CSP solvers.

2 Background

A constraint satisfaction problem (CSP) P is a triple P = ⟨X ,D, C⟩, where X is a set of n
variables X ={x1, x2 ... xn}, D is a set of domains D ={dom(x1), dom(x2) ... dom(xn)},
where dom(xi) is a finite set of possible values for variable xi, and C is a set of e constraints
C={c1, c2 ... ce}. Each constraint c consists of two parts, an ordered set of variables scp(c) =
{xi1, xi2 ... xir} and a subset of the Cartesian product dom(xi1) × dom(xi2) × ... × dom(xir)
that specifies the disallowed (or allowed) combinations of values for the variables {xi1, xi2
... xir}. A solution to a CSP is an assignment of a value to each variable such that all the
constraints are satisfied. Solving a CSP P involves either finding one (or more) solution of P
or proving that P is unsatisfiable.

To solve real world problems, the users model the problems as CSPs and constraint solvers
solve the CSPs. Average users have little knowledge about constraint solving, so an efficient
black-box solver is required. Backtracking search is a standard algorithm for solving CSPs.
It performs a depth-first traversal of a search tree. At each search tree node, an unassigned

H. Li, Y. Wu, M. Yin, and Z. Li 32:3

variable is selected and a new node is generated after the assignment to this variable, then
a propagation algorithm is applied to filter those inconsistent values from the domains of
variables. If the propagation leads to a domain wipe out, then a failure is encountered, one
or more assignments must be canceled and a backtracking occurs. The ordering in which
the variables are assigned is crucial to the efficiency of backtracking search and it is difficult
to find an optimal ordering that results in a search tree exploring the smallest number of
nodes [14]. Thus, the ordering is usually determined by variable ordering heuristics (VOH).

There exists many efficient VOHs, such as the impact-based search [21], activity-based
search [16], the count-based search [19], the correlation-based search [23], the conflict-history
search [7], the refined weighted degree [3, 25] and the failure-based VOHs [13]. None of them
dominates all the others and their performances may vary greatly in solving a same CSP
instance. Thus, finding the right VOH for a given CSP is a key issue for black-box solvers.

3 Related Work

Adaptive constraint solving has been studied in the CP community. A major difference
between these methods is whether an offline training phase is required. Relying on the offline
training phases, these methods are effective to predict an efficient algorithm, heuristic or even
a solver for CSP instances [28, 9, 5, 1]. While these methods have shown their effectiveness,
they may be less efficient to solve a new unseen instance (such as a new real-world problem)
if it contains some unknown characteristics or structures, e.g., it is not close to any of the
instances used in the training data.

On the contrary, the online learning methods do not require an offline training phase or
training data. Some of them do learning during constraint solving procedure, such as the the
modern VOHs [21, 16, 3, 23, 17, 7, 13, 12], the bandit-based search strategies [15, 27, 24] and
the adaptive constraint propagation techniques [18, 26, 2]. Some other methods do online
learning before searching starts, such as the learning value heuristics with a linear regression
method [4] and the frequent pattern mining-based search [11].

Among these online learning approaches, the closest works are the two adaptive variable
ordering heuristics based on Multi-Armed Bandit. Both them associate each candidate
VOH with an arm. The first one applies the Upper Confidence Bound algorithm (UCB1)
and Thompson Sampling (TS) algorithm to select a candidate VOH to make a decision at
each search tree node [27]. If a new node is generated by a candidate Hi, the reward of
Hi will be updated with the number of children of the search tree node. The second one
applies the exponentially weighted forecaster for exploration and exploitation (EXP3), UCB1
and TS to estimate the best VOH for given CSPs [24]. It exploits a restart mechanism with
the MAB-based framework. Besides, the candidate VOHs are switched only after restarts.
Its reward function is defined by the pruned tree size (PTS) [24]. The two methods use the
reinforcement learning technique to combine different VOH online, e.g., the candidate VOHs
are switched over during search. Our approach uses an effective measurement to select the
best VOHs for given CSPs. Although our approach also switches the candidate VOH at the
probing phase, after the best one is selected, it will be used to guide backtracking search
until the search completes.

4 Selecting An Efficient VOH for a CSP

Given a set of k candidate VOHs, H1, H2, ..., Hk. We propose an approach, namely Selecting
Efficient Variable Ordering Heuristics (SEVOH), to select an efficient VOH for solving a given
CSP instance. The approach consists of two phases. The first phase is a probing procedure

CP 2022

32:4 A Portfolio-Based Approach to Select Efficient Variable Ordering Heuristics for CSPs

that runs a simple portfolio strategy to collect some information of search trees built by
the candidate VOHs. If the problem is not solved by the probing procedure, we analysis
the collected information to select an efficient VOH for the problem. The second phase is a
straightforward strategy that uses the selected VOH to guide backtracking search to solve
the problem. In the following, we introduce how to design the measurements for selecting
an efficient VOH and how to collect search tree information for the measurements in a
portfolio-based probing procedure.

4.1 The Measurements for Selecting An Efficient VOH
To select an efficient VOH for a CSP instance, we analysis how the candidate VOHs behave
when solving the instance within limited resources, e.g., a limited number of failures. Then
some measurements should be used to evaluate the performance of the candidates.

Firstly, many effective VOHs are designed according to the Fail First Principle that “to
succeed, try first where you are likely to fail” [8]. Therefore, one intuition is that a more
efficient VOH may detect failures at higher levels of the search trees, which has been used by
the failure length based VOH [13]. The intuition is reasonable, because the higher level a
failure is detected, the more search space is pruned. So our first measurement is the minimum
failure depth of the search trees of each candidate.

Minimum Failure Depth (MinFD)
Given a CSP instance and a VOH Hi, we use Hi to guide backtracking search to solve
the instance and a search tree will be built. In the search tree, the number of assigned
variables when a failure occurs is record as the depth of the failure. A search tree usually
contains a number of failures, so we use the average of the depths of all the failures as the
failure depth of the search tree. The probing procedure, introduced in next subsection,
will generates roundLimit search trees for Hi. The minimum one of the failure depth of
the roundLimit search trees is considered as the Minimum Failure Depth of Hi for the
instance, denoted by MinFD(Hi). This measurement prefers the VOH with smaller MinFD.

Secondly, an efficient VOH for a satisfiable CSP instance should find a solution as early
as possible. An intuition is that a more efficient VOH may explore a deeper search tree than
the others within limited resources. So our second measurement is the maximum depth of
the search trees.

Maximum Depth (MaxD)
Given a CSP instance, each candidate Hi will build roundLimit search trees during the
probing procedure. Each of the search trees has a deepest depth which is the largest
number of simultaneously assigned variables. We use the largest one of all the deepest
depth of the roundLimit search trees as the Maximum Depth of Hi for the instance,
denoted by MaxD(Hi). This measurement prefers the VOH with larger MaxD.

Given a CSP instance, for each candidate Hi, we collect the information during the
probing procedure to calculate MinFD(Hi) and MaxD(Hi). Each of the two measurements
can be used as the scoring function to evaluate the performance of Hi solving the instance.
Besides, we can combine the two measurements to use MaxD(Hi)

log(MinFD(Hi)) as the scoring function
to evaluate the performance of Hi, which prefers the candidate with the largest score. The
logarithmic scaling is to make MinFD(Hi) a smaller number, because the MinFD(Hi) and
MaxD(Hi) are quite close in some instances.

H. Li, Y. Wu, M. Yin, and Z. Li 32:5

4.2 A Portfolio-Based Probing
The portfolio contains several candidate VOHs, H1, H2, ..., Hk. The probing procedure is
shown in Algorithm 1.

Algorithm 1 Portfolio-Based Probing.

Input: k candidate VOHs: H1, H2, ..., Hk; the maximum number of rounds:
roundLimit; the maximum number of failures in each call: failLimit

Output: the collected MinFD and MaxD, or unsatisfiable, or a solution.
1 for i = 1 to k do
2 MaxD(Hi) ← 0;
3 MinFD(Hi) ← the number of variables;
4 round ← 1;
5 while round ≤ roundLimit do
6 for i = 1 to k do
7 failNum ← 0;
8 totalFailDepth ← 0;
9 while failNum < failLimit do

10 depth ← the number of fixed variables;
11 if depth > MaxD(Hi) then
12 MaxD(Hi) ← depth;
13 x ← the variable selected by Hi;
14 v ← a value selected for x;
15 if the propagation of the assignment x=v fails then
16 totalFailDepth← totalFailDepth + depth;
17 failNum ← failNum + 1;
18 if unsatisfiable is proved then
19 terminate the search and return unsatisfiable;
20 backtracking occurs;
21 else
22 if a solution is found then
23 terminate the search and return the solution;

24 failDepth← totalFailDepth/failNum;
25 if failDepth < MinFD(Hi) then
26 MinFD(Hi) ← failDepth;
27 restart the search;
28 round ← round + 1;

The procedure runs at most roundLimit rounds (line 5). In each round, the candidate
VOHs are called sequentially. In each call of a candidate Hi (lines 9 to 23), we run backtracking
search with Hi as the variable ordering heuristic and set a restart condition to failLimit

failures. If the failure number reaches the limit, then we record the search tree information
and restart the search with next candidate VOH. Every candidate builds a search tree in
each round and the corresponding information is recorded, so if the problem is not solved at
the probing procedure, then the information of roundLimit search trees will be recorded for
each candidate.

CP 2022

32:6 A Portfolio-Based Approach to Select Efficient Variable Ordering Heuristics for CSPs

Modern VOHs usually use some learning strategies during search, so we make all candidate
VOHs to learn during the entire probing procedure. In other words, during the call of
candidate Hi, the information used by Hi will be learned and updated. Meanwhile, the
information used by the other candidates will be learned and updated. All the information
for the candidates, such as the weighted degrees [25], the activities of variables [16], the
conflict history [7] and the failure rates [13], will be accumulated throughout the procedure.

The portfolio strategy runs backtracking search with different VOHs, so if a CSP instance
can be easily solved by one of the candidate VOHs, then it may be solved during the probing
procedure; otherwise, we analysis the recorded information of search trees and use the
proposed measurements to select an efficient candidate VOH for the instance.

5 Experiments

To examine the efficiency of the proposed approach, we perform extensive experimentation
with the MiniZinc benchmark suite. Four candidate VOHs including ABS [16], dom/wdegca.cd

(marked by WDEG in the following tables) [25], CHS [7] and FRBA [13] are involved. The
performance of searching for the first solution or proving unsatisfiable are measured by cpu
time in seconds and numbers of instances solved in a timeout limit of 1200 seconds. In the
following, we present the results of all instances (All), the satisfiable instances (Sat) and
the unsatisfiable instances (UnSat) respectively. The best one in each comparison is in bold.
More details about the experiments can be found in the appendix.

Table 1 The performance of different measurements.

PTS MinFD MaxD MaxD
log(MinFD)

All
(325)

BestOne 15.08% 17.23% 59.69% 67.69%
BestTwo 23.69% 26.77% 72.62% 81.85%

Sat
(288)

BestOne 15.63% 16.67% 64.58% 72.22%
BestTwo 23.96% 20.14% 75.35% 83.33%

UnSat
(37)

BestOne 10.81% 21.62% 21.62% 32.43%
BestTwo 21.62% 78.38% 51.35% 70.27%

Firstly, we examine the percentage of instances where SEVOH finds the best one among
the four candidate VOHs with different measurements. The reward function of the MAB-based
VOH can be adapted as a measurement for SEVOH, so we further involve the pruned tree size
(PTS) [24] as a measurement here. The results are presented in Table 1. After eliminating the
instances solved by the probing procedure and the instances where all candidates result in
timeout, the table contains the results of 325 instances. The BestOne (BestTwo) row is the
percentage of instances where the VOH selected by SEVOH is the best one (one of the best two
candidates). It is shown that PTS is not suitable for the selection here. Although MinFD does
not work well in finding efficient VOHs for the satisfiable instances, it works well in finding
a good candidate which is one of the best two for the unsatisfiable ones. On the contrary,
MaxD works well in the satisfiable instances, but it does not work well in the unsatisfiable
ones. The observation indicates that we should use different measurements for satisfiable
and unsatisfiable instances. However, the satisfiability of a CSP is not determinable before
solving it, so we cannot pre-select a measurement for each instance. Thankfully, combining
the two measurements, MaxD

log(MinFD) performs well in finding efficient VOHs for all the instances.
For both the satisfiable and the unsatisfiable, it finds a good candidate which is one of the
best two for more than 70% instances. Thus, we uses MaxD

log(MinFD) as the measurement in the
following experiments.

H. Li, Y. Wu, M. Yin, and Z. Li 32:7

Secondly, we examine how the parameter roundLimit affects the percentage of instances
where SEVOH finds good candidates. The results are presented in Table 2. The #Solved by
Portfolio is the number of instance solved by the probing procedure and the Probing Time
is the average time cost of the probing procedure. It is shown that different roundLimit

makes little affection for the percentages. With the increasing of roundLimit, the number of
instances solved by the portfolio strategy increases, as well as the probing time cost. But
there is a trend that the number of increased instances solved by the probing procedure is
diminishing, e.g., at the beginning we have 808-785=23, and then 16, 7, 4, 2. It indicates
that increasing the roundLimit of the portfolio may not always solve more instances. Thus,
we should find the best VOH for the hard instances which can not be easily solved by any of
the candidate VOHs. The roundLimit 100 results in the largest percentage of BestTwo, so
we set roundLimit to 100 in the following experiments.

Table 2 The performance of the probing procedure with different roundLimits.

50 100 200 300 400 500
BestOne 66.86% 67.69% 67.81% 66.79% 66.79% 67.29%
BestTwo 79.71% 81.85% 80.14% 78.83% 79.48% 79.70%

#Solved by Portfolio 785 808 824 831 835 837
Probing Time 63.61 78.08 94.78 103.29 109.16 114.42

Thirdly, we compare SEVOH with the candidate VOHs and the RestartMAB (marked by
RMABPTS) [24] which is a MAB-based VOH with its default reward function PTS. Besides the
RMABPTS, we further involve a strategy (marked by RMAB Max

Min
) that adapts MaxD

log(MinFD) as the
reward function in the MAB-based framework. In Table 3, we present the number of instances
solved (#Solved), the average cpu time in solving the instances that are solved by all the
compared VOHs (average time of all-solved instances, AST) and the average cpu time in
solving all the instances which are solved by at least one of the VOHs (average time of all
instances, AllT). The integer in the brackets after AST is the number of all-solved instances,
so is the one after AllT. The time cost of a timeout run is counted as 1200 seconds. It is
shown that SEVOH performs better than all the others in solving the satisfiable instances.
Although SEVOH is outperformed by RMAB Max

Min
in solving the unsatisfiable instances, it solves

only 1 instance less than the bests. Thus, SEVOH gets the best overall performance.

Table 3 The overall performance.

ABS CHS WDEG FRBA RMABPTS RMAB Max
Min

SEVOH

All
#Solved 630 730 700 985 894 933 1056

AST (464) 34.91 26.67 57.91 23.65 18.29 11.87 9.18
AllT (1131) 573.29 461.88 500.95 190.68 322.87 266.12 142.38

Sat
#Solved 570 679 648 919 830 867 991

AST (416) 35.76 27.59 60.98 21.16 20.11 12.81 8.20
AllT (1059) 590.51 467.87 509.69 186.42 333.75 273.07 137.77

Unsat
#Solved 60 51 52 66 64 66 65
AST (48) 27.57 18.71 31.38 45.26 2.54 3.65 17.70
AllT (72) 320.11 373.76 372.46 253.44 162.81 163.81 210.12

It has been shown in Table 2 that the probing procedure of SEVOH solves a number of
instances. This is because the portfolio strategy works well in solving most of the instances
that can be easily solved by at least one of the candidates. We are wondering how SEVOH

CP 2022

32:8 A Portfolio-Based Approach to Select Efficient Variable Ordering Heuristics for CSPs

performs in solving the hard instances that cannot be solved by the probing procedure, e.g.,
those cannot be easily solved by any of the candidates. Thus, in Table 4, we present the
results of such instances. We can see that SEVOH solves the largest numbers of both satisfiable
instances and unsatisfiable instances.

Table 4 Results of the instances that cannot be solved by the probing procedure of SEVOH.

ABS CHS WDEG FRBA RMABPTS RMAB Max
Min

SEVOH

All
#Solved 121 91 101 224 133 151 248
AST (53) 59.83 116.44 251.29 130.97 48.57 38.55 63.96

AllT (323) 807.24 902.62 898.90 414.15 776.49 695.10 395.78

Sat
#Solved 87 64 75 193 97 115 212
AST (29) 64.03 182.01 407.54 164.69 84.61 64.48 87.84

AllT (280) 876.52 966.57 954.09 400.46 863.27 768.48 408.00

Unsat
#Solved 34 27 26 31 36 36 36
AST (24) 54.76 37.22 62.48 90.23 5.02 7.23 35.10
AllT (43) 356.07 486.19 539.55 503.26 211.46 217.28 316.24

Finally, we compare the performance of the three adaptive strategies. Three different
combinations of candidates are considered. The results are presented in Table 5. It is shown
SEVOH solves the largest numbers of instances in all the combinations of candidates. When
combining three candidates, SEVOH costs more time than the others in solving the all-solved
instances. This is because it has poor performance in solving some of the instances. However,
its average time cost of solving all the instances which are solved by at least one of the 9
strategies is the least one.

Table 5 The performance of the adaptive strategies with different candidates.

ABS+CHS ABS+CHS+WDEG ABS+CHS+WDEG+FRBA
RMABPTS RMAB Max

Min
SEVOH RMABPTS RMAB Max

Min
SEVOH RMABPTS RMAB Max

Min
SEVOH

#Solved 754 759 814 755 796 846 894 933 1056
AST (683) 26.92 23.35 21.71 24.08 28.85 28.72 26.73 24.75 19.48
AllT (1111) 424.87 415.07 358.96 423.39 398.71 335.55 307.08 249.31 123.34

6 Conclusion

In this paper, we propose a portfolio-based approach to select efficient variable ordering
heuristics for CSPs. Extensive experimentations performed on MiniZinc benchmark suite
demonstrate that the portfolio strategy is effective in solving the instances that can be
easily solved by some of the candidate VOHs. Besides, the measurement combining the
information of minimum failure depth and the maximum depth of search trees is effective to
select good candidate VOHs for different CSPs. With the measurement, SEVOH finds the best
one from four candidate VOHs for more than 67% instances. Consequently, SEVOH solves
more instances than all the candidate VOHs and the adaptive VOH based on Multi-Armed
Bandit. It could be an effective adaptive search strategy for black-box CSP solvers.

H. Li, Y. Wu, M. Yin, and Z. Li 32:9

References
1 R. Amadini, M. Gabbrielli, and J. Mauro. Portfolio approaches for constraint optimization

problems. Annals of Mathematics and Artificial Intelligence, 76:229–246, 2016.
2 A. Balafrej, C. Bessiere, and A. Paparrizou. Multi-armed bandits for adaptive constraint

propagation. In Proc. IJCAI’15, pages 290–296. AAAI Press, 2015.
3 F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting systematic search by weighting

constraints. In Proc. ECAI’04, pages 146–150, 2004.
4 G. Chu and P. J. Stuckey. Learning value heuristics for constraint programming. In Proc.

CPAIOR’15, pages 108–123. Springer, 2015.
5 S. Epstein and S. Petrovic. Learning to solve constraint problems. In Proc. ICAPS’07,

Workshop on Planning and Learning, 2007.
6 C. P. Gomes, B. Selman, and H. Kautz. Boosting combinatorial search through randomization.

In Proc. AAAI’98, pages 431–437. AAAI, 1998.
7 D. Habet and C. Terrioux. Conflict history based search for constraint satisfaction problem. In

Proc. of the 34th ACM/SIGAPP Symposium on Applied Computing, pages 1117–1122. ACM,
2019.

8 R. Haralick and G. Elliott. Increasing tree search efficiency for constraint satisfaction problems.
Artificial Intelligence, 14:263–313, 1980.

9 H. Hurley, L. Kotthoff, Y. Malitsky, and B. O’Sullivan. Proteus: a hierarchical portfolio of
solvers and transformations. In Proc. CPAIOR’14, 2014.

10 J. Hwang and D. G. Mitchell. 2-way vs d-way branching for csp. In Proc. CP’05, pages
343–357. Springer, 2005.

11 H. Li, J. H. Lee, H. Mi, and M. Yin. Finding good subtrees for constraint optimization
problems using frequent pattern mining. In Proc. AAAI’20, pages 1577–1584, 2020.

12 H. Li, Y. Liang, N. Zhang, J. Guo, D. Xu, and Z. Li. Improving degree-based variable ordering
heuristics for solving constraint satisfaction problems. Journal of Heuristics, 22(2):125–145,
2016.

13 H. Li, M. Yin, and Z. Li. Failure Based Variable Ordering Heuristics for Solving CSPs. In
Proc. CP’21, pages 9:1–9:10, 2021.

14 P. Liberatore. On the complexity of choosing the branching literal in dpll. Artificial Intelligence,
116(1):315–326, 2000.

15 M. Loth, M. Sebag, Y. Hamadi, and M. Schoenauer. Bandit-based search for constraint
programming. In Proc. CP’13, pages 464–480. Springer, 2013.

16 L. Michel and P. Van Hentenryck. Activity-based search for black-box constraint programming
solvers. In Proc. CPAIOR’12, pages 228–243. Springer, 2012.

17 A. Palmieri and G. Perez. Objective as a feature for robust search strategies. In Proc. CP’18,
pages 328–344. Springer, 2018.

18 Anastasia Paparrizou and Kostas Stergiou. Evaluating simple fully automated heuristics
for adaptive constraint propagation. In Proc. of ICTAI’12, volume 1, pages 880–885, 2012.
doi:10.1109/ICTAI.2012.123.

19 G. Pesant, C. G. Quimper, and A. Zanarini. Counting-based search: Branching heuristics for
constraint satisfaction problems. Journal of Artificial Intelligence Research, 43:173–210, 2012.

20 C. Prud’homme, J-G. Fages, and X. Lorca. Choco Documentation. TASC - LS2N CNRS UMR
6241, COSLING S.A.S., 2017. URL: http://www.choco-solver.org.

21 P. Refalo. Impact-based search strategies for constraint programming. In Proc. CP’04, pages
557–571. Springer, 2004.

22 T. Walsh. Search in a small world. In Proc. IJCAI’99, pages 1172–1177, 1999.
23 R. Wang, W. Xia, and R. H. C. Yap. Correlation heuristics for constraint programming. In

Proc. ICTAI’17, pages 1037–1041. IEEE, 2017.
24 H. Wattez, F. Koriche, C. Lecoutre, A. Paparrizou, and S. Tabary. Learning variable ordering

heuristics with multi-armed bandits and restarts. In Proc. ECAI’20, pages 371–378. IOS Press,
2020.

CP 2022

https://doi.org/10.1109/ICTAI.2012.123
http://www.choco-solver.org

32:10 A Portfolio-Based Approach to Select Efficient Variable Ordering Heuristics for CSPs

25 H. Wattez, C. Lecoutre, A. Paparrizou, and S. Tabary. Refining constraint weighting. In Proc.
of ICTAI’19, pages 71–77. IEEE, 2019.

26 R. J. Woodward, A. Schneider, B.Y. Choueiry, and C. Bessiere. Adaptive parameterized
consistency for non-binary csps by counting supports. In Proc. of CP’14, pages 755–764, 2014.

27 W. Xia and R. H. C. Yap. Learning robust search strategies using a bandit-based approach.
In Proc. AAAI’18, pages 6657–6665. AAAI, 2018.

28 L. Xu, F. Hutter, H. H Hoos, and K. Leyton-Brown. SATzilla: portfolio-based algorithm
selection for SAT. Journal of Artificial Intelligence Research, 32:565–606, 2008.

A Details of The Experiments

A.1 Environment
The experiments were run in Choco solver (version 4.10.6) [20] where all the candidate VOHs
are already implemented. The environment is JDK8 under CentOS 6.4 with 4 Intel Xeon
CPU E7-4820@2.00GHz processors and 58 GB RAM. Each run is allocated 1 GB RAM.

A.2 Benchmark
The benchmark suite are from https://github.com/MiniZinc/minizinc-benchmarks.
The instances are flattened offline. After eliminating some large instances which cannot be
flattened in 1 hour and the problems where unsatisfiable is proved at root node, we include
46 MiniZinc models with 1876 instances in the experiments.

A.3 Restart
The failLimit of the probing procedure of SEVOH is set to the number of variables. If the
instance contains less than 100 variables, the failLimit is set to 100. A geometric restart
strategy [6, 22] is equipped by the second phase of SEVOH and the candidates VOHs. The
growing factor is 1.1 and the initial cutoff is 10 failures. The restart strategy of the MAB-based
framework is the Luby restart which is the default one used in [24].

A.4 Searching
Binary branching strategy [10] is used throughout the experiments. ABS uses its default value
selector and all the others use lexicographic ordering as the value selector. We forbid the
sampling procedure of ABS when it is used as a candidate, because the probing procedure
of SEVOH warms up all the candidates. When ABS is used alone, we run it with its default
settings.

A.5 Other Details
In Table 1 and Table 2, we need to determine the best candidate for each instance. Thus,
for each instance, we run each candidate Hi with 10 random seeds from 1 to 10 and use the
average time cost of the 10 runs as the performance of Hi solving the instance. The best
VOH for a instance is the one costing least cpu time. Then we run the probing procedure
with random seed 0 to select a VOH for each instance. The results in Table 1 are obtained
with roundLimit 100. In Tables 3, 4 and 5, we have used a unique random seed 0 in the
experiments. The instances where all the seven VOHs result in timeout are eliminated.

https://github.com/MiniZinc/minizinc-benchmarks

Large Neighborhood Search for Robust Solutions
for Constraint Satisfaction Problems with Ordered
Domains
Jheisson López1 # Ñ

University College Cork, School of Computer Science, Ireland
SFI Centre for Research Training in Artificial Intelligence, Cork, Ireland

Alejandro Arbelaez # Ñ

Department of Computer Engineering, Autonomous University of Madrid, Spain

Laura Climent # Ñ

Department of Computer Engineering, Autonomous University of Madrid, Spain

Abstract
Often, real-world Constraint Satisfaction Problems (CSPs) are subject to uncertainty/dynamism
not known in advance. Some techniques in the literature offer robust solutions for CSPs. Here, we
analyze a previous exact/complete approach from the state-of-the-art that focuses on CSPs with
ordered domains and dynamic bounds. However, this approach has low performance in large-scale
CSPs. For this reason, in this paper, we present an inexact/incomplete approach that is faster
at finding robust solutions for large-scale CSPs. It is useful when the computation time available
for finding a solution is limited and/or in situations where a new one must be re-computed online
because the dynamism invalidated the original one. Specifically, we present a Large Neighbourhood
Search (LNS) algorithm combined with Constraint Programming (CP) and Branch-and-bound
(B&B) that searches for robust solutions. We also present a robust-value selection heuristic that
guides the search toward more promising branches. We evaluate our approach with large-scale CSPs
instances, including the case study of scheduling problems. The evaluation shows a considerable
improvement in the robustness of the solutions achieved by our algorithm for large-scale CSPs.

2012 ACM Subject Classification Computing methodologies → Artificial intelligence

Keywords and phrases Constraint Programming, Large Neighbourhood Search, Robust Solutions

Digital Object Identifier 10.4230/LIPIcs.CP.2022.33

Funding This publication has emanated from research conducted with the financial support of
Science Foundation Ireland under Grant number 18/CRT/6223.

Acknowledgements We thank Christophe Lecoutre for his assistance with the ACE solver.

1 Introduction

Most real Combinatorial Optimization Problems (COP) have unknown dynamism associated.
Therefore the techniques used for solving COPs should deal with the uncertainty. The
uncertainties can be associated with environmental factors; i.e., unexpected events in the
context of the problem, or system factors; e.g., implementation errors or operational failures.
Eventually, the uncertainties could affect the feasibility and the cost of a solution [21]. Even
if the magnitude of the perturbations in the problem treated is small, they can cause huge
deviations in the solutions of the models and in the model itself [3]. Hence, non-robust
solutions for real applications under uncertainty can lead to serious economic losses.

1 Contact Author

© Jheisson López , Alejandro Arbelaez, and Laura Climent;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 33; pp. 33:1–33:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:j.lopez@cs.ucc.ie
https://scholar.google.com/citations?user=vE9elOUAAAAJ&hl=en
https://orcid.org/0000-0002-8086-4663
mailto:alejandro.arbelaez@uam.es
https://scholar.google.com/citations?user=oQnYQJ0AAAAJ&hl=en
https://orcid.org/0000-0003-1622-5645
mailto:laura.climent@uam.es
https://scholar.google.es/citations?user=CcXXfyYAAAAJ&hl=en
https://orcid.org/0000-0001-9453-5150
https://doi.org/10.4230/LIPIcs.CP.2022.33
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 LNS for Robust Solutions for CSPs with Ordered Domains

There are two ways to cope with uncertainty: reactive and proactive approaches. Reactive
approaches re-solve the problem by using the experience gained to solve the previous states
of the problem. Then, they provide a new solution. The disadvantages of these techniques
are the extra computation time required in the new solving and the loss of the original
solution. In many real applications, such as online planning and scheduling, the time required
to compute a new solution may be too long for actions to be taken on time. Instead,
proactive approaches use prior information about the uncertainty for finding robust solutions,
which have a high probability of remaining valid despite future possible changes [7]. The
disadvantage of proactive approaches is that they require a certain degree of prior knowledge
about uncertainty. However, in real applications, this information is typically limited.

While many researchers have addressed the topic of robust and stable solutions in CP for
problem dependent, much less effort has been made for problem independent, i.e. using CP as
a black-box search. For this reason, we propose a generic proactive approach that addresses
these scenarios without the need of prior detailed information about the uncertainty of the
problem. In the same vein as [7] we assume that future events can restrict the search space
(i.e. constraints can become more restrictive) in Constraint Satisfaction Problems (CSPs)
with ordered domains. We also consider as robustness objective function the feasibility
checking of neighbour values of the solution. Note that the CSPs must have several feasible
neighbour solutions so that the robustness measurement is applicable. The authors of [7],
propose a Branch and Bound (B&B) algorithm that uses CP to obtain robust solutions for
CSPs, but their complete/exact technique presents a low performance in large-scale CSPs
even using a large amount of computational time.

The above mentioned disadvantage has motivated the work presented in this paper.
We present an incomplete/inexact approach that, unlike complete/exact algorithms, do
not guarantee to find a globally optimal solution. The advantage of incomplete/inexact
algorithms is that they can provide near-optimal solutions when the computation time is
limited. Our approach aims to obtain robust solutions (not necessarily the most robust
solution) for CSPs that typically do not scale well with complete techniques (large-scale and
NP-complete CSPs). It is especially useful when the computation time available for finding a
solution is limited and/or a new solution must be re-computed on-line (because the original
one is lost due to the dynamism). Specifically, we present the following contributions:

A Large Neighbourhood Search (LNS) algorithm with CP and B&B that considers the
same assumptions as [7]. And therefore, it computes robust solutions for CSPs that have
a high number of feasible neighbour values (Algorithms 1 and 2, Section 4).
A robust-value selection heuristic (Algorithm 4, Section 4) that guides the search towards
more promising branches (more likely to contain more feasible neighbour values solutions).

LNS is a technique that takes an initial solution and gradually improves it by alternately
destroying and repairing the solution. LNS combined with CP adds the constraint propagation
process into the LNS iterations to perform partial assignments that are feasible.

Our approach works for many domains that can be modeled as CSPs with ordered domains
(where the bounds can undergo changes). In this paper, we evaluate general CSPs randomly
generated, which show the generality of the applicability of our approach; and the well-known
scheduling problems [11, 2]. The experiments suggest that our approach is effective on
large-scale CSPs and that it outperforms the current approach from the state-of-the-art.

The rest of the paper is organized as follows: Section 2 is about the literature review. In
Section 3 the technical background is described. Section 4 describes our algorithm. Section 5
describes the experiments and results; finally, in Section 6 we explain the conclusions and
future work.

J. López, A. Arbelaez, and L. Climent 33:3

2 Literature Review

Since our approach is proactive and it aims to find robust solutions with the use of LNS with
CP, in this section, we present a literature review of these two topics.

2.1 Proactive Approaches
The purpose of finding robust solutions is present in both Mathematical Programming (MP)
and Constraint Programming (CP). Toklu [20] presents a revision of the approaches to deal
with the uncertainty in Mathematical Programming. Furthermore, [22] provides a detailed
review of approaches to model uncertainty with CP. The authors state that in CP the efforts
had been directed to find solutions that can easily be adapted to obtain a new solution after
a change in the conditions of the problem occurs (flexible solutions) and solutions that resist
the possible changes in the input data (robust solutions).

Below, we present two subsections about proactive approaches. We classify them based
on the amount of information available about the uncertainty that the approaches require.

2.1.1 With detailed uncertainty information
One of the most popular proactive approaches is Robust Optimization (RO). RO expresses the
uncertainty of the variables as sets of possible values (uncertainty sets). The optimal solution
is the one that remains feasible for the constraints, whatever the realization of the data within
the uncertainty sets [3]. Another popular proactive approach is Stochastic Optimization
(SO). In SO some variables are considered random with a probability function associated
that expresses its likelihood to take any particular value in its uncertain domain [22]. One
technique for solving this type of problem is by using chance constraints [1]. These constraints
contain at least one random variable and they fix a minimum threshold of probability of
being satisfied. A possible objective could be to find a solution that maximises its probability
of satisfaction. Finally, some proactive approaches recur to the Fuzzy Set theory. In that
approach, the uncertainty parameters of the model can be expressed as fuzzy sets and
subjective membership functions defined using expert opinions [8].

In the search for robust solutions in CSPs, the Mixed CSP [10] approach introduces
the concept of uncontrollable variables and the idea is to find assignments to the decision
variables that satisfy all the possible values of the uncontrollable variables (a kind of Robust
Optimization approach). Another outstanding proposal is the Stochastic CSP which assumes
a probability distribution associated with the uncertain domain of each uncontrollable variable
and tries to find a solution with the maximum probability of feasibility [23].

2.1.2 Without detailed uncertainty information
Even if the proactive approaches mentioned in the previous subsection, work very well when
all the needed information about the uncertainty is available, unfortunately, they can not be
used if such information is missing. This is the case of many real applications for which it is
not possible to obtain a probability distributions associated with the uncertain variables [6].

A prominent work aiming to find flexible solutions in presented in [13]. In this work the
author proposed the concept of (a, b)-super-solution, a set of solutions for which the loss of
values of at most a variables can be repaired by assigning other values to those variables
and changing the values of at most b other variables. Flexibility is a desired property of
a CSP solution but our main goal is to avoid the necessity of modifying the solution after
identifying inconsistencies in the solution due to certain uncertain events.

CP 2022

33:4 LNS for Robust Solutions for CSPs with Ordered Domains

Climent, et al. [7] state that the solution can be lost when the constraints become more
restrictive (and the solution space becomes narrow). Therefore “the most robust solution of
a CSP with ordered domains without detailed dynamism data is the solution that maximizes
the distance from all the dynamic bounds of the solution space”. In this paper, we take the
same assumptions about the uncertainty and the same robustness definition.

2.2 Large Neighbourhood Search
Large Neighborhood Search was proposed by P. Shaw [18] to solve Vehicle Routing Problems
using CP techniques. Since then, LNS and CP has been applied to tackle multiple problems
ranging from the protein structure prediction problem [9] to balance bike-sharing systems [12].

Carchrae and Beck [5] propose three general principles for the design of LNS algorithms:
i) define neighbourhoods unassigning the variables that most affect the cost of the current
solution and ii) gradually increment the neighbourhood size and iii) apply learning algorithms
to determine the most promising neighborhood heuristics. Some works fix a constant size for
the neighborhood and other works use a variable neighbourhood size. For example, in [17],
Perron, et. al fix the size of the neighbourhood based on the sum of the domain size logarithms
of unassigned variables (until reaching an upper bound). For scheduling, for example, Carchrae
and Beck [5] fix the size of the neighbourhood based on different time windows (all the
variables in such time windows are unassigned) or based on resources (the variables associated
with a subset of resources are unassigned). Pacino and Van Hentenryck [16] increment the
size of the neighborhoods after five iterations without improvements in the solutions found.
The increments are no longer effective when a better solution is found.

However, in this paper, we focus our attention on value selection heuristics as it significantly
impacts the robustness of the solutions. For this reason, we have developed Algorithm 4 (see
Section 4), which guides the search towards more robust promising branches.

3 Background

In this section, we explain the background associated with CSPs and their robust solutions.

3.1 Constraint Satisfaction Problems
CSPs are characterized by a set of variables with their corresponding domains and a set of
associated constraints. A formal definition of a CSPs is presented below.

▶ Definition 1 (Constraint Satisfaction Problems). A Constraint Satisfaction Problem (CSP)
is represented as a triple P = ⟨X ,D, C⟩ where X = {x1, ..., xn} is a finite set of variables,
D = {D(x1), ...,D(xn)} is the set of domains of the variables in X , and C = {C1, C2, ...Cn}
is the set of constraints which restrict the values that the variables can simultaneously take.

Solving a CSP involves finding a solution, i.e., an assignment of values to variables such
that all the constraints are satisfied. If a solution exists, the problem is stated as satisfiable,
and unsatisfiable otherwise. CSPs can be tackled using depth-first search backtracking
algorithms in which a value is assigned to some variable at each step to compute partial
assignments. Below, we present the formal definitions of these concepts.

▶ Definition 2 (Partial Assignment). A partial/complete assignment s is an assignment of
values to a subset of variables Xs ⊆ X in their specific domain Ds.

▶ Definition 3 (Solution). A solution s is a complete assignment to the whole set of variables
X that satisfies all the constraints in C.

J. López, A. Arbelaez, and L. Climent 33:5

3.2 Robust Solutions by Feasible Neighbour Values
As mentioned in Section 2.1, we take the same limited assumptions about robustness as
in [7]. In the absence of detailed information about the uncertainty, the most robust solution
is the one with the maximal distance from all the dynamic bounds of the solution space.
In Constraint Programming the solution spaces can be non-convex. Then, the distance to
the bounds can not be computed as linear equations. Therefore, for CSPs with ordered
domains, the authors stated: “we can only ensure that a solution s is located at least at a
distance d from a bound in a certain direction of the n-dimensional space if all the tuples
(possible solutions) at distances lower or equal to d from s in this direction are feasible”.

The authors of [7] define the feasible neighbour values set Nk(x, v, s,⊕) by introducing
a parameter that fixes the maximum distance k of the feasibility checking for a variable
x and its assigned value v, with respect a partial/complete assignment s. Ds(x) ⊆ D(x)
represents the subset of domains values of the variable x that are consistent with the feasible
partial assignment s. ⊕ is a set of operators pairs which indicate the directions (order) of
the neighbour values to check. The list of operators used is ⊕ = {{>, +}, {<,−}}. Each
operator pair is denoted as ⊕i. The set {>, +} (⊕1) refers to values greater than v (increasing
direction) and the set {<,−} (⊕2) refers to values lower than v (decreasing direction). For
each operator pair, the operator in the position j is referenced as ⊕ij (for instance, ⊕12
references the operator +). Below, we describe the equation of the feasible neighbours values
presented by the authors.

Nk(x, v, s,⊕)= {w ∈ Ds(x) : ∃⊕i, w ⊕i1 v ∧ |v − w| ≤ k

∧∀ ⊕z ∀j ∈ [1 (|v − w| − 1)], (v ⊕z2 j) ∈ Ds(x)} (1)

The first condition (first line) of Equation 1 checks that there are values w, in the domain
of x (Ds(x)), which are greater or lower than v according to the corresponding operator (>
or <) and that the distance between v and w is lower or equal to k. The second condition
(second line) ensures that all values that are closer to v than w (values selected by applying
the operator + and/or − to v with the iterator j) are also feasible values for s. If at least one
of them is not feasible, the value w cannot belong to Nk(x, v, s,⊕) because it must be a set of
contiguous feasible neighbour values. Note that the concept of neighbour values (associated
with the values whose feasibility has to be checked) differs from the neighbourhood term
used in LNS (associated with the unassigned variables to optimize in each iteration).

3.3 Objective Function
The objective function (o.f.) described in Equation 2 is the sum of the feasible neighbour
values sets of all the variables of the solution s. Note that the k parameter is an input used to
indicate the grade of robustness checking during the search process. Then, the k parameter
determines the upper bound of the neighborhood size Nk (see Equation 1).

f(s, k,⊕) =
∑

x∈Xs

|Nk(x, s(x), s,⊕)| (2)

For example, in Figure 1a the grey area represents the solution space (for which the
bounds can become more restrictive). The most robust solution for k = 1, considering only
the increasing direction ⊕1 = {>, +}, is highlighted (x0 = 0, x1 = 3). The greater feasible
neighbour values (1 for x0 and 4 for x1) are also highlighted in the figure. Note that the
variable x0 can also be equal to 1 and the solution would remain valid (in case that 0 is
not feasible anymore due to a restrictive change of the upper bound of the solution space).

CP 2022

33:6 LNS for Robust Solutions for CSPs with Ordered Domains

Realize also of the alternative, which is that the variable x1 can also be equal to 4 (in case
that 3 is not feasible anymore for the same reason mentioned before). Therefore, the o.f.
value of this solution is two (because it is the sum of its feasible neighbour values).

3.4 A case study: robust Scheduling

0 1 2 X0

X1

4

3

2

(a) Robust solution.

T0

0 1 2 3 4 5 6

Slack T1 Slack

(b) Associated robust schedule.

Figure 1 Example of a robust solution for scheduling.

Without loss of generality, we selected a scheduling problem as a case study. We would
like to recall that our approach works for many applications suitable for being modelled as
CSPs with ordered domains in which the bounds can undergo restrictive changes. Therefore,
it is not a scheduling specific approach. But considering scheduling problems as a case study
is especially interesting because unexpected delays in tasks are common and such uncertainty
must be considered in the solving process. Below, we present some robust-schedules concepts.

Scheduling problems consist in assigning a set of n tasks, of varying processing times, to
m machines with a limited capacity. In the case study presented in Section 5, we focus on
the Job Shop Scheduling Problem (JSP). This type of scheduling problem is characterized
by having tasks with a specific precedence order within a job. Typically, the CSPs models of
scheduling problems consider as variables the start times of the tasks and the objective is to
minimize the makespan (the finish time of the last task). However, as stated in Section 1,
we aim to search for robust solutions using the o.f. in Equation 2. For this reason, we
consider scheduling instances that have a fixed makespan (then, their models are CSPs and
not CSOPs). For example, in Figure 1b, the makespan is fixed to six.

When possible future changes over the constraints are equally probable and independent
of each other, the more slacks a schedule has, the more robust it is (ideally, they are uniformly
distributed and of similar size). The slack/buffer (see Figure 1b) is a time slot that can
absorb a delay of the task placed before the slack without affecting the schedule. Then,
we fix the set of operands in Equation 2 to {>, +} to check the greater feasible neighbour
values (equivalent to the slack/buffer between tasks in the schedules). The selection of these
operands is because tasks that last longer than expected can invalidate the solution, while
shorter tasks can not. Figure 1b shows the associated robust schedule with the highlighted
solution of Figure 1a. Note that each task has a buffer of one unit, which corresponds to
each feasible neighbour value associated with each variable. Equation 3 shows a standard
measure of the slack of a schedule [19]. Rs

Slack is the average size of the slacks minus the
standard deviation of their sizes. The β parameter regulates the importance of slack size
uniformity. The authors suggest β = 0.25.

Rs
Slack = avg(slack)− β ∗ std(slack). (3)

J. López, A. Arbelaez, and L. Climent 33:7

4 LNS for Robust Solutions (LNSR)

In this section, we explain the LNS algorithm with CP for finding robust solutions for CSPs
(LNSR). Figure 2 describes our LNSR algorithm (Algorithm 1). It is an iterative algorithm
that takes the most robust solution found (incumbent) and creates a sub-problem by defining
a neighbourhood of variables to unassign (Algorithm 2). Subsequently, it optimizes the
sub-problem by propagating the constraints (Algorithm 3). For such purpose, we design a
robust-value selection heuristic (Algorithm 4) that selects the most robust value based on
the count of the feasible neighbour values of the already assigned variables. If a more robust
solution is found, then the incumbent solution is updated. The iterative process continues
by computing a new sub-problem according to a neighbourhood heuristic. In the following
subsections, we present all the above-mentioned algorithms.

Figure 2 LNS for Robust Solutions (LNSR) (Algorithm 1).

4.1 The Main Iterative Process
Algorithm 1 describes the main iterative process of our LNSR. In line 1, the best solution bS

and the current solution s are initialized by using a CSP solver that finds a simple solution
(non-robust). In line 2, Equation 2 is applied to calculate the number of feasible neighbours
values of the initial solution (bN). In line 3, the counter of the number of LNS neighbourhoods
explored (neighC, a.k.a. no. of restarts) is zero-initialized. Lines 4-10 contain the main
LNS loop, which runs during timeLim. Every iteration corresponds to a neighbourhood
exploration. In line 6, Algorithm 2 (neighbourhood) defines the new neighbourhood to explore
(a new sub-problem) and returns Xs (the set of variables that will remain assigned) and the
corresponding partial solution s. In line 7, Algorithm 3 (opt) explores the neighbourhood
until reaching the failures limit (fLim). In addition, fC (zero-initialized in line 5) keeps
the count of fails committed during the constraints propagation in every neighbourhood
exploration. Then, opt returns the best solution found so far (the most robust solution found)
and its corresponding number of feasible neighbour values. Note that if this algorithm does
not find a better solution in the current neighbourhood explored, bS and bN remain the
same. At the end of every iteration, the fLim parameter is updated using a geometrical
strategy 2 [24] (line 9).

2 fLim = base ∗ (1.1neighC)

CP 2022

33:8 LNS for Robust Solutions for CSPs with Ordered Domains

Algorithm 1 LNSR: LNS for Robust Solutions.

Input: P = ⟨X ,D, C⟩ , k, ⊕, timeLim, fLim

Output: bS, bN
1 bS ← s← solve(P) // Most robust solution found
2 bN ← f(s, k,⊕) // Best no. of feasible neighbour values found
3 neighC ← 0 // Number of LNS neighbourhoods explored
4 repeat
5 fC ← 0 // Number of failures count
6 (Xs, s)← neighbourhood(X , k, bS, s)
7 (bS, bN)← opt(P , k,Xs,⊕, s, bS, bN , fLim, fC)
8 neighC + +
9 fLim← geometricUpdateFails(neighC)

10 until timeLim

4.2 Neighborhood Selection Heuristic

Algorithm 2 describes the neighbourhood heuristic which determines the new neighbourhood
to explore (a new sub-problem) for the next iteration of the Algorithm 1. First, the size of
the neighbourhood (|X | − n) is fixed to the 20% of the number of variables (line 1). We use
two variable selection heuristics: random or the well-known Wdeg/domSize heuristic from
the literature [4], which is already implemented in the ACE solver.

In LNSR, if in the previous iteration of the main algorithm a better solution has not
been found (in this case the current solution s and the best solution bS are different, line 2),
then, the algorithm selects the variables to unassign randomly (line 3). Selecting a random
neighbourhood is a typical technique in the literature for achieving getting out from a local
optimum (avoiding then the repeatedly exploration of the same neighborhood).

However, when a better solution is found (line 4), the variables with the lowest Wdeg/-
domSize are selected to remain assigned (line 5). The Wdeg is the number of unsatisfied
constraints (during the propagation) associated with the variable. Variables with small
domains tend to fail more during propagation. Therefore, the greatest Wdeg/domSize heur-
istic selects the variables that have the greatest tendency to fail; in such a way difficult
sub-problems are explored (fail-first principle [4]). Note that line 5 fixes the set of variables

Algorithm 2 neighbourhood: NBHD heuristic.

Input: P = ⟨X ,D, C⟩ , bS, s

Output: Xs, s

1 n← round(80% |X |)
2 if s ̸= bS then // No better solution found
3 Xs ← selRandomV ars(X , n)
4 else // New best solution found
5 Xs ← selV arsLowestWdegOnDom(X , n)
6 s← ∅
7 foreach x in Xs do
8 s← s ∪ {x = bS(x)}
9 propagate(P , s)

J. López, A. Arbelaez, and L. Climent 33:9

that will remain assigned (Xs) to the variables with the lowest Wdeg/domSize, consequently,
the unassigned variables are the ones with the greatest Wdeg/domSize. In lines 6-8, the
partial assignment s is built by selecting from bS the values corresponding to Xs.

We would like to remind that because of the inference CP process, all the constraints
associated with the variables that will not belong to the new neighbourhood to explore (i.e.
assigned variables) have to be propagated (line 9), and consequently, the domains of such
variables will be pruned (if there are unfeasible values).

4.3 Optimization Algorithm
The opt algorithm (Algorithm 3) explores the new neighbourhood (previously selected by the
Algorithm 2) to find a better solution than the best one found so far (bS). This optimization
algorithm is similar to the one presented in [7], but we have adapted it to the LNS algorithm
behaviour (only a sub-problem is optimized each time). We also include a more informed
way to compute the o.f. bound and a robust-value selection heuristic (Section 4.4). The opt

algorithm is recursive and tries to assign a variable of the sub-problem in each call.
In line 1, the algorithm selects the unassigned variable x with the greatest Wdeg/domSize

value (explained in Algorithm 2) [4]. Then, it updates Xs by adding x to this set (line 2). In
line 3, it saves all the domains of the variables and the Nk sets of the already assigned ones
(since they must be restored when backtracking occurs). A loop (lines 4-21) iterates over the
values in D(x). In line 5, the values are selected based on the robust value selection heuristic
(selMostRobVal, Algorithm 4) or using the typical first value selection, a.k.a. lexicographical
order, (selFirstVal). We tested several combinations of both heuristics in the evaluation
section (Section 5). As is typical in CSP solvers, the search process restarts after several
value assignment failures are reached (fLim) (second condition of line 4). In this case, LNSR
would restart in a new iteration of Algorithm 1 with a new neighbourhood.

In line 6, the propagate procedure prunes the domains of the unassigned variables and
the Nk sets of the assigned ones according to the constraints propagation when x = val.
Typically, CSP solvers propagate the constraints only over the domains of the unassigned
variables. However, we also need to keep updated the Nk sets. For this reason, we extend
the propagate procedure so that it also prunes the Nk sets (Equation 1) of the previously
assigned variables and creates the Nk set for the recently assigned one. This procedure
returns true if the assignation is feasible, otherwise false. In line 7, the algorithm updates
the current solution s (x = val), so that it can be used in the o.f. calculation.

In line 8, the algorithm calculates an upper bound of the o.f. (Equation 2) as the sum
of the o.f. of the assigned variables (i.e. the partial assignment s) and the max. possible
feasible neighbour values of the unassigned variable. The latest is calculated as the lowest
value between | ⊕ | ∗ k and its domain size. Thus, the maximum size of the set of neighbour
values for each variable is 2k if ⊕ is composed of two operator pairs (such as in random
CSPs) or k if ⊕ is composed of only one operator pair (such as in scheduling CSPs). Note
that, as mentioned above, the Nk sets of the already assigned variables have to be updated
after every variable assignment so that the o.f. value can be properly computed.

Then, in line 9, if the bound of robustness is greater than the best one found so far (bN),
it means that it is possible to find a better solution by exploring such branch (i.e. partial
assignment s). In this case, the search continues by calling recursively to the opt algorithm
(line 14). When a complete solution is found (line 10) the best solution and its associated
robustness are updated, which are denoted as bS and bN correspondingly (lines 11-12).

However, if the bound of robustness is lower (line 15) or s is not feasible (line 17), the
count of failures fC is incremented by one (lines 16 and 18). In both cases, this branch of
the search tree is discarded since it cannot produce a better solution than the best one so

CP 2022

33:10 LNS for Robust Solutions for CSPs with Ordered Domains

Algorithm 3 opt: optimization algorithm.

Input: P = ⟨X ,D, C⟩ , k,Xs,⊕, s, bS, bN , fLim, fC

Output: bS, bN
1 x← selV arGreatestWdegOnDom(X \ Xs)
2 Xs ← Xs ∪ x

3 save(D,Nk)
4 while D(x) ̸= ∅ ∧ (fC < fLim) do
5 val← selMostRobV al(P ,Xs, s, x,⊕) or selF irstV al(P , x)
6 if propagate(P , s, x = val) then
7 s← s ∪ {x = val}
8 bound← f(s, k,⊕) +

∑
y∈X \Xs

min((| ⊕ | ∗ k), |D(y)|)
9 if bound > bN then

10 if Xs = X then
11 bN ← bound

12 bS ← s

13 else
14 opt(P , k,Xs,⊕, s, bS, bN , fLim, fC)

15 else
16 fC + + // Number of failures count

17 else
18 fC + + // Number of failures count

19 restore(D \ D(x),Nk))
20 D(x)← D(x) \ val

21 s← s \ {x = val}
22 restore(D(x))
23 Xs ← Xs \ x

far (Branch and Bound) [25]. Since a different branch has to be explored, it is necessary to
restore all the domains, except the one of the analyzed variable (D(x)), and the Nk sets of
the already assigned ones (line 19), so that the propagation effect of the assignation x = val

is re-established. In addition, the value val is erased from D(x) (line 20) and s (line 21).
The search will continue with the next most robust value in D(x) (line 5). When a wipeout
occurs (D(x) = ∅, in line 4), it is necessary to restore the domain of the variable x (line 22),
exclude it from Xs (line 23) and make a backtrack to the previous variable.

4.4 Robust Value Selection Heuristic

This section describes the robust-value selection heuristic, which is novel and represents a
contribution of this paper. The main idea of this heuristic is to assign a value to the current
variable to assign that has the lowest negative impact over the robustness of the partial
assignment s (composed by the previous variables assigned). This means that the value
assigned will be the one that less reduces the total number of feasible neighbours of s.

In line 1 of Algorithm 4 , the Q queue is initialized with the assigned variables that share
a constraint with the variable x (the variable to assign). We use var(c) to denote the scope
of the constraint c (i.e. the variables involved in such constraint). Line 2 initializes the set

J. López, A. Arbelaez, and L. Climent 33:11

Algorithm 4 selMostRobV al: value sel. heuristic.

Input: P = ⟨X ,D, C⟩ , Xs, s, x, ⊕
Output: bestV alue

1 Q← {y, ∀y ∈ var(c), y ∈ Xs ∧ x ∈ var(c) , ∀c ∈ C}
2 sumNx ← ∅ // var(c) is the scope of c
3 foreach val ∈ D(x) do
4 s← s ∪ {x = val}
5 sumNx(val) =

∑
y∈Q |Nk(y, s(y), s,⊕)| // Eq.2

6 s← s \ {x = val}
7 bestV alue← val , max(sumNx(val)) ∀val ∈ D(x))

sumNx, which will be used to determine the estimation of robustness of the values of the
domain of the variable x. Subsequently, a loop through all possible values val in the D(x)
begins (line 3). In line 4, the value val is added to the partial solution to observe its effect
over the neighbour feasible values of the assigned variables. This calculation is similar to the
objective function (Equation 1) but considering only the variables in Q instead of all the
variables (line 5). In line 6, the previously added value is erased from the partial solution
s to continue with the next iteration (the next value of D(x)). Finally, the value with the
greatest number of feasible neighbour values in sumNx is selected as bestV alue (line 7). The
lexicographical order resolve ties.

5 Evaluation

For the evaluation, we implemented LNSR and the complete algorithm from [7] (we denote
it as B&B) and we embedded them into the ACE CSP solver3 (previously ABSCON) [15].
We used ACE for the constraint propagation, the restarts, the weighted degree (Wdeg)
computation and the B&B. The experiments were run on a 2xIntel(R) Xeon(R) CPU (E5620
@ 2.40GHz) and 32 GB of RAM memory running Ubuntu Server 18.04. We run three
times each LNSR configuration for each instance (because LNSR sometimes selects random
variables, see Algorithm 2) and we present the average results.

5.1 Experimental Settings
We performed experiments for k = 1, k = 3 and k = 5. For the LNSR algorithm, we
empirically tested several constant sizes of the neighbourhood, 20% was the most adequate.
We used the same configurations for the common parameters of B&B and LNSR. The function
in line 8 of Algorithm 3 was used as the upper bound of robustness. For the geometric restart
strategy, we use the formula fLim = base ∗ (1.1neighC) with base initially equal to 100 and
double it every 50 restarts. We evaluated the following value selection heuristics:

First (LNSR-1 and B&B-1): first value selection (lexicographical order).
First-Rob (B&B-2): first value selection combined with the robust value selection heuristic:
selMostRobV al (Algorithm 4). In the beginning, the first value selection heuristic is
used in every restart only until reaching the first solution, then selMostRobV al is used
for the rest of the search (including the backtracking).

3 https://github.com/xcsp3team/ace

CP 2022

https://github.com/xcsp3team/ace

33:12 LNS for Robust Solutions for CSPs with Ordered Domains

First-Rob variant (LNSR-2 and B&B-2’): this is a first-rob variant. The first solution
is computed with the first value selection heuristic. Then, for LNS selMostRobV al

(Algorithm 4) is applied to the variables in the LNS neighbourhood. This is equivalent to
applying selMostRobV al to the last n variables to assign in B&B, where n is the size
of the LNS neighbourhood. Note that B&B-2’ has the same value selection heuristic as
LNS-2, while B&B-2 does not.

We also evaluated Rob-Rob value selection, where the first solution is also computed
selecting the robust value (selMostRobV al). However, its performance was extremely poor,
especially in scheduling instances. The problem is that selecting the most robust values
for all the variables of the scheduling leads to dead-ends because such assignments exceed
the maximum makespan allowed (especially in the critical path). Therefore, this algorithm
configuration could not find even the first solution in the allocated time.

5.2 Evaluation with General CPSs
In this section, we present the results of our algorithm using general CSP instances generated
with the uniform random generator URBCSP4. The random instances used have 110 variables,
domain sizes of 120 and 1119 constraints (corresponding to the 20% of all the possible binary
constraints). We use three different tightness values to generate each one of the instances:
1.3, 1.6 and 1.9. We fixed a time limit of 10 min.

The results are presented in Table 1. We show the number of solutions found (#S), the
number of visited nodes (#Nodes), the number of failed assignments (#FAssigns), the
number of variables with at least one neighbour value (#varR), the number of neighbour
values of the solution (#N) and a measure of the distribution of the feasible neighbour values
across the solution (Ndist). The Ndist measurement is computed with Equation 3, but
considering the number of feasible neighbour values instead of the slack.

Table 1 Comparison of value selection heuristics and algorithms in random CSPs.

k Heuristic Algorithm #S #Nodes #FAssigns #varR #N Ndist

1

First B&B-1 7.7 5291006.0 1928269.7 39.0 39.0 0.236
LNSR-1 16.0 4076714.4 1619716.0 47.3 47.7 0.309

First-Rob
B&B-2 7.3 5373612.3 1978766.7 39.7 39.7 0.241
B&B-2’ 9.0 4406818.3 1620720.0 44.0 46.3 0.290
LNSR-2 17.0 3163868.8 1285432.4 62.7 74.3 0.520

3

First B&B-1 8.7 4837787.3 2022192.0 36.7 43.7 0.245
LNSR-1 15.3 3912019.8 1674863.6 43.3 51.3 0.308

First-Rob
B&B-2 10.0 4838004.7 2045275.3 40.7 46.0 0.270
B&B-2’ 6.7 4010733.7 1699203.3 41.7 48.0 0.287
LNSR-2 18.0 2920458.8 1245622.8 59.0 88.7 0.581

5

First B&B-1 7.3 4803303.3 2067019.0 38.0 42.3 0.244
LNSR-1 18.0 3845131.6 1650786.6 44.3 54.3 0.327

First-Rob
B&B-2 9.3 4683463.0 1965024.7 38.0 43.7 0.249
B&B-2’ 6.7 4085214.7 1746265.3 41.7 49.0 0.291
LNSR-2 25.0 2946410.4 1264325.4 60.0 90.3 0.590

Table 1 clearly shows that LNSR-2 has the best results for the three robustness meas-
urements for all the k values. LNSR-2 finds solutions with the greatest number of robust
variables (#varR), which are the variables that have at least one feasible neighbour value.

4 http://www.lirmm.fr/~bessiere/generator.html

http://www.lirmm.fr/~bessiere/generator.html

J. López, A. Arbelaez, and L. Climent 33:13

This robustness measure shows how many variables of the solution would resist a perturbation
of magnitude one in the bounds of the solution space (delimited by the constraints and the
domains). LNSR-2 also obtains the greatest sum of the feasible neighbour values across all
the variables (a.k.a. no. of neighbours, #N). In addition, the solutions found by LNSR-2
have the best distribution of the feasible neighbour values through all the variables (Ndist).
These results confirm our hypothesis that our LNSR algorithm performs better than B&B.

Note that the LNSR algorithm finds a higher number of solutions (#S) than the B&B
algorithm (especially, LNSR-2). Accordingly, the number of failed assignments (#FAssigns)
is lower. We believe that this is due to the diversification in the search space exploration
that LNSR offers by exploring neighbourhoods around the current most robust solution. On
the contrary, B&B gets stuck exploring very specific branches of the search tree.

Another important conclusion from the evaluation is that our heuristic for selecting the
most robust values (Algorithm 4) has a very good performance, especially when used in
LNSR. For the B&B algorithm, there is an improvement of B&B-2’ over B&B-2 and from
both over B&B-1. We believe that the robust value selection heuristic did not have a big
impact on B&B because the instances are large-scale and therefore, as mentioned above,
B&B get stuck exploring very specific branches of the search tree. The improvement is
even more pronounced in the case of the LNSR algorithm. In almost all the cases, LNSR-2
obtains a robustness increment of about 70% of the values obtained by LNSR-1 (for the three
robustness measures). This fact shows the usefulness of our robust value selection heuristic
to guide the search toward more robust solutions.

The number of visited nodes (#Nodes) is lower for B&B-2’ and LNSR-2 than the other
configurations. It is due to the most robust value selection heuristic is more costly than the
first value selection heuristic. Even if our heuristic is costly, it has shown to be very effective,
especially combined with our LNSR (LNSR-2).

