28th International Conference on
Principles and Practice of
Constraint Programming

CP 2022, July 31-August 8, 2022, Haifa, Israel

Edited by
Christine Solnon

\\v LIPICS

LIPlcs — Vol. 235 — CP 2022 www.dagstuhl.de/lipics

Editors

Christine Solnon
INSA Lyon, CITI, Inria Chroma, France
christine.solnon@insa-lyon.fr

ACM Classification 2012
Computing methodologies — Artificial intelligence

ISBN 978-3-95977-240-2

Published online and open access by
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik GmbH, Dagstuhl Publishing, Saarbriicken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-240-2.

Publication date
July, 2022

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPlcs.CP.2022.0

ISBN 978-3-95977-240-2 ISSN 1868-8969 https://www.dagstuhl.de/lipics

mailto:christine.solnon@insa-lyon.fr
https://www.dagstuhl.de/dagpub/978-3-95977-240-2
https://www.dagstuhl.de/dagpub/978-3-95977-240-2
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.CP.2022.0
https://www.dagstuhl.de/dagpub/978-3-95977-240-2
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

O:iii

LIPlcs — Leibniz International Proceedings in Informatics

LIPlcs is a series of high-quality conference proceedings across all fields in informatics. LIPlcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Reykjavik University, IS and Gran Sasso Science Institute, IT)
Christel Baier (TU Dresden, DE)

Mikolaj Bojanczyk (University of Warsaw, PL)

Roberto Di Cosmo (Inria and Université de Paris, FR)

Faith Ellen (University of Toronto, CA)

Javier Esparza (TU Miinchen, DE)

Daniel Kral' (Masaryk University - Brno, CZ)

Meena Mahajan (Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)

Chih-Hao Luke Ong (University of Oxford, GB)

Phillip Rogaway (University of California, Davis, US)

Eva Rotenberg (Technical University of Denmark, Lyngby, DK)

Raimund Seidel (Universitat des Saarlandes, Saarbriicken, DE and Schloss Dagstuhl — Leibniz-Zentrum
fur Informatik, Wadern, DE)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

CP 2022

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface

Christine SOINOm

Senior Program Committee

Invited Talk

All Questions Answered
Donald E. Knuth e

Regular Papers

Fixed-Template Promise Model Checking Problems
Kristina Asimi, Libor Barto, and Silvia Buttio

Improved Sample Complexity Bounds for Branch-And-Cut
Maria-Florina Balcan, Siddharth Prasad, Tuomas Sandholm, and
Ellen Vitercik e e

Weisfeiler-Leman Invariant Promise Valued CSPs
Libor Barto and Silvia Butti

Trajectory Optimization for Safe Navigation in Maritime Traffic Using Historical
Data
Chaithanya Basrur, Arambam James Singh, Arunesh Sinha, Akshat Kumar,

and T. K. Satish Kumar oo

Acquiring Maps of Interrelated Conjectures on Sharp Bounds
Nicolas Beldiceanu, Jovial Cheukam-Ngouonou, Rémi Douence, Ramiz Gindullin,

and Claude-Guy QUIMPET e

Parallel Hybrid Best-First Search
Abdelkader Beldjilali, Pierre Montalbano, David Allouche, George Katsirelos,
and STmon de GIUTYo e

Learning MAX-SAT Models from Examples Using Genetic Algorithms and
Knowledge Compilation
Senne Berden, Mohit Kumar, Samuel Kolb, and Tias Guns

Complexity of Minimum-Size Arc-Inconsistency Explanations
Christian Bessiere, Clément Carbonnel, Martin C. Cooper,

and Emmanuel Hebrard

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

1:1-1:1

2:1-2:17

3:1-3:19

4:1-4:17

5:1-5:17

6:1-6:18

7:1-7:10

8:1-8:17

9:1-9:14

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

A Constraint Programming Approach to Ship Refit Project Scheduling
Raphaél Boudreault, Vanessa Simard, Daniel Lafond, and

Claude-Guy QUIMPET ..ot e e e 10:1-10:16
On Redundancy in Constraint Satisfaction Problems

Clément Carbonnel 11:1-11:15
From Crossing-Free Resolution to Max-SAT Resolution

Mohamed Sami Cherif, Djamal Habet, and Matthieuw Py 12:1-12:17
Isomorphisms Between STRIPS Problems and Sub-Problems

Martin C. Cooper, Arnaud Lequen, and Frédéric Maris 13:1-13:16
Solving the Constrained Single-Row Facility Layout Problem with Decision
Diagrams

Vianney Coppé, Xavier Gillard, and Pierre Schausc.ocii... 14:1-14:18

Constraint Acquisition Based on Solution Counting
Christopher Coulombe and Claude-Guy Quimperc.ccoiiiiiiiiiiion. 15:1-15:16

Computing Relaxations for the Three-Dimensional Stable Matching Problem
with Cyclic Preferences
Agnes Cseh, Guillawume Escamocher, and Luis Quesada 16:1-16:19

DUELMIPs: Optimizing SDN Functionality and Security
Timothy Curry, Gabriel De Pace, Benjamin Fuller, Laurent Michel, and
Yan (Lindsay) SUmou oo 17:1-17:18

A Framework for Generating Informative Benchmark Instances
Nguyen Dang, Ozgiir Akgiin, Joan Espasa, Ian Miguel, and Peter Nightingale 18:1-18:18

Sequence Variables for Routing Problems
Augustin Delecluse, Pierre Schaus, and Pascal Van Hentenryck 19:1-19:17

CSP Beyond Tractable Constraint Languages
Jan Dreier, Sebastian Ordyniak, and Stefan Szeider 20:1-20:17

Explaining Propagation for Gini and Spread with Variable Mean
Alexander Ek, Andreas Schutt, Peter J. Stuckey, and Guido Tack 21:1-21:16

Plotting: A Planning Problem with Complex Transitions
Joan Espasa, Ian Miguel, and Mateu Villaret 22:1-22:17

Nucleus-Satellites Systems of OMDDs for Reducing the Size of Compiled Forms
Héléne Fargier, Jérome Mengin, and Nicolas Schmidt 23:1-23:18

Heuristics for MDD Propagation in HADDOCK
Rebecca Gentzel, Laurent Michel, and Willem-Jan van Hoeve 24:1-24:17

An Auditable Constraint Programming Solver
Stephan Gocht, Ciaran McCreesh, and Jakob Nordstrom 25:1-25:18

From Cliques to Colorings and Back Again
Marijn J. H. Heule, Anthony Karahalios, and Willem-Jan van Hoeve 26:1-26:10

On the Enumeration of Frequent High Utility Itemsets: A Symbolic AI Approach
Amel Hidourt , Said Jabbour, and Badran Raddaouicc..... 27:1-27:17

Contents 0:vii

Understanding How People Approach Constraint Modelling and Solving
Ruth Hoffmann, Xu Zhu, Ozgiir Akgiin, and Miguel A. Nacenta 28:1-28:18

Learning Constraint Programming Models from Data Using
Generate-And-Aggregate
Mohit Kumar, Samuel Kolb, and Tias GUNSouiiiiiiiie i 29:1-29:16

Combining Reinforcement Learning and Constraint Programming for
Sequence-Generation Tasks with Hard Constraints
Daphné Lafleur, Sarath Chandar, and Gilles Pesant 30:1-30:16

Exploiting Functional Constraints in Automatic Dominance Breaking for
Constraint Optimization
Jimmy H. M. Lee and Allen Z. ZRONG ...t 31:1-31:17

A Portfolio-Based Approach to Select Efficient Variable Ordering Heuristics for
Constraint Satisfaction Problems
Hongbo Li, Yaling Wu, Minghao Yin, and Zhanshan Lt 32:1-32:10

Large Neighborhood Search for Robust Solutions for Constraint Satisfaction
Problems with Ordered Domains
Jheisson Lopez, Alejandro Arbelaez, and Laura Climent 33:1-33:16

Scheduling the Equipment Maintenance of an Electric Power Transmission
Network Using Constraint Programming
Louis Popovic, Alain Coté, Mohamed Gaha, Franklin Nguewouo, and
Quentin Cappart 34:1-34:15

Peel-And-Bound: Generating Stronger Relaxed Bounds with Multivalued
Decision Diagrams
Isaac Rudich, Quentin Cappart, and Louis-Martin Rousseau 35:1-35:20

On Quantitative Testing of Samplers
Mate Soos, Priyanka Golia, Sourav Chakraborty, and Kuldeep S. Meel 36:1-36:16

Structured Set Variable Domains in Bayesian Network Structure Learning
Fulya Trosser, Simon de Givry, and George Katsirelos 37:1-37:9

Selecting SAT Encodings for Pseudo-Boolean and Linear Integer Constraints
Feliz Ulrich-Oltean, Peter Nightingale, and James Alfred Walker 38:1-38:17

Completeness Matters: Towards Efficient Caching in Tree-Based Synchronous
Backtracking Search for DCOPs
Jie Wang, Dingding Chen, Ziyu Chen, Xiangshuang Liu, and Junsong Gao 39:1-39:17

CNF Encodings of Binary Constraint Trees
Ruiwei Wang and Roland H. C. Yap ... 40:1-40:19

Modeling and Solving Parallel Machine Scheduling with Contamination
Constraints in the Agricultural Industry
Felix Winter, Sebastian Meiswinkel, Nysret Musliu, and Daniel Walkiewicz 41:1-41:18

CP 2022

Preface

This volume contains the proceedings of the 28th International Conference on Principles and
Practice of Constraint Programming (CP 2022), which was held in Haifa, Israel, August 1-5,
2022. Detailed information about the conference are available at https://cp2022.a4cp.org.
CP 2022 was part of the Federated Logic Conference (FLoC) which is held every four years and
brings together several leading international conferences related to logic for computer science.
FLoC 2022 included 12 conferences, and CP was colocated with the 25th International
Conference on Theory and Applications of Satisfiability Testing (SAT 2022) and the 38th
International Conference on Logic Programming (ICLP 2022), among other conferences.

Held annually, CP is the premier international conference on constraint programming.
As is customary for CP, papers could be submitted to multiple tracks. A first technical track
was concerned with all aspects of computing with constraints, including theory, algorithms,
environments, languages, models, and systems. A second track, chaired by Helmut Simonis
(University College Cork), was dedicated to applications of CP. The last three tracks were
dedicated to interdisciplinary research at the intersection between constraint programming
and other directly related fields: a Machine Learning track, chaired by Andrea Lodi (Cornell
Tech), an Operations Research track, chaired by Sophie Demassey (Mines ParisTech), and a
Trustworthy Decision Making track, co-chaired by Nadjib Lazaar (LIRMM), Pierre Marquis
(Université d’Artois), and Barry O’Sullivan (University College Cork).

78 papers have been submitted to these tracks, and 40 of them have been accepted.
Each paper has been reviewed by at least three members of the program committee. We
considered a double blind reviewing process, meaning that authors and reviewers were
anonymous to each other. Authors had the opportunity to answer reviewers and clarify
possible misunderstandings through a rebuttal phase. For each paper, a senior program
committee member was in charge of conducting a discussion with reviewers to find a consensus,
and of writing a meta-review that summarised pros and cons. Finally, virtual meetings were
organised between meta-reviewers, track chairs, and the program chair to agree on final
decisions.

Four papers that had an average score greater than or equal to 2 (possible scores ranged
from 3, corresponding to a strong accept, to —3, corresponding to a strong reject) were
nominated by at least one program committee member for receiving a best paper award:

Selecting SAT Encodings for Pseudo-Boolean and Linear Integer Constraints, from Felix

Ulrich-Oltean, Peter Nightingale and James Alfred Walker;

A Constraint Programming Approach to Ship Refit Project Scheduling, from Raphaél

Boudreault, Vanessa Simard, Daniel Lafond and Claude-Guy Quimper;

Ezxploiting Functional Constraints in Generating Dominance Breaking Nogoods for Con-

straint Optimization, from Jimmy H. M. Lee and Allen Z. Zhong;

Peel-and-Bound: Generating Stronger Relazed Bounds with Multivalued Decision Dia-

grams, from Isaac Rudich, Quentin Cappart and Louis-Martin Rousseau.

The best two of them have been selected by a vote of senior PC members: the best paper
prize was awarded to Isaac Rudich, Quentin Cappart and Louis-Martin Rousseau, and the
best student paper prize was awarded to Jimmy H. M. Lee and Allen Z. Zhong.

We had the great honour and pleasure to have an invited talk given by Donald E. Knuth
(Stanford University), whose next fascicle of The Art of Computer Programming is intended
to be a solid introduction to techniques for solving Constraint Satisfaction Problems. An

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://cp2022.a4cp.org
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Preface

abstract of this talk is included in these proceedings. There was also two plenary FLoC
invited speakers: Catuscia Palamidessi (INRIA Saclay, France), and Orna Kupferman
(Hebrew University of Jerusalem, Israel).

Besides the paper tracks and invited talks, CP also had many other events, handled by
special chairs: Ciaran McCreesh (University of Glasgow) organised the three workshops on
the first day of the conference; Clément Carbonnel (LIRMM) selected tutorials for the main
conference; Héléne Verhaeghe (Polytechnique Montréal) organised the Doctoral Program;
Andrea Rendl (Satalia) organised a special event on diversity, equity, and inclusion; Eugene
Freuder organised a CP App competition; Jason Nguyen, Peter J. Stuckey and Guido Tack
(Monash University) organised the MiniZinc challenge; and Gilles Audemard, Christophe
Lecoutre, and Emmanuel Lonca (Université d’Artois) organised the XCSP3 competition
(both MiniZinc and XCSP3 competitions were part of the FLoC Olympic Games).

Many people have contributed to make this conference such a success, and I am grateful
to all of them. First of all, I wish to thank all authors for their submission of high-quality
scientific work, thus providing the material from which the conference is made. I am also very
grateful to all chairs, who managed dedicated tracks and special events, to the senior Program
Committee members who conducted numerous discussions with reviewers to reach consensual
decisions, among other things, and to the Program Committee members who wrote 243
high-quality reviews and participated to numerous discussions. I would also like to thank the
Association for Constraint Programming (ACP) for its trust and its very helpful organisation
support, with a more specific thank to the ACP president, J. Christopher Beck (University
of Toronto), and the ACP conference coordinator, Emmanuel Hebrard (LAAS-CNRS).

Finally, the conference would not have been possible without the great job done by all
the people involved in the local organisation chaired by Alexandra Silva (Cornell University).
I heavily relied on Roie Zivan (Ben Gurion University) and Ferdinando Fioretto (Syracuse
University) for making the many necessary arrangements related to the CP 2022 program
and to speedily announce program updates on the conference website.

May 2022, Lyon, France Christine Solnon

Senior Program Committee

André Ciré

David Cohen
Sophie Demassey
Ferdinando Fioretto
Pierre Flener

Maria Garcia de la Banda
Tan Gent

Emmanuel Hebrard
Zeynep Kiziltan
Christophe Lecoutre
Andrea Lodi

Ines Lynce

Barry O’Sullivan
Pierre Schaus
Helmut Simonis
Charlotte Truchet
Willem Van Hoeve
Roland Yap

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).

Editor: Christine Solnon

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

University of Toronto
Oxford University
CMA research lab
Syracuse University
Uppsala University
Monash University
University of St. Andrews
LAAS-CNRS
University of Bologna
Université d’Artois
Cornell Tech

University of Lisboa
University College Cork
UCLouvain

Insight Centre for Data Analytics

University de Nantes
Carnegie Mellon University

National University of Singapore

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Program Committee

Gilles Audemard
Sebastien Bardin
Chris Beck

Nicolas Beldiceanu
Jeremias Berg
David Bergman
Armin Biere
Clément Carbonnel
Mats Carlsson
Martin Cooper
Thi-Bich-Hanh Dao
Simon de Givry
Guillaume Derval
Agostino Dovier
Catherine Dubois
Jean-Guillaume Fages
Maria Andreina Francisco Rodriguez
Xavier Gillard
Arnaud Gotlieb
Tias Guns

John Hooker
Marie-José Huguet
Alexey Ignatiev
Mikolas Janota
Christopher Jefferson
Serdar Kadioglu
Roger Kameugne
George Katsirelos
Lars Kotthoff

T. K. Satish Kumar
Jean Marie Lagniez
Nadjib Lazaar
Chu-Min Li

Arnaud Malapert
Felip Manya

Pierre Marquis
Ciaran McCreesh
Laurent Michel

Tan Miguel

Michela Milano
Samba Ndojh Ndiaye
Peter Nightingale
Justin Pearson
Laurent Perron
Gilles Pesant

CRIL

CEA LIST

University of Toronto

IMT Atlantique

University of Helsinki

University of Connecticut
Albert-Ludwigs-University

CNRS

RISE Research Institutes of Sweden
IRIT - Universite Paul Sabatier
University of Orleans

INRA - MIAT

Liege Université

Univ. di UDINE
ENSITE-Samovar

COSLING S.A.S

Uppsala University

Université Catholique de Louvain
Simula Research Laboratory

Vrije Universiteit Brussel
Carnegie Mellon University
LAAS-CNRS Université de Toulouse
Monash University

Czech Technical University in Prague
University of St. Andrews

Brown University

University of Maroua

MIA Paris INRAE AgroParisTech
University of Wyoming

University of Southern California
CRIL

UM2-LIRMM

Université de Picardie Jules Verne
Université Cote d’Azur CNRS 1I3S
IITA-CSIC

CRIL U. Artois & CNRS
University of Glasgow

University of Connecticut
University of St Andrews

DISI Universita’ di Bologna

Liris

University of York

Uppsala University

Google France

Polytechnique Montréal

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).