5.3 Evaluation with Scheduling Instances
We evaluated our LNRS algorithm using six Taillard Job Shop scheduling instances with 300
tasks each5. Recall that these instances are modeled as CSPs (rather than CSOPs) because
the makespan is fixed. The variables of the CSPs models are the starting and ending times
of the tasks and the domains are limited by their possible maximum ending times. Note
that the variables associated with the ending times are excluded from the robustness search
since they are just equal to the start time variables plus the duration of the tasks. Equality
constraints are used to ensure that the end time of a job is equal to the end time of its
last operation. Precedence constraints are used to indicate the order of the operations in
every job and non-overlapping constraints are used to indicate the correspondence between
operations and the single capacity resources. Finally, the last constraints are used to indicate
the minimum possible duration of every job.

In these executions, we fixed a time limit of 20 min. The average results of the evaluation
are presented in Table 2. We show the same measurements as in the previous section, except
for #B, which is the number of buffers and Rs

Slack, which measures the buffers’ distribution
(see Equation 3). Note that #B is equivalent to #varR and Rs

Slack is equivalent to Ndist.
The results obtained in the scheduling instances are similar, in terms of the approaches

ranking, to the results obtained in general CSPs instances. LNSR-2 outperforms the other
approaches in the robustness measurements. Although in the scheduling instances, the
differences between the three variants of B&B are lower than in the random CSPs (Table 1).

5 Instances from http://www.xcsp.org/instances/: Taillard-js-020-15-{0,2,3,6,8,9}. Instances {1,4,5,7}
could not be solved in the given cut-off time.

CP 2022

http://www.xcsp.org/instances/

33:14 LNS for Robust Solutions for CSPs with Ordered Domains

Table 2 Comparison of value selection heuristics and algorithms in Taillard-js-020-15 instance.

k Heuristic Algorithm #S #Nodes #FAssigns #B #N Rs
Slack

1

First B&B-1 2.5 5752220.8 2389769.0 75.7 75.7 0.144
LNSR-1 14.2 3861320.2 501682.4 87.7 87.7 0.179

First-Rob
B&B-2 2.5 5760396.8 2390411.2 75.7 75.7 0.144
B&B-2’ 2.5 5780979.8 2400829.3 75.7 75.7 0.144
LNSR-2 30.0 3432879.6 508581.8 157.2 157.2 0.400

3

First B&B-1 5.3 5156986.5 2125819.3 75.7 219.3 0.412
LNSR-1 40.0 3153637.7 491531.3 88.8 257.5 0.524

First-Rob
B&B-2 4.0 5146224.7 2118215.8 75.7 219.5 0.413
B&B-2’ 5.3 5167244.8 2132102.5 75.7 219.3 0.412
LNSR-2 30.8 2739318.9 488374.4 143.5 417.7 1.024

5

First B&B-1 8.0 4788771.7 1965952.7 75.7 352.5 0.656
LNSR-1 54.8 2734267.1 484041.2 86.7 405.8 0.809

First-Rob
B&B-2 5.5 4634154.7 1891387.0 75.7 352.7 0.656
B&B-2’ 8.0 4717497.0 1934862.7 75.7 352.5 0.656
LNSR-2 33.9 2352468.3 478499.9 139.6 661.7 1.599

Table 2 shows that the robustness of the solutions obtained by LNSR-2 is about two thirds
more than the other approaches (for #B and #N). Regarding the Rs

Slack measurement,
LNSR-2 achieves results close to double the other approaches. This result indicate that
LNSR-2 offers a better distribution of robustness (number of feasible neighbour values) across
all the variables.

(a) k=1 (b) k=5

Figure 3 Solutions found over the time(s) and their robustness (Taillard-js-020-15-9 instance).

The results of the scheduling evaluation show a very high difference in the total number
of feasible neighbours achieved (#N) when the k is increased (for LNSR-2, it is more than
200 neighbours for each k increment of 2 units, i.e. k = 3, k = 5). Such increment is much
lower in the random CSPs (see Table 1). We believe that the reason could be associated
with the tightness of the instances. The higher it is, the lower the likelihood of finding a
great number of neighbours.

J. López, A. Arbelaez, and L. Climent 33:15

We also present Figures 3a and 3b which show the solutions found over time for B&B-2’
and LNSR-2 for k = 1 and k = 5 (for a particular instance and execution). For other
instances, executions and k’s, the graphs are similar to the presented here. Note that LNSR-2
finds a much higher number of solutions than B&B-2’. The robustness of the solutions
found by LNSR-2 increments quickly over time, specially at the beginning of the execution.
However, B&B-2’ finds solutions that have similar robustness between them. In addition,
B&B-2’ is unnable to improve the robustness after a short time (less than 200 sec. for k=1
and less than 300 sec. for k=5). We believe that this is because the B&B approaches spend
a lot of time searching in the same branches of the search tree while LNSR diversifies more
the search by exploring a large number of neighbours of the current most robust solution.

6 Conclusions and Future Work

In this paper, we presented an LNS algorithm with CP and B&B for searching for robust
solutions for CSPs (LNSR). LNSR considers the robustness concepts and assumptions as
in [7]. And therefore, it computes robust solutions for large-scale CSPs that have a high
number of feasible neighbour values (Algorithms 1 and 2, from Section 4). In addition, we
presented a robust-value selection heuristic (Algorithm 4, from Section 4) for effectively
guiding the search towards more promising branches of the search space (that are more likely
to contain more feasible neighbour values solutions). Specifically, the focus is on problems
that do not have associated detailed information about the uncertainty and with ordered
domains.

In this paper, we used general CSPs instances and scheduling problems as a case study
(due to their eligibility for such criteria). The experimental evaluation shows that our LNSR
algorithm, combined with our robust value selection heuristic, outperforms the previous
approach from the state-of-the-art. This good performance is especially usefull in large-scale
problems in which the computation time available for finding a solution is limited and/or
when several solutions must be re-computed over time (due to the dynamism associated with
the real-world application problems).

As a future work, among others, we would like to explore other domains, such as
data centres, sports, etc. In addition, we plan to apply adaptive strategies to tune the
neighbourhood size, the variables selection and the limit of failures allowed during the
neighbourhood exploration. We believe that it could be useful to propose a variable selection
heuristic that considers the robustness of the variables (for example, combining a robustness
measurement with Wdeg). We will explore ideas such as Cost-Impact based variable selection,
We will also consider the combination of several heuristics into a portfolio, in the same vein
as previous “adaptive” LNS approaches from the literature.

Furthermore, we would like to explore different ways of applying our LNSR to CSOPs by
using multi-objective strategies and computing the Pareto frontier. In addition, we believe
that it is also interesting to evaluate the performance of accepting less robust solutions in
some iterations of the LNSR algorithm (as proposed in [14, Chapter 4]).

References

1 A. Charnes and W. W. Cooper. Chance-Constrained Programming. Management Science,
6(1):73–79, 1959.

2 J. Christopher Beck, T. K. Feng, and Jean Paul Watson. Combining constraint programming
and local search for job-shop scheduling. INFORMS Journal on Computing, 23(1):1–14, 2011.

3 Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust optimization. Princeton
University Press, 2009.

CP 2022

33:16 LNS for Robust Solutions for CSPs with Ordered Domains

4 Frédéric Boussemart, Fred Hemery, Christophe Lecoutre, and Lakhdar Sais. Boosting sys-
tematic search by weighting constraints. Frontiers in Artificial Intelligence and Applications,
110:146–150, 2004.

5 Tom Carchrae and J. Christopher Beck. Principles for the design of large neighborhood search.
Journal of Mathematical Modelling and Algorithms, 8(3):245–270, 2009.

6 Laura Climent, Richard J. Wallace, Barry O’Sullivan, and Eugene C. Freuder. Extrapolating
from limited uncertain information in large-scale combinatorial optimization problems to
obtain robust solutions. International Journal on Artificial Intelligence Tools, 25:1–21, 2016.
In this paper a way to use extrapolation to enable Stochastic approach with limited knowledge
is treated. Important: Ordered Domains. doi:10.1142/S0218213016600058.

7 Laura Climent, Richard J. Wallace, Miguel A. Salido, and Federico Barber. Robustness and
stability in constraint programming under dynamism and uncertainty. Journal of Artificial
Intelligence Research, 49:49–78, 2014.

8 Thierry Denœux. Belief functions induced by random fuzzy sets: A general framework for
representing uncertain and fuzzy evidence. Fuzzy Sets and Systems, 1:1–29, 2020.

9 Ivan Dotu, Manuel Cebrián, Pascal Van Hentenryck, and Peter Clote. Protein Structure
Prediction with Large Neighborhood Constraint Programming Search. In Peter J. Stuckey,
editor, Principles and Practice of Constraint Programming, pages 82–96. Springer, 2008.

10 Helene Fargier, Jerome Lang, and Thomas Schiex. Mixed constraint satisfaction: a framework
for decision problems under incomplete knowledge. Proceedings of the National Conference on
Artificial Intelligence, 1(January 1996):175–180, 1996.

11 Markus P J Fromherz. Constraint-based scheduling. Proceedings of the American Control
Conference, pages 3231–3244, 2001.

12 Luca Di Gaspero, Andrea Rendl, and Tommaso Urli. Balancing bike sharing systems with
constraint programming. Constraints, 21(2):318–348, 2016.

13 Emmanuel Hebrard. Robust Solutions for Constraint Satisfaction and Optimisation under
Uncertainty. PhD thesis, University of New South Wales, 2007.

14 Michellgendreauu· Jean-Yvesspotvin. Handbook of Metaheuristics. International Series in
Operations Research & Management Science, third edit edition, 2010.

15 Christophe Lecoutre and Sebastien Tabary. Abscon 112 : towards more robustness. In 3rd
International Constraint Solver Competition, pages 41–48, 2013.

16 Dario Pacino and Pascal Van Hentenryck. Large neighborhood search and adaptive randomized
decompositions for flexible jobshop scheduling. IJCAI International Joint Conference on
Artificial Intelligence, pages 1997–2002, 2011.

17 Laurent Perron, Paul Shaw, and Vincent Furnon. Propagation guided Large Neighbourhood
Search. In Mark Wallace, editor, Principles and Practice of Constraint Programming, volume
3258, pages 469–481, Toronto, 2004. Springer.

18 Paul Shaw. Using constraint programming and local search methods to solve vehicle routing
problems. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 1520:417–431, 1998.

19 Michele Surico, Uzay Kaymak, David Naso, and Rommert Dekker. Hybrid Meta-Heuristics
for Robust Scheduling. ERIM Report Research in Management, 2006.

20 Nihat Engin Toklu. Matheuristics for Robust Optimization – Application to Real-World
Problems. PhD thesis, Università della Svizzera Italiana, 2014.

21 Behnam Vahdani, Reza Tavakkoli-Moghaddam, Fariborz Jolai, and Arman Baboli. Reliable
design of a closed loop supply chain network under uncertainty: An interval fuzzy possibilistic
chance-constrained model. Engineering Optimization, 45(6):745–765, 2013.

22 Gérard Verfaillie and Narendra Jussien. Constraint solving in uncertain and dynamic environ-
ments: A survey. Constraints, 10(3):253–281, 2005.

23 Toby Walsh. Stochastic constraint programming. Proceedings of the 15th Eureopean Conference
on Artificial Intelligence, pages 111–115, 2002.

24 Huayue Wu. Randomization and Restart Strategies. PhD thesis, University of Waterloo, 2006.
25 Weixiong Zhang. Branch-and-Bound Search Algorithms and Their Computational Complexity.

Technical report, Information Sciences Institute, Marina del Rey, California, 1996.

https://doi.org/10.1142/S0218213016600058

Scheduling the Equipment Maintenance of an
Electric Power Transmission Network Using
Constraint Programming
Louis Popovic #

Computer Engineering and Software Engineering Department, Polytechnique Montréal, Canada

Alain Côté #

IREQ, Varennes, Canada

Mohamed Gaha #

IREQ, Varennes, Canada

Franklin Nguewouo #

Hydro-Québec, Canada

Quentin Cappart #

Computer Engineering and Software Engineering Department, Polytechnique Montréal, Canada

Abstract
Modern electrical power utilities must maintain their electrical equipment and replace it when the
end of its useful life arrives. The Transmission Maintenance Scheduling (TMS) problem consists in
generating an annual maintenance plan for electric power transportation equipment while maintaining
the stability of the network and ensuring a continuous power flow for customers. Each year, a list
of equipment (power lines, capacitors, transistors, etc.) that needs to be maintained or replaced
is available and the goal is to generate an optimal maintenance plan. This paper proposes a
constraint-based scheduling approach for solving the TMS problem. The model considers two types
of constraints: (1) constraints that can be naturally formalized inside a constraint programming
model, and (2) complex constraints that do not have a proper formalization from the field specialists.
The latter cannot be integrated inside the model due to their complexity. Their satisfaction is thus
verified by a black box tool, which is a simulator that mimics the impact of a maintenance schedule
on the real power network. The simulator is based on complex differential power-flow equations.
Experiments are carried out at five strategic points of Hydro-Québec power grid infrastructure, and
involve more than 200 electrical equipment and 300 withdrawal requests. Results show that the
model is able to comply with most of the formalized and unformalized constraints. It also generates
maintenance schedules within an execution time of only a few minutes. The generated schedules are
similar to the ones proposed by a field specialist and can be used to simulate maintenance programs
for the next 10 years.

2012 ACM Subject Classification Applied computing → Operations research

Keywords and phrases Transmission maintenance scheduling, Electric power network, Constraint
programming

Digital Object Identifier 10.4230/LIPIcs.CP.2022.34

1 Introduction

Modern electrical power utilities must maintain their electrical equipment and replace them
as they reach the end of their useful life. Asset management is becoming strategically
important for transmission utilities around the world. The International Electrotechnical
Commission (IEC) has recognized that a specific power network approach to monitoring
and managing assets is required [18]. To respond to these challenges, Hydro-Québec, a
public utility company operating in Quebec, started the PRIAD-project, which aims to

© Louis Popovic, Alain Côté, Mohamed Gaha, Franklin Nguewouo, and Quentin Cappart;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 34; pp. 34:1–34:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:louis.popovic@polymtl.ca
mailto:cote.alain7@hydroquebec.com
mailto:gaha.mohamed@hydroquebec.com
mailto:nguewouo.franklin@hydroquebec.com
mailto:quentin.cappart@polymtl.ca
https://doi.org/10.4230/LIPIcs.CP.2022.34
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 Maintenance Scheduling Inside an Electric Power Transmission Network

develop an integrated decision support system including predictive modeling methods for
asset management [9]. This project includes different modules for cloud data warehouses,
asset behavior, reliability, transmission system simulation, risk and optimization. Such
initiatives to develop decision systems for identifying and prioritizing the replacement and
maintenance of electrical equipment with an asset risk framework have been undertaken by
many other utilities [3]. The main objective of every electric power system is to transport
electricity from the generating units to the load centers in a secure manner. To do so, one
of the main tasks of the network control center (NCC) is to use a contingency approach to
ensure that maintenance activities do not lead to interrupted power supply [19]. To reduce
the number of failures and improve power network reliability, assets are periodically removed
from the grid network for preventive maintenance. Scheduling the preventive maintenance
activities of electrical power utilities relates to two well-known problems: (1) the generator
maintenance scheduling (GMS) problem, and (2) the transmission maintenance scheduling
(TMS) problem. Solving both of these problems efficiently is crucial for network reliability
and fluidity. However, they are also NP-hard due to the complexity of the constraints
included. On the one hand, many approaches have been proposed for solving the GMS
problem. For a recent review of these studies, the reader is referred to the survey proposed
by Froger et al. [8].

On the other hand, the TMS problem has been less studied in the literature. The goal is
to generate an annual maintenance plan for electric power transportation equipment while
maintaining the stability of the network and ensuring a continuous power flow for customers.
It is noteworthy to highlight that the TMS problem is limited to transmission equipment
and does not include, for instance, distribution equipment. This is intended as most of the
distribution equipment are not maintained and are used as run-to-fail, yielding a specific
resolution process. Pandžić et al. [15] proposed a bi-objective mathematical model for solving
a TMS problem involving only transmission lines. The idea is to compute an appropriate
trade-off between ensuring transmission capacity and minimizing the maintenance impact
on power system operation and then the market. To do so, they proposed to recast a
non-linear formalization of the problem into a mixed-integer linear program, and to solve it
using a standard branch-and-cut algorithm. In addition, Mei et al. [14] proposed another
mixed-integer program that aims to maximize the maintenance willingness of transmission
lines under security and capacity constraints of the transmission power system. To improve
the computational efficiency, the authors proposed a machine learning approach accelerating
the branching procedure of the solving algorithm. These two works applied the timetable
obtained to IEEE 24-bus and 30-bus reliability test systems, which are relatively simple and
not representative of networks involving complex electrical constraints. More recently, Rocha
et al. [17] proposed a mixed-integer program for solving the TMS problem on a IEEE-24
system, similar to the one considered in this paper. Unlike the previous works, they consider
a complete transmission grid and not only transmission lines. Solving is carried out by
splitting the initial problem into two smaller optimization problems with the use of Benders
decomposition [16]. However this approach does not consider advanced constraints related
to the limitations of power transit inside the grid.

To the best of our knowledge, there are no related works that solve TMS problems on a
complete transmission grid with various electrical equipment and transit-power constraints.
Ensuring that transit-power limits are never violated is a critical concern in practice. This
motivates our work to solve a TMS problem from the point of view of NCC operation. Each
year, the NCC operator receives the annual maintenance plan with a suggested starting
maintenance date and duration. The operator tries to satisfy the proposed maintenance

L. Popovic, A. Côté, M. Gaha, F. Nguewouo, and Q. Cappart 34:3

plan, while satisfying electrical constraints known as transit-power limits. Such constraints
guarantee power network stability during maintenance. In addition, a list of withdrawal
rules that ensure stable power system operation is available. These rules, based on expert
knowledge and power network analysis, represent restrictions on equipment that can or cannot
be removed simultaneously from the grid. These constraints can be naturally formalized
inside a mathematical model. However, transit-power constraints are trickier to handle.
The theoretical values of the transit-power limits inside a power network subject to inactive
equipment are based on complex constrained differential power-flow equations and are tedious
to compute. For this reason, these constraints do not have a proper closed-form expression
from the field specialists and cannot be easily integrated inside a mathematical model. In
practice, the satisfaction of such constraints can be verified by a simulator that mimics the
impact of a maintenance schedule on the real power network.

Based on this context, the goal of this paper is to find the optimal periods for removing
specific transmission equipment from the grid for maintenance without impeding energy
delivery. By doing so, we aim to provide planners with insight in order to help them in
their decisions, which are currently done manually based on their field expertise. The
complexity of the maintenance task will be reduced and they will be able to dedicate a
specific focus on the most challenging aspects of the task. The specific contributions of this
paper are as follows: (1) an approach based on constraint programming (CP) for solving a
TMS problem on a transmission grid with transit-power constraints; (2) the use of a black-
box simulator approximating the electrical impact for each proposed maintenance schedule
in order to validate the satisfaction of transit-power constraints; (3) a two-step objective
function dedicated to maximizing the balance of the schedule and to maximizing the overlap
of withdrawal requests involving the same equipment; and (4) experiments on five strategic
points of a real power grid infrastructure that involves more than 200 pieces of electrical
equipment and 300 withdrawal requests. Results show that the model is able to comply
with most of the power-transit constraints. The maintenance schedules are generated within
an execution time of few minutes and are similar to the ones proposed by field specialists.
The next section formalizes the TMS problem and introduces the constraint programming
model that we have designed. The solving process is then described in Section 3. Lastly,
experiments and results are presented in Section 4.

2 Modelling the Transmission Maintenance Scheduling Problem

The goal is to generate an annual maintenance plan of withdrawal requests for electric power
transportation equipment (power lines, capacitors, transistors, etc.) while maintaining the
stability of the network. Let W be the set of withdrawal requests that must be scheduled
inside the planning horizon, and let E be the set of electrical equipment involved in the
network grid. Each withdrawal request wi ∈ W has a duration li ∈ N, a list of equipment
Ei ∈ 2E to withdraw, and a size ni ∈ N, corresponding to the number of equipment pieces
related to the request (ni = |Ei|). Each equipment ej ∈ E can be associated to one or several
withdrawal requests, indicating that the equipment ej must be withdrew when the request
is fulfilled. We use the notation ei

k ∈ Ei to refer to the k-th equipment associated to the
withdrawal request wi. Similarly, id(ei

k) ∈ E and ch(ei
k) ∈ R refer to the equipment identifier

of the k-th equipment associated to the withdrawal request wi, and the corresponding
electrical charge [Mvar]1, respectively. Finally, the planning horizon is defined as the days

1 Megavolt-ampere of reactive power; an AC electrical measurement unit.

CP 2022

34:4 Maintenance Scheduling Inside an Electric Power Transmission Network

between d0 and dm. The annual period during which withdrawals are permitted is limited
from March 15th to November 15th. This gives 245 consecutive days (m = 245). All
withdrawal requests must be started and finished within this horizon. No maintenance is
allowed outside this period. The reason is that the peak of electrical power consumption in
Quebec happens during winter. The parameters introduced are summarized in Table 1.

Table 1 List of parameters used in the constraint programming model.

Entity Parameter Description

Request (W)
li Duration (in days) of the withdrawal request wi

ni Number of equipment to withdraw for the request wi

Ei Set of equipment to withdraw for the request wi

Equipment (E) id(ei
k) Identifier of the k-th equipment of request wi

ch(ei
k) Electrical charge [MVar] of the k-th equipment of request wi

Horizon d0 First day allowed for the maintenance
d245 Last day allowed for the maintenance

2.1 Decision Variables
We model this problem as a constraint-based scheduling model with time-interval variables,
also referred to as activities, using the formalism proposed by Laborie et al. [11, 13]. Each
withdrawal request wi ∈ W is modelled as an activity and is composed of four variables: a
start time s(wi), a duration d(wi), a completion time c(wi), and a binary execution status
x(wi). In our case, the duration of each request is known (d(wi) = li), and all the requests
must be executed, yielding x(wi) = 1 for all wi ∈ W . Each piece of equipment ei

k ∈ Ei related
to a withdrawal request wi is also associated to an activity. Then, a situation involving 10
requests and 20 pieces of equipment will generate at most 200 activities, as a specific piece
of equipment can be involved in several withdrawal requests. As a simple synchronization
constraint, an equipment item must be withdrawn during the same period as its request.
The domain of all the activities are presented below. A visualization of the decision variables
and the temporal relations is proposed in Figure 1.

∀wi ∈ W :

s(wi) ∈ [d0, d245 − li]
d(wi) = li
c(wi) = s(wi) + d(wi)
x(wi) = 1

∀ei
k ∈ Ei :

s(ei

k) = s(wi)
d(ei

k) = d(wi)
c(ei

k) = c(wi)
x(ei

k) = x(wi)

(1)

2.2 Constraints
The model leverages the cumul function introduced in constraint-based scheduling by Laborie
et al. [13]. Briefly, such a function is used to represent the accumulated consumption of a
resource by activities over a timing horizon. When a new activity is started, the consumption
of the resource increases. Similarly, the consumption goes down when the activity is completed.
This behaviour is related to the cumulative global constraint [2, 10]. Besides, our model is
based on the alwaysIn and noOverlap constraints. Following the formalization of Laborie et
al. [13], they are defined as follows:

alwaysIn(f, u, v, hmin, hmax) ensures that the accumulated consumption of the cumul
function f remains between hmin and hmax inside the interval [u, v).
noOverlap(A) ensures that the activities a ∈ A do no overlap in time.

L. Popovic, A. Côté, M. Gaha, F. Nguewouo, and Q. Cappart 34:5

Figure 1 Illustration of the decision variables considered in the model.

Four constraints are involved in our model, two of them are based on alwaysIn constraint
and the other twos are based on noOverlap constraint. The remaining of this section is
dedicated to describe them.

Constraint 1: Limitation on Simultaneous Equipment Withdrawals. Let S ∈ 2E be an
arbitrary set of equipment. This constraint states that a maximum of h pieces of equipment
from the set S can be withdrawn together between the days da and db. We introduce a
cumul function f1 : [d0, d245] × S → N indicating the number of equipment items from S

that are currently withdrawn for each time step of the planning horizon. The restriction is
then modelled using the alwaysIn constraint [1] as follows.

alwaysIn(f1, da, db, 0, h) (2)

It ensures that the number of equipment items withdrew from S (returned by f1) is always
included between the range [0, h] during the time interval [da, db). A valid and an invalid
solution for the configuration S = {e1, e2} and h = 1 is illustrated in Figures 2a and 2b.

(a) Example of an invalid solution. (b) Example of a valid solution.

Figure 2 Illustration of Constraint 1 (limitation on simultaneous equipment withdrawal).

Constraint 2: Limitation on the Electrical Charge during Withdrawals. Let S ∈ 2E be an
arbitrary set of equipment and θ a threshold of an electrical charge. This constraint states
that the sum of the charges of the withdrawn equipment from S must always be below θ. We
introduce a cumul function f2 : [d0, d245] × S → N indicating the accumulated charge of the
equipment, i.e.

∑
e∈S ch(e), that is currently withdrawn for each time step of the planning

horizon. The constraint is modelled as follows.

alwaysIn(f2, d0, d245, 0, θ) (3)

CP 2022

34:6 Maintenance Scheduling Inside an Electric Power Transmission Network

It ensures that the electrical charge returned by f2 is always included between the range
[0, θ] during the complete planning horizon [d0, d245). A valid and an invalid solution for
the configuration S = {e1, e2, e3}, θ = 350, ch(e1) = 100, ch(e2) = 200, and ch(e3) = 200 is
illustrated in Figures 3a and 3b.

(a) Example of an invalid solution. (b) Example of a valid solution.

Figure 3 Illustration of Constraint 2 (limitation on the electrical charge during withdrawals).

Constraint 3: No Overlap on Equipment Withdrawals. Let Λ = {S1, S2, . . . , SK} be a set
containing K sets of equipment Sk ∈ 2E . This constraint states that equipment coming from
different sets of Λ cannot be withdrawn together. Only equipment included in the same set
or that are identical (same identifier) can be withdrawn together. The noOverlap constraint
[1] is used for this purpose.

noOverlap
({
ei, ej

})
∀ei ∈ Si ∧∀ej ∈ Sj ∧∀Si ∈ Λ∧∀Sj ∈ Λ∧Si ̸= Sj ∧id(ei) ̸= id(ej) (4)

This constraint ensures that for each pair of different equipment belonging to different sets,
one of them must have its activity ended before the other one starts. A valid and an invalid
solution for the configuration Λ =

{
{e1, e2}, {e3, e4}

}
is illustrated in Figures 4a and 4b.

Constraint 4: No Overlap inside a Set of Equipment. Let S ∈ 2E be an arbitrary set of
equipment. This constraints states that equipment from this set cannot be removed together
and is modelled as follows.

noOverlap
({
wi

∣∣ ∀wi ∈ S
})

(5)

It ensures that for each pair of equipment in set S, one of them must finish before the other
one starts.

L. Popovic, A. Côté, M. Gaha, F. Nguewouo, and Q. Cappart 34:7

(a) Example of an invalid solution. (b) Example of a valid solution.

Figure 4 Illustration of Constraint 3 (no overlap on equipment withdrawals).

2.3 Objective Functions
A solution is currently feasible if all the withdrawal requests have been successfully scheduled
while ensuring the satisfaction of the four constraints presented in the previous section.
However, the transit-power constraints are not yet taken into account and can break the
feasibility of a solution. The challenge is that these constraints do not have a closed-form
expression and cannot be integrated inside the model. That being said, as a heuristic rule
from field specialists, a solution is more likely to satisfy the transit-power constraints when (1)
the withdrawal activities are properly balanced inside the planning horizon, and (2) when the
activities related to a same equipment are scheduled together. We propose to integrate these
rules inside the model through two objective functions having a lexicographic importance.

Objective 1: Maximizing the Schedule Balance. The goal is to balance the withdrawal
requests inside the planning horizon. This is related to the balance constraint introduced
by Bessiere et al. [4]. Generally speaking, the planning horizon has a length of dm − d0
days. We split this interval into r sub-periods of p days, i.e. r = ⌈ dm−d0

p ⌉. In our case,
m = 245 and following the recommendations of field specialists, a value of 50 days (p) has
been selected, yielding 5 sub-periods (r). This value has been fixed empirically and validated
by planners. It is possible that a request overlaps over several sub-periods. For instance, a
request between day 0 and day 60 will be counted in the sub-periods [0, 50] and [51, 100]. Let
R be the set of sub-periods and Ω be a list storing, for each sub-period r ∈ R, the number of
requests withdrawn during the sub-period r. In practice, Ω is computed using the well-known
function count, which is dedicated to counting the number of variables in a list that has a
given value [7]. The objective function is then as follows. It drives the solving process to find
a schedule that minimizes the largest difference between the number of activities scheduled
across the sub-periods.

minimize
∣∣∣ max

r∈R

(
Ωr

)
− min

r∈R

(
Ωr

)∣∣∣ (6)

Objective 2: Maximizing Same Equipment Withdrawal Overlaps. The goal is to maximize
the number of overlapping withdrawals of the same equipment. The rationale is that when
the same equipment is involved in different withdrawal requests, it is preferable to withdrawn
them simultaneously. Let D = E1 ∪ E2 ∪ ... ∪ En be a set containing the sets of equipment
from all the withdrawal requests. The objective function is defined as follows. It is based
on the overlapLength function that computes the number of overlapping days between two
activities [12]. All the overlaps are then summed up and maximized.

CP 2022

34:8 Maintenance Scheduling Inside an Electric Power Transmission Network

maximize
(∑

e1∈D

∑
e2∈D

{
overlapLength(e1, e2)

∣∣∣ e1 ̸= e2 ∧ id(e1) = id(e2)
})

(7)

It is noteworthy to highlight that the standard objective of minimizing the makespan
is not considered. In our application, there are no benefits to finishing the maintenance
as soon as possible. Spreading the maintenance schedule in the complete horizon is much
more desirable as it allows a better flexibility for the field operators. For instance, it allows
the planner to readjust dynamically the maintenance schedule when unpredictable events
happen, such as an equipment outage.

3 Solving the Transmission Maintenance Scheduling Problem

So far, the transit-power constraints have not been taken into account. Although such
constraints cannot be integrated inside the model, their satisfaction can be easily checked
thanks to a simulator that mimics the impact of a maintenance schedule on the real power
network. The simulator is based on complex differential power-flow equations and has been
developed internally by Hydro-Québec. It simulates power flow thanks to PSS/E software.

We propose to leverage this simulator, as a black-box tool, in order to verify the satisfia-
bility of a schedule. Let γ be the power grid considered, let s be a maintenance schedule
obtained as a solution for γ, and let d a specific day on the planning horizon. The simulator
consists of two black-box functions: (1) ψ1(γ, s, d) → R which computes the transit-power
generated by the solution for a specific day, and (2) ψ2(γ, s, d) → R, which computes a lower
bound on the transit-power that must be satisfied for the obtained schedule, also for a specific
day. A solution s on the power grid γ is feasible if it is always above the threshold during
the planning horizon.

ψ1(γ, s, d) ≥ ψ2(γ, s, d) ∀d ∈ [d0, d245] (8)

The idea of the solving process is to generate diverse solutions using the constraint program-
ming model and to filter them using the simulator. Solutions that are compliant with the
simulator are feasible and can be used in practice. This process is illustrated in Figure 5.

Figure 5 Illustration of the solving pipeline.

One challenge is to generate solutions that are diverse in order to maximize the chance of
having at least one schedule accepted by the simulator. We resort to three mechanisms to
ensure the diversity of solutions: (1) integrating domain knowledge as objective function,
(2) adding constraints dynamically when a solution has been found, and (3) directing the
search by a multi-point strategy. This section presents how these ideas are integrated into
the solving process. We assume that a solution satisfying all the formalized constraints is
obtained.

L. Popovic, A. Côté, M. Gaha, F. Nguewouo, and Q. Cappart 34:9

Mechanism 1: Injecting Domain Knowledge as Objective Function. Field specialists have
heuristic rules for creating scheduling satisfying the transit-power constraint. Those have
been formalized in Equations (6) and (7). The idea is to integrate such rules as a two-steps
objective function. The problem is first solved by maximizing the balance of the schedule.
From the solution obtained, a second solving process is executed in order to maximize the
withdrawal overlaps of the same equipment. The value of the first objective is allowed to
decrease up to a given threshold ϵ. This process is illustrated in Figure 6.

(a) Initial solution. (b) Adding Equation (6). (c) Adding Equation (7).

Figure 6 Illustration of the two-steps objective function.

Mechanism 2: Adding new Constraints Dynamically. Two solutions successively generated
by a CP solving process are likely to share many characteristics. We improve the diversity
of the solutions obtained by adding a new constraint each time a new feasible solution has
been found. Let w⋆ refer to the value of the variable w in the last solution found. The new
constraint ensures that the next generated solution must have at least l withdrawal requests
moved from at least d days of the previous solution. The start time is used as reference. We
empirically set d = 1 and l = 1, which already yielded diverse enough solutions.∑

w∈W

(∣∣s(w) − s(w⋆)
∣∣ ≥ d

)
≥ l (9)

Mechanism 3: Directing the Search by a Multi-Point Strategy. Finally, a multi-point
strategy with the default search heuristics proposed by CP Optimizer is used for driving
the solving process [13]. This strategy creates an initial set of solutions and combines them
together in order to produce improved solutions. It has the benefit of providing a more
diversified solution than a standard depth-first search. However, it acts as an incomplete
search procedure and cannot prove the optimality of a solution. That being said, this
limitation is not restrictive in our case, as we only need to find feasible solutions. The
objective functions are only used as heuristics.

4 Experimental results

The goal of the experiments is to show the adequacy of the approach to generate schedules
that can be used in practice for the geographic area considered. To do so, the maintenance
planning designed by field specialists for the year 2020 is considered and compared with
the planning obtained by our approach. In total, 359 withdrawal requests were considered
and 271 electrical equipment items are involved. Each withdrawal request involves at most
8 items, yielding a maximum of 2872 activities. The maintenance schedule has an impact
on five strategic points of the power grid infrastructure, also referred to as interface. Each

CP 2022

34:10 Maintenance Scheduling Inside an Electric Power Transmission Network

interface has its own transit-power constraints. It is interesting to mention that due to
Québec geography, the network is not intensively meshed. The production infrastructures
are all located in the North while most of the consumption is made in the South. The
experiments are executed on an Intel i5-8520 processor (1.6 GHz) with 16 GB of RAM. The
model is implemented in C++ using CP Optimizer 20.1. In total, the solving process took
1000 seconds. Roughly 85% of the execution time was dedicated to finding solutions and
15% was used to verify the transit-power constraints with the simulator.

4.1 Visualization of a Feasible Schedule
A visualization of the maintenance schedule obtained for the first interface is proposed in
Figure 7. The x-axis represents the planning horizon from day 0 to day 245. As commonly
done for scheduling problems, each gray bar represents the execution of the withdrawal
request associated with each equipment item. For practical reasons, only equipment that
affects the transit-power limit is displayed. For reasons of confidentiality, equipment names
are omitted. For instance, they can correspond to power lines, capacitors, transistors, etc.
The red curve indicates the transit-power generated by the maintenance schedule (output of
ψ1 function) while the blue curve indicates the transit-power limit (output of ψ2 function).
Consequently, a schedule satisfies the transit-power constraints if and only if the red curve is
always above the blue curve, which is the case for this interface. A similar result for three
other interfaces is presented in Appendix A. These results demonstrate that our approach is
sufficient to satisfy the transit-power constraints on these interfaces.

Figure 7 Visualization of a feasible maintenance schedule (first interface).

4.2 Visualization of an Unfeasible Schedule
Among the five interfaces considered in our power grid, four of them satisfy the transit-power
constraints. A visualization of the maintenance schedule obtained for the last one is proposed
in Figure 8. Interestingly, the transit-power constraints are violated only a few times (e.g.,
around day 50 and after day 200). Generally speaking, we also observe that the safety
margin between the two curves is tinier than the one presented in Figure 8. This case was

L. Popovic, A. Côté, M. Gaha, F. Nguewouo, and Q. Cappart 34:11

discussed with field specialists. They confirmed that ensuring the satisfaction of transit-power
constraints at this interface is challenging. In practice, they regularly have to accommodate
with a schedule that does not respect the constraints at this interface. Addressing this
challenging interface is part of future work.

Figure 8 Visualization of an unfeasible maintenance schedule (fifth interface).

4.3 Evaluating the Similarity with the Historical Schedule
The goal of this analysis is to highlight the similarities and the differences between the
solutions allowed by our constraints and the one designed by field specialists that was used
in 2020. Then, we will be able to assess if the decisions made are consistent with the ones
historically done, and otherwise discover potential sources of discrepancies. We propose a
visualization of this information using a confusion matrix. Each request can be either accepted
or refused by the field operator. By replaying the decision of the operator on historical
requests of 2020, Table 2 shows the proportion of withdrawal requests that have the same or
different status with our constraints and the historical model.

Table 2 Proportion of accepted or refused requests between both schedules in 2020.

Schedule allowed by the constraints
Approved Requests Refused requests

Historical schedule Approved requests 61.5% 12.5%
Refused requests 17% 9%

Interestingly, we notice that 70.5% (61.5% + 9%) of the requests have the same status. It
means that the decision regarding these requests is identical as what has been done in 2020.
In addition, 12.5% of the requests have been refused by our model while being accepted in
2020. This corresponds to situations where the field operator has accepted a request that
will cause a constraint violation. This has been done either intentionally (e.g., constraint
assessed to be too restrictive) or unintentionally given the complexity of this task. Finally,
17% of the requests have been approved by our model but were refused in 2020. This may

CP 2022

34:12 Maintenance Scheduling Inside an Electric Power Transmission Network

be an indication that some constraints used in practice by field specialists are missing in the
model. These can be either other technical constraints or non-related constraints such as
budget or workforce constraints.

4.4 Evaluating the Schedule Balance
This experiment assesses the schedule balance obtained with our model. To do so, we count
the number of requests per period of 31 days (one month) and analyze if the schedule provided
by our model has a similar balance as the one designed in 2020. This is summarized in
Table 3 for each period of 31 days since March 15. The spread value indicates the difference
between the maximum and the minimum values inside the planning horizon. The lower the
value is, the more balanced is the schedule. We can observe that our generated schedule is
slightly more balanced.

Table 3 Comparison of the maintenance schedule maintenance.

Planning horizon (split into 8 months) Spread value
1 2 3 4 5 6 7 8

Historical schedule 45 57 72 55 36 42 62 21 51
Our schedule 58 61 32 56 63 40 63 19 42

4.5 Evaluating the Overlaps between Equipment Withdrawals
Most of the time, the same equipment unit is involved in different withdrawal requests. The
second objective function is dedicated to maximizing the overlaps between these requests.
To evaluate this objective, we count the number of times an equipment has been withdrawn
from the network. Figure 9 shows the distribution of the number of withdrawals required
per equipment for the historical schedule (left) and for our model (right). We can observe
that the model is able to remove each equipment less often which is what is intended by this
objective function.

5 Conclusion and perspective

Modern electrical power utilities must maintain their electrical equipment and replace them as
they reach the end of their useful life. Generating an annual maintenance plan for the electric
power transportation equipment while maintaining the stability and efficiency of the network
is still a challenge at present. Based on this context, we proposed a constraint programming
approach for solving a realistic transportation maintenance scheduling problem. The focus
was to design an approach that could handle two types of constraints: (1) constraints that
could be naturally formalized inside a constraint programming model, and (2) constraints
that were too complex to be implemented but could be verified using a black-box tool. The
objective was to generate schedules similar to what is currently being done by field specialists
in order to simulate maintenance programs for the next 10 years. Experimental results show
that the model captures most of the unformalized constraints and is able to generate realistic
schedules. It is important to highlight that two kinds of constraints are not yet considered:
budget constraints, and specialized crew availability constraints. In future work, we shall
attempt to integrate such constraints into the model. Another interesting aspect is the
assessment of increased risk of failures during maintenance. For such a criticality analysis,

L. Popovic, A. Côté, M. Gaha, F. Nguewouo, and Q. Cappart 34:13

(a) Historical schedule. (b) Our schedule.

Figure 9 Comparison of the number of overlaps between equipment withdrawal.

other modeling and solving tools (e.g., stochastic programming [6]) may be considered.
Finally, another idea is to leverage methods from constraint acquisition in order to learn new
constraints from the interaction with the black-box simulator [5].

References
1 ILOG CPLEX – Cumul functions in CP Optimizer. https://www.ibm.com/docs/en/icos/

20.1.0?topic=concepts-cumul-functions-in-cp-optimizer. Accessed: 2022-02-06.
2 Abderrahmane Aggoun and Nicolas Beldiceanu. Extending CHIP in order to solve complex

scheduling and placement problems. Mathematical and computer modelling, 17(7):57–73, 1993.
3 David L Alvarez, Diego F Rodriguez, Alben Cardenas, F Faria da Silva, Claus Leth Bak,

Rodolfo García, and Sergio Rivera. Optimal decision making in electrical systems using an
asset risk management framework. Energies, 14(16):4987, 2021.

4 Christian Bessiere, Emmanuel Hebrard, George Katsirelos, Zeynep Kiziltan, Émilie Picard-
Cantin, Claude-Guy Quimper, and Toby Walsh. The balance constraint family. In International
Conference on Principles and Practice of Constraint Programming, pages 174–189. Springer,
2014.

5 Christian Bessiere, Frédéric Koriche, Nadjib Lazaar, and Barry O’Sullivan. Constraint
acquisition. Artificial Intelligence, 244:315–342, 2017.

6 John R Birge and Francois Louveaux. Introduction to stochastic programming. Springer
Science & Business Media, 2011.

7 Mats Carlsson, Johan Widen, Johan Andersson, Stefan Andersson, Kent Boortz, Hans Nilsson,
and Thomas Sjöland. SICStus Prolog user’s manual, volume 3. Swedish Institute of Computer
Science Kista, Sweden, 1988.

8 Aurélien Froger, Michel Gendreau, Jorge E. Mendoza, Eric Pinson, and Louis-Martin Rousseau.
Maintenance scheduling in the electricity industry: a literature review. European Journal of
Operational Research, 251(3):695–706, June 2016. doi:10.1016/j.ejor.2015.08.045.

9 Mohamed Gaha, Bilal Chabane, Dragan Komljenovic, Alain Côté, Claude Hébert, Olivier
Blancke, Atieh Delavari, and Georges Abdul-Nour. Global methodology for electrical utilities
maintenance assessment based on risk-informed decision making. Sustainability, 13(16), 2021.
doi:10.3390/su13169091.

CP 2022

https://www.ibm.com/docs/en/icos/20.1.0?topic=concepts-cumul-functions-in-cp-optimizer
https://www.ibm.com/docs/en/icos/20.1.0?topic=concepts-cumul-functions-in-cp-optimizer
https://doi.org/10.1016/j.ejor.2015.08.045
https://doi.org/10.3390/su13169091

34:14 Maintenance Scheduling Inside an Electric Power Transmission Network

10 Steven Gay, Renaud Hartert, and Pierre Schaus. Simple and scalable time-table filtering for
the cumulative constraint. In International conference on principles and practice of constraint
programming, pages 149–157. Springer, 2015.

11 Philippe Laborie and Jerome Rogerie. Reasoning with conditional time-intervals. In FLAIRS
conference, pages 555–560, 2008.

12 Philippe Laborie and Jérôme Rogerie. Temporal linear relaxation in IBM ILOG CP Optimizer.
Journal of Scheduling, 19(4):391–400, 2016.

13 Philippe Laborie, Jérôme Rogerie, Paul Shaw, and Petr Vilím. IBM ILOG CP Optimizer for
scheduling. Constraints, 23(2):210–250, 2018.

14 Jingcheng Mei, Guojiang Zhang, Donglian Qi, and Jianliang Zhang. Accelerated solution of
the transmission maintenance schedule problem: A bayesian optimization approach. Global
Energy Interconnection, 4(5):493–500, 2021. doi:10.1016/j.gloei.2021.11.001.

15 Hrvoje Pandzic, Antonio J. Conejo, Igor Kuzle, and Eduardo Caro. Yearly maintenance
scheduling of transmission lines within a market environment. IEEE Transactions on Power
Systems, 27(1):407–415, 2012. doi:10.1109/TPWRS.2011.2159743.

16 Ragheb Rahmaniani, Teodor Gabriel Crainic, Michel Gendreau, and Walter Rei. The benders
decomposition algorithm: A literature review. European Journal of Operational Research,
259(3):801–817, 2017.

17 Mariana Rocha, Miguel F. Anjos, and Michel Gendreau. Optimal planning of preventive mainte-
nance tasks on electric power transmission systems. In 31st European Safety and Reliability Con-
ference (ESREL), pages 1025–1025, January 2021. doi:10.3850/978-981-18-2016-8_721-cd.

18 Hiroki Shigetsugu, Stewart Whyte, Paul Penserini, Boudewijn Neijens, David Neilson, and Jos
Wetzer. Standardization activities of management of network assets in power systems in IEC,
April 2022.

19 Gilles Trudel, Jean-Pierre Gingras, and Jean-Robert Pierre. Designing a reliable power system:
Hydro-quebec’s integrated approach. Proceedings of the IEEE, 93(5):907–917, 2005.

A Appendix: Solutions at Other Interfaces

Figure 10 Visualization of a feasible maintenance schedule (second interface).

https://doi.org/10.1016/j.gloei.2021.11.001
https://doi.org/10.1109/TPWRS.2011.2159743
https://doi.org/10.3850/978-981-18-2016-8_721-cd

L. Popovic, A. Côté, M. Gaha, F. Nguewouo, and Q. Cappart 34:15

Figure 11 Visualization of a feasible maintenance schedule (third interface).

Figure 12 Visualization of a feasible maintenance schedule (fourth interface).

CP 2022

Peel-And-Bound: Generating Stronger Relaxed
Bounds with Multivalued Decision Diagrams
Isaac Rudich #

Mathematics and Industrial Engineering Department, Polytechnique Montréal, Canada

Quentin Cappart #

Computer Engineering and Software Engineering Department, Polytechnique Montréal, Canada

Louis-Martin Rousseau # Ñ

Mathematics and Industrial Engineering Department, Polytechnique Montréal, Canada

Abstract
Decision diagrams are an increasingly important tool in cutting-edge solvers for discrete optimization.
However, the field of decision diagrams is relatively new, and is still incorporating the library of
techniques that conventional solvers have had decades to build. We drew inspiration from the
warm-start technique used in conventional solvers to address one of the major challenges faced by
decision diagram based methods. Decision diagrams become more useful the wider they are allowed
to be, but also become more costly to generate, especially with large numbers of variables. We
present a method of peeling off a sub-graph of previously constructed diagrams and using it as
the initial diagram for subsequent iterations that we call peel-and-bound. We test the method on
the sequence ordering problem, and our results indicate that our peel-and-bound scheme generates
stronger bounds than a branch-and-bound scheme using the same propagators, and at significantly
less computational cost.

2012 ACM Subject Classification Applied computing → Operations research

Keywords and phrases decision diagrams, discrete optimization, branch-and-bound, sequencing,
constraint programming

Digital Object Identifier 10.4230/LIPIcs.CP.2022.35

Supplementary Material Other (Source Code for Experiments):
https://github.com/IsaacRudich/PnB_SOP

1 Introduction

Multivalued decision diagrams (MDDs) are a useful graphical tool for compactly storing
the solution space of discrete optimization problems. In the last few years, a staggering
number of new applications for MDDs have been proposed [8], such as representing global
constraints [26, 27, 28], handling stochastic variables [20, 19], and performing post-optimality
analysis [25]. MDDs are particularly useful for generating strong dual bounds [6, 7, 14, 21],
especially on optimization problems where linear relaxations perform poorly. There is a
subset of MDD research that uses a highly paralellizable branch-and-bound algorithm based
on decision diagrams [5, 10, 11, 22] to maximize the utility of using MDD based relaxations.
This paper furthers the work on the decision diagram based branch-and-bound by introducing
a method, referred to as peel-and-bound, of reusing the graphs generated at each iteration
of the algorithm. Specifically, the contributions are as follows: (1) we present the peel-
and-bound algorithm, (2) we identify several heuristic decisions that can be used to adjust
peel-and-bound, and discuss their implications, (3) we show that peel-and-bound outperforms
branch-and-bound on the sequence ordering problem (SOP), and (4) we provide insight into
how the algorithm can be applied to other problems.

© Isaac Rudich, Quentin Cappart, and Louis-Martin Rousseau;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 35; pp. 35:1–35:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:isaac.rudich@polymtl.ca
mailto:quentin.cappart@polymtl.ca
mailto:louis-martin.rousseau@polymtl.ca
https://hanalog.ca/person/louis-martin-rousseau/
https://doi.org/10.4230/LIPIcs.CP.2022.35
https://github.com/IsaacRudich/PnB_SOP
https://github.com/IsaacRudich/PnB_SOP
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 Peel-And-Bound: Generating Stronger Bounds with Decision Diagrams

The paper is structured as follows. The next section provides the necessary technical
background information and notation, as well as implementation details for the decision
diagram relaxations used in our experiments. In Section 3 we introduce the core contribution,
namely the peel-and-bound procedure. The algorithm is presented, and its limitations are
discussed. Computational experiments are proposed and discussed in Section 4.

2 Technical Background

The idea of using multivalued decision diagrams (MDDs) to generate relaxed bounds for
optimization problems was introduced by Andersen et al. (2010) [1]. This has been generalized
by Hadzic et al. (2008) [12] and Hoda et al. (2010) [13]. Following those papers, Bergman et
al. [5, 4] demonstrated the potential for a decision diagram based branch-and-bound solver
to be effective, and provided an efficient parallelization scheme. Gillard et al. (2021) [10]
further improved the decision diagram based branch-and-bound solver by adding pruning
techniques that can be used while the decision diagrams are being constructed, as well as to
remove nodes from the branch-and-bound queue.

This paper presents a new peel-and-bound scheme for combining restricted and relaxed
decision diagrams to find exact solutions. This section provides the required technical
background on how decision diagrams can be used to model sequencing problems, and how
to construct restricted/relaxed diagrams. It also introduces the notations used in this paper,
and details the existing algorithms considered in our experiments.

2.1 Decision Diagrams (DDs)

Let P be an instance of a discrete minimization problem with n variables {x1, ..., xn}, let
Sol(P) be the set of feasible solutions to P, let z∗(P) be an optimal solution to P, and let
D(xi) be the domain of variable xi, i ∈ {1, ..., n}. Let M be a multivalued decision diagram
that contains potential solutions to P . M is a directed acyclic graph divided into n+1 layers;
let ℓu be the index of the layer containing node u, u ∈M, and let Li be the set containing
the nodes on layer i. Layer 1 contains only a root node r (with no in arcs), and layer n + 1
contains just a terminal node t (with no out arcs). Each arc auv ∈ M goes from a node
u on layer ℓu ∈ {1, ..., n} to a node v on layer ℓu+1 (ℓu+1 = ℓv). Each arc auv has a label
representing the assignment of variable xℓu

to l ∈ D(xℓu
). An arc auv with label l (auv → l)

also has a value v(auv) equal to the value of being at node u and assigning xℓu
to l (xℓu

= l).
For simplicity, we sometime refer to v(auv) as v(a). Thus, each path from r to t represents
the assignment of the n variables to values, and a potential solution to P.

Let Sol(M) be the set of all paths in M from r to t, and let T ∗(u) be the value of the
shortest path from r to a node u. If Sol(M) = Sol(P), then M perfectly represents the
solution space of P , and we call M exact. If M is exact, then the value of the shortest path
through the diagram is z∗(P) (an optimal solution to P). Let the shortest path through
M be z∗(M). If Sol(M) ⊆ Sol(P), then M represents only feasible solutions to P, but
does not necessarily represent all feasible solutions to P. In this case, we call M restricted,
and use the notation M to mean that M is restricted. The shortest path through M is not
guaranteed to be optimal, but it is guaranteed to be feasible. If Sol(P) ⊆ Sol(M), then M
represents all of the feasible solutions to P , but potentially represents infeasible solutions as
well. In this case, we call M relaxed, and use the notation M to mean that M is relaxed.
The shortest path through M is guaranteed to be at least as good as z∗(P), but is not
guaranteed to be feasible.

I. Rudich, Q. Cappart, and L.-M. Rousseau 35:3

Constructing an exact decision diagram for P is often intractable for large values of n.
Observe that having an exact decision diagram means that the solution to P can be read
in polynomial time by recursively calculating the shortest path through M, so creating an
exact decision diagram for NP-hard problems, such as for the travelling salesperson problem
(TSP), is NP-hard as well [3]. The focus of most research that uses decision diagrams for
optimization is on the construction of M and/or M. Let w = w(M) be the width of the
largest layer of M. The creation of an exact decision diagram potentially leads to w being
an exponential function of n, but when creating M and/or M, w can be constrained to be
any natural number, limiting the number of operations construction will take. Let wm be
the largest width allowed during construction. As wm approaches the width necessary to
create an exact decision diagram, z∗(M) and z∗(M) approach z∗(P), but the number of
operations necessary to construct the diagram also increases.

Table 1 Example of a SOP instance: transition costs crow,col, with X indicating infeasible edges.

From
To

A B C D

A X 8 5 0
B X X 5 8
C X 5 X 5
D X X 1 X

Figure 1: Sequence Ordering Problem Instance

A

B C

C,D B

t

(B
, 8
) (C

, 5)

(C
,5)

(D
,8)

(B
,5)

(C
, 1)(D

, 5) (D
, 8
)

19

r

A

B C

C D B

t

(A
,0)

(B
, 8
) (C

, 5)

(C
,5)

(D
, 8)

(B
,5)

(D
, 5)

(C
,1) (D

, 8
)

16

r

A

B C

C B

t

(A
,0)

(B
, 8
) (C

, 5)

(C
,5)

(B
,5)

(D
, 5) (D

, 8
)

17

r

A

B C

C,D B

t

(A
,0)

(B
, 8
) (C

, 5)

(C
,5)

(D
,8)

(B
,5)

(C
, 1)(D

, 5) (D
, 8
)

18

Exact Diagram Restricted Diagram Relaxed Diagram
z∗ = [A, B, D, C] z∗ = [A, B, C, D] z∗ = [A, B, C, C]

T ∗ = 17 T ∗ = 18 T ∗ = 14

Figure 1 MDD Representation for the SOP instance presented in Table 1. Each arc a has the
format: (l, v(a)). The red path in each diagram indicates the shortest path from r to t.

Table 1 gives an instance of sequence ordering problem (SOP), and Figure 1 contains
simple examples of exact, restricted, and relaxed decision diagrams for that instance where
wm = 2 for M and M. The SOP requires finding the minimum-cost sequence of n elements
that includes each element exactly once, subject to transition costs cij of following xi with

CP 2022

35:4 Peel-And-Bound: Generating Stronger Bounds with Decision Diagrams

xj , and subject to precedence constraints requiring that certain elements precede others in
the sequence. In other words, the SOP is an asymmetric TSP with precedence constraints.
The label of each node matches the union of the labels of the incoming arcs. Each arc auv

is labeled in the format (l, val(auv)), representing the assignment of xℓu to l, and val(a)
represents the cost of the shortest path from the label of u to l. In other words, an arc with
label l leaving layer i, represents the assignment of l to the ith position of the sequence. The
red path in each diagram indicates the shortest path through the diagram, and T ∗ indicates
the cost of the shortest path through the diagram.

2.2 Restricted Decision Diagrams
Constructing M for a given width wm is a straightforward process that can be thought of as
a generalized greedy algorithm. Beginning with the root node r, an arc is generated for every
element in the domain of r, and a node is generated at the end of each arc in the second
layer. The process is repeated for each layer, except layer n where all outgoing arcs point to
the terminal, unless w(M) exceeds wm. Then the least promising node is removed from the
offending layer until w(M) is equal to wm. The definition of least promising is a heuristic
decision. For the purposes of this paper, the least promising node is the node u such that the
shortest path from r to u is longer than the shortest path from r to any other node v ≠ u in
layer ℓu.

It is of note that another method of reducing the width of M is merging equivalent nodes.
In the SOP, two nodes can be considered equivalent if they have the same state (last element
in the sequence), and all incoming paths have visited the same set of elements. For example,
a node with exactly one incoming path [A, B, C] could be merged with a node in the same
layer with exactly one incoming path [B, A, C]. In many MDD applications this is a valuable
insight, and it helps motivate the algorithm for constructing M. However, for the SOP, we
observed that the work of finding equivalent nodes in M often outweighed the benefit of
being able to merge nodes.

2.3 Relaxed Decision Diagrams
There are many methods of constructing relaxed decision diagrams, and many heuristic
decisions that must be made when doing so. In this paper, we focus on the method described
by Cire and van Hoeve (2013) [9] for sequencing problems. As opposed to the top-down
construction described in Section 2.2, hereM will be constructed by separation. Constructing
DDs by separation usesM as a domain store over which constraints can be propagated. This
method starts with a weak relaxation, and then strengthens it by splitting nodes until each
layer is either exact, or has a width equal to wm. The algorithm begins from a 1-width MDD
with an arc from the node on layer ℓi to the node on layer ℓi+1 for each element that can be
placed at position ℓi in the sequence. Thus, even though each layer only has one node, there
can be several arcs between layers (see the relaxed diagram in Figure 1). Then a node u is
selected and split to strengthen the relaxation. The process of splitting u involves creating
two new nodes u′

1 and u′
2, and then distributing the in arcs of u between u′

1 and u′
2. Then

for each out arc auv from u, arcs au′
1v and au′

2v are added such that auv, au′
1v and au′

2v all
have the same label. Finally u′

1 and u′
2 are filtered to remove infeasible and sub-optimal arcs.

A collection of filtering rules are used to check each arc. As an example, given a feasible
solution to P with objective value zopt, an arc a can be removed if all paths containing a

have an objective value greater than zopt. The full process of identifying which arcs can be
removed is detailed in Cire and van Hoeve (2013) [9], and is not replicated here.

I. Rudich, Q. Cappart, and L.-M. Rousseau 35:5

The following notation and definitions are critical to understanding these algorithms. Let
All↓

u be the set of arc labels that appear in every path from r to u. Let Some↓
u be the set

of arc labels that appear in at least one path from r to u. Let All↑
u and Some↑

u be defined
as above, except that they refer to paths from u to t. Let J be the set of all possible arc
labels. For the SOP, we define an exact node u as a node where Some↓

u = All↓
u and all arcs

ending at u originate from exact nodes. Intuitively, a node u is exact if all paths to u contain
the same set of labels, and all parents of u are exact. Algorithm 1 formalizes the process of
strengthening M.

Algorithm 1 Refining Decision Diagrams for Sequencing [9].

1 Let M be an MDD such that Sol(M) ⊇ Sol(P)
2 for layer Lj ∈M from j = 1 to j = n do
3 while |Lj | < wm and ∃ some node y ∈ Lj such that y is not exact do
4 J← getAssignmentOrdering(P)
5 The getAssignmentOrdering() function returns a heuristically defined ordering of the

values that can be assigned to decision variables
6 for ϕ ∈ J while |Lj | < wm do
7 S ← selectNodes(Lj ,ϕ)
8 The selectNodes() function returns the set of nodes u ∈ Lj such that

ϕ ∈ Some↓
u\All↓

u

9 for u ∈ S while |Lj | < wm do
10 Create two new nodes u′

1, u′
2

11 Lj ← (Lj ∪ {u′
1, u′

2})
12 foreach arc avu do
13 if ϕ ∈ (All↓

v ∪ the label of a) then
14 Redirect a such that avu′

1

15 else
16 Redirect a such that avu′

2

17 end
18 end
19 foreach arc auv do
20 Create arcs au′

1v and au′
2v such that

label(auv) = label(au′
1v) = label(au′

2v)
21 filter(au′

1v), filter(au′
2v)

22 filter(a) runs a list of quick checks to see if an arc can be removed
23 end
24 Lj ← (Lj\u)
25 end
26 end
27 end
28 end
29 return M

Deciding which nodes to split, and how to split them, are heuristic decisions with a
significant impact on the bound that can be achieved without exceeding wm [3]. The
algorithm discussed here selects nodes that can be split into equivalency classes, such that
every path to the new node contains a certain label. Deciding which equivalency classes to

CP 2022

35:6 Peel-And-Bound: Generating Stronger Bounds with Decision Diagrams

produce first is another heuristic decision. The details of ordering the importance of the
labels are specific to the problem being solved, and are not discussed here. However, it is
important to note that the ordering for this implementation is static, and does not change
between iterations.

2.4 Branch-and-Bound with Decision Diagrams
In a typical branch-and-bound algorithm, the branching takes place by splitting on the
domain of the variables. With decision diagrams, the branching takes place on the nodes
themselves by selecting a set of exact nodes to represent the problem. The solver outlined by
Bergman et al. [4] defines an exact node as a node u for which every path from r to u ends
in an equivalent state. As mentioned above, we can be more specific when applying this to
sequencing problems, and define an exact node u as a node where Some↓

u = All↓
u and all arcs

ending at u originate from exact nodes. An exact cutset is defined as a set of exact nodes
that contain every path from r to t. Let M(u) be a relaxed decision diagram with root u,
and letM(u) be a restricted decision diagram with root u. The branch-and-bound algorithm
for MDDs proceeds by selecting an exact cutset of M, and using each node u in the cutset
as the root for a new restricted decision diagram M(u) and relaxed decision diagram M(u).
A node can be removed from the queue if the relaxation of that node is not better than the
best known solution to P , otherwise the exact cutset of the new node is added to the queue,
and the process repeats until the queue is empty. This is detailed by Algorithm 2.

Gillard et al. [10] expanded on Algorithm 2 by incorporating a local search. A heuristic is
used to quickly calculate a rough relaxed bound1 at each node, and if the length of the shortest
path to that node plus the rough relaxed bound is worse than the best known solution, the
node can be removed. More formally, let rrb(u) be a rough relaxed bound on P starting from
node u, and let zopt be the value of best known solution so far. If T ∗(u) + rrb(u) > zopt, the
node can be removed. They also provide evidence that if rrb(u) is inexpensive to compute,
it can be used to filter nodes in M and M. The method of using a rough relaxed bound to
trim nodes is used in this paper, but the details are problem specific and are discussed in a
later section.

3 Peel-and-Bound Algorithm

The motivation for peel-and-bound stems from an observation about Algorithm 1. When
implemented in a branch-and-bound structure, a large portion of the work done while
generating each M is repeated at every iteration. Creating the relaxation for some exact
node u in the queue requires creating a 1-width decision diagram, iterating over each layer
from the top down, and splitting nodes in a predetermined order. The static order of node
splits means that for each node y such that ℓy > ℓu, the first equivalency class created when
splitting y is the same inM(r) andM(u). The existing arcs for both diagrams will be sorted
in the same way, and the only difference is the possibility of filtering arcs in M(u) that could
not be filtered in M(r) due to the added constraint that all paths must pass through u.
The extra filtered arcs are the reason that M(u) may produce a stronger bound than M(r).
However, because equivalency classes are chosen in the same order each time, many arcs that
were filtered while constructing M(r) will also be filtered again while constructing M(u).

1 Gillard et al. [10] call the value rough upper bound, but since we are testing a minimization problem in
this paper, we use the term rough relaxed bound instead.

I. Rudich, Q. Cappart, and L.-M. Rousseau 35:7

Algorithm 2 Decision Diagram based Branch-and-Bound (BnB) [4].

1 Let Muu′ be a partial diagram with root u and terminal u′

2 Let v∗(u) be the lower bound of P resulting from starting at node u

3 Let zopt be the value of the best known solution
4 Q = {r}
5 v∗(r)← 0
6 zopt ←∞
7 while Q ̸= ∅ do
8 u←selectNode(Q), Q← Q\{u}
9 M←M(u)

10 if v∗(M) < zopt then
11 zopt ← v∗(M)
12 end
13 if M is not exact then
14 M←M(u)
15 if v∗(M) < zopt then
16 S ← exactCutset(M)
17 foreach u′ ∈ S do
18 let v∗(u′) = v∗(u) + v∗(Muu′)
19 Q← Q ∪ u′

20 end
21 end
22 end
23 end
24 return zopt

There is a sub-graph of M(r), induced by node u, that contains all of the paths that will be
encoded in M(u), but does not contain the arcs that are filtered from both diagrams during
construction. Thus, less work needs to be performed at each iteration of branch-and-bound
by starting from that sub-graph instead of a 1-width diagram. If the split order is static,
the same diagram is generated starting from either the 1-width diagram, or the sub-graph
induced by u. If the split order changes between branch-and-bound iterations, the sub-graph
induced by u is still a valid relaxation, but the generated diagram will differ from one that
began at width 1.

Consider a SOP instance where the goal is to order the elements [A, B, C, D], subject to
the precedence constraint that A must precede D, an alphabetical ordering heuristic, and
wm = 3. Figure 2 shows M(r), and M(A) in three stages. The first stage is the initial
1-width diagram. The second stage is after one split on each layer, and the third stage is
the complete diagram. The sub-graph shared by M(r) and M(A) is highlighted in blue,
indicating that in this case the first two splits could have been read from M(r) instead of
being re-created from scratch. For the sake of legibility, arc values and arc labels are not
included.

This mechanism can be embedded into a slightly modified version of the standard branch-
and-bound algorithm based on decision diagrams (Algorithm 2). In peel-and-bound, the
queue stores diagrams instead of nodes. After the initial relaxation M(r) is generated, the
entire diagram is placed into the queue Q such that Q = {M(r)}. Then a diagram M(u)
is selected from Q (for the first iteration M(u) =M(r)). However, instead of selecting an

CP 2022

35:8 Peel-And-Bound: Generating Stronger Bounds with Decision Diagrams
Name: Isaac Rudich Decision Diagrams

Date: January 30, 2022 SOP Paper Figures

r

A B C

A0 B C,D

A00 B C,D

t

1

A

B,C,D

B,C,D

t

3

A

B C,D

B C,D

t

2

A

B C D

B C D

t

4

M(r) M(A) Stage 1 M(A) Stage 2 M(A) Stage 3

Figure 2 Example of an induced sub-graph for a SOP instance (shown in blue), and the associated
relaxed decision diagram with the same root.

exact cutset ofM(u), a single exact node e fromM(u) is selected. The process of selecting a
diagram and exact node are heuristic decisions that are discussed in Section 3.1. The process
of peeling e is as follows. Create an empty diagram u, remove e from M(u), and then put
e into u such that e is the root of u, and the arcs leaving e still end in M(u). Then for
each node y in M(u) with an in arc that originates in u, a new node y′ is made and added
to u. Each in arc aoy of y that originates in u is removed and then arc aoy′ is added to u.
Then the out arcs of y and y′ are filtered using the same filter function as Algorithm 1. The
process of removing and adding arcs is repeated until there are no arcs ending in M(u) that
originate in u. This procedure accomplishes a top-down reading of the sub-graph induced
by e, and potentially strengthens M(u) by removing nodes and arcs in the process. If the
shortest path through the modified M(u) is less than the best known solution, M(u) is put
back into Q. u is relaxed using Algorithm 1, let M(u) be the result; then if the shortest
path through the refined diagram M(u) is less than the best known solution, M(u) is added
to Q. The whole procedure is repeated until there are no nodes left in the queue (Q = ∅).
A peel operation is illustrated and explained in Figure 3. Peel-and-bound is formalized in
Algorithm 3, and the peel operation is formalized in Algorithm 4.

Separating each node u during a peel requires creating a new node u′, moving the in arcs
of u that originate in the peeled diagram u to u′, copying the out arcs of u to u′, and then
filtering the out arcs of u and u′. Creating a new node in our implementation has a time in
O(n) due to storing state information that has a size in O(n) (such as All↓

u′). However, it is
possible that in other applications the size of a node is in O(1). The number of in arcs of u is
at most w, although this worst case is unlikely in practice because it requires u to have width
w and for each node in u on layer ℓu−1 to have an arc ending at u. Thus, moving the in arcs
of u has a time in O(w). The number of out arcs of u is at most n, and each arc has a size in
O(1), so copying the out arcs has a time in O(n). Each individual filtering process has a time
in O(1) as it uses only existing state information from u and u′, and it is performed on the
at most 2n out arcs of u and u′. Thus, filtering the out arcs has a time in O(n). Therefore,
separating one node during the peel process has a time in O(n + w). Separations during a
standard relaxation procedure require selecting a node (O(w)), making a new node (O(n)),
partitioning the in arcs (O(nw)), copying the out arcs (O(n)), and filtering the out arcs
(O(n)). The reason that there can be more in arcs during a standard relaxation procedure is

I. Rudich, Q. Cappart, and L.-M. Rousseau 35:9

r

AB C

A0 B C,D

A00 B C,D

t

5

r

AB C

A0 B C B C,D

A00 B C,D

t

6

r

AB C

A0 B C B C,D

A00 B C,D B C,D

t

7

r

AB C

A0 B C B C,D

A00 B C,D B C,D

t t

8

(1) (2) (3) (4)

Figure 3 An example of a peel operation. In (1), A is selected to induce the peel process and
removed from the the original diagram (M(r) from Figure 2). In (2) the arcs that connect A to the
original diagram are moved to copies of the nodes they originally ended at, and infeasible arcs are
filtered. In (3) and (4) the process is repeated until the diagrams are disconnected.

Algorithm 3 Peel-and-Bound (PnB) Algorithm.

1 Let v∗(u) be the lower bound of P resulting from starting at node u

2 Let zopt be the value of the best known solution
3 Q = {M(r)}
4 zopt ←∞
5 while Q ̸= ∅ do
6 D←selectDiagram(Q), Q← Q\{D}
7 u←selectExactNode(D)
8 u,D∗ ← peel(D, u) (See Algorithm 4)
9 if v∗(D∗) < zopt then

10 Q← Q ∪ {D∗}
11 end
12 M←M(u)
13 if v∗(M) < zopt then
14 zopt ← v∗(M)
15 end
16 if M is not exact then
17 M←M(u)
18 if v∗(M) < zopt then
19 Q← Q ∪ {M}
20 end
21 end
22 end
23 return zopt

because the nodes in a 1-width diagram can have in arcs with different labels coming from
the same node, whereas the structure of the diagram during a peel guarantees that each
node u can have only one in arc from each node on the layer ℓu − 1. Thus, the total time for
a separation in a standard relaxation is in O(nw).

CP 2022

35:10 Peel-And-Bound: Generating Stronger Bounds with Decision Diagrams

Algorithm 4 Peeling process used in Algorithm 3.

1 Let in(u) for some node u be the set of arcs that end at node u

2 Let out(u) for some node u be the set of arcs that originate from node u

3 Let in(M) for some MDD M be the set of arcs that end in M
4 Let out(M) for some MDD M be the set of arcs that originate in M
5 input: a relaxed MDD D, and an exact node u in D

6 Let u be an empty decision diagram
7 in(u)← ∅
8 D← D\u
9 u← u

10 while in(D) ∩ out(u) ̸= ∅ do
11 foreach node m ∈ D with an in arc that originates in u do
12 create a new node m′, and add it to u

13 foreach arc a ∈ in(m) that originates in u do
14 change the destination of a to m′

15 filter(a)
16 end
17 foreach arc a ∈ out(m) do
18 filter(a)
19 end
20 end
21 end
22 while ∃ some node m ∈ D with in(m) = ∅ or out(m) = ∅ (excluding r and t) do
23 in(m)← ∅
24 out(m)← ∅
25 D← D\{m}
26 end
27 return (u, D)

The maximum number of separations during a peel is the maximum number of nodes
in the peeled diagram. A peeled diagram can have at most (n − 3) × w + 2 nodes, and
thus the number of nodes is in O(nw). Therefore, the entire peel process has a time in
O(n2w + nw2). The maximum number of separations during a standard relaxation is the
exact same as during a peel, since the resulting diagram will be the same size. Thus, the
standard relaxation has a total time in O(n2w2). However, peel-and-bound uses a peel to
generate some fraction of the nodes, then a standard relaxation to generate the rest. Let α

be the percent of nodes that are peeled during the peel. It follows that the total time for an
iteration of peel-and-bound is in O(α(n2w + nw2) + (1− α)(n2w2)). Therefore, the larger
that α grows, the more time peel-and-bound saves over branch-and-bound.

3.1 Advantages and Implementation Decisions
The branch-and-bound algorithm proposed by Bergman et al. (2016) [4] requires selecting
an exact cutset of M. Peel-and-bound requires selecting a diagram from the queue, and
an exact node to start the peel process. The choice of node has a substantial impact on
how quickly the process converges to an optimal solution, because it serves two purposes
simultaneously. As discussed earlier, the first purpose of peeling is to avoid recreating a

I. Rudich, Q. Cappart, and L.-M. Rousseau 35:11

portion of the diagram at each iteration. The second purpose is to strengthen the overall
relaxation. Let u be a diagram peeled fromM, and letM∗ beM after the peel operation. If
Sol(P) ⊆ Sol(M) then Sol(P) ⊆ Sol(M∗) ∪ Sol(u). The only step of peel-and-bound that
removes paths is the filter step, which only removes an arc if no feasible solutions can pass
through that arc. If the node the peel is induced from contains the shortest path through M,
then there will be a new shortest path through M∗ with T ∗(M∗) ≥ T ∗(M). Similarly after
peeling, the peeled diagram is going to be strengthened and T ∗(M(u)) ≥ T ∗(u). Therefore,
when implementing the selectDiagram and selectExactNode functions from Algorithm 3, we
propose selecting the diagram D with the weakest bound, and an exact node from D that
contains z∗(D) at each iteration. Using these parameters, the peel step of peel-and-bound
strengthens the relaxed bound of P, in addition to providing a stronger initial diagram to
use when generating M(u).

We propose two heuristics for selecting a node from D that contains z∗(D). The first
heuristic picks the first node in the shortest path through the diagram with at least one child
that is not exact, we call this the last exact node. The second heuristic picks the frontier
node, the highest-index exact node that contains z∗(D). Taking the last exact node is more
of a breadth-first search, taking the largest possible set of nodes that can be strengthened
(anything above the last exact node is exact, and cannot be improved). In contrast, taking
the frontier node is more of a depth-first search, taking fewer nodes and exploring those
nodes at greater depth.

Cire and van Hoeve (2013) [9] propose that each iteration of Algorithm 1 starts from a
1-width MDD. However, for peel-and-bound with a non-separable objective function, starting
from a 1-width MDD poses a problem. The arcs in such a diagram do not have exact values,
because they are dependent on the state of the node they originate from. As nodes are
peeled, the values of those arcs must be updated, and the operation becomes computationally
expensive at scale. This problem can be avoided by creating the initial diagram using a
structure where all of the arcs ending at a given node have the same label. The resulting initial
diagram has a width of n, and each node on the layer is assigned to one state s ∈ {1, ..., n}.
Then every possible feasible arc between consecutive layers is added. Thus, the nodes of M
do not have relaxed states, and each arc can only take one possible value. Starting from
such a diagram not only removes the need to update arc values, it ensures that every arc
generated during peel-and-bound is an exact copy of an arc that exists in the initial diagram,
since arcs are only copied or removed, never updated or added. An alternative method of
handling non-separable objective functions is explored by Hooker [15, 16, 17].

3.2 Limitations and Handling Memory
The focus of this paper is sequencing problems, but peel-and-bound can be easily applied
to other optimization problems. However, some existing MDD based methods conflict with
peel-and-bound. For example, some MDD algorithms use a dynamic variable order [18], such
that the variables the layers on M are mapped to in one iteration of branch-and-bound,
are different in the next. Peel-and-bound as it is presented in this paper cannot be paired
with a dynamic variable order. Furthermore, the method in this paper is specific to decision
diagrams generated using separation. We believe the method can be extended to decision
diagrams that use a merge operator, but it has not been shown here.

Memory limitations present a problem for peel-and-bound in theory, but not in practice.
Each open diagram remains in the queue, and thus must be stored in memory. However, this
problem can be handled in many ways; two are given here. A dynamic method of handling the
problem is to start targeting large diagrams with bounds close to zopt as memory limitations

CP 2022

35:12 Peel-And-Bound: Generating Stronger Bounds with Decision Diagrams

start to become a problem. Such diagrams can usually be closed quickly, and subsequently
removed from memory, freeing up space for the algorithm to continue. Alternatively, the
diagrams with bounds closest to zopt can be deleted in favor of storing just the root node,
then when they need to be processed, initial diagrams are generated for those once again.
This method essentially falls back to branch-and-bound until memory limitations cease to be
a problem. Additional approaches for working with memory limitations, and evidence that
the problem can be handled efficiently, are presented in Perez and Régin (2018) [23].

3.3 Integrating Rough Relaxed Bounds
This implementation incorporates the rough relaxed bounding method proposed by Gillard
et al. [10]. Rough relaxed bounding was used to trim the domain of each node during
construction of the restricted DDs, and was also added as a check to the filter function in
Algorithm 1. When the initial model is created, a map is also created from each node u, to a
list of the other nodes sorted by their distance from u. The rough relaxed bound rrb(a) of
an arc afg was calculated as follows. For each node u that has not necessarily been visited
(u /∈ All↓

g), look up the shortest distance from that node to a different node that has also not
been visited. Then, sort the resulting list, and repeatedly remove the largest value until the
list has a length equal to the number of remaining decisions. The sum of the values in the
list, plus the value of the shortest path from r to the end of a, is the rough relaxed bound of
a. If rrb(a) is worse than the best known solution, the arc is removed.

4 Experiments on the Sequence Ordering Problem

The goal of this section is to assess the performances of the peel-and-bound algorithm (PnB,
Algorithm 3). To do so, a comparison with the standard decision diagram based branch-
and-bound algorithm (BnB, Algorithm 2) is proposed. Both algorithms are implemented
in Julia and are open-source2. To ensure a fair comparison, both algorithms resort to the
same function for generating relaxed decision diagrams (Algorithm 1), and the same function
for generating restricted decision diagrams. While the functions being called are the same,
there are two differences at run-time. At the end of line 26 in Algorithm 1, an additional
operation runs during BnB where the values of the arcs leaving layer j are updated. The
second difference is that BnB starts each relaxation from a 1-width DD, while PnB passes a
partially completed diagram to the relaxation function as a starting point.

The testing environment was built from scratch to ensure a fair comparison, so it lacks the
many propagators used by cutting-edge solvers like CPO to remove nodes from the PnB/BnB
queue [2, 9]. However, it provides a clean comparison of the two algorithms by requiring
that every function used by both BnB and PnB is exactly the same between the two, with
the only differences arising due to PnB’s ability to ensure that all arcs are exact from the
beginning. All of the heuristic decisions that were made are identical for both algorithms.

4.1 Description of the Heuristics Considered
The sequence ordering problem can be considered as an asymmetric travelling salesperson
problem with precedence constraints. The objective is to find a minimum cost path that visits
each of the n elements exactly once, and respects the precedence constraints. The method

2 https://github.com/IsaacRudich/PnB$_$SOP

https://github.com/IsaacRudich/PnB$_$SOP

I. Rudich, Q. Cappart, and L.-M. Rousseau 35:13

used for generating relaxed DDs requires creating a heuristic ordering of all possible arc
assignments by importance. The arc values in this case are representative of the n elements
in the path. The ordering used was generated by sorting the n elements, first by their average
distance from the other elements, and then by the number of elements each element must
precede. The resulting order places a higher importance on elements that are far away from
other elements and must precede many other elements.

The branch-and-bound algorithm processes nodes in an order designed to try and improve
the existing relaxed bound at each iteration. When a node u is added to the BnB queue, it
is assigned a value equal to the value of the shortest path from the root r to the terminal t,
that passes through u. The best known relaxed bound on the problem is the smallest value
of a node in the queue, and that node is always chosen to be processed. Peel-and-bound
is implemented with the same goal of improving bounds at each iteration. However, PnB
stores diagrams, not nodes. Let the value of a diagram be the value of the shortest path
to the terminal. At each iteration of peel-and-bound, the diagram with the lowest value is
selected, and then a node is chosen from that diagram to induce the peel process. All of the
experiments here used a process where the selected node is the first node in the shortest
path from r to t with a child node that is not exact (the last exact node). Testing was
done to determine whether using the last exact node or the frontier node would perform
better for the problem being considered, but there was not a significant difference between
the two during any of the tests. Several of the benchmark problems were run using various
decision diagram widths, and the last exact node was chosen because it sometimes showed a
very slight improvement over the frontier node. While it is likely that this choice makes a
difference on some problems, it does not matter for the SOP.

4.2 Experimental Results
The experiments were performed on a computer equipped with an AMD Rome 7532 at 2.40
GHz with 64Gb RAM. The solver was tested using DD widths of 64, 128, and 256 on the
41 SOP problems available in TSPLIB [24]. For comparisons between PnB and BnB, a
timestamp, new bounds, and the length of the remaining queue were recorded each time
the bounds on a problem were improved. Another experiment was performed to test the
scalability of PnB at width 2048, for which only the final bounds were recorded. Execution
time was limited to 3, 600 seconds.

The smallest DD width tested for both methods was 64, and the largest DD width tested
was 256. Table 2 has summary statistics for those widths as the percentage improvement
demonstrated by PnB. A positive percentage always indicates that PnB performed better
than BnB in that category, while a negative percentage indicates that BnB performed better.
Figure 4 shows performance profiles for all of the experiments. Table 3 contains summary
statistics comparing PnB at width 256 to PnB at width 2048, where a positive percentage
always indicates that the width of 2048 performed better.

Table 2 Summary Statistics: percentage improvement of peel-and-bound over branch-and-bound.
RB = Relaxed Bound, BS = Best Solution, OG = Optimality Gap, QL = Queue Length. Tables 4
and 5 in Appendix A show the comprehensive results.

Width: 64 Width: 256
RB BS OG QL RB BS OG QL

Average % Improvement 114% 0.5% 22.8% 1, 647% 545% 3.3% 181% 308%
Median % Improvement 26% 0.05% 17.4% 734% 80% 1.7% 35% 141%

CP 2022

35:14 Peel-And-Bound: Generating Stronger Bounds with Decision Diagrams

Table 3 Summary Statistics: percentage improvement of peel-and-bound at width 2048 over
peel-and-bound at width 256. Table 6 in Appendix A shows the comprehensive results.

PnB: 2048 v PnB: 256
Relaxed Bound Best Solution Optimality Gap

Average % Improvement 19.5% 0.8% 18.6%
Median % Improvement 16.3% 0.5% 13.7%

Figure 4 Performance Profiles: the optimality gap = upper_bound−lower_bound
upper_bound

.

As shown in Table 2, peel-and-bound vastly outperforms branch-and-bound in these
experiments. The average and median improvements from using peel-and-bound at both
widths are significant in terms of the relaxed bound, the remaining optimality gap, and the
number of nodes that still need to be processed. The best solution found by the end of the
runtime also tends to be slightly better with peel-and-bound, but the found solutions are
often so close to the real optimal solutions that there is little room for improvement. At
both widths, six of the problems were solved to optimality. BnB was faster in only one of
those cases, and in that case the difference was .04 seconds. The median time for PnB to
close in these cases was 191% faster at a width of 64, and 580% faster at a width of 256.
The relaxed bound produced by PnB at a width of 64 was better for 28 of the remaining
35 problems, and at a width of 256 was better for 34 of the remaining 35 problems. The
optimality gap was similarly better for peel-and-bound on every problem except the ones
where branch-and-bound found a better relaxed bound. However, of the problems where
branch-and-bound had a better optimality gap, the improvement was less than 1% for all
but one problem. Figure 4 reinforces that even though there are some instances where a
specific branch-and-bound setting slightly outperforms a specific peel-and-bound setting, the
gap in those cases is small relative to the general gap between all peel-and-bound settings
and all branch-and-bound settings.

As shown in Table 3, increasing the width to 2048 from 256 led to an 19.5% average
improvement (16.3% median improvement) in the relaxed bound. Figure 4 shows that the
performance of peel-and-bound nearly uniformly increases with the maximum allowable
width. Similar to the difference between branch-and-bound and peel-and-bound, some specific

I. Rudich, Q. Cappart, and L.-M. Rousseau 35:15

instances see a small out-performance of the peel-and-bound running at a smaller width, but
the gap is small relative to the usual gap between the 2048-width experiment and the rest of
the experiments. Additionally, Figure 4 shows that peel_2048 solved 50% of instances to
within a 42% optimality gap, peel_64 solved 50% of instances to within a 67% optimality
gap, and the best performing branch and bound (bnb_64) solved 50% of instances to within
only a 79% optimality gap. The overall performance of peel-and-bound improves as more
problems are considered, especially as the maximum allowable width for the decision diagrams
is increased.

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

0 300 600 900 1,200 1,500 1,800 2,100 2,400 2,700

Va
lu

e
of

 B
ou

nd

Seconds

Bound Over Time | ESC 25 | Width 256

BnB:Restricted BnB:Relaxed PnB:Restricted PnB:Relaxed

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

0 300 600 900 1,200 1,500 1,800 2,100 2,400 2,700 3,000 3,300 3,600

Va
lu

e
of

 B
ou

nd

Seconds

Bound Over Time | ft70.1 | Width 256

BnB:Restricted BnB:Relaxed PnB:Restricted PnB:Relaxed

Solved SOP Unsolved SOP

Figure 5 Dual bounds of ESC25 and ft70.1 over the runtime of the experiment.

The selected graphs shown in Figure 5 are representative of the two main types of behavior
observed over the problem set. On problems where the underlying relaxation method works
well, the relaxed bound moves quickly towards convergence with the best found solution. On
problems where the underlying relaxation does not work well, both algorithms slowly improve
the relaxed bound, but PnB starts stronger as it can use exact arc values, and it maintains
the advantage throughout. It is clear from the time-series data that to be competitive with
cutting-edge solvers, peel-and-bound must be combined with other constraint programming
propagators. However, it is also clear that peel-and-bound can have a significant edge over a
propagator that generates the required decision diagrams from scratch at each iteration.

5 Conclusion and Future Work

This paper presented a peel-and-bound algorithm as an alternative to branch-and-bound. In
peel-and-bound, constructed decision diagrams are repeatedly reused to avoid unnecessary
computation. Additionally, peel-and-bound can be used in combination with a decision
diagram structure that only admits exact arc values, to increase scalability and further
reduce the amount of work needed at each iteration of the algorithm. We identified several
heuristic decisions that can be used to adjust peel-and-bound, and provided insight into how
the algorithm can be applied to other problems.

We compared the performance of a peel-and-bound scheme to a branch-and-bound scheme
using the same DD based propagator. We tested both algorithms on the 41 instances of the
SOP from TSPLIB. Results show that peel-and-bound significantly outperforms branch-and-
bound on the SOP by generating substantially stronger relaxed bounds on instances that were
not closed during the experiment, and reaching optimality faster when the instances were
closed. This paper provides strong support for the value of re-using work in DD based solvers.

CP 2022

35:16 Peel-And-Bound: Generating Stronger Bounds with Decision Diagrams

Furthermore, peel-and-bound benefits from scaling the maximum allowable width. Thus,
relaxed DDs that yield strong bounds at scale, but are too costly to generate iteratively, only
need to be constructed once. The method detailed in this paper focused on DDs generated
by separation; future research could focus on DDs generated using a merge operator.

References
1 Henrik Andersen, Tarik Hadzic, John Hooker, and Peter Tiedemann. A constraint store based

on multivalued decision diagrams. In Bessière, C. (eds) Principles and Practice of Constraint
Programming – CP 2007, volume 4741 of Lecture Notes in Computer Science, pages 118–132,
September 2007.

2 Philippe Baptiste, Claude Le Pape, and Wim Nuijten. Constraint-Based Scheduling: Applying
Constraint Programming to Scheduling Problems. International Series in Operations Research
and Management Science, Kluwer. Springer International Publishing, 2001.

3 David Bergman, Andre Cire, Willem-Jan van Hoeve, and John Hooker. Decision Diagrams
for Optimization. Springer International Publishing, January 2016.

4 David Bergman, Andre Cire, Willem-Jan van Hoeve, and John Hooker. Discrete optimization
with decision diagrams. INFORMS Journal on Computing, 28:47–66, February 2016.

5 David Bergman, André A. Cire, Ashish Sabharwal, Horst Samulowitz, Vijay Saraswat, and
Willem-Jan van Hoeve. Parallel combinatorial optimization with decision diagrams. Proceedings
of the International Conference on AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems, pages 351–367, 2014.

6 Quentin Cappart, Emmanuel Goutierre, David Bergman, and Louis-Martin Rousseau. Improv-
ing optimization bounds using machine learning: Decision diagrams meet deep reinforcement
learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages
1443–1451, 2019.

7 Margarita Castro, Chiara Piacentini, Andre Cire, and J. Beck. Solving delete free planning
with relaxed decision diagram based heuristics. Journal of Artificial Intelligence Research,
67:607–651, March 2020.

8 Margarita P. Castro, Andre A. Cire, and J. Christopher Beck. Decision diagrams for discrete
optimization: A survey of recent advances, 2022. arXiv:2201.11536.

9 André A. Cire and Willem-Jan van Hoeve. Multivalued decision diagrams for sequencing
problems. Operations Research, 61(6):1259, 1462, 2013.

10 Xavier Gillard, Vianney Coppé, Pierre Schaus, and André A. Cire. Improving the filtering of
branch-and-bound mdd solver. Integration of Constraint Programming, Artificial Intelligence,
and Operations Research, 18th International Conference, CPAIOR 2021, 2021.

11 Jaime González, Andre Cire, Andrea Lodi, and Louis-Martin Rousseau. Integrated integer pro-
gramming and decision diagram search tree with an application to the maximum independent
set problem. Constraints, 25, April 2020.

12 Tarik Hadzic, John Hooker, Barry O’Sullivan, and Peter Tiedemann. Approximate compilation
of constraints into multivalued decision diagrams. In Stuckey, P.J. (eds) Principles and Practice
of Constraint Programming. CP 2008, Lecture Notes in Computer Science, pages 448–462,
September 2008.

13 Samid Hoda, Willem-Jan van Hoeve, and John Hooker. A systematic approach to mdd-
based constraint programming. In Cohen, D. (eds) Principles and Practice of Constraint
Programming – CP 2010. CP 2010, volume 6308 of Lecture Notes in Computer Science, pages
266–280, September 2010.

14 Willem-Jan Hoeve. Graph coloring with decision diagrams. Mathematical Programming, May
2021.

15 John Hooker. Decision diagrams and dynamic programming. In Gomes, C., Sellmann, M.
(eds) Integration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems. CPAIOR 2013, volume 7874 of Lecture Notes in Computer Science,
May 2013.

http://arxiv.org/abs/2201.11536

I. Rudich, Q. Cappart, and L.-M. Rousseau 35:17

16 John Hooker. Job sequencing bounds from decision diagrams. In Beck, J. (eds) Principles
and Practice of Constraint Programming. CP 2017, Lecture Notes in Computer Science, pages
565–578, August 2017.

17 John Hooker. Improved job sequencing bounds from decision diagrams. In Schiex, T.,
de Givry, S. (eds) Principles and Practice of Constraint Programming. CP 2019, volume
11802 of Lecture Notes in Computer Science, pages 268–283, September 2019. doi:10.1007/
978-3-030-30048-7_16.

18 Anthony Karahalios and Willem-Jan Hoeve. Variable ordering for decision diagrams: A
portfolio approach. Constraints, pages 1–18, January 2022.

19 Anna Latour, Behrouz Babaki, and Siegfried Nijssen. Stochastic constraint propagation
for mining probabilistic networks. In Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, pages 1137–1145, August 2019.

20 Leonardo Lozano and J. Smith. A binary decision diagram based algorithm for solving a class
of binary two-stage stochastic programs. Mathematical Programming, August 2018.

21 Johannes Maschler and Günther Raidl. Multivalued decision diagrams for prize-collecting
job sequencing with one common and multiple secondary resources. Annals of Operations
Research, 302, July 2021.

22 Augustin Parjadis, Quentin Cappart, Louis-Martin Rousseau, and David Bergman. Improving
branch-and-bound using decision diagrams and reinforcement learning. In International
Conference on Integration of Constraint Programming, Artificial Intelligence, and Operations
Research, pages 446–455. Springer, 2021.

23 Guillaume Perez and Jean-Charles Régin. Parallel algorithms for operations on multi-valued
decision diagrams. Proceedings of the AAAI Conference on Artificial Intelligence, 32(1), April
2018.

24 Gerhard Reinelt. Tsplib. a traveling salesman problem library. INFORMS Journal on
Computing, 3:376–384, November 1991.

25 Thiago Serra and John Hooker. Compact representation of near-optimal integer programming
solutions. Mathematical Programming, 182, April 2019.

26 Diego Uña, Graeme Gange, Peter Schachte, and Peter Stuckey. Compiling cp subproblems to
mdds and d-dnnfs. Constraints, 24, January 2019.

27 Hélène Verhaeghe, Christophe Lecoutre, and Pierre Schaus. Compact-mdd: Efficiently filtering
(s)mdd constraints with reversible sparse bit-sets. In Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, pages 1383–1389, July 2018.

28 Julien Vion and Sylvain Piechowiak. From mdd to bdd and arc consistency. Constraints, 23,
October 2018.

CP 2022

https://doi.org/10.1007/978-3-030-30048-7_16
https://doi.org/10.1007/978-3-030-30048-7_16

35:18 Peel-And-Bound: Generating Stronger Bounds with Decision Diagrams

A Experimental Data

Table 4 Comparison Data for width 64 experiments: RB = Relaxed Bound, BS = Best Solution,
T = Time in Seconds, OG = Optimality Gap, QL = Queue Length. Full time series data is available
in the GitHub repository.

Problem Info BnB: width 64 PnB: width 64 Percent Improvements
Name n RB BS T OG QL RB BS T OG QL RB BS T OG QL
ESC07 9 2,125 2,125 0.03 0% - 2,125 2,125 0.07 0% - -57%
ESC11 13 2,075 2,075 0.65 0% - 2,075 2,075 0.42 0% - 55%
ESC12 14 1,675 1,675 1.99 0% - 1,675 1,675 0.64 0% - 211%
ESC25 27 1,681 1,681 956 0% - 1,681 1,681 353 0% - 171%
ESC47 49 334 1,542 78% 8,842 368 1,676 78% 1,295 10.2% -8.0% 0.4% 583%
ESC63 65 8 62 87% 2,756 44 62 29% 15 450.0% 0.0% 200.0% 18273%
ESC78 80 2,230 19,800 89% 1,040 5,000 20,045 75% 316 124.2% -1.2% 18.2% 229%
br17.10 18 55 55 260 0% - 55 55 5 0% - 4652%
br17.12 18 55 55 138 0% - 55 55 21 0% - 546%
ft53.1 54 1,785 8,478 79% 8,841 3,324 8,244 60% 917 86.2% 2.8% 32.3% 864%
ft53.2 54 1,946 8,927 78% 7,356 3,450 8,633 60% 938 77.3% 3.4% 30.3% 684%
ft53.3 54 2,546 12,179 79% 5,594 4,234 12,327 66% 1,147 66.3% -1.2% 20.5% 388%
ft53.4 54 3,780 14,811 74% 11,907 6,500 14,753 56% 2,372 72.0% 0.4% 33.1% 402%
ft70.1 71 25,444 41,926 39% 4,781 31,123 41,607 25% 412 22.3% 0.8% 56.0% 1060%
ft70.2 71 25,239 42,805 41% 3,998 31,195 42,623 27% 427 23.6% 0.4% 53.1% 836%
ft70.3 71 25,810 48,073 46% 4,036 31,872 47,491 33% 475 23.5% 1.2% 40.8% 750%
ft70.4 71 28,593 56,644 50% 8,642 35,974 56,552 36% 1,087 25.8% 0.2% 36.1% 695%

kro124p.1 101 10,773 46,158 77% 2,173 17,579 46,158 62% 105 63.2% 0.0% 23.8% 1970%
kro124p.2 101 11,061 46,930 76% 1,898 17,633 46,930 62% 109 59.4% 0.0% 22.4% 1641%
kro124p.3 101 12,110 55,991 78% 1,055 18,586 55,991 67% 117 53.5% 0.0% 17.3% 802%
kro124p.4 101 13,838 85,533 84% 2,990 24,388 85,316 71% 244 76.2% 0.3% 17.4% 1125%

p43.1 44 630 29,450 98% 12,945 380 29,380 99% 1,022 -39.7% 0.2% -0.9% 1167%
p43.2 44 440 29,000 98% 8,519 420 29,080 99% 1,125 -4.5% -0.3% -0.1% 657%
p43.3 44 595 29,530 98% 12,802 490 29,530 98% 1,122 -17.6% 0.0% -0.4% 1041%
p43.4 44 1,370 83,855 98% 21,105 1,050 83,890 99% 4,694 -23.4% 0.0% -0.4% 350%

prob.42 42 99 289 66% 16,742 97 286 66% 2,613 -2.0% 1.0% -0.5% 541%
prob.100 100 170 1,841 91% 1,731 182 1,760 90% 117 7.1% 4.6% 1.2% 1379%
rbg048a 50 76 379 80% 12,938 47 380 88% 1,551 -38.2% -0.3% -8.8% 734%
rbg050c 52 63 566 89% 11,480 154 512 70% 1,481 144.4% 10.5% 27.1% 675%
rbg109a 111 91 1,196 92% 2,773 379 1,196 68% 612 316.5% 0.0% 35.3% 353%
rbg150a 152 63 1,874 97% 241 565 1,865 70% 222 796.8% 0.5% 38.6% 9%
rbg174a 176 119 2,157 94% 809 626 2,156 71% 117 426.1% 0.0% 33.1% 591%
rbg253a 255 113 3,181 96% 403 708 3,180 78% 39 526.5% 0.0% 24.1% 933%
rbg323a 325 89 3,519 97% 437 289 3,529 92% 17 224.7% -0.3% 6.2% 2471%
rbg341a 343 68 3,038 98% 366 321 3,064 90% 8 372.1% -0.8% 9.2% 4475%
rbg358a 360 69 3,359 98% 289 73 3,373 98% 6 5.8% -0.4% 0.1% 4717%
rbg378a 380 52 3,429 98% 266 50 3,429 99% 5 -3.8% 0.0% -0.1% 5220%
ry48p.1 49 5,201 17,555 70% 10,480 6,171 17,454 65% 1,395 18.7% 0.6% 8.9% 651%
ry48p.2 49 5,291 18,046 71% 9,286 6,577 17,840 63% 1,445 24.3% 1.2% 12.0% 543%
ry48p.3 49 6,207 21,161 71% 9,039 6,985 20,962 67% 1,707 12.5% 0.9% 6.0% 430%
ry48p.4 49 13,610 34,517 61% 15,819 14,293 33,804 58% 3,217 5.0% 2.1% 4.9% 392%

I. Rudich, Q. Cappart, and L.-M. Rousseau 35:19

Table 5 Comparison data for width 256 experiments: RB = Relaxed Bound, BS = Best Solution,
T = Time in Seconds, OG = Optimality Gap, QL = Queue Length. Full time series data is available
in the GitHub repository.

Problem Info BnB: width 256 PnB: width 256 Percent Improvements
Name n RB BS T OG QL RB BS T OG QL RB BS T OG QL
ESC07 9 2,125 2,125 0.04 0% - 2,125 2,125 0.04 0% - 0%
ESC11 13 2,075 2,075 0.48 0% - 2,075 2,075 0.41 0% - 17%
ESC12 14 1,675 1,675 1.66 0% - 1,675 1,675 0.34 0% - 388%
ESC25 27 1,681 1,681 2,643 0% - 1,681 1,681 303 0% - 771%
ESC47 49 312 1,590 80% 720 658 1,339 51% 740 110.9% 18.7% 58.0% -3%
ESC63 65 9 62 85% 53 44 62 29% 3 388.9% 0.0% 194.4% 1667%
ESC78 80 2,230 20,345 89% 59 5,600 20,135 72% 109 151.1% 1.0% 23.3% -46%
br17.10 18 55 55 275 0% - 55 55 3 0% - 9468%
br17.12 18 55 55 105 0% - 55 55 5 0% - 2146%
ft53.1 54 1,708 8,424 80% 760 4,603 8,244 44% 271 169.5% 2.2% 80.5% 180%
ft53.2 54 1,856 9,059 80% 632 3,555 8,648 59% 272 91.5% 4.8% 35.0% 132%
ft53.3 54 2,493 12,598 80% 477 4,852 11,095 56% 390 94.6% 13.5% 42.6% 22%
ft53.4 54 3,619 14,867 76% 1,240 7,560 14,611 48% 797 108.9% 1.8% 56.8% 56%
ft70.1 71 25,507 41,686 39% 373 31,122 41,235 25% 108 22.0% 1.1% 58.3% 245%
ft70.2 71 25,261 42,901 41% 297 31,630 42,182 25% 123 25.2% 1.7% 64.4% 141%
ft70.3 71 25,891 47,806 46% 377 32,539 46,488 30% 151 25.7% 2.8% 52.8% 150%
ft70.4 71 31,186 56,366 45% 958 37,984 56,366 33% 356 21.8% 0.0% 37.0% 169%

kro124p.1 101 10,683 48,866 78% 152 19,224 45,643 58% 43 79.9% 7.1% 35.0% 253%
kro124p.2 101 10,706 52,038 79% 125 19,299 48,102 60% 43 80.3% 8.2% 32.6% 191%
kro124p.3 101 12,078 58,562 79% 64 20,145 57,358 65% 45 66.8% 2.1% 22.3% 42%
kro124p.4 101 14,511 82,672 82% 281 25,002 82,364 70% 102 72.3% 0.4% 18.4% 175%

p43.1 44 610 29,460 98% 1,033 27,255 28,635 5% 146 4368% 2.9% 1932% 608%
p43.2 44 460 29,020 98% 547 27,455 29,020 5% 391 5868% 0.0% 1725% 40%
p43.3 44 750 29,530 97% 1,016 27,780 29,530 6% 764 3604% 0.0% 1545% 33%
p43.4 44 1,425 83,880 98% 1,365 28,195 83,435 66% 1,380 1879% 0.5% 48.5% -1%

prob.42 42 90 289 69% 1,166 103 275 63% 617 14.4% 5.1% 10.1% 89%
prob.100 100 157 1,886 92% 113 178 1,721 90% 45 13.4% 9.6% 2.3% 151%
rbg048a 50 80 389 79% 794 80 373 79% 534 0.0% 4.3% 1.1% 49%
rbg050c 52 62 583 89% 810 175 503 65% 442 182.3% 15.9% 37.0% 83%
rbg109a 111 89 1,181 92% 394 406 1,106 63% 204 356.2% 6.8% 46.1% 93%
rbg150a 152 115 1,845 94% 406 571 1,845 69% 100 396.5% 0.0% 35.8% 306%
rbg174a 176 362 2,172 83% 337 646 2,171 70% 57 78.5% 0.0% 18.6% 491%
rbg253a 255 359 3,177 89% 139 727 3,176 77% 22 102.5% 0.0% 15.0% 532%
rbg323a 325 99 3,476 97% 114 346 3,480 90% 14 249.5% -0.1% 7.9% 714%
rbg341a 343 84 3,016 97% 120 340 3,016 89% 7 304.8% 0.0% 9.6% 1614%
rbg358a 360 88 3,280 97% 92 88 3,382 97% 5 0.0% -3.0% -0.1% 1740%
rbg378a 380 44 3,385 99% 35 53 3,385 98% 6 20.5% 0.0% 0.3% 483%
ry48p.1 49 5,470 17,464 69% 897 9,432 17,071 45% 377 72.4% 2.3% 53.5% 138%
ry48p.2 49 5,606 18,060 69% 834 6,615 17,627 62% 383 18.0% 2.5% 10.4% 118%
ry48p.3 49 6,558 21,142 69% 859 8,723 20,850 58% 513 33.0% 1.4% 18.6% 67%
ry48p.4 49 17,359 34,074 49% 1,557 17,322 33,773 49% 990 -0.2% 0.9% 0.7% 57%

CP 2022

35:20 Peel-And-Bound: Generating Stronger Bounds with Decision Diagrams

Table 6 Comparison of PnB at 2048 over PnB at 256: RB = Relaxed Bound, BS = Best Solution,
OG = Optimality Gap.

Problem Info PnB: width 256 PnB: width 2048 Percent Improvements
Name n RB BS OG RB BS OG RB BS OG
ESC47 49 658 1,339 51% 882 1,304 32% 34.0% 2.7% 57.2%
ESC63 65 44 62 29% 44 62 29% 0.0% 0.0% 0%
ESC78 80 5,600 20,135 72% 6,025 20,505 71% 7.6% -1.8% 2.2%
ft53.1 54 4,603 8,244 44% 5,167 8,237 37% 12.3% 0.1% 18.5%
ft53.2 54 3,555 8,648 59% 4,910 8,598 43% 38.1% 0.6% 37.3%
ft53.3 54 4,852 11,095 56% 7,722 11,092 30% 59.2% 0.0% 85.2%
ft53.4 54 7,560 14,611 48% 7,466 14,618 49% -1.2% 0.0% -1.4%
ft70.1 71 31,122 41,235 25% 33,382 41,476 20% 7.3% -0.6% 25.7%
ft70.2 71 31,630 42,182 25% 32,964 41,833 21% 4.2% 0.8% 18.0%
ft70.3 71 32,539 46,488 30% 34,366 46,001 25% 5.6% 1.1% 18.6%
ft70.4 71 37,984 56,366 33% 40,919 56,310 27% 7.7% 0.1% 19.3%

kro124p.1 101 19,224 45,643 58% 21,954 47,425 54% 14.2% -3.8% 7.8%
kro124p.2 101 19,299 48,102 60% 22,746 49,571 54% 17.9% -3.0% 10.7%
kro124p.3 101 20,145 57,358 65% 25,566 54,633 53% 26.9% 5.0% 21.9%
kro124p.4 101 25,002 82,364 70% 29,377 81,050 64% 17.5% 1.6% 9.2%

p43.1 44 27,255 28,635 5% 27,755 28,960 4% 1.8% -1.1% 16%
p43.2 44 27,455 29,020 5% 27,725 29,000 4% 1.0% 0.1% 23%
p43.3 44 27,780 29,530 6% 27,755 29,530 6% -0.1% 0.0% -1%
p43.4 44 28,195 83,435 66% 28,680 83,020 65% 1.7% 0.5% 1.2%

prob.42 42 103 275 63% 152 261 42% 47.6% 5.4% 49.8%
prob.100 100 178 1,721 90% 220 1,735 87% 23.6% -0.8% 2.7%
rbg048a 50 80 373 79% 93 367 75% 16.3% 1.6% 5.2%
rbg050c 52 175 503 65% 184 501 63% 5.1% 0.4% 3.1%
rbg109a 111 406 1,106 63% 453 1,126 60% 11.6% -1.8% 5.9%
rbg150a 152 571 1,845 69% 672 1,841 63% 17.7% 0.2% 8.7%
rbg174a 176 646 2,171 70% 1,104 2,121 48% 70.9% 2.4% 46.5%
rbg253a 255 727 3,176 77% 1,186 3,101 62% 63.1% 2.4% 24.9%
rbg323a 325 346 3,480 90% 421 3,449 88% 21.7% 0.9% 2.6%
rbg341a 343 340 3,016 89% 329 2,965 89% -3.2% 1.7% -0.2%
rbg358a 360 88 3,382 97% 107 3,131 97% 21.6% 8.0% 0.8%
rbg378a 380 53 3,385 98% 74 3,338 98% 39.6% 1.4% 0.7%
ry48p.1 49 9,432 17,071 45% 10,386 17,124 39% 10.1% -0.3% 13.7%
ry48p.2 49 6,615 17,627 62% 7,896 17,461 55% 19.4% 1.0% 14.0%
ry48p.3 49 8,723 20,850 58% 10,558 20,686 49% 21.0% 0.8% 18.8%
ry48p.4 49 17,322 33,773 49% 24,248 32,953 26% 40.0% 2.5% 84.4%

On Quantitative Testing of Samplers
Mate Soos
National University of Singapore, Singapore

Priyanka Golia
Indian Institute of Technology Kanpur, India
National University of Singapore, Singapore

Sourav Chakraborty
Indian Statistical Institute Kolkata, India

Kuldeep S. Meel
National University of Singapore, Singapore

Abstract
The problem of uniform sampling is, given a formula F , sample solutions of F uniformly at
random from the solution space of F . Uniform sampling is a fundamental problem with widespread
applications, including configuration testing, bug synthesis, function synthesis, and many more.
State-of-the-art approaches for uniform sampling have a trade-off between scalability and theoretical
guarantees. Many state of the art uniform samplers do not provide any theoretical guarantees on
the distribution of samples generated, however, empirically they have shown promising results. In
such cases, the main challenge is to test whether the distribution according to which samples are
generated is indeed uniform or not.

Recently, Chakraborty and Meel (2019) designed the first scalable sampling tester, Barbarik,
based on a grey-box sampling technique for testing if the distribution, according to which the given
sampler is sampling, is close to the uniform or far from uniform. They were able to show that
many off-the-self samplers are far from a uniform sampler. The availability of Barbarik increased
the test-driven development of samplers. More recently, Golia, Soos, Chakraborty and Meel (2021),
designed a uniform like sampler, CMSGen, which was shown to be accepted by Barbarik on all the
instances. However, CMSGen does not provide any theoretical analysis of the sampling quality.

CMSGen leads us to observe the need for a tester to provide a quantitative answer to determine
the quality of underlying samplers instead of merely a qualitative answer of Accept or Reject. Towards
this goal, we design a computational hardness-based tester ScalBarbarik that provides a more nuanced
analysis of the quality of a sampler. ScalBarbarik allows more expressive measurement of the quality
of the underlying samplers. We empirically show that the state-of-the-art sampler, CMSGen is not
accepted as a uniform-like sampler by ScalBarbarik. Furthermore, we show that ScalBarbarik can be
used to design a sampler that can achieve balance between scalability and uniformity.

2012 ACM Subject Classification Theory of computation; Computing methodologies → Artificial
intelligence

Keywords and phrases SAT Sampling, Testing of Samplers, SAT Solvers

Digital Object Identifier 10.4230/LIPIcs.CP.2022.36

Supplementary Material Software (Source Code): https://github.com/meelgroup/scalbarbarik

Funding This work was supported in part by National Research Foundation Singapore under its NRF
Fellowship Programme [NRF-NRFFAI1-2019-0004], Ministry of Education Singapore Tier 2 grant
[MOE-T2EP20121-0011], NUS ODPRT grant [R-252-000-685-13], and Amazon Research Award.

Acknowledgements We are grateful to the anonymous reviewers for constructive comments that
significantly improved the final version of the paper. We are thankful to Yash Pote for his detailed
feedback on the early drafts of the paper. The computational work for this article was performed on
resources of the National Supercomputing Centre, Singapore: https://www.nscc.sg.

© Mate Soos, Priyanka Golia, Sourav Chakraborty, and Kuldeep S. Meel;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 36; pp. 36:1–36:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CP.2022.36
https://github.com/meelgroup/scalbarbarik
https://www.nscc.sg
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

36:2 On Quantitative Testing of Samplers

1 Introduction

Given a formula F over the set of variables X, the problem of Boolean satisfiability (SAT) is
to determine whether there exists an assignment σ to X such that F evaluates true under
σ. The past two decades have witnessed a dramatic improvement in the runtime of SAT
solvers owing to the Conflict Driven Clause Learning (CDCL) paradigm, and as a result, SAT
solvers find applications in diverse areas ranging from constrained-random verification [19],
computational biology [10], and artificial intelligence. The progress in SAT solving has led
to development of algorithmic and practical implementations for problems in complexity
classes beyond NP. One such problem that has seen a sustained interest over the past decade
is that of uniform sampling. The problem of uniform sampling is to sample satisfying
assignments of a formula uniformly at random from the space of satisfying assignments of
the formula. Like SAT solver, uniform sampling also has wide variety of applications, like
in configuration testing [7, 15], constrained-random simulation [19], bug synthesis [21], and
function synthesis [12].

The last decade has seen several algorithmic proposals for efficient uniform sampling owing
to its diverse applications. The different techniques for uniform sampling can be divided into
two categories: (1) techniques that provide theoretical guarantees on the distribution from
which the samples are generated, and (2) techniques that do not provide any theoretical
guarantees on the samples produced. The hashing-based sampler UniGen, UniGen3 [6, 5, 23],
and the knowledge compilation-based sampler KUS [22] fall in the first category, however,
experimental evaluation shows that these samplers could not always achieve scalability for
real world instances. At the same time, there exist many other sampling techniques, such as
the mutation-based QuickSampler [8] and BDD-based techniques [16], or randomized CDCL
SAT solvers [13] that can provide empirical scalability, however do not provide guarantees
on the distribution of samples generated.

Algorithmic proposals that cannot provide theoretical grantees on the distribution of
samples generated often rely on statistical test such as KL-divergence [17] to showcase the
quality of the samples generated. These statistical tests are only able to show that samples
produced by the samplers for a small set of benchmarks are close to samples produced
from a uniform distribution. However, such tests do not generalize over entire benchmark
sets. Recently, Chakraborty and Meel proposed the first scalable sampling test framework,
Barbarik [3], to test whether a sampler under test (SUT1) is close to uniform or not. The
tester Barbarik takes an (1) SUT, a (2) base uniform sampler, a (3) tolerance parameter ε, an
(4) intolerance parameter η, a (4) confidence parameter δ, and a (5) formula φ and returns
Accept if SUT is close to a uniform sampler. Barbarik returns Reject only if the SUT is far
from a uniform sampler under subquery-consistency assumption, which is to assume that the
SUT does not change its sampling behavior during the test, that is, off the shelf samplers
would be sub-query consistent2.

The main idea behind Barbarik is to reduce the input formula φ to φ̂ using two satisfying
assignments of φ chosen uniformly at random from the solution space of φ. One assignment,
say σ1 is drawn using the SUT, and another assignment, say σ2 is drawn according to uniform
distribution using the base sampler. The analysis for Barbarik shows that if the distribution
from which the SUT is sampling the assignments is close to uniform distribution, the
conditional distribution over {σ1, σ2} is also close to uniform. Similarly, if the distribution

1 The term SUT is from software testing literature, where it is shorthand for System Under Test.
2 We rename the notion of non-adversarial assumption introduced in [3] to subquery-consistency to better

capture its intended properties. We formally define the subquery-consistent assumption in Section 2.

M. Soos, P. Golia, S. Chakraborty, and K. S. Meel 36:3

from which the SUT is sampling the assignments is far from uniform, the conditional
distribution over {σ1, σ2} is also far from uniform. It is easy to estimate the distance of
conditional distribution over {σ1, σ2} to uniform distribution using random samples from φ̂.
Empirically, it was shown that Barbarik accepts UniGen3, which is a sampler with theoretical
grantees, however, it rejects the state of the art uniform-like samplers, that is, samplers
without theoretical guarantees, such as QuickSampler [8] and STS [9]. Recently, Meel et
al. generalize the idea of Barbarik to handle any arbitrary weight function, that is, to test
whether a SUT generates samples according to a given distribution [18].

Recently, Golia, et al. used Barbarik in a test-driven development fashion to create
the uniform-like sampler CMSGen [13] from the state-of-art SAT solver CryptoMiniSat [24].
CMSGen is based on randomization of the conflict-driven-clause-learning (CDCL) framework
inside CryptoMiniSat and most modern SAT solvers. Based on the feedback from Barbarik, the
authors iteratively changed the hyper-parameters of CryptoMiniSat such as restart intervals,
restart types, polarity picking heuristics and the like, until they arrived at a point where it
was able to pass all tests. Analyzing the CDCL itself is a hard problem, and so the resulting
uniform-like sampler, CMSGen, could not provide theoretical guarantees on the distribution
of samples produced. However, it was shown in [13] that Barbarik returns Accept for CMSGen.

The development of samplers such as CMSGen poses an interesting question regarding
test frameworks such as Barbarik: is it possible that uniform-like samplers such as CMSGen
pass the test, but they are not uniform? If so, how can one demonstrate that they are
not? These questions point towards revisiting the design of sampler test frameworks such as
Barbarik. We need a tester that provides a quantitative analysis instead of qualitative answer
of Accept or Reject to measure the quality of samplers.

The above stated goal to improve sampling testers requires new insights about the
workings of samplers. The improvement of Barbarik that we are envisioning is to generate
input formulas that are specifically crafted to highlight non-uniformity in the samples
produced by the samplers. Towards this goal, we propose the framework ScalBarbarik.

Contributions
The success of CMSGen and the current lack of theoretical analysis leads us to hypothesize
that CMSGen may not be uniform for all the formulas but is not necessarily far from uniform
for a large class of formulas. The current framework of Barbarik provides too coarse grained
analysis to allow users to determine the quality of distributions generated by a sampler such
as CMSGen. To achieve such a fine-grained analysis, we need a parameterized generation of
φ̂. To this end, we design an improved algorithm, Shakuni, for construction of φ̂ such that φ̂
is composed of two sub-formulas with varying computational hardness.

We augment Barbarik with Shakuni to obtain ScalBarbarik that can provide fine-grained
analysis with respect to hardness dial provided by Shakuni. ScalBarbarik allows us to view
that the distribution quality of CMSGen is better than samplers such as QuickSampler
but falls short of samplers with rigorous guarantees such as UniGen. ScalBarbarik can then
be used to fine-tune a heuristic-based uniform-like sampler such as CMSGen to achieve a
different balance between scalability and uniformity. Towards this, we empirically analyze the
distribution of samples generated by CMSGen with different restart intervals. We then show
that CMSGen could generate samples from a close to uniform distribution with increased
restart intervals, sacrificing speed for better uniformity.

It is worth remarking that an important strength of ScalBarbarik is its simplicity. Based
on our empirical analysis, ScalBarbarik with varying computational hardness is able to show
that CMSGen is not a uniform sampler. The availability of ScalBarbarik has the potential
to spur a virtuous cycle of development of samplers and testing techniques: the developers

CP 2022

36:4 On Quantitative Testing of Samplers

can design sampling methods that can be accepted by testers such as Barbarik/ScalBarbarik
and consequently improve testers so that such samplers are rejected in the following version
of it. With the help of ScalBarbarik, we can tune a sampler to achieve the balance between
scalability and uniformly. Our experimental evaluation demonstrates that as we increase the
restart intervals of CMSGen, we need to increase the computational hardness of ScalBarbarik
to reject CMSGen, that is, with increased restart intervals CMSGen is able to generate samples
from a close to uniform distribution; however, it takes longer time to generate the samples.
The availability of ScalBarbarik allows us to improve to samplers such as CMSGen.

The rest of the paper is organized as follows: In Section 2, we present the formal definitions
and also present a brief description of state-of-the-art tester Barbarik. In Section 3, we present
the improved test framework ScalBarbarik based on a cryptographically hard function. We
provide a detailed algorithmic description in Section 4, and we present the experimental
evaluation in Section 5. Finally, we conclude in Section 6.

2 Notation and Background

A literal is a Boolean variable or its negation. A formula is considered to be in conjunctive
normal form (CNF) if the formula is conjunction of clauses. A clause is a disjunction of
literals. Let φ be the formula in CNF, and let Supp(φ) represent the set of variables in φ.
A satisfying assignment to φ is an assignment of truth values to Supp(φ) under which the
formula φ evaluates to True. Let σ be a satisfying assignment of φ, and let S ⊆ Supp(φ),
σ↓S represents the projection of σ over S. Let Rφ be the set of all satisfying assignments of
formula φ. We used L[n : m] to represent the substring of L, starting with position n to m.

Chain Formulas. Chain formulas were introduced in [4]. Given positive integers k and m,
chain formulas are Boolean formulas with exactly k satisfying solutions with ⌈log(k)⌉ ≤ m
variables.

▶ Definition 1 ([4]). Let c1, c2, . . . , cm be the m-bit binary representation of k, where cm is
the least significant bit. A chain formula φk,m(.) on m Boolean variables v1, v2, . . . , vm is as
follows:
For every j in {1, . . . ,m− 1}, let Cj be the connector “∨” if cj = 1, and the connector “∧”
if cj = 0, and the formula φk,m(v1, v2, . . . , vm) = v1C1(v2C2(. . . (vm−1Cm−1vm)))

A Sampler. A CNF sampler or simply a sampler takes a formula φ, a number of required sat-
isfying assignments N , S ⊆ Supp(φ), and returns satisfying assignments σ1↓S

, σ2↓S
, . . . , σN↓S

.
A uniform sampler, say G takes φ,N, S ⊆ Supp(φ) that generates a satisfying assignment σi
for all i ∈ {1, N} with probability 1

|Rφ|
. Similarly, a sampler is considered to be an additive

almost-uniform sampler, if the following holds with 0 ≤ ε ≤ 1:

∀σ ∈ Rφ,
1− ε
|Rφ|

≤ Pr[G(φ,N) = σ] ≤ 1 + ε

|Rφ|

We use a sampler G(., ., .) or G(., .) when S is Supp(φ), or simply G when N and S are
clear from context. We use pG(.,.,) to denote the probability with that G samples a satisfying
assignment σ, and DG(φ,.,.) to denote the distribution induced by sampler G over solution
space of φ.

M. Soos, P. Golia, S. Chakraborty, and K. S. Meel 36:5

Given a formula φ, and an intolerance parameter η, a sampler G is considered to be η-far
from a uniform sampler if ℓ1 distance between the distribution induced by G over solution
space of φ to the uniform distribution is at least η, that is,

∑
x∈sol(φ)

∣∣∣∣pG(φ,x) −
1

|sol(φ)|

∣∣∣∣ ≥ η
A Sampler Tester. Given a uniform sampler, a sampler tester tests if the sampler is
sampling an assignment from the solution space Rφ, and the samples are generated from a
close to uniform distribution. A sampler test framework is defined as follows:

▶ Definition 2. Given a Boolean formula φ, a sampler G, a tolerance parameter ε, an
intolerance parameter η, a confidence parameter δ, a sampler tester T (·, ·, ·, ·, ·) returns
Accept or Reject (with a witness) with the following guarantees:
1. If the sampler G(φ, .,) is an additive almost-uniform generator, then T (G,φ, ε, η, δ)

returns Accept with probability at least 1− δ
2. If the sampler G(φ, .,) is η-far from uniform generator, then T (G,φ, ε, η, δ) returns Reject

with probability at least 1− δ

Barbarik
Chakraborty and Meel [3] designed the tester Barbarik that takes a base uniform sampler U , a
Sampler Under Test (SUT) G, a tolerance parameter ϵ, an non-tolerance parameter η, and a
confidence parameter δ. ϵ, η, δ take values between 0 to 1. The problem under consideration
is to distinguish between the case where G is close to U , and the case when G is far from U .
We know the probability of each assignment in the support for uniform sampler U , that is,
Pr[U(., ., .)] = 1

|Rφ|
. However, distribution for G is unknown, we only have access to samples

from G. Given access to a uniform sampler U , Barbarik provides guarantees described in
Definition 2. Furthermore, in case Barbarik rejects the SUT, it also provides a CNF formula
φ̂ as a witness. The formula φ is reduced to φ̂ such that φ̂ has exactly two assignments for
the variables in the support S, and the distribution DG(φ̂) from which samples are generated
for φ̂ is η far from uniform.

To achieve the aforementioned guarantees, Barbarik uses the idea of conditional sampling.
Barbarik samples a satisfying assignment σ1 from the SUT G, and another satisfying assign-
ment σ2 from the base uniform sampler U . Let T be {σ1, σ2}. If the distribution DG(φ) from
which SUT is sampling is close to uniform distribution, then the conditional distribution
DG(φ)|T is also close to uniform distribution. Similarly, if the distribution DG(φ) is far from
uniform distribution, then the conditional distribution DG(φ)|T is also far from uniform
distribution. Therefore, instead of focusing on the distribution DG(φ), Barbarik considers the
distribution DG(φ)|T as it is easier to test.

In order to consider the distribution DG(φ)|T , Barbarik constructs a formula φ̂ from φ with
the help of the subroutine Kernel. The subroutine Kernel takes a formula φ, two satisfying
assignments σ1 and σ2, and an integer N which represents the number of assignments φ̂ and
returns a formula φ̂. The subroutine Kernel ensures that φ̂ and φ have the similar structure,
and Supp(φ) ⊂ Supp(φ̂). Furthermore, |∀σ ∈ Rφ̂|σ↓S = σ1| = |∀σ ∈ Rφ̂|σ↓S = σ2|.

The formula φ̂ should satisfy the two conditions: (i) If the SUT G(φ) is ϵ-additive
almost-uniform generator, the distribution from which sampler is generating samples, say
DG(φ̂,S) is close to uniform distribution over the set {σ1, σ2}, and (ii) If the SUT G(φ) is
η-far from uniform sampler, then the distribution U , the distribution DG(φ̂,S) is far from
uniform distribution over the set {σ1, σ2}.

CP 2022

36:6 On Quantitative Testing of Samplers

If the sampler G is an additive almost-uniform generator on any input formula φ, the first
condition would be satisfied. However, to satisfy the second condition, we need subquery-
consistent assumption as per [3]:

▶ Definition 3. The subquery-consistent sampler assumption states that if (φ̂, Ŝ) is
the output obtained from Kernel(φ, S, σ1, σ2, N) then

S ⊆ Ŝ
the output of G(φ̂, S,N) is N independent samples from the conditional distribution
DG(φ,S) |T , where T = {σ1, σ2}.