Editor: Christine Solnon

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Program Committee

Andreas Podelski
Enrico Pontelli
Cédric Pralet

Charles Prud’Homme
Claude-Guy Quimper
Louis-Martin Rousseau
Michel Rueher
Domenico Salvagnin
Alexander Schiendorfer
Francesca Rossi
Thomas Schiex
Andreas Schutt
Mohamed Siala
Laurent Simon

Gilles Simonin

Helge Spieker

Kostas Stergiou
Peter J. Stuckey
Guido Tack

Cyril Terrioux

Gilles Trombettoni
Peter van Beek
Hélene Verhaeghe
Petr Vilim

Philippe Vismara
Neng-Fa Zhou

University of Freiburg

New Mexico State University

ONERA Toulouse

IMT Atlantique LS2N

Laval University

Polytechnique Montréal

Université Céte d’Azur CNRS I3S
University of Padova

Technische Hochschule Ingolstadt

IBM Research

INRAE

CSIRO and The University of Melbourne
INSA Toulouse & LAAS-CNRS

Labri Bordeaux Institute of Technology
Institut Mines Telecom - Atlantique
Simula Research Laboratory

University of Western Macedonia
Monash University

Monash University

LIS - UMR CNRS 7020 - Aix-Marseille Université
LIRMM University of Montpellier
University of Waterloo

Polytechnique Montréal

IBM Czech

SupAgro - MISTEA / LIRMM

CUNY Brooklyn College and Graduate Center

List of Authors

Ozgiir Akgiin © (18, 28)
School of Computer Science,
University of St Andrews, UK

David Allouche (7)
Université Fédérale de Toulouse, ANITI,
INRAE, UR 875, 31326 Toulouse, France

Alejandro Arbelaez (33)
Department of Computer Engineering,
Autonomous University of Madrid, Spain

Kristina Asimi (2)

Department of Algebra, Faculty of Mathematics
and Physics, Charles University, Prague,
Czechia

Maria-Florina Balcan (3)

Computer Science and Machine Learning
Departments, Carnegie Mellon University,
Pittsburgh, PA, USA

Libor Barto (2, 4)

Department of Algebra, Faculty of Mathematics
and Physics, Charles University, Prague,
Czechia

Chaithanya Basrur (5)
Singapore Management University, Singapore

Nicolas Beldiceanu (6)
IMT Atlantique, LS2N (TASC), Nantes, France

Abdelkader Beldjilali (7)
Université Fédérale de Toulouse, INRAE, UR
875, 31326 Toulouse, France

Senne Berden (8)
Declarative Languages and Artificial Intelligence,
KU Leuven, Belgium

Christian Bessiere 9)
CNRS, University of Montpellier, France

Raphaél Boudreault (10)
Thales Digital Solutions, Québec, Canada

Silvia Butti (2, 4)

Department of Information and Communication
Technologies, Universitat Pompeu Fabra,
Barcelona, Spain

Quentin Cappart (34, 35)
Computer Engineering and Software Engineering
Department, Polytechnique Montréal, Canada

Clément Carbonnel (9, 11)
CNRS, University of Montpellier, France

Sourav Chakraborty (36)
Indian Statistical Institute Kolkata, India

Sarath Chandar (30)

Polytechnique Montréal, Canada;

Quebec Artificial Intelligence Institute (Mila),
Canada;

Canada CIFAR AI Chair, Toronto, Canada

Dingding Chen (39)
College of Computer Science,
Chongging University, China

Ziyu Chen (39)
College of Computer Science,
Chongging University, China

Mohamed Sami Cherif © (12)
Aix-Marseille Univ, Université de Toulon, CNRS,
LIS, France

Jovial Cheukam-Ngouonou (6)
IMT Atlantique, LS2N (TASC), Nantes, France;
Université Laval, Québec, Canada

Laura Climent (33)
Department of Computer Engineering,
Autonomous University of Madrid, Spain

Martin C. Cooper (9, 13)
IRIT, University of Toulouse, France

Vianney Coppé (14)
UCLouvain, Louvain-la-Neuve, Belgium

Christopher Coulombe (15)
Université Laval, Québec, Canada

Agnes Cseh (16)
Institute of Economics, Centre for Economic and
Regional Studies, Budapest, Hungary

Timothy Curry (17)
University of Connecticut, Storrs, CT, USA

Alain Co6té (34)
IREQ, Varennes, Canada

Nguyen Dang (18)
School of Computer Science,
University of St Andrews, UK

Simon de Givry (7, 37)
Université Fédérale de Toulouse, ANITI,
INRAE, UR 875, 31326 Toulouse, France

Gabriel De Pace (17)
University of Rhode Island, Kingston, RI, USA

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).

Editor: Christine Solnon

\\v LIPICS

Leibniz International Proceedings in Informatics
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-9519-938X
https://doi.org/10.4230/LIPIcs.CP.2022.18
https://doi.org/10.4230/LIPIcs.CP.2022.28
https://doi.org/10.4230/LIPIcs.CP.2022.7
https://orcid.org/0000-0003-1622-5645
https://doi.org/10.4230/LIPIcs.CP.2022.33
https://doi.org/10.4230/LIPIcs.CP.2022.2
https://doi.org/10.4230/LIPIcs.CP.2022.3
https://orcid.org/0000-0002-8481-6458
https://doi.org/10.4230/LIPIcs.CP.2022.2
https://doi.org/10.4230/LIPIcs.CP.2022.4
https://doi.org/10.4230/LIPIcs.CP.2022.5
https://doi.org/10.4230/LIPIcs.CP.2022.6
https://doi.org/10.4230/LIPIcs.CP.2022.7
https://orcid.org/0000-0002-6473-5757
https://doi.org/10.4230/LIPIcs.CP.2022.8
https://orcid.org/0000-0003-4059-6403
https://doi.org/10.4230/LIPIcs.CP.2022.9
https://orcid.org/0000-0002-5602-7515
https://doi.org/10.4230/LIPIcs.CP.2022.10
https://orcid.org/0000-0002-0171-2021
https://doi.org/10.4230/LIPIcs.CP.2022.2
https://doi.org/10.4230/LIPIcs.CP.2022.4
https://doi.org/10.4230/LIPIcs.CP.2022.34
https://doi.org/10.4230/LIPIcs.CP.2022.35
https://orcid.org/0000-0003-2312-2687
https://doi.org/10.4230/LIPIcs.CP.2022.9
https://doi.org/10.4230/LIPIcs.CP.2022.11
https://doi.org/10.4230/LIPIcs.CP.2022.36
https://orcid.org/0000-0002-9678-2830
https://doi.org/10.4230/LIPIcs.CP.2022.30
https://doi.org/10.4230/LIPIcs.CP.2022.39
https://doi.org/10.4230/LIPIcs.CP.2022.39
https://orcid.org/0000-0003-4646-9982
https://doi.org/10.4230/LIPIcs.CP.2022.12
https://doi.org/10.4230/LIPIcs.CP.2022.6
https://orcid.org/0000-0001-9453-5150
https://doi.org/10.4230/LIPIcs.CP.2022.33
https://orcid.org/0000-0003-4853-053X
https://doi.org/10.4230/LIPIcs.CP.2022.9
https://doi.org/10.4230/LIPIcs.CP.2022.13
https://orcid.org/0000-0001-5050-0001
https://doi.org/10.4230/LIPIcs.CP.2022.14
https://doi.org/10.4230/LIPIcs.CP.2022.15
https://orcid.org/0000-0003-4991-2599
https://doi.org/10.4230/LIPIcs.CP.2022.16
https://doi.org/10.4230/LIPIcs.CP.2022.17
https://doi.org/10.4230/LIPIcs.CP.2022.34
https://orcid.org/0000-0002-2693-6953
https://doi.org/10.4230/LIPIcs.CP.2022.18
https://orcid.org/0000-0002-2242-0458
https://doi.org/10.4230/LIPIcs.CP.2022.7
https://doi.org/10.4230/LIPIcs.CP.2022.37
https://doi.org/10.4230/LIPIcs.CP.2022.17
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xvi

Authors

Augustin Delecluse (19)
TRAIL, ICTEAM, UCLouvain,
Louvain-la-Neuve, Belgium

Rémi Douence (6)
IMT Atlantique, LS2N, Inria, (Gallinette),
Nantes, France

Jan Dreier (20)
Algorithms and Complexity Group,
TU Wien, Austria

Alexander Ek (21)

Dept. of Data Science & AI, Monash University,
Melbourne, Australia;

CSIRO Data61, Melbourne, Australia

Guillaume Escamocher (16)

Insight Centre for Data Analytics, School of
Computer Science and Information Technology,
University College Cork, Ireland

Joan Espasa (18, 22)
School of Computer Science,
University of St Andrews, UK

Hélene Fargier (23)
IRIT, Université de Toulouse, CNRS,
Toulouse INP, UT3, France

Benjamin Fuller (17)
University of Connecticut, Storrs, CT, USA

Mohamed Gaha (34)
IREQ, Varennes, Canada

Junsong Gao (39)
College of Computer Science, Chongqing
University, China

Rebecca Gentzel (24)
University of Connecticut, Storrs, CT, USA

Xavier Gillard (14)

UCLouvain, Louvain-la-Neuve, Belgium

Ramiz Gindullin (6)
IMT Atlantique, LS2N (TASC), Nantes, France

Stephan Gocht (25)
Lund University, Sweden;
University of Copenhagen, Denmark

Priyanka Golia (36)
Indian Institute of Technology Kanpur, India;
National University of Singapore, Singapore

Tias Guns (8, 29)
Declarative Languages and Artificial Intelligence,
KU Leuven, Belgium

Djamal Habet (12)
Aix-Marseille Univ, Université de Toulon, CNRS,
LIS, France

Emmanuel Hebrard (9)
LAAS CNRS, Toulouse, France

Marijn J. H. Heule (26)
Carnegie Mellon University,
Pittsburgh, PA, USA

Amel Hidouri (27)

CRIL — CNRS UMR 8188,

University of Artois, France;
LARODEC, University of Tunis, Tunisia

Ruth Hoffmann (28)
School of Computer Science,
University of St Andrews, UK

Said Jabbour (27)
CRIL — CNRS UMR 8188,
University of Artois, France

Anthony Karahalios (26)
Carnegie Mellon University,
Pittsburgh, PA, USA

George Katsirelos (7, 37)
Université Fédérale de Toulouse, ANITI, INRAE,
MIA Paris, AgroParisTech, 75231 Paris, France

Donald E. Knuth (1)
Stanford University, CA, USA

Samuel Kolb (8, 29)
Declarative Languages and Artificial Intelligence,
KU Leuven, Belgium

Akshat Kumar (5)
Singapore Management University, Singapore

Mohit Kumar (8, 29)
Declarative Languages and Artificial Intelligence,
KU Leuven, Belgium

T. K. Satish Kumar (5)
University of Southern California,
Los Angeles, CA, USA

Daphné Lafleur (30)

Polytechnique Montréal, Canada;

Quebec Artificial Intelligence Institute (Mila),
Canada

Daniel Lafond (10)
Thales Digital Solutions, Québec, Canada

Jimmy H. M. Lee (31)

Department of Computer Science and
Engineering, The Chinese University of Hong
Kong, Shatin, China

https://orcid.org/0000-0001-6285-6515
https://doi.org/10.4230/LIPIcs.CP.2022.19
https://doi.org/10.4230/LIPIcs.CP.2022.6
https://orcid.org/0000-0002-2662-5303
https://doi.org/10.4230/LIPIcs.CP.2022.20
https://orcid.org/0000-0002-8744-4805
https://doi.org/10.4230/LIPIcs.CP.2022.21
https://orcid.org/0000-0001-9029-5671
https://doi.org/10.4230/LIPIcs.CP.2022.16
https://orcid.org/0000-0002-9021-3047
https://doi.org/10.4230/LIPIcs.CP.2022.18
https://doi.org/10.4230/LIPIcs.CP.2022.22
https://doi.org/10.4230/LIPIcs.CP.2022.23
https://doi.org/10.4230/LIPIcs.CP.2022.17
https://doi.org/10.4230/LIPIcs.CP.2022.34
https://doi.org/10.4230/LIPIcs.CP.2022.39
https://doi.org/10.4230/LIPIcs.CP.2022.24
https://orcid.org/0000-0002-4493-6041
https://doi.org/10.4230/LIPIcs.CP.2022.14
https://doi.org/10.4230/LIPIcs.CP.2022.6
https://orcid.org/0000-0002-5459-3134
https://doi.org/10.4230/LIPIcs.CP.2022.25
https://doi.org/10.4230/LIPIcs.CP.2022.36
https://orcid.org/0000-0002-2156-2155
https://doi.org/10.4230/LIPIcs.CP.2022.8
https://doi.org/10.4230/LIPIcs.CP.2022.29
https://doi.org/10.4230/LIPIcs.CP.2022.12
https://orcid.org/0000-0003-3131-0709
https://doi.org/10.4230/LIPIcs.CP.2022.9
https://doi.org/10.4230/LIPIcs.CP.2022.26
https://doi.org/10.4230/LIPIcs.CP.2022.27
https://orcid.org/0000-0002-1011-5894
https://doi.org/10.4230/LIPIcs.CP.2022.28
https://doi.org/10.4230/LIPIcs.CP.2022.27
https://orcid.org/0000-0001-9479-4080
https://doi.org/10.4230/LIPIcs.CP.2022.26
https://orcid.org/0000-0002-3727-6698
https://doi.org/10.4230/LIPIcs.CP.2022.7
https://doi.org/10.4230/LIPIcs.CP.2022.37
https://doi.org/10.4230/LIPIcs.CP.2022.1
https://orcid.org/0000-0002-7803-2198
https://doi.org/10.4230/LIPIcs.CP.2022.8
https://doi.org/10.4230/LIPIcs.CP.2022.29
https://doi.org/10.4230/LIPIcs.CP.2022.5
https://orcid.org/0000-0002-7202-1818
https://doi.org/10.4230/LIPIcs.CP.2022.8
https://doi.org/10.4230/LIPIcs.CP.2022.29
https://doi.org/10.4230/LIPIcs.CP.2022.5
https://orcid.org/0000-0002-7225-7660
https://doi.org/10.4230/LIPIcs.CP.2022.30
https://orcid.org/0000-0002-1669-353X
https://doi.org/10.4230/LIPIcs.CP.2022.10
https://orcid.org/0000-0001-9526-5850
https://doi.org/10.4230/LIPIcs.CP.2022.31

Authors

Arnaud Lequen (13)
IRIT, University of Toulouse, France

Hongbo Li (32)
School of Information Science and Technology,
Northeast Normal University, Changchun, China

Zhanshan Li (32)
College of Computer Science and Technology,
Jilin University, Changchun, China

Xiangshuang Liu (39)
College of Computer Science,
Chonggqing University, China

Jheisson Loépez (33)

University College Cork, School of Computer
Science, Ireland;

SFI Centre for Research Training in Artificial
Intelligence, Cork, Ireland

Frédéric Maris (13)
IRIT, University of Toulouse, France

Ciaran McCreesh (25)
University of Glasgow, UK

Kuldeep S. Meel (36)

National University of Singapore, Singapore

Sebastian Meiswinkel (41)
MCP Algorithm Factory, MCP GmbH,
Wien, Austria

Jérome Mengin (23)
IRIT, Université de Toulouse, CNRS,
Toulouse INP, UT3, France

Laurent Michel (17, 24)
University of Connecticut, Storrs, CT, USA

Tan Miguel (18, 22)
School of Computer Science,
University of St Andrews, UK

Pierre Montalbano (7)
Université Fédérale de Toulouse, ANITI,
INRAE, UR 875, 31326 Toulouse, France

Nysret Musliu (41)

Christian Doppler Laboratory for Artificial
Intelligence and Optimization for Planning and
Scheduling, DBAI, TU Wien, Austria

Miguel A. Nacenta (28)
Department of Computer Science,
University of Victoria, Canada

Franklin Nguewouo (34)
Hydro-Québec, Canada

Peter Nightingale (18, 38)
Department of Computer Science,
University of York, UK