Thus, if for any formula φ the sampler G(φ) is η-far from the uniform sampler in the ℓ1
distance and the sampler satisfies the subquery-consistent sampler assumption then
Barbarik will Reject with probability (1− δ).

3 A Quantitative Tester

The behavior of Barbarik shows that while Barbarik is able to return Reject for samplers
without guarantees such as STS or QuickSampler, it returns Accept for CMSGen. It is
important to note that the theoretical analysis of soundness of Barbarik is unconditional
but the analysis of completeness is conditional, i.e., when Barbarik returns Reject, then the
sampler is non-uniform, but the output Accept from Barbarik needs to be interpreted through
the lens of subquery-consistent assumption.

It is worth emphasizing that the existence of strong lower bounds on the black-box
approach necessitates introduction of a grey-box approach, and in turn subroutines such as
Kernel along with subquery-consistent assumption are likely unavoidable. Therefore, in order
to improve Barbarik, we focus on extending Kernel via parameterization to allow a nuanced
analysis of the quality of distributions. To this end, we first focus on identifying properties of
formulas that may make it hard for algorithms without rigorous guarantees to sample well.

3.1 Computational Hardness
As discussed in Section 1, there are a number of decisions taken by CMSGen, as in all samplers
and solvers, for increasing efficiency. Many of these decisions/heuristics are inherited from
CryptoMiniSat. One of the crucial components of CDCL-based SAT solvers is the usage of
restarts [2]. While theoretical understanding of the power and need for restarts in CDCL
SAT solvers is limited, a predominant view among practitioners is that frequent restarts help
the solver avoid being stuck in a part of assignment space.

The usage of heuristics that seek to avoid a sampler being stuck in a part of assignment
space may have implications on its ability to sample uniformly. In particular, one can argue
that usage of frequent restarts may lead CMSGen to not sample uniformly for a certain class
of formulas, where the solution space of the formula can be categorized into easy and hard –
such that solutions belong to the easy set are easier to find without the need for excessively
large number of conflicts while the solutions belonging to the hard set require significantly
more conflicts. In such a scenario, CMSGen may find it harder to sample uniformly as the
restarts will push CMSGen towards the easier side while it may almost never end up finding
an assignment from the harder side. At this point, one may ask if this observation can be
used to inform the design of the sampler tester.

To design a test framework to Reject a sampler such as CMSGen, we need to formalize
our observation. To this end, we seek to define the notion of computational hardness for
our case formally. At the onset, it is worth accepting that our limited understanding of the

M. Soos, P. Golia, S. Chakraborty, and K. S. Meel 36:7

workings of CDCL solvers in the context of classical complexity-theoretic notions imply that
we need to use constructs based on practical aspects of SAT solvers. Roughly speaking, the
computational hardness of a CNF-formula should indicate how hard it is for a SAT solver to
find a satisfying assignment. It is well known that while modern SAT solvers are extremely
efficient at solving many problems, there are entire classes of problems that pose significant
challenges. One such class of problem is cryptographic challenges, which are designed to
be hard to be solved by any tool. The consumption of resources such as a memory by an
algorithm varies with time, and we seek to capture the peak resource consumption as follows:

▶ Definition 4. Given an algorithm A, input I, and time t, for a particular run of the
algorithm A on input I the PeakCost(A, I, t) measures the maximum resource consumption
by A at execution step t on that particular run. This function is a non-decreasing function
in t and stops to increase from the moment the run of the algorithm stops.

Given a set of solvers/samplers G, a CNF-formula φ is said to have computational
hardness κ with respect to G if for A ∈ G

Pr[lim
t→∞
{PeakCost(A, φ, t)} ≥ κ] ≥ 1− o(1),

where the probability is taken over the internal randomness of A, and o(1) refers to “little-o”
notation.

To capture the behavior of samplers that employ cutoff parameters, we define the notion
of intractable formulas for cutoff κ as the set of formulas whose computational hardness is at
least κ with respect to G, i.e.,

▶ Definition 5. Intractable(κ,G) = {φ | φ has computational hardness ≥ κ w. r. t. G}

In the next section, we seek to use the notion of Intractable(κ,G) to improve Barbarik.

3.2 From Kernel to Shakuni
In this section, we turn to the design of an improved version of Barbarik, called ScalBarbarik,
that can employ the set of formulas belonging to Intractable so as to distinguish samplers that
were beyond the reach of Barbarik. ScalBarbarik takes as input an SUT G, a uniform sampler
U , tolerance parameter ε, intolerance parameter η, accuracy parameter δ, a CNF-formula φ,
a set S ⊆ Supp(φ) and a computational hardness parameter κ. It outputs Accept or Reject
depending on whether the SUT is ε-additive close to a uniform sampler or whether it is η-far
from the uniform sampler. It is supposed to output the correct answer with probability at
least (1− δ). The computational hardness parameter is passed onto the subroutine Shakuni.

Shakuni takes in a CNF-formula φ, a set S ⊆ Supp(φ), two assignments σ1 and σ2 from
sol(φ)↓S and a positive integer N and returns a new formula φ̂ such that the following
conditions are satisfied:

φ̂ has at least N satisfying assignments
Every satisfying assignment of φ̂ restricted to the set S is either σ1 or σ2
If Rσ1 and Rσ2 are the set of assignments of φ̂ that when restricted to the set S is σ1
and σ2 respectively, then |Rσ1 | = |Rσ2 |

In contrast to Kernel [3], Shakuni constructs φ̂ such that the set Rσ1 is significantly different
from the set Rσ2 in a structure such that finding assignments from one is easier than finding
assignments from the other. More precisely, Shakuni assumes access to a subroutine GenHard
that takes in the computational hardness parameter κ and estimated count parameter τ as
inputs and returns (ψ, τ̂) such that τ̂ = |sol(ψ)| and ψ ∈ Intractable(κ,CCDCL) where CCDCL
refers to the set of all the efficient CDCL solvers. As discussed above, given our lack of

CP 2022

36:8 On Quantitative Testing of Samplers

understanding of CDCL solvers, we do not seek to define CCDCL formally, but we discuss
the approach to construct formulas that seem to exhibit desired properties in practice in
Section 3.3.

Assuming existence to GenHard, Shakuni starts by first finding a formula ψ with com-
putational hardness parameter κ. Then, it uses ψ to construct the CNF-formula φ̂ such
that the assignments in Rσ1 correspond to solutions of ψ while the assignments of Rσ2

corresponds to solutions of a Chain Formula obtained according to [4] and having a much
smaller computational hardness measure.

3.3 Formulas with Computational Hardness Measure
As discussed above, Shakuni (and in turn, ScalBarbarik) assumes access to a subroutine

GenHard that takes in a counting parameter τ and hardness parameter κ and returns a
formula (ψ, τ̂) such that (1) |sol(ψ)| = τ̂ , where τ̂ ≈ τ , and (2) the hardness of finding a
solution of ψ using a CDCL-based SAT solver is proportional to κ.

To this end, we employ the construct of cryptographic hash functions, widely studied in
cryptography. A cryptographic hash family, Hcrypto := {h : {0, 1}∗ → {0, 1}m} is a family
of hash functions that compute a fixed-length hash value, also known as fingerprint, for
arbitrarily long message msg. In the context of this work, we are interested in a collection of
such families, {H1

crypto,H2
crypto, . . . ,Hκcrypto . . .} that satisfy the following two properties:

Pre-Image Resistance. For all h ∈ Hκcrypto, given y, the computational hardness of the task
of finding msg such that h(msg) = y is a monotonically non-decreasing function of the
hardness3 parameter κ [11]. In our context, we are interested in the hardness measured
as runtime of a CDCL SAT solver to find msg such that h(msg) = y.

(Weak) Collision Resistance. For x, y ∈ {0, 1}∗ we have Pr[h(x) = h(y)] ≈ 1
2m , where

probability is defined over random choice of x and y.

The understanding in the cryptographic community is that most of the widely used hash
families satisfy the above properties. In this work, we work with one of the widely studied
hash families, SHA-1, whose hardness parameter can be varied by changing the number of
so-called rounds of the algorithm [14]. We exploit the above properties of SHA-1 to be able
to generate formulas that are similar but have tunable complexity and number of solutions.
We use the SHA-1 preimage CNF instance generator4 by Nossum [20], which generates the
function HSHA-1 := {h : {0, 1}512 7→ {0, 1}160}. The generator allows us to set any number
of randomly fixed input bits, any number of output bits, and to vary the number of rounds
κ. For example, using 10 rounds, fixing 0 bits of input and 160 bits of output, the generator
takes a random 512 bits input msg, runs SHA-1 on msg to obtain y, then generates a formula
to encode the problem h−1(y), where h ∈ H10

SHA-1.
We need to construct a formula ψ with predefined number of satisfying assignments.

Therefore, in order to be able to decide the number of satisfying assignments of the generated
formula, and to have adjustable complexity, we change the problem slightly. We consider a
random 512 bits input, msg, and we calculate y = hκ(msg), where κ is the number of rounds.
We generate the formula ψ using the generator as above, encoding the function y = hκ(msg).
We then fix the first e bits of msg and the first f bits of y in ψ. Hence, our formula has the
following parameters: κ, e, f . We use these parameters to allow us to generate any number
of problems of approximate complexity and of approximate number of solutions.

3 A formal characterization from complexity theoretic viewpoint along with the standard cryptographic
assumptions is beyond the scope of this work.

4 Available at https://github.com/vegard/sha1-sat

https://github.com/vegard/sha1-sat

M. Soos, P. Golia, S. Chakraborty, and K. S. Meel 36:9

Generating hard problems with multiple solutions

Due to the collision resistance effect, with κ = 80, e = 500, f = 160, it is most likely that
there is only one solution to the generated formula: there are only 12 bits to vary for msg
and there is at least one solution given the way the problem is generated. Checking the
actual number of solution is easy given an optimized SHA-1 implementation, as it only needs
212 executions of SHA-1. Now, to create a formula with multiple solutions, let us consider
the parameters κ = 80, e = 500, f = 0. Here, there are almost certainly 212 solutions, as any
lower than 212 would mean a collision on SHA-1, which is extremely unlikely. However, this
formula is very easy to solve, as any of the 12 bits can be varied and a solution obtained.

Putting the above two cases together, one might use the parameters κ = 80, e = 500, f = 5
to get the number of solutions to be approximately s = 2512−e−f = 27. There are 12 bits that
are unset in the input and there are 5 bits set in the output, leading to a difference of 7 bits
combined with the weak collision effect, leads to approximate 27 solutions. If we generate
with the same parameters but f = 6 the number of solutions halves, and the complexity of
finding a solution approximately doubles, as now there is one more fingerprint bit that must
match. To change the complexity with a finer grain than doubling or halving it, one can also
change the number of rounds, κ. Therefore, we can vary κ, e and f to generate a formula ψ
with varying complexity that can have solution τ̂ , where τ̂ approximate the τ .

4 Algorithmic Description

We augment Barbarik with Shakuni to obtain ScalBarbarik. We now provide the detailed
algorithm description of Shakuni.

Algorithm 1 presents the pseudocode of the Shakuni subroutine. Shakuni takes a formula
φ, two satisfying assignments of φ, σ1 and σ2, the desired number of samples τ , and the
hardness parameter κ. Shakuni assumes access to following two subroutines:

GenHard: Takes a counting parameter τ and hardness parameter κ and returns a formula
(ψ, τ̂).
ConstructChain: Takes τ̂ and variables of ψ as input and constructs a chain formula ψ̂ as
discussed in Section 2.

Shakuni first finds a lit that is the first literal that appears in σ1, but not in σ2. On line 2,
Shakuni conditions the formula φ over σ1 and σ2, and considers the new formula as φ′. Then,
on line 3, Shakuni calls GenHard subroutine with τ and κ. GenHard returns a formula ψ and
τ̂ . On lines 4 and 5 Shakuni constructs the formula φ̂. φ̂ is the formula φ′ conjuncted with
positive literal lit implies ψ, and literal ¬lit implies the formula returned by ConstructChain.
Finally, Shakuni adds the variables of φ̂ in S, and stores them as Ŝ on line 6. Finally, Shakuni
returns the formula φ̂ and Ŝ.

As discussed, Shakuni assumes access to the subroutine GenHard. Algorithm 2 presents
GenHard. GenHard takes a integer τ , and a hardness parameter κ as inputs. GenHard further
assumes access to following two subroutines:

Compute: Takes an integer τ and returns two positive integers m and f such that m− f
is equal to ⌈log τ⌉.
NossumFormulaGen: Takes the SHA-1 number of rounds κ, integers m and f , and strings
over {0, 1} M and F . It considers a random 512 bits msg and fixes the first m bits of
msg to M . It runs SHA-1 with κ rounds on msg to obtain y, whose first f bits are fixed
to F . NossumFormulaGen returns a formula ψ which encodes the problem h−1

κ (y).

CP 2022

36:10 On Quantitative Testing of Samplers

Algorithm 1 Shakuni(φ, S, σ1, σ2, τ, κ).

1 lit← (σ1 \ σ2)[0] /* Choose first literal lit s.t. lit ∈ σ1, and lit ̸∈ σ2 */
2 φ′ = φ ∧ (σ1 ∨ σ2)
3 (ψ, τ̂)← GenHard(τ, κ)
4 φ̂← φ′ ∧ (lit→ ψ)
5 φ̂← φ̂ ∧ (¬lit→ ConstructChain(τ̂ , Supp(ψ)))
6 Ŝ ← S ∪ Supp(φ̂)
7 return (φ̂, Ŝ).

Algorithm 2 GenHard(τ, κ).

1 (m, f)← Compute(τ) /* Compute m, f such that m, f ≥ 0,m− f = ⌈log τ⌉ */
2 M ←r {0, 1}512−m

3 F ←r {0, 1}f
4 ψ ← NossumFormulaGen(κ,m,M, f, F)
5 τ̂ ← 0
6 for value ∈ {0, 1}m do
7 if hκ(M + value)[1 : f] = F /* hκ is a hash-function, hκ ∈ HκSHA-1 */
8 then
9 τ̂ ← τ̂ + 1

10 return ψ, τ̂

GenHard first computes the value of m and f by calling subroutine Compute. On line 2
GenHard generates a random string M of length 512 − m over {0, 1} from all possible
sets of such strings. Similarly, on line 3, GenHard generates a string F of length f over
{0, 1} randomly from all possible such strings. On line 4, GenHard calls NossumFormulaGen
subroutine that returns a formula ψ. Finally, to calculate the exact number of satisfying
assignments of ψ, on lines 6-9, GenHard iterates over all possible strings, denoted as value,
of {0, 1} of size m. If first f bits of hκ(M + value) matches with F , then the count of τ̂ is
increased by 1. At the end, GenHard returns the formula ψ and τ̂ .

The algorithmic description of ScalBarbarik is almost identical to the Barbarik except for
a notable difference of replacement of Kernel subroutine with Shakuni and the argument
of hardRange. For completeness, we now provide the detailed algorithmic description of
ScalBarbarik in Algorithm 3. Note that the expressions for tj , βj , Nj in Algorithm 3 have
been revised after fixing minor errors in [3].

Algorithm 3 represents ScalBarbarik. ScalBarbarik has three loops, the outermost loop,
lines 2-19 varies the computational hardness parameter κ as per the given range. The second
loop, lines 3-19 makes log(4

2ε+ η
) many rounds. And, in each round, first ScalBarbarik on

line 9 computes the number of satisfying assignments, called Nj to be sampled from SUT.
The inner loop of ScalBarbarik iterates tj many times, which is computed in each round on
line 4. In the inner loop, ScalBarbarik first samples a satisfying assignment σ1 from the ideal
distribution using the base sampler on line 12, and then it samples a satisfying assignment
σ2 from the SUT on line 13. Then, on line 14 ScalBarbarik calls subroutine Shakuni with
formula φ, sampling set S, σ1, and σ2,Nj and κ. Subroutine Shakuni returns a new formula
φ̂ and a sampling set Ŝ. On line 15, ScalBarbarik asks the SUT to sample Nj many satisfying
assignments of φ̂, which is stored in list L3. On line 16, ScalBarbarik calls subroutine Bias.

M. Soos, P. Golia, S. Chakraborty, and K. S. Meel 36:11

Algorithm 3 ScalBarbarik(G, U , S, ε, η, δ, φ, hardRange).

1 S ← Supp(φ)
2 for κ ∈ hardRange do
3 for j ← 1 to ⌈log(4

2ε+η)⌉ do
/* constants required to compute the # of samples */

4 tj ← ⌈2j (η+2ε)
(η−2ε)2 log(4(2ε+ η)−1)(4e

(e−1)) ln(δ−1)⌉

5 βj ← (2j−1+1)(2ε+η)
4+(2ε+η)(2j−1−1)

6 BoundFactor ← log
(

24e
e−1

δ−1

(η−2ε)2 log(4
2ε+η) ln(1

δ)
)
⌉

7 γ ← (βj − 2× ε)
4

8 ConstantFactor ←
⌈

1
(8.79× γ × γ)

⌉
9 Nj ← ⌈(ConstantFactor× BoundFactor)⌉

10 for i← 1 to tj do
11 while L1 = L2 do
12 L1 ← G(φ, S, 1); σ1 ← L1[0] /* G samples σ1 from Sol(φ) */
13 L2 ← U(φ, S, 1); σ2 ← L2[0] /* U samples σ2 from Sol(φ) */

14 (φ̂, Ŝ)← Shakuni(φ, S, σ1, σ2, Nj , κ)
15 L3 ← G(φ̂, S,Nj) /* G samples Nj solutions from Sol(φ̂) */
16 b← Bias(σ1, L3, S)
17 if b < 1

2 (1− cj) or b > 1
2 (1 + cj) then

18 return REJECT

19 return ACCEPT

The subroutine Bias takes σ1, L3, and S as input and returns the cardinality of intersection
of the σ1 and L3 over the sampling set S. The returned cardinality from Bias is stored
in b. Finally, ScalBarbarik checks if the value of b is either lower than the low threshold or
higher than the high threshold on line 17. If that is the case, ScalBarbarik rejects the SUT
on line 18, otherwise, it continues with the inner loop on line 10.

4.1 Theoretical Analysis
First we need to prove the correctness of GenHard. From the code of GenHard (also, refer to
Section 3.3) the following theorem follows:

▶ Theorem 6. If GenHard(τ, κ) returns ψ, τ̂ then |Rψ| = τ̂ , where τ̂ ≥ τ .

Now, the correctness of Shakuni is almost identical to that of Kernel from [3]. We can
prove the following theorem:

▶ Theorem 7. If φ̂ is the output of Shakuni(φ, S, σ1, σ2, τ, κ) then Rφ̂ can be written as a
disjoint union of two sets Z1 and Z2 such that for |Z1| = |Z2| and for all σ ∈ Z1, σ|S = σ1
and for all σ ∈ Z2, σ|S = σ2.

Proof. On line 2 it is ensured that φ′ has only two satisfying assignments – namely σ1 and
σ2. From Theorem 6 we see that GenHard (on line 3) returns a formula (ψ, τ̂) where Rψ = τ̂

and at the same time ConstructChain (on line 5) returns a formula ψ̂ with Rψ̂ = τ̂ and

CP 2022

36:12 On Quantitative Testing of Samplers

Supp(ψ) = Supp(ψ̂). Thus by the construction of φ̂ on lines 4 and 5, if σ is a satisfying
assignment of φ̂ then firstly σ|S is either σ1 or σ2. Also if σ|S is σ1 then σ|Supp(φ̂\S is
a satisfying assignment of ψ. Moreover, there is a one-to-one correspondence between
the satisfying assignments of φ̂, that satisfy σ|S = σ1, with Rψ. Similarly, if σ|S is σ2
then σ|Supp(φ̂\S is a satisfying assignment of ψ̂. and there is a one-to-one correspondence
between the satisfying assignments of φ̂, that satisfy σ|S = σ2, with Rψ′ . Thus we have the
theorem. ◀

Given the correctness of Shakuni, we observe that the theoretical analysis and query
complexity of ScalBarbarik are almost identical to that of Barbarik from [3]. That is, if SUT G
is ε-additive close to the uniform sampler then with probability (1− δ), ScalBarbarik outputs
Accept. If the SUT is η far from uniform and it abides by the subquery-consistent assumption,
ScalBarbarik outputs Reject with probability (1− δ). In case ScalBarbarik outputs Reject for
sampler G on input φ, the assignments σ1 and σ2 can be seen as a certificate because the
sampler G samples them with significantly different probabilities. Therefore, the output of
ScalBarbarik is a list of tuples of the values of κ and the corresponding output.

5 Experimental Evaluation

To analyze the behavior of ScalBarbarik, we built a prototype implementation in Python and
performed empirical evaluation on the 50 benchmarks that were used for the evaluation of
Barbarik so as to situate our results with prior context [3]. For our evaluation, we used
SPUR [1] as a base uniform sampler.

Test Hardware. All our experiments were conducted on a high-performance computing
cluster with each node consisting of a E5-2690 v3 CPU with 24 cores and 96GB of RAM,
with a memory limit of 4GB/core.

Test Parameters. We considered tolerance parameter ϵ, intolerance parameter η, and
confidence δ to be 0.2, 1.6, and 0.1, respectively for experimentation evaluation using
ScalBarbarik. For our chosen parameters, the number of samples required to return Accept for
a given SUT is 2.173×103. We considered the following hardness parameters for ScalBarbarik:
κ = 10, 11, 12, and 13. In the implementation of GenHard, we used m = 14, f = 4.

Samplers Tested. We performed empirical evaluation with four state-of-the-art samplers,
QuickSampler [8], STS [9] CMSGen [13], and UniGen3 [23]. Of these, STS, QuickSampler,
and CMSGen cannot provide theoretical guarantees on the distribution of samples generated,
whereas UniGen provides guarantees. Furthermore, we experimented with different restart
intervals for CMSGen. We set the parameter restart intervals to 300 and 500, that is, restarts
at every 300 or 500 conflicts. We used CMSGen300 and CMSGen500 to refer to our prototype
of CMSGen, respectively. The default version of CMSGen restarts at 100 conflicts.

The objective of our experimental evaluation is to analyze the impact of different compu-
tational hardness levels on the ability of ScalBarbarik to distinguish between state-of-the-art
samplers. Furthermore, we seek to use ScalBarbarik to establish the balance between scalabil-
ity and uniformity in order to tune the sampler to the application at hand. Towards this,
we analyses the impact of different restart intervals of CMSGen on the quality of samples
generated through ScalBarbarik. In particular, we seek to answer the following questions:

M. Soos, P. Golia, S. Chakraborty, and K. S. Meel 36:13

(1) Can ScalBarbarik distinguish between distributions generated by the various
state-of-the-samplers? (2) Can we use ScalBarbarik to design a sampler that can
balance scalability and uniformity?

Summary of results. In summary, we observe that ScalBarbarik Rejects STS and Quick-
Sampler, and returns Accept for UniGen for all the benchmarks. Moreover, as we increase the
hardness parameter for ScalBarbarik, it could Reject CMSGen. These experiments show that
the quality of distribution for the samples generated by CMSGen is between the distribution
generated by samplers without guarantees such as STS and QuickSampler, and by samplers
with guarantees, such as UniGen3. Furthermore, with the help of ScalBarbarik, we are able
to show that the quality of distribution generated improves with increased restart intervals
for CMSGen, however, it takes more time to generate the samples.

5.1 Performance of ScalBarbarik
The first column of Table 1 shows the value of κ and rest of the table consists of two columns
for each of the samplers. The columns with Accept/Reject represent the number of instances
for which ScalBarbarik outputs Accept or Reject, respectively.

Table 1 Analysis of different samplers with ScalBarbarik over 50 benchmarks. Parameters used
were ϵ : 0.2, η : 1.6, δ : 0.1, and samples required to output Accept: 2.173 × 103.

ScalBarbarik
(κ)

QuickSampler STS CMSGen UniGen3
Accept Reject Accept Reject Accept Reject Accept Reject

10 0 50 0 50 50 0 50 0
11 0 50 0 50 41 9 50 0
12 0 50 0 50 19 31 50 0
13 0 50 0 50 0 50 50 0

Note that for κ = 10, ScalBarbarik outputs Accept on all instances for CMSGen, whereas
it Rejects QuickSampler and STS. Upon increasing the value of κ to 11 and 12, ScalBarbarik
outputs Reject on 9 and 31 instances, respectively. Finally, ScalBarbarik outputs Reject for
CMSGen on all 50 instances with κ = 13. On the other hand, ScalBarbarik outputs Accept
for all values of κ on all instances for UniGen3.

It is worth emphasizing that in comparison to Barbarik, ScalBarbarik returns a fine-grained
analysis of the quality of distributions generated by the given sampler. Such a fine-grained
analysis allows one to observe that the quality of distributions generated by CMSGen lie
between QuickSampler, STS and UniGen3.

5.2 Achieving Balance between Scalability and Uniformity
Based on the discussion in Section 3.1, we can hypothesize that the quality of samples
produced increase with an increase in restart interval for SAT solver based sampler such
as CMSGen. To put our hypothesis to test, and to understand the behavior of CMSGen
with different restart intervals, we performed evaluation using ScalBarbarik on CMSGen,
CMSGen300, and CMSGen500. To provide a prospective, we also considered a sampler with
theoretical guarantees, UniGen. We set the computation hardness parameter κ = 11, 15, 18,
and 22. In Table 2, we list the number of instances for which ScalBarbarik returned Accept
and Reject corresponding to the aforementioned samplers.

CP 2022

36:14 On Quantitative Testing of Samplers

Table 2 # of benchmarks for which CMSGen, CMSGen300, CMSGen500, and UniGen3 are Accepted
or Rejected by ScalBarbarik. Total of 50 benchmarks. Parameters ϵ : 0.2, η : 1.6, δ : 0.1, and samples
required to return Accept 2.173 × 103. The default version of CMSGen used restart at 100 conflicts.

ScalBarbarik
(κ)

CMSGen CMSGen300 CMSGen500 UniGen3
Accept Reject Accept Reject Accept Reject Accept Reject

11 41 9 47 3 47 3 50 0
15 0 50 37 13 42 8 50 0
18 0 50 0 50 36 14 50 0
22 0 50 0 50 0 50 50 0

Table 3 CMSGen, CMSGen300, CMSGen500 with ScalBarbarik with different hardness parameters.

(κ) Benchmarks CMSGen CMSGen300 CMSGen500

Result Samples Result Samples Result Samples

15

GuidanceService Reject 742 Accept 2.173 × 103 Accept 2.173 × 103

70.sk-310 Reject 265 Accept 2.173 × 103 Accept 2.173 × 103

BlastedSpring24 Reject 318 Accept 2.173 × 103 Accept 2.173 × 103

ActivityService Reject 106 Reject 848 Accept 2.173 × 103

IterationService Reject 265 Reject 742 Reject 1.802 × 103

18

GuidanceService Reject 159 Reject 265 Accept 2.173 × 103

70.sk-310 Reject 53 Reject 848 Accept 2.173 × 103

BlastedSpring24 Reject 159 Reject 742 Reject 849
ActivityService Reject 106 Reject 689 Accept 2.173 × 103

IterationService Reject 53 Reject 265 Reject 1.961 × 103

We observe that ScalBarbarik needs to increase the computation hardness in order to
Reject CMSGen500 for all the benchmarks – it Rejects CMSGen, CMSGen300, and CMSGen500
at κ values 13, 18, and 22 respectively.

Table 3 presents the result of ScalBarbarik with κ set to 15 and 18 over a subset of repres-
entative benchmarks. The first column in Table 3 presents the hardness parameter κ used
with ScalBarbarik. The second column has the benchmarks details and the following columns
indicate the outcome of ScalBarbarik for samplers CMSGen, CMSGen300 and CMSGen500.
There are two columns for each of the samplers: (i) the first column shows whether the
sampler is accepted by ScalBarbarik as a uniform sampler, and (ii) the second column shows
the number of samples required by ScalBarbarik to decide Accept/Reject. Table 3 shows that
ScalBarbarik needs less samples to reject CMSGen as compared to CMSGen300 and CMSGen500.
Furthermore, as the hardness parameter κ is increased, ScalBarbarik rejects more instances
with less number of samples for all three SUTs.

The results in Table 2 and Table 3 strongly support that as we increase the restart
intervals, the distribution of samples generated are more likely to be uniform.

At this point, one may wonder whether there are costs associated with the improved
quality of sampling in terms of runtime efficiency. To this end, we conducted a study of
runtimes over 70 benchmarks used in prior studies [13]. We present the runtime comparison
of CMSGen, CMSGen300, and CMSGen500 to generate 1000 samples in Figure 1. To put the
runtimes in perspective, we also plot the curve corresponding to UniGen3. Figure 1 represents
a cactus plot – a point ⟨x, y⟩ represents that a sampler took less than or equal to y seconds to
sample 1000 satisfying assignments for x many benchmarks. With a timeout of 7200 seconds,
CMSGen, CMSGen300, CMSGen500, were all able to generate 1000 samples for 52 benchmarks,
and we see a significant increase in the runtime for those instances with CMSGen500 and
CMSGen300 as compared to CMSGen.

M. Soos, P. Golia, S. Chakraborty, and K. S. Meel 36:15

0 10 20 30 40 50 60 70
Benchmarks

0

1000

2000

3000

4000

5000

6000

7000

R
un

tim
e

CMSGen
CMSGen500

CMSGen300

UniGen3

Figure 1 Cactusplot showing runtime performance of CMSGen, CMSGen300, CMSGen500, and
UniGen3 to generate 1000 samples within a timeout of 7200s.

The gain of uniformity at the loss of runtime efficiency in the case of CMSGen500 illustrates
the trade-off between uniformity and runtime performance, and highlights opportunities
for design of large number of samplers based on the needs of the underlying applications.
While ideally, one would perform in-depth theoretical analysis to characterize the distribution
generated by different samplers, modern CDCL solvers have not been shown to be amenable
to such analysis. In this regard, having access to test frameworks such as ScalBarbarik to
test uniformity is crucial.

6 Conclusion

Uniform sampling is a fundamental problem in computer science with widespread applications.
This variety of applications has led to the design of many samplers with varying theoretical
guarantees. There exists many uniform-like samplers that do not provide any guarantees on
the distribution from which the samples are generated. The existence of such samplers led to
the design of the first tester, Barbarik to test whether the distribution generated is ε-close or
η-far from the uniform distribution. Barbarik was used in a test-driven development manner
to create a uniform-like sampler CMSGen that cannot provide theoretical guarantees on the
sampling distribution but is accepted as a ε-close uniform sampler by Barbarik.

The development of such a sampler led us to improve the testing framework Barbarik. In
this work, we propose the sampler tester ScalBarbarik that provides quantitative answers to
measure the quality of samplers, that is, it provides a hardness dial to achieve a fine-grained
analysis of quality of samples. We showed that that the quality of samples generated by
CMSGen are better than the other state-of-the-art samples such as STS and QuickSampler
that do not provide theoretical guarantee; however, it is not as good as the samplers
that provide guarantees on the distribution generated, such as UniGen3. Furthermore, the
availability of ScalBarbarik can be used to achieve a balance between scalability and uniformity
of samplers. We hope the demonstration of virtuosity of the cycle between testing and design
will encourage other developers to design their own samplers while using ScalBarbarik as the
underlying testing engine.

CP 2022

36:16 On Quantitative Testing of Samplers

References
1 Dimitris Achlioptas, Zayd S Hammoudeh, and Panos Theodoropoulos. Fast sampling of

perfectly uniform satisfying assignments. In Proc. of SAT, 2018.
2 Armin Biere and Andreas Fröhlich. Evaluating CDCL restart schemes. In Proc. of Pragmatics

of SAT 2015, 2018.
3 Sourav Chakraborty and Kuldeep S. Meel. On testing of uniform samplers. In Proc. of AAAI,

2019.
4 Supratik Chakraborty, Dror Fried, Kuldeep S Meel, and Moshe Y Vardi. From weighted to

unweighted model counting. In Proc. of AAAI, 2015.
5 Supratik Chakraborty, Kuldeep S Meel, and Moshe Y Vardi. A scalable and nearly uniform

generator of sat witnesses. In Proc. of CAV, 2013.
6 Supratik Chakraborty, Kuldeep S Meel, and Moshe Y Vardi. Balancing scalability and

uniformity in SAT witness generator. In Proc. of DAC, 2014.
7 Lori A Clarke. A program testing system. In Proc. of ACM, 1976.
8 Rafael Dutra, Kevin Laeufer, Jonathan Bachrach, and Koushik Sen. Efficient sampling of SAT

solutions for testing. In Proc. of ICSE, 2018.
9 Stefano Ermon, Carla P Gomes, Ashish Sabharwal, and Bart Selman. Uniform solution

sampling using a constraint solver as an oracle. In Proc. of UAI, 2012.
10 Vijay Ganesh, Charles W O’donnell, Mate Soos, Srinivas Devadas, Martin C Rinard, and

Armando Solar-Lezama. Lynx: A programmatic SAT solver for the RNA-folding problem. In
Proc. of SAT, 2012.

11 Oded Goldreich. Foundations of cryptography: volume 2, basic applications. Cambridge
university press, 2009.

12 Priyanka Golia, Subhajit Roy, and Kuldeep S. Meel. Manthan: A data-driven approach for
Boolean function synthesis. In Proc. of CAV, 2020.

13 Priyanka Golia, Mate Soos, Sourav Chakraborty, and Kuldeep S. Meel. Designing samplers is
easy: The boon of testers. In Proc. of FMCAD, 2021.

14 Evgeny A. Grechnikov. Collisions for 72-step and 73-step SHA-1: improvements in the method
of characteristics. Proc. of IACR, 2010.

15 James C King. Symbolic execution and program testing. Comm. ACM, 1976.
16 James H Kukula and Thomas R Shiple. Building circuits from relations. In Proc. of CAV,

2000.
17 S. Kullback and R. A. Leibler. On information and sufficiency. Proc. of Ann. Math. Statist.,

1951.
18 Kuldeep S. Meel, Yash Pote, and Sourav Chakraborty. On testing of samplers. In Proc. of

NeurIPS, 2020.
19 Yehuda Naveh, Michal Rimon, Itai Jaeger, Yoav Katz, Michael Vinov, Eitan s Marcu, and Gil

Shurek. Constraint-based random stimuli generation for hardware verification. Proc. of AI
magazine, 2007.

20 Vegard Nossum. SAT-based preimage attacks on SHA-1. Master’s thesis, University of Oslo,
2012. URL: https://www.duo.uio.no/handle/10852/34912.

21 Subhajit Roy, Awanish Pandey, Brendan Dolan-Gavitt, and Yu Hu. Bug synthesis: Challenging
bug-finding tools with deep faults. In Proc. of ESEC/FSE, 2018.

22 Shubham Sharma, Rahul Gupta, Subhajit Roy, and Kuldeep S Meel. Knowledge compilation
meets uniform sampling. In Proc. of LPAR, 2018.

23 Mate Soos, Stephan Gocht, and Kuldeep S. Meel. Tinted, detached, and lazy CNF-XOR
solving and its applications to counting and sampling. In Proc. of CAV, 2020.

24 Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending SAT solvers to cryptographic
problems. In Proc. of SAT, 2009.

https://www.duo.uio.no/handle/10852/34912

Structured Set Variable Domains in Bayesian
Network Structure Learning
Fulya Trösser #

Université Fédérale de Toulouse, ANITI, INRAE, UR 875, 31326 Toulouse, France

Simon de Givry #

Université Fédérale de Toulouse, ANITI, INRAE, UR 875, 31326 Toulouse, France

George Katsirelos #

Université Fédérale de Toulouse, ANITI, INRAE, MIA Paris, AgroParisTech, 75231 Paris, France

Abstract
Constraint programming is a state of the art technique for learning the structure of Bayesian
Networks from data (Bayesian Network Structure Learning – BNSL). However, scalability both for
CP and other combinatorial optimization techniques for this problem is limited by the fact that the
basic decision variables are set variables with domain sizes that may grow super polynomially with
the number of random variables. Usual techniques for handling set variables in CP are not useful,
as they lead to poor bounds. In this paper, we propose using decision trees as a data structure for
storing sets of sets to represent set variable domains. We show that relatively simple operations are
sufficient to implement all propagation and bounding algorithms, and that the use of these data
structures improves scalability of a state of the art CP-based solver for BNSL.

2012 ACM Subject Classification Computing methodologies → Learning in probabilistic graphical
models; Theory of computation → Discrete optimization

Keywords and phrases Combinatorial Optimization, Bayesian Networks, Decision Trees

Digital Object Identifier 10.4230/LIPIcs.CP.2022.37

Supplementary Material Software (Source Code): https://gkatsi.github.io/elsa-cp22.tar.gz

Funding This work has been partly funded by the “Agence nationale de la Recherche” (ANR-16-
CE40-0028 Demograph project and ANR-19-PIA3-0004 ANITI-DIL chair of Thomas Schiex).

Acknowledgements Thanks to the GenoToul (Toulouse, France) Bioinformatics platform for compu-
tational support.

1 Introduction

Bayesian Networks (BNs) are directed probabilistic graphical models, which can describe a
normalized joint probability distribution over a potentially large set of random variables, by
exploiting conditional independence to decompose the function. Learning the structure of
BNs from data (the Bayesian Network Structure Learning problem, BNSL) is a challenging
combinatorial optimization problem. There exist constraint-based approaches to learn BNs,
which use local conditional independence tests, and score-based approaches, which use a
decomposable score function to score each potential structure and aim to find the structure
that minimizes this score. The former are known to be efficient, but have trouble with noisy
data. The latter yield a known to be NP-hard problem [4], which additionally has proved
very challenging in practice.

There exist complete methods for score-based BNSL based on dynamic programming [20],
heuristic search [24, 8], maximum satisfiability [2], branch-and-cut [1] and constraint pro-
gramming [22, 21]. Branch-and-cut and constraint programming have proven to be the most
successful of these methods. However, scaling them up remains challenging. One challenge

© Fulya Trösser, Simon de Givry, and George Katsirelos;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 37; pp. 37:1–37:9

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fulya.trosser@hotmail.com
mailto:simon.degivry@inrae.fr
https://orcid.org/0000-0002-2242-0458
mailto:gkatsi@gmail.com
https://orcid.org/0000-0002-3727-6698
https://doi.org/10.4230/LIPIcs.CP.2022.37
https://gkatsi.github.io/elsa-cp22.tar.gz
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2 Structured Set Variable Domains in Bayesian Network Structure Learning

has to do with the decomposition of the scoring functions: these assign a score to each
potential set of parents of each vertex and the score of a specific structure is the sum of the
scores of each parent set. This means that the objective function must have a term for each
potential parent set, a potentially exponential number of terms. There are various methods
by which this number is made manageable, but it is still among the greatest obstacles to
scalability. Moreover, the best solvers, ILP-based GOBNILP [1], and CP-based ELSA [21]
also explicitly have this set of parent sets in other parts of the model as well, in the case of
ELSA as domains of variables.

Here, we propose exploiting the fact that these domains are structured, i.e., that each
value is a set. Specifically, we show that we can represent potential parent sets as paths on
decision trees and that using these decision trees we can answer queries more efficiently than
by traversing a list of domain values. This feature has not been exploited in BNSL in the
past and allows us to solve large instances more efficiently.

2 Background

2.1 Bayesian Networks
A Bayesian Network is a directed graphical model B = ⟨G, P ⟩ where G = ⟨V, E⟩ is a directed
acyclic graph (DAG) called the structure of B and P are its parameters. A BN describes
a normalized joint probability distribution. Each vertex of the graph corresponds to a
random variable and presence of an edge between two vertices denotes direct conditional
dependence. Each vertex vi is also associated with a Conditional Probability Distribution
P (vi | parents(vi)). The CPDs are the parameters of B.

Learning a BN from a set of multivariate discrete data using the score based method uses
a decomposable scoring function (such as BIC [19, 14] or BDeu [3, 12]) which assigns, based
on the data, a score to each potential parent set of each vertex. The BNSL problem is the
problem of finding the structure G which minimizes this scoring function.

The number of candidate parent sets can in principle be exponentially large, but it is
typically kept in check. For one, the BIC scoring function [19, 14] guarantees that the number
of candidate parent sets grows only logarithmically with the size of the data set. Second,
there exist dedicated pruning rules [7, 6] which reduce the set further. As a last resort, an
upper bound can be placed on the cardinality of parent sets. This is necessary especially in
larger instances, where it is necessary to limit cardinality to as low as 3 in some cases.

2.2 CP-based BNSL
ELSA [21] is a CP-based solver for the BNSL, based on the CPBayes solver [22]. The
constraint model used in ELSA has several features that we do not discuss here. Instead,
we focus on the part that is relevant to our contribution. For each random variable X,
there exists a corresponding CSP variable PX whose domain is the set of candidate parent
sets of X. These are unsurprisingly called parent set variables. There exists an acyclicity
constraint over these which requires that their instantiation yields an acyclic graph. ELSA
enforces GAC on this constraint. The central part of the GAC algorithm is algorithm 1,
acycChecker. acycChecker determines in time O(n2d) whether the current set of domains
admits an acyclic solution, based on the property that in any acyclic graph, for any subset
of vertices C, at least one of the vertices v ∈ C has a parent set that does not intersect C.

In addition, ELSA computes lower bounds by approximately solving the linear relaxation
of the ILP (1), which was proposed by Bartlett and Cussens [1] for the GOBNILP solver.

F. Trösser, S. de Givry, and G. Katsirelos 37:3

Algorithm 1 Acyclicity checker.

1 acycChecker (P, D)
2 order ← {}
3 changes← true

4 while changes do
5 changes← false

6 foreach v ∈ P \ order do
88 if ∃S ∈ D(v) s.t. S ⊆ order then

1010 order ← order + v

11 changes← true

12 return order

min
∑

v∈P,S⊆V \{v}

σv(S)xv,S (1a)

s.t.
∑

S∈P S(v)

xv,S = 1 ∀v ∈ P (1b)

∑
v∈C,S∈P S−C (v)

xv,S ≥ 1 ∀C ⊆ P (1c)

xv,S ∈ {0, 1} ∀v ∈ P, S ∈ PS(v) (1d)

This is an exponentially large ILP, but on the flip side, the constraints (1c), called cluster
constraints are facets of the polytope [5]. Hence, following GOBNILP, ELSA starts with none
of the cluster constraints in the linear relaxation and then adds only those that can improve
the dual bound. This is an NP-hard problem. GOBNILP solves this NP-hard problem to find
violated cluster constraints, while ELSA uses a polynomial time algorithm which can identify
a strict subset of all improving cluster constraints. The central element of the algorithm used
in ELSA to find cluster constraints uses algorithm 1 on the domains restricted only to values
which have reduced cost 0 in the current dual solution of the linear relaxation.

Both in finding improving cluster constraints and in enforcing GAC on the acyclicity
constraint, the main bottleneck is line 8 of algorithm 1, which tests whether there exists in
D(v) a value which is a subset of a given set. As domain sizes grow drastically faster than
the number of random variables, it is crucial to optimize this step. In practical terms, even
given the mitigations mentioned earlier, the average domain size can be in the thousands for
larger instances.

3 Related work

A typical approach to dealing with large domain sizes in constraint programming is to enclose
the set of domain values with an underestimation and an overestimation and reason with
those instead. Sometimes, this can even be achieved without any loss in strength of inference.
This is the case, for example, when representing only the bounds of a variables that are only
used in linear inequalities. In the case where the values of a domain are sets, the variable is
called a set variable. Its domain can be represented with the subset bound scheme [9], which
underestimates by a set indicating all elements which appear in all remaining domain values
and overestimates by a set indicating all elements which appear in any remaining domain
value. The length-lex scheme uses lexicographic and cardinality information to get a tighter

CP 2022

37:4 Structured Set Variable Domains in Bayesian Network Structure Learning

under- and over-estimation [10]. However, detecting infeasibility of the acyclicity constraint
is crucial for the performance of CPBayes and even more for ELSA. Hence, over-estimating
the actual domain in our case would lead to poor performance.

Hawkins et al. [11] followed an approach which is closer to our own, by using ROBDDs
(reduced ordered binary decision diagrams) to represent domains. ROBDDs are diagrams
like decision trees, but they require the same variable ordering in each branch and isomorphic
subgraphs are merged, so that the underlying graph is a DAG rather than a tree. They can
be significantly more compact than decision trees. However, Hawkins et al. used them in a
setting where all constraints can be expressed as operations on ROBDDs. They do not deal
with costs of the domain values, and in particular with reduced cost filtering.

4 Decision Trees as domain store

The set of sets that are in a domain can be seen as the set of solutions of a propositional
formula, in which we have a propositional variable for each element of the universe. Therefore,
knowledge compilation languages such as ROBDDs can be used to represent a domain.

There exist several queries and operations performed on the domains in ELSA, but not
all are critical to optimize, as they are not performed often enough to dominate the runtime.
In particular, we want to address the test in line 8, which asks whether the domain contains
a set which is a subset of another given set. Therefore, the main queries that need to be
supported efficiently by a domain store for our purposes are:
1. Does there exist a domain value S such that S ⊆ T for some T?
2. Does there exist a domain value S with reduced cost 0 such that S ⊆ T for some T?

And the main operations, which also have to support backtracking, are:
1. Pruning a single value S

2. Updating the reduced cost of a value

The main issue that disqualifies ROBDDs and other reduced representations for us is
that operation 1, reduced cost filtering, may remove arbitrary values, shattering the shared
suffixes that an ROBDD exploits, which means that pruning may result in increasing the
size of the representation and is not even guaranteed to be in linear time. Instead, we use
decision trees here, in particular binary decision trees with implied literals, inspired by a
similar technique in BDDs [13]. The main use of decision trees is in machine learning for
classification, but their use as a data structure for representing sets of sets (or, equivalently,
a knowledge compilation language) is straightforward.

We give below definitions for the specific case of binary decision trees and binary classi-
fication, as that is all we need.

▶ Definition 1 (Binary decision tree). Let A be a set of features {a1, . . . , an} with Boolean
domains and C1, C2 be two classes. A binary decision tree T over the features A is a directed
rooted binary tree. Each internal node n of T is labeled with a feature l(n) ∈ A and each
arc e (of the at most two outgoing arcs) from n is labeled with l(e) ∈ {true, false} and are
mutually exclusive. Each leaf node t is labeled with l(t) ∈ {C1, C2}. Given an instantiation I

of the features, there is a unique path from the root to a leaf t so that for each arc e = (n, c)
along that path, it holds that I(l(n)) = l(e). We say that T classifies I as l(n) and that I

and the path from the root to n are consistent with each other, or simply that I and n are
consistent with each other.

To see how we can use binary decision trees as a data structure for a set of sets, observe
that we can set the features to be the variables of the indicator function of the sets in the
domain and the classes as in-set and not-in-set.

F. Trösser, S. de Givry, and G. Katsirelos 37:5

This allows us to further optimize the representation. Since we only care about the in-set
class, from now on we assume that all nodes and arcs that do not appear on a path from the
root to a leaf n with l(n) = in-set are removed from the decision tree.

Additionally, we can eliminate some nodes by adding implied literals in each node of
the tree.

▶ Definition 2 (Binary decision tree with implied literals). A binary decision tree with implied
literals is a decision tree in which each node n (internal or leaf) is additionally labeled with a
set of literals lit(n, Ci) ⊆ {a = v | a ∈ A, v ∈ {true, false}} for i ∈ {1, 2}. An instantiation
I is consistent with a path to a leaf t with l(t) = Ci if it is consistent with all the arcs it
follows and all implied literal labels lit(n, Ci) for each node n on the path from the root to t.

In our case, we abbreviate lit(n, in-set) to lit(n), as we ignore the class not-in-set.
Decision trees with implied literals allow us to collapse chains, i.e., paths along which every
node has outdegree 1, into a single node. Hence, they are not more compact than those
without implied literals by more than a linear factor, but they have almost no overhead and,
in preliminary experiments, we found them to provide some performance improvement.

In machine learning, the objective is not only to construct models that perform well on
the training set, but that also generalize. Hence, it is not only acceptable, but also desirable
to misclassify some samples in training sets, if that means a smaller and hence more general
decision tree. In our setting, however, where we use decision trees to model a Boolean
function, we accept no error. So no two sets that belong to different classes, i.e., one in in-set
and one in not-in-set, are allowed to both be consistent with the same leaf node.

We place an additional constraint on the decision trees we construct, which is that each
leaf node must be consistent with exactly one positive instantiation. This ensures that
there exists a bijection between leaves of the tree and values in the domain. This is not
as significant a constraint as it might seem at first. A leaf node n that is consistent only
with positive instantiations but more than one of them is expanded into a full binary tree
of depth k, where k is the number of variables (features) which have not appeared on the
path from the root to n. However, for the queries that we care about, this means only that
the corresponding algorithm will have to traverse an additional k nodes before answering,
and, crucially, will only arrive at this point when it is guaranteed that it will give a positive
answer. Even that overhead can be eliminated with some care. Indeed, while traversing
the decision tree, we can determine that we have reached such a node n if the number of
possible instantiations that are consistent with n is equal to the number of leaves reachable
from n. The former is 2n−lvl, where lvl is the distance from the root to n. The latter can be
computed on construction and updated as values are removed. If these are equal, we know
that the subtree contains all possible subsets and we can answer our query without more
search. We give more detail later.

Constructing decision trees

Constructing a minimum decision tree is NP-hard with respect to several metrics [15]. We
use the information gain heuristic [17] to choose which variable to branch on in each node.
It is a natural side effect of computing the information gain that we learn how many of the
sets that are consistent with a node n contain the literals a = true and a = false for all
a ∈ A. If either of these is 0, then its negation is added to the implied literal label for n and
a is not considered as a candidate for branching. We also experimented with optimizing the
in-memory layout for better cache behavior. Compared to the van-Emde Boas layout [23], a
depth-first, false-child first layout performed better.

CP 2022

37:6 Structured Set Variable Domains in Bayesian Network Structure Learning

Maintaining a decision tree during search

It is fairly straightforward to update a decision tree for a pruning. In order to prune a value,
we remove the unique leaf node that corresponds to it. Once we remove a leaf, its parent
may no longer be able to reach any more leaves, hence we propagate this removal upwards.
We associate each removed node with the decision level in which it was removed, so on
backtracking we add them back to restore the tree to its correct state.

This guarantees that the tree representation of a domain only shrinks down a branch of
the branch and bound tree. Hence, the tree can remain static and we only mask nodes that
do not lead to any leaves that correspond to unpruned values, which is simple to implement.

Reduced costs

ELSA solves the linear relaxation (1) from scratch at every node, and then strengthens it by
discovering new violated cluster inequalities using the acyclicity checker (algorithm 1). Both
these algorithms require an efficient implementation of the subset query on the subset of
values which have reduced cost 0. In contrast to the domain itself, however, this set is reset
to the empty set at the beginning of every node and grows monotonically until it admits an
acyclic solution. Here again, the fact that there exists a bijection between values and leaves
of the tree allows us to represent the set of 0-cost values as a subset of the full decision tree.
Every time the reduced cost of a value reaches 0, the unique leaf it corresponds to, as well as
all its parents, are added to the set of visible nodes for these queries. This is implemented as
an additional mask on top of that which hides pruned values.

Subset queries

To answer the query “does the domain contain a value S such that S ⊆ T?”, we perform a
depth first traversal of the tree. At each node n, we check l(n). If l(n) /∈ T , we only allow
DFS to follow the outgoing arc labeled with false. If l(n) ∈ T , we allow DFS to follow both
outgoing arcs. If the label lit(n) contains a literal p /∈ T , we backtrack. If we reach a leaf, we
stop and report success. If we exhaust the search without reaching a leaf, we report failure.

When this procedure reaches a node which is the root of a complete subtree of depth k,
with no additional implied literal labels, it is guaranteed to terminate after visiting exactly k

nodes and report success. Indeed, since this is a complete subtree, one of the outgoing arcs
is always available to the depth first search, and it will reach a leaf after k more steps.

This procedure can be used to answer subset queries either on the entire domain, masking
away only pruned values, or on those values which have reduced cost 0, masking away both
pruned values and those whose reduced cost is greater than 0.

5 Experimental Results

We implemented decision trees as the domain representation on top of ELSA. The default
implementation of a subset query in ELSA iterates over all domain values and returns if
it finds one that is a subset of T . We replaced this by the depth-first traversal described
in section 4 and denote this solver 1 ELSAIG. We compare against the previous version of
ELSA2, GOBNILP3, and CPBayes4.

1 Available at https://gkatsi.github.io/elsa-cp22.tar.gz
2 Available at https://gkatsi.github.io/elsa-ijcai21.tar.gz
3 Version 1.6.3 with CPLEX 12.7.1
4 Retrieved from http://cs.uwaterloo.ca/~vanbeek/Publications/CPBayes.zip

https://gkatsi.github.io/elsa-cp22.tar.gz
https://gkatsi.github.io/elsa-ijcai21.tar.gz
http://cs.uwaterloo.ca/~vanbeek/Publications/CPBayes.zip

F. Trösser, S. de Givry, and G. Katsirelos 37:7

The datasets come from the UCI Machine Learning Repository5, the Bayesian Network
Repository6, and the Bayesian Network Learning and Inference Package7. We have 51
medium datasets with |V | < 64, and 18 large datasets with 64 ≤ |V | < 128.

Local scores were computed from the datasets using B. Malone’s code8. BDeu and BIC
scores were used for medium datasets (less than 64 variables) and only BIC score for large
datasets (above 64 variables). The maximum number of parents was limited to 5 for large
datasets (except for accidents.test with maximum of 8), a high value that allows learning
even complex structures [18]. For example, jester.test has 100 random variables, a sample
size of 4, 116 and 770, 950 parent set values. For medium datasets, no restriction was applied
except for some BDeu scores, where we limit sets to 6 or 8 to complete the computation of
the local scores within 24 hours of CPU-time [16].

For the experiments, we modified the C++ source of CPBayes v1.1 just to allow us to
run it with datasets having more than 64 variables. All computations were performed on
a single core of Intel(R) Xeon(R) Gold 6248R CPU @ 3.00GHz and 1 TB of RAM with
a 1-hour CPU time limit for the 51 medium datasets, as well as 3 of the large datasets:
kdd.ts, kdd.test, and kdd.valid. For the remaining 15 large datasets, we had a 10-hour
CPU time limit. For the preprocessing phase, we used two different settings depending
on problem size n = |V |: lmin = 20, lmax = 26, rmin = 50, rmax = 500 if n ≤ 64, else
lmin = 20, lmax = 20, rmin = 15, rmax = 30, where lmin, lmax are partition lower bound sizes
and rmin, rmax are the number of restarts for the local search.

In Table 1, we show the time needed to find the optimal solution and prove optimality for
all these solvers. We see that, while the use of decision trees has little effect, either positive
or negative, for the smaller instances, it makes a great difference in the larger instances.
In particular, ELSAIG is the only solver that can prove optimality for the baudio.test
and jester.valid datasets. For the only instances where ELSA is significantly worse
than CPBayes, bnetflix.ts, bnetflix.test, and bnetflix.valid, ELSAIG either closes
the gap back down (bnetflix.valid) or is faster yet than CPBayes (bnetflix.ts and
bnetflix.test). However, ELSAIG regresses with respect to ELSA in the accidents
dataset and in plants.test. Part of the reason for this is that the benefit of the decision
trees in terms of the reduction of the cost in answering the subset queries is comparatively
reduced, hence the other overheads of decision trees dominate. For example, in bnetflix.ts,
where ELSAIG significantly outperforms ELSA, ELSA looks at an average of 3315 values to
answer each subset test, while ELSAIG visits just 90 nodes of the decision tree. On the other
hand, in accidents.test, ELSA looks at an average of 80 values to answer each subset test,
while ELSAIG visits 20 nodes of the decision tree. This difference is not enough to overcome
other overheads.

With respect to GOBNILP, ELSAIG mostly outperforms it, but there are some instances
where neither ELSA nor ELSAIG can match it. It seems, however, that ELSAIG is overall
the best performer.

5 http://archive.ics.uci.edu/ml
6 http://www.bnlearn.com/bnrepository
7 https://ipg.idsia.ch/software.php?id=132
8 http://urlearning.org

CP 2022

http://archive.ics.uci.edu/ml
http://www.bnlearn.com/bnrepository
https://ipg.idsia.ch/software.php?id=132
http://urlearning.org

37:8 Structured Set Variable Domains in Bayesian Network Structure Learning

Table 1 Comparison of GOBNILP, CPBayes, ELSA, and ELSAIG in terms of total running (and
search) time in seconds. Time limit for the datasets above the line is 1 hour, and for the rest it is 10
hours. Datasets are sorted by increasing total domain size for each time limit category. For CPBayes
as well as all variants of ELSA we report in parentheses time spent in search, after preprocessing
finishes. † indicates a timeout.

n sum |D| GOBNILP CPBayes ELSA ELSAIG

carpo100_BIC 60 423 0.5 76.7 (27.5) 52.6 (0.1) 52.5 (0.0)
insurance1000_BIC 27 506 0.6 31.6 (0.0) 32.8 (0.0) 37.2 (0.0)
spectf_BIC 45 610 1.4 4.2 (3.5) 0.8 (0.0) 1.0 (0.1)
sponge_BIC 45 618 1.6 5.1 (3.3) 1.8 (0.0) 2.1 (0.0)
insurance1000_BDe 27 792 0.6 34.8 (0.0) 34.3 (0.0) 39.2 (0.0)
alarm1000_BIC 37 1002 1.3 191.1 (159.1) 34.4 (1.0) 37.9 (1.9)
flag_BDe 29 1324 4.0 16.6 (15.6) 1.0 (0.2) 1.3 (0.2)
autos_BIC 26 2391 11.9 18.4 (0.0) 19.2 (0.0) 19.9 (0.1)
soybean_BIC 36 5926 48.9 51.9 (1.7) 50.8 (3) 49.6 (0.0)
wdbc_BIC 31 14613 86.3 459.4 (398.0) 56.0 (2.4) 61.7 (1.7)
autos_BDe 26 25238 1005.2 239.5 (0.1) 145.8 (0.8) 177.1 (0.3)
kdd.ts 64 43584 508.8 † 1452.3 (274.6) 1355.2 (141.3)
steel_BIC 28 93026 † 1265.6 (1196.1) 124.2 (71.8) 100.6 (45.7)
kdd.test 64 152873 3178.0 † 1594.3 (224.4) 1519.6 (48.9)
mushroom_BDe 23 438185 † 167.0 (4.9) 182.6 (58.9) 150.1 (16.7)
bnetflix.ts 100 446406 † 1086.9 (876.3) 2103.1 (1900.9) 557.9 (358.4)
plants.test 111 520148 † † 28049.6 (26312.9) 35961.7 (33712.7)
jester.ts 100 531961 † † 21550.5 (21003.7) 7951.4 (7301.6)
accidents.ts 100 568160 1932.2 † 2302.2 (930.0) †
plants.valid 111 684141 † † 17801.6 (14080.2) 19819.2 (14547.9)
jester.test 100 770950 † † 30186.8 (29455.0) 9644.5 (8742.8)
baudio.test 100 1016403 † † † 31077.1 (29028.1)
bnetflix.test 100 1103968 † 5794.5 (5486.2) 10333.1 (10096.5) 1448.8 (1137.7)
bnetflix.valid 111 1325818 † 998.1 (451.0) 10871.7 (10527.7) 1476.5 (1041.5)
accidents.test 100 1425966 14453.1 † 3641.7 (680.7) 8434.1 (4723.0)
jester.valid 100 1463335 † † † 31949.5 (30624.2)
accidents.valid 100 1617862 27730.5 † † †

6 Conclusion

We have shown that, in the BNSL problem, we can exploit the structure of domains to get
a significant speedup in learning the structure of BNs of larger datasets. Specifically, we
have shown that by treating domains as sets of sets instead of sets of values, and using
decision trees to represent these sets, we can answer subset queries significantly faster. This
is unlike the typical approach to handling large domains in CP, which uses over- and under-
approximations. Although the current implementation shows some significant improvements,
answering subset queries is still the most time consuming operation performed by the solver.
Moreover, the fact remains that decision trees as a knowledge compilation language are fairly
weak in terms of conciseness. It remains an open question whether we can overcome the
issues with ROBDDs or even DNNFs to achieve even more significant speedups.

References
1 Mark Bartlett and James Cussens. Integer linear programming for the bayesian network

structure learning problem. Artificial Intelligence, pages 258–271, 2017.
2 Jeremias Berg, Matti Järvisalo, and Brandon Malone. Learning optimal bounded treewidth

bayesian networks via maximum satisfiability. In Artificial Intelligence and Statistics, pages
86–95. PMLR, 2014.

F. Trösser, S. de Givry, and G. Katsirelos 37:9

3 Wray Buntine. Theory refinement on bayesian networks. In Proc. of UAI, pages 52–60.
Elsevier, 1991.

4 David Maxwell Chickering. Learning bayesian networks is NP-Complete. In Proc. of Fifth
Int. Workshop on Artificial Intelligence and Statistics (AISTATS), pages 121–130, Key West,
Florida, USA, 1995. doi:10.1007/978-1-4612-2404-4_12.

5 James Cussens, Matti Järvisalo, Janne H Korhonen, and Mark Bartlett. Bayesian network
structure learning with integer programming: Polytopes, facets and complexity. Journal of
Artificial Intelligence Research, 58:185–229, 2017.

6 Cassio P de Campos, Mauro Scanagatta, Giorgio Corani, and Marco Zaffalon. Entropy-based
pruning for learning bayesian networks using BIC. Artificial Intelligence, 260:42–50, 2018.

7 Cassio Polpo de Campos and Qiang Ji. Properties of bayesian dirichlet scores to learn bayesian
network structures. In Proc. of AAAI-10, Atlanta, Georgia, USA, 2010.

8 Xiannian Fan and Changhe Yuan. An improved lower bound for bayesian network structure
learning. In Proc. of AAAI-15, Austin, Texas, 2015.

9 Carmen Gervet. Conjunto: Constraint logic programming with finite set domains. In Maurice
Bruynooghe, editor, Logic Programming, Proceedings of the 1994 International Symposium,
Ithaca, New York, USA, November 13-17, 1994, pages 339–358. MIT Press, 1994.

10 Carmen Gervet and Pascal Van Hentenryck. Length-lex ordering for set CSPs. In Proceedings
of AAAI, 2006.

11 Peter Hawkins, Vitaly L. Lagoon, and Peter J. Stuckey. Solving set constraint satisfaction
problems using ROBDDs. Journal of Artificial Intelligence Research, 24:109–156, 2005.