Jakob Nordstrom (25)
University of Copenhagen, Denmark;
Lund University, Sweden

Sebastian Ordyniak (20)
Algorithms and Complexity Group,
University of Leeds, UK

Gilles Pesant (30)
Polytechnique Montréal, Canada

Louis Popovic (34)
Computer Engineering and Software Engineering
Department, Polytechnique Montréal, Canada

Siddharth Prasad (3)
Computer Science Department, Carnegie Mellon
University, Pittsburgh, PA, USA

Matthieu Py (12)
Aix-Marseille Univ, Université de Toulon, CNRS,
LIS, France

Luis Quesada (16)

Insight Centre for Data Analytics, School of
Computer Science and Information Technology,
University College Cork, Ireland

Claude-Guy Quimper (6, 10, 15)
Université Laval, Québec, Canada

Badran Raddaoui (27)
SAMOVAR, Télécom SudParis,
Institut Polytechnique de Paris, France

Louis-Martin Rousseau (35)
Mathematics and Industrial Engineering
Department, Polytechnique Montréal, Canada

Isaac Rudich (35)
Mathematics and Industrial Engineering
Department, Polytechnique Montréal, Canada

Tuomas Sandholm (3)

Computer Science Department, Carnegie Mellon
University, Pittsburgh, PA, USA;

Optimized Markets, Inc., Pittsburgh, PA, USA;
Strategic Machine, Inc., Pittsburgh, PA, USA;
Strategy Robot, Inc., Pittsburgh, PA, USA

Pierre Schaus (14, 19)
UCLouvain, Louvain-la-Neuve, Belgium

Nicolas Schmidt (23)
IRIT, Université de Toulouse, CNRS,
Toulouse INP, UT3, France

0:xvii

CP 2022

https://orcid.org/0000-0003-0339-0967
https://doi.org/10.4230/LIPIcs.CP.2022.13
https://orcid.org/0000-0002-2664-4117
https://doi.org/10.4230/LIPIcs.CP.2022.32
https://doi.org/10.4230/LIPIcs.CP.2022.32
https://doi.org/10.4230/LIPIcs.CP.2022.39
https://orcid.org/0000-0002-8086-4663
https://doi.org/10.4230/LIPIcs.CP.2022.33
https://orcid.org/0000-0002-1084-1669
https://doi.org/10.4230/LIPIcs.CP.2022.13
https://orcid.org/0000-0002-6106-4871
https://doi.org/10.4230/LIPIcs.CP.2022.25
https://doi.org/10.4230/LIPIcs.CP.2022.36
https://doi.org/10.4230/LIPIcs.CP.2022.41
https://doi.org/10.4230/LIPIcs.CP.2022.23
https://doi.org/10.4230/LIPIcs.CP.2022.17
https://doi.org/10.4230/LIPIcs.CP.2022.24
https://orcid.org/0000-0002-6930-2686
https://doi.org/10.4230/LIPIcs.CP.2022.18
https://doi.org/10.4230/LIPIcs.CP.2022.22
https://orcid.org/0000-0001-8126-892X
https://doi.org/10.4230/LIPIcs.CP.2022.7
https://orcid.org/0000-0002-3992-8637
https://doi.org/10.4230/LIPIcs.CP.2022.41
https://orcid.org/0000-0002-9864-9654
https://doi.org/10.4230/LIPIcs.CP.2022.28
https://doi.org/10.4230/LIPIcs.CP.2022.34
https://orcid.org/0000-0002-5052-8634
https://doi.org/10.4230/LIPIcs.CP.2022.18
https://doi.org/10.4230/LIPIcs.CP.2022.38
https://orcid.org/0000-0002-2700-4285
https://doi.org/10.4230/LIPIcs.CP.2022.25
https://orcid.org/0000-0003-1935-651X
https://doi.org/10.4230/LIPIcs.CP.2022.20
https://orcid.org/0000-0001-9797-0780
https://doi.org/10.4230/LIPIcs.CP.2022.30
https://doi.org/10.4230/LIPIcs.CP.2022.34
https://doi.org/10.4230/LIPIcs.CP.2022.3
https://doi.org/10.4230/LIPIcs.CP.2022.12
https://orcid.org/0000-0003-3177-655X
https://doi.org/10.4230/LIPIcs.CP.2022.16
https://doi.org/10.4230/LIPIcs.CP.2022.6
https://doi.org/10.4230/LIPIcs.CP.2022.10
https://doi.org/10.4230/LIPIcs.CP.2022.15
https://doi.org/10.4230/LIPIcs.CP.2022.27
https://doi.org/10.4230/LIPIcs.CP.2022.35
https://doi.org/10.4230/LIPIcs.CP.2022.35
https://doi.org/10.4230/LIPIcs.CP.2022.3
https://orcid.org/0000-0002-3153-8941
https://doi.org/10.4230/LIPIcs.CP.2022.14
https://doi.org/10.4230/LIPIcs.CP.2022.19
https://doi.org/10.4230/LIPIcs.CP.2022.23

0:xviii

Authors

Andreas Schutt (21)
CSIRO Data61, Melbourne, Australia

Vanessa Simard (10)
NQB.ai, Québec, Canada

Arambam James Singh (5)
National University of Singapore, Singapore

Arunesh Sinha (5)

Singapore Management University, Singapore

Mate Soos (36)
National University of Singapore, Singapore

Peter J. Stuckey (21)
Dept. of Data Science & AI, Monash University,
Melbourne, Australia

Yan (Lindsay) Sun (17)
University of Rhode Island, Kingston, RI, USA

Stefan Szeider (20)
Algorithms and Complexity Group,
TU Wien, Austria

Guido Tack (21)
Dept. of Data Science & AI, Monash University,
Melbourne, Australia

Fulya Trosser (37)
Université Fédérale de Toulouse, ANITI,
INRAE, UR 875, 31326 Toulouse, France

Felix Ulrich-Oltean (38)
Department of Computer Science,
University of York, UK

Pascal Van Hentenryck (19)
Georgia Institute of Technology,
Atlanta, GA, USA

Willem-Jan van Hoeve

Carnegie Mellon University,
Pittsburgh, PA, USA

(24, 26)

Mateu Villaret (22)

Department of Computer Science, Applied
Mathematics and Statistics, University of
Girona, Spain

Ellen Vitercik (3)

Department of Electrical Engineering and
Computer Sciences, University of California
Berkeley, CA, USA

James Alfred Walker (38)
Department of Computer Science,
University of York, UK

Daniel Walkiewicz (41)
MCP Algorithm Factory, MCP GmbH,
Wien, Austria

Jie Wang (39)
College of Computer Science,
Chongging University, China

Ruiwei Wang (40)
School of Computing, National University of
Singapore, Singapore

Felix Winter (41)

Christian Doppler Laboratory for Artificial
Intelligence and Optimization for Planning and
Scheduling, DBAI, TU Wien, Austria

Yaling Wu (32)
School of Information Science and Technology,
Northeast Normal University, Changchun, China

Roland H. C. Yap (40)

School of Computing, National University of
Singapore, Singapore

Minghao Yin (32)

School of Information Science and Technology,
Northeast Normal University, Changchun, China

Allen Z. Zhong (31)

Department of Computer Science and
Engineering, The Chinese University of Hong
Kong, Shatin, China

Xu Zhu (28)
School of Computer Science,
University of St Andrews, UK

https://orcid.org/0000-0001-5452-4086
https://doi.org/10.4230/LIPIcs.CP.2022.21
https://orcid.org/0000-0001-8861-8902
https://doi.org/10.4230/LIPIcs.CP.2022.10
https://doi.org/10.4230/LIPIcs.CP.2022.5
https://doi.org/10.4230/LIPIcs.CP.2022.5
https://doi.org/10.4230/LIPIcs.CP.2022.36
https://orcid.org/0000-0003-2186-0459
https://doi.org/10.4230/LIPIcs.CP.2022.21
https://doi.org/10.4230/LIPIcs.CP.2022.17
https://orcid.org/0000-0001-8994-1656
https://doi.org/10.4230/LIPIcs.CP.2022.20
https://orcid.org/0000-0003-3357-6498
https://doi.org/10.4230/LIPIcs.CP.2022.21
https://doi.org/10.4230/LIPIcs.CP.2022.37
https://orcid.org/0000-0001-5162-5826
https://doi.org/10.4230/LIPIcs.CP.2022.38
https://orcid.org/0000-0001-7085-9994
https://doi.org/10.4230/LIPIcs.CP.2022.19
https://orcid.org/0000-0002-0023-753X
https://doi.org/10.4230/LIPIcs.CP.2022.24
https://doi.org/10.4230/LIPIcs.CP.2022.26
https://orcid.org/0000-0002-8066-3458
https://doi.org/10.4230/LIPIcs.CP.2022.22
https://doi.org/10.4230/LIPIcs.CP.2022.3
https://orcid.org/0000-0003-2174-7173
https://doi.org/10.4230/LIPIcs.CP.2022.38
https://doi.org/10.4230/LIPIcs.CP.2022.41
https://doi.org/10.4230/LIPIcs.CP.2022.39
https://doi.org/10.4230/LIPIcs.CP.2022.40
https://orcid.org/0000-0002-1012-1258
https://doi.org/10.4230/LIPIcs.CP.2022.41
https://doi.org/10.4230/LIPIcs.CP.2022.32
https://doi.org/10.4230/LIPIcs.CP.2022.40
https://doi.org/10.4230/LIPIcs.CP.2022.32
https://orcid.org/0000-0001-8807-8600
https://doi.org/10.4230/LIPIcs.CP.2022.31
https://orcid.org/0000-0002-2801-3271
https://doi.org/10.4230/LIPIcs.CP.2022.28

All Questions Answered

Donald E. Knuth &
Stanford University, CA, USA

—— Abstract
During the past two years, the speaker has been drafting Section 7.2.2.3 of The Art of Computer

Programming, which is intended to be a solid introduction to techniques for solving Constraint
Satisfaction Problems. The CP 2022 conference is an excellent opportunity for him to get feedback
from the leading experts on the subject, and so he was delighted to learn that the organizers were
also interested in hearing a few words from him.

Rather than giving a canned lecture, he much prefers to let the audience choose the topics, and
for all questions to be kept a secret from him until the lecture is actually in progress. (He believes
that people often learn more from answers that are spontaneously fumbled than from responses that
are carefully preplanned.)

Questions related to constraints will naturally be quite welcome, but questions on any subject
whatsoever will not be ducked! He’ll try to answer them all as best he can, without spending a great
deal of time on any one topic, unless there is special interest to go into more depth.

Meanwhile he hopes to have drafted some notes for circulation before the conference begins, in
case some attendees might wish to focus some of their questions on expository material related to
his forthcoming book, either during this session or informally afterwards.

Warning: His least favorite questions have the form “What is your favorite X?” If you want to
ask such questions, please try to do it cleverly so that he doesn’t have to choose between different
things that he loves in different ways.

2012 ACM Subject Classification Theory of computation — Design and analysis of algorithms
Keywords and phrases The Art of Computer Programming
Digital Object Identifier 10.4230/LIPIcs.CP.2022.1

Category Invited Talk

© Donald E. Knuth;
37 licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 1; pp. 1:1-1:1

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://cs.stanford.edu/~knuth/taocp.html
https://doi.org/10.4230/LIPIcs.CP.2022.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Fixed-Template Promise Model Checking Problems

Kristina Asimi &
Department of Algebra, Faculty of Mathematics and Physics,
Charles University, Prague, Czechia

Libor Barto =4
Department of Algebra, Faculty of Mathematics and Physics,
Charles University, Prague, Czechia

Silvia Butti =@ a
Department of Information and Communication Technologies,
Universitat Pompeu Fabra, Barcelona, Spain

—— Abstract

The fixed-template constraint satisfaction problem (CSP) can be seen as the problem of deciding
whether a given primitive positive first-order sentence is true in a fixed structure (also called model).
We study a class of problems that generalizes the CSP simultaneously in two directions: we fix a set
L of quantifiers and Boolean connectives, and we specify two versions of each constraint, one strong
and one weak. Given a sentence which only uses symbols from £, the task is to distinguish whether
the sentence is true in the strong sense, or it is false even in the weak sense.

We classify the computational complexity of these problems for the existential positive equality-
free fragment of first-order logic, i.e., £ = {3, A, V}, and we prove some upper and lower bounds for
the positive equality-free fragment, £ = {3,V, A, V}. The partial results are sufficient, e.g., for all
extensions of the latter fragment.

2012 ACM Subject Classification Theory of computation — Complexity theory and logic

Keywords and phrases Model Checking Problem, First-Order Logic, Promise Constraint Satisfaction
Problem, Multi-Homomorphism

Digital Object Identifier 10.4230/LIPIcs.CP.2022.2

Funding Kristina Asimi and Libor Barto have received funding from the European Research Council
(ERC) under the European Unions Horizon 2020 research and innovation programme (Grant
Agreement No. 771005, CoCoSym). Silvia Butti was supported by a MICCIN grant PID2019-
109137GB-C22 and by a fellowship from “la Caixa” Foundation (ID 100010434). The fellowship code
is LCF/BQ/DI18/11660056. This project has received funding from the European Union’s Horizon
2020 research and innovation programme under the Marie Sktodowska-Curie grant agreement No.
713673.

1 Introduction

The fixed-template finite-domain constraint satisfaction problem (CSP) is a framework for
expressing many computational problems such as various versions of logical satisfiability,
graph coloring, and systems of equations, see the survey [3]. A convenient formalization,
that we adopt in this paper, is as follows: a template is a relational structure A, and the
CSP over A is the problem of deciding whether a given {3, A}-sentence is true in A. Here, an
{3, A}-sentence is a sentence of first-order logic that uses only the relation symbols of A, the
logical connective A, and the quantifier 3. To see that this formalization indeed expresses
constraint satisfaction problems, consider, e.g., the sentence Jz3y3z R(z,y) A S(y, 2): this
sentence is true in a structure A if the variables x,y, z can be evaluated so that both atomic
formulas (constraints) are satisfied in A.
? Kristina Asimi, Lil?or Barto, and Silvia Butti;

5v icensed under Creative Commons License CC-BY 4.0
28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 2; pp. 2:1-2:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:asimptota94@gmail.com
mailto:libor.barto@gmail.com
https://www2.karlin.mff.cuni.cz/~barto/
https://orcid.org/0000-0002-8481-6458
mailto:silvia.butti@upf.edu
https://sites.google.com/view/silviabutti/
https://orcid.org/0000-0002-0171-2021
https://doi.org/10.4230/LIPIcs.CP.2022.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2

Fixed-Template Promise Model Checking Problems

Motivated by recent developments in the area, we study an extension of this framework
in two simultaneous directions. One direction, discussed in Subsection 1.1, is to enable
other choices of permitted quantifiers and connectives. Another direction, discussed in
Subsection 1.2, is to consider two versions of each relation, strong and weak (a so-called
promise problem). Our contributions are then described in Subsection 1.3.

1.1 Model checking problem parametrized by the model

The model checking problem [13] takes as input a structure A (often called a model) and a
sentence ¢ in a specified logic and asks whether A F ¢, i.e., whether A satisfies ¢. We study
the situation where A is a fixed finite relational structure, so the input is simply ¢, and the
logic is a fragment of the first-order logic obtained by restricting the allowed quantifiers to a
subset £ of {3,V, A, V,=,#,-}. Thus, for each A and each of the 27 choices for £, we obtain
a computational problem, which we call the £-Model Checking Problem over A and denote
L-MC(A).

The computational complexity classification of {3, A}-MC(A), i.e., CSP over A, has been
a very active research program in the last 20 years, which culminated in the celebrated
dichotomy theorem obtained independently in [6] and [18]: each CSP over A is in P (solvable
in polynomial time) or is NP-complete. For the case £ = {3,V, A}, L-MC(A) is the so called
quantified CSP, another well-studied class of problems, see the survey [16]. It was widely
believed that this class exhibits a P/NP-complete/PSPACE-complete trichotomy [8]. A
recent breakthrough [19] shows that at least three more complexity classes appear within
quantified CSPs, and ongoing work suggests that even 6 is not the final number. In any case,
the full complexity classification of {3,V, A}-MC(A) is a challenging open problem.

The remaining 27 — 2 choices for £ do not need to be considered separately. For instance,
{3,A,=}-MC(A) is no harder than {3, A}-MC(A) because equalities can be propagated
out in this case, and {V,V}-MC(A) is dual to {3, A}-MC(A) so we get a P/coNP-complete
dichotomy for free, etc. Moreover, some choices of £, such as £ = {3, V}, lead to very
simple problems. It turns out [14] (see Subsection 3.3) that, in addition to £ = {3, A} and
L ={3,V,A}, only two more fragments need to be considered in order to fully understand
the complexity of £L-MC(A), namely £ = {3,A,V} and £ = {3,V,A, V}.