12 David Heckerman, Dan Geiger, and David M Chickering. Learning bayesian networks: The
combination of knowledge and statistical data. Machine learning, 20(3):197–243, 1995.

13 Y. Lai, D. Liu, and S. Wang. Reduced ordered binary decision diagram with implied literals:
A new knowledge compilation approach. Knowledge and Information Systems, 35(3):665–712,
2013.

14 Wai Lam and Fahiem Bacchus. Using new data to refine a bayesian network. In Proc. of UAI,
pages 383–390, 1994.

15 Hyafil Laurent and Ronald L Rivest. Constructing optimal binary decision trees is NP-complete.
Information processing letters, 5(1):15–17, 1976.

16 Colin Lee and Peter van Beek. An experimental analysis of anytime algorithms for bayesian
network structure learning. In Advanced Methodologies for Bayesian Networks, pages 69–80,
2017.

17 J.R. Quinlan. Induction of decision trees. Machine Learning, 1:81–107, 1986.
18 Mauro Scanagatta, Cassio P de Campos, Giorgio Corani, and Marco Zaffalon. Learning

bayesian networks with thousands of variables. Proc. of NeurIPS, 28:1864–1872, 2015.
19 Gideon Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):461–464,

1978.
20 Tomi Silander and Petri Myllymäki. A simple approach for finding the globally optimal

bayesian network structure. In Proc. of UAI’06, Cambridge, MA, USA, 2006.
21 Fulya Trösser, Simon de Givry, and George Katsirelos. Improved acyclicity reasoning for

bayesian network structure learning with constraint programming. In Proceedings of IJCAI,
pages 4250–4257, 2021.

22 Peter van Beek and Hella-Franziska Hoffmann. Machine learning of bayesian networks using
constraint programming. In Proc. of International Conference on Principles and Practice of
Constraint Programming, pages 429–445, Cork, Ireland, 2015.

23 Peter van Emde Boas. Preserving order in a forest in less than logarithmic time. In Proceedings
of the 16th Annual Symposium on Foundations of Computer Science, pages 75–84, 1975.

24 Changhe Yuan and Brandon Malone. Learning optimal bayesian networks: A shortest path
perspective. J. of Artificial Intelligence Research, 48:23–65, 2013.

CP 2022

https://doi.org/10.1007/978-1-4612-2404-4_12

Selecting SAT Encodings for Pseudo-Boolean and
Linear Integer Constraints
Felix Ulrich-Oltean #

Department of Computer Science, University of York, UK

Peter Nightingale #

Department of Computer Science, University of York, UK

James Alfred Walker #

Department of Computer Science, University of York, UK

Abstract
Many constraint satisfaction and optimisation problems can be solved effectively by encoding them
as instances of the Boolean Satisfiability problem (SAT). However, even the simplest types of
constraints have many encodings in the literature with widely varying performance, and the problem
of selecting suitable encodings for a given problem instance is not trivial. We explore the problem of
selecting encodings for pseudo-Boolean and linear constraints using a supervised machine learning
approach. We show that it is possible to select encodings effectively using a standard set of features
for constraint problems; however we obtain better performance with a new set of features specifically
designed for the pseudo-Boolean and linear constraints. In fact, we achieve good results when
selecting encodings for unseen problem classes. Our results compare favourably to AutoFolio when
using the same feature set. We discuss the relative importance of instance features to the task of
selecting the best encodings, and compare several variations of the machine learning method.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming

Keywords and phrases Constraint programming, SAT encodings, machine learning, global constraints,
pseudo-Boolean constraints, linear constraints

Digital Object Identifier 10.4230/LIPIcs.CP.2022.38

Supplementary Material Dataset (Repository with models and results):
https://github.com/felixvuo/cp2022-pbli-sat

Funding Felix Ulrich-Oltean: Supported by grant EP/R513386/1 from the UK Engineering and
Physical Sciences Research Council.

Acknowledgements We are very grateful to Nguyen Dang for helpful conversations about portfolio
approaches. The experiments were undertaken on the Viking Cluster, which is a high performance
compute facility provided by the University of York. We are grateful for support from the University
of York High Performance Computing service, Viking and the Research Computing team.

1 Introduction

Many constraint satisfaction and optimisation problems can be solved effectively by encoding
them as instances of the Boolean Satisfiability problem (SAT). Modern SAT solvers are
remarkably effective even with large formulas, and have proven to be competitive with (and
often faster than) CP solvers (including those with conflict learning). However, even the
simplest types of constraints have many encodings in the literature with widely varying
performance, and the problem of predicting suitable encodings is not trivial.

We explore the problem of selecting encodings for constraints of the form
∑n

i=1 qixi ⋄ k

where ⋄ ∈ {<, ≤, =, ̸=, ≥, >}, q1 . . . qn are integer coefficients, k is an integer constant and xi

are decision variables. We separate these constraints into two classes: pseudo-Boolean (PB)
when all xi are Boolean variables or integer variables with two values; and linear integer (LI)
when there exists an xi variable with more than two possible values. We treat these two
classes separately, selecting one encoding for each class when encoding an instance.

© Felix Ulrich-Oltean, Peter Nightingale, and James Alfred Walker;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 38; pp. 38:1–38:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fvuo500@york.ac.uk
https://orcid.org/0000-0001-5162-5826
mailto:peter.nightingale@york.ac.uk
https://orcid.org/0000-0002-5052-8634
mailto:james.walker@york.ac.uk
https://orcid.org/0000-0003-2174-7173
https://doi.org/10.4230/LIPIcs.CP.2022.38
https://github.com/felixvuo/cp2022-pbli-sat
https://github.com/felixvuo/cp2022-pbli-sat
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

38:2 Selecting SAT Encodings for PB and LI Constraints

We select from a set of state-of-the-art encodings, including all four encodings of Bofill et
al. [8, 9, 7] which are extensions of the Generalized Totalizer [16], Binary Decision Diagram [1],
Global Polynomial Watchdog [6], and Sequential Weight Counter [14]. All four of these
encodings are for pseudo-Boolean constraints with at-most-one (AMO) sets of terms (where
at most one of the corresponding xi variables are true). The AMO sets come from an integer
variable or are detected automatically [5] as described in Section 2.1. We also use Savile
Row’s Tree encoding, which we describe briefly in this paper.

The context for this work is Savile Row [21], a constraint modelling tool that takes
the modelling language Essence Prime and can produce output for various types of solver,
including CP, SAT, and recently SMT [12]. When encoding a constraint to SAT, two different
approaches may be taken depending on the type of constraint. Some constraint types are
decomposed into simpler constraints prior to encoding (e.g. allDifferent is decomposed into
a set of at-most-one constraints, stating that each relevant domain value appears at most
once). Other constraint types are encoded to SAT directly, in which case Savile Row will
apply the encoding chosen on the command-line (or the default if no choice is made).

We use a supervised machine learning approach, trained with a corpus of 615 instances
from 49 problem classes (constraint models). We show that it is possible to select encodings
effectively, approaching the performance of the virtual best encoding (i.e. the best possible
choice for each instance), using an existing set of features for constraint problem instances.
Also we obtain better performance by adding a new set of features specifically designed for
the pseudo-Boolean and linear integer constraints, especially when selecting encodings for
unseen problem classes.

1.1 Contributions
In summary, our contributions are as follows:

We address the problem of selecting SAT encodings for instances of unseen problem
classes, which we argue is a realistic version of the encoding selection problem. To our
knowledge, all previous approaches (such as [15, 24]) train and test their machine learning
models on instances drawn from the same set of problem classes.
We describe a machine learning approach that produces very good results, and that per-
forms much better than the mature, self-tuning algorithm selection tool AutoFolio [19].
We present a new set of features for pseudo-Boolean and linear integer constraints, and
show improved overall performance and robustness when using them.
We evaluate our machine learning method thoroughly, and present an analysis of feature
importance.

1.2 Preliminaries
A constraint satisfaction problem (CSP) is defined as a set of variables X, a function that
maps each variable to its domain, D : X → 2Z where each domain is a finite set, and a set
of constraints C. A constraint c ∈ C is a relation over a subset of the variables X. The
scope of a constraint c, named scope(c), is the set of variables that c constrains. A constraint
optimisation problem (COP) also minimises or maximises the value of one variable. A solution
is an assignment to all variables that satisfies all constraints c ∈ C. Boolean Satisfiability
(SAT) is a subset of CSP with only Boolean variables and only constraints (clauses) of the
form (l1 ∨ · · · ∨ lk) where each li is a literal xj or ¬xj . A SAT encoding of a CSP variable
x is a set of SAT variables and clauses with exactly one solution for each value in D(x).
A SAT encoding of a constraint c is a set of clauses and additional Boolean variables A,

F. Ulrich-Oltean, P. Nightingale, and J. A. Walker 38:3

where the clauses contain only literals of A and of the encodings of variables in scope(c).
An encoding of c has at least one solution corresponding to each solution of c. Generalised
arc consistency (GAC) for a constraint c means that for a given partial assignment, all
values are removed from the domain of each variable in scope(c) if they cannot appear in
any extended assignment satisfying c. A SAT encoding of c has the property UP maintains
GAC iff unit propagation of the SAT encoding of c results in the following correspondence:
for each variable xi ∈ scope(c), the set of solutions of the encoding of xi corresponds to the
set of values in D(xi) after GAC has been enforced on c.

2 Learning to Choose SAT Encodings

First we describe the palette of encodings for PB and LI constraints, then our approach to
selecting encodings using instance features and machine learning.

2.1 SAT Encodings
Recall that we are considering constraints of the form

∑n
i=1 qixi ⋄ k where ⋄ ∈ {<, ≤, =, ̸=, ≥

, >}, q1 . . . qn are integer coefficients, k is an integer constant and xi are decision variables
(of type integer or Boolean). We use five encodings and each can be applied to either PB or
LI constraints, giving 25 configurations in total.

2.1.1 PB(AMO) Encodings
The first four are encodings of PB(AMO) constraints [8, 9, 7], which are pseudo-Boolean
constraints with non-intersecting at-most-one (AMO) groups of terms (where at most
one of the corresponding xi variables are true in any solution). Encodings of PB(AMO)
constraints can be substantially smaller and more efficient to solve than the corresponding
PB constraints [8, 9, 5, 7]. For the four PB(AMO) encodings the constraints must be placed
in a normal form where all coefficients are positive, only ≤ is allowed, and each xi must be
Boolean. We exactly follow the normalisation rules of Bofill et al. [7].

When encoding LI constraints, each integer CSP variable xi in the constraint (where
|D(xi)| > 2) is required to have a direct encoding. When an integer variable (with |D(xi)| > 2)
appears in an LI constraint it is replaced with an AMO group of |D(xi)|−1 terms representing
each value except the smallest (which is cancelled out). In the case where xi is an integer
variable with two values, Savile Row encodes xi with a single Boolean variable that is true
iff xi takes its larger value. Also, automatic AMO detection [5] (which applies constraint
propagation to find AMO groups among the Boolean terms of the original constraint) is
enabled in our experiments. Automatic AMO detection has been shown to substantially
improve solving time in some cases [5].

Equality constraints are decomposed into two inequalities (≤) prior to encoding. Disequal-
ity constraints and any constraints that are not top-level (i.e. are nested in another expression
such as a disjunction) are encoded with the Tree encoding, described in Section 2.1.2. Full
details of the conversion of integer terms and normalisation for PB(AMO) encodings are
given elsewhere [5]. The PB(AMO) encodings are as follows:

MDD The Multi-valued Decision Diagram encoding [8] (a generalisation of the BDD encoding
for PB constraints [1]) uses an MDD to encode the PB(AMO) constraint. Each layer of
the MDD corresponds to one AMO group. BDDs and MDDs are a popular choice for
encoding sums to SAT since they can compress equivalent states in each layer.

CP 2022

38:4 Selecting SAT Encodings for PB and LI Constraints

GGPW The Generalized Global Polynomial Watchdog encoding [9] (generalising GPW [6])
is based on bit arithmetic and is polynomial in size.

GGT The Generalized Generalized Totalizer [9] encodes the PB(AMO) constraint with a
binary tree, where the leaves represent the AMO groups and each internal node represents
the sum of all leaves beneath it. GGT compresses equivalent states at its internal nodes.
It extends the Generalized Totalizer [16].

GSWC The Generalized Sequential Weight Counter [9] (based on the Sequential Weight
Counter [14]) encodes the sum of each prefix sub-sequence of the AMO groups.

Unit propagation on the MDD, GGT, and GSWC encodings enforces GAC on the original
constraint c when c is a PB(AMO) ≤ constraint [9] but not when c contains integer terms or
is an equality. GGPW does not have this property.

2.1.2 Tree Encoding
The Tree encoding is related to GGT, however it is not a PB(AMO) encoding. Tree does not
require the constraint to be an inequality, nor to have positive coefficients.

Tree Given a constraint c, each term is shifted such that its smallest value becomes 0, and k

is adjusted accordingly. A binary tree is constructed from the sum, with each term (integer
or Boolean) attached to a leaf. Internal nodes represent the sum of the leaves beneath
them. The order encoding is required for integer leaf nodes (Savile Row generates
the direct or order encoding for variables as required [20]) and is also used for internal
nodes. Each internal node is connected to its two children using the order encoding of
linear constraints [25]. The root node represents the entire sum, and its set of values
is restricted to those satisfying the constraint c. Tree can directly encode constraints
with integer terms, equality and disequality, but does not benefit from automatic AMO
detection.

Unit propagation on Tree enforces GAC on the original constraint c when c is not an
equality or disequality.

The set of 5 encodings is diverse but not exhaustive. Abío et al proposed a BDD-
based encoding for linear constraints [3], however it has been directly related to the MDD
encoding [10]. In addition to MDD-based encodings, Abío et al propose two further encodings
for linear constraints [2]: one based on sorting networks (SN), which is related to the GPW
encoding, and another log-based encoding BDD-Dec. Other log encodings such as the one
used by Picat-SAT [27] may also be more effective in some cases.

For our experiments we use an extended version of Savile Row 1.9.1 [20]. All constraints
other than PB and LI use the default encoding as described in the Savile Row manual.

2.2 Instance Features
f2f We use the fzn2feat tool [4] to extract 95 static instance features relating to the

number and types of variables and their domains, the types and sizes of constraints and
features of the objective in optimisation problems. The full list of features can be found
at https://github.com/CP-Unibo/mzn2feat; some features were not applicable, e.g.
there are no float variables in Essence Prime and Savile Row does not produce all the
same annotations.

f2fsr We also re-implement these features as closely as possible in Savile Row, applied to
the model directly before encoding to SAT.

https://github.com/CP-Unibo/mzn2feat

F. Ulrich-Oltean, P. Nightingale, and J. A. Walker 38:5

lipb We introduce a new set of 45 features describing the PB constraints in a problem
instance. We also extract these for LI constraints, giving 90 new features in total. These
features are listed in Table 1.

combi We combine the f2fsr and lipb features.

Table 1 New features for pseudo-Boolean and linear integer constraints. For each aspect of
a constraint listed in the left column, we calculate the aggregates in the right column. In the
aggregation functions, IQR means inter-quartile range, skew refers to the non-parametric skew and
ent is Shannon’s entropy. The identifier for each aspect is given in brackets.

Aspect of constraint Aggregate
Number of (PB or LI) constraints count
Number of terms (n) min, max, mean, median, IQR,

skew, ent, sum
Sum of coefficients (wsum) sum, skew, IQR
Minimum coefficient (q0) min, mean
Maximum coefficient (q4) max, median, mean
Median coefficient (q2) median, skew, ent
IQR of coefficients (iqr) median, skew
Coefficients’ quartile skew (skew) mean, min, max, ent
Distinct coefficient values (sep) mean, max
Ratio of distinct coeff. values to number of coeffs. (sepr) mean, max
Number of At-Most-One groups (AMOGs) (amogs) mean
Mean size of AMO group (asize_mn) mean
Mean AMOG size ÷ number of terms (asize_r2n) mean
Mean maximum coeff. size in AMOGs (amaxw_mn) mean
Skew of maximum coeff. in AMOGs (amaxw_skew) mean, ent
Upper limit (k) (k) mean, median, max, IQR, ent,

skew
k × number of AMOGs (k_amo_prod) mean, IQR, ent

2.3 Problem Corpus
We use the 65 constraint models with a total of 757 instances from a recent paper [12] in
order to work with a wide variety of problem classes. An added advantage is that the models
are written in Essence Prime, Savile Row’s input language. Unfortunately this collection
has a very skewed distribution of instances per problem class, ranging from just 1 to 100. We
address this by limiting the number of instances per class to 50 (a random sample) and by
adding instances to existing classes where it is easy, such as when instance parameters are
just a few integers. We also add two problem classes from recent XCSP3 competitions [18].
More details of the corpus after cleaning are given in Section 3.2 and Table 2.

2.4 Training
We evaluated several classifier models from the scikit-learn library [22], including decision
trees and forests of extremely randomised trees. We also investigated training various
regressors to predict runtime. We find that random forest classifier performs best for our
purposes. The scikit-learn implementation is based on Breiman’s random forests [11], but
uses an average of predicted probabilities from its decision trees rather than a simple vote.

We follow the method of Probst et al. [23] who investigated hyperparameter tuning for
random forests and concluded that the number of estimators should be set sufficiently high
(we use 200) and that it is worth tuning the number of features, maximum tree depth, and

CP 2022

38:6 Selecting SAT Encodings for PB and LI Constraints

sample size. We use randomised search with 50 iterations and 5-fold cross-validation to tune
the hyperparameters. We experimented with more tuning iterations but it did not lead to
improved prediction quality.

If a classifier makes a poor prediction, the consequences vary. It is possible that the
chosen encodings lead to a running time which is very close to that of the ideal choice; the
opposite is also true and misclassification can be very expensive. To address this issue, we
follow a similar approach to the pairwise classification used in AutoFolio [19]: we train a
random forest model for each of the possible pairs of encoding configurations. When making
predictions, each model chooses between its two candidates. The configuration with most
votes is chosen; if two or more configurations have equal votes, we select the one which
produced the shortest total running time over the training set. This approach effectively
creates a predicted ranking of configurations from the features and leads to better prediction
performance than using a single random forest classifier.

To facilitate the pairwise training and prediction approach, we reduce our selection of
encoding combinations from 25 (5 PB encodings × 5 LI encodings) to a portfolio of 5, thus
needing to train just 10 models (rather than 300 if we had used all 25 choices). We seek to
retain performance complementarity as described in [17] from a much reduced portfolio size.
The portfolio is built from the timings in the training set using a greedy approach as follows.
We begin with a single encoding configuration in the portfolio and then successively add the
remaining configuration which would lower the virtual best PAR2 time (PAR2 is defined in
Section 3.2) by the biggest margin. We do this until we have a portfolio of 5. We repeat
the process using each of the 25 configurations as the starting element and finally select the
best-performing portfolio from these 25. Figure 1 shows that this portfolio reduction has a
small impact on the virtual best performance across our corpus – the virtual best time for a
portfolio of size 5 is within 15% of the time achievable with all configurations.

0 5 10 15 20 25
Portfolio size

1.0

1.5

2.0

2.5

3.0

PA
R2

 /
VB

GGPW_Tree (3.23)
GGPW_GGPW,Tree_MDD (1.82)

GGPW_Tree,GGPW_GGPW,Tree_GGPW (1.43)
GGPW_Tree,GGPW_GGPW,Tree_GGPW,GSWC_GGPW (1.26)

GGPW_Tree,GGPW_GGPW,Tree_GGPW,GSWC_GGPW,GGT_MDD (1.14)

Figure 1 The virtual best PAR2 run-time on our corpus for all portfolio sizes as a multiple of
the overall virtual best; the resulting portfolios (of li_pb configurations) are shown for sizes 1 to 5.

In addition to the pairwise voting scheme, we implement two further customisations when
training the classifiers. Firstly we apply sample weights to give more importance to harder
instances (those with a longer virtual best runtime) during training. Each instance is given
a positive integer weight w according to w = ⌊log10 (10(1 + tvb))⌋, where tvb is the virtual
best running time for the instance. Secondly, we provide a custom loss function for the
cross-validation used during hyperparameter tuning. The loss function simply returns the
difference in time between the runtime of the chosen encoding configuration and the virtual
best for that instance.

To conduct a more complete comparison we also implement two additional alternative
setups. Firstly we use a single classifier with a portfolio of 5 configurations (combining PB
and LI encodings) and allow it the same number of hyperparameter tuning iterations as the

F. Ulrich-Oltean, P. Nightingale, and J. A. Walker 38:7

problem instances
(.eprime models, .param files)

Savile Row ex-
tract features

Savile Row solve
with SAT backend

Savile Row
output flatzinc

fzn2feat

feature extrac-
tion timesfeaturessolving times

drop instances without PB/LI
or where all encodings time out;

apply PAR2

cleaned dataset calculate reference
and prediction times

train/test split

training set test set

select best 5 encoding
configurations

portfolio

train classifiers

trained classifiers predict and vote

predicted encoding
configurations

aggregated prediction
data for analysisfor each splitting method and setup,

perform 50 cycles with different seeds

Figure 2 An overview of the steps involved in our experimental investigation. The boxes with
solid borders represent data; the grey boxes represent processes.

total used by the pairwise classifiers (i.e. 50 × 10). Secondly we modify the pairwise setup
to make a separate prediction for PB and LI constraints – this approach has its difficulties
because when labelling the dataset with the best encoding for one type of constraint, the
other constraint must be chosen somehow. We address this by setting the other constraint
to the single best for the training set; however this process is not easily scalable in the same
way as the other setups we present. In both of these setups we use sample weighting and the
custom loss function for cross-validation.

3 Empirical Investigation

We provide an overview of our experimental process in Figure 2.

3.1 Solving Problem Instances and Extracting Features
We run Savile Row on each instance in the corpus with each of the 25 encoding configurations.
The CNF clause limit is set to 5 million and the Savile Row time-out to 1 hour. We switch
on automatic detection of At-Most-One constraints [5]. We choose Kissat as our SAT solver
as it formed the basis of the top three performers in the 2021 SAT competition [13]. We

CP 2022

38:8 Selecting SAT Encodings for PB and LI Constraints

Table 2 Number of instances (#), mean number of PB constaints (PBs) and mean number of
linear integer constaints (LIs) per instance for each problem class in the eventual corpus.

Problem Class # PBs LIs Problem Class # PBs LIs
killerSudoku2 50 1811.2 129.9 carSequencing 49 435.7 0.0
knights 44 170.5 336.9 langford 39 146.2 0.0
opd 38 21.7 74.8 knapsack 30 1.0 1.0
sonet2 24 10.0 1.0 immigration 23 0.0 1.0
bibd-implied 22 410.6 0.0 handball7 20 705.0 1206.0
mrcpsp-pb 20 90.0 45.7 n_queens 20 1593.0 0.0
efpa 20 156.6 0.0 bibd 19 338.7 0.0
n_queens2 16 309.0 0.0 briansBrain 16 0.0 1.0
life 16 0.0 438.9 molnars 15 0.0 4.0
bpmp 14 14.0 0.0 blackHole 11 202.2 0.0
pegSolitaireTable 8 59.9 0.0 pegSolitaireState 8 59.9 0.0
pegSolitaireAction 8 59.9 0.0 peaceArmyQueens1 7 0.0 1008.0
peaceArmyQueens3 6 0.0 4.0 golomb 6 59.2 38.7
quasiGrp5Idem 6 586.7 0.0 magicSquare 6 118.3 34.0
quasiGrp7 6 410.7 0.0 quasiGrp6 6 410.7 0.0
quasiGrp4NonIdem 4 1067.5 208.0 quasiGrp3NonIdem 4 1067.5 208.0
quasiGrp5NonIdem 4 389.0 0.0 quasiGrp4Idem 4 416.0 208.0
bacp 4 0.0 25.0 quasiGrp3Idem 4 458.0 208.0
waterBucket 4 0.0 46.0 discreteTomography 2 240.0 0.0
solitaire_battleship 2 72.0 16.0 plotting 1 1.0 28.0
nurse 1 27.0 42.0 grocery 1 0.0 2.0
farm_puzzle1 1 0.0 2.0 diet 1 0.0 6.0
sokoban 1 0.0 24.0 sonet 1 3.0 1.0
contrived 1 0.0 4.0 sportsScheduling 1 166.0 64.0
tickTackToe 1 6.0 14.0

use the latest release available at the time, sc2021-sweep [26], with default settings and
separate time limit of 1 hour. The experiment is run on a research cluster [name removed for
anonymity] with Intel Xeon 6138 20-core 2.0 GHz processors; we set the memory limit for
each job to 8 GB. We carry out 5 runs (with distinct random seeds) for each configuration
to average out stochastic behaviour of the solver.

To extract the features we run each problem instance once with the Savile Row feature
extractor and once to generate standard FlatZinc (using the -flatzinc flag) followed by
fzn2feat [4]. We record the time taken to extract the features.

3.2 Cleaning the Dataset

We calculate the median runtime over 5 runs for each instance and encoding configuration,
and filter the corpus as follows. We mark a result as timed out if the total runtime (Savile
Row + Kissat) exceeds 1 hour. We use PAR2 times, i.e. assigning 2 hours to any result
which takes longer than our time-out limit. We choose PAR2 rather than PAR10 as used in
some literature [15, 19, 24] because when choosing between our encodings the worst encoding
for an instance tends to be around 2 times slower – the median worst:best runtime ratio
is 1.85 for instances which don’t time out. We drop instances if they contain no PB or LI
constraints. We exclude instances for which all configurations time out, as well as instances
which end up requiring no SAT solving – Savile Row can sometimes solve a problem in
pre-processing through its automatic re-formulation and domain filtering. At this point, 615
instances of 49 problem classes remain in the corpus; Table 2 shows the number of instances
for each problem class and the mean number of PB and LI constraints per instance.

F. Ulrich-Oltean, P. Nightingale, and J. A. Walker 38:9

3.3 Splitting the Corpus, Training and Predicting
For each of our classifier setups and our four featuresets, we run a split, train, predict cycle
50 times. We use seeds 1 to 50 to co-ordinate the splits so that we compare the prediction
power of the different feature sets and setups using the same training and test sets.

For each cycle, we obtain an 80:20 train to test split using two approaches. The split-
by-instance approach simply selects instances at random with uniform probability – with
this approach, instances of a problem class are usually found in both the training and test
sets. The split-by-class approach also splits problems randomly but ensures that all instances
relating to a problem class end up either in the training or the test set, ensuring that
predictions are being made on unseen problem classes. This second method can lead to the
test set being slightly larger than 20%.

Prior to training the classifiers, the portfolio of available configurations is built based
on the runtimes of the training set. The training instances are labelled for each pairwise
classifier with the configuration which has the fastest runtime. For each pairwise classifier,
we search the hyperparameter space and fit the model to the training set. Finally, we make
predictions using the test set ready for evaluation.

3.4 Evaluating the Performance of Predicted Encodings
To evaluate the impact of using the learnt encoding choices, we calculate two benchmarks
commonly used in algorithm selection [17]: the Virtual Best (VB) time is the total time taken
to solve the instances in a test set if we always made the best choice from our portfolio of
configurations; the Single Best (SB) time is how long it would take using the one configuration
from the portfolio which performs fastest on our training set. In addition we refer to: the
time taken using Savile Row’s default (Def) configuration, which is the Tree encoding for
both PB and LI constraints, and finally the Virtual Worst (VW) time to indicate the overall
variation in performance of the encoding configurations in the portfolio.

In Table 3 we report the total PAR2 runtime across all 50 test sets for the predicted
encoding configurations from each of the six classifier setups, four feature sets and two
splitting methods. The predicted runtimes include the time taken to extract the features.1

For ease of comparison, we report the runtime as a multiple of the virtual best time. For
example, a figure of 2 in Table 3 means that the predictions across the 50 test sets led to a
total runtime which was twice as long as the runtime achieved if we always chose the best
available encoding combination from each portfolio (as determined from the training set in
each cycle).

3.5 Results and Discussion
We found that the machine learning predictors work well, clearly outperforming the SB
and Def configurations. These performance improvements can be achieved with predictions
based on the generic CSP feature sets f2f and f2fsr, but are even better when using the
new specialised features (lipb). Sometimes the best results are obtained by the combined
featureset combi. This seems particularly true when predicting for unseen problem classes.

1 For features extracted directly from Savile Row (f2fsr, lipb, combi), the feature extraction time added
a median of 9% (mean 23%) to the overall running time. The features extracted via fzn2feat added
68% (median), 73% (mean).

CP 2022

38:10 Selecting SAT Encodings for PB and LI Constraints

0 200 400 600 800
Mean Time (sec)

VB
SB

Def
f2f

f2fsr
lipb

combiSp
lit

 b
y

in
st

an
ce

0 2 4 6 8 10 12
of timeouts

0 500 1000 1500
Mean Time (sec)

VB
SB

Def
f2f

f2fsr
lipb

combi

Sp
lit

 b
y

cla
ss

0 10 20 30
of timeouts

Figure 3 Prediction performance using different featuresets against reference times. We show
mean runtime (left) and number of timeouts (right) per test set, when using our preferred setup
(pairwise combined + sample weights + custom loss).

0 20 40 60 80 100
Accuracy (%)

f2f

f2fsr

lipb

combi

Fe
at

ur
es

Split by instance

0 20 40 60 80 100
Accuracy (%)

Split by class

Phase
test
train

Figure 4 Prediction accuracy per cycle using our preferred setup.

f2f f2fsr lipb combi VB
Selector

0

1000

2000

3000

4000

5000

6000

7000

Fr
eq

ue
nc

y

Split by instance

f2f f2fsr lipb combi VB
Selector

Split by class

GGPW_Tree
GGPW_GGPW
Tree_GGPW
GGT_MDD
GSWC_GGPW
MDD_Tree
Tree_Tree
GGPW_GGT
GSWC_GSWC
MDD_GGT
GGT_Tree
Tree_GGT
GGPW_GSWC

Figure 5 Frequency of each configuration (li_pb) selected across the 50 test sets when using
each feature set with our preferred setup. We also show the virtual best (VB) configuration for
comparison.

F. Ulrich-Oltean, P. Nightingale, and J. A. Walker 38:11

Table 3 Total PAR2 times over the 50 test sets as a multiple of the virtual best configuration
time. We show the reference times for virtual best (VB), single best (SB), default (Def), and virtual
worst (VW) configurations followed by the timings using predictions made using our four feature
sets, our six machine learning setups and two splitting strategies. In the setups, sw means sample
weighting is used and cl is when custom loss is used in cross-validation. The best time for each
combination of setup, features and split is shown in bold. The predicted runtimes include feature
extraction time.

Reference Times

Split VB SB Def VW

by instance 1.00 3.55 4.61 9.75
by class 1.00 5.06 4.53 9.49

Predicted Times

Split by instance Split by class

Setup f2f f2fsr lipb combi f2f f2fsr lipb combi

pairwise combined 2.62 2.57 2.41 2.51 3.88 3.92 3.75 3.90
pairwise combined + sw 2.49 2.46 2.28 2.37 3.70 4.12 3.86 3.52
pairwise combined + cl 2.62 2.43 2.36 2.41 3.97 3.98 3.58 3.66
pairwise combined + sw + cl 2.45 2.37 2.18 2.23 4.24 3.66 3.56 3.53

single combined + sw + cl 2.43 2.43 2.33 2.36 4.23 4.43 3.89 3.74
pairwise separate + sw + cl 2.35 2.26 2.24 2.18 4.01 3.90 4.36 3.95

We argue that the split-by-class approach is both a more difficult challenge and closer to
a real-world deployment, where a new instance to solve may belong to an unseen problem
class. However, both approaches are realistic, so we choose pairwise combined +sw +cl as
our preferred setup for the rest of this paper. For split-by-class it is very close to the best,
and for split-by-instance is has a sizeable advantage.

In a recent survey, Kerschke et al. state that “State-of-the-art per-instance algorithm
selectors for combinatorial problems have demonstrated to close between 25% and 96% of
the VBS-SBS gap” [17]. In these terms, our preferred setup using combi features closes 38%
of the VB-SB gap for unseen classes and 52% for seen classes using the combi features (rising
to 54% if we use just lipb features). Because the distribution of runtimes in the split-by-class
trials is skewed, we use a non-parametric statistical test to report on the significance of the
improvement achieved by using our classifier. We apply the Wilcoxon Signed-Rank test for
paired samples on the mean times from the SB selector choices and our preferred selector
using the combi features. We obtain a p value of 4.3×10−5 (well below even a 1% significance
level) and an effect size of −0.67 using the rank-biserial correlation method, or −0.58 using

z√
n

which would usually be interpreted as a medium to large effect.
Figure 3 summarises the performance for our preferred setup, showing the distribution of

mean predicted times per test. The mean values are marked with diamonds and correspond
to the numbers reported in Table 3, albeit not scaled. We note that when splitting by
instance, the performance across test sets is fairly symmetrical, with very similar means and
medians. However, when it comes to splitting by class, the distribution shows positive skew –
this likely comes from test sets where there are many instances from an unseen problem class
for which the classifier struggles to make the best choices. It is interesting to consider that as
we move from the f2fsr features to lipb and finally to combi, the mean remains roughly the

CP 2022

38:12 Selecting SAT Encodings for PB and LI Constraints

Table 4 Comparison of our system’s performance with AutoFolio. As before, the overall
runtimes for all test instances are reported as multiples of the virtual best (VB) and the best result
for each setup is shown in bold. The first entry is our system with the preferred setup which
includes sample weighting (sw) and custom loss (cl); to match AutoFolio we use a 10% test split
and PAR10 timings. The final two entries show the timings for AutoFolio’s predictions after 1
and 2 hours of training. All predicted timings include feature extraction time.

Reference Times

Split VB SB Def VW

by instance 1.00 10.14 18.60 41.41
by class 1.00 21.91 18.99 43.65

Predicted Times

Split by instance Split by class

Setup f2f f2fsr lipb combi f2f f2fsr lipb combi

pairwise combined + sw + cl 5.68 5.95 5.18 5.41 14.39 14.58 13.75 12.45
AutoFolio (1hr) 20.33 19.90 19.28 21.21 21.82 20.01 20.01 21.87
AutoFolio (2hrs) 20.01 18.79 19.48 18.33 22.99 25.19 17.17 21.57

same, whereas the median time is increasing. This suggests that the generic f2fsr features
perform better in the “easier” 50% of test sets, but that good work is undone by costly
misclassification in harder test sets. This observation is also echoed by the distribution of
timeouts, also shown in Figure 3. Again, f2fsr seems to avoid more timeouts in the easier
half of tests; however, when considering the entire distribution, the lipb features lead to the
fewest timeouts, offering more robust protection against a bad choice of encoding.

A further insight is provided by Figure 4 which shows the accuracy of predictions across
the 50 training and test sets – in this figure we see how often the pairwise classifier ends up
making exactly the “right” decision. In the split-by-instance scenario the prediction accuracy
is fairly consistent across feature sets; however, for unseen classes we see once again that the
generic feature sets can spot the very best encoding on more occasions (they have a higher
average accuracy on the test sets) but they lead to more costly misclassification as shown by
the evaluation of overall runtimes above.

In Figure 5 we show the frequency with which different encoding configurations are
predicted. Recall that although we use a portfolio of 5 encodings, this is generated from the
training set; consequently the portfolios are different across the 50 sets. One notable finding
is that the GGPW_Tree and GGPW_GGPW appear to be low-risk choices that often
perform well, and consequently are favoured by our classifiers. For both split-by-class and
split-by-instance, all four selectors choose GGPW_Tree or GGPW_GGPW more frequently
than the VB. Other choices such as Tree_GGPW are chosen less often than the VB. Another
case in point is the GSWC_GGPW encoding: in the split-by-class trials the oracle (VB)
uses this configuration in a few hundred cases, but our most successful feature sets (lipb and
combi) eschew it almost entirely. This is likely due to the fact that the GSWC encoding can
grow very large and perform badly in some cases; so our predictors seem to choose safer
options, being encouraged by the PAR2 penalty to avoid timeouts.

F. Ulrich-Oltean, P. Nightingale, and J. A. Walker 38:13

3.6 Comparison with AutoFolio
To further assess the value of our approach, we compare with AutoFolio [19], a sophisticated
algorithm selection approach which automatically configures algorithm selectors and “can be
applied out-of-the-box to previously unseen algorithm selection scenarios.” We use the latest
version of AutoFolio (the 2020-03-12 commit which adds a CSV API to the 2.1.2 release)
with its default settings. To compare as fairly as possible, we run our system with a similar
setup to AutoFolio, namely a 10% test sample and PAR10 times. Our system takes less
than 5 minutes to train using 8 cores on the cluster, so we allow AutoFolio 1 hour on
one core. We also run it with a more generous budget of 2 hours to see if its performance
improves. The results of these runs are shown in Table 4.

Our system’s predictions lead to better runtimes than AutoFolio’s. AutoFolio is
designed to be a good general algorithm selection and configuration system able to make
good predictions when choosing between different solvers. It is likely that AutoFolio’s
sophisticated decision-making is better suited to problems that run much longer or to
algorithms for which the likelihood of timeouts or non-termination is more of an issue. It is
interesting to note that AutoFolio performs better with the lipb features than the generic
instance features. Allowing AutoFolio more time for tuning led to marginal improvement
with some feature sets, but in some cases actually led to worse performance, for example
with split-by-class and the f2fsr features.

3.7 Feature Importance
We investigate the relative importance of instance features by computing the permutation
feature importance. Breiman [11] calculates “variable importance” in random forests by
recording the percentage increase in misclassification when each variable (feature) has its
values randomly permuted compared to when all features are used. Permuting the values
means that the distribution is preserved but the feature effectively becomes noise. This
method is applied at prediction time to the test set, unlike the Gini (entropy) feature
importance measure which is calculated during training. We implement this analysis but
record the mean increase in PAR2 time when each feature is permuted, effectively giving us
the extra runtime cost when the feature is lost. Each feature is randomly permuted 5 times
and the mean PAR2 time increase recorded. The distribution of feature importance thus
calculated is shown in Figure 6. We report on the lipb features and on the combi feature set
which additionally contains the generic features from f2fsr.

We can see for both feature sets that the median feature importance in the majority of
cases is close to zero, but the mean importance is substantial. This suggests that there are no
features which are dominant on their own – most of the time a missing feature incurs no loss
of prediction performance. Indeed sometimes removing a feature can improve performance,
as shown by some negative costs in most box plots. However, the means of the distributions
show that there are cases where each of the features shown is able to prevent a costly wrong
choice.

Notice that in the top 20 combi features we find a roughly equal mix of generic features
and features specific to PB/LI constraints (the names of these features have prefixes pb_
and li_). This is in keeping with the similar performance of the f2fsr and libp feature sets
as shown previously in Table 3.

We suspect that when splitting by instance the system is, to a large extent, recognising
problem classes rather than picking out traits of PB/LI constraints. Even when we predict
for unseen problem classes, the proportion of PB/LI to generic features in the top 20 is

CP 2022

38:14 Selecting SAT Encodings for PB and LI Constraints

500 0 500

li_sepr_mn
pb_n_ent

li_iqr_skew
li_n_sum

li_asize_r2n_mn
li_k_mn

li_amo_mn
pb_asize_mn_mn

li_n_mn
li_k_amo_prod_mn

pb_skew_ent
li_sep_mn
li_n_max

pb_k_amo_prod_ent
li_q4_med

li_wsum_iqr
pb_skew_mn
pb_wsum_iqr

li_amaxw_skew_mn
li_sepr_max

lipb, split by instance

0 1000 2000 3000

pb_n_med
li_amo_mn

pb_n_ent
pb_amo_mn
li_wsum_iqr

li_asize_r2n_mn
li_iqr_skew

pb_wsum_iqr
li_k_iqr
li_k_mn

li_amaxw_skew_mn
li_n_min

li_amaxw_mn_mn
pb_count

li_q4_max
pb_skew_max

li_q4_med
li_skew_mn

li_amaxw_skew_ent
li_sepr_max

lipb, split by class

200 100 0 100 200 300
Cost (seconds)

li_iqr_med
pb_k_med

d_bool_cons
li_k_max

v_sum_domdeg_vars
d_ratio_int_vars

o_dom_std
v_num_vars

pb_skew_mn
d_ratio_bool_vars
pb_asize_mn_mn

c_num_cons
d_ratio_array_cons

pb_n_med
v_logprod_deg_vars
v_min_domdeg_vars

li_q2_skew
li_n_skew
pb_k_mn

c_max_deg_cons

combi, split by instance

1000 500 0 500 1000 1500
Cost (seconds)

pb_n_sum
d_ratio_bool_vars

v_num_vars
li_wsum_skew

d_ratio_int_vars
li_asize_r2n_mn

o_deg_std
pb_asize_mn_mn
v_ent_dom_vars

pb_count
o_deg

c_cv_deg_cons
pb_amaxw_mn_mn

li_n_skew
d_int_vars

li_amaxw_mn_mn
li_q2_skew
li_sep_mn
li_q4_med

c_max_domdeg_cons

combi, split by class

Figure 6 Permutation feature importance: increase in PAR2 time (mean from 5 trials) over 50
split, train, predict cycles. We show the top 20 features ordered by mean importance and we do not
plot outliers (beyond 1.5 × IQR away from the box). The mean is shown by a diamond. Features
beginning li_ or pb_ refer to our LI/PB features as introduced in Table 1; the other feature names
refer to the generic instance features from the combi feature set.

roughly equal. Although we are keeping problem classes apart in this second case, there may
be similarities in the constraint models between some problem classes. These similarities
might extend beyond the characteristics of PB/LI constraints so the classifier can make a
choice of PB/LI encoding on the basis of a choice which worked well in a problem class
with similar generic features. This interpretation is also supported by the fact that the lipb
feature set is sometimes matched or even outperformed by combi in split-by-class predictions
as shown in Table 3.

Of the PB/LI-specific features, the ones extracted from LI constraints feature more
strongly – this may reflect the fact that in our corpus the average number of LI constraints
per instance is considerably higher than the number of PB constraints, so getting the LI
choice right is more important.

F. Ulrich-Oltean, P. Nightingale, and J. A. Walker 38:15

There are limitations to how much we can read into the permutation feature importance,
especially when we have quite a substantial number of features; a feature may be discrimin-
ating but masked by another feature with which it is highly correlated. We have shown that
the features in libp and f2fsr can give comparable prediction performance even though they
consider different aspects of a CSP.

4 Related Work

In recent work, new or improved SAT encodings of linear constraints [2] and pseudo-Boolean
constraints (combined with AMO constraints) [9, 7] have been devised and their performance
compared on several benchmark problems. The scaling properties of encodings are studied,
and it is suggested that smaller encodings should be used when coefficients or values of
integer variables are large. However, to the best of our knowledge the problem of selecting
an encoding (particularly for a previously-unseen problem class) has not been systematically
addressed for LI or PB constraints. We use the full set of encodings from one recent paper [9]
combined with automatic AMO detection [5].

MeSAT [24] and Proteus [15] both select SAT encodings using machine learning. MeSAT
has two encodings of LI constraints: the order encoding [25]; and an encoding based on
enumeration of allowed tuples of values (which uses a direct encoding of the CSP variables).
It is not clear whether high-arity sums are broken up before encoding. MeSAT selects from
three configurations using a k-nearest neighbour classifier using 70 CSP instance features.
They report high accuracy (within 4% of the virtual best configuration), however the single
best configuration is only 18% slower than the virtual best. Proteus makes a sequence of
decisions: whether to use CSP or SAT; the SAT encoding; and the SAT solver to use. The
portfolio contains three SAT encodings: direct, support, and a hybrid direct-order, however
the encoding of LI constraints is not specified [15]. Proteus generates each candidate SAT
encoding and extracts features of the SAT formula to inform its selection – scaling this
approach would be difficult when several constraint types are involved, each with many
encoding choices. Results show that the choice of encoding (combined with the choice of SAT
solver) is important and that machine learning methods can be effective in their context.

5 Conclusions and Future Work

We have shown that it is possible to close much of the performance gap between the single best
and virtual best SAT encodings by using machine learning to select encoding configurations
based on instance features. We have studied the problem of selecting encodings for instances
of previously-unseen classes, a problem that is more challenging and arguably more realistic
than the usual setting where training and test instances are drawn from the same set of
problem classes. General instance features such as those provided by fzn2feat [4] perform
well; however the introduction of features specific to linear integer and pseudo-Boolean
constraints has enabled us to improve the quality of predictions. We present a machine
learning method that performs well, and investigate several variations of it. We have also
presented a thorough experimental analysis of the method, a comparison with AutoFolio,
and an analysis of feature importance.

We intend to build on these results by considering other constraint types for which
multiple SAT encodings exist. It may also be beneficial to expand the problem corpus to
have a more even distribution of problem instances per class and to broaden the range of
constraint models represented.

CP 2022

38:16 Selecting SAT Encodings for PB and LI Constraints

References
1 I. Abío, R. Nieuwenhuis, A. Oliveras, E. Rodríguez-Carbonell, and V. Mayer-Eichberger. A

New Look at BDDs for Pseudo-Boolean Constraints. Journal of Artificial Intelligence Research,
45:443–480, November 2012. doi:10.1613/jair.3653.

2 Ignasi Abío, Valentin Mayer-Eichberger, and Peter Stuckey. Encoding Linear Constraints into
SAT. arXiv:2005.02073 [cs], May 2020. arXiv:2005.02073.

3 Ignasi Abío, Valentin Mayer-Eichberger, and Peter J Stuckey. Encoding linear constraints
with implication chains to CNF. In International Conference on Principles and Practice of
Constraint Programming, pages 3–11. Springer, 2015. doi:10.1007/978-3-319-23219-5_1.

4 Roberto Amadini, Maurizio Gabbrielli, and Jacopo Mauro. An enhanced features extractor
for a portfolio of constraint solvers. In Proceedings of the 29th Annual ACM Symposium on
Applied Computing, SAC ’14, pages 1357–1359, New York, NY, USA, March 2014. Association
for Computing Machinery. doi:10.1145/2554850.2555114.

5 Carlos Ansótegui, Miquel Bofill, Jordi Coll, Nguyen Dang, Juan Luis Esteban, Ian Miguel, Peter
Nightingale, András Z Salamon, Josep Suy, and Mateu Villaret. Automatic detection of at-
most-one and exactly-one relations for improved SAT encodings of pseudo-boolean constraints.
In International Conference on Principles and Practice of Constraint Programming, pages
20–36. Springer, 2019. doi:10.1007/978-3-030-30048-7.

6 Olivier Bailleux, Yacine Boufkhad, and Olivier Roussel. New Encodings of Pseudo-Boolean
Constraints into CNF. In Oliver Kullmann, editor, Theory and Applications of Satisfiability
Testing - SAT 2009, Lecture Notes in Computer Science, pages 181–194, Berlin, Heidelberg,
2009. Springer. doi:10.1007/978-3-642-02777-2_19.

7 Miquel Bofill, Jordi Coll, Peter Nightingale, Josep Suy, Felix Ulrich-Oltean, and Mateu Villaret.
SAT encodings for Pseudo-Boolean constraints together with at-most-one constraints. Artificial
Intelligence, 302:103604, January 2022. doi:10.1016/j.artint.2021.103604.

8 Miquel Bofill, Jordi Coll, Josep Suy, and Mateu Villaret. Compact MDDs for Pseudo-Boolean
Constraints with At-Most-One Relations in Resource-Constrained Scheduling Problems. In
Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, pages
555–562, Melbourne, Australia, August 2017. International Joint Conferences on Artificial
Intelligence Organization. doi:10.24963/ijcai.2017/78.

9 Miquel Bofill, Jordi Coll, Josep Suy, and Mateu Villaret. SAT encodings of pseudo-boolean
constraints with at-most-one relations. In International Conference on Integration of Constraint
Programming, Artificial Intelligence, and Operations Research, pages 112–128. Springer, 2019.
doi:10.1007/978-3-030-19212-9.

10 Miquel Bofill, Jordi Coll, Josep Suy, and Mateu Villaret. An MDD-based SAT encoding
for pseudo-Boolean constraints with at-most-one relations. Artificial Intelligence Review,
53(7):5157–5188, 2020. doi:10.1007/s10462-020-09817-6.

11 Leo Breiman. Random Forests. Machine Learning, 45(1):5–32, October 2001. doi:10.1023/A:
1010933404324.

12 Ewan Davidson, Özgür Akgün, Joan Espasa, and Peter Nightingale. Effective Encodings of
Constraint Programming Models to SMT. In Helmut Simonis, editor, Principles and Practice
of Constraint Programming, Lecture Notes in Computer Science, pages 143–159, Cham, 2020.
Springer International Publishing. doi:10.1007/978-3-030-58475-7_9.

13 Marijn Heule, Matti Jarvisalo, Martin Suda, Markus Iser, Tomáš Balyo, and Nils Froleyks.
SAT competitions. URL: https://satcompetition.github.io/ [cited 22.02.2022].

14 Steffen Hölldobler, Norbert Manthey, and Peter Steinke. A Compact Encoding of Pseudo-
Boolean Constraints into SAT. In Birte Glimm and Antonio Krüger, editors, KI 2012:
Advances in Artificial Intelligence, Lecture Notes in Computer Science, pages 107–118, Berlin,
Heidelberg, 2012. Springer. doi:10.1007/978-3-642-33347-7_10.

15 Barry Hurley, Lars Kotthoff, Yuri Malitsky, and Barry O’Sullivan. Proteus: A Hierarchical
Portfolio of Solvers and Transformations. In Helmut Simonis, editor, Integration of AI and OR
Techniques in Constraint Programming, Lecture Notes in Computer Science, pages 301–317,
Cham, 2014. Springer International Publishing. doi:10.1007/978-3-319-07046-9.

https://doi.org/10.1613/jair.3653
http://arxiv.org/abs/2005.02073
https://doi.org/10.1007/978-3-319-23219-5_1
https://doi.org/10.1145/2554850.2555114
https://doi.org/10.1007/978-3-030-30048-7
https://doi.org/10.1007/978-3-642-02777-2_19
https://doi.org/10.1016/j.artint.2021.103604
https://doi.org/10.24963/ijcai.2017/78
https://doi.org/10.1007/978-3-030-19212-9
https://doi.org/10.1007/s10462-020-09817-6
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/978-3-030-58475-7_9
https://satcompetition.github.io/
https://doi.org/10.1007/978-3-642-33347-7_10
https://doi.org/10.1007/978-3-319-07046-9

F. Ulrich-Oltean, P. Nightingale, and J. A. Walker 38:17

16 Saurabh Joshi, Ruben Martins, and Vasco Manquinho. Generalized Totalizer Encoding for
Pseudo-Boolean Constraints. In Gilles Pesant, editor, Principles and Practice of Constraint
Programming, Lecture Notes in Computer Science, pages 200–209, Cham, 2015. Springer
International Publishing. doi:10.1007/978-3-319-23219-5_15.

17 Pascal Kerschke, Holger H. Hoos, Frank Neumann, and Heike Trautmann. Automated
Algorithm Selection: Survey and Perspectives. Evolutionary Computation, 27(1):3–45, March
2019. doi:10.1162/evco_a_00242.

18 Christophe Lecoutre and Olivier Roussel. XCSP3 Competition, 2019. URL: http://www.cril.
univ-artois.fr/XCSP19/ [cited 22.02.2022].

19 Marius Lindauer, Holger H. Hoos, Frank Hutter, and Torsten Schaub. AutoFolio: An
Automatically Configured Algorithm Selector. Journal of Artificial Intelligence Research,
53:745–778, August 2015. doi:10.1613/jair.4726.

20 Peter Nightingale. Savile Row 1.9.0 Manual. URL: https://savilerow.cs.st-andrews.ac.
uk/index.html [cited 22.02.2022].

21 Peter Nightingale, Özgür Akgün, Ian P. Gent, Christopher Jefferson, Ian Miguel, and Patrick
Spracklen. Automatically improving constraint models in Savile Row. Artificial Intelligence,
251:35–61, October 2017. doi:10.1016/j.artint.2017.07.001.

22 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

23 Philipp Probst, Marvin N. Wright, and Anne-Laure Boulesteix. Hyperparameters and tuning
strategies for random forest. WIREs Data Mining and Knowledge Discovery, 9(3):e1301, 2019.
doi:10.1002/widm.1301.

24 Mirko Stojadinović and Filip Marić. meSAT: Multiple encodings of CSP to SAT. Constraints,
19(4):380–403, October 2014. doi:10.1007/s10601-014-9165-7.

25 Naoyuki Tamura, Akiko Taga, Satoshi Kitagawa, and Mutsunori Banbara. Compiling finite lin-
ear CSP into SAT. Constraints, 14(2):254–272, June 2009. doi:10.1007/s10601-008-9061-0.

26 Helsinki Institute for Information Technology University of Helsinki, Tomáš Balyo, Nils
Froleyks, Marijn Heule, Markus Iser, Matti Järvisalo, and Martin Suda. Proceedings of SAT
Competition 2021 : Solver and Benchmark Descriptions. In Proceedings of SAT Competition
2021. Department of Computer Science, University of Helsinki, 2021.

27 Neng-Fa Zhou and Håkan Kjellerstrand. Optimizing SAT encodings for arithmetic constraints.
In International Conference on Principles and Practice of Constraint Programming, pages
671–686. Springer, 2017. doi:10.1007/978-3-319-66158-2_43.

CP 2022

https://doi.org/10.1007/978-3-319-23219-5_15
https://doi.org/10.1162/evco_a_00242
http://www.cril.univ-artois.fr/XCSP19/
http://www.cril.univ-artois.fr/XCSP19/
https://doi.org/10.1613/jair.4726
https://savilerow.cs.st-andrews.ac.uk/index.html
https://savilerow.cs.st-andrews.ac.uk/index.html
https://doi.org/10.1016/j.artint.2017.07.001
https://doi.org/10.1002/widm.1301
https://doi.org/10.1007/s10601-014-9165-7
https://doi.org/10.1007/s10601-008-9061-0
https://doi.org/10.1007/978-3-319-66158-2_43

Completeness Matters: Towards Efficient Caching
in Tree-Based Synchronous Backtracking Search
for DCOPs
Jie Wang1 #

College of Computer Science, Chongqing University, China

Dingding Chen2 #

College of Computer Science, Chongqing University, China

Ziyu Chen3 #

College of Computer Science, Chongqing University, China

Xiangshuang Liu #

College of Computer Science, Chongqing University, China

Junsong Gao #

College of Computer Science, Chongqing University, China

Abstract
Tree-based backtracking search is an important technique to solve Distributed Constraint optimization
Problems (DCOPs), where agents cooperatively exhaust the search space by branching on each
variable to divide subproblems and reporting the results to their parent after solving each subproblem.
Therefore, effectively reusing the historical search results can avoid unnecessary resolutions and
substantially reduce the overall overhead. However, the existing caching schemes for asynchronous
algorithms cannot be applied directly to synchronous ones, in the sense that child agent reports the
lower and upper bound rather than the precise cost of exploration. In addition, the existing caching
scheme for synchronous algorithms has the shortcomings of incompleteness and low cache utilization.
Therefore, we propose a new caching scheme for tree-based synchronous backtracking search, named
Retention Scheme (RS). It utilizes the upper bounds of subproblems which avoid the reuse of
suboptimal solutions to ensure the completeness, and deploys a fine-grained cache information unit
targeted at each child agent to improve the cache-hit rate. Furthermore, we introduce two new
cache replacement schemes to further improve performance when the memory is limited. Finally, we
theoretically prove the completeness of our method and empirically show its superiority.

2012 ACM Subject Classification Computing methodologies → Cooperation and coordination

Keywords and phrases DCOP, Cache, Any-space Algorithms, Complete Search Algorithms

Digital Object Identifier 10.4230/LIPIcs.CP.2022.39

Supplementary Material Software (Source Code): https://github.com/czy920/RS

1 Introduction

Distributed Constraint Optimization Problems (DCOPs) [15, 11] are a popular framework
for multi-agent systems (MAS) where agents need to cooperate with each other to optimize a
global objective. Owing to their excellent modeling ability, DCOPs have been widely applied
in many real-world problems such as sensor network [9], task scheduling [18, 27], smart
grid [12] and so on.

1 Equal contribution.
2 Equal contribution.
3 Corresponding author.

© Jie Wang, Dingding Chen, Ziyu Chen, Xiangshuang Liu, and Junsong Gao;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 39; pp. 39:1–39:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jiewang1@cqu.edu.cn
mailto:dingding@cqu.edu.cn
mailto:chenziyu@cqu.edu.cn
mailto:shxliu21@163.com
mailto:jsgao0126@cqu.edu.cn
https://doi.org/10.4230/LIPIcs.CP.2022.39
https://github.com/czy920/RS
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

39:2 Towards Efficient Caching for DCOPs

Incomplete algorithms for DCOPs [31, 17, 10, 23, 22] aim to rapidly find an acceptable
solution at the expense of sacrificing optimality, while complete algorithms ensure the op-
timal solution and can be generally divided into inference-based and search-based algorithms.
DPOP [24] and Action_GDL [28] are typical inference-based complete algorithms which
employ dynamic programming to solve DCOPs. However, they require a linear number of
messages of exponential size which bring an excessive network load. Whereupon, ODPOP [25],
MB-DPOP [26] and RMB-DPOP [6] were proposed to trade the number of messages for
smaller memory consumption by propagating the dimension-limited utilities with the corres-
ponding contexts iteratively. Besides, DPOP with function filtering [2] proposed to exploit
utility bounds to reduce the size of messages.

Search-based complete algorithms perform distributed backtracking search to exhaust the
search space and have a linear size of messages. Among them, tree-based complete search
algorithms have attracted wider attention due to their high concurrency and can further
be classified into synchronous and asynchronous. Given a context, tree-based complete
synchronous search algorithms like NCBB [3], PT-FB [16] and HS-CAI [5] require each agent
to report its search result after it has thoroughly explored its subproblem, while asynchronous
ones like ADOPT [20] and BnB-ADOPT [29] allow each agent to report its search results
solely based on its local view of its subproblem. To accelerate the search process, these
algorithms utilize the upper and lower bounds to prune the search space. Accordingly,
many pruning techniques like soft arc consistency [14], forward bounding procedure [16] and
inference-based estimation [8, 1, 5] have arisen to tighten the lower bounds. On the other
side, tree-based backtracking search requires agents to report their search results regarding
their subproblems given a context. When receiving the same context, agents can effectively
reuse the historical search results to avoid unnecessary resolutions and substantially reduce
the overall overhead. Accordingly, any-space algorithms using historical exploration results
to speed up the search process have been proposed. Matsui et al [19] proposed a caching
scheme for ADOPT, named any-space ADOPT, where each agent caches the upper and lower
bounds of its subproblem given a context. Yeoh et al [30] further improved the scheme by
introducing three cache replacement schemes to boost the cache utilization. However, these
caching schemes for asynchronous algorithms are not suitable for synchronous algorithms
since synchronous algorithms need to report the optimal cost for each subproblem rather
than the bounds. Although tree-based complete synchronous search algorithms have been
widely studied, there are few studies on cache schemes for them. Any-space NCBB [4], the
only caching scheme for synchronous algorithms now, presented a caching scheme for NCBB
where a caching unit is introduced to store the search result regarding a given context for
each agent. Unfortunately, the scheme fails to consider the impact of pruning on cached
results and leads to the incompleteness. And also, the scheme matches by comparing all the
separators of local agent, which brings the low cache-hit rate. Therefore, the cache scheme
in any-space NCBB cannot be applied to existing tree-based complete synchronous search
algorithms. To this end, we present a complete and effective caching scheme for tree-based
complete synchronous search algorithms and our main contributions are listed as follows:

We systematically analyze the cause for the incompleteness of the existing synchronous
caching scheme, and provide a solution which compares the historical upper bound with
the current upper bound to determine whether the historical results can be reused.

To improve the cache-hit rate, we introduce a fine-grained cache information unit targeted
at each child agent which allows each agent to independently reuse the historical results of
subproblem rooted at its child. Along with the solution to the incompleteness, we propose
our Retention Scheme (RS) accordingly, which is suitable for all tree-based complete
synchronous search algorithms.

J. Wang, D. Chen, Z. Chen, X. Liu, and J. Gao 39:3

In addition, to improve the performance of our RS when the memory is limited, we
propose two heuristic cache replacement schemes which consider the characteristics of
the cached information units and synchronous algorithms, respectively.
We theoretically show the completeness of RS, and the experimental results demonstrate
it improves state-of-the-art tree-based complete synchronous search algorithms on all the
metrics in most cases.

2 Background

In this section, we first introduce the preliminaries including DCOPs, pseudo tree, tree-based
complete synchronous search algorithms and the caching scheme in any-space NCBB.

2.1 Distributed Constraint optimization Problems

A distributed constraint optimization problem [20] can be defined by a tuple ⟨A, X, D, F ⟩
where

A = {a1, a2, · · · , an} is a set of agents.
X = {x1, x2, · · · , xm} is a set of variables.
D = {D1, D2, · · · , Dm} is a set of finite variable domains, each variable xi taking a value
in Di.
F = {f1, f2, · · · , fq} is a set of constraints, each of which fi : Di1 ×Di2 × · · ·Dik

→ R⩾0
denotes the non-negative cost for each assignment combination of xi1 , xi2 , · · ·xik

.

a1

a4a2

a3 a5

a6

(a) Constraint graph. (b) Constraint matrix. (c) Pseudo tree.

Figure 1 An example of a DCOP and its pseudo tree.

For the sake of simplicity, the paper assumes that each agent holds exactly one variable
(i.e., n = m) and all constraints are binary relations (i.e., fij : Di ×Dj → R⩾0). Thus, the
term “agent” and “variable” could be used interchangeably. Without loss of generality, a
DCOP seeks an assignment to all the variables that minimizes the total cost. Formally,

X∗ = arg min
di∈Di,dj∈Dj

∑
fij∈F

fij (xi = di, xj = dj)

In general, a DCOP can be visualized by a constraint graph where vertexes represent the
agents and edges represent the constraints, respectively. Fig.1(a) presents a DCOP with six
variables and eight constraints. For simplicity, the domain size of each variable is two and all
constraints are identical as shown in Fig.1(b) where i < j.