The former fragment was addressed in [14]: except for a simple case solvable in polynomial
time (in fact, L, the logarithmic space), all the remaining problems are NP-complete. The
latter fragment turned out to be more challenging but, after a series of partial results [14, 11,
17] (see also [15, 7]), the full complexity classification was given in [12, 13]: each problem in
this class is in P (even L), or is NP-complete, coNP-complete, or PSPACE-complete. These
results are summarized in Table 1.

Table 1 Known complexity results for £-MC(A).

’ L-MC(A) ‘ Complexity
{3, A}-MC(A) (CSP) dichotomy: P or NP-complete
{3,V,A}-MC(A) (QCSP) > 6 classes
{3, A, V}-MC(A) dichotomy: L or NP-complete
{V,3,A,V}-MC(A) tetrachotomy: L, NP-complete, coNP-complete, PSPACE-complete

K. Asimi, L. Barto, and S. Butti

1.2 Promise model checking problem

The Promise CSP is a recently introduced extension of the CSP framework motivated by
open problems in (in)approximability of satisfiability and coloring problems [1, 5, 2]. The
template consists of two structures A and B of the same signature, where A specifies a strong
form of each relation and B its weak form. The Promise CSP over (A,B) is then the problem
of distinguishing {3, A}-sentences that are true in A from those that are not true in B.

For example, by choosing an appropriate template, we obtain the problem of distinguishing
k-colorable graphs from those that are not even I-colorable (where k < [are fixed), a problem
whose complexity is notoriously open.

The generalization of Promise CSP over (A,B) to an arbitrary choice £ C {3,V, A, V,=
,#, 1} is referred to as the £-Promise Model Checking Problem over (A,B) and is denoted
L-PMC(A,B). Similarly as in the special case A = B, which is exactly £-MC(A), it is
sufficient to consider only four fragments. A full complexity classification for {3, A}-PMC
(i.e., Promise CSP) is much desired but widely open, and {3,V,A}-PMC is likely even
harder. This work concentrates on the remaining two classes of problems, {3, A, V}-PMC
and {3,V, A, V}-PMC.

Our motivation was that these cases might be substantially simpler, as indicated by the
non-promise special case, and at the same time, the investigation could uncover interesting
intermediate problems towards the grand endeavor of understanding the sources of tractability
and hardness in computation. We believe that our findings confirm this hope.

» Example 1. Consider structures A and B with a single relation symbol = interpreted as
the equality on a three-element domain in A and as the equality on a two-element domain
in B. For £ = {3,V,A,V}, both £L-MC(A) and £-MC(B) are PSPACE-complete problems,
see [14].

It is not hard to see that every L-sentence true in A is also true in B. In this sense, the
relation in A is stronger than the relation in B. On the other hand, there are L-sentences true
in B that are not true in A, e.g., ¢ = VaIyVz (z = z) V (2 = y). Therefore, L-PMC(A,B)
could potentially be easier than the above non-promise problems — instances such as ¢ need
not be considered (there is no requirement on the algorithm for such inputs). Nevertheless,
the problem remains PSPACE-complete, as shown in Proposition 18.

1.3 Contributions

Theorem 7 and Theorem 13 provide basics for an algebraic approach to {3, A, V}-PMC
and {3,V, A, V}-PMC by characterizing definability in terms of compatible functions: multi-
homomorphisms for the {3, A, V} fragment and surjective multi-homomorphisms (smuhoms)
for {3,V,A,V}. The proofs can be obtained as relatively straightforward generalizations
of the proofs for MC in [13]; however, we believe that our approach is somewhat more
transparent. In particular, it allows us to easily characterize meaningful templates for these
problems (Propositions 6 and 12).

For {3, A, V}-PMC, we obtain an L /NP-complete dichotomy in Theorem 9. It turns out
that, apart from some simple cases, the problem is NP-complete. Interestingly, there is a
“single reason” for hardness: the NP-hardness of coloring a rainbow colorable hypergraph
from [9)].

For {3,V, A, V}-PMC, our complexity results are only partial, leaving two gaps for further
investigation. The results are sufficient for full complexity classification of L-PMC(A,B) in
the case that £ = {3,V,A,V} and one of the structures A, B has a two-element domain,
and also in the case that £ 2 {3,V,A,V}. We also give some examples where our efforts

2:3

CP 2022

2:4

Fixed-Template Promise Model Checking Problems

have failed so far. One such example is a particularly interesting {3,V, A, V}-PMC over
3-element domains: given a {3,V, A, V}-sentence ¢ whose atomic formulas are all of the form
Ri(z), i € {1,2,3}, distinguish between the case where ¢ is true when R'(z) is interpreted
as “r =147, and the case where ¢ is false when R(z) is interpreted as “z # i”.

Our complexity results are summarized in Table 2, the conditions for £ = {3,V, A, V} are
stated in terms of special surjective multi-homomorphisms of the template, introduced in
Subsection 5.3.

Table 2 Complexity results for L-PMC(A,B).

’ L-PMC(A, B) ‘ Condition ‘ Complexity

{3,V, A}-PMC(A, B) L/NP-complete
AE-smuhom, or A-smuhom and

E-smuhom and A, B digraphs L
{3,¥, A, V}-PMC(A, B) A-smuhom and E-smuhom NP N coNP
A-smuhom, no E-smuhom NP-complete
E-smuhom, no A-smuhom coNP-complete

no A-smuhom and no E-smuhom | NP-hard and coNP-hard

{3,V,A,V,=}-PMC(A, B),
{3,V,A,V, #}-PMC(A, B), L/PSPACE-complete
{3,V, A, V, = }-PMC(A, B)

2 Preliminaries

Structures. We use a standard model-theoretic terminology, but restrict the generality of
some concepts for the purposes of this paper. A relation of arity n > 1 on a set A is a set of
n-tuples of elements of A, i.e., a subset of A™. The complement of a relation S is denoted
S := A"\ S. The equality relation on A is denoted =4 and the disequality relation # 4.
Components of a tuple a are referred to as a1, ag, ..., i.e., a= (ay,...,an).

A signature is a nonempty collection of relation symbols each with an associated arity,
denoted ar(R) for a relation symbol R. A relational structure (also called a model) A in the
signature o, or simply a structure, consists of a finite set A of size at least two, called the
universe of A, and a nonempty proper relation § C R* C A* () for each symbol R in o,
called the interpretation of R in A. Two structures are called similar if they are in the same
signature. The complement of a relational structure A is obtained by taking complements of
all relations in the structure and is denoted A. A structure over a signature containing a
single binary relation symbol is called a digraph.

We emphasize that the universe of a structure is denoted by the same letter as the
structure, that the universe of every structure in this paper is assumed to be finite and at
least two-element, and that each relation in a structure is assumed to be at least unary,
nonempty and proper. These nonstandard requirements are placed for technical convenience
and do not significantly decrease the generality of our results.

Given two similar structures A and B, a function f from A to B is called a homomorphism
from A to B if f(a) € R® for any a € R®, where f(a) is computed component-wise. We only
work with total functions, that is, f(a) is defined for every a € A.

Multi-homomorphisms. A multi-valued function f from A to B is a mapping from A to
P_gB, the set of all nonempty subsets of B. It is called surjective if for every b € B, there
exists a € A such that b € f(a). The inverse of a surjective multi-valued function f from
A to B is the multi-valued function from B to A defined by f~1(b) = {a : b € f(a)}. For

K. Asimi, L. Barto, and S. Butti

a tuple a € A™ we write f(a) for f(a;) X -+ x f(an). The value max{|f(a)| : a € A} is
referred to as the multiplicity of f; in particular, multi-valued functions of multiplicity one
are essentially functions. For two multi-valued functions f and f’ from A to B, we say that
f' is contained in f if f'(a) C f(a) for each a € A.

Given two similar structures A and B, a multi-valued function f from A to B is called
a multi-homomorphism ' from A to B if for any R in the signature and any a € R*, we

have f(a) C RE, i.e., b € R® whenever b; € f(a;) for each i € [ar(R)] = {1,2,...,ar(R)}.

Notice that if f is a multi-homomorphism from A to B, then so is any multi-valued function
contained in f. In particular, if f is a multi-homomorphism from A to B, then any function
g: A — B with g(a) € f(a) for each a € A is a homomorphism from A to B. The converse
does not hold in general, as witnessed by structures A = B with a single binary equality
relation and any multi-valued function of multiplicity greater than one.

The set of all multi-homomorphisms from A to B is denoted by MuHom(A,B) and the
set of all surjective multi-homomorphisms by SMuHom (A, B).

Fragments of first-order logic. Let £ C {3,V, A, V,=,#, =} and fix some signature. By an
L-sentence (resp., L-formula) we mean a sentence (resp., formula) of first-order logic that
only uses variables (denoted z;, y;, 2;), relation symbols in the signature, and connectives
and quantifiers in £. We refer to this fragment of first-order logic as the L-logic.

The prenex normal form of an L-formula is an equivalent formula that begins with
quantified variables followed by a quantifier-free formula. The prenex normal form can be
computed in logarithmic space and it is an L-formula whenever £ does not contain the
negation.

For a structure A in the signature and an L-sentence ¢, we write A E ¢ if ¢ is satisfied
in A. More generally, given an L-formula 4, a tuple of distinct variables (vq,...,v,) which
contains every free variable of ¢ and a tuple (ai,...,a,) € A", we write A E¢(aq,...,a,)

if ¢ is satisfied when vy, ..., v, are evaluated as e4(v1) = ay,...,e4(vn) = an, respectively.

Notice that variables vy, ..., v, indeed need to be pairwise distinct, otherwise this notation

would not make sense. The tuple (vy,...,v,) is often specified by writing 1 = (v1,...,vp).

We say that a relation S C A" is L-definable from A if there exists an L-formula
Y(v1,...,vy,) such that, for all (a,...,a,) € A", we have (ay,...,a,) € S if and only if
AEY(ay,...,a,). In this case, we also say that 1(vy,...,v,) defines S in A.

3 Promise model checking

In this section we define the promise model checking problem restricted to £ C {3,V,A,V,=
,#,—}. We start by briefly discussing the non-promise setting.

3.1 Model checking problem

Let £ C {3,V,A,V,=,#,-} and A be a structure in a signature o. Recall that the £-Model
Checking Problem over A, denoted £-MC(A), is the problem of deciding whether a given
L-sentence ¢ (in the same signature as A) is true in A.

A simple but important observation sometimes allows us to compare the complexity of
the £-MC problems over two templates A and C with the same universe A = C' but possibly
different signatures: If every relation in C is £-definable from A, then £-MC(C) can be
reduced in polynomial-time (even logarithmic space) to £-MC(A). Indeed, the reduction
amounts to replacing atomic formulas of the form R(v) by their definitions.

1 We deviate here from the terminology of [12, 11] because it would not work well in the promise setting.

2:5

CP 2022

2:6

Fixed-Template Promise Model Checking Problems

The starting point of the algebraic approach to £-MC is to find a characterization of defin-
ability in terms of certain “compatible functions” or “symmetries” (so called polymorphisms for
L ={3,A,=} [3], surjective polymorphisms for £ = {3,V, A, =} [16], multi-endomorphisms
for £ = {3, A, V}, surjective multi-endomorphisms for £ = {3,V,A,V} [13]; see also [4]).
Because such characterizations are central in this paper as well, we now explain the basic
idea for a simple case.

For £ = {3,A,V, =}, the appropriate type of compatible function is endomorphism: a
nonempty relation S C A™ is L-definable from A if and only if it is invariant under every
endomorphism of A (i.e., a homomorphism from A to itself). The forward direction is
well-known and easy to verify. For the backward direction, assume A = [k] := {1,...,k} and
consider the following formula.

(25(1‘17“-,3%) = /\ /\ R(mrlﬁ""me(R)) (1)

R€Eo reRA

It follows immediately from definitions that, for any structure E in the signature of A,
E F ¢(e1,...,ex) if and only if the mapping defined by ¢ — ¢; for each ¢ € [k] is a
homomorphism from A to E. This in particular holds for E = A. By existential quantification
we can then obtain an £-formula defining the closure of any tuple a € A™ with distinct entries
under endomorphisms of A; e.g., ¥(x1, x3,x2) := (Jz4)(Ixs) . .. (k)¢ defines the closure of
(1,3,2) under endomorphisms. Using = we can also define closures of the remaining tuples
with repeated entries. Finally, S is the union of closures of its members (since it is closed
under endomorphisms of A), so S can be defined by a disjunction of formulas that we have
already found (after appropriately renaming variables).

Notice that this construction would not work without the equality in £ because of tuples
with repeated entries. This is the reason why we need to work with multi-valued functions
for the equality-free logics that we deal with in this paper.

3.2 Promise model checking problem

Let £ C {3,V,A,V,=,#,-}. The L-Promise Model Checking Problem over a pair of similar
structures (A, B) is the problem of distinguishing £-sentences ¢ that are true in A from those
that are not true in B. This problem makes sense only if every L-sentence that is true in A
is also true in B; we call such pairs £-PMC templates.

» Definition 2. A pair of similar structures (A,B) is called an L-PMC template if A E ¢
implies B E ¢ for every L-sentence ¢ in the signature of A and B.

Given an L-PMC template (A,B), the L-Promise Model Checking Problem over (A, B),
denoted L-PMC(A,B), is the following problem.

Input: an L-sentence ¢ in the signature of A and B;

Output: Yes if AF ¢; No if B H ¢.

The definition of a template guarantees that the sets of Yes-instances and No-instances
are disjoint. However, their union need not be the whole set of L-sentences; an algorithm
for £L-PMC is only required to produce correct outputs for Yes-instances and No-instances.
Alternatively, we are promised that the input sentence is a Yes-instance or a No-instance. The
complexity-theoretic notions (such as membership in NP, NP-completeness, reductions) can
be adjusted naturally for the promise setting. We write L-PMC(C,D) < £L-PMC(A, B) if the
former problem can be reduced to the latter problem by a logarithmic space reduction, that
is, a logarithmic space transformation that maps each Yes-instance ¢ of L-PMC(C,D) to a
Yes-instance 1 of L-PMC(A,B) (equivalently, C F ¢ must imply A F) and No-instances to
No-instances (equivalently, B F ¢ must imply D F ¢).

K. Asimi, L. Barto, and S. Butti

An appropriate adjustment of definability for the promise setting is as follows. Note that
we do not allow the negation in £, otherwise the concept would need to be defined differently
because of the inclusions in the definition.

» Definition 3. Assume = & L and let (A,B) be a pair of similar structures. We say
that a pair of relations (S,T), where S C A™ and T C B™, is promise-L-definable (or
p-L-definable) from (A,B) if there exist relations S" and T’ and an L-formula ¥ (vy, ..., vy,)
such that S C 8", T C T, ¥(v1,...,v,) defines S’ in A, and Y(vy,...,v,) defines T' in B.

We say that an L-PMC template (C,D) is p-L-definable from (A,B) (the signatures can
differ) if (QF, QP) is p-L-definable from (A,B) for each relation symbol Q in the signature
of C and D.

» Theorem 4. Assume —~ ¢ L. If (A,B) and (C,D) are L-PMC templates such that (C,D)
is p-L-definable from (A,B), then L-PMC(C,D) < L-PMC(A,B).

Proof. The reduction is to replace each atomic Q(v) by the corresponding formula ¢ from
Definition 3. For correctness of this reduction, observe that an L-sentence which is true in a
structure E remains true when we add tuples to the relations of E (since £ does not contain
-). <

3.3 Interesting fragments

We now explain why only four fragments of first-order logic need to be considered in order
to fully understand the problems £-PMC(A,B). Observe first that if £ does not contain
any connective (A, V), or £ does not contain any quantifier (3,V), or £ C {3, V}, then each
L-PMC is in L, the logarithmic space. (In some of these cases we do not even have any valid
inputs in our definition of structures.)

Secondly, notice that (£ U {=})-PMC(A,B) is essentially the same as L-PMC(A’,B'),
where A’ and B’ are obtained from the original structures by adding a fresh binary symbol
Q@ to the signature and setting Q" to =4 and Q¥ to =p. The disequality is dealt with
analogously, thus we can and shall restrict to fragments with £ C {3,V, A, V, —}.

Next, we deal with the negation. If = isin £, and £ contains a quantifier and a connective,
then it is enough to consider the case £ = {3,V, A, V, =} since the remaining quantifier and
connective can be expressed using negation. Moreover, the complements of relations can also
be expressed, so we may assume that each template (A, B) is closed under complementation,
meaning that for every symbol R in the signature, we have a symbol R interpreted as
EA = R5, EB = RB. But then - is no longer necessary since we can propagate the negations
inwards in an input sentence. We are down to £ C {3,V, A, V}.

Finally, note that E F —¢, where ¢ is an L-sentence, is equivalent to E F ¢’ where ¢’
is an L’-sentence and £’ is obtained from £ by swapping V <> 3 and V < A (¢’ can be,
again, computed from —¢ by inward propagation). It follows that ¢ — ¢ transforms every
Yes-instance (resp., No-instance) of L-PMC(A,B) to a No-instance (resp., Yes-instance) of
L'-PMC(B, A), and a similar “dual” reduction works in the opposite direction. Therefore, the
latter PMC has the “dual” complexity to the former PMC, e.g., if the former is NP-complete,
then the latter is coNP-complete; and if the former is PSPACE-complete, then the latter is
PSPACE-complete as well. We will refer to this reasoning as the duality argument.

Eliminating one of the logic fragments from each of the “dual” pairs, we are left with
only four fragments: £ = {3, A} (whose L-PMC is Promise CSP), £ = {3,V, A} (Promise
Quantified CSP), £ = {3,A,V}, and £ = {3,V, A, V}. We investigate the last two separately
in the next two sections.

2:7

CP 2022

2:8

Fixed-Template Promise Model Checking Problems

4 Existential positive fragment

This section concerns the existential positive equality-free logic, that is, the L-logic with
L ={3,A,V}. We fix this £ for the entire section.

4.1 Characterization of templates and p-L-definability

We start by characterizing £-PMC templates. One direction of the characterization follows
from the discussion below (1), the other one from the following observation.

» Lemma 5. Let f be a multi-homomorphism from A to B, let ¢(x1,...,x,) be a quantifier-
free L-formula in the same signature, and let a € A", b € B™. If AE ¢(a) and b € f(a),
then B E ¢(b).

Proof. The claim holds for atomic formulas by definition of multi-homomorphisms. The
proof is then finished by induction on the complexity of ¢; both V and A are dealt with in a
straightforward way. <

» Proposition 6. A pair (A, B) of similar structures is an L-PMC template if and only if
there exists a homomorphism from A to B.

Proof. Suppose that there exists a homomorphism from A to B and A F ¢, where ¢ =
JxyJzs ... Jxy ¢ (21, ..., 2,) is in prenex normal form. Then we have A E ¢'(a) for some
a € A", therefore B = ¢/(f(a)) by Lemma 5, and it follows that B F ¢.

For the forward implication, observe that the sentence obtained from the formula (1) by
existentially quantifying all the variables is true in A (as there exists a homomorphism from
A to A — the identity), so it must be true in B, giving us a homomorphism from A to B. <«

Note that this characterization would remain the same if we add = to £ (and/or remove
V). For the following characterization of promise definability, the absence of the equality
relation does make a difference, which is why we need to use multi-homomorphisms instead
of homomorphisms.

» Theorem 7. Let (A,B) and (C,D) be L-PMC templates such that A = C and B = D.
Then (C,D) is p-L-definable from (A,B) if and only if MuHom(A,B) C MuHom(C,D).
Moreover, in such a case, L-PMC(C,D) < L-PMC(A,B).

Proof. It is enough to verify the equivalence, since then the second claim follows from
Theorem 4. To prove the forward implication, assume that (C,D) is p-£L-definable from
(A,B), let f € MuHom(A,B), and let @ be a symbol in the signature of C and D. To show
that f(a) C QP for any a € Q* we apply Lemma 5 as follows. We have A F 1)(a), where
Y(x) = Fy1Jya - . . Yy’ (x,y) is a formula from Definition 3, turned into prenex normal form.
Then A F ¢/(a,a’) for some a’ € A™, thus B E ¢/(b,b’) for any b € f(a) and b’ € f(a’) by
Lemma 5. Therefore, B F ¢)(b) and, finally, b € QP, as required.

For the backward implication, assume that MuHom(A,B) C MuHom(C, D), denote ¢ the
signature of A and B, and consider an n-ary relational symbol @ in the signature of C and
D. To prove the claim, we need to find a formula ¢ (z1,...,z,) that defines, in A, a relation
containing Q€ and, in B, a relation contained in Q.

For simplicity, assume A = [k] and consider the formula

¢(x1,1;~~~7x1,n;x2,17'~~;x2,n»~~;xk,n) = /\ /\ /\ R(xrl-jﬂ'"’xrar(R)ajar(R)) (2)

ReoreRA je [n]ar(R)

K. Asimi, L. Barto, and S. Butti

It follows immediately from definitions that, for any structure E in the signature o, we
have E F ¢(e1,1,...,eky) if and only if the mapping ¢ — {e;1,...,€in}, 1 <i < kisa
multi-homomorphism from A to E. Therefore, for any a € A", the formula 7,(z1,...,2y),
obtained from ¢ by renaming x,, ; to ; and existentially quantifying the remaining variables,
defines in E the union of f(a) over f € MuHom(A, E) of multiplicity at most n. This relation
is clearly equal to the union of f(a) over all f € MuHom (A, E). The sought after formula
1 is then the disjunction of 7, over all a € Q°: it defines in A a relation containing Q°
(because of the identity “multi”-homomorphism A — A) and, in B, a relation contained in
Q" (because every multi-homomorphism from A to B is a multi-homomorphism from C to
D, whence f(a) C QP for any a € Q and any f € MuHom(A,B)). <

4.2 Complexity classification

Since L-PMC(A, B) reduces to £L-MC(A) (or L-MC(B)) by the trivial reduction which does
not change the input, and the latter problem is clearly in NP, then the former problem
is in NP as well. Theorem 9 shows that £-PMC(A,B) is NP-hard in all the “nontrivial”
cases, as in the non-promise setting. However, our proof of hardness requires (in addition to
Theorem 7) a much more involved hardness result than in the non-promise case: NP-hardness
of c-coloring rainbow k-colorable 2k-uniform hypergraphs from [9] (here ¢, k > 2).

To state the result in our formalism, we introduce the n-ary “rainbow coloring” and
“not-all-equal” relations on a set D as follows.

Rb, ={d e D":{dy,ds,...,dp,} =D}, NAEpL={deD":~(dy=dy=---=d,)}
In the statement of Theorem 8 and further, we use (4; 51, ..., Sk) to denote a structure with
universe A and relations Sy, ..., Sk.

» Theorem 8 (Corollary 1.2 in [9]). For any A and B of size at least 2, the problem
{3, A}-PMC((4; RbilA‘), (B; NAE%‘Al)) is NP-complete.

Given this hardness result, the complexity classification is a simple consequence of
Theorem 7.

» Theorem 9 (£ = {3,A,V}). Let (A,B) be an L-PMC template. If there is a constant
homomorphism from A to B, then L-PMC(A,B) is in L (in fact, decidable in constant time),
otherwise L-PMC(A,B) is NP-complete.

Proof. If there exists a constant homomorphism f : A — B, say with image {b}, then all the
relations R® in B contain the constant tuple (b, b,...,b). It follows that every input sentence
is satisfied in B by evaluating the existentially quantified variables to b; therefore, Yes is
always a correct output.

If there is no constant homomorphism A — B, we observe that no multi-homomorphism
from A to B contains a constant homomorphism (as the set of multi-homomorphisms of a
PMC template is closed under containment). It follows that the image of any “rainbow”
tuple of A under any multi-homomorphism from A to B does not contain any constant tuple,
and so any multi-homomorphism from A to B is a multi-homomorphism from (A; Rbi‘A‘) to
(B; NAE%A‘). The reduction from Theorem 7 and the hardness from Theorem 8 conclude
the proof. <

5 Positive fragment

We now turn our attention to the more complex case — the positive equality-free logic, that
is, the L-logic with £ = {3,V, A, V}. We again fix this £ for the entire section.

2:9

CP 2022

2:10

Fixed-Template Promise Model Checking Problems

5.1 Witnesses for quantified formulas

It will be convenient to work with £-formulas of the special form
A(x1, .y n) = YY1 321 Vy2 322 .. VY Iz ¢ (X, Y, 2), (3)

where ¢’ is quantifier-free. Note that each formula is equivalent to a formula in this form (by
transforming to prenex normal form and adding dummy quantification as needed) and the
conversion can be done in logarithmic space.

Observe that for a structure A and a tuple a € A", we have A F ¢(a) if and only if there
exist functions a1 : A = A, an : A2 = A, ..., oy, : A™ — A which give us evaluations of
the existentially quantified variables given the value of the previous universally quantified
variables, i.e., these functions satisfy A E ¢'(a,c,ai(c1), as(cr,ca),. .. am(cr, ... cm)) for
every ¢ € A™. We call such functions witnesses for A E ¢(a).

We state a simple consequence of this viewpoint, a version of Lemma 5.

» Lemma 10. Let f be a surjective multi-homomorphism from A to B, let ¢p(x1,...,x,) be
an L-formula in the same signature as A and B, and let a € A", b € B"™. If AF ¢(a) and
b € f(a), then B F ¢(b).

In particular, if there exists a surjective multi-homomorphism from A to B, and ¢ is an
L-sentence such that A F ¢, then B F ¢.

Proof. The claim holds for quantifier-free £-formulas by Lemma 5.

Next, we assume that ¢ is of the form (3) and select witnesses aq, ..., a,, for A E ¢(a).
Let g : B — A be any function such that b € f(g(b)) for every b € B, which exists
as f is surjective. We claim that any functions 81, ..., B, such that 8;(b1,...,b;) €
flai(g(br),...,g(b;))) for every i € [m], are witnesses for B E ¢(b). Indeed, for all d € B™,
we have A F ¢'(a, g(d), a1(g(d1)), - .., am(g(dr),...,9(dn))), and also b € f(a), d € f(g(d)),
and B;(dy,...,d;) € f(ai(g(dy),...,g(d;))) (by the assumption, choice of g, and choice of j;,
respectively); therefore, B F ¢'(b,d, 81(d1), ..., Bm(d1,...,dm)) by the first paragraph. <«

5.2 Characterization of templates and p-L-definability

Unlike in the existential case, both characterizations require surjective and multi-valued
functions. The core of these characterizations is an adjustment of (2) for surjective homo-
morphisms.

» Lemma 11. Let A be a structure with A = [k] and m,n be arbitrary positive integers.
Then there ezists a formula ¢(x11,...,Z1,n,T21,--,...,Tkn) Such that, for any structure
E similar to A with |[E| < m, we have E E ¢(e11,...,exn) if and only if the mapping
i—{ei1,...,€in}, i € k] is contained in a surjective multi-homomorphism from A to E.

Proof. For every function h from [m] to [k] we take a formula ¢p (211, Tk n, 215 - -+ Zm)
such that, for any structure E in the signature of A, we have EF ¢p(e1,1,...,€kn,€1,---,€0n)
if and only if the mapping i — {e; 1,..., ei,n}UUh(l):i €], 1 <i <k, is a multi-homomorphism
from A to E. Such a formula can be obtained by directly translating the definition of a
multi-homomorphism into the language of logic, similarly to (2).

We claim that the formula ¢ obtained by taking the disjunction of ¢p, over all h : [m] — [k]
and universally quantifying the variables z1, ..., z,, satisfies the requirement of the lemma,
provided |E| < m. Indeed, on the one hand, if E F ¢(eq 1, ..., ek.r), then for every evaluation
of the z variables, some ¢, must be satisfied. We choose any evaluation that covers the
whole set E (which is possible since |E| < m) and the satisfied disjunct ¢, then gives us

K. Asimi, L. Barto, and S. Butti

the required surjective multi-homomorphism from A to E (by the choice of ¢;). On the

other hand, if i — {e;1,...,€;,} is contained in a surjective multi-homomorphism f, then
for any evaluation eg(z1), ..., €g(2zm) of the universally quantified variables, a disjunct
¢r, is satisfied whenever eg(z;) € f(h(l)) for every | € [m]. Such an h exists since f is
surjective. <

» Proposition 12. A pair (A,B) of similar structures is an L-PMC template if and only if
there exists a surjective multi-homomorphism from A to B.

Proof. For the forward implication, consider the sentence obtained by existentially quan-
tifying all the variables in the formula ¢ provided by Lemma 11 (with m > |A|,|B|). This
sentence is true in A (as there exists a surjective multi-homomorphism from A to A — the
identity), so it must be true in B, giving us a surjective multi-homomorphism from A to B.
The backward implication follows from Lemma 10. <

An example which shows that one cannot replace in Proposition 12 “surjective multi-
homomorphism” by “(multi-)homomorphism” is the input formula ¢ = Vz3yR(x,y) (“there
are no sinks”) for a template where A is a digraph with no sinks and B is, say, A plus an
isolated vertex.

The following characterization of promise definability is also a straightforward consequence
of Lemmata 10 and 11.

» Theorem 13. Let (A,B) and (C,D) be L-PMC templates such that A =C and B = D.
Then (C,D) is p-L-definable from (A,B) if and only if SMuHom(A,B) C SMuHom(C, D).
Moreover, in such a case, L-PMC(C,D) < L-PMC(A,B).

Proof. The theorem is proved in the same way as Theorem 7; using Lemma 10 instead of
Lemma 5 for the forward implication, and the formula provided by Lemma 11 instead of (2)
for the backward implication. |

5.3 Membership
Clearly, every £L-MC, as well as L-PMC, is in PSPACE. We now give a generalization of the

remaining membership results from [12] using an appropriate generalization of “A-shops”
and “E-shops” from that paper. We say that a surjective multi-homomorphism f from A
to B is an A-smuhom if there exists a* € A such that f(a*) = B. We also say that (A, B)
admits an A-smuhom in such a case. We call f an E-smuhom if f~1(b*) = A for some b* € B.
Finally, we call f an AE-smuhom if it is simultaneously an A-smuhom and an E-smuhom.

An additional simple reduction will be useful in the proof of the membership result
(Theorem 15) and later as well. We say that an £-PMC template (C,D) is a relazation
of an L-PMC template (A,B) if (C,A) and (B,D) are £L-PMC templates. Recall that, by
Proposition 12, the property is equivalent to the existence of surjective multi-homomorphisms
from C to A and from B to D.

» Proposition 14. Let (A,B) and (C,D) be L-PMC templates. If (C,D) is a relazation of
(A,B), then L-PMC(C,D) < L-PMC(A, B).

Proof. The trivial reduction, which does not change the input, works. Indeed, Yes-instances
of L-PMC(C, D) are Yes-instances of L-PMC(A,B) since (C,A) is an L-PMC template, and
No-instances of L-PMC(C,D) are No-instances of £L-PMC(A,B) since (B, D) is an £L-PMC
template. <

2:11

CP 2022

2:12

Fixed-Template Promise Model Checking Problems

» Theorem 15. Let (A,B) be an L-PMC template. Then the following holds.
1. If (A,B) admits an A-smuhom, then L-PMC(A,B) is in NP.

2. If (A, B) admits an E-smuhom, then L-PMC(A,B) is in coNP.

3. If (A,B) admits an AE-smuhom, then L-PMC(A,B) is in L.

Proof. For the first item, let f be an A-smuhom from A to B with f(a*) = B, and consider
an input ¢ in the special form (3), i.e., ¢ = Vy;321Vy2322 ... Yy, 32 &' (y,2), where ¢ is
quantifier-free. We answer Yes if there exists a € A™ such that A E ¢'(a*,a*,...,a*, a); this
can be clearly decided in NP. It is clear that the answer is Yes whenever ¢ is a Yes-instance
of L-PMC(A,B). On the other hand, if A E ¢'(a*,...,a*,a), then any functions 3 : B — B,

vy Bm : B™ — B such that S;(by,...,b;) € f(a;) (for all i € [m] and by,...,b,, € B)
provide witnesses for B F ¢ by Lemma 5. Therefore, if ¢ is a No-instance, then the answer is
No, as needed.

The second item follows by the duality argument.

In the case A = B, the third item can be proved in an analogous way (by eliminating
both quantifiers instead of just one), see Corollary 9 in [12]. For the general case, we
will construct C such that there is an AE-smuhom from C to C and there are surjective
multi-homomorphisms from A to C and from C to B. Then (A,B) will be a relaxation
of (C,C) by Proposition 12, and then membership of £L-PMC(A,B) in L will follow from
Proposition 14 and the mentioned Corollary 9 in [12]. Let f be an AE-smuhom from A to
B with f(a*) = B and f~!(b*) = A, and define a surjective multi-valued function f’ from
A to B by f'(a*) = B and f’(a) = {b*} if a # a*. Note that f’ is contained in f, so f is
a surjective multi-homomorphism from A to B. We define C as the “image” of A under f’,
that is, C = B and R® = U, f'(a) for each relation symbol R. Clearly, f’ is a surjective
multi-homomorphism from A to C and the identity is a surjective homomorphism from C to
B. It remains to find an AE-smuhom from C to C. We claim that ¢ defined by g(b*) = {b*}
and g(c) = C for ¢ # b* is such an AE-smuhom. Indeed, if ¢ € R®, then c € f/(a) for some
a € R*. By the definition of f’, we necessarily have a; = a* whenever ¢; # b*; therefore,
f'(a) 2 g(c). But f'(a) € R® as f’ € SMuHom(A, C), and we are done. <

These membership results together with the (more involved) hardness results were
sufficient for the tetrachotomy in [12]. One problem with generalizing this tetrachotomy is
that, unlike in the non-promise setting, an £-PMC template can admit an A-smuhom and
an E-smuhom, but no AE-smuhom. However, such a situation cannot happen for digraphs.