CP 2022

39:4 Towards Efficient Caching for DCOPs

2.2 Pseudo Tree
A pseudo tree [13, 7] is a partial ordering among agents, which can be generated by depth-first
search (DFS) traversal to a constraint graph. It has the property that different branches are
independent, and categorizes its constraints into tree edges and pseudo edges (i.e., non-tree
edges). Fig.1(c) presents a possible pseudo tree deriving from Fig.1(a) where tree edges
and pseudo edges are denoted by solid and dashed lines, respectively. For an agent ai,
its neighbors can be categorized into its parent P (ai), children C(ai) and pseudo parents
PP (ai), according to their positions in the pseudo tree and the type of edges they connect
through. Each agent directs its message passing and traverses the solution space through
such a (pseudo) parent-child relationship. More precisely, they can be formally defined as
follows:

P (ai) is the ancestor connecting with ai through a tree edge (e.g., P (a4) = a3 in Fig.1(c)).
C(ai) is the set of descendants connecting with ai through tree edges (e.g., C(a4) =
{a5, a6} in Fig.1(c)).
PP (ai) contains the ancestors that connect with ai through pseudo edges (e.g., PP (a5) =
{a3} in Fig.1(c)).

For succinctness, we also adopt the following notations.
AP (ai) is the set of all (pseudo) parents of ai. i.e., AP (ai) = PP (ai) ∪ {P (ai)} (e.g.,
AP (a5) = {a3, a4} in Fig.1(c)).
Anc(ai) is the set of ancestors of ai (e.g., Anc(a4) = {a1, a2, a3} in Fig.1(c)).
Desc(ai) is the set of descendants of ai (e.g., Desc(a3) = {a4, a5, a6} in Fig.1(c)).
Sep(ai) [11] is the separator set of ai, comprising the ancestors that are constrained with
agents in {ai} ∪Desc(ai) (e.g., Sep(a4) = {a1, a3} in Fig.1(c)), i.e.,

Sep (ai) = {aj ∈ Anc (ai) |∃ak ∈ {ai} ∪Desc (ai) , s.t., aj ∈ AP (ak)}

2.3 Tree-based Complete Synchronous Search Algorithms
Tree-based complete synchronous search algorithms perform a branch-and-bound search on a
pseudo tree to exhaust the search space. Specifically, each agent in the algorithms obtains the
optimal cost of subproblem rooted at itself under the current partial assignment, and prunes
to avoid unnecessary exploration by exploiting the bounds including the lower and upper
bounds of its subproblem. In fact, most of the existing synchronous algorithms (e.g., NCBB,
PT-FB and HS-CAI etc.) can be regarded as variants of SBB [15] on a pseudo tree, which
utilize different techniques to obtain a tighter lower bound to improve pruning. Algorithm
1 presents the sketch of the implementation of SBB on a pseudo tree (named TreeBB) to
describe the general framework of tree-based complete synchronous search algorithms.

In TreeBB, each agent ai needs to maintain the following data structures.
Cpai refers to the current partial assignment which contains all the assignments to
Anc(ai).
ubi is the upper bound of its subproblem under Cpai.
optc

i (di) is the optimal cost of its child ac ∈ C(ai) for di ∈ Di, which is set to infinite if
Cpai ∪ {xi, di} is infeasible under ubi.
sendubc (di) is the upper bound sent to its child ac for di ∈ Di, i.e.,

sendubc (di) = ubi −
∑

aj∈AP (ai)

fij(di, Cpai(aj))−
∑

aj∈C(ai)∧optj
i
̸=null

optj
i (di) (1)

J. Wang, D. Chen, Z. Chen, X. Liu, and J. Gao 39:5

Algorithm 1 TreeBB for ai.

When Initialization ():
1 if ai is the root agent then
2 InitializeVariables()
3 di ← the first element in D̃c

i , Cpai ← {(xi, di)}
4 send CPA(Cpai,∞) to ∀ac ∈ C(ai)

When received CPA (Cpai, ubi) from P (ai):
5 store {Cpai, ubi}
6 if ai is a leaf agent then
7 SendBacktrack ()
8 else
9 InitializeVariables()

10 ExploreValue (ac), ∀ac ∈ C(ai)
When received BACKTRACK (opt∗) from ac ∈ C(ai):

11 di ← SrchV alc
i , D̃c

i ← D̃c
i \{di} ,optc

i (di)← opt∗

12 if ai has received all BACKTRACK messages from C(ai) for di then
13 ubi ← min(ubi, lbi(di))
14 ExploreValue (ac)

Function InitializeVariables ():
15 D̃c

i ← Di, ∀ac ∈ C(ai)
16 optc

i (di)← null, ∀ac ∈ C(ai), di ∈ Di

Function ExploreValue (ac):
17 di ← NextFeasibleAssignment (ac)
18 if D̃c

i = ∅, ∀ac ∈ C(ai) then
19 if ai is the root agent then
20 Algorithm terminates.
21 else
22 SendBacktrack ()
23 else
24 SrchV alc

i ← di, Cpac ← Cpai ∪ {(xi, di)}
25 send CPA(Cpac, sendubc(di)) to ac

Function NextFeasibleAssignment (ac):
26 di ← the first element in D̃c

i

27 while di ̸= null ∧ lbi (di) ⩾ ubi do
28 D̃c

i ← D̃c
i \{di}, optc

i (di)←∞, di ← the first element in D̃c
i

29 return di

Function SendBacktrack ():
30 opt∗ ← mindi∈Di

lbi (di)
31 Send BACKTRACK(opt∗) to P (ai)

lbi(di) is its lower bound for di ∈ Di, i.e.,
lbi(di) =

∑
aj∈AP (ai)

fij(di, Cpai(aj)) +
∑

ac∈C(ai)∧optc
i
̸=null

optc
i (di) (2)

opt∗ is the current optimal cost of its subproblem under Cpai, i.e.,
opt∗ = min

di∈Di

lbi (di) (3)

TreeBB begins with the root agent sending the first value in its domain to its children
(line 1-4). When an agent ai receives a CPA message from its parent, it first stores the partial
assignment Cpai and the upper bound ubi (line 5), then initializes the search domain D̃c

i and
optc

i (line 9,15-16). Next, ai finds the first feasible assignment, i.e., the first assignment di

such that lbi(di) < ubi (line 26-29) and explores the corresponding subproblem (line 10, 17).
If such an assignment exists, ai sends a CPA message together with sendubc(di) calculated
by Eq.(1) to its children (line 23-25). Otherwise, it sends a BACKTRACK message with the
optimal cost opt∗ to its parent (line 18-22, line 30-31).

When ai receives a BACKTRACK message for di from its child ac, it updates the
corresponding optimal cost optc

i (di) with the actual cost opt∗ reported by ac and continues
to explore the subproblem corresponding to its next feasible assignment (line 11, 14). If ai

CP 2022

39:6 Towards Efficient Caching for DCOPs

has received all the BACKTRACK messages for di from its children, it updates the current
upper bound for its subproblem (line 12-13). Finally, TreeBB terminates after the root agent
exhausts its search domain and a global optimal cost will be got (line 18-20).

2.4 Caching Scheme in Any-space NCBB
To better utilize the historical search results, any-space NCBB proposed that agent ai caches
the historical cost and the corresponding assignments of Sep(ai), called contexti. To this
end, any-space NCBB constructs a caching information unit I, a map set ⟨contexti, result⟩,
to store these historical costs and contexts for future use. Here, we refer to such a caching
scheme as OCS. Taking Fig.1(c) for example, assume that a4 has obtained the current
optimal cost opt∗ of its subproblem. The opt∗ is valid as long as a1 and a3 do not change
their assignments. Accordingly, a4 could directly get the opt∗ for its subproblem from the
cache and backtracks since re-exploring is unnecessary.

We next illustrate how OCS works when applied to TreeBB. There are two modifications
to the original for implementing the scheme. First, before ai sends a BACKTRACK message
(line 22), it stores the current optimal cost opt∗ along with the corresponding contexti into
its cache. Second, before exploring its subproblem (line 10), ai looks up whether the current
context is already in the cache. If it is, ai sets the search domain D̃c

i to null and sends
a BACKTRACK message with the opt∗ in the cache to its parent. Unfortunately, such a
scheme could lead to the incompleteness, which will be illustrated in detail in Subsection 3.1.

3 Proposed Method

In this section, we present a new caching scheme, named Retention Scheme (RS). We begin
with the motivation of our work and then present the details. Finally, we give two cache
replacement schemes.

3.1 Motivation
Actually, in OCS, agent ai caches the optimal cost opt∗ under a given ubi. However, when
pruning happens with ubi, agent ai could carry out an incomplete exploration, and caches
the opt∗ and its contexti. Clearly, such a cost cannot guarantee to be optimal since its
search subspace is not exploited thoroughly yet. Considering a condition where pruning
is not carried out, ai could find a better opt∗ by exploring the search space pruned before.
Unfortunately, such a condition could happen since ubi calculated by Eq.(1) may increase
with the different assignments of Anc(ai). Note that, in the same contexti, the upper bound
for pruning may be different since Sep(ai) is only a subset of Anc(ai). As a result, if OCS
directly uses the opt∗ obtained from a pruned search space from its cache, the completeness
of the algorithm can not be guaranteed.

To illustrate the issue, based on TreeBB, we take Fig.1 as an example. Here, we mainly
focus on agent a4 and compare the difference when OCS is applied. Assume that the upper
bound for x1 = 0 is 20, thus a4 could receive a CPA message containing a current partial
assignment Cpa4 = {(x1, 0), (x2, 0), (x3, 0)} and an upper bound ub4 = 6 as illustrated in
Fig.2(a). Next, since lb4(0) = 7 calculated by Eq.(2) is greater than its ub4 = 6, a4 prunes the
corresponding search space and sets the related cost to infinity, i.e., opt5

4(0) = opt6
4(0) =∞.

Subsequently, a4 chooses its next feasible assignment x4 = 1, and stores the best costs from
its children into opt5

4(1) and opt6
4(1), respectively. Then, the opt∗ is calculated according to

Eq.(3) and caches together with the corresponding context4 as ⟨{(x1, 0), (x3, 0)}, 14⟩, shown in

J. Wang, D. Chen, Z. Chen, X. Liu, and J. Gao 39:7

(a) (b) (c)

Figure 2 An example of OCS-based algorithm to show its incompleteness.

Fig.2(b). Now, if a4 receives a new CPA message containing Cpa4 = {(x1, 0), (x2, 1), (x3, 0)},
in OCS, a4 could directly use the historical result in the cache since the context4 is identical
even in difference Cpa4. However, the better cost for the current Cpa4 is 12 which is depicted
in Fig.2(c), since a4 explores the search space pruned before under the larger ub4 = 15. As a
result, the completeness could be impaired when OCS is applied.

Additionally, in OCS, the cache is accessed only when the current contexti is identical
to the items that has already stored in the information unit I. In the worst cases, the
cache does not work in synchronous algorithms if |Anc(ai)| = |Sep(ai)|, as the traversal for
the combinations of contexti is ordered. As a result, the next contexti is impossible to be
identical to the cached items. However, for each child ac, its corresponding contextc is only
the subset of that of its parent contexti, which means the cached costs may also be valid
under a different contexti for ac. Taking a4 in Fig.2 as an example, the opt5

4(1) = 6 is valid
as long as a3 does not change its assignment, regardless of the assignment of a1. Therefore,
the OCS makes little use of the historical results and leads to a low cache utilization.

3.2 Retention Scheme
In order to solve the issues mentioned above, we propose the Retention Scheme (RS) to
ensure the completeness and improve the cache utilization.

For the first issue, given a contexti we additionally record the current upper bounds
ai received into the information unit I for judging whether the cached item is reliable.
Specifically, if a newly received ubi is greater than the stored one under the same contexti,
the cached opt∗ could be unreliable as pointed out in Subsection 3.1, and re-exploration
should be carried out. Specially, if the current opt∗ is obtained by exhausting the search space
of its children, such opt∗ is sure to be reliable. Here, we denote such opt∗ as the realcost

under its corresponding contexti. Obviously, if ai is the leaf agent, the opt∗ is the realcost.
Besides, if the opt∗ is less than the received ubi, the opt∗ is the realcost, see Lemma 1. Thus,
once the current opt∗ is detected to be the realcost, we set the stored ubi to be ∞ to avoid
unnecessary re-exploration. So far, we have already guaranteed the completeness since only
the realcost can be obtained for use.

Next, we illustrate how we solve the second issue. Here, we adopt a fine-grained cache
strategy by splitting the contexti in OCS into contextc for ∀ac ∈ C(ai), where contextc

only includes the assignments of Sep(ac) for each ac. Eq.(4) gives the relationship between
Sep(ac) and Sep(ai).⋃

ac∈C(ai)

Sep (ac) \ {ai} ⊆ Sep (ai) (4)

CP 2022

39:8 Towards Efficient Caching for DCOPs

So, different from OCS, we propose to use I to only store the information map related
to its children, i.e., ⟨contextc, ⟨optc, subc⟩⟩, where optc and subc is the best cost reported by
its child ac and the corresponding upper bound for each child under the current contextc,
respectively.

Algorithm 2 Retention Scheme for ai.
When Initialization:

1 allocate memory space k for each child by Eq.(5)
Function InitVariable ():

2 foreach ac ∈ C(ai) do
3 foreach di ∈ Di do
4 contextc ← Cpai(Sep(ac)) ∪ {(xi, di)}
5 if IUCachec

i (contextc) ̸= null then
6 {optc

i (di), subc
i (di)} ← IUCachec

i (contextc)
7 else
8 optc

i (di)← null,subc
i (di)← 0

9 D̃c
i ← {di|di ∈ Di, subc

i (di) ̸=∞}
Function NextFeasibleAssignment (ac):

10 di ← the first element in D̃c
i

11 while (di ̸= null ∧ lbi (di) ⩾ ubi) ∨ (di ̸= null ∧ sendubc(di) ⩽ subc
i (di)) do

12 if lbi (di) ⩾ ubi then
13 {optc

i (di), subc
i (di)} ← {∞, 0}

14 D̃c
i ← D̃c

i \{di}
15 di ← the first element in D̃c

i

16 return di

Function Backtrack ():
17 FillIUCache ()
18 opt∗ ← mindi∈Di

lbi (di)
19 if opt∗ is a realcost then
20 send BACKTRACK (opt∗,∞) to P (ai)
21 else
22 send BACKTRACK (opt∗, ubi) to P (ai)

Function FillIUCache ():
23 foreach ac ∈ C(ai) do
24 if IUCachec

i (contextc) ̸= null then
25 foreach di ∈ Di do
26 if subc

i (di) > 0 then
27 IUCachec

i (contextc)← {optc
i (di) , subc

i (di)}
28 else if memc

i > 0 then
29 IUCachec

i (contextc)← {optc
i (di) , subc

i (di)} , ∀di ∈ Di

30 memc
i ← memc

i − |Di|
31 else
32 call certain page replacement procedure

Besides, some modifications should be done to implement the strategy appropriately.
Specifically, each agent ai additionally attaches the upper bound to the BACKTRACK
message to its parent agent and maintains a list subc

i (di), ∀di ∈ Di, ac ∈ C(ai) to record
the upper bound sent from ac and update it if needed. Moreover, for each child ac, ai

also maintains some additional data structures, which includes an IUCachec
i to store all

information units and a memc
i to record the remaining memory space.

Next, we will detail how to implement the RS in TreeBB. Algorithm 2 presents the sketch
of RS, and we only describe the difference from TreeBB. Specifically, each agent ai starts by
allocating memory for each child. Here, we set the maximum memory space with a parameter
k for each agent, which means ai can cache |Di|k information units I at most and allocate
the memory for each child ac according to Eq.(5) if ai has more than one child (line 1). The
maximum memory function |Di|k is widely used in some memory-bounded algorithms, and
other functions (e.g., a constant value or ρ ∗ |D||Sep(ai)| where ρ ∈ (0, 1]) can also be adopted.

J. Wang, D. Chen, Z. Chen, X. Liu, and J. Gao 39:9

As can be seen from Eq.(5), agent ai allocates as much memory space as possible for ac with
small |Sep(ac)|, but the initialized memory space memc

i should not exceed the maximum
memory requirement, i.e.,|Di||Sep(ac)|. It is based on an intuitive idea that agent ai with
small |Sep(ac)| has fewer combinations for contextc, which could lead to a higher cache-hit
rate.

memc
i ← min

(∑

ac′ ∈C(ai) |Sep(ac′)|−|Sep(ac)|
)
∗ |Di|k

(|C(ai)| − 1) ∗
∑

ac′ ∈C(ai) |Sep(ac′)| , |Di||Sep(ac)|

 , ∀ac ∈ C(ai) (5)

Next, the execution phase of TreeBB starts. When ai receives a CPA message from its
parent, for each child ac, it judges whether the current contextc is already in the cache
(line 2–4). Specifically, if it hits, ai obtains the corresponding historical results in the
information unit cache IUCachec

i and initializes optc
i and subc

i (line 5–6). Otherwise, ai sets
subc

i (di) to 0 and explores its child ac when sendubc(di) > 0 (line 7–8). Then, when the
obtained subc

i (di) is ∞, which means a realcost for di has already been obtained, then di is
removed from D̃c

i (line 9). After that, when ai selects the next feasible assignment to explore
for child ac, our RS gives an additional pruning judgement (line 11–15). That is, a value di

is removed from the search domain D̃c
i if a new sendubc(di) ⩽ subc

i (di) since ai still cannot
get a better cost under the sendubc(di).

Before ai sends a BACKTRACK message, for each child ac, it stores the current optimal
cost optc

i (di) and upper bound subc
i (di) with the corresponding contextc into its cache (line 17).

Specifically, if the contextc already exists in IUCachec
i , ai updates the cached results directly

(line 23–27). Here, to make the cached results more effective, ai performs the update only
when subc

i (di) > 0. If the contextc is not in the IUCachec
i and the remaining memory space

memc
i is greater than 0, ai stores the corresponding results as an information unit I and

reduces the remaining memory space memc
i (line 28-30). If ai does not have enough cache

capacity to store a new information unit, it will perform certain cache replacement procedure
(line 31–32). Then, if the current optimal cost opt∗ is identified as the realcost, ai replaces the
upper bound ubi with infinity in BACKTRACK messages to avoid unnecessary re-exploration
(line 19–20). Otherwise, ai needs to report the current upper bound (line 21–22).

BACKTRACK(14,6) BACKTRACK(12,)

Figure 3 An example of RS-based algorithm to show its completeness.

To illustrate the effect of RS, we take Fig.1 as an example. Here, we mainly focus on agent
a4 and points out the difference when RS is applied based on Fig.3. Similar to the example in
Fig.2(a), we assume the upper bound for x1 = 0 is 20, a4 receives the same CPA message and
prunes the search space corresponding to 0, as illustrated in Fig.3(a). However, different from
OCS, the RS additionally constructs sub6

4 and sub5
4 and set sub5

4(0) = sub6
4(0) = 0 (line 12–

13). Then, a4 explores its next feasible assignment x4 = 1 and stores the best costs and

CP 2022

39:10 Towards Efficient Caching for DCOPs

upper bound sent from its children, respectively. Note that, a4 sets sub5
4(1) = sub6

4(1) =∞
since a5 and a6 are leaf agents and the realcosts (opt5

4(1) = 6 and opt6
4(1) = 7) are reported

(line 19–20). After that, a4 caches these results together with the corresponding contexts

(shown in the table) as information units, and sends a BACKTRACK message including
opt∗ = 14 and ubi = 6 to its parent a3, shown in Fig.3(b). Next, when a4 receives a new CPA
message containing Cpa4 = {(x1, 0), (x2, 1), (x3, 0)} like the example in Fig.2(c), different
from OCS which just uses the cached cost and sends a BACKTRACK message with the
suboptimal cost, a4 re-explores the search space corresponding to x4 = 0 since sendubc(0) = 8
is greater than sub5

4(0) = sub6
4(0) = 0 (line 11), and for x4 = 1, it directly reuses the realcosts

stored in cache before. Then, a4 obtains the realcosts for its children by exhausting the
search space and updates IUCache accordingly (line 17, 23-27), shown as Fig.3(c). At
last, a4 calculates opt∗ = 12 which is a realcost and sends it with an infinite upper bound
through a BACKTRACK message to its parent a3 (line 19–20). It can be seen that the
RS successfully guarantees the completeness and brings higher cache utilization compared
to OCS.

3.3 Cache Replacement Scheme
To better make use of the cached items with limited memory, a cache replacement scheme
is necessary since such a good scheme can often bring higher cache utilization and improve
the performance of algorithms. Yeoh et al [30] proposed three cache replacement schemes
for asynchronous algorithms, including MaxPriority, MaxEffort and MaxUtility Scheme. All
these schemes allow each agent to make decisions according to heuristics constructed by
reordering the cached information units. However, none of them can be applied to synchronous
algorithms directly due to the fact that the valid information to cache is actually different
between synchronous and asynchronous algorithm. Besides, for synchronous algorithms,
there is no other relevant research on cache replacement schemes reported before. Based on
the background, we introduce two feasible cache replacement schemes including UB and SYS
to match our RS for synchronous algorithms.

Specifically, we construct a heuristic scheme named UB in which ai sorts the cached
information units according to subc, which allows new information units to preempt the unit
with the smallest subc in the cache. It is because the larger the subc, the more likely the
optc regarding it is the realcost.

In addition, we propose another cache replacement scheme named SYS by carrying out
the FIFO (First-In-First-Out) scheme only when a specific agent changes its value. It gives
full play to the advantages of the FIFO scheme in synchronous algorithms, and avoids the
disadvantages caused by frequent cache replacement. Before introducing the SYS scheme,
we first give some notations as follows.

H(ai) is the height of ai on the pseudo tree. In particular, the height of root agent is 0.
SepQc

i is a queue containing all the Sep(ac) agents for ac ∈ C(ai), which is sorted by the
height in a reverse order, i.e., H (SepQc

i (m)) > H (SepQc
i (m + 1)) where m is the index

of SepQc
i . Taking Fig.1(c) as an example, SepQ6

4 = {a4, a3, a1}.

In synchronous algorithms, each agent changes its assignment orderly according to its
height on a pseudo tree. That is, the root agent changes its value far less than the leaf
agents, which also means an agent with larger index in SepQc

i changes its assignment less
frequently. Hence, it seems that the traditional FIFO scheme is suitable for synchronous
algorithms. Consider a4 in Fig.1(c), when a1 changes to its next assignment, i.e., x4 = 1, the

J. Wang, D. Chen, Z. Chen, X. Liu, and J. Gao 39:11

items with context6 = {(x1, 0), (x3, d3), (x4, d4)}, ∀d3 ∈ D3, d4 ∈ D4 cached in information
unit cache IUCache actually expire, since the next context6 is no longer similar to that
a4 cached before for a6. Therefore, if a4 adopts the FIFO scheme, it only needs |D3||D4|
memory for a6 to cache the reported results. However, naively using the FIFO scheme might
bring some issues in some situations. Still take a4 in Fig.1(c) as an example and assume
the allocated memory mem5

4 for its child a5 is limited to |D4|. If a4 directly uses the FIFO
scheme, it starts to replace the cached items under x3 = 0 once a3 changes to 1. However,
it is clear that when a2 changes to its next value, the items a4 cached under x3 = 0 is still
valid, but they have already been replaced by that under x3 = 1. As a result, according to
the FIFO scheme, a4 may replace the cached items frequently, leading to the fact that items
always are unused before replaced. Therefore, the SYS scheme aims to overcome the issue by
finding the first agent aj satisfying Eq.(6) for each child ac and then discarding the search
results directly if aj = null or the assignment of aj in the current contextc is consistent with
that in the cached items. Otherwise, ai utilizes the FIFO scheme to replace the cached items.

aj = SepQc
i (m) s.t. P (SepQc

i (m− 1)) ̸= SepQc
i (m) , m ⩾ ⌊log|Di| memc

i⌋ (6)

Still take Fig.1(c) as an example and assume the initialized memory space mem5
4 = mem6

4 =
|D4|. Different from that in the FIFO scheme where a4 always replaces the new contexti for
the cached ones when the IUCache is full, in SYS a4 does not replace the cached items and
directly discards the current search results for a5 since aj = null. Similarly, for child a6, a4
does not replace either until aj(a1) changes its assignment.

4 Theoretical Results

In this section, we prove the completeness of the Retention Scheme (RS), and give the
complexity analysis of the proposed method.

▶ Lemma 1. The optimal cost opt∗ reported by ai is the realcost if opt∗ < ubi.

Proof. Assuming that the opt∗ reported by ai is not the realcost, there must exist a realcost,
called cost∗, which satisfies cost∗ < opt∗. Therefore, the cost∗ must have been pruned since
only the current best cost opt∗ found so far is reported. However, in tree-based complete
synchronous search algorithms, only when cost∗ ⩾ ubi, pruning is carried out, which leads to
a contradiction to the condition opt∗ < ubi in lemma 1. Thus, Lemma 1 is proved. ◀

▶ Lemma 2. Given a same contexti, assume that ai gets a suboptimal cost under ubi. If the
newly-received upper bound ub′

i for ai is less than ubi, i.e.,ub′
i < ubi, ai still gets a suboptimal

cost.

Proof. According to Lemma 1, the suboptimal cost opt∗ should satisfy opt∗ ⩾ ubi owing to
opt∗ is not a realcost. Therefore, we have opt∗ ⩾ ubi > ub′

i, which indicates that a realcost

can not be obtained by exploring with ub′
i either. Thus, Lemma 2 is proved. ◀

▶ Theorem 3. The RS is complete.

Proof. According to Lemma 1 and Lemma 2, the RS only utilizes the realcosts and the
additional pruning judgement it adopts does not affect the exploration for such realcosts.
Thus, the RS is complete. ◀

It is worth noting that the completeness of the RS will not be affected by the arity
of constraint functions as it is related only to the cached results of historical exploration.
Besides, the cache replacement schemes do not hurt the completeness of the RS as they only
determine which results explored should be stored in the cache.

CP 2022

39:12 Towards Efficient Caching for DCOPs

4.1 Complexity

When applied to existing tree-based complete synchronous search algorithms, the RS does not
introduce any new messages, and it only attaches the current upper bound to a BACKTRACK
message which only requires linear memory.

For each agent ai, assuming it has enough memory to store all the search results, it
requires |Di||Sep(ac)| memory to cache the items for its child ac ∈ C(ai). Therefore, the
overall consumption is O

(
|C (ai) ||Di|Sep

)
, where Sep = maxac∈C(ai) |Sep(ac)|. On the other

hand, for each agent ai, it traverses the information unit cache IUCache to map for its
child ac ∈ C(ai), which requires a linear time complexity. So, the entire time complexity is
O(|C(ai)|).

Besides, for the cache replacement schemes, UB requires O
(
|C(ai)||Di|Sep log |Di|Sep

)
time complexity to perform quick sort for information units, while for SYS it only needs
O(1) to calculate the specific agent by Eq.(6).

5 Empirical Evaluation

In this section, we apply the RS to state-of-the-art tree-based complete synchronous search
algorithms, and compare them against the originals. Then, when the memory is limited, we
investigate the effects of different cache replacement schemes on the RS-based algorithms.

5.1 Experimental Configuration

In order to evaluate the effect of RS, we apply it to tree-based complete synchronous
algorithms including TreeBB, PT-FB, HS-CAI and PT-ISBB (a variant of PT-ISABB [8] in
DCOP settings), and name the corresponding RS-based version as TreeBB+RS, PT-FB+RS,
HS-CAI+RS and PT-ISBB+RS. Specially, to ensure the completeness of OCS when applied
to TreeBB for fairness, we also append the upper bound to the information unit and name
it as TreeBB+OCS. Besides, we uniformly use the SYS scheme to manage memory when
the cache is full. In our experiments, we will compare these RS-based algorithms with their
originals on random DCOPs and weighted graph coloring problems. For random DCOPs,
we set the graph density to 0.2, the domain size to 3 and vary the agent number from 16
to 28 as the sparse configuration, and the graph density to 0.5, the domain size to 3 and
the number of agents varying from 14 to 24 as the dense configuration. For weighted graph
coloring problems, similar to the sparse configuration in random DCOPs, we set the graph
density to 0.2, the domain size to 3 and vary the agent number from 16 to 28. Besides, we
choose k = 4 and k = 8 as the low and high memory budget for HS-CAI, PT-ISBB and
RS, respectively. Furthermore, we compare the performance of different cache replacement
schemes including FIFO (First In First Out), FILO (First In Last Out), LRU (Least Recently
Used) and LFU (Least Frequently Used), UB, SYS and ORI (an original scheme which
discards the next results when the cache is full.) when they are applied to TreeBB+RS, on
the dense configuration for random DCOPs and low memory budget. We use the number of
messages (Msgs) to measure the communication overheads, and the NCLOs [21] to measure
the hardware-independent runtime where the logical operations in the inference and the
search are accesses to utilities and constraint checks, respectively. For each experiment, we
randomly generate 50 instances with the integer constraint costs in the range of 0 to 100,
and report the average over all instances. The experiments are conducted on an i7-7820x
workstation with 32GB of memory, and we set the timeout to 30 minutes for each algorithm.

J. Wang, D. Chen, Z. Chen, X. Liu, and J. Gao 39:13

5.2 Experimental Results
Table 1 gives the detailed results of the improvement of the RS-based algorithms over their
originals including both memory budget k = 4 and k = 8, where the numbers greater than
zero are shown in bold. It can be seen that the RS-based algorithms outperform the originals
on both metrics under both low and high memory budget, i.e., k = 4 and k = 8. Besides,
the improvement under k = 8 is slightly higher than that under k = 4 in most cases since
with larger memory, the RS-based algorithms can cache more realcosts for reuse. However,
since the number of valid realcost is limited, such an improvement fades away. Next, Fig.4
to Fig.6 give the experimental results for the sparse random DCOPs, dense random DCOPs
and weighted graph coloring problems with k = 4, and we do not present the results with
k = 8 since they are of the same trend as that with k = 4.

Table 1 The improvement of the RS-based algorithms over their respective originals.

Configuration k
TreeBB+OCS TreeBB+RS PTFB+RS PT-ISBB+RS HS-CAI+RS

Msgs(%) NCLOs(%) Msgs(%) NCLOs(%) Msgs(%) NCLOs(%) Msgs(%) NCLOs(%) Msgs(%) NCLOs(%)

Sparse DCOPs 4 84∼88 81∼86 95∼98 94∼97 71∼86 58∼77 29∼57 16∼52 18∼34 3∼8
8 85∼89 81∼87 96∼99 95∼98 72∼87 59∼78 30∼49 1∼17 20∼40 0∼5

Dense DCOPs 4 45∼50 40∼44 72∼76 65∼71 19∼40 13∼42 9∼23 9∼34 2∼8 0∼2
8 46∼50 41∼45 74∼80 69∼75 20∼42 14∼43 8∼15 0∼12 2∼15 0∼6

weighted graph coloring 4 39∼50 45∼49 41∼68 49∼60 39∼52 25∼47 34∼51 19∼40 21∼45 1∼9
8 40∼54 46∼53 41∼71 49∼61 40∼53 26∼47 34∼48 1∼13 35∼50 0∼5

Fig.4 presents the experimental results for the number of messages (a) and NCLOs (b)
under different agent numbers on the sparse configuration for random DCOPs, and the
corresponding improvement over the originals is displayed in the first row of Table 1. It can
be seen that the RS-based algorithms exhibit a great advantage on both metrics over their
originals. Especially for TreeBB and PT-FB, the RS improve them more. It is due to the
fact that compared to PT-ISBB and HS-CAI, TreeBB and PT-FB perform less pruning due
to their less tight lower bounds. Therefore, the cached results could be more likely to be the
realcost and reused more frequently. Besides, it can be seen from Table 1 that TreeBB+RS
is superior to TreeBB+OCS by about 10% on the the sparse problems, which indicates the
fine-grained caching could indeed boost the cache-hit rate.

16 18 20 22 24 26 28
Agent Number

103

104

105

106

107

M
es

sa
ge

 N
um

be
r

TreeBB
TreeBB+OCS(k=4)
TreeBB+RS(k=4)
PT-FB
PT-FB+RS(k=4)
HS-CAI(k=4)
HS-CAI(k=4)+RS(k=4)
PT-ISBB(k=4)
PT-ISBB(k=4)+RS(k=4)

(a) Number of Messages.

16 18 20 22 24 26 28
Agent Number

103

104

105

106

107

NC
LO

s

(b) NCLOs.

Figure 4 Performance comparison under different agents on sparse DCOPs.

We can also see from Fig.4 that with the help of the RS, TreeBB and PT-FB solved larger
problems, scaling up to the problems with 26 agents and with 28 agents, respectively.

CP 2022

39:14 Towards Efficient Caching for DCOPs

10 12 14 16 18 20 22
Agent Number

103

104

105

106

107
M

es
sa

ge
 N

um
be

r

TreeBB
TreeBB+OCS(k=4)
TreeBB+RS(k=4)
PT-FB
PT-FB+RS(k=4)
HS-CAI(k=4)
HS-CAI(k=4)+RS(k=4)
PT-ISBB(k=4)
PT-ISBB(k=4)+RS(k=4)

(a) Number of Messages.

10 12 14 16 18 20 22
Agent Number

103

104

105

106

107

NC
LO

s

(b) NCLOs.

Figure 5 Performance comparison under different agents on dense DCOPs.

Fig.5 presents the experimental results under different agent numbers on the dense
configuration for random DCOPs, and the third row of Table 1 shows the corresponding
improvement over the originals. It can be seen that the RS-based algorithms also perform
better than their originals in terms of both the number of messages and NCLOs. However,
the improvement of RS decreases compared to that on the sparse configuration. It is because
|Sep(ac)| for each agent ai is larger on the dense configuration. Such large Sep(ac) will lead
to more combinations for the contextc and thus bring down the cache-hit rate. In addition,
ai may not be able to cache all the contextc for large Sep(ac) with its limited memory,
which would lead to the fact that the historical results for some contextc would never be
reused. Moreover, it can be seen from Table 1 that the outperformance of TreeBB+RS over
TreeBB+OCS increases from about 10% on sparse problems to about 25% on dense problems.
It is because under larger |Sep(ai)|, it is more difficult for TreeBB+OCS to match a new
contexti to the cached items, while for TreeBB+RS it is much easier since the latter only
needs to match the subset of |Sep(ai)| for its child.

Fig.6 presents the experimental results under different agent numbers on weighted graph
coloring problems, and the corresponding improvement over the originals can be found in
the fifth row of Table 1. It can be seen that our RS can greatly improve the performance of
the originals on both metrics, which is similar to the results on random DCOPs. It is worth
noting that, when k = 4, the performance of TreeBB+RS is better than all other competitors
without RS on the number of messages, which verifies that a cache for reusing historical
results has a more significant role than providing a tighter lower bound on weighted graph
coloring problems.

Table 2 presents the experimental results for TreeBB+RS with different cache replacement
schemes. We can find that our proposed cache replacement schemes perform better than other
competitors in most cases. It is because ORI, FIFO, FILO, LRU, LFU are all model-free
cache replacement schemes which ignore the structure of the problems, while our proposed
methods consider the related information such as the cached upper bounds (UB) and the
characteristics of synchronous algorithms (SYS). Besides, the SYS is better than UB in
this case, as the SYS aims at the characteristics of sequential assignments in synchronous
algorithms and adjusts itself by the initialized memory.

J. Wang, D. Chen, Z. Chen, X. Liu, and J. Gao 39:15

16 18 20 22 24 26 28
Agent Number

103

104

M
es

sa
ge

 N
um

be
r

TreeBB
TreeBB+OCS(k=4)
TreeBB+RS(k=4)
PT-FB
PT-FB+RS(k=4)
HS-CAI(k=4)
HS-CAI(k=4)+RS(k=4)
PT-ISBB(k=4)
PT-ISBB(k=4)+RS(k=4)

(a) Number of Messages.

16 18 20 22 24 26 28
Agent Number

103

104

105

106

NC
LO

s

(b) NCLOs.

Figure 6 Performance comparison under different agents on weighted graph coloring problems.

Table 2 Performance comparison under different cache replacement schemes on dense DCOPs.

Scheme Metrics Agent Number Metrics Agent Number
10 12 14 16 18 10 12 14 16 18

ORI

Msgs

1463 10841 84208 569718 3890905

NCLOs

5133 49443 449313 3626525 28718461
FIFO 1489 8717 52018 342777 2449699 5214 40978 306201 2353110 19653448
FILO 1466 10748 83715 566028 3825017 5135 48909 445818 3597353 28243741
LRU 1480 8705 52057 342724 2449808 5215 40971 306211 2352837 19655744
LFU 1466 10744 83521 565403 3840109 5137 48864 444652 3592756 28323712
UB 1481 8705 52003 342767 2449665 5215 40972 306185 2353149 19653238
SYS 1433 8619 51412 340792 2437553 5002 40666 303945 2347033 19578876

6 Conclusion

To overcome the shortcomings of OCS, we propose a new caching scheme named RS, which
can be deployed to all tree-based complete synchronous search algorithms with minor
modifications. It ensures the completeness of the algorithms by appending the upper bound
to the information unit and further improves the cache utilization by adopting a fine-grained
cache information unit. Besides, we also propose two cache replacement schemes UB and SYS
to improve the performance of RS when the memory is limited. Finally, we give a theoretical
proof for the completeness of RS, and our empirical evaluation shows the superiority of
the RS-based algorithms over their originals and the advantage of our cache replacement
schemes over the traditional ones. In the future, we will devote to further optimizing the
cache information units and designing more appropriate cache replacement schemes for RS.

References

1 James Atlas, Matt Warner, and Keith Decker. A memory bounded hybrid approach to
distributed constraint optimization. In Proc. 10th International Workshop on Distributed
Constraint Reasoning, pages 37–51, 2008.

2 Ismel Brito and Pedro Meseguer. Improving DPOP with function filtering. In AAMAS, volume
1435, pages 141–148, 2010.

3 Anton Chechetka and Katia Sycara. No-commitment branch and bound search for distrib-
uted constraint optimization. In Proceedings of the fifth international joint conference on
Autonomous agents and multiagent systems, pages 1427–1429, 2006.

CP 2022

39:16 Towards Efficient Caching for DCOPs

4 Anton Chechetka and Katia P Sycara. An Any-space Algorithm for Distributed Constraint
Optimization. In AAAI Spring Symposium: Distributed Plan and Schedule Management, pages
33–40, 2006.

5 Dingding Chen, Yanchen Deng, Ziyu Chen, Wenxing Zhang, and Zhongshi He. HS-CAI: A
hybrid DCOP algorithm via combining search with context-based inference. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 34, pages 7087–7094, 2020.

6 Ziyu Chen, Wenxin Zhang, Yanchen Deng, Dingding Chen, and Qiang Li. RMB-DPOP:
Refining MB-DPOP by Reducing Redundant Inference. In Proceedings of the 19th International
Conference on Autonomous Agents and MultiAgent Systems, pages 249–257, 2020.

7 Rina Dechter, David Cohen, et al. Constraint processing. Morgan Kaufmann, 2003.
8 Yanchen Deng, Ziyu Chen, Dingding Chen, Xingqiong Jiang, and Qiang Li. PT-ISABB: A

Hybrid Tree-based Complete Algorithm to Solve Asymmetric Distributed Constraint Optimiz-
ation Problems. In Proceedings of the 18th International Conference on Autonomous Agents
and MultiAgent Systems, pages 1506–1514, 2019.

9 Alessandro Farinelli, Alex Rogers, and Nick R Jennings. Agent-based decentralised coordination
for sensor networks using the max-sum algorithm. Autonomous agents and multi-agent systems,
28(3):337–380, 2014.

10 Alessandro Farinelli, Alex Rogers, Adrian Petcu, and Nicholas R Jennings. Decentralised
coordination of low-power embedded devices using the max-sum algorithm. In Proceedings of
the 7th international joint conference on Autonomous agents and multiagent systems-Volume
2, pages 639–646, 2008.

11 Ferdinando Fioretto, Enrico Pontelli, and William Yeoh. Distributed constraint optimization
problems and applications: A survey. Journal of Artificial Intelligence Research, 61:623–698,
2018.

12 Ferdinando Fioretto, William Yeoh, Enrico Pontelli, Ye Ma, and Satishkumar J Ranade. A
distributed constraint optimization (DCOP) approach to the economic dispatch with demand
response. In Proceedings of the 16th Conference on Autonomous Agents and MultiAgent
Systems, pages 999–1007, 2017.

13 Eugene C Freuder and Michael J Quinn. Taking Advantage of Stable Sets of Variables in
Constraint Satisfaction Problems. In IJCAI, volume 85, pages 1076–1078. Citeseer, 1985.

14 Patricia Gutierrez and Pedro Meseguer. BnB-ADOPT+ with Several Soft Arc Consistency
Levels. In ECAI, pages 67–72, 2010.

15 Katsutoshi Hirayama and Makoto Yokoo. Distributed partial constraint satisfaction problem.
In International conference on principles and practice of constraint programming, pages 222–236.
Springer, 1997.

16 Omer Litov and Amnon Meisels. Forward bounding on pseudo-trees for DCOPs and ADCOPs.
Artificial Intelligence, 252:83–99, 2017.

17 Rajiv T Maheswaran, Jonathan P Pearce, and Milind Tambe. A family of graphical-game-based
algorithms for distributed constraint optimization problems. In Coordination of large-scale
multiagent systems, pages 127–146. Springer, 2006.

18 Rajiv T Maheswaran, Milind Tambe, Emma Bowring, Jonathan P Pearce, and Pradeep
Varakantham. Taking dcop to the real world: Efficient complete solutions for distributed multi-
event scheduling. In Proceedings of the Third International Joint Conference on Autonomous
Agents and Multiagent Systems-Volume 1, pages 310–317, 2004.

19 Toshihiro Matsui, Hiroshi Matsuo, and Akira Iwata. Efficient Methods for Asynchronous
Distributed Constraint Optimization Algorithm. In Artificial Intelligence and Applications,
pages 727–732, 2005.

20 Pragnesh Jay Modi, Wei-Min Shen, Milind Tambe, and Makoto Yokoo. ADOPT: Asynchronous
distributed constraint optimization with quality guarantees. Artificial Intelligence, 161(1-
2):149–180, 2005.

21 Arnon Netzer, Alon Grubshtein, and Amnon Meisels. Concurrent forward bounding for
distributed constraint optimization problems. Artificial Intelligence, 193:186–216, 2012.

J. Wang, D. Chen, Z. Chen, X. Liu, and J. Gao 39:17

22 Duc Thien Nguyen, William Yeoh, Hoong Chuin Lau, and Roie Zivan. Distributed gibbs:
A linear-space sampling-based DCOP algorithm. Journal of Artificial Intelligence Research,
64:705–748, 2019.

23 Brammert Ottens, Christos Dimitrakakis, and Boi Faltings. DUCT: An upper confidence
bound approach to distributed constraint optimization problems. ACM Transactions on
Intelligent Systems and Technology (TIST), 8(5):1–27, 2017.

24 Adrian Petcu and Boi Faltings. DPOP: A scalable method for multiagent constraint optimiza-
tion. In IJCAI 05, pages 266–271, 2005.

25 Adrian Petcu and Boi Faltings. ODPOP: An algorithm for open/distributed constraint
optimization. In AAAI, volume 6, pages 703–708, 2006.

26 Adrian Petcu and Boi Faltings. MB-DPOP: A New Memory-Bounded Algorithm for Distributed
Optimization. In IJCAI, pages 1452–1457, 2007.

27 Evan Sultanik, Pragnesh Jay Modi, and William C Regli. On Modeling Multiagent Task
Scheduling as a Distributed Constraint Optimization Problem. In IJCAI, pages 1531–1536,
2007.

28 Meritxell Vinyals, Juan A Rodriguez-Aguilar, Jesús Cerquides, et al. Generalizing DPOP:
Action-GDL, a new complete algorithm for DCOPs. In AAMAS (2), pages 1239–1240, 2009.

29 William Yeoh, Ariel Felner, and Sven Koenig. BnB-ADOPT: An asynchronous branch-and-
bound DCOP algorithm. Journal of Artificial Intelligence Research, 38:85–133, 2010.

30 William Yeoh, Pradeep Varakantham, and Sven Koenig. Caching schemes for DCOP search
algorithms. In AAMAS (1), pages 609–616, 2009.

31 Weixiong Zhang, Guandong Wang, Zhao Xing, and Lars Wittenburg. Distributed stochastic
search and distributed breakout: properties, comparison and applications to constraint optim-
ization problems in sensor networks. Artificial Intelligence, 161(1-2):55–87, 2005.

CP 2022

CNF Encodings of Binary Constraint Trees
Ruiwei Wang #

School of Computing, National University of Singapore, Singapore

Roland H. C. Yap #

School of Computing, National University of Singapore, Singapore

Abstract
Ordered Multi-valued Decision Diagrams (MDDs) have been shown to be useful to represent finite
domain functions/relations. For example, various constraints can be modelled with MDD constraints.
Recently, a new representation called Binary Constraint Tree (BCT), which is a (special) tree
structure binary Constraint Satisfaction Problem, has been proposed to encode MDDs and shown
to outperform existing MDD constraint propagators in Constraint Programming solvers. BCT is
a compact representation, and it can be exponentially smaller than MDD for representing some
constraints. Here, we also show that BCT is compact for representing non-deterministic finite state
automaton (NFA) constraints. In this paper, we investigate how to encode BCT into CNF form,
making it suitable for SAT solvers. We present and investigate five BCT CNF encodings. We
compare the propagation strength of the BCT CNF encodings and experimentally evaluate the
encodings on a range of existing benchmarks. We also compare with seven existing CNF encodings
of MDD constraints. Experimental results show that the CNF encodings of BCT constraints can
outperform those of MDD constraints on various benchmarks.

2012 ACM Subject Classification Computing methodologies → Artificial intelligence; Software and
its engineering → Constraint and logic languages

Keywords and phrases BCT, CNF, MDD, NFA / MDD constraint, propagation strength

Digital Object Identifier 10.4230/LIPIcs.CP.2022.40

Funding This work was supported in part by the National Research Foundation Singapore under its
AI Singapore Programme [AISG-RP-2018-005] and grant T1 251RES2024.

1 Introduction

Ordered Multi-valued Decision Diagram (MDD) [39] is a compact representation which can
be used to encode finite domain functions/relations. Many constraints can be encoded into
compact MDD constraints, such as the regular constraints [32], table constraints [10], among
and sequence constraints [22]. MDD constraints are also useful to model problems requiring
specific constraints which are not readily modelled with existing known constraints [11, 21].
In Constraint Programming (CP) solvers, MDD constraints can be directly handled with
MDD Generalized Arc Consistency (GAC) propagators, e.g. the MDDc [10], MDD4R [31],
CD [42] and CDbs [43] propagators. Alternatively, MDD constraints can also be solved by
SAT solvers by encoding MDD constraints into CNF form [1]. In this way, SAT solvers can
directly handle the constraints which can be modelled with MDDs constraints[2, 3, 5].

Binary constraint is also a general representation for constraints. Any non-binary
constraint can be transformed into binary constraints through binary encodings such as dual
encoding [13], hidden variable encoding [37], double encoding [40] and bipartite encoding [47].
Recently, binary encodings with specialized Arc Consistency (AC) propagators [46, 47] has
been shown to outperform the GAC propagators of non-binary table constraints [28, 45, 15, 50].
Similar to MDDs, the binary constraints can also be encoded into CNF with different
CNF encodings, such as the log encoding [23, 44, 41], direct encoding [44] and support
encoding [24, 19].

© Ruiwei Wang and Roland H. C. Yap;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 40; pp. 40:1–40:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ruiwei@comp.nus.edu.sg
mailto:ryap@comp.nus.edu.sg
https://doi.org/10.4230/LIPIcs.CP.2022.40
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

40:2 CNF Encodings of Binary Constraint Trees

Recently, a new representation called Binary Constraint Tree (BCT) [48], which is a
set of binary constraints with tree structures (a special binary CSP), has been proposed
to encode MDDs. BCT is a compact representation, and it can be exponentially smaller
than MDD. In this paper, we also show that non-deterministic finite state automaton (NFA)
constraints [33, 9] can be transformed into BCT constraints without exponential blow up but
not MDD constraints. Furthermore, a GAC propagator of BCT constraints [48] has been
shown to outperform the state-of-the-art MDD GAC propagators. The results in [48] show
that BCT has great potential for encoding and reducing MDDs.

In this paper, we investigate how to encode BCT constraints into CNF instances and apply
them in SAT solvers. We investigate five CNF encodings of BCT constraints, including the log
encoding, direct encoding, support encoding and two new transformations: partial support
encoding and minimal support encoding. We tailor three well-known CNF encodings of binary
constraints, i.e. the log, direct and support encodings, to handle BCT constraints. In addition,
we introduce the partial support encoding and minimal support encoding by eliminating
clauses and Boolean variables from the support encoding of BCT constraints. Then we
analyze the strength of unit propagation on these 5 CNF encodings of BCT constraints. The
support encoding of BCT constraints, which implements propagation completeness [6], can
have a greater propagation strength than the other CNF encodings. The partial support
encoding and minimal support encoding are more compact than the support encoding but
their propagation strength is weaker than the support encoding. The log encoding and
direct encoding, which do not implement weak consistency, have the weakest propagation
strength. We also compare the five CNF encodings of BCT constraints and seven existing
MDD encodings [1] using the Kissat SAT solver [17] on a range of existing benchmarks. Our
experimental results show that the CNF encodings of BCT constraints can outperform MDD
CNF encodings.

The paper is organized as follows. Section 2 provides the preliminaries. Section 3
shows that BCT can be exponentially smaller than MDD on representing NFA constraints.
Sections 4 and 5 respectively introduce CNF encodings of binary constraints and BCT
constraints. Experimental results are given in Section 6, and Section 7 concludes.

2 Preliminaries

A CSP P is a pair (X, C) where X is a set of variables, D(x) is the domain of a variable x, and
C is a set of constraints. A variable is a Boolean variable if D(x) = {true, false}. A literal
of a variable x is a variable value pair (x, a). A tuple over a set of variables {xi1 , xi2 , . . . , xir

}
is denoted by a set of literals {(xi1 , a1), (xi2 , a2), . . . , (xir , ar)}. Each constraint c has a
constraint scope scp(c) ⊆ X and a relation rel(c) defined by a set of tuples over scp(c). The
arity of c is the number of variables in its scope, i.e. |scp(c)|. A constraint c is a binary
constraint if |scp(c)| = 2. A constraint c over Boolean variables {xi1 , · · · , xir } is a clause if it
is a disjunction of a set cl of literals {(xi1 , a1), · · · , (xir

, ar)} such that aj ∈ {true, false} for
1 ≤ j ≤ r, so rel(c) consists of the tuples over scp(c) including at least a literal in cl. A CSP
is called a binary CSP if it only includes binary constraints. A binary CSP is normalized if
all constraints have different scopes. A CSP (X, C) is called a Conjunctive Normal Form
(CNF) if all variables in X are Boolean variables and all constraints in C are clauses.

Given any set of variables V and a tuple τ , we use τ [V] = {(x, a) ∈ τ |x ∈ V } to denote a
subset of τ , while T [V] = {τ [V]|τ ∈ T} is the projection of tuples T on V . In addition, P |τ
denotes a subproblem ({x′|x ∈ X}, C) of P = (X, C) generated by assigning a tuple τ where
D(x′) = D(x) if τ does not include any literal of x, otherwise D(x′) = {(x, a) ∈ τ |a ∈ D(x)}.

R. Wang and R. H. C. Yap 40:3

Note that F |τ = F if τ = ∅. A tuple τ is an assignment if a ∈ D(x) for all (x, a) ∈ τ .
An assignment τ over X is a solution of P if τ [scp(c)] ∈ rel(c) for all constraints c ∈ C.
sol(X, C) (or sol(P)) denotes all solutions of P . A CSP (X, C) is satisfiable if Sol(X, C) ̸= ∅,
otherwise it is unsatisfiable.

A support of a value a ∈ D(x) on a constraint c is a tuple τ ∈ rel(c) such that (x, a) ∈ τ

and b ∈ D(y) for all (y, b) ∈ τ . A variable x ∈ scp(c) is Generalized Arc Consistent (GAC)
on c if a has a support on c for all a ∈ D(x). c is GAC if all variables in scp(c) are GAC on
c. A CSP (X, C) is GAC if every constraint in C is GAC. For binary CSPs, GAC is also
called Arc Consistency (AC). For any CNF F , GAC is also called unit propagation, where
UP (F) is used to denote a CNF generated from F by removing all variable values which are
not GAC on F . If UP (F) includes any empty variable domain, F is unsatisfiable.

2.1 CNF encoding and unit propagation strength

A CNF encoding of a CSP P = (X, C) is a CNF which is equisatisfiable with P , i.e. the CNF
is satisfiable iff P is satisfiable. Typically, a CNF encoding consists of a variable encoding
(VE) and a constraint encoding (CE) where VE encodes the variables in X as a set φX of
Boolean variables and each constraint c in C corresponds to a constraint (Boolean function)
φc over the Boolean variables, while CE encodes the constraint φc as a CNF F c over Boolean
variables Y such that scp(φc) ⊆ Y and sol(F c)[scp(φc)] = rel(φc). There have been many
VEs which can be used to transform finite domain variables into Boolean variables, such as
direct encoding and log encoding [44] . In addition, there are also various CEs for encoding
constraints, e.g. many CNF encodings of MDD constraints [1]. A way to analyze a CE is
evaluating the strength of unit propagation on the encoded constraint F c. We will use the
following four levels to classify the strength of unit propagation on encoding F c:

F c implements weak consistency if for any tuple τ over scp(φc) such that F c|τ is unsatis-
fiable, some variable domains in UP (F c|τ) are empty.

F c implements domain consistency if for any tuple τ over a subset of scp(φc) and a literal
(v, a) in UP (F c|τ) such that v ∈ scp(φc) and all variable domains in UP (F c|τ) are not
empty, there is at least a solution of F c|τ including (v, a).

F c implements unit refutation completeness [14, 1, 25, 26] if for any tuple τ over a subset
of Y such that F c|τ is unsatisfiable, some variable domains in UP (F c|τ) are empty.

F c implements propagation completeness [6, 1, 25, 26] if for any tuple τ over a subset of
Y and a literal l in UP (F c|τ) such that all variable domains in UP (F c|τ) are not empty,
there is at least a solution of F c|τ including l.

In this classification, propagation completeness is the strongest level, unit refutation com-
pleteness is incomparable with domain consistency, and weak consistency is the weakest level.
Note that the definition of weak/domain consistency is defined for evaluating the strength of
unit propagation and will be used in the rest of this paper.

▶ Example 1. Assume the CNF F c is ({x, y, z}, {x∨y, ¬y ∨z, x∨¬z}) and the scope scp(φc)
is {x, y}. (x, false) is the only literal in F c which cannot be extended to a solution of F c.
(x, false) is in UP (F c), so F c does not implement propagation completeness. Then x is
in scp(φc), thus, F c also does not implement domain consistency. For any tuple τ over a
subset of {x, y, z}, if F c|τ is unsatisfiable, UP (F c|τ) has empty variable domains. So F c

implements unit refutation completeness and weak consistency.

CP 2022

40:4 CNF Encodings of Binary Constraint Trees

q0start

q2q1

q4

q3

21 3

1 2 3

1,2,3

1,2,3
1,2,3

1,2,3

1,2,3

(a) NFA: nodes and edges respectively
denote states and transitions.

y1

h1

y2

h2

y3

h3

y4

x1

x2

x3

cy
1

cy+
1

co
1

cy
2

cy+
2

co
2

cy
3

cy+
3

co
3

(b) BCT: nodes and
edges are variables
and constraints.

{}

{2} {3}{1}

{1, 2} tt {1, 3} {2, 3}

tt

x1

x2

x3

(c) MDD: dotted (dashed and solid)
lines denote the value 1 (2 and 3).

Figure 1 Different representations of a constraint over 3 variables {x1, x2, x3}.

3 BCT versus MDD on representing NFA constraints

Binary Constraint Tree (BCT) is a compact representation which can be exponentially
smaller than Ordered Multi-valued Decision Diagram (MDD). In this section, we show that
any NFA constraint can be encoded as a BCT constraint without exponential blow up, where
NFA may be exponentially smaller than the corresponding MDD.

A non-deterministic finite state automaton (NFA) is a quintuple (Q,
∑

, ∆, q0, Qt) con-
sisting of a finite set Q of states, a finite set

∑
of input symbols, a transition function

∆ : Q ×
∑

→ 2Q, an initial state q0 ∈ Q, and a set Qt ⊆ Q of accepting states, where
there is a transition in the NFA from a state qi ∈ Q to a state qj ∈ Q via a symbol a ∈

∑
if qi ∈ ∆(qj , a). A string a1...ar is accepted by the NFA if there is a sequence of states,
s0, s1, ..., sr, such that: s0 = q0, si ∈ Q and si+1 ∈ ∆(si, ai+1) for 0 ≤ i < r, and sr ∈ Qt. A
NFA constraint c is a pair (G, O) such that O is an ordering over scp(c), G is a NFA and
rel(c) is the set of tuples {(O1, a1), ..., (Or, ar)} over scp(c) such that the string a1...ar is
accepted by the NFA [33, 9].

▶ Example 2. Consider the constraint
∨r

i=1
∨r

j=i+1(xi = xj) over r variables {x1, ..., xr}
with variable domain {1, .., r}, which expresses the negation of an alldifferent constraint [35].
The size of the negation of the MDDs (Ordered Multi-valued Decision Diagrams) representing
alldifferent constraints is exponential in r [4].

We can use a NFA ({q0, ..., qr+1}, {1, ..., r}, ∆, q0, {qr+1}) to model the constraint such
that ∆(q0, i) = {q0, qi}, ∆(qi, i) = {qi, qr+1}, ∆(qr+1, i) = {qr+1} and ∆(qj , i) = {qj} for
1 ≤ i ≤ r and j ̸= 0, i, r + 1. Figure 1a gives a NFA for r = 3, and Figure 1c is a MDD
modelling the NFA, where every subset of the domain corresponds to a node in the MDD.

▶ Definition 3 (BCT and BCT constraint [48]). A Binary Constraint Tree (BCT) is a
normalized binary CSP whose constraint graph is a tree. A BCT constraint c is a pair (V, P)
such that P = (X, C) is a BCT, scp(c) = V , V ⊆ X and rel(c) = sol(X, C)[V], where the
variables in scp(c) and X \ scp(c) are respectively called the original and hidden variables.

We recap BCT, see [48] for more details. BCT is viewed as a single non-binary constraint,
the BCT constraint, modelled as a binary CSP with hidden variables. Given the tree structure
of the BCT, AC on the BCT can achieve GAC on the BCT constraint. It has been shown

R. Wang and R. H. C. Yap 40:5

in [48] that any MDD constraint can be encoded into a BCT constraint with the same size as
the MDD. A BCT can be further optimized with the reduction rules given in [48]. After the
reduction, BCT constraints can be much smaller than the corresponding MDD constraints.

3.1 Direct tree binary encoding
For any NFA constraint c∗ over r variables, we can encode the states and transitions of the
NFA into a sequence of hidden variables, and then representing the NFA constraint c∗ as a
BCT over the hidden variables such that every tuple in the constraint relation denotes a
sequence of r transitions from the initial state to an accepting state in the NFA. The details
of the encoding are given in Definition 4.

▶ Definition 4. A direct tree binary encoding (DTBE) of a NFA constraint c∗ = (G, O) is a
BCT dtbe(c∗)= (Y ∪ H ∪ scp(c∗), {co

1, cy
1, cy+

1 , ..., co
r, cy

r , cy+
r }) where

r = |scp(c∗)| and G = (Q,
∑

, ∆, q0, Qt) and Y = {y1, ..., yr+1} and H = {h1, ..., hr};
scp(co

i) = {Oi, hi}, scp(cy+
i) = {yi+1, hi} and scp(cy

i) = {yi, hi};
D(y1) = {q0}, D(yr+1) = Qt and D(yi) = Q for 2 ≤ i ≤ r;
D(hi) is the set of transitions in G for 1 ≤ i ≤ r;
rel(cy

i) = {{(hi, tr), (yi, b)}|tr ∈ D(hi), tr is a transition from b};
rel(co

i) = {{(hi, tr), (Oi, s)}|tr ∈ D(hi), s is the symbol of the transition tr};
rel(cy+

i) = {{(hi, tr), (yi+1, b)}|tr ∈ D(hi), tr is a transition to b}.

We remark that we use the term DTBE for NFA constraints in the same way as the
DTBE encoding of MDD in [48], we refer to [48] for more details. Figure 1b shows the
constraint graph of a DTBE for a NFA constraint (G, O), where G is given in Figure 1a
and O is the variable order x1 ≤ x2 ≤ x3. The states and transitions in the NFA are
respectively encoded as the hidden variables y1, · · · , y4 and h1, · · · , h3, where the states
and transitions are encoded as hidden variable values, i.e. D(y1) = {q0}, D(y2) = D(y3) =
{q0, q1, q2, q3, q4}, D(y4) = {q4} and the domain of h1, h2, h3 is the set of all transitions
{(qi, a, qj)|qj ∈ ∆(qi, a), 0 ≤ i ≤ 4, 1 ≤ a ≤ 3} in the NFA. Then binary constraints are
used to combine transitions with symbols and states. The binary constraint relations can
be constructed based on Definition 4. For example, rel(cy

1) = {{(y1, q0), (h1, (q0, a, qi))}|i ∈
{0, a}, a ∈ {1, 2, 3}}, rel(cy+

1) = {{(y2, qi), (h1, (q0, a, qi))}|i ∈ {0, a}, a ∈ {1, 2, 3}}, rel(co
1)

= {{(x1, a), (h1, (q0, a, qi))}|i ∈ {0, a}, a ∈ {1, 2, 3}}. In addition, the reduction rules given
in [48] can also be directly used to reduce the DTBE encodings of NFA constraints.

▶ Theorem 5. BCT can be exponentially smaller than MDD on representing NFA constraints.

The proof of Theorem 5 (also Lemma 10 and Propositions 11, 13, 14, 16) can be found in the
Appendix. Theorem 5 shows that there exists a family of NFA constraints (Example 2) for
which the BCT representation (DTBE) is exponentially smaller than the MDD representation.
For example, give the NFA constraint in Example 2 with r = 15, the BCT representation (after
reduction) has 2K values and 6K tuples which is much smaller than the MDD representation
having 33K nodes and 491K edges.

4 CNF encodings for binary constraints

In this section, we introduce three well-known CNF encodings, i.e. log encoding [23, 44, 41],
direct encoding [44] and support encoding [24, 19], which are used to transform any binary
CSP (X, C) into CNF. These CNF encodings represent each variable x in X as a set of
Boolean variables such that every value in D(x) corresponds to exactly one tuple over the

CP 2022

40:6 CNF Encodings of Binary Constraint Trees

variables. In addition, for each binary constraint c ∈ C, the encodings use clauses to represent
the tuples τ over scp(c) such that τ /∈ rel(c) (or τ ∈ rel(c)). These CNF encodings can be
directly used to encode BCT constraints, since any BCT is also a binary CSP.