» Proposition 16. Let (A,B) be an L-PMC template such that A and B are digraphs. If
(A,B) admits an A-smuhom and an E-smuhom, then it admits an AE-smuhom.

Proof. See Appendix A. |

5.4 Hardness

As a consequence of Theorems 8 and 13, we obtain the following hardness result.

» Theorem 17. Let (A, B) be an L-PMC template.
1. If there is no E-smuhom from A to B, then L-PMC(A,B) is NP-hard.
2. If there is no A-smuhom from A to B, then L-PMC(A,B) is coNP-hard.

Proof. If there exists no E-smuhom from A to B, then SMuHom(A,B) is contained in
SMuHom ((4; Rbi‘Al), (B; NAEJQB‘A‘)). Theorem 8 and Theorem 13 then imply the first item.
The second item follows by the duality argument. <

K. Asimi, L. Barto, and S. Butti

In the non-promise setting, the absence of A-smuhoms and E-smuhoms is sufficient for
PSPACE-hardness [12, 13]. This most involved part of the tetrachotomy result seems much
more challenging in the promise setting and we do not have strong reasons to believe that
templates without A-smuhoms and E-smuhoms are necessarily PSPACE-hard. Nevertheless,

we are able to prove some additional hardness results which will cover all the extensions of L.

» Proposition 18. £-PMC((4;=4),(B;=pg)) is PSPACE-hard for any A, B such that
Al = |B] = 2.

Note here that surjective multi-homomorphisms from (A4;=4) to (B;=p) are exactly the
surjective multi-valued functions from A to B of multiplicity one. In particular, if |A| < |B|,
then ((A;=4),(B;=p)) is not an L-PMC template.

Proof. We start by noticing that the template ((4;=4), ([2];=2))) is a relaxation of (A, B) :=

((A;=a4),(B;=p)). So by Proposition 14, it is enough to prove the claim in the case B = [2].

For simplicity, we assume that A = [k] (k > 2). We prove the PSPACE-hardness by a
reduction from £-MC(B), a PSPACE-hard problem by, e.g., [14]. Consider an input ¢ to
L-MC(B) in the special form (3), i.e., ¢ = Vy1321Vy2322 ... Yy Izm ¢'(y,2z), where ¢’ is
quantifier-free. We need to find a log-space computable formula v such that B F ¢ implies
A E ¢ (so that Yes-instances of MC(B) are transformed to Yes-instances of £L-PMC(A,B))
and B F ¢ implies B F ¢ (so that No-instances are transformed to No-instances).

The rough idea to construct 1 is to reinterpret the values in A = [k] as values in B = [2]
via a mapping A — B. We set

Y =Va1Veg JrgIey ... Jxy (w1 = 22) V /\ pf, where (4)
f:A—B
pr=Vyi3z1... Yy, 32mm) Gyr ... Tym) (/\ olf, v, y7]> AP (y,z) (5)
i=1
olf yi vl = \/ (v = 2a) A (Wi = Tp(a))) (6)
acA

Observe first that ¢ can be constructed from ¢ in logarithmic space.
Next, we verify that B F ¢ implies B F ¢. So, we suppose B F ¢ and aim to find

witnesses 1, ..., Bm for B E ¢; to this end, let ¢ be some tuple in B that corresponds to
evaluations of universally quantified variables in ¢. We evaluate the variables x; and x5 in
1 as ep(x1) =1 and eg(x2) = 2, and pick an evaluation eg(x3),...,ep(z) making ¥ true

in B. Set f(a) =ep(za), a € A. The first disjunct of (4) is not satisfied, so py is satisfied
with this choice of eg. When it is the turn to evaluate y;, we set ep(y,) = ¢; and define
Biler, ..., c;) = ep(zi), where e g(2;) is a satisfactory evaluation of z;. Inspecting the definition
(6), we see that y1, ..., ym are necessarily evaluated as eg(y1) = c1, «-., €8(Ym) = Cm:
indeed, if a disjunct (y; = x4) A (yi = T(q)) is satisfied, then ¢; = ep(y;) = ep(x,) and
e(yi) = €B(Zf(a)) = €B(Tcy(2,)) = €B(Ta); in particular, ep(y;) = ¢;. Therefore, the
conjunct ¢'(y,z) in (5) ensures B F ¢'(c,B1(c1),.. ., Bm(c1,.. . cm)). As ¢ was chosen
arbitrarily, we get that 31, ..., B,, are witnesses for B F ¢, as required.

We now suppose that 51, ..., B, are witnesses for B F ¢, and aim to show that A F .

Because of the first disjunct of (4), it is enough to consider only evaluations of z1 and 2
with e4(x1) # ea(x2). Since any bijection, regarded as a surjective multi-homomorphism
from A to A of multiplicity one, preserves L-formulas (in the sense of Lemma 10), then we

2:13

CP 2022

2:14

Fixed-Template Promise Model Checking Problems

can as well assume that €4(z1) = 1 and e4(x2) = 2. We evaluate the remaining x variables
as €4(xq) = a, a=3,4,..., k. We take a function f: A — B and argue that p; is satisfied
in A. Given a selection of €4(y}), we evaluate z; as €4(z;) = Bi(f(ea(¥))),-.., fea(y}))),
and we define the evaluation of the remaining variables by €4 (y;) = f(ca(y;)). With these
choices, each o[f,y},y;] is satisfied because of the disjunct a = e4(y}) in (6). The second
conjunct in (5), ¢'(y,z), is also satisfied: we know B F ¢'(c,B1(c1),...,Bm(c1,-- ., Cm))

in particular for ¢; = f(ea(¥})), .-+, ¢m = f(ea(y),)) and, with this c, it is apparent
from the choice of evaluations that B E ¢'(c,B1(c1), ..., Bm(c1,...,cm)) is equivalent to
AEY(Ear), - aA(Wm),ea(21),...,€4(2m)). The proof of A E ¢ is concluded. |

It follows that {3,V, A, V,=}-PMC over any template is PSPACE-hard and so is, by the
duality argument, {3,V, A, V, #}-PMC. The next proposition implies PSPACE-hardness for
{3,V,A,V,—}-PMC.

» Proposition 19. Let (A,B) be an L-PMC template which is closed under complementation.
Then L-PMC(A,B) is PSPACE-hard.

Proof. Suppose that (A,B) is closed under complementation. We define an equivalence
relation ~ 4 on A by considering two elements equivalent if they play the same role in every
relation of A. Formally, a ~ a’ if for every symbol R from the signature, every coordinate
i € [ar(R)], and every c,c’ € A if ¢; = a, ¢, = d', ¢; = c; for all j € [ar(R)] \ {i}, and
c € R*, then ¢’ € R®. We define an equivalence relation ~p on B analogously. Notice
that ~4 (resp., ~p) is indeed an equivalence relation; let m and n denote the number of
equivalence classes of ~4 and ~pg, respectively.

Observe that m,n > 2. Indeed, otherwise any nonempty relation in the corresponding
template contains all the tuples, and we do not allow such structures in this paper.

Let C = (A;~4) and D = (B;~p). We claim that every surjective multi-homomorphism
f from A to B preserves ~, i.e., is a surjective multi-homomorphism from C to D. Consider
a,a’ € A, and b,b’ € B such that a ~4 a/, b € f(a),and ¥’ € f(a’). In order to prove b ~g V',
take arbitrary R, i, d, d’ such that d; = b, d; = V', d; = dj for all j # i, and d € RE. Let
c,c’ € A he tuples such that ¢; = a, ¢, = a’, and cj=cj€ f71(dy) for all j # i (which
exist as f is surjective). If ¢ ¢ R®, then c € R and, consequently, d € f(c) C R (as f is
a surjective multi-homomorphism from A to B), a contradiction with d € R®. Therefore,
ccRandalsoc’ € R* asa~y4 a’. Now d' € f(c') C R®, and b ~p b follows.

By Theorem 13, L-PMC(C,D) < £-PMC(A,B). Since there exists a surjective multi-
valued function from A to B that preserves ~ (namely, any f € SMuHom(A,B)), we also
know that m > n. The template (E,F) := (([m]; =[m)), ([n]; =[n])) is a relaxation of (C,D),
because there exists a surjective multi-homomorphism from E to C (a multi-valued function
that maps ¢ to the i-th equivalence class of ~4 under an arbitrary linear ordering of classes)
and a surjective multi-homomorphism from D to F (a “multi”-valued function that maps
every element in the -th equivalence class of ~p to {i}). By Proposition 14, L-PMC(E, F) <
L-PMC(C,D); therefore, L-PMC(E,F) < L-PMC(A,B). The former £-PMC is PSPACE-
hard by Proposition 18, so £L-PMC(A, B) is PSPACE-hard, too. <

5.5 Summary and examples

The claims stated in Table 2 are now immediate consequences of the obtained results. Note
that the claims remain true without the imposed restrictions on structures (i.e., we can allow
singleton universes, nullary relations, etc.); the only nontrivial ingredient is the L-membership
of the Boolean Sentence Value Problem [10].

K. Asimi, L. Barto, and S. Butti

We observe that the results imply a complete complexity classification in the case that
one of the two template structures is Boolean, i.e., has a two-element universe.

» Corollary 20 (£ = {3,V,A,V}). Let (A,B) be an L-PMC template.

1. If B is Boolean, then L-PMC(A,B) is in L, or is NP-complete, or PSPACE-complete.
2. If A is Boolean, then L-PMC(A,B) is in L, or is coNP-complete, or PSPACE-complete.
3. If A and B are Boolean, then L-PMC(A,B) is in L, or is PSPACE-complete.

Proof. If B is Boolean, then every E-smuhom (from A to B) is an AE-smuhom. Moreover, if
there is no A-smuhom, then every surjective multi-homomorphism is of multiplicity one, so it
is also a multi-homomorphism from (A;=4) to (B;=pg). The first item now follows from
Proposition 18 and Theorem 13. The other items are easy as well. |

There are two wide gaps left for further investigation. First, it is unclear what the
complexity is for the L-PMC over templates that admit both an A-smuhom and an E-smuhom,
but no AE-smuhom. While there is no such a digraph template, there are examples with one
ternary or two binary relations, e.g., the following. We use ij as a shortcut for the pair (3, j).

A= {(1,2,3)}), B=([3]; {1,2,3} x {2} x {3} U {1,2} x {2} x{2,3})
A= ([3); {12}, {13}), B=([3]; {12,22,32}, {12,13,22,23,33})

The second gap is between simultaneous NP- and coNP-hardness, and PSPACE-hardness,
when the template admits neither an A-smuhom nor an E-smuhom. Examples with unknown
complexity include the following.

A=([3; {(1,2,3)}), B=(3] {2,3} x{1,3} x {1,2})
A= {(1,2,3)}), B=([B:{L,2} x{1,2} x {3} U {1,3} x {2} x{2})
A= ([4); {12,34}), B=([4]; {12,13,14,23,24,34,32})

In an ongoing work, we have developed some more general PSPACE-hardness criteria, but
the examples above remain elusive. The following equivalent wunary version of the first
example is an especially interesting template, whose £-PMC is the problem described in the
introduction.

A= ([3]7 {1}7 {2}7 {3})7 B= ([3]5 {273}7 {173}7 {172})

6 Conclusion

We gave a full complexity classification of {3, A, V}-PMC, initiated an algebraic approach
to {3,V, A, V}-PMC, and applied it to provide several complexity results about this class of
problems.

An interesting concrete problem, whose complexity is currently open, is the {3,V, A, V}-
PMC over the unary template above. As for the theory-building, the next natural step is
to capture more complex reductions by means of surjective multi-homomorphisms; namely,
the analogue of pp-constructions, which proved to be so useful in the theory of (Promise)
CSPs [3, 2]. It may be also helpful to characterize and study the sets of surjective multi-
homomorphisms in the spirit of [15, 7].

2:15

CP 2022

2:16

Fixed-Template Promise Model Checking Problems

—— References

1

10

11

12

13

14

15

16

Per Austrin, Venkatesan Guruswami, and Johan Hastad. (2 + ¢)-Sat is NP-hard. SIAM J.
Comput., 46(5):1554-1573, 2017. doi:10.1137/15M1006507.

Libor Barto, Jakub Bulin, Andrei A. Krokhin, and Jakub Oprsal. Algebraic approach to
promise constraint satisfaction. J. ACM, 68(4):28:1-28:66, 2021. doi:10.1145/3457606.
Libor Barto, Andrei Krokhin, and Ross Willard. Polymorphisms, and How to Use Them. In
Andrei Krokhin and Stanislav Zivny, editors, The Constraint Satisfaction Problem: Complexity
and Approxzimability, volume 7 of Dagstuhl Follow-Ups, pages 1-44. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany, 2017. doi:10.4230/DFU.Vol7.15301.1.
Ferdinand Borner. Basics of Galois Connections. In Nadia Creignou, Phokion G. Kolaitis,
and Heribert Vollmer, editors, Complexity of Constraints - An Overview of Current Research
Themes [Result of a Dagstuhl Seminar], volume 5250 of Lecture Notes in Computer Science,
pages 38—67. Springer, 2008. doi:10.1007/978-3-540-92800-3_3.

Joshua Brakensiek and Venkatesan Guruswami. Promise Constraint Satisfaction: Structure
Theory and a Symmetric Boolean Dichotomy. In Proceedings of the Twenty-Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA’18, pages 1782-1801, Philadelphia, PA, USA,
2018. Society for Industrial and Applied Mathematics. doi:10.1137/1.9781611975031.117.
A. A. Bulatov. A dichotomy theorem for nonuniform CSPs. In 2017 IEEE 58th Annual
Symposium on Foundations of Computer Science (FOCS), pages 319-330, October 2017.
doi:10.1109/F0CS.2017.37.

Catarina Carvalho and Barnaby Martin. The lattice and semigroup structure of mul-
tipermutations. International Journal of Algebra and Computation, 0(0):1-25, 2021. doi:
10.1142/80218196722500096.

Hubie Chen. Meditations on quantified constraint satisfaction. In Robert L. Constable and
Alexandra Silva, editors, Logic and Program Semantics - Essays Dedicated to Dexter Kozen on
the Occasion of His 60th Birthday, volume 7230 of Lecture Notes in Computer Science, pages
35—49. Springer, 2012. doi:10.1007/978-3-642-29485-3_4.

Venkatesan Guruswami and Euiwoong Lee. Strong inapproximability results on bal-
anced rainbow-colorable hypergraphs. Comb., 38(3):547-599, 2018. doi:10.1007/
s00493-016-3383-0.

Nancy Lynch. Log space recognition and translation of parenthesis languages. J. ACM,
24(4):583-590, October 1977. doi:10.1145/322033.322037.

Florent Madelaine and Barnaby Martin. The complexity of positive first-order logic without
equality. ACM Trans. Comput. Logic, 13(1), January 2012. doi:10.1145/2071368.2071373.
Florent R. Madelaine and Barnaby Martin. A tetrachotomy for positive first-order logic
without equality. In Proceedings of the 26th Annual IEEE Symposium on Logic in Computer
Science, LICS 2011, June 21-24, 2011, Toronto, Ontario, Canada, pages 311-320. IEEE
Computer Society, 2011. doi:10.1109/LICS.2011.27.

Florent R. Madelaine and Barnaby Martin. On the complexity of the model checking problem.
SIAM J. Comput., 47(3):769-797, 2018. doi:10.1137/140965715.

Barnaby Martin. First-order model checking problems parameterized by the model. In
Arnold Beckmann, Costas Dimitracopoulos, and Benedikt Lowe, editors, Logic and Theory
of Algorithms, 4th Conference on Computability in Europe, CiE 2008, Athens, Greece, June
15-20, 2008, Proceedings, volume 5028 of Lecture Notes in Computer Science, pages 417-427.
Springer, 2008. doi:10.1007/978-3-540-69407-6_45.

Barnaby Martin. The lattice structure of sets of surjective hyper-operations. In David Cohen,
editor, Principles and Practice of Constraint Programming - CP 2010 - 16th International
Conference, CP 2010, St. Andrews, Scotland, UK, September 6-10, 2010. Proceedings, volume
6308 of Lecture Notes in Computer Science, pages 368-382. Springer, 2010. doi:10.1007/
978-3-642-15396-9_31.