4.1 Log encoding

Every variable x ∈ X is represented as k = ⌈log2(d)⌉ Boolean variables V x = {vx
1 , ..., vx

k},
where d = |D(x)|. Let T be the set of the first d assignments over Bx in the lexicographic
order. Every value a in D(x) corresponds to a tuple τa in T . In addition, if |D(x)| is not a
power of two, the assignments over V x which are not in T can be excluded by adding the
following clause [41] for each literal (vx

i , false) in the dth (last) tuple τ in T

f(vx
1) ∨ · · · ∨ f(vx

i−1) ∨ ¬vx
i where f(vx

j) =
{

vx
j if (vx

j , false) ∈ τ

¬vx
j if (vx

j , true) ∈ τ

For each constraint c ∈ C and an assignment {(x, a), (y, b)} over scp(c), if the tuple is not in
rel(c), then the following clause is added to exclude the tuple

(
∨

(vx
j

,true)∈τa∪τb

¬vx
j) ∨ (

∨
(vx

j
,false)∈τa∪τb

vx
j)

▶ Example 6. The log encoding of the binary CSP P = ({x1, x2, x3, x4}, {x1 + x3 ≤ 5, x3 =
3 ∨ x4 = 3, x2 + x4 ≤ 5}), where variable domains are {1, 2, 3}, consists of 8 Boolean variables
{vx1

1 , vx1
2 , vx2

1 , vx2
2 , vx3

1 , vx3
2 , vx4

1 , vx4
2 } and 10 clauses:

¬vx1
1 ∨ ¬vx1

2 ¬vx2
1 ∨ ¬vx2

2 ¬vx3
1 ∨ ¬vx3

2 ¬vx4
1 ∨ ¬vx4

2

¬vx1
1 ∨ vx1

2 ∨ ¬vx3
1 ∨ vx3

2 ¬vx2
1 ∨ vx2

2 ∨ ¬vx4
1 ∨ vx4

2 vx3
1 ∨ vx3

2 ∨ vx4
1 ∨ vx4

2

vx3
1 ∨ ¬vx3

2 ∨ vx4
1 ∨ vx4

2 vx3
1 ∨ vx3

2 ∨ vx4
1 ∨ ¬vx4

2 vx3
1 ∨ ¬vx3

2 ∨ vx4
1 ∨ ¬vx4

2

4.2 Direct encoding

Every variable x ∈ X is represented as d Boolean variable Bx = {vx
ai

|ai ∈ D(x)}, where
D(x) = {a1, · · · , ad}. In addition, an exactly-one constraint over Bx is introduced to
guarantee that if a variable in Bx is assigned with true, then the other variables in Bx are
assigned with false. The exactly-one constraint is encoded with ladder encoding [20] which
includes d − 1 additional Boolean variables Ax = {wx

1 , · · · , wx
d−1} and a set of EO(x) clauses:

¬vx
a1

∨ ¬wx
1 vx

a1
∨ wx

1 vx
ad

∨ ¬wx
d−1 ¬vx

ad
∨ wx

d−1

{wx
i−1 ∨ ¬wx

i , vx
ai

∨ wx
i ∨ ¬wx

i−1, ¬vx
ai

∨ ¬wx
i , ¬vx

ai
∨ wx

i−1|2 ≤ i ≤ d − 1}

The latter encoding implements propagation completeness [6, 25]. The clauses in EO(x)
can guarantee that every value ai in D(x) corresponds to exactly one solution t(x, ai) of
the CNF (Bx ∪ Ax, EO(x)), where t(x, ai) = {(vx

b , false)|b ∈ D(x), b ̸= ai} ∪ {(vx
ai

, true)} ∪
{(wx

j , true)|1 ≤ j < i} ∪ {(wx
j , false)|i ≤ j < d}. Then for each c ∈ C and an assignment

τ = {(x, ai), (y, bj)} over scp(c) such that τ /∈ rel(c), the clause ¬vx
ai

∨ ¬vy
bj

is added.

R. Wang and R. H. C. Yap 40:7

▶ Example 7. The direct encoding of the binary CSP given in Example 6 includes 20 Boolean
variables and the following clauses:

{¬v
xj

1 ∨ ¬w
xj

1 , v
xj

1 ∨ w
xj

1 , v
xj

3 ∨ ¬w
xj

2 , ¬v
xj

3 ∨ w
xj

2 |1 ≤ j ≤ 4}
{w

xj

1 ∨ ¬w
xj

2 , v
xj

2 ∨ w
xj

2 ∨ ¬w
xj

1 , ¬v
xj

2 ∨ ¬w
xj

2 , ¬v
xj

2 ∨ w
xj

1 |1 ≤ j ≤ 4}
¬vx1

3 ∨ ¬vx3
3 ¬vx2

3 ∨ ¬vx4
3 ¬vx3

1 ∨ ¬vx4
2 ¬vx3

1 ∨ ¬vx4
1 ¬vx3

2 ∨ ¬vx4
1 ¬vx4

2 ∨ ¬vx4
2

4.3 Support encoding
Every variable x ∈ X is represented as d Boolean variable Bx = {vx

ai
|ai ∈ D(x)}, where

D(x) = {a1, · · · , ad}, and an exactly-one constraint over Bx is used to make sure that each
value in D(x) corresponds to exactly one tuple over Bx. The exactly-one constraint is
encoded with (Ax ∪ Bx,EO(x)), i.e. ladder encoding. In addition, for each value a ∈ D(x)
and a constraint c ∈ C such that scp(c) = {x, y}, a clause cl(x, a, c) is added where

cl(x, a, c) = ¬vx
a ∨ (

∨
{(x,a),(y,b)}∈rel(c)∧b∈D(y)

vy
b)

By using the clauses cl(x, c) = {cl(x, a, c)|c ∈ C, x ∈ scp(c), a ∈ D(x)}, unit propagation on
the support encoding of a binary CSP can achieve AC on the binary CSP [19].

5 CNF encoding for BCT constraints

For any BCT constraint (V, P), the CNF encodings of binary constraints can be directly
used to encode the BCT constraint, because the BCT P is a binary CSP. In addition, binary
constraints are special cases of BCT constraints, i.e. every binary constraint is a BCT
constraint without any hidden variables. When comparing the unit propagation, there is a
subtlety, the strength of unit propagation on the CNF encodings of BCT constraints can be
different from that for binary constraints. In this section, we will discuss the strength of unit
propagation when using the log, direct and support encodings to encode BCT constraints
as CNF. Afterwards, we will propose two further CNF encodings of BCT constraints by
eliminating Boolean variables and clauses from the support encoding of the constraints.

5.1 Encodings from binary constraints
The log encoding of binary constraints implements weak consistency but we highlight that
it does not do so for BCT constraints, since BCT constraints can include hidden variables.
Assume P is the binary CSP given in Example 6 and F is the log encoding of the BCT
constraint ({x1, x2}, P). Then F does not implement weak consistency. For example, the
tuple τ={(vx1

1 , true), (vx1
2 , false), (vx2

1 , true), (vx2
2 , false)} is not included by any solution

of F , i.e. F |τ is unsatisfiable but UP (F |τ) does not include any empty variable domain.
Therefore, the log encoding of BCT constraints does not implement weak consistency.

▶ Proposition 8. Log encoding of BCT constraints does not implement weak consistency.

Similarly, the direct encoding of BCT constraints also does not implement weak consistency.
For example, the tuple τ={(vx1

3 , true), (vx2
3 , true)} is not included by any solution of the

direct encoding F (given in Example 7) of the BCT constraint ({x1, x2}, P), i.e. F |τ is
unsatisfiable, but UP (F |τ) does not include any empty variable domain.

CP 2022

40:8 CNF Encodings of Binary Constraint Trees

▶ Proposition 9. Direct encoding of BCT constraints does not implement weak consistency.

Unit propagation on the support encoding of a binary CSP can achieve AC on the binary
CSP. Further, the constraint graph of a BCT is a tree. Hence, unit propagation on the
support encoding of a BCT constraint can achieve GAC on the BCT constraint. For any
BCT (X, C), we can set a variable x ∈ X as the root and construct a tree order O over X

such that O1 = x, where O is a tree order if for any j > 1 and Oj ∈ X, there is exactly one
constraint c ∈ C such that scp(c) = {Oi, Oj} and i < j. In addition, we use T O to denote a
set of clauses

⋃
{cl(Oi, c)|c ∈ C, scp(c) = {Oi, Oj}, i < j} with respect to a tree order O.

▶ Lemma 10. Given a BCT P = (X, C) and a tree order O over X, if a literal (vO1
a , true)

is included in UP (F) and all variable domains in UP (F) are not empty, there is τ ∈ sol(P)
such that (O1, a) ∈ τ and (vx

b , true) is included in F for all (x, b) ∈ τ , where F = (A, CA)|τ ′

and Bx ⊆ A for all x ∈ X and T O ⊆ CA and τ ′ is a tuple over a subset of A.

We now show the support encoding of BCT constraints implements propagation completeness.

▶ Proposition 11. The support encoding F = (A ∪ B, T ∪ E) of BCT constraints (V, P)
implements propagation completeness, where P is a BCT (X, C) and A =

⋃
x∈X Ax and

B =
⋃

x∈X Bx and T = {cl(x, c)|c ∈ C, x ∈ scp(c)} and E =
⋃

x∈X EO(x).

5.2 Partial support encoding
We now introduce a new CNF encoding of BCT constraints, called partial support encoding,
by eliminating clauses from the support encoding of the BCT constraints. Give any BCT
P = (X, C) and variables V ⊆ X, the partial support encoding of the BCT constraint (V, P)
is a CNF F = (AV ∪ BV ∪ BH , T ∪ EV), where AV =

⋃
x∈V Ax and BV =

⋃
x∈V Bx and

BH =
⋃

h∈X\V Bh and T = {cl(x, c, a)|c ∈ C, x ∈ scp(c), a ∈ D(x)} and EV =
⋃

x∈V EO(x).
Partial support encoding has the same Boolean variables and clauses as the support encoding
of (V, P), except that the clauses in EO(h) and the Boolean variables in Ah are removed
from the support encoding of (V, P) for any hidden variables h in X \ V .

For each solution τ of P , we can construct a solution of F , e.g. (
⋃

(x,a)∈τ t(x, a)) ∪
{(vx

a , true)|(x, a) ∈ τ} ∪ {(vx
a , false)|(x, a) /∈ τ, a ∈ D(x)}. Conversely, every solution τ

of F corresponds to at least one solution of P (see Lemma 10), since variable domains
in UP (F |τ) are not empty. However, the strength of unit propagation on the partial
support encoding is weaker than that on the support encoding for BCT constraints. Partial
supporting encoding implements domain consistency and unit refutation completeness but
not propagation completeness.

For the partial support encoding F of a BCT ({x1, x2}, P) where P is the binary CSP
(BCT) given in Example 6, the literal (vx3

3 , false) cannot be extended to any solution of the
CNF F |τ but (vx3

3 , false) is in UP (F |τ), where τ = {(vx4
3 , false), (vx3

1 , false), (vx3
2 , false),

(vx1
3 , false)} is a tuple over the Boolean variables τ = {vx4

3 , vx3
1 , vx3

2 , vx1
3 }. Therefore, partial

support encoding of BCT constraint does not implement propagation completeness.

▶ Proposition 12. Partial support encoding for BCT constraints does not implement propaga-
tion completeness.

Partial support encoding implements unit refutation completeness (based on Lemma 10),
thus, it also implements weak consistency.

▶ Proposition 13. The partial support encoding F = (AV ∪ BV ∪ BH , T ∪ EV) of a BCT
constraint (V, P) implements unit refutation completeness where P = (X, C).

R. Wang and R. H. C. Yap 40:9

In addition, from Lemma 10, we can also get that partial support encoding implements
domain consistency.

▶ Proposition 14. The partial support encoding F = (AV ∪ BV ∪ BH , T ∪ EV) of a BCT
constraint (V, P) implements domain consistency where P = (X, C).

5.3 Minimal support encoding

We now give a more compact CNF encoding of BCT constraints called minimal support
encoding. Give any BCT P = (X, C) and variables V ⊆ X, the minimal support encoding
of the BCT constraint (V, P) with respect to a tree order O over X is a CNF F = (AV ∪
BV ∪ BH , T O ∪ EV), where P = (X, C) and AV =

⋃
x∈V Ax and BV =

⋃
x∈V Bx and

BH =
⋃

h∈X\V Bh and EV =
⋃

x∈V EO(x) and O1 ∈ V . Minimal support encoding has the
same Boolean variables as the partial support encoding but the minimal support encoding
does not include the clauses cl(Oj , c) for any binary constraint c ∈ C between 2 variables
Oi, Oj ∈ X such that i < j.

The strength of unit propagation on minimal support encoding is weaker than that on
partial support encoding. For the minimal support encoding F of a BCT ({x1, x2}, P) with
respect to a tree order x1 < x3 < x4 < x2 and a tuple τ = {(vx1

3 , true)} where P is the
binary CSP given in Example 6, the literal (vx4

3 , true) cannot be extended to a solution of
the CNF F |τ but (vx4

3 , true) is included in UP (F |τ). So the minimal support encoding does
not implement domain consistency and propagation completeness.

▶ Proposition 15. Minimal support encoding for BCT constraints does not implement domain
consistency and propagation completeness.

In addition, the minimal support encoding is stronger than the log and direct encodings
for BCT constraints. From Lemma 10, we can get that the minimal support encoding
implements unit refutation completeness and weak consistency.

▶ Proposition 16. The minimal support encoding F of a BCT constraint (V, P) with respect
to a tree order O implements unit refutation completeness where x = O1 and P = (X, C).

Table 1 summarizes the strength of unit propagation on all five CNF encoding of BCT
constraints. The support encoding of BCT constraints, which implements propagation
completeness, is the strongest encoding. Then the partial support encoding implementing
domain consistency is stronger than the log, direct and minimal support encodings. In
addition, the log and direct encodings of BCT constraints are weaker than the minimal
support encoding, since the log and direct encodings of BCT constraints do not implement
weak consistency.

Table 1 Strength of Unit Propagation on various encodings of BCT constraints. The label ✓(✗)
denotes that the CNF encodings (does not) implement a unit propagation strength level.

Log Direct Minimal Support Partial Support Support
Weak consistency ✗ ✗ ✓ ✓ ✓
Domain consistency ✗ ✗ ✗ ✓ ✓
Unit refutation completeness ✗ ✗ ✓ ✓ ✓
Propagation completeness ✗ ✗ ✗ ✗ ✓

CP 2022

40:10 CNF Encodings of Binary Constraint Trees

6 Experiments

We evaluate our five CNF encodings of BCT constraints, i.e. the log encoding, direct
encoding, support encoding, PS (partial support) encoding and MS (minimal support)
encoding, with seven existing CNF encodings [1] of MDD constraints, i.e. the Min (minimal),
GMin (GenMiniSAT), Tes (Tseitin), BaP (Basic path), LevP (level path), NNFP (NNF path)
and ComP (complete path) encodings. We employ the Kissat SAT solver [17] in default
configuration to solve the resulting CNF. We also test a BCT GAC propagator [48] in the
Abscon solver [29],1 where the Abscon solver uses the binary branching MAC and geometric
restart strategy2, lexical value heuristic and five choices of variable heuristics (Lexical, DDeg
[38], WDeg [7], Activity [30] and Impact [34]). We highlight the Abscon results are to
compare CNF encodings with a SAT solver with a GAC propagator in a CP solver.

Experiments were run on a 3.20GHz Intel i7-8700 machine. Solving time is limited to 10
minutes per instance and memory to 12G. We tested the encodings with existing benchmarks
also used by other papers [18, 9], and instances from the 2019 XCSP competition3 and
Minizinc challenge 2021.4

Tables 2, 3, 4 and 5 show the average solving times (in seconds) of the CNF encodings
and the Abscon solver, and if there are some instances which cannot be solved in 10 minutes,
then the tables give the number of unsolvable instances, i.e. the number of time-out or
memory-out instances. The “Inst.” and “# I” columns respectively give the names of different
instance series and the numbers of CSP instances used. The “# Sol” row shows the total
number of instances solved in 10 minutes. The best results of all methods are in bold, and
the underlined results are the best results of the CNF encodings. The “Itime” row is the
average initialization time (in seconds) of different methods and includes the encoding times.
In addition, the “Itime” row also shows the number of memory-out instances if the CNF
encoding runs out of memory during initialization. For different benchmarks, the Abscon
solver results use the best variable heuristic from the 5 heuristics.

Figures 2a, 3a, 4a and 5a compare the performance profiles [16] of the methods VB-BCT,
VB-MDD and VB-Abscon, where VB-BCT and VB-MDD respectively denote the virtual
best CNF encoding of BCT constraints and MDD constraints respectively. VB-Abscon is
the Abscon solver using the virtual best variable heuristic. The y-axis is the percentage of
instances solved and the x-axis is the ratio of the solving time of a method to the virtual best
method (time ratio). In the figures, we remove (i) the trivial instances which can be solved
by all methods (VB-BCT, VB-MDD, and VB-Abscon) in 2 seconds and (ii) the instances
which cannot be solved by any method in 10 minutes. Figures 2b, 3b, 4b and 5b use scatter
plots to compare the solving times of various CNF encodings. In the figures, each dot denotes
a CSP instance of a series, and the dot shapes correspond to instance series. In order to use
logarithmic scales, the time on the x/y-axis is set as (1 + solving time). Figures 2c, 3c, 4c
and 5c compare the number of clauses of different CNF encodings given by the x and y-axis.

1 We have used the CP BCT propagator from [48] implemented in Abscon.
2 The initial cutoff = 10 and ρ = 1.1. For each restart, cutoff is the allowed number of failed assignments

and cutoff increases by (cutoff × ρ) after restart.
3 http://www.cril.univ-artois.fr/XCSP19/
4 https://www.minizinc.org/challenge.html

http://www.cril.univ-artois.fr/XCSP19/
https://www.minizinc.org/challenge.html

R. Wang and R. H. C. Yap 40:11

6.1 Benchmark Series 1: NFA
We use the 6 NFA series which are also used in [9]. These NFA benchmarks are modelled with
NFA constraints. The NFA constraints can be transformed into BCT constraints and also
MDD constraints. The direct tree binary encoding introduced in Section 3 are used to encode
NFA constraints as BCT constraints, and then the BCT constraints are further reduced with
the reduction rules proposed in [48]. In addition, the automaton library dk.brics.automaton5

is used to minimize and transform any NFA into a DFA, where the DFA is directly expanded
into the corresponding (quasi-reduced [1]) MDD.

Table 2 NFA benchmarks.

BCT MDD Abscon
Inst. #I Log Direct Support PS MS Min GMin Tes BaP LevP NNFPComP(DDeg)
NFA-50 14 1 out 166.42 11.62 7.76 4.86 7.91 2 out 3 out 102.18126.79 109.96 107.57 1.21
NFA-36 18 16 out10 out 61.69 30.4019.53 1 out 15 out15 out11 out11 out11 out13 out 4.98
NFA-34 13 89.63 14.57 2.20 1.38 1.25 1.78 16.56 24.90 19.59 25.25 19.16 21.17 0.54
NFA-54 15 15 out14 out 179.23 91.9569.11 2 out 15 out15 out15 out15 out15 out15 out 11.62
NFA-57 15 14 out10 out 1 out 55.4227.07 1 out 13 out15 out10 out11 out11 out12 out 6.40
NFA-60 15 14 out 6 out 30.13 16.8010.13 25.79 12 out15 out 2 out 3 out 3 out 2 out 2.50
#Sol 90 30 50 89 90 90 86 33 27 52 50 50 48 90
Itime 90 0.51 0.38 0.25 0.23 0.23 290.65292.62297.76 2 out 6 out 12 out13 out 2.10

Table 2 shows the average result of the NFA instances. The NFA constraints used in the
instances are much smaller than the corresponding MDDs, and the resulting encodings of BCT
constraints also fit in memory. However, for MDDs being larger, the MDD CNF encodings
BaP, LevP, NNFP and ComP run out of memory (memory-out). For these encodings, there
are 2, 6, 12 and 13 memory-out NFA instances in the NFA-54 series, respectively. We
remark that if an CNF encoding becomes too large for an instance, it simply cannot be
used. The average initialization time of encoding MDD constraints are much larger than
that of encoding BCT constraints, e.g. the Itime of Min is 290 seconds but that of MS is less
than 1 second. The CNF encodings of BCT constraints are much faster than those of MDD
constraints. The MS and PS encodings can solve all 90 NFA instances in 10 minutes but
the best CNF encoding of MDD constraints, i.e. the Min encoding, only solves 86 instances.
The best result for this series is the Abscon propagator with the DDeg variable heuristic.

Figure 2a shows that the best overall result for the NFA instances is the VB-Abscon
propagator followed by the CNF encodings where VB-BCT overall outperforms VB-MDD on
solving the NFA instances. The MS encoding is more compact than the Min encoding, where
Min has the best CNF encoding result of MDD constraints for these NFA benchmarks. For
example, the number of clauses in MS can be up to 400 times less than that in Min (Figure
1c gives the overall comparison). Correspondingly, MS has potential to be faster than Min.
Figure 1b shows that MS is faster than Min on almost all tested NFA instances.

6.2 Benchmark Series 2: Pentominoes
We use all 192 Pentominoes instances from the the pentominoes generator website.6 Some
of the Pentominoes instances were also used in the Minizinc challenge 2021. The instances
are separated into 4 series, P-5, P-10, P-15 and P-20, where P-k denotes the instances using

5 http://www.brics.dk/automaton/
6 https://github.com/zayenz/minizinc-pentominoes-generator

CP 2022

http://www.brics.dk/automaton/
https://github.com/zayenz/minizinc-pentominoes-generator

40:12 CNF Encodings of Binary Constraint Trees

0
10
20
30
40
50
60
70
80
90

100

20 21 22 23 24 25 26 27 28 29

%
In

st
an

ce
s

Time Ratio

VB-Abscon
VB-BCT

VB-MDD

(a) Virtual best comparison.

20
21
22
23
24
25
26
27
28
29

20 21 22 23 24 25 26 27 28 29

B
C
T-
M
S

MDD-Min

NFA-34
NFA-36
NFA-50
NFA-54
NFA-57
NFA-60

(b) BCT-MS vs MDD-Min.

216

218

220

222

224

226

216 218 220 222 224 226

B
C
T-
M
S

MDD-Min

NFA-34
NFA-36
NFA-50
NFA-54
NFA-57
NFA-60

(c) The number of clauses.

Figure 2 NFA benchmarks.

a k × k board. The constraints used in these benchmarks are represented with regular
expressions (see [27] for more details). We use the dk.brics.automaton library to encode
any regular expression into a DFA, and then directly expand the DFA into a MDD. The
enocoding from [48] is used to transform any MDD constraint into a BCT constraint.

Table 3 Pentominoes benchmarks.

BCT MDD Abscon
Inst. #I Log Direct Support PS MS Min GMin Tes BaP LevP NNFPComP (Lex.)
P-5 48 0.27 <0.01 <0.01 <0.01<0.01 0.05 0.01 0.06 0.02 0.02 0.02 0.02 0.02
p-10 48 154.70 32.04 0.60 0.76 3.62 72.86 4.94 31.65 32.08 17.73 19.42 18.28 9.95
P-15 48 36 out24 out 16 out 20 out 20 out24 out24 out24 out24 out24 out24 out28 out 20 out
P-20 48 44 out24 out 16 out 16 out 16 out24 out20 out32 out36 out36 out24 out28 out12 out
#Sol 192 112 144 160 156 156 144 148 136 132 132 144 136 160
Itime192 4.37 3.94 3.39 3.38 3.36 1.23 1.52 2.20 2.48 2.62 2.56 2.73 5.43

Table 3 gives the average result of the Pentominoes instances. The BCT support, PS
and MS CNF encodings significantly outperform the MDD CNF encodings. The support
encoding is faster or solves more instances than the other CNF encodings on all 4 series. For
the MDD CNF encodings, GMin has the best overall result, but the support encoding of
BCT constraints can solve 12 more instances than GMin. In addition, the CNF encodings of
BCT constraints can be competitive with the Abscon solver. The support encoding gives the
best performance on 3 out of 4 Pentominoes series.

0
10
20
30
40
50
60
70
80
90

100

20 21 22 23 24 25 26 27 28 29

%
In

st
an

ce
s

Time Ratio

VB-Abscon
VB-BCT

VB-MDD

(a) Virtual best comparison.

20
21
22
23
24
25
26
27
28
29

20 21 22 23 24 25 26 27 28 29

B
C
T-
S
u
pp
or
t

MDD-GMin

Pen-5
Pen-10
Pen-15
P-20

(b) BCT-Support vs MDD-GMin.

214

216

218

220

222

224

226

214 216 218 220 222 224 226

B
C
T-
S
u
pp
or
t

MDD-GMin

Pen-5
Pen-10
Pen-15
P-20

(c) The number of clauses.

Figure 3 Pentominoes benchmarks.

R. Wang and R. H. C. Yap 40:13

Figure 3a shows the overall result on Pentominoes. VB-BCT is the best on more than
40% instances, and it can solve 5% more instances than VB-Abscon. Different CNF encodings
of BCT constraints solve different instances, thus, VB-BCT can solve more instances than
VB-Abscon. From Figure 3c, we can see that the number of clauses of GMin can be much
more (up to 20 times more) than that of the support encoding. In addition, GMin is also
slower than the support encoding on almost all instances (see Figure 3b).

6.3 Benchmark Series 3: Nurse scheduling
We use four different models of the nurse scheduling problem, namely, N-1, N-2, N-3 and N-4.
The nurse scheduling problems come from [8, 18, 48], where nurses are assigned with a day
shift, evening shift, night shift or day off for each day. The models have a cardinality [36]
constraint per shift and a regular constraint per nurse. The cardinality constraints are used
to guarantee that there are enough nurses to meet a demand of each shift. Each model has
its own regular constraints as follows:

In N-1, the model uses regular constraints to restrict that for each 7 days, a nurse work 1
or 2 night shifts, 1 or 2 evening shifts, 1 to 5 day shifts and 2 to 5 days off.
In N-2, a nurse works 1 or 2 night shifts every 7 days, and 1 or 2 days off every 5 days.
In N-3, a nurse works 1 or 2 night shifts every 9 days, and 2 or 3 days off every 7 days.
In N-4, a nurse works 1 or 2 night shifts every 11 days, and 3 or 4 days off every 9 days.

All models restrict that a nurse can only work a second shift after 12 hours of the first. The
cardinality and regular constraints are encoded as MDD constraints, and then the MDD
constraints are transformed into BCT constraints. For each model, we use 50 instances from
the N30 series7 where the number of nurses of an instance is set to the maximum number of
the nurse demand for a day.

Table 4 Nurse scheduling benchmarks.

BCT MDD Abscon
Inst. #I Log Direct Support PS MS Min GMin Tes BaP LevP NNFP ComP (Act.)
N-1 50 1 out 12.88 0.30 0.49 3.10 2 out 0.50 0.84 1.09 1.29 0.77 0.64 7 out
N-2 50 11.34 1.86 0.44 0.80 0.84 1 out 0.48 0.63 2.95 0.83 0.71 0.72 14 out
N-3 50 2 out 2 out 1 out 1 out 2 out 4 out 2 out 3 out 1 out 1 out 1 out 1 out 13 out
N-4 50 50 out 10 out 3 out 2 out 5 out 5 out 4 out 5 out 4 out 2 out 3 out 2 out 15 out
#Sol 200 147 188 196 197 193 188 194 192 195 197 196 197 151
Itime 200 2.44 1.76 0.57 0.56 0.56 0.45 0.47 0.47 0.49 0.52 0.50 0.51 0.82

Table 4 shows that CNF encodings can overall outperform the Abscon solver for the nurse
scheduling instances. The Abscon solver only solves 151/200 instances within timeout but
the CNF encodings can solve 197/200 instances. In our detailed results, the CNF encodings
of BCT constraints are faster than the CNF encodings of MDD constraints on most instances.
For example, the PS encoding is faster than each CNF encoding of MDD constraints on most
nurse scheduling instances.

From Figure 4a, we see that VB-BCT is the fastest method on more than 80% instances.
VB-BCT can solve 20% more instances than VB-Abscon. The CNF encodings of BCT
constraints have better performance than those of MDD constraints. For example, the
number of clauses of the PS encoding is around 4 times less than that of the ComP encoding

7 https://www.projectmanagement.ugent.be/nsp.php

CP 2022

https://www.projectmanagement.ugent.be/nsp.php

40:14 CNF Encodings of Binary Constraint Trees

0
10
20
30
40
50
60
70
80
90

100

20 22 24 26 28 210 212

%
In

st
an

ce
s

Time Ratio

VB-Abscon
VB-BCT

VB-MDD

(a) Virtual best comparison.

20
21
22
23
24
25
26
27
28
29

20 21 22 23 24 25 26 27 28 29

B
C
T-
P
S

MDD-ComP

N-1
N-2
N-3
N-4

(b) BCT-PS vs MDD-ComP.

215
216
217
218
219
220
221
222

215216217218219220221222

B
C
T-
P
S

MDD-ComP

N-1
N-2
N-3
N-4

(c) The number of clauses.

Figure 4 Nurse scheduling benchmarks.

(shown in Figure 4c), and the PS encoding can be faster than ComP on more than 85%
instances (see Figure 4b), where ComP is the best CNF encoding of MDD constraints for
the nurse scheduling instances.

6.4 Benchmark Series 4: XCSP
We use five instance series from the XCSP website8 as they are BDD/MDD instances: bdd-15,
bdd-18, mdd-p5 (MDD-half), mdd-p7 (MDD-0.7) and mdd-p9 (MDD-0.9). Some of these
instances were also used in the 2019 XCSP competition. The instances bdd-15 and bdd-18
are introduced in [12], and then the instances mdd-p5, mdd-p7 and mdd-p9 are introduced
in [10, 49], where mdd-pk is a MDD with sharing probability k

10 (see [10, 49] for more details).

Table 5 XCSP benchmarks.

BCT MDD Abscon
Inst. # Log DirectSupport PS MS Min GMin Tes BaP LevP NNFPComP (Act.)
bdd-15 35 35 out222.99 106.44 67.67 33.05 192.29152.3716 out22 out29 out28 out33 out 2.42
bdd-18 35 409.58129.94 79.64 68.77 22.86 332.1126 out29 out22 out30 out25 out31 out 0.77
mdd-p5 25 22 out23 out 13 out 14 out13 out 1 out 14 out16 out17 out17 out19 out17 out 73.06
mdd-p7 9 95.46 68.41 24.73 20.38 23.28 6.82 21.98 44.68 50.12 55.29 39.54 39.58 1.82
mdd-p9 10 2.16 0.59 0.19 0.11 0.35 0.18 0.27 0.73 1.08 0.76 0.48 0.46 0.06
#Sol 114 57 91 101 100 101 113 74 53 53 38 42 33 114
Itime 114 3.96 2.69 1.72 1.64 1.62 1.79 2.21 2.61 2.89 3.03 3.30 3.43 2.09

Table 5 shows that the Abscon solver using the Activity heuristic is the fastest overall
for these instances. The Abscon solver can solve all instances while the CNF encodings are
time-out on some instances. The CNF encodings of BCT and MDD constraints perform
better on different instances. On the bdd-15, bdd-18 and mdd-p9 series, the PS encoding is
faster than the CNF encodings of MDD constraints while Min is the best CNF encoding on
the mdd-p5 and mdd-p7 series.

Figure 5a shows that VB-Abscon and VB-BCT is the best method on around 90% and
10% instances, respectively. In addition, VB-BCT can be faster than VB-MDD on more
than 80% instances. Figure 5b shows the differences between instances, PS is faster than
Min on almost all instances in the bdd-15 and bdd-18 series but the opposite happens on the

8 http://xcsp.org

http://xcsp.org

R. Wang and R. H. C. Yap 40:15

0
10
20
30
40
50
60
70
80
90

100

20 22 24 26 28 210 212 214

%
In

st
an

ce
s

Time Ratio

VB-Abscon
VB-BCT

VB-MDD

(a) Virtual best comparison.

20
21
22
23
24
25
26
27
28
29

20 21 22 23 24 25 26 27 28 29

B
C
T-
P
S

MDD-Min

BDD-15
BDD-18
MDD-p5
MDD-p7
MDD-p9

(b) BCT-MS vs MDD-Min.

214

216

218

220

222

224

214 216 218 220 222 224

B
C
T-
P
S

MDD-Min

BDD-15
BDD-18
MDD-p5
MDD-p7
MDD-p9

(c) The number of clauses.

Figure 5 XCSP benchmarks.

mdd-p5 and mdd-p7 instances, where Min is the best CNF encoding of MDD constraints for
these instances. From Figure 5c, we can see that the number of clauses of the PS encoding
can be 2-5 times less than that of Min on the bdd-15 and bdd-18 series.

We summarize experiments on all four benchmark series. While there is some initialization
and encoding time for all methods, this is overall less significant than the solving time (there
are many timeouts for some methods). The initialization time becomes significant when the
encoding becomes large, e.g. in the NFA instances, the encoding cost becomes significant
in the MDD CNF encodings with some being memory-out. Overall across all four problem
series, BCT CNF encodings generally outperform MDD CNF encodings. As with the MDD
CNF encoding experiments in [1] where they found performance was mixed between CNF
encodings and their propagator comparison, we also find that for some problems the BCT
CNF encoding is the best while for other problems the BCT propagator in Abscon is the best.
Still BCT CNF encoding is overall competitive or best for many instances and increases the
flexibility and choices in solving of BCT (and NFA/MDD) constraints.

7 Conclusion

Binary Constraint Tree (BCT) is more compact than Ordered Multi-valued Decision Diagram
(MDD). We show that BCT can be exponentially smaller than MDD when representing NFA
constraints. We investigate CNF encodings on BCT constraints which allow solving of BCT
constraints with SAT solvers. At the same time, we show this can improve CNF encodings of
MDD constraints. We tailor three well-known CNF encodings of binary constraints, i.e. the
log encoding, direct encoding and support encoding, to encode BCT constraints. Then we
propose two new CNF encodings, partial support encoding and minimal support encoding,
which give smaller CNF encodings of BCT constraints. We study and compare the strength of
unit propagation on these five CNF encodings of BCT constraints. Our experimental results
study our CNF encodings of BCT constraints and also compare with seven existing CNF
encodings of MDD constraints on a range of existing benchmarks. Experimental results show
that the CNF encodings of BCT constraints can outperform those of MDD constraints. Our
results show that solving of BCT constraints as well as NFA/MDD constraints is promising
on SAT solvers.

CP 2022

40:16 CNF Encodings of Binary Constraint Trees

References
1 Ignasi Abío, Graeme Gange, Valentin Mayer-Eichberger, and Peter J Stuckey. On CNF

encodings of decision diagrams. In International Conference on AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems, pages 1–17. Springer, 2016.

2 Ignasi Abío, Robert Nieuwenhuis, Albert Oliveras, Enric Rodríguez-Carbonell, and Valentin
Mayer-Eichberger. A new look at BDDs for pseudo-boolean constraints. Journal of Artificial
Intelligence Research, 45:443–480, 2012.

3 Ignasi Abío and Peter J Stuckey. Encoding linear constraints into SAT. In International
Conference on Principles and Practice of Constraint Programming, pages 75–91. Springer,
2014.

4 Jérôme Amilhastre, Hélene Fargier, Alexandre Niveau, and Cédric Pralet. Compiling CSPs: A
complexity map of (non-deterministic) multivalued decision diagrams. International Journal
on Artificial Intelligence Tools, 23(04):1460015, 2014.

5 Miquel Bofill, Jordi Coll, Josep Suy, and Mateu Villaret. Compact MDDs for pseudo-
boolean constraints with at-most-one relations in resource-constrained scheduling problems.
In International Joint Conference on Artificial Intelligence, pages 555–562, 2017.

6 Lucas Bordeaux and Joao Marques-Silva. Knowledge compilation with empowerment. In
International Conference on Current Trends in Theory and Practice of Computer Science,
pages 612–624. Springer, 2012.

7 Frédéric Boussemart, Fred Hemery, Christophe Lecoutre, and Lakhdar Sais. Boosting sys-
tematic search by weighting constraints. In European Conference on Artificial Intelligence,
2004.

8 Sebastian Brand, Nina Narodytska, Claude-Guy Quimper, Peter Stuckey, and Toby Walsh.
Encodings of the Sequence constraint. In International conference on principles and practice
of constraint programming, pages 210–224. Springer, 2007.

9 Kenil C.K. Cheng, Wei Xia, and Roland H.C. Yap. Space-time tradeoffs for the regular
constraint. In International Conference on Principles and Practice of Constraint Programming,
pages 223–237. Springer, 2012.

10 Kenil C.K. Cheng and Roland H. C. Yap. An MDD-based generalized arc consistency
algorithm for positive and negative table constraints and some global constraints. Constraints,
15(2):265–304, 2010.

11 Kenil C.K. Cheng and Roland H.C. Yap. Applying ad-hoc global constraints with the case
constraint to still-life. Constraints, 11(2-3):91–114, 2006.

12 Kenil C.K. Cheng and Roland H.C. Yap. Maintaining generalized arc consistency on ad-hoc
n-ary boolean constraints. In 17th European Conference on Artificial Intelligence, pages 78–82,
2006.

13 Rina Dechter and Judea Pearl. Tree clustering for constraint networks. Artificial Intelligence,
38(3):353–366, 1989.

14 Alvaro Del Val. Tractable databases: How to make propositional unit resolution complete
through compilation. In International Conference on Principles of Knowledge Representation
and Reasoning, pages 551–561. Elsevier, 1994.

15 Jordan Demeulenaere, Renaud Hartert, Christophe Lecoutre, Guillaume Perez, Laurent Perron,
Jean-Charles Régin, and Pierre Schaus. Compact-Table: efficiently filtering table constraints
with reversible sparse bit-sets. In International Conference on Principles and Practice of
Constraint Programming, pages 207–223, 2016.

16 Elizabeth D Dolan and Jorge J Moré. Benchmarking optimization software with performance
profiles. Mathematical programming, 91(2):201–213, 2002.

17 Armin Biere Katalin Fazekas Mathias Fleury and Maximilian Heisinger. CaDiCaL, KISSAT,
PARACOOBA, PLINGELING and TREENGELING entering the SAT competition 2020.
SAT COMPETITION, 2020:50, 2020.

18 Graeme Gange, Peter J Stuckey, and Radoslaw Szymanek. MDD propagators with explanation.
Constraints, 16(4):407, 2011.

R. Wang and R. H. C. Yap 40:17

19 Ian P Gent. Arc consistency in SAT. In European Conference on Artificial Intelligence, pages
121–125, 2002.

20 Ian P Gent and Peter Nightingale. A new encoding of AllDifferent into SAT. In International
Workshop on Modelling and Reformulating Constraint Satisfaction, pages 95–110, 2004.

21 Rebecca Gentzel, Laurent Michel, and Willem Jan van Hoeve. Haddock: A language and
architecture for decision diagram compilation. In nternational Conference on Principles and
Practice of Constraint Programming, pages 531–547. Springer, 2020.

22 Willem-Jan van Hoeve, Gilles Pesant, Louis-Martin Rousseau, and Ashish Sabharwal. Re-
visiting the sequence constraint. In International conference on principles and practice of
constraint programming, pages 620–634. Springer, 2006.

23 Kazuo Iwama and Shuichi Miyazaki. SAT-variable complexity of hard combinatorial problems.
In IFIP World Computer Congress, 1994.

24 Simon Kasif. On the parallel complexity of discrete relaxation in constraint satisfaction
networks. Artificial Intelligence, 45(3):275–286, 1990.

25 Petr Kucera and Petr Savický. Propagation complete encodings of smooth DNNF theories.
CoRR, abs/1909.06673, 2019. arXiv:1909.06673.

26 Petr Kučera and Petr Savickỳ. Bounds on the size of PC and URC formulas. Journal of
Artificial Intelligence Research, 69:1395–1420, 2020.

27 Mikael Zayenz Lagerkvist. Techniques for efficient constraint propagation. PhD thesis, KTH,
2008.

28 Christophe Lecoutre. STR2: optimized simple tabular reduction for table constraints. Con-
straints, 16(4):341–371, 2011.

29 Sylvain Merchez, Christophe Lecoutre, and Frédéric Boussemart. Abscon: A prototype to solve
CSPs with abstraction. In International Conference on Principles and Practice of Constraint
Programming, pages 730–744. Springer, 2001.

30 Laurent Michel and Pascal Van Hentenryck. Activity-based search for black-box constraint
programming solvers. In International Conference on Integration of Artificial Intelligence and
Operations Research Techniques in Constraint Programming, 2012.

31 Guillaume Perez and Jean-Charles Régin. Improving GAC-4 for table and MDD constraints.
In International Conference on Principles and Practice of Constraint Programming, pages
606–621. Springer, 2014.

32 Gilles Pesant. A regular language membership constraint for finite sequences of variables. In
International conference on principles and practice of constraint programming, pages 482–495.
Springer, 2004.

33 Claude-Guy Quimper and Toby Walsh. Global grammar constraints. In International
conference on principles and practice of constraint programming, pages 751–755, 2006.

34 Philippe Refalo. Impact-based search strategies for constraint programming. In International
Conference on Principles and Practice of Constraint Programming, 2004.

35 Jean-Charles Régin. A filtering algorithm for constraints of difference in CSPs. In National
Conference on Artificial Intelligence, 1994.

36 Jean-Charles Régin. Generalized arc consistency for global cardinality constraint. National
Conference on Artificial Intelligence, pages 209–215, 1996.

37 Francesca Rossi, Charles J. Petrie, and Vasant Dhar. On the equivalence of constraint
satisfaction problems. In European Conference on Artificial Intelligence, pages 550–556, 1990.

38 Barbara M Smith and Stuart A Grant. Trying harder to fail first. In European Conference on
Artificial Intelligence, 1998.

39 Arvind Srinivasan, Timothy Ham, Sharad Malik, and Robert K Brayton. Algorithms for
discrete function manipulation. In IEEE/ACM International Conference on Computer-Aided
Design, pages 92–95, 1990.

40 Kostas Stergiou and Toby Walsh. Encodings of non-binary constraint satisfaction problems.
In AAAI Conference on Artificial Intelligence, pages 163–168, 1999.

CP 2022

http://arxiv.org/abs/1909.06673

40:18 CNF Encodings of Binary Constraint Trees

41 Allen Van Gelder. Another look at graph coloring via propositional satisfiability. Discrete
Applied Mathematics, 156(2):230–243, 2008.

42 Hélene Verhaeghe, Christophe Lecoutre, and Pierre Schaus. Compact-MDD: Efficiently
filtering (s)MDD constraints with reversible sparse bit-sets. In International Joint Conference
on Artificial Intelligence, pages 1383–1389, 2018.

43 Hélène Verhaeghe, Christophe Lecoutre, and Pierre Schaus. Extending Compact-Diagram
to basic smart multi-valued variable diagrams. In International Conference on Integration
of Constraint Programming, Artificial Intelligence, and Operations Research, pages 581–598.
Springer, 2019.

44 Toby Walsh. SAT v CSP. In International Conference on Principles and Practice of Constraint
Programming, pages 441–456, 2000.

45 Ruiwei Wang, Wei Xia, Roland H. C. Yap, and Zhanshan Li. Optimizing simple tabular
reduction with a bitwise representation. In International Joint Conference on Artificial
Intelligence, pages 787–795, 2016.

46 Ruiwei Wang and Roland H. C. Yap. Arc consistency revisited. In International Conference
on Integration of Constraint Programming, Artificial Intelligence, and Operations Research,
pages 599–615, 2019.

47 Ruiwei Wang and Roland H. C. Yap. Bipartite encoding: A new binary encoding for solving
non-binary csps. In International Joint Conference on Artificial Intelligence, pages 1184–1191,
2020.

48 Ruiwei Wang and Roland H. C. Yap. Encoding multi-valued decision diagram constraints as
binary constraint trees. In AAAI Conference on Artificial Intelligence, 2022.

49 Wei Xia and Roland H. C. Yap. Optimizing STR algorithms with tuple compression. In
International Conference on Principles and Practice of Constraint Programming, pages 724–732,
2013.

50 Roland H. C. Yap, Wei Xia, and Ruiwei Wang. Generalized arc consistency algorithms for table
constraints: A summary of algorithmic ideas. In AAAI Conference on Artificial Intelligence,
pages 13590–13597, 2020.

A Appendix: Proofs

▶ Theorem 5. BCT can be exponentially smaller than MDD on representing NFA constraints.

Proof. The DTBE of a r arity NFA constraints has 3r +1 variables and 3r binary constraints.
The hidden variable domains include at most max(sn, tn) values, where sn and tn are the
number of states and transitions in the NFA. In addition, each binary constraint relation has
tn tuples. So the size of the DTBE is polynomial in that of the NFA constraint.

The size of the negation of the MDDs (Ordered Multi-valued Decision Diagrams) rep-
resenting alldifferent constraints is exponential in r [4]. Therefore, the number of nodes in
a MDD representing the family of NFA constraints given in Example 2 is exponential in r,
where r is constraint arity and the NFA has r + 1 states and 4r + r2 transitions. So BCT
can be exponentially smaller than MDD on representing NFA constraints. ◀

▶ Lemma 10. Given a BCT P = (X, C) and a tree order O over X, if a literal (vO1
a , true)

is included in UP (F) and all variable domains in UP (F) are not empty, there is τ ∈ sol(P)
such that (O1, a) ∈ τ and (vx

b , true) is included in F for all (x, b) ∈ τ , where F = (A, CA)|τ ′

and Bx ⊆ A for all x ∈ X and T O ⊆ CA and τ ′ is a tuple over a subset of A.

Proof. For any c ∈ C where scp(c) = {Oi, Oj} and i < j, if a literal (vOi
a , true) is included

in UP (F), there must be a literal (vOj

b , true) in UP (F) such that {(Oi, a), (Oj , b)} ∈ rel(c),
otherwise unit propagation with the clause cl(Oi, a, c) can remove (vOi

a , true) from UP (F).
Note that the clause cl(Oi, a, c) encodes the implication: if v

Oj

b = false for all tuple
{(Oi, a), (Oj , b)} ∈ rel(c), then vOi

a = false.

R. Wang and R. H. C. Yap 40:19

So we can construct a series of tuples {τ1, ..., τn} such that n = |X| and τ1 = {(O1, b1)}
and b1 = a and for j > 1, τj = τj−1 ∪ {(Oj , bj)} and (vOj

bj
, T rue) is included in UP (F) and

{(bi, Oi), (bj , Oj)} ∈ rel(c), where c is the only constraint in C such that scp(c) = {Oi, Oj}
and i < j. The tuple τn is a solution of P and (O1, a) ∈ τn. ◀

▶ Proposition 11. The support encoding F = (A ∪ B, T ∪ E) of BCT constraints (V, P)
implements propagation completeness, where P is a BCT (X, C) and A =

⋃
x∈X Ax and

B =
⋃

x∈X Bx and T = {cl(x, c)|c ∈ C, x ∈ scp(c)} and E =
⋃

x∈X EO(x).

Proof. Assume F τ = UP (F |τ) and all variable domains in F τ are not empty where τ is a
tuple over a subset of A ∪ B. The ladder encoding implements completeness propagation,
therefore, for any x ∈ X, if F τ includes a literal l of a variable in Ax ∪ Bx, then there is a
tuple t(x, a) such that F τ includes t(x, a) and t(x, a) ∈ sol(Ax ∪ Bx, EO(x)) and l ∈ t(x, a)
and (vx

a , true) ∈ t(x, a). We can set x as root and construct a tree order O over X such that
O1 = x, thus, there is a solution of P including (x, a) which corresponds to a solution of F |τ
including l (based on Lemma 10). So F implements propagation completeness. ◀

▶ Proposition 13. The partial support encoding F = (AV ∪ BV ∪ BH , T ∪ EV) of a BCT
constraint (V, P) implements unit refutation completeness where P = (X, C).

Proof. Let x ∈ X and F τ = UP (F |τ) where τ is a tuple over a subset of AV ∪ BV ∪ BH .
If all variable domains in F τ are not empty, there is a ∈ D(x) such that (vx

a , true) is
in F τ , otherwise unit propagation with EO(x) can remove all values of the variables in
Ax ∪ Bx, since the ladder encoding implements propagation completeness and every tuple in
sol(Ax ∪ Bx, EO(x)) includes at least a value true of a variable in Bx. Therefore, there is a
solution of P including (x, a) which corresponds to a solution of F |τ including (vx

a , true) by
setting x as root (based on Lemma 10). So F implements unit refutation completeness. ◀

▶ Proposition 14. The partial support encoding F = (AV ∪ BV ∪ BH , T ∪ EV) of a BCT
constraint (V, P) implements domain consistency where P = (X, C).

Proof. Let x ∈ V and F τ = UP (F |τ) where τ is a tuple over a subset of AV ∪ BV and all
variable domains in F τ are not empty. If a literal l of a variable in Ax ∪ Bx is included in
F τ , there is a value a ∈ D(x) such that l ∈ t(x, a) and (vx

a , true) ∈ t(x, a) and (vx
a , true) is

included in F τ (since ladder encoding implements propagation completeness). So there is a
solution of P including (x, a) which corresponds to a solution of F |τ including l (Lemma 10 by
setting x as root). Hence, the partial support encoding implements domain consistency. ◀

▶ Proposition 16. The minimal support encoding F of a BCT constraint (V, P) with respect
to a tree order O implements unit refutation completeness where x = O1 and P = (X, C).

Proof. Let F τ = UP (F |τ) where τ is a tuple over a subset of AV ∪ BV ∪ BH . If all variable
domains in F τ are not empty, there is a ∈ D(x) such that (vx

a , true) is in F τ , otherwise
unit propagation with EO(x) can remove all values of the variables in Ax ∪ Bx, since ladder
encoding implements propagation completeness and every tuple in sol(Ax ∪ Bx, EO(x))
includes at least a value true. Therefore, there is a solution of P including (x, a) which
corresponds to a solution of F |τ including (vx

a , true) based on Lemma 10 (where x is set as
root). So F implements unit refutation completeness. ◀

CP 2022

Modeling and Solving Parallel Machine Scheduling
with Contamination Constraints in the Agricultural
Industry
Felix Winter1 #

Christian Doppler Laboratory for Artificial Intelligence and Optimization for Planning and
Scheduling, DBAI, TU Wien, Austria

Sebastian Meiswinkel #

MCP Algorithm Factory, MCP GmbH, Wien, Austria

Nysret Musliu #

Christian Doppler Laboratory for Artificial Intelligence and Optimization for Planning and
Scheduling, DBAI, TU Wien, Austria

Daniel Walkiewicz #

MCP Algorithm Factory, MCP GmbH, Wien, Austria

Abstract
Modern-day factories of the agricultural industry need to produce and distribute large amounts of
compound feed to handle the daily demands of livestock farming. As a highly-automated production
process is utilized to fulfill the large-scale requirements in this domain, finding efficient machine
schedules is a challenging task which requires the consideration of complex constraints and the
execution of optional cleaning jobs to prevent a contamination of the final products. Furthermore,
it is critical to minimize job tardiness in the schedule, since the truck routes which are used to
distribute the products to customers are sensitive to delays. Thus, there is a strong need for efficient
automated methods which are able to produce optimized schedules in this domain.

This paper formally introduces a novel real-life problem from this area and investigates constraint-
modeling techniques as well as a metaheuristic approach to efficiently solve practical scenarios. In
particular, we investigate two innovative constraint programming model variants as well as a mixed
integer quadratic programming formulation to model the contamination constraints which require
an efficient utilization of variables with a continuous domain. To tackle large-scale instances, we
additionally provide a local search approach based on simulated annealing that utilizes problem-
specific neighborhood operators.

We provide a set of new real-life problem instances that we use in an extensive experimental
evaluation of all proposed approaches. Computational results show that our models can be successfully
used together with state-of-the-art constraint solvers to provide several optimal results as well as
high-quality bounds for many real-life instances. Additionally, the proposed metaheuristic approach
could reach many optimal results and delivers the best upper bounds on many of the large practical
instances in our experiments.

2012 ACM Subject Classification Computing methodologies → Planning and scheduling

Keywords and phrases Parallel Machine Scheduling, Contamination Constraints, Constraint Pro-
gramming, Mixed Integer Quadratic Progamming, Metaheuristics, Local Search, Simulated Annealing

Digital Object Identifier 10.4230/LIPIcs.CP.2022.41

Supplementary Material Software (Source Code, Benchmark Set, and Results): https://doi.org/
10.5281/zenodo.6797397

Funding The financial support by the Austrian Federal Ministry for Digital and Economic Affairs,

1 Corresponding author

© Felix Winter, Sebastian Meiswinkel, Nysret Musliu, and Daniel Walkiewicz;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 41; pp. 41:1–41:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:winter@dbai.tuwien.ac.at
https://orcid.org/0000-0002-1012-1258
mailto:sebastian.meiswinkel@mcp-alfa.com
mailto:musliu@dbai.tuwien.ac.at
https://orcid.org/0000-0002-3992-8637
mailto:daniel.walkiewicz@mcp-alfa.com
https://doi.org/10.4230/LIPIcs.CP.2022.41
https://doi.org/10.5281/zenodo.6797397
https://doi.org/10.5281/zenodo.6797397
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

41:2 Solving Parallel Machine Scheduling with Contamination Constraints

the National Foundation for Research, Technology and Development and the Christian Doppler
Research Association is gratefully acknowledged.

1 Introduction

In the modern agricultural industry large amounts of compound feed are produced and
distributed to fulfill the demands of livestock farming. A highly-automated production
environment is used to handle these large-scale requirements, where complex machinery
handles the mixing and processing of the numerous ingredients of the compound feed products.

Finding efficient production schedules is a challenging task as several problem-specific
constraints regarding contamination levels need to be fulfilled. Furthermore, job tardiness
is a critical minimization objective in this domain as trucks are needed to distribute the
compound feed products to many consumers and the associated routing is sensitive to delays
in production. Currently, human planners create the production schedules either manually
or basic greedy algorithms are used to produce solutions that often include a large number
of tardy jobs and can hardly fulfill all constraints. Therefore, there is a strong need for novel
efficient automated scheduling methods in this area.

In this paper we introduce a novel challenging real-life machine scheduling problem
originating from the agricultural industry. As a set of predetermined jobs has to be scheduled
on multiple machines where processing times depend on the predecessor job, the problem can
be categorized as a parallel machine scheduling problem with setup times (PMSP). Finding
efficient schedules for such problems is usually a challenging task and even early basic variants
were shown to be NP-hard [3]. Therefore, a plethora of heuristic as well as exact solution
approaches were proposed in the past and several surveys such as [4, 2] provide an overview
of the related literature.

However, as practical machine scheduling problems appear in many different variations
regarding the specified constraints and the objective function, complex large-scale applications
are still being investigated in the recent literature. For example, [14] recently proposed a
constraint programming (CP) approach to solve a resource-constrained PMSP which includes
precedence constraints and aims to minimize job completion time. In [9], another variant with
cyclical parallel machines originating from the agricultural industry was approached with
mathematical programming as well as an adaptive variable neighborhood based metaheuristic.
Another problem considering identical machine scheduling with tool requirements was recently
investigated in [6]. In their paper, the authors proposed a matheuristic approach that
combines a genetic algorithm together with mathematical programming to efficiently solve
practical large-scale instances. In [13], large instances of a bi-objective PMSP with resource
constraints during setups was tackled by introducing a novel iterated pareto greedy algorithm.
The complexity of another real-life PMSP with setup times and resources originating from
the manufacturing industry was analyzed in [5], and the authors proposed mixed integer
programming (MIP) models to efficiently solve instances which are based on industrial data.
Recently, exact and metaheuristic methods based on simulated annealing and MIP were
proposed for another unique PMSP variant from the industry [12].

The problem we investigate in this paper can be compared to previously studied PMSPs
as a set of given jobs with sequence-dependent processing times is scheduled to unrelated
parallel machines. However, in addition to traditional PMSP constraints, a set of unique
contamination level constraints needs to be fulfilled which further requires the consideration
of including optional cleaning jobs in the schedule. Modeling these contamination constraints
requires auxiliary variables with a continuous domain which makes it challenging to find
efficient CP formulations and to the best of our knowledge such constraints have not been

F. Winter, S. Meiswinkel, N. Musliu, and D. Walkiewicz 41:3

investigated for PMSPs in the past. The objective function for the investigated problem
variant further includes a domain-specific variant of tardiness minimization, since due dates
are defined on tours which are associated to groups of jobs.

In addition to formally introducing a novel real-life PMSP, we provide a set of 19 real-life
benchmark instances that represent scenarios from the agricultural industry. As exact
approaches to the problem we propose a direct- and an interval variable based CP model
together with several programmed search strategies as well as a mixed integer quadratic
programming (MIQP) formulation that include novel modeling techniques regarding the
contamination constraints and cleaning jobs. Furthermore, we investigate a metaheuristic
approach using simulated annealing to efficiently solve large-scale real-life problem instances
which utilizes four problem specific neighborhood operators and uses randomly generated
initial solutions.

An extensive experimental evaluation of all proposed approaches using the real-life
benchmark instances shows that the CP approach is able to provide 9 optimal results and
further produces high-quality solutions for all instances. The metaheuristic approach we
propose further can reach 8 optimal results, similar upper bounds as obtained by the exact
methods for the majority of instances, and two overall best upper bounds.

The remainder of the paper is structured as follows: We provide the problem description
in Section 2, before we give the direct CP model in Section 3. Afterwards, a MIQP
formulation and an alternative CP model using interval variables are proposed in Sections 4
& 5. In Section 6, we then introduce a metaheuristic approach based on local search. The
experimental evaluation of all proposed approaches is discussed on Section 7. Finally, we
give concluding remarks at the end of the paper.

2 Problem Description

The main aim of the PMSP variant we investigate is to create efficient schedules on multiple
machines for a given set of jobs, where each job has to be scheduled on exactly one of its
eligible machines. Furthermore, release dates (i.e. earliest start times) are specified for each
job depending on the machine and the processing time of each job depends not only on the
machine but also on the previously scheduled job. As several steps regarding the mixing
of food products are performed within a job (each job produces a unique mix), there are
complex domain-specific rules that determine sequence-dependent processing times to fulfill
strict food requirements. Thus, we use sequence-dependent job times instead of setup times
to specify this problem.

To avoid contamination of the produced goods maximum contamination levels of sev-
eral contamination factors further must be respected whenever a job is started. Different
ingredients, which are associated with the contamination factors, are used to produce unique
food mixes in each job. Each ingredient causes a different contamination change regarding
the individual factors, while the contamination needs to stay below a maximum to keep the
food clean. The maximum level depends on the particular quantity and ingredient mix and
thus is specified per factor/job pair. Further, the contamination reduction varies for each
machine and factor, which is given as a reduction factor for each factor/machine pair.

The contamination levels are changed through the execution of the jobs, where each
job can affect them differently. For example, a particular job could lower the level of one
contamination factor and raise the level for another factor during its execution.

Additionally, optional cleaning jobs can be scheduled to reduce the contamination levels.
Cleaning jobs behave similarly to regular jobs as they flush machines using a dummy mix
and thereby update individual contamination levels. To fully reset all levels multiple cleaning
jobs might be needed. Thus, in contrast to regular jobs they are optional and can be

CP 2022

41:4 Solving Parallel Machine Scheduling with Contamination Constraints

scheduled more than once if necessary. In the agricultural industry usually predetermined
uniform lengths are used for the cleaning jobs, as it is challenging to give guarantees about
contamination changes on variable lengths.

Finally, the main aim of the problem we investigate is to minimize tour tardiness, where
each tour represents a truck route that is associated to a group of jobs that produce supplies
for that tour. The food mixes each job produces are loaded on trucks which start delivery
as soon as they are fully loaded, where food from a single job can be distributed on several
tours and to multiple customers within a tour. The tour planning involves product forecasts
and is not handled in our problem but predetermined in the input (a tour due date is the
latest time the truck should start delivery).

Thus, the end time of the last job in the schedule that is associated to that tour is
compared against the tour due date to calculate tour tardiness. The minimization objective
then aggregates the tardiness over all tours. Table 1 summarizes the formal parameters of
an instance to the investigated problem:

Table 1 Parameters for the parallel machine scheduling problem with contamination constraints.

Description Parameter
Set of non-cleaning jobs J∗

Set of cleaning jobs S
Set of all jobs J = J∗ ∪ S
Set of tours T
Tours associated to each job jobT oursj ⊆ T ∀j ∈ J∗

Set of Machines M
Processing time of job j after predecessor i on machine m pi,j,m ∈ R+ ∀i ∈ J, j ∈ J, m ∈ M
Processing time of job i on machine m at the start of the
schedule

bi,m ∈ R+ ∀i ∈ J, m ∈ M

Set of eligible machines per job Ej ⊆ M ∀j ∈ J∗

Tour due dates dt ∈ N ∀t ∈ T
Job release dates rj,m ∈ N ∀j ∈ J, m ∈ M
Set of contamination factors K
Maximum contamination per factor and job Cmax

k,j ∈ R+ ∀k ∈ K, j ∈ J
Contamination volume per job Ck,j ∈ R+ ∀j ∈ J, k ∈ K
Initial contamination per machine C0

k,m ∈ R+ ∀k ∈ K, m ∈ M
Contamination reduction multiplier per factor and machine RFk,m ∈ [0, 1] ∀k ∈ K, m ∈ M
Bound on the scheduling horizon h ∈ N
Bound on the contamination level u ∈ R+

Bound on the tardiness of a tour v ∈ N

To further illustrate the investigated problem, Figure 1 visualizes a schedule for a simple
toy example instance with jobs J1 − J6, a cleaning job C, and two machines M1, M2. In
this example, J1 is scheduled first on M1 at time 0 and ends at time 2. Afterwards, J3 is
executed before C is scheduled at time 5. Finally, after a short break J4 is started at time 8.
J4 cannot directly start after J3 ends, as its release date is 8 in this example (rJ4,M1 = 8).
J2 is scheduled first on M2 and starts at time 1, as rJ2,M2 = 1. After completion of J2, J5
starts just at time 4 since rJ5,M2 = 4. Finally, J6 is scheduled at time 6 and ends at time 9.

0 1 2 3 4 5 6 7 8 9 10 11 12

M1 J1 J3 C J4

M2 J2 J5 J6

Figure 1 An example schedule for 6 jobs and a cleaning job on two machines.

F. Winter, S. Meiswinkel, N. Musliu, and D. Walkiewicz 41:5

Note that the jobs have processing times of 2 or 3 in the example, which are determined
by the corresponding predecessor job. Therefore, the job lengths could be different if the job
order was changed. The background colors of each job indicate the associated tours. In the
example, jobs with a dark gray color belong to tour T1, whereas light gray jobs belong to
tour T2. C has a white background and is not associated to any tour (which is always the
case with cleaning jobs as they do not provide any demands), and J5 is actually associated
to both T1 and T2. Thus, production for T1 is finished with the end of J5 at time 6 and tour
T2 is completed at time 10. Let the tour due dates for this example be dT1 = 5 and dT2 = 8.
Then T1 would be late by one time unit and T2 would be late by two units.

Figure 2 further illustrates the change in contamination levels on M1 regarding two
contamination factors K = {k1, k2}. Both factors start at level 0 at time point 0 but get
raised through the execution of J1 to 0.2 and 0.5. The execution of J3 actually lowers the level
of k2 to 0.2, however, k1 is raised to 1.5 by J3 as it causes a strong contamination regarding
that factor. C then reduces contamination for both factors down to k1 = 0.2, k2 = 0 so that
J4 can be scheduled, which again increases the contamination levels regarding both factors.

0 1 2 3 4 5 6 7 8 9 10 11 12

0

0.5

1

1.5

C
on

ta
m
in
a
ti
on

M
1

k1
k2

Figure 2 Contamination levels for factors k1 and k2 for the jobs scheduled on machine M1 in the
example schedule shown in Figure 1.

3 Constraint Programming Formulation

In this section, we propose a direct CP formulation for the PMSP with contamination
constraints. The model serves as a formal specification of the problem, but can also be used
as an exact solution approach together with a CP solver.

3.1 Decision Variables
The direct CP model uses decision variables that represent the job predecessors and thereby
determines the complete job sequence on each machine:

Predecessors of regular jobs: xj ∈ J ∪ M ∀j ∈ J∗

Cleaning job predecessors: xs ∈ J ∪ M ∪ {⊥} ∀s ∈ S

A predecessor either is another job or a machine, in the latter case the associated job starts
the machine schedule. Cleaning jobs additionally can have their predecessor set to ⊥ in which
case they are not scheduled at all. Further, the following auxiliary variables are specified:

Machine assignment for each job: yj ∈ M ∀j ∈ J∗

Machine assignment for each cleaning job: yj ∈ M ∪ {⊥} ∀j ∈ S

Start time of each job: startj ∈ N ∀j ∈ J

End time of each job: endj ∈ N ∀j ∈ J

End time of each tour: endt ∈ N ∀t ∈ T

Contamination level before each job: ck,j ∈ R+ ∀k ∈ K, j ∈ J

CP 2022

41:6 Solving Parallel Machine Scheduling with Contamination Constraints

These variables define the machine assignments for each job (if a cleaning job is not used its
machine assignment is ⊥) in addition to start- and end times for jobs and tours. Furthermore,
the contamination states before each job are captured by a set of contamination level variables.

3.2 Constraints

In the following we formally specify the constraints of the investigated problem (Note that
we implicitly make use of the element global constraint and constraint reification):

Job start times need to be greater than or equal to the job release date:

startj ≥ rj,yj ∀j ∈ J (1)

Tour end time variables should be greater than or equal to the associated job end times:

endt ≥ endj ∀j ∈ J, t ∈ jobT oursj (2)

Jobs can only be assigned to eligible machines:

yj ∈ Ej ∀j ∈ J∗ (3)

Channel predecessor variables with start- and end time variables:

(xj ∈ J) ⇒ (startj > endxj ∧ endj = startj + p(xj),j,(yj) ∧ yj = y(xj)) ∀j ∈ J (4)
(xj ∈ M) ⇒ (startj ≥ 0 ∧ endj = startj + bj,(yj) ∧ yj = xj) ∀j ∈ J (5)
(xj = ⊥) ⇒ (startj = 0 ∧ endj = 0 ∧ yj = ⊥) ∀j ∈ S (6)

All predecessor assignments need to be different (unless they are set to ⊥):

x(j1) ̸= x(j2) ∨ x(j1) = ⊥ ∀j1, j2 ∈ J where j1 ̸= j2 (7)

Contamination levels must stay below the maximum values:

(ck,j + Ck,j) · (1 − RFk,(yj)) < Cmax
k,j ∀k ∈ K, j ∈ J where xj ∈ J (8)

Contamination levels at the beginning must be greater or equal to the initial state:

ck,j ≥ C0
k,(xj) ∀k ∈ K, j ∈ J where xj ∈ M (9)

Contamination levels are updated based on the job sequence:

ck,j ≥ RFk,(yj) · (ck,(xj) + Ck,(xj)) ∀k ∈ K, j ∈ J where xj ∈ J (10)

3.3 Objective Function

As in the practical application it is better to have several tours that are a bit late than
having a single tour that is late by a large amount of time, the tardiness of each tour is
squared in the objective function:

minimize
∑
t∈T

max{0, endt − dt}2 (11)

4 Mixed Integer Quadratic Programming Model

In this section, we specify a MIQP formulation of the PMSP with contamination and can be
used as an exact solution approach with state-of-the-art MIQP solvers.

F. Winter, S. Meiswinkel, N. Musliu, and D. Walkiewicz 41:7

4.1 Decision Variables
A set of Boolean decision variables is used to determine the job sequence on all machines by
capturing the job predecessors. Additionally, several auxiliary variables determine machine
assignments, start- and end times, contamination levels, and tour tardiness:

Boolean job predecessor variables that are set to 1 if and only if job i is a direct predecessor
of job j on machine m (ω is a dummy job indicating the initial machine state):

xi,j,m ∈ {0, 1} ∀i, j ∈ J ′(J ′ = J ∪ {ω}), m ∈ M (12)

Boolean machine assignment variables:
yj,m ∈ {0, 1} ∀j ∈ J, m ∈ M (13)

Start time of each job: startj ∈ {0, . . . , h} ∀j ∈ J

End time of each job: endj ∈ {0, . . . , h} ∀j ∈ J

End time of each tour: endt ∈ {0, . . . , h} ∀t ∈ T

Contamination level before each job: ck,j ∈ [0, u] ∀k ∈ K, j ∈ J

Tour tardiness: tardinesst ∈ {0, . . . , v} ∀t ∈ T

4.2 Constraints
The following list of linear constraints are used in the MIQP formulation:

Each job can be used as at most one predecessor:∑
j∈J\{i},m∈M

xi,j,m ≤ 1 ∀i ∈ J (14)

Each machine can be used as at most one predecessor:∑
j∈J

x0,j,m ≤ 1 ∀m ∈ M (15)

Any job that is used as a predecessor also needs to have a single predecessor itself:∑
m∈M,i∈J ′\{j}

xi,j,m =
∑

m∈M,i∈J ′\{j}

xj,i,m ∀j ∈ J (16)

If a job j has a predecessor i, i must have another predecessor on the same machine:∑
k∈J ′\{i}

xk,i,m ≥ xi,j,m ∀i ∈ J, j ∈ J, m ∈ M (17)

If a job has a predecessor on a machine, it also needs to be assigned on the same machine:∑
i∈J ′\{j}

xi,j,m = yj,m ∀j ∈ J, m ∈ M (18)

If a job is a predecessor on a machine, it also needs to be assigned on the same machine:∑
j∈J ′\{i}

xi,j,m = yi,m ∀i ∈ J, m ∈ M (19)

Each job can only be assigned to eligible machines:∑
m∈Ej

yj,m = 1 ∀j ∈ J∗,
∑

m∈Ej

yj,m ≤ 1 ∀j ∈ S,
∑

m∈M\Ej

yj,m = 0 ∀j ∈ J (20)

Each job needs a predecessor on an eligible machine (cleaning jobs may have one):∑
i∈J,m∈Ej

xi,j,m = 1 ∀j ∈ J∗,
∑

i∈J,m∈Ej

xi,j,m ≤ 1 ∀j ∈ S,
∑

i∈J,m∈M\Ej

xi,j,m = 0 ∀j ∈ J

(21)

CP 2022

41:8 Solving Parallel Machine Scheduling with Contamination Constraints

Release dates have to be respected:
startj ≥ rj,m − (1 − yj,m) · h ∀j ∈ J, m ∈ M (22)

Channel tour end times to the job end times:
endt ≥ endj ∀j ∈ J, t ∈ jobT oursj (23)

Channel job start- and end times with the job predecessors (this also prevents cyclic
predecessor assignments):

startj > endi − (1 −
∑

m∈Ej

xi,j,m) · (h + 1) ∀i ∈ J ′, j ∈ J (24)

endj ≥ startj +
∑

m∈Ej

(xi,j,m · pj,m,i) − (1 −
∑

m∈Ej

xi,j,m) · (h + 1) ∀i ∈ J ′, j ∈ J (25)

Contamination levels must stay below the maximum values:
(ck,j + Ck,j) · (1 − RFk,m) < Cmax

k,j + (1 − xi,j,m) · (1 + u) ∀k ∈ K, i ∈ J ′, j ∈ J, m ∈ Ej (26)

Set initial contamination levels for jobs at the start of the schedule:
ck,j ≥ C0

k,m − (1 − x0,j,m) · (1 + u) ∀k ∈ K, j ∈ J, m ∈ Ej (27)

Set contamination levels in the sequence based on the job predecessor assignments:
ck,j ≥ RFk,m · (ck,i + Ck,i) − (1 − xi,j,m) · (1 + u) ∀k ∈ K, i ∈ J, j ∈ J, m ∈ Ej (28)

Channel the tour tardiness variables to tour end time variables:
tardinesst ≥ endt − dt (29)

4.3 Objective Function
The objective function aims to minimize the sum of each squared tour tardiness:

minimize
∑
t∈T

tardiness2
t (30)

5 Alternative Constraint Programming Model using Interval Variables

In this section, we propose an alternative CP model that utilizes a widely used technique to
capture the scheduling aspects of the investigated problem with optional interval variables
and specialized global constraints [10, 11].

As alrady mentioned in Section 2 the practical application uses sequence-dependent
processing times instead of setup times in its input parameters. However, in the interval
based model we want to utilize efficient scheduling global constraints that only accept
setup-time based input. Thus, we transform the sequence-dependent processing times into
equivalent shorter processing and appropriate setup times in a preprocessing phase for this
formulation (by taking the overall minimum processing time and calculating setup times
based on the differences regarding each job predecessor).

We specify the following additional input parameters needed by this formulation:
Setup time between two jobs on each machine: sm,i,j ∈ N ∀m ∈ M, i ∈ J ′, j ∈ J

Processing time (not sequence-dependent) of each job (ω has a processing time of 0):
pj ∈ N ∀j ∈ J ′

Minimum release time: mj = min{rj,m|m ∈ M} ∀j ∈ J

Contamination volume for unused job positions is 0: Ck,0 = 0 ∀k ∈ K

Acceptable difference for floating point comparison: ϵ ∈ R+

All jobs associated to a tour: tourJobst = {j ∈ J |t ∈ jobToursj}

F. Winter, S. Meiswinkel, N. Musliu, and D. Walkiewicz 41:9

5.1 Decision Variables
We use optional interval variables which formally are decision variables whose domain values
are a convex interval: {⊥} ∪ {[s, e)|s, e ∈ Z, s ≤ e}, where s and e are the start- and end
times of the interval and ⊥ is a special value indicating that the interval is not scheduled
at all. The start- and end times of such a variable var can be accessed via functions
startOf(var), endOf(var), and the function presenceOf(var) returns true if and only if
an optional interval is scheduled. Furthermore, several global constraints can be defined
on interval variables. For example the alternative(var, V) global constraint ensures that
exactly one of the interval variables in the set V must have identical start- and end times
to the interval variable var. We specify interval variables (optional interval variables) with
the notation intervalV ar(p, [l, b]) (optIntervalV ar(p, [l, b])), where p denotes the processing
time and [l, b] specifies the time period in which the interval may be scheduled.

In addition to the interval variables, we make use of sequence variables which capture a
permutation over a given set of interval variables and thereby express the sequence of all
present interval variables. Thus, a sequence variable π can be used with global constraints
such as noOverlap(π), which ensures that all intervals in the sequence do not interfere
temporally. Furthermore, sequence variables can serve as arguments for functions such
as first(π, var) and typeOfPrev(π, var, −1), where first(π, var) ensures that the interval
variable var is scheduled first in sequence π and typeOfPrev(π, var, −1) returns the job id
which is the predecessor of interval var in sequence π or -1 if var is scheduled at the start of
the sequence. The following decision variables are used in the interval variable based model:

Interval variables for jobs and optional interval variables for cleaning jobs:
xj : intervalVar(pj , [mj , h]) ∀j ∈ J∗, xs : optIntervalVar(ps, [ms, h]) ∀s ∈ S (31)

Optional interval variables that model machine assignments for each job:
xmm,j : optIntervalVar(pj , [rj,m, h]) ∀j ∈ J ′, m ∈ M (32)

A sequence variable for each machine:
πm : seq({xmm,j |j ∈ J ′}, J ′) ∀m ∈ M (33)

These interval variables are sufficient to determine the full schedule. However, to model
the contamination levels we further need sets of auxiliary variables that capture the pos-
itions of jobs as well as auxiliary variables with a continuous domain that determine the
contamination levels in the sequence. As we designed the interval based model for the use
with CPoptimizer [11], which does not support floating point variables but only dynamic
floating point expressions, we cannot rely on the recursive formulation of the contamination
level constraints that was used for the models proposed in sections 3 & 4. Instead, we
introduce additional auxiliary variables to represent all possible job positions which can be
used together with floating point dynamic expressions for the contamination constraints:

Variables storing the job positions (0 is used if the job is not scheduled on that machine):
jobP osm,j ∈ {0, . . . , |J |} ∀m ∈ M, j ∈ J (34)

Variables storing the job scheduled at each position (0 is used if no job is scheduled):
jobAtm,j ∈ {0} ∪ J ∀m ∈ M, j ∈ {1, . . . , |J |} (35)

Variables storing the job predecessors (0 if the job is not scheduled on the machine, -1 if
it has no predecessor):

prevm,j ∈ {−1, 0} ∪ J ′ ∀m ∈ M, j ∈ J (36)
Dynamic expressions representing the contamination levels before each job position:

ck,m,0 = C0
k,m, ck,m,i = RFk,m · (ck,m,(i−1) + Ck,(jobAtm,i)) ∀k ∈ K, m ∈ M, i ∈ {1, . . . , |J |}

(37)
Dynamic expressions representing the contamination volume at each position:

cvk,m,i = (ck,m,i−1 + Ck,(jobAtm,i)) · (1 − RFk,m) ∀k ∈ K, m ∈ M, i ∈ {1, . . . , |J |} (38)

CP 2022

41:10 Solving Parallel Machine Scheduling with Contamination Constraints

5.2 Constraints
The following set of constraints are specified for the interval variable based model:

Release dates must be respected for each present job interval:
presenceOf(xmm,j) ⇒ (startOf(xmm,j) − sm,(prevm,j),j ≥ rj,m) ∀j ∈ J, m ∈ M (39)

Each job can only be scheduled on one machine:
alternative(xj , {xmm,j |m ∈ M}) ∀j ∈ J (40)

The dummy job ω is scheduled as the first job on all machines:
first(πm, xmm,ω) ∧ presenceOf(xmm,ω) ∀m ∈ M (41)

All jobs in a machine sequence must not overlap (considering also the setup times):

noOverlap(πm, {sm,i,j |i ∈ J ′, j ∈ J}) ∀m ∈ M (42)

Maximum contamination levels must not be violated:
cvk,m,i ≤ Cmax

k,(jobAtm,i) − ϵ ∀k ∈ K, m ∈ M, i ∈ {1, . . . , |J |} (43)

Jobs cannot be scheduled on ineligible machines:
¬presenceOf(xmm,j) ∀j ∈ J, m ∈ M \ Ej (44)

Channel job interval variables to job predecessor variables:
prevm,j = typeOfPrev(πm, xmm,j , −1) ∀m ∈ M, j ∈ J (45)

Channel job predecessor variables to sequence position variables:
(prevm,j = ω) ⇔ (jobP osm,j = 1) ∀m ∈ M, j ∈ J (46)
(prevm,j = 0) ⇔ (jobP osm,j = 0) ∀m ∈ M, j ∈ J (47)
(prevm,j = i) ⇒ (jobP osm,i = jobP osm,j − 1) ∀m ∈ M, i, j ∈ J (48)
(jobP osm,i = jobP osm,j − 1 ∧ jobP osm,i ̸= 0) ⇒ (prevm,j = i) ∀m ∈ M, i, j ∈ J (49)

Channel sequence position variables to job position variables:
(jobP osm,i = j) ⇔ (jobAtm,j = i) ∀m ∈ M, i ∈ J, j ∈ {1, . . . , |J |} (50)

5.3 Objective Function
The objective function minimizes the squared tour tardiness of all tours:

minimize
∑
t∈T

max({0} ∪ {endOf(xj) − dt|∀j ∈ tourJobst})2 (51)

6 Metaheuristic Approach

In this section, we propose a local search approach using simulated annealing for the PMSP
with contamination constraints. First, we describe the solution representation, the used
cost function, and the generation of initial solutions. Then, we explain the generation of
neighborhood solutions and further describe how a simulated annealing based acceptance
function is utilized.

We note that a local search approach based on simulated annealing that partly use
similar neighborhoods for another PMSP variant was proposed in [12]. However, we further
introduce two additional neighborhood operators to deal with the unique properties of the
problem proposed in this paper.

F. Winter, S. Meiswinkel, N. Musliu, and D. Walkiewicz 41:11

6.1 Solution Representation, Cost Function & Initial Solutions
We represent candidate solutions by using arrays storing the sequence of job ids assigned to
each machine. The length of each array is set to the maximum number of all jobs, and empty
positions in the arrays are aligned to the end and set to a null value. Any candidate solution
ensures that regular jobs are scheduled exactly once on any machine, cleaning jobs however
are optional. The value of the objective function for a given candidate solution is determined
by calculating the earliest possible start time for each job in the sequence (i.e. either directly
after the predecessor ends or at the release date). However, as candidate solutions may also
cause constraint violations, we additionally include the number of violations V in the cost
function cost(S) that is used to evaluate a candidate solution S:

cost(S) =
∑
t∈T

max{0, endt − dt}2 + V · M (52)

The cost function adds the number of constraint violations V multiplied by a given factor
M to the objective function, where M is set to a large value so that a single hard constraint
violation becomes incomparingly more expensive than any objective value. We determine
the value V by counting the number of contamination level violations together with the
number of eligible machine violations. Thereby, each job scheduled on an ineligible machine
is counted as a violation and the number of contamination level violations is calculated by
checking if the maximum contamination level is exceeded for each job position and factor.

To randomly construct initial solutions, we shuffle the list of jobs and then simply assign
one job after the other to a randomly selected eligible machine. Note that this construction
procedure may produce infeasible solutions as contamination level constraints may appear,
however, local search usually can quickly repair infeasible solutions.

6.2 Search Neighborhoods
We use four different neighborhood operators for local search:
1. Swap jobs: This operator selects two jobs in the schedule and simply swaps their

positions, where the jobs can be on the same machine or on different machines.
2. Shift job: A job is moved to another position in the schedule. Potential targets are any

position between consecutive jobs as well as the start and end of any machine schedule.
3. Insert cleaning job: Inserts a single cleaning job into any position of the schedule.

Similar as with the shift job neighborhood, the target position can be between any pair
of consecutive scheduled jobs, or at the start/end of a machine schedule.

4. Remove cleaning job: Removes a single cleaning job that is currently scheduled.
Regarding the swap jobs and shift job operators, we additionally consider block swap and
block shift versions where the main idea is to swap or shift blocks of up to k consecutively
scheduled jobs at once, where k is a parameter given to the algorithm. For example, if k = 3
the swap job neighborhood would not only consider swapping two single jobs, but could
potentially swap two blocks of consecutively scheduled jobs with block lengths of two or
three. Similarly, a block shift neighborhood move could shift blocks of jobs to a new position
in the schedule. The intuition behind these block moves is that short job sequences that work
well regarding job processing times and contamination levels can be moved at once to find
improving neighboring solutions without the need of performing solution quality worsening
intermediate steps.

When dealing with large-scale real-life instance, exploring the complete neighborhood can
quickly become computationally expensive. Thus, in the proposed metaheuristic we do not
explore the full neighborhood, but instead randomly select a single move out of the complete

CP 2022

41:12 Solving Parallel Machine Scheduling with Contamination Constraints

neighborhood in each iteration. Thereby, we select a single random move per iteration in 2
steps: First, we randomly select one of the neighborhoods. Then, we uniformly sample a
single move from the chosen neighborhood.

6.3 Neighborhood Move Acceptance
After a single random move is selected, we evaluate the change to the current solution’s
quality that would be caused by the move. Based on the result we then decide whether the
move should be applied to the current solution. We use a move acceptance function based
on simulated annealing [8] which ensures that a cost-improving move is always accepted,
whereas a non-cost-improving move is only accepted with probability p that depends on the
change in solution quality as well as the current temperature value T . Equation 53 shows
how probability p is calculated based on the costs of the current solution S and the candidate
solution S∗ which has bigger costs than S.

p = exp(−(cost(S∗) − cost(S))
T

) (53)

Regarding the temperature T , we set the initial temperature Tinit and the final tem-
perature Tfinal by user defined parameters. The cooling rate, which determines how fast
the temperature is lowered after each search iteration, is determined dynamically after each
iteration in our approach. Thus, the actual cooling rate which is applied for the next iteration
is calculated by looking at the average runtime per move and the remaining time budget.
Thereby, we set the cooling rate to a value that ensures that the temperature converges to
the final temperature value Tfinal at the end of the runtime, assuming the current average
runtime per iteration.

7 Experimental Evaluation

In this section, we present the results from an extensive evaluation of all proposed approaches
on realistic problem instances from the industry. First, we describe our experimental
environment and the benchmark instances. Afterwards, we present and discuss the detailed
computational results.

7.1 Experimental Environment
All experiments were run on a computing cluster with 10 identical nodes, each having 24 cores,
an Intel(R) Xeon(R) CPU E5–2650 v4 @ 2.20GHz and 252 GB RAM. To evaluate the MIQP
model we used Cplex 20.1 [1] and Gurobi 9.5 [7], whereas we used CPoptimizer 20.1 [11] to
evaluate the CP models. As CPoptimizer does not support floating point variables, we had
to adapt the direct model from Section 3 so that it uses dynamic expressions to capture the
contamination levels for each job position. We did this by using similar modeling techniques
regarding the contamination constraints as in Section 5, with the only difference that the
auxiliary job position variables were channeled to the predecessor variables from the direct
model instead of the interval variables. For CPoptimizer we set the relative optimality gap
to 10−7, besides that we used default parameters for all solvers, but restricted them to
single-threaded solving. Further, we used reasonable values based on the size of the real-life
instances for the model parameters h, u, v and ϵ. The local search parameters were set based
on manual tuning trials: k = 4, Tinit = 1012, and Tend = 10−4.

All approaches were given a time limit of 1 hour per instance. As the metaheuristic
approach utilizes a randomly created initial solution as well as randomly generated moves,
we conducted 10 repeated experimental runs per instance with the local search approach and
present the mean costs in the final results.

F. Winter, S. Meiswinkel, N. Musliu, and D. Walkiewicz 41:13

Table 2 The upper bounds for each instance achieved by the proposed methods.

Inst. CP direct CP interval MIQP Gurobi MIQP Cplex LS
I 1 403617 403617 406472 445837 403617
I 2 394696 394696 412688 394696 394696
I 3 25702 25702 30250 27702 25702
I 4 2305 2305 2393 3573 2305
I 5 39193760 33707 44530 52907 33707
I 6 136288 136288 143421 157525 136288
I 7 245418700 959455 18291650 24524154 959455
I 8 6571216 20816 5375830 23556806 20816
I 9 4901583 97586 15987063 97586
I 10 106274 32417279 106274
I 11 10539330 2434331 2384267.3
I 12 324562700 696805 135383618 697368.6
I 13 440502600 1020957 1020957
I 14 910107 407439 3098941 1826389 407439
I 15 7178927 1454166 121659015 51971121 1454166
I 16 1144669 773924 29362144 776526
I 17 581404 22263532 17479750 581404
I 18 33251 19796349 188558145 33251
I 19 1082993 6697489 259614

We gathered 19 problem instances that directly represent real-life scheduling scenarios
from our industry partners to evaluate the proposed methods on realistic problems. All
instances together with the detailed results are available for download at https://doi.org/
10.5281/zenodo.6797397. Detailed size parameters of the instances can further be found
in Appendix A.

We further experimented with different programmed search strategies in early experiments.
For the final experimental results presented in this section we used the solver’s default search
strategy with the direct CP model and selected a search strategy that assigns values to the π

sequence variables first for the interval based model, as these strategies performed best in the
early experiments. Detailed information about the search strategies and related experiments
are given in Appendix B.

Based on feedback from the reviewers we additionally experimented with another variant
of the MIQP model that uses smaller big Ms in constraints 22, 25, and 27. Although the best
dual bound found within 1 hour of runtime could be slightly improved for most instances,
the best upper bound found with MIQP heuristics was better without these changes for the
majority of instances. Thus, we decided to not include these changes in our final experiments.

7.2 Computational Results
A summary of the best upper bounds produced by all evaluated approaches is given in
Table 2. The table shows the best upper bounds produced by the direct- and interval variable
based CP models with CPoptimizer (CP direct/CP interval), the best upper bounds reached
by the MIQP model with Gurobi (MIQP Gurobi) and Cplex (MIQP Cplex), as well as the
mean cost results achieved over 10 runs with local search (LS). Overall best upper bounds
per instance are formatted in bold face, and empty cells denote that no solution could be
found within the runtime.

We see in Table 2 that the interval variable based CP model was the overall best
performing exact method as it provided best solutions for 17 instances. Only instance 19
could not be solved, whereas the direct CP model and Gurobi could find a solution within
the runtime. Local search also achieved best upper bounds in 17 cases, only for instances 11
and 16 the mean cost results were not on par with the CP approach. However, regarding
instances 11 and 19 the metaheuristic achieved improved results over the exact methods.

CP 2022

https://doi.org/10.5281/zenodo.6797397
https://doi.org/10.5281/zenodo.6797397

41:14 Solving Parallel Machine Scheduling with Contamination Constraints

Table 3 The lower bounds for each instance achieved by exact methods.

Inst. CP direct CP interval MIQP Gurobi MIQP Cplex
I 1 369489 403617 389058 388824
I 2 98575 295211 246813 229617
I 3 9377 25702 17273 15845
I 4 1370 2305 1936 1521
I 5 14885 24086 21284 21284
I 6 72197 136288 87066 82979
I 7 306161 707234 487155 322028
I 8 11601 20816 10517 11008
I 9 72097 97586 91988 62341
I 10 35145 80015 31561 324
I 11 90555 412877 277498 220423
I 12 491242 604160 577154 534484
I 13 634342 1020957 842490 802717
I 14 276676 407439 338875 330226
I 15 764585 1268739 1192610 1169638
I 16 412942 773924 600003 434803
I 17 352486 528173 461746 448509
I 18 20449 32662 28694 28694
I 19 223730 224186 232434 224946

The metaheuristic actually found solutions of similar quality over all 10 runs for all instances
except for instances 11/12 where the solution costs were 2383478/2391371 in the best case
and 696805/702441 in the worst case.

Table 3 further displays the best lower bounds achieved with exact methods. Columns 2-6
show from left to right: Lower bounds achieved with the direct CP model (CP direct), the
interval variable model (CP interval), and the MIQP model with Gurobi and Cplex (MIQP
Gurobi/MIQP Cplex). We see that the interval variable model produced the best lower
bounds for instances 1-18, whereas Gurobi achieved the best lower bound for instance 19.

Finally, Table 4 summarizes the overall best lower bounds (LB) and upper bounds achieved
by any of the exact methods (Exact) and compares it to the best upper bound achieved over
all 10 runs by local search (LS). Further, the table includes the duality gap between the
lower bound and the best upper bound in percentage (Gap), as well as the time in seconds
required until the best upper bound was found by the exact and local search methods (Time
(Exact) and Time (LS)). We see in the results that instances 1,3,4,6,8,9,13,14, and 16 could
be solved to optimality by exact methods. Surprisingly, the metaheuristic approach produced
cost equivalent or improved results compared to exact methods for most instances, as only
for instance 16 a better solution was achieved with CP. This indicates that the proposed
metaheuristic approach can efficiently escape local optima and thereby reach high-quality
results for real-life instances. However, CP based methods also produced equal or better
results for 17 instances and were necessary to guarantee optimal solutions. Additionally, we
see in the results that exact methods using CP can find high-quality solutions quickly as
for several instances the best bound was achieved within 60 seconds of runtime. However,
for some instances the best solution was found later during the search process. The best
results with local search were mostly found after about half of the given runtime budget
was consumed. This is an expected result, given that the used simulated annealing scheme
dynamically determines the cooling scheme so that the final temperature is reached at the
end of the runtime.

We further compared the best schedules produced by the proposed methods with schedules
created by human planners that currently utilize a construction heuristic to generate solutions
for the same set of real-life instances in the industry. For proprietary reasons we cannot provide
detailed results and additional information about the used heuristic, but our approaches
could successfully improve the quality of the schedules and thereby reduce the number of

F. Winter, S. Meiswinkel, N. Musliu, and D. Walkiewicz 41:15

Table 4 The overall best lower bounds and best results achieved with exact and heuristic methods.

Inst. LB Gap Exact Time (Exact) LS Time (LS)
I 1 403617 0.00 403617 65 403617 1365.27
I 2 295211 25.21 394696 45.22 394696 1555.05
I 3 25702 0.00 25702 43.08 25702 1233.50
I 4 2305 0.00 2305 54.95 2305 1394.50
I 5 24086 28.54 33707 55.58 33707 1515.24
I 6 136288 0.00 136288 47.19 136288 1544.77
I 7 707234 26.29 959455 1142.8 959455 1445.58
I 8 20816 0.00 20816 70.33 20816 1462.24
I 9 97586 0.00 97586 128.54 97586 1577.79
I 10 80027 24.70 106274 859.68 106274 1745.08
I 11 412877 82.68 2434331 1225.75 2383478 1548.49
I 12 604160 13.30 696805 428.97 696805 1505.05
I 13 1020957 0.00 1020957 70.28 1020957 1484.74
I 14 407439 0.00 407439 617.8 407439 1729.00
I 15 1268739 12.75 1454166 2035.72 1454166 1615.52
I 16 773924 0.00 773924 284.15 776526 1615.68
I 17 528173 9.16 581404 228.03 581404 1607.26
I 18 32662 1.77 33251 281.08 33251 1366.23
I 19 232434 10.47 1082993 3600 259614 1446.79

delayed tours up to roughly 10%. Reducing delayed tours indicates a decent improvement as
tour delays lead to large costs in practice. Furthermore, as the instances are not easy and
the manual planning is done by experienced planners, a 10% reduction can be considered as
a good enhancement.

8 Conclusion

In this work, we introduced a novel real-life PMSP from the agricultural industry and
provided a set of challenging real-life instances that we gathered from industrial partners.

We proposed a direct- and an interval variable based CP approach as well as a MIQP
approach and thereby considered alternative modeling techniques to efficiently capture
unique aspects such as contamination constraints, optional cleaning jobs, and a tour tardiness
objective. Furthermore, we investigated a metaheuristic based on local search and simulated
annealing using problem specific neighborhood operators to approach large-scale instances.

An extensive experimental evaluation with the introduced real-life problem instances
shows that the CP approach using the interval variable based model was the overall best
performing exact method as it provided 9 optimal results and high-quality upper bounds for
most instances. Additionally, the metaheuristic could provide solutions to all instances and
thereby improved results of exact methods for two large-scale instances.

An interesting subject of future work could be to hybridize the proposed exact and
metaheuristic techniques within a large-neighborhood search based approach.

References
1 IBM ILOG CPLEX Optimization Studio 20.1.0. User’s manual for cplex, November 2021.

URL: https://www.ibm.com/docs/en/icos/20.1.0?topic=cplex-users-manual.
2 Ali Allahverdi. The third comprehensive survey on scheduling problems with setup times/costs.

European Journal of Operational Research, 246(2):345–378, October 2015.
3 Ali Allahverdi, Jatinder N. D Gupta, and Tariq Aldowaisan. A review of scheduling research

involving setup considerations. Omega, 27(2):219–239, April 1999.
4 Ali Allahverdi, C. T. Ng, T. C. E. Cheng, and Mikhail Y. Kovalyov. A survey of scheduling

problems with setup times or costs. European Journal of Operational Research, 187(3):985–1032,
June 2008.

CP 2022

https://www.ibm.com/docs/en/icos/20.1.0?topic=cplex-users-manual

41:16 Solving Parallel Machine Scheduling with Contamination Constraints

5 Abdoul Bitar, Stéphane Dauzère-Pérès, and Claude Yugma. Unrelated parallel machine
scheduling with new criteria: Complexity and models. Computers & Operations Research,
132:105291, August 2021.

6 Quang-Vinh Dang, Thijs van Diessen, Tugce Martagan, and Ivo Adan. A matheuristic for
parallel machine scheduling with tool replacements. European Journal of Operational Research,
291(2):640–660, June 2021.

7 Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2022. URL: https://www.
gurobi.com.

8 S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated Annealing. Science,
220(4598):671–680, May 1983.

9 Chuleeporn Kusoncum, Kanchana Sethanan, Rapeepan Pitakaso, and Richard F. Hartl.
Heuristics with novel approaches for cyclical multiple parallel machine scheduling in sugarcane
unloading systems. International Journal of Production Research, 59(8):2479–2497, April 2021.

10 Philippe Laborie. IBM ILOG CP Optimizer for Detailed Scheduling Illustrated on Three
Problems. In Willem-Jan van Hoeve and John N. Hooker, editors, Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems, Lecture
Notes in Computer Science, pages 148–162, Berlin, Heidelberg, 2009. Springer.

11 Philippe Laborie, Jérôme Rogerie, Paul Shaw, and Petr Vilím. IBM ILOG CP optimizer for
scheduling. Constraints, 23(2):210–250, April 2018.

12 Maximilian Moser, Nysret Musliu, Andrea Schaerf, and Felix Winter. Exact and metaheuristic
approaches for unrelated parallel machine scheduling. Journal of Scheduling, December 2021.

13 Juan C. Yepes-Borrero, Federico Perea, Rubén Ruiz, and Fulgencia Villa. Bi-objective parallel
machine scheduling with additional resources during setups. European Journal of Operational
Research, 292(2):443–455, July 2021.

14 Pinar Yunusoglu and Seyda Topaloglu Yildiz. Constraint programming approach for multi-
resource-constrained unrelated parallel machine scheduling problem with sequence-dependent
setup times. International Journal of Production Research, 0(0):1–18, February 2021.

A Benchmark Instances

Table 5 summarizes the features of the 19 problem instances that directly represent real-life
scheduling scenarios from our industry partners. The table displays in each row the instance
id (I1-I19), the number of jobs (|J |) , the number of machines (|M |), the number of tours
(|T |), and the number of contamination factors (|K|). Furthermore, Table 5 also includes the
number of variables and constraints used in the direct CP model (Vars/Cons), the interval
based model (I.Vars/I.Cons), and the MIQP model (M.Vars/M.Cons). We see that the
MIQP formulation in general uses more variables but less constraints than the CP models.
Further, the interval based model uses slightly more variables and constraints compared to
the direct CP model.

B Programmed Search Strategies

We evaluated several search strategies for the direct- and interval variable based CP models
together with CPoptimizer. These search strategies are based on variable- and value selection
heuristics, which determine the order of the explored variables and the value assignments.
This can play a critical role in reducing the search space that needs to be enumerated by the
CP solver. As the search strategies define heuristics only on a subset of all variables, the
solver’s default strategy is used after all mentioned variables were fixed. Furthermore, ties
are broken lexicographically. Table 6 describes the search strategies used with the direct-
and interval variable based models.

https://www.gurobi.com
https://www.gurobi.com

F. Winter, S. Meiswinkel, N. Musliu, and D. Walkiewicz 41:17

Table 5 Size parameters of the real-life benchmark instances.

Inst. |J | |M | |T | |K| Vars Cons I.Vars I.Cons M.Vars M.Cons
I 1 26 2 41 58 874 5267470 897 5268554 183289 43798
I 2 16 2 37 58 824 5267209 840 5267828 110164 28379
I 3 15 2 37 58 819 5267184 833 5267761 76058 26854
I 4 18 2 34 58 834 5267264 846 5267965 68021 31473
I 5 28 2 42 58 884 5267522 907 5268710 199545 47099
I 6 21 2 43 58 849 5267341 869 5268178 152501 36753
I 7 76 2 76 58 1124 5268762 1174 5273691 764573 132270
I 8 67 2 78 58 1079 5268529 1128 5272594 658176 115596
I 9 77 2 82 58 1129 5268790 1181 5273814 808008 135722
I 10 94 2 82 58 1214 5269230 1274 5276173 1097447 171276
I 11 61 2 74 58 1049 5268380 1096 5271881 590600 104791
I 12 78 2 90 58 1134 5268816 1200 5273945 884457 137331
I 13 67 2 92 58 1079 5268535 1141 5272580 706558 114135
I 14 68 2 85 58 1084 5268557 1131 5272703 653867 116774
I 15 63 2 90 58 1059 5268428 1115 5272113 647114 107794
I 16 65 2 69 58 1069 5268478 1119 5272341 640025 111787
I 17 66 2 70 58 1074 5268506 1121 5272460 630976 112971
I 18 65 2 73 58 1069 5268481 1121 5272351 645552 111137
I 19 60 2 71 58 1044 5268350 1099 5271769 607280 101845

Table 7 summarizes the results on the 19 instances for all evaluated search strategies
with the direct- and interval variable based CP models. Each row shows results for a single
search strategy, where Columns 1-5 display from left to right: The model and search strategy
(Search), the number of optimal solutions achieved (O), the number of solutions achieved
(S), the number of best upper bounds achieved when compared with other strategies using
the same model (B), and the number of provided optimality proofs.

The results displayed in Table 7 show that the direct model could find solutions for 16
instances with the solver’s default search strategy, whereas other strategies could solve less
problem instances, even though direct-search1 could find more optimal solutions and best
upper bounds. No search strategy was able to prove an optimum with the direct model
(lower bounds achieved with the interval model were used to determine how many optimal
solutions were found with the direct formulation). As direct-default could solve the most
instances, we only present detailed results achieved by this strategy with the direct model in
Section 7.

We further see in the results shown in Table 7 that the interval variable based model could
successfully solve 18 instances with several search strategies, whereas the solver’s default
strategy could solve 13 instances. The search strategies interval-search3 and interval-search7
produced the overall best results as they could find 9 optimal solutions, achieved the best
upper bounds for 18 instances, and provided 8 optimality proofs. Actually, they achieved
the exact same upper bounds, and produced different lower bounds only for two instances.
Both search types fix sequence variables first, which indicates that this was the most efficient
strategy in our experiments. In Section 7 whenever we refer to the best results produced with
the interval variable based model we mean results achieved by the interval-search3 strategy,
only for the best lower bounds presented in Table 3 we combined the best bounds achieved
with interval-search3 and interval-search7.

CP 2022

41:18 Solving Parallel Machine Scheduling with Contamination Constraints

Table 6 Search strategies for the direct- and interval variable based CP models.

Search Strategy Description
direct-default Uses the solver’s default search strategy for the direct model.
direct-search1 Starts with the assignment of all x decision variables. Variables with the

smallest values in their domains are selected first and a minimum value first
strategy is used for value selection.

direct-search2 As direct-search1, but uses a smallest domain size variable selection heuristic
instead of the smallest domain value strategy.

direct-search3 As direct-search1, but operates on the start instead of the x variables.
direct-search4 As direct-search2, but operates on the start instead of the x variables.
direct-search5 As direct-search1, but operates on the endT our instead of the x variables.
direct-search6 As direct-search1, but operates on the end instead of the x variables.
direct-search7 As direct-search2, but operates on the end instead of the x variables.
interval-default Uses the solver’s default search strategy for the interval variable model.
interval-search1 Assigns values to the xm interval variables first. Each interval chooses a

presence status first and then assigns a start- and end time. Interval variables
with a small start- and end date are fixed first.

interval-search2 As interval-search1, but operates on the x instead of the xm variables.
interval-search3 Assigns values to the π sequence variables first. Thereby, the full order of

intervals associated to the sequences and the presence status of each interval
are fixed before start- and end times are assigned in a later search phase.

interval-search4 As interval-search1, but operates on the xc instead of the xm variables.
interval-search5 Starts with interval-search3 and then continues with interval-search1.
interval-search6 Starts with interval-search3 and then continues with interval-search2.
interval-search7 Starts with interval-search3 and then continues with interval-search4.

Table 7 Summarized results produced with different programmed search strategies.

Search O S B P
direct-default 4 16 9 0
direct-search1 6 12 11 0
direct-search2 4 14 9 0
direct-search3 0 5 0 0
direct-search4 0 5 0 0
direct-search5 0 5 0 0
direct-search6 0 6 0 0
direct-search7 0 6 0 0

Search O S B P
interval-direct 9 13 11 8
interval-search1 7 11 9 6
interval-search2 4 6 5 4
interval-search3 9 18 18 8
interval-search4 6 12 7 5
interval-search5 9 18 17 8
interval-search6 9 18 17 7
interval-search7 9 18 18 8

	p000-Frontmatter
	Preface
	Senior Program Committee
	Program Committee

	p001-Knuth
	p002-Asimi
	1 Introduction
	1.1 Model checking problem parametrized by the model
	1.2 Promise model checking problem
	1.3 Contributions

	2 Preliminaries
	3 Promise model checking
	3.1 Model checking problem
	3.2 Promise model checking problem
	3.3 Interesting fragments

	4 Existential positive fragment
	4.1 Characterization of templates and p-L-definability
	4.2 Complexity classification

	5 Positive fragment
	5.1 Witnesses for quantified formulas
	5.2 Characterization of templates and p-L-definability
	5.3 Membership
	5.4 Hardness
	5.5 Summary and examples

	6 Conclusion
	A Proof of Proposition 16

	p003-Balcan
	1 Introduction
	1.1 Summary of main contributions
	1.2 Additional related research

	2 Main tree search model
	2.1 General model of tree search
	2.2 Problem formulation

	3 Generalization guarantees for tree search
	3.1 Multiple actions

	4 Branch-and-cut for integer programming
	4.1 Branching
	4.1.1 Multivariable branching constraints
	4.1.2 Branching on general disjunctions

	4.2 Cutting planes
	4.2.1 Experiments on cover cuts for the multiple knapsack problem

	4.3 Improved bounds for branch-and-cut
	4.3.1 Comparison to existing bounds

	5 Conclusions and future research
	A Analysis of {A}'
	B Multiple actions

	p004-Barto
	1 Introduction
	1.1 Promise Valued CSP
	1.2 Contributions

	2 Preliminaries
	2.1 CSP and PCSP
	2.2 PVCSP
	2.3 Linear programming relaxations
	2.4 Polymorphisms
	2.5 Graph of an input, iterated degree, distributed model

	3 Fractional homomorphisms and SA^1
	4 The decomposition theorem
	5 Main result
	6 Conclusion

	p005-Basrur
	1 Introduction
	2 Problem Formulation and Statement
	3 Approach
	3.1 Vessel Trajectory Optimization
	3.2 Trajectory Generation

	4 Experiments
	4.1 Trajectory Generation
	4.2 Path Planning

	5 Conclusion

	p006-Beldiceanu
	1 Introduction
	2 Conjectures map as a symbolic piece of knowledge
	3 A Bound Seeker
	3.1 Overview of the map acquisition system
	3.2 A constraint approach for acquiring symbolic equations
	3.2.1 A parameterised candidate formulae generator for Phase (B1)
	3.2.2 Constraint model for acquiring a conjecture for formulae over polynomials for Phase (B2)

	4 Evaluation of the Bound Seeker
	5 Related work
	6 Conclusion
	A Map example

	p007-Beldjilali
	1 Introduction
	2 Hybrid Best-First Search
	3 Parallel HBFS
	3.1 Improving the ramp-up phase

	4 Experimental Results
	4.1 Comparison of parallel HBFS with its sequential version
	4.2 Comparison of parallel HBFS with integer programming
	4.3 Comparison of parallel HBFS with EPS on a cluster

	5 Conclusion

	p008-Berden
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Problem Statement
	5 Knowledge Compilation
	6 The Genetic Algorithm
	7 Experimental Evaluation
	8 Conclusion

	p009-Bessiere
	1 Introduction
	2 Background and Definitions
	3 Complexity of Explaining Arc Inconsistency: Structure
	3.1 Tractability on degree-2 CSPs
	3.2 Intractability on CSPs with four variables
	3.3 Intractability and inapproximability on trees

	4 Complexity of Explaining Arc Inconsistency: Domain Size
	4.1 Tractability on Boolean domains
	4.2 Intractability on domains with three values

	5 Conclusion

	p010-Boudreault
	1 Introduction
	2 Problem Description
	3 Background
	3.1 Scheduling
	3.2 Constraint Programming
	3.3 Solution-Based Phase Saving
	3.4 RCPSP Complexity

	4 Methodology
	4.1 Main model
	4.2 Extensions
	4.3 Search Heuristics

	5 Experimentation
	6 Discussion
	7 Conclusion

	p011-Carbonnel
	1 Introduction
	2 Preliminaries
	3 Redundancy-preserving reductions
	4 Pattern partial polymorphisms and redundancy
	5 A classification for languages with maximum non-redundancy
	6 Conclusion

	p012-Cherif
	1 Introduction
	2 Preliminaries
	2.1 Definitions and Notations
	2.2 Resolution for SAT
	2.3 Resolution for Max-SAT

	3 Crossing-Free Resolution
	4 From Crossing-Free Resolution to Max-SAT Resolution
	5 On (k-stacked) Diamond Patterns
	6 Conclusion

	p013-Cooper
	1 Introduction
	2 Preliminaries
	2.1 Automated Planning
	2.2 Complexity Class GI
	2.3 Graph encodings into STRIPS

	3 STRIPS Isomorphism Problem
	4 The STRIPS Subinstance isomorphism problem
	5 An algorithm for SSI
	5.1 Pruning invalid associations
	5.2 Encoding into a SAT instance

	6 Experimental evaluation
	7 Conclusion

	p014-Coppe
	1 Introduction
	2 Problem Definition
	2.1 SRFLP
	2.2 cSRFLP

	3 Mixed-Integer Programming Model
	4 Dynamic Programming Model
	4.1 SRFLP
	4.2 cSRFLP

	5 Decision Diagram Representation
	6 Branch-and-Bound
	6.1 Primal Upper Bound Heuristic
	6.2 Lower Bound
	6.2.1 Free departments layout cost
	6.2.2 Cost with respect to fixed departments
	6.2.3 Refining the lower bound

	6.3 A Breadth-First Branch-and-Bound

	7 Computational Experiments
	8 Conclusion

	p015-Coulombe
	1 Introduction
	2 General Background
	3 The CABSC approach
	3.1 Definition of a Meta-CSP

	4 Framework
	4.1 The Language
	4.2 The Solver

	5 Experiments
	5.1 Implementation
	5.2 Instances
	5.3 Experimental Setup

	6 Results and Discussion
	6.1 Accuracy
	6.2 Execution Time
	6.2.1 Using GANAK alone
	6.2.2 Using both GANAK and ApproxMC4

	6.3 Potential Improvements

	7 Conclusion

	p016-Cseh
	1 Introduction
	1.1 Literature review
	1.1.1 Relaxing stability
	1.1.2 Costs and preference negotiation in stable matching problems
	1.1.3 3DSM-CYC
	1.1.4 CP models for 3DSM-CYC

	1.2 Our contribution

	2 Notation and problem definitions
	2.1 Problem definition
	2.2 Relaxing stability
	2.2.1 Almost stable matchings
	2.2.2 Accommodating elements

	2.3 Matching costs

	3 Methodology
	3.1 Soft DIV-ranks model
	3.2 Soft HS model

	4 Experimental results
	4.1 Dataset
	4.1.1 Preference lists
	4.1.2 Cost formulas

	4.2 Scalability

	5 Conclusion and future work
	A Scalability on larger instances

	p017-Curry
	1 Introduction
	2 DuelMIPs objectives
	2.1 Routing Objective
	2.2 Trust Objective

	3 Optimization Models
	3.1 Routing Model
	3.1.1 Incidental Flow Extraction

	3.2 Trust Model
	3.3 Integrated Approach

	4 Assessment
	5 Experimental Setup
	6 Results
	7 Conclusion

	p018-Dang
	1 Introduction
	2 Related Work
	3 Constraint-based Automated Instance Generation
	3.1 irace's Tuning Process
	3.2 AutoIG's Instance Generation Process
	3.3 Evaluating Graded and Discriminating Instances

	4 Case Studies
	5 Experimental Setup
	6 Results on graded instances
	6.1 Graded instance generation
	6.2 Comparison of Solver Performance on Graded Instances

	7 Results on Discriminating Instances
	8 Conclusions and Future Work

	p019-Delecluse
	1 Introduction
	2 Related Work
	3 Sequence Variable
	3.1 Sequence notations
	3.2 The sequence domain
	3.3 Implementation and data-structures

	4 Global constraints
	5 Experimental Results
	5.1 Dial-A-Ride Problem
	5.2 Patient Transportation Problem
	5.3 Traveling Salesman Problem With Time Windows

	6 Conclusions and future work

	p020-Dreier
	1 Introduction
	2 Preliminaries
	2.1 CSP
	2.2 Backdoors

	3 Backdoor Depth
	4 Technical Overview
	5 Separator Obstructions
	6 Winning Strategies and Algorithms
	7 Conclusion

	p021-Ek
	1 Introduction
	2 Background
	2.1 Combinatorial Optimisation
	2.2 Statistical Preliminaries
	2.3 Real Relaxation

	3 The Spread Constraint
	3.1 Lower Bound on Variance
	3.2 Algorithm and Clause Learning Explanations

	4 The Gini Coefficient
	4.1 Lower Bound on Gini Coefficient
	4.2 Algorithm and Clause Learning Explanations

	5 Experimental Evaluation
	5.1 Dispersion Only
	5.2 Job-Shop Scheduling

	6 Related Work
	7 Conclusion

	p022-Espasa
	1 Introduction
	2 Background
	2.1 Planning as Satisfiability

	3 Plotting
	4 Modelling Plotting in PDDL
	4.1 On Numeric Planning
	4.2 The PDDL Model

	5 Constraint Models in ESSENCE PRIME
	5.1 A Common Viewpoint
	5.2 Common Constraints
	5.3 An Action-focused Constraint Model of Plotting
	5.4 A State-focused Constraint Model of Plotting
	5.5 Symmetry Breaking
	5.6 An Implied Constraint

	6 Empirical Evaluation
	7 Conclusions and Further Work

	p023-Fargier
	1 Introduction
	2 Background and notations
	2.1 Representation languages
	2.2 CSPs
	2.3 Propositional Logic, CNFs
	2.4 Decision diagrams
	2.5 Operations
	2.6 Compilation of CSP/CNF into OMDD/OBDDs

	3 Nucleus-Satellites System of OMDD
	3.1 Definition
	3.2 Computing a satellite system
	3.3 Conditioning and maintaining GIC of an NSS of OMDDs

	4 Experimental results
	4.1 Product configuration benchmarks
	4.2 Diagnosis benchmarks
	4.3 Exploitation of the compiled form

	5 Related work
	6 Conclusion
	A Appendix: Proof of the main lemma

	p024-Gentzel
	1 Introduction
	2 Motivating Example
	3 Background
	4 Decision Diagram Refinement
	4.1 State Selection with Y
	4.2 Candidate Selection with Q and W
	4.3 Composing Heuristics
	4.3.1 Direct Composition
	4.3.2 Portfolio Composition
	4.3.3 Refinement Portfolio Options
	4.3.4 Refinement Portfolio with Constraint Ranking

	5 Layer Processing
	5.1 Reboot Distance
	5.2 Maximum Refinement Iterations

	6 Empirical Evaluation
	7 Conclusion

	p025-Gocht
	1 Why Trust a Constraint Programming Solver?
	2 The VeriPB Proof System
	2.1 Pseudo-Boolean Models
	2.2 Cutting Planes
	2.3 Unit Propagation and Reverse Unit Propagation
	2.4 Extension Variables and Redundance-Based Strengthening
	2.5 Satisfiable Instances, Enumeration, Optimisation, and Deletions

	3 Encoding Constraint Programming Models
	3.1 Variables
	3.2 Constraints

	4 Proofs for Search and Propagation
	4.1 RUP Justifications and Table Constraints
	4.2 Explicit Justifications and Integer Linear Inequalities
	4.3 Element Constraints
	4.4 Not Equals
	4.5 Autotabulation and Other Reformulations

	5 An Implementation
	5.1 Constraint Compilation, or Why Trust the OPB File?
	5.2 Producing the Proofs
	5.3 Identifying Solver Bugs
	5.4 Performance and Overheads

	6 Conclusion and Future Work

	p026-Heule
	1 Introduction
	2 Graph Coloring and Maximum Clique Problems
	3 CliColCom Algorithm
	3.1 IncMaxCLQ: Find an Initial Clique
	3.2 SAT-I: Find a Coloring
	3.3 SAT-II: Find a Larger Clique
	3.4 SAT-III: Find an Optimal Coloring
	3.5 Example Run

	4 SAT Solving Paradigms
	5 Experiments
	5.1 Maximum Clique Results
	5.2 Comparison with State-of-the-Art Graph Coloring
	5.3 Robustness, Variations, and Discussion

	6 Conclusion

	p027-Hidouri
	1 Introduction
	2 Formal Preliminaries
	2.1 High Utility Itemset Mining
	2.2 Propositional logic

	3 Computing High Utility Itemsets with Propositional Satisfiability
	3.1 A SAT Approach to Frequent High Utility Itemset Mining
	3.2 A SAT Approach to Frequent Local High Utility Itemset Mining
	3.3 SAT-based Enumeration for High Utility Mining
	3.4 A Decomposition-based Approach for FHUIM & FLHUIM

	4 Empirical Investigation
	4.1 Experimental setup
	4.2 Results on Mining FHUIs
	4.3 Results on Mining FLHUIs

	5 Conclusion
	A Appendix

	p028-Hoffmann
	1 Introduction
	2 Overarching Goal
	3 Methodology
	3.1 Participants
	3.2 Procedure, Tasks and Problem Selection
	3.3 Analysis Methodology
	3.4 A summary of the codes used in the analysis
	3.5 Coding Validation Analysis

	4 Findings
	4.1 Representation
	4.2 Process and Strategies
	4.3 Solution Verification and Multiple Solutions

	5 Limitations
	6 Discussion
	6.1 Representation, Representational Competence and Visualisation
	6.2 The Larger Context of Constraint Solving
	6.3 Human Thinking about Constraint Solving

	7 Related Work
	8 Conclusion

	p029-Kumar
	1 Introduction
	2 Related Work
	3 Learning constraints using COUNT-CP
	3.1 Background on COUNT-OR
	3.2 Learning propositional constraints
	3.3 Learning first-order constraints
	3.4 Symbolic expressions for bounds
	3.5 Filtering constraints

	4 Experiments
	5 Conclusion

	p030-Lafleur
	1 Introduction
	2 Background
	2.1 Recurrent Neural Network
	2.2 Reinforcement Learning and DDQNs
	2.3 CP-Based Belief Propagation
	2.4 Music Basics

	3 Related Work
	4 Sequence Generation with Hard Constraints
	4.1 CP models
	4.1.1 Variables and domains
	4.1.2 Constraints
	4.1.3 Marginals model
	4.1.4 Violations model

	4.2 Training the RNN
	4.3 RL-Tuner
	4.3.1 Restricting sampling to the feasible domain
	4.3.2 Reward functions

	5 Experiments
	5.1 Experimental Setup
	5.2 Comparing metrics to the RL-Tuner
	5.3 Without domain restrictions
	5.3.1 Combining violations and marginals

	5.4 With domain restriction
	5.5 Comparing constraints
	5.6 Comparing rewards

	6 Discussion and future work
	7 Conclusion

	p031-Lee
	1 Introduction
	2 Background
	3 Functional Constraints and Dominance
	4 Automatic Sufficient Condition Derivation
	4.1 General Decomposition
	4.2 Decomposition for Monotonic Functions
	4.3 Decomposition for Associative and Commutative Functions

	5 Experimental Evaluation
	6 Discovering Dominance Relations
	7 Concluding Remarks

	p032-Li
	1 Introduction
	2 Background
	3 Related Work
	4 Selecting An Efficient VOH for a CSP
	4.1 The Measurements for Selecting An Efficient VOH
	4.2 A Portfolio-Based Probing

	5 Experiments
	6 Conclusion
	A Details of The Experiments
	A.1 Environment
	A.2 Benchmark
	A.3 Restart
	A.4 Searching
	A.5 Other Details

	p033-Lopez
	1 Introduction
	2 Literature Review
	2.1 Proactive Approaches
	2.1.1 With detailed uncertainty information
	2.1.2 Without detailed uncertainty information

	2.2 Large Neighbourhood Search

	3 Background
	3.1 Constraint Satisfaction Problems
	3.2 Robust Solutions by Feasible Neighbour Values
	3.3 Objective Function
	3.4 A case study: robust Scheduling

	4 LNS for Robust Solutions (LNSR)
	4.1 The Main Iterative Process
	4.2 Neighborhood Selection Heuristic
	4.3 Optimization Algorithm
	4.4 Robust Value Selection Heuristic

	5 Evaluation
	5.1 Experimental Settings
	5.2 Evaluation with General CPSs
	5.3 Evaluation with Scheduling Instances

	6 Conclusions and Future Work

	p034-Popovic
	1 Introduction
	2 Modelling the Transmission Maintenance Scheduling Problem
	2.1 Decision Variables
	2.2 Constraints
	2.3 Objective Functions

	3 Solving the Transmission Maintenance Scheduling Problem
	4 Experimental results
	4.1 Visualization of a Feasible Schedule
	4.2 Visualization of an Unfeasible Schedule
	4.3 Evaluating the Similarity with the Historical Schedule
	4.4 Evaluating the Schedule Balance
	4.5 Evaluating the Overlaps between Equipment Withdrawals

	5 Conclusion and perspective
	A Appendix: Solutions at Other Interfaces

	p035-Rudich
	1 Introduction
	2 Technical Background
	2.1 Decision Diagrams (DDs)
	2.2 Restricted Decision Diagrams
	2.3 Relaxed Decision Diagrams
	2.4 Branch-and-Bound with Decision Diagrams

	3 Peel-and-Bound Algorithm
	3.1 Advantages and Implementation Decisions
	3.2 Limitations and Handling Memory
	3.3 Integrating Rough Relaxed Bounds

	4 Experiments on the Sequence Ordering Problem
	4.1 Description of the Heuristics Considered
	4.2 Experimental Results

	5 Conclusion and Future Work
	A Experimental Data

	p036-Soos
	1 Introduction
	2 Notation and Background
	3 A Quantitative Tester
	3.1 Computational Hardness
	3.2 From Kernel to Shakuni
	3.3 Formulas with Computational Hardness Measure

	4 Algorithmic Description
	4.1 Theoretical Analysis

	5 Experimental Evaluation
	5.1 Performance of ScalBarbarik
	5.2 Achieving Balance between Scalability and Uniformity

	6 Conclusion

	p037-Trosser
	1 Introduction
	2 Background
	2.1 Bayesian Networks
	2.2 CP-based BNSL

	3 Related work
	4 Decision Trees as domain store
	5 Experimental Results
	6 Conclusion

	p038-Ulrich-Oltean
	1 Introduction
	1.1 Contributions
	1.2 Preliminaries

	2 Learning to Choose SAT Encodings
	2.1 SAT Encodings
	2.1.1 PB(AMO) Encodings
	2.1.2 Tree Encoding

	2.2 Instance Features
	2.3 Problem Corpus
	2.4 Training

	3 Empirical Investigation
	3.1 Solving Problem Instances and Extracting Features
	3.2 Cleaning the Dataset
	3.3 Splitting the Corpus, Training and Predicting
	3.4 Evaluating the Performance of Predicted Encodings
	3.5 Results and Discussion
	3.6 Comparison with AutoFolio
	3.7 Feature Importance

	4 Related Work
	5 Conclusions and Future Work

	p039-Wang
	1 Introduction
	2 Background
	2.1 Distributed Constraint optimization Problems
	2.2 Pseudo Tree
	2.3 Tree-based Complete Synchronous Search Algorithms
	2.4 Caching Scheme in Any-space NCBB

	3 Proposed Method
	3.1 Motivation
	3.2 Retention Scheme
	3.3 Cache Replacement Scheme

	4 Theoretical Results
	4.1 Complexity

	5 Empirical Evaluation
	5.1 Experimental Configuration
	5.2 Experimental Results

	6 Conclusion

	p040-Wang
	1 Introduction
	2 Preliminaries
	2.1 CNF encoding and unit propagation strength

	3 BCT versus MDD on representing NFA constraints
	3.1 Direct tree binary encoding

	4 CNF encodings for binary constraints
	4.1 Log encoding
	4.2 Direct encoding
	4.3 Support encoding

	5 CNF encoding for BCT constraints
	5.1 Encodings from binary constraints
	5.2 Partial support encoding
	5.3 Minimal support encoding

	6 Experiments
	6.1 Benchmark Series 1: NFA
	6.2 Benchmark Series 2: Pentominoes
	6.3 Benchmark Series 3: Nurse scheduling
	6.4 Benchmark Series 4: XCSP

	7 Conclusion
	A Appendix: Proofs

	p041-Winter
	1 Introduction
	2 Problem Description
	3 Constraint Programming Formulation
	3.1 Decision Variables
	3.2 Constraints
	3.3 Objective Function

	4 Mixed Integer Quadratic Programming Model
	4.1 Decision Variables
	4.2 Constraints
	4.3 Objective Function

	5 Alternative Constraint Programming Model using Interval Variables
	5.1 Decision Variables
	5.2 Constraints
	5.3 Objective Function

	6 Metaheuristic Approach
	6.1 Solution Representation, Cost Function & Initial Solutions
	6.2 Search Neighborhoods
	6.3 Neighborhood Move Acceptance

	7 Experimental Evaluation
	7.1 Experimental Environment
	7.2 Computational Results

	8 Conclusion
	A Benchmark Instances
	B Programmed Search Strategies