Barnaby Martin. Quantified Constraints in Twenty Seventeen. In Andrei Krokhin and Stanislav
Zivny, editors, The Constraint Satisfaction Problem: Complexity and Approzimability, volume 7
of Dagstuhl Follow-Ups, pages 327-346. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, 2017. doi:10.4230/DFU.Vol7.15301.327.

https://doi.org/10.1137/15M1006507
https://doi.org/10.1145/3457606
https://doi.org/10.4230/DFU.Vol7.15301.1
https://doi.org/10.1007/978-3-540-92800-3_3
https://doi.org/10.1137/1.9781611975031.117
https://doi.org/10.1109/FOCS.2017.37
https://doi.org/10.1142/S0218196722500096
https://doi.org/10.1142/S0218196722500096
https://doi.org/10.1007/978-3-642-29485-3_4
https://doi.org/10.1007/s00493-016-3383-0
https://doi.org/10.1007/s00493-016-3383-0
https://doi.org/10.1145/322033.322037
https://doi.org/10.1145/2071368.2071373
https://doi.org/10.1109/LICS.2011.27
https://doi.org/10.1137/140965715
https://doi.org/10.1007/978-3-540-69407-6_45
https://doi.org/10.1007/978-3-642-15396-9_31
https://doi.org/10.1007/978-3-642-15396-9_31
https://doi.org/10.4230/DFU.Vol7.15301.327

K. Asimi, L. Barto, and S. Butti

17 Barnaby Martin and Jos Martin. The complexity of positive first-order logic without equality
II: the four-element case. In Anuj Dawar and Helmut Veith, editors, Computer Science Logic,
2/th International Workshop, CSL 2010, 19th Annual Conference of the EACSL, Brno, Czech
Republic, August 23-27, 2010. Proceedings, volume 6247 of Lecture Notes in Computer Science,
pages 426-438. Springer, 2010. doi:10.1007/978-3-642-15205-4_33.

18 Dmitriy Zhuk. A proof of the CSP dichotomy conjecture. J. ACM, 67(5):30:1-30:78, August
2020. doi:10.1145/3402029.

19 Dmitriy Zhuk and Barnaby Martin. QCSP monsters and the demise of the chen conjecture.
In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia
Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 91-104. ACM, 2020.
doi:10.1145/3357713.3384232.

A Proof of Proposition 16

Proof. Denote by R the unique binary symbol in the signature. Let f be an A~smuhom from
A to B with f(a*) = B and let g be an E-smuhom from A to B with g~ (b*) = A.

If a* is isolated in A (i.e., (a,a*), (a*,a) ¢ R* for every a € A), then we define a surjective
multi-valued function h by h(a*) = B and h(a) = {b*} for every a # a*. It is a multi-
homomorphism from A to B since for any (a,a’) € R*, we have h(a,a’) = {(b*,b*)}, which
is contained in R® because R* is nonempty, so g(R*) > (b*, b*).

Suppose next that there is an edge (a1,a*) € R® but a* has no outgoing edges in A.
Let by be an arbitrary element from f(a1) and define h by h(a*) = B and h(a) = {b;} for
every a # a*. To verify that h € SMuHom(A,B), consider an edge (a,a’) € R*. As a* has
no outgoing edges in A, we get a # a*, so h(a) = {b1}. Now h(a,a’) C {b;} x B, which is
contained in R® because R® O f(ay,a*) D {b1} x B.

If a* has an outgoing edge (a*,a;) € R* but no incoming edges, we proceed similarly,
defining h(a*) = B and h(a) = {b1} for all a # a*, where by is an arbitrary element from
flax).

Finally, suppose that (a1,a*) € R* and (a*,as) € R* for some ay,as € A. If there is
an element az € A with no outgoing (resp., incoming) edges, define h by h(az) = B and
h(a) = {V'} for all a # a3, where b’ is an arbitrary element from f(a;) (resp., f(az)). If there
is no such element a3, then we define h(a*) = B and h(a) = {b*} for all a # a*. Since g is
surjective, and every a € A has both an incoming and an outgoing edge, then (b,b*) € R®
and (b*,b) € R® for all b € B, therefore, h € SMuHom(A, B).

The proof of Proposition 16 is concluded. <

2:17

CP 2022

https://doi.org/10.1007/978-3-642-15205-4_33
https://doi.org/10.1145/3402029
https://doi.org/10.1145/3357713.3384232

Improved Sample Complexity Bounds for
Branch-And-Cut

Maria-Florina Balcan &
Computer Science and Machine Learning Departments,
Carnegie Mellon University, Pittsburgh, PA, USA

Siddharth Prasad &
Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA

Tuomas Sandholm &

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA
Optimized Markets, Inc., Pittsburgh, PA, USA

Strategic Machine, Inc., Pittsburgh, PA, USA

Strategy Robot, Inc., Pittsburgh, PA, USA

Ellen Vitercik &

Department of Electrical Engineering and Computer Sciences,
University of California Berkeley, CA, USA

—— Abstract
The branch-and-cut algorithm for integer programming has a wide variety of tunable parameters that
have a huge impact on its performance, but which are challenging to tune by hand. An increasingly
popular approach is to use machine learning to configure these parameters based on a training set
of integer programs from the application domain. We bound how large the training set should be
to ensure that for any configuration, its average performance over the training set is close to its
expected future performance. Our guarantees apply to parameters that control the most important
aspects of branch-and-cut: node selection, branching constraint selection, and cut selection, and are
sharper and more general than those from prior research.

2012 ACM Subject Classification Theory of computation — Integer programming; Theory of
computation — Sample complexity and generalization bounds

Keywords and phrases Automated algorithm configuration, integer programming, machine learn-
ing theory, tree search, branch-and-bound, branch-and-cut, cutting planes, sample complexity,
generalization guarantees, data-driven algorithm design

Digital Object Identifier 10.4230/LIPIcs.CP.2022.3

Funding This material is based on work supported by the National Science Foundation under grants
CCF-1733556, CCF-1910321, 11S-1901403, and SES-1919453, the ARO under award W911NF2010081,
the Defense Advanced Research Projects Agency under cooperative agreement HR00112020003,
a Simons Investigator Award, an AWS Machine Learning Research Award, an Amazon Research

Award, a Bloomberg Research Grant, and a Microsoft Research Faculty Fellowship.

1 Introduction

Branch-and-cut (B&C) is a powerful algorithmic paradigm that is the backbone of all modern
integer programming (IP) solvers. The main components of B&C can be tuned and tweaked
in a myriad of ways. The fastest commercial IP solvers like CPLEX and Gurobi employ an
array of heuristics to make decisions at every stage of B&C to reduce the solving time as
much as possible, and give the user freedom to tune the multitude of parameters influencing
the search through the space of feasible solutions. However, tuning the parameters that
control B&C in a principled way is an inexact science with little to no formal mathematical
guidelines. A rapidly growing line of work studies machine-learning approaches to speeding
? Maria-Florina Balc.an, Siddharth l:"rasad, Tuomas Sandholm, and Ellen Vitercik;
5v icensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 3; pp. 3:1-3:19

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:ninamf@cs.cmu.edu
mailto:sprasad2@cs.cmu.edu
mailto:sandholm@cs.cmu.edu
mailto:vitercik@berkeley.edu
https://doi.org/10.4230/LIPIcs.CP.2022.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2

Improved Sample Complexity Bounds for Branch-And-Cut

up the various aspects of B&C — in particular investigating whether high-performing B&C
parameter configurations can be learned from a training set of typical IPs from the particular
application at hand [2, 22, 37, 42, 25, 32, 27, 43, 29]. Complementing the substantial number
of experimental approaches using machine learning for B&C, a recent generalization theory
has developed in parallel that aims to provide a rigorous theoretical foundation for how well
any B&C configuration learned from training IP data will perform on new unseen IPs [7, 9].
In particular, this line of theoretical research provides sample complezity guarantees that
bound how large the training set should be to ensure that no matter how the parameters
are configured (i.e., using any approach from prior research), the average performance of
branch-and-cut over the training set is close to its expected future performance. Sample
complexity bounds are important because with too small a training set, learning is impossible:
a configuration may have strong average performance over the training set but terrible
expected performance on future IPs. If the training set is too small, then no matter how the
parameters are tuned, the resulting configuration will not have reliably better performance
than any default configuration. State-of-the-art parameter tuning methods have historically
come without any provable guarantees, and our results fill in that gap for a wide array of
tunable B&C parameters. In this paper, we expand and improve upon the existing theory to
develop a wider and sharper handle on the learnability of the key components of B&C.

1.1 Summary of main contributions

Our main contribution is a formalization of a general model of tree search, presented in
Section 2.1, that allows us to improve and generalize prior results on the sample complexity
of tuning B&C. In this model, the algorithm repeatedly chooses a leaf node of the search
tree, performs a series of actions (for example, a cutting plane to apply and a constraint to
branch on), and adds children to that leaf in the search tree. The algorithm will also fathom
nodes when applicable. The node and action selection are governed by scoring rules, which
assign a real-valued score to each node and possible action. For example, a node-selection
scoring rule might equal the objective value of the node’s LP relaxation. We focus on general
tree search with path-wise scoring rules. At a high level, a score of a node or action is
path-wise if its value only depends on information contained along the path between the
root and that node, as is often the case in B&C. Many commonly used scoring rules are
path-wise including the efficacy [4], objective parallelism [1], directed cutoff distance [15],
and integral support [41] scoring rules, all used for cut selection by the leading open-souce
solver SCIP [15]; the best-bound scoring rule for node selection; and the linear, product, and
most-fractional scoring rules for variable selection using strong branching [1]. In Section 4,
we show how this general model of tree search captures a wide array of B&C components,
including node selection, general branching constraint selection, and cutting plane selection,
simultaneously. We also provide experimental evidence that, in the case of cutting plane
selection, the data-dependent tuning suggested by our model can lead to dramatic reductions
in the number of nodes expanded by B&C.

In Section 3, we prove our main structural result: for any IP, the tree search parameter
space can be partitioned into a finite number of regions such that in any one region, the
resulting search tree is fixed. This is in spite of the fact that the B&C search tree can be an
extremely unstable function of its parameters, with minuscule changes leading to exponentially
better or worse performance [7, 9]. By analyzing the complexity of this partition, we prove
our sample complexity bound. In particular, we relate the complexity of the partition to
the pseudo-dimension of the set of functions that measure the performance of B&C as a
function of the input IP. Pseudo-dimension (defined in Section 3) is a combinatorial notion

M.-F. Balcan, S. Prasad, T. Sandholm, and E. Vitercik

from machine learning theory that measures the intrinsic complezity of a set of functions. At
a high level, it measures how well a set of functions are able match complex patterns. Classic
results from learning theory then allow us to translate our pseudo-dimension bound into a
sample complexity guarantee [3], capturing the intuition that the more complex patterns
one can fit (i.e., the larger the pseudo-dimension is), the more samples needed to generalize.
The sample complexity bound grows linearly with the pseudo-dimension, so ideally, the
pseudo-dimension will be polynomial in the size of the problem.

We show that the pseudo-dimension is only polynomial in the depth of the tree (which is,
for example, at most the number of variables in the case of binary integer programming). By
contrast, we might naively expect the pseudo-dimension to grow linearly with the number of
arithmetic operations required to compute the B&C tree (as in Theorem 8.4 by Anthony and
Bartlett [3]), which is exponential in the depth of the tree. In fact, our bound is exponentially
smaller than the pseudo-dimension bound of prior research by Balcan et al. [9], which grows
linearly with the total number of nodes in the tree. Their results apply to any type of scoring
rule, path-wise or otherwise. By taking advantage of the path-wise structure, we are able to
reason inductively over the depth of the tree, leading to our exponentially improved bound.
Our results recover those of Balcan et al. [7], who only studied path-wise scoring rules for
single-variable selection for branching. In contrast, we are able to handle many more of the
critical components of tree search: node selection, general branching constraint selection,
and cutting plane selection.

1.2 Additional related research

A growing body of research has studied how machine learning can be used to speed up the
time it takes to solve integer programs, primarily from an empirical perspective, whereas we
study this problem from a theoretical perspective. This line of research has included general
parameter tuning procedures [25, 27, 24, 37], which are not restricted to any one aspect of
B&C. Researchers have also honed in on specific aspects of tree search and worked towards
improving those using machine learning. These include variable selection [29, 2, 13, 7, 16, 19],
general branching constraint selection [44], cut selection [37, 39, 23, 9], node selection [36, 21],
and heuristic scheduling [30, 10]. Machine learning approaches to large neighborhood search
have also been used to speed up solver runtimes [38].

This paper contributes to a line of research that provides sample complexity guarantees for
algorithm configuration, often by using structure exhibited by the algorithm’s performance
as a function of its parameters [20, 8, 7, 6, 9, 5]. This line of research has studied algorithms
for clustering [8], computational biology [6], and integer programming [7, 9], among other
computational problems. The main contribution of this paper is to provide a sharp yet
general analysis of the performance of tree search as a function of its parameters.

A related line of research provides algorithm configuration procedures with provable
guarantees that are agnostic to the specific algorithm that is being configured [31, 40] and are
particularly well-suited for algorithms with a finite number of possible configurations (though
they can be applied to algorithms with infinite parameter spaces by randomly sampling a
finite set of configurations).

2 Main tree search model

In this section we present our general tree search model and situate it within the framework
of sample complexity. Balcan et al. [9] studied the sample complexity of a much more
general formulation of a tunable search algorithm without any inherent tree structure. Our
formulation explicitly builds a tree.

3:3

CP 2022

3:4 Improved Sample Complexity Bounds for Branch-And-Cut

Algorithm 1 Tree search.

Input: Root node @, depth limit A

1: Initialize T = Q.

2: while 7 contains an unfathomed leaf do

3: Select a leaf @ of 7 that maximizes nscore(7T, Q).

4 if depth(Q) = A or fathom(7, @, None) then
5 Fathom Q.
6: else
7
8
9

Select an action A € actions(7, Q) that maximizes ascore(7,Q, A).
if fathom(7,Q, A) then

: Fathom Q.
10 else if children(7,Q, A) = () then
11: Fathom Q.
12: else
13: Add all nodes in children(7,Q, A) to T as children of Q.

2.1 General model of tree search

Tree search starts with a root node. In each round of tree search, a leaf node @ is selected.
At this node, one of three things may occur: (1) @ is fathomed, meaning it is never visited
again, (2) some action is taken at @, and then it is fathomed, or (3) some action is taken
at @, and then some number of children nodes of @ are added to the tree. (For example,
an action might represent a decision about which variable to branch on.) This process
repeats until the tree has no unfathomed leaves. More formally, there are functions actions,
children, and fathom prescribing how the search proceeds. Given a partial tree 7 and a
leaf @ of T, actions(7,Q) outputs a set of actions available at Q. Given a partial tree
T, aleaf @ of T, and an action A € actions(7,Q), fathom(7,Q, A) € {true,false}
is a Boolean function used to determine when to fathom a leaf @) of 7 given that action
A € actions(T,Q) U {None} was taken at @), and children(7,Q, A) outputs a (potentially
empty) list of nodes representing the children of @ to be added to the search tree given that
action A was taken at). Finally, nscore(7,Q) is a node-selection score that outputs a
real-valued score for each leaf of 7, and ascore(7T,Q, A) is an action-selection score that
outputs a real-valued score for each action A € actions(7T, Q). These scores are heuristics
that are meant to indicate the quality of exploring a node or performing an action.

Many aspects of B&C are governed by scoring rules [1]. For example, commonly used
scoring rules for cutting plance selection include efficacy [4], which is the perpendicular
distance from the current LP solution to the cutting plane; parallelism [1], which measures
the angle between the objective and the normal vector to the cutting plane; and directed
cutoff [15], which is the distance from the current LP solution to the cutting plane along
the direction of the line segment connecting the LP solution to the current best incumbent
integer solution For node selection, under the commonly used best-first node selection policy,
nscore(7, Q) equals the objective value of the LP relaxation of the IP represented by the
node @. Finally, for variable selection, popular scoring rules include a maximum change in
LP objective value after branching on the variable (where the maximum is taken over the two
resulting children), the minimum change in the LP objective value, linear combinations of
these two values, and the product of these two values [1]. Algorithm 1 is a formal description
of tree search using these functions.

M.-F. Balcan, S. Prasad, T. Sandholm, and E. Vitercik

The key condition that enables us to derive stronger sample complexity bounds compared
to prior research is the notion of a path-wise function, which was also used in prior research
but only in the context of variable selection [7].

» Definition 1 (Path-wise functions). A function f on tree-leaf pairs is path-wise if for all T
and Q €T, f(T,Q) = f(Tg,Q), where Tg is the path from the root of T to Q. A function
g on tree-leaf-action triples is path-wise if for all A, fa(T,Q) :=g(T,Q,A) is path-wise.

We assume that actions, ascore, nscore and children are path-wise, though fathom
is not necessarily path-wise.

Many commonly-used scoring rules are path-wise. For example, scoring rules are often
functions of the LP relaxation of the IP represented by a given node, and these scoring rules
are path-wise. Specific examples include the efficacy, objective parallelism, directed cutoff
distance, and integral support scoring rules used for cut selection; the best-bound scoring
rule for node selection; and the linear, product, and most-fractional scoring rules for variable
selection using strong branching. A point of clarification: the pathwise assumption is with
respect to the numerical scores assigned to actions/nodes. The actual act of, for example,
node selection, can depend on the entire tree. For example, consider the best-bound node
selection rule in branch-and-cut, which chooses the node with the best LP estimate. Here,
the scoring rule, which is the LP objective value itself, is pathwise, but ultimately the node
that is selected depends on the LP bounds at every unexplored node of the tree. This is fine
for our analysis. Similarly, the decision to fathom a node based on LP bounds is a decision
that depends on the entire tree built so far, which is also captured by our analysis.

No one scoring rule is optimal across all application domains, and prior research on
variable selection has shown that it can be advantageous to adapt the scoring rule to the
application domain at hand [7]. To this end, Algorithm 1 can be tuned by two parameters
€ [0,1] and A € [0, 1] that control action selection and node selection, respectively. Given
two fixed path-wise action-selection scores ascore; and ascores, we define a new score by

ascore,(7,Q) = p-ascore (T,Q) + (1 — u) - ascorex(T, Q).
Similarly, given two path-wise node-selection scores nscore; and nscores, we define
nscore)(7,Q,A) = X-nscore;(7,Q,A) + (1 —) -nscorex(7,Q, A).

Then, if nscorey and ascore, are used as the scores in Algorithm 1, we can view the
behavior of tree search as a function of u and A. The choice to use a convex combination of
scores is not new: prior research has shown that this idea can lead to dramatic improvements
in the case of single-variable branching [7]. Furthermore, the leading open source solver
SCIP uses a hard-coded weighted sum of scoring rules to select cutting planes. More broadly,
interpolating between two scores is a commonly-studied modeling choice in other machine
learning topics such as clustering [8].

Finally, we assume there exists b,k € N such that |actions(7,Q)| < b for any Q € T,
and |children(7T,Q, A)| < k for all Q, A.

2.2 Problem formulation

We now define the notion of a sample complexity bound more formally. Let Q denote
the domain of possible input root nodes @ to Algorithm 1 (for example, the set of all
IPs with n variables and m constraints). As is common in prior research on algorithm
configuration [22, 37, 42, 25, 32, 27, 43], we assume there is some unknown distribution D

3:5

CP 2022

3:6

Improved Sample Complexity Bounds for Branch-And-Cut

over Q. In the IP setting, D could represent, for example, typical scheduling IP instances
solved by an airline company. The sample complexity of a class of real valued functions
F ={f:Q — R} is the minimum number of independent samples required from D so that
with high probability over the samples, the empirical value of f on the samples is a good
approximation of the expected value of f over D, uniformly over all f € F. Formally, given
an error parameter € and confidence parameter §, the sample complexity Nx(e,d) is the

minimum Ny € N such that for any N > Ny,
Pr sup <e|>1-96
Q1,-,QN~D \ feF

for all distributions D supported on Q. Equivalently, our results bound the error € z(N, d)
between the empirical value of any f € F and its true expected value in terms of the number
of training samples N and the confidence parameter §. Nx(e,0) is the number of samples
required to achieve a prescribed error bound &, while e (N, ¢) provides an error bound for
any number N of samples at hand. We provide bounds on Nx(e,d) and ex(N,) in terms of
a common learning-theoretic measure of intrinsic complexity of F called pseudo-dimension,
which is detailed in Section 3.

In the context of Algorithm 1, we study families of tree-constant cost functions. A
cost function cost : @ — R is tree constant if cost(Q) only depends on the tree built
by Algorithm 1 on input @ (an example is tree size). Let cost, x(Q) denote this cost
when Algorithm 1 is run using the scores ascore, = p - ascore; + (1 — p) - ascores
and nscorey, = \-nscore; + (1 — A) - nscores. We study the sample complexity of
F = {cost,x : u,A € [0,1]}. We emphasize that we primarily interpret tree-constant
functions as proxies for run-time. In the context of integer programming, tree size is one such
measure. A strength of these guarantees is that they apply no matter how the parameters

Q~D

1 N
¥ 2 /(@)= E [£(Q)

are tuned: optimally or suboptimally, manually or automatically. For any configuration,
these guarantees bound the difference between average performance over the training set
and expected future performance on unseen IPs.

3 Generalization guarantees for tree search

In order to derive our sample complexity guarantees, we first prove a key structural property:
the behavior of Algorithm 1 is piecewise constant as a function of the node-selection score
parameter A and the action-selection score parameter . We give a high-level outline of our
approach. We first assume that the conditional checks fathom(7, @,) = true (lines 4 and 8)
are suppressed. Let A’ denote Algorithm 1 without these checks (so A’ fathoms a node if
and only if the depth limit is reached or if the node has no children). The behavior of A’ as
a function of p and A can be shown to be piecewise constant using the same argument as in
Claim 3.4 of Balcan et al. [7]. Given this, our first main technical contribution (Lemma 2) is a
generalization of Claim 3.5 of Balcan et al. [7] that relates the behavior of A’ to Algorithm 1.
The argument in Balcan et al. [7] is specific to branching, but we are able to prove our result
in a much more general setting. Our second main technical contribution (Lemma 4) is to
establish piecewise structure when the node-selection score is controlled by A € [0,1]. The
main reason for this auxiliary step of analyzing A’ is due to the fact that fathom is not
necessarily a path-wise function, and can depend on the state of the entire tree.

» Lemma 2. Fiz p € [0,1]. Let T and T’ be the trees built by Algorithm 1 and A,
respectively, using the action-selection score p - ascore; + (1 — p) - ascorey. Let @ be any
node in T, and let Tg be the path from the root of T to Q. Then, Tq is a rooted subtree of
T, no matter what node selection policy is used.

M.-F. Balcan, S. Prasad, T. Sandholm, and E. Vitercik

Proof. Let ¢ denote the length of the path 7o. Let 7o be comprised of the sequence
of nodes (Q1,...,Q:) such that @, is the root of 7, Q; = @, and for each 7, Q.11 €
children(7q.,Q-, A;) where A, € actions(7q.,Q.) is the action selected by Algorithm 1
at node Q.. We show that (Q1,...,Q:) is a rooted path in 7" as well.

Suppose for the sake of contradiction that this is not the case. Let 7 € {2,...,¢} be the
minimal index such that (Q1,...,Q,—_1) is a rooted path in 7", but there is no edge in 7"
from @,_1 to node @),. There are two possible cases:

Case 1. Q,_1 was fathomed by A’. This case is trivially not possible since whenever
A’ fathoms a node, so does Algorithm 1 (recall A’ was defined by suppressing fathoming
conditions of Algorithm 1).

Case 2. Q. ¢ children(7',Q,_1, A _;) where A’ _, is the action taken by A’ at node
Qr—1. In this case, if children(7’,Q,—1, A, _;) =0, then @Q,_; would be fathomed by A’,
which cannot happen by the first case. Otherwise, if children(7’,Q,_1,A-_;) # 0, we show
that we arrive at a contradiction due to the fact that the scoring rules, action-set functions,
and children functions are all path-wise. Let A’ _; denote the action taken by A" at Q,_1,
and let A._; denote the action taken by Algorithm 1 at @)._;. Since actions is path-wise,

actions(7,Q,_1) = actions(7q. ,,Q,—1) = actions(7T’,Q,_1).
Since ascore; and ascores are path-wise, we have

w-ascorer (T,Q,-1,A)+ (1 — p) - ascores(T,Q-—1,A)
= p-ascorei(Tg, ,,Qr—1,A4) + (1 —) -ascores(Tg, ,,Qr—1,A4)
= p-ascorey(T',Q--1,A) + (1 — p) - ascores(T',Q-_1, A).

for all actions A € actions(7g, ,,Qr—1). Therefore Algorithm 1 and A’ choose the same
action at node Q;_1, that is, A,_; = A/

' _,. Finally, since children is path-wise, we have

children(7,Q,—1,A4,_1) = children(7qg, ,,Q,—1,A,_1) = children(7T',Qr_1,A;_1).
Since @, € children(7,Q,—1,A,_1), this is a contradiction, which completes the proof. <

We use the following generalization of Claim 3.4 of Balcan et al. [7] that shows the
behavior of A’ is piecewise constant. While their argument only applies to single-variable
branching, our key insight is that the same reasoning can be readily adapted to handle any
actions (including general branching constraints and cutting planes). The structure of our
proof (which we defer to the appendix) is identical, but is modified to work in our more
general setting. This style of analysis is similar in spirit to [34].

» Lemma 3. Let ascore; and ascores be two path-wise action-selection scores. Fix the
input root node Q. There are T < kAA=1/2pA
where for any subinterval Iy, the action-selection score - ascore; + (1 —) - ascorey results
in the same tree built by A’ for all u € I, no matter what node selection policy is used.

subintervals I, ..., It partitioning [0, 1]

We now prove our main structural result for Algorithm 1.

» Lemma 4. Let ascore; and ascores be path-wise action-selection scores and let nscore;
and nscores be path-wise node-selection scores. Fix the input root node (). There are
T < EAOT2)BA rectangles partitioning [0, 1]% such that for any rectangle Ry, the node-selection
score A-nscore; +(1—\)-nscorey and the action-selection score pi-ascore;+(1—p)-ascores
result in the same tree built by Algorithm 1 for all (u, \) € Ry.

3:7

CP 2022

3:8

Improved Sample Complexity Bounds for Branch-And-Cut

Proof. By Lemma 3, there is a partition of [0, 1] into subintervals I; U- - -UIr such that for all u
within a given subinterval, the tree built by A’ is invariant (independent of the node-selection
score). Fix a subinterval I; of this partition. Let 7 denote the tree built by Algorithm 1.
For each node Q € T, let T denote the path from the root to @ in 7. Since nscore; is
path-wise, for any tree 7" containing 7 as a rooted path, nscore; (7', Q) = nscore;(7Tg, Q).
The same holds for nscores. For every pair of nodes Q1,Q2 € T, let A(Q1,Q2) € [0,1]
denote the unique solution to

A-nscore;(7Tg,, Q1) + (1 = A) - nscores(7Tg,, Q1)
= A -nscoreq(7g,,Q2) + (1 — X) -nscores(Tg,, Q2),

if it exists (if there are either (1) no solutions or (2) infinitely many solutions, set A(Q1,Q2) =
0). The thresholds A(Q1,Q2) for every pair of nodes Q1,Q2 € T partition [0,1] into
subintervals such that for all A\ within a given subinterval, the total order over the nodes of
T induced by nscore, is invariant. In particular, this means that the node selected by each
iteration of Algorithm 1 is invariant. Let J; U---U Jg denote these subintervals induced by
the thresholds over all subinterval I € {I1,...,Ir} established in Lemma 3.

We now show that this implies that the tree built by Algorithm 1 is invariant over all (u, \)
within a given rectangle I; x Js. Fix some rectangle I; x Js. We proceed by induction on the
iterations (of the while loop) of Algorithm 1. For the base case (iteration 0, before entering
the while loop), the tree consists of only the root, so the hypothesis trivially holds. Now,
suppose the statement holds up until the jth iteration, for some j. We analyze each line of
Algorithm 1 to show that the behavior of the j+ 1st iteration is independent of (u, A) € I x J;.
First, since J; determines the node selected at each iteration (as argued above), the node
selected on the j + 1st iteration (line 3) is fixed, independent of (i, A) € Iy x Js. Denote this
node by @. Thus, whether depth(Q) = A is independent of (i, \) € I; x J, and similarly
whether fathom(7, @, None) = true is independent of (u, \) € I; x J, (line 4). This implies
that whether or not @ is fathomed at this stage is independent of (u, A) € I} x Js. If @ was
fathomed, we are done. Otherwise, we argue that the action selected at line 7 is invariant
over (4, A) € I; x J;. By Lemma 3, A’ builds the same tree for all u € I. Let Tg denote
the path from the root to @ in this tree. By Lemma 2, 7 is the path from the root to @
in the tree built by Algorithm 1 as well. The action selected at @ by A’ is invariant over
u € I (by Lemma 3). Therefore, since actions, ascore;, and ascores are path-wise, the
action A selected by Algorithm 1 at @ is invariant over u € I;. Finally, fathom(7, @, A) and
children(7,Q, A) are completely determined, so the execution of the remaining conditional
statement (line 8 to line 13) is invariant over (i, A) € Iy x Js. Thus, the entire iteration of
Algorithm 1 is invariant over (u, A) € I; x Jg, which completes the induction.

Finally, we count the total number of rectangles in our partition of [0,1]2. For each
interval I; in the partition established in Lemma 3, we obtained a partition of I; x [0, 1] into
rectangles induced by at most (\72'|) thresholds, which consists of at most at most

- ((m+1 —1)/(k— 1)) s (1&“—1)2 S

2 kE—1
subintervals. Accounting for every interval I, € {Iy,...,Ir} in the partition from Lemma 3,
we get a total of TkP® < kA(9+A)/2pA rectangles, as desired. |

We now derive generalization guarantees for the collection F = {cost, x : (1, A) € [0,1]*}
where cost is any tree-constant function, such as tree size. We do this by bounding the
pseudo-dimension of F, which is a combinatorial measure of intrinsic complexity of a class of

M.-F. Balcan, S. Prasad, T. Sandholm, and E. Vitercik

real valued functions. The pseudo-dimension of F, denoted by Pdim(F), is the largest positive
integer N such that there exist N nodes Q1,...,Qy € @ and N thresholds r1,...,7ry € R
such that |{(sign(f(Q1) —r1),...,sign(f(Qn) —7n)) : f € F} = 2. A well-known result
in learning theory [3] states that if functions in F have bounded range [—H, H], then

Nz(e,6) = O <I§ (Pdim(F) + ln(1/5))> and e#(N,8) = O <H\/ Pdim(F) + In(1/ 5)> .

N

When each function in F maps to {0, 1}, the pseudo-dimension is more commonly referred
to as the VC' dimension.

Bounding the pseudo-dimension is a simple instantiation of the general framework provided
by Balcan et al. [6] with the piecewise structure established in Lemma 4. Balcan et al’s [6]
main result gives pseudo-dimension bounds for families of piecewise structured functions
in terms of the VC dimension of the class of 0/1 classifiers defining the boundaries of the
functions, the number of classifiers defining the boundaries, and the pseudo-dimension of
the family of functions when restricted to each piece. (Strictly, this result is in terms of the
dual classes of the boundary and piece functions. However, since the dual class of all linear
separators is the set of all linear separators, we omit this detail for simplicity.)

» Theorem 5. Let cost(Q) be any tree-constant cost function, and let cost, »(Q) be the
cost of the tree built by Algorithm 1 on input root node Q wusing action-selection score

parameterized by (1 and node-selection score parameterized by A. Then, Pdim({cost, »}) =
O(A%logk + Alogb).

9+2)pA rectangles partitioning [0, 1]? such

Proof. By Lemma 4, there are at most T = k?(
that for a fixed input node @, cost, x(Q) is constant over each rectangle as a function
of p, A. These T rectangles can be defined by T thresholds on [0, 1] corresponding to p
and T thresholds on [0, 1] corresponding to A. Thus, the T rectangles can be identified by
T2 = 2A0+8) 24 Jinear separators in R2. The VC dimension of linear separators in R? is
O(1). The pseudo-dimension of the set of constant functions is also O(1). Plugging these
quantities into the main theorem of Balcan et al. [6] yields the theorem statement. <

3.1 Multiple actions

Theorem 5 can be easily generalized to the case where there are multiple actions of different
types taken at each node of Algorithm 1. Specifically, there are now d path-wise action-set
functions actionsy,...,actionsy, and at line 7 of Algorithm 1 we take one action of each
type, that is, we select action A € actions;(7T,Q), Az € actionss(7T,Q), and so on. The
functions fathom and children then depend on all d actions taken at node Q). We assume

that there are two scoring rules ascore! and ascore) for each action type i = 1,...,d.

Algorithm 1 can then be parameterized by (u, \), where u € R? is a vector of parameters

controlling each action, so the ith action is selected to maximize y;-ascore} +(1—pu;)-ascorel.

Then, as long as d = O(1), we get the same pseudo-dimension bound. We assume b is a
uniform upper bound on the size of actions; for any . The proof is nearly identical, and
we defer it to the appendix (which also contains more details on the multiple-action setup).

» Theorem 6. Let cost(Q) be any tree-constant cost function, and let costy, z(Q) be the
cost of the tree built by Algorithm 1 on input root node @ wusing action-selection scores

parameterized by p € R, where d = O(1), and node-selection score parameterized by M.
Then, Pdim({cost, \}) = O(A%logk + Alogb).

3:9

CP 2022

3:10

Improved Sample Complexity Bounds for Branch-And-Cut

4 Branch-and-cut for integer programming

We now instantiate our main results with the three main components of the B&C algorithm:
branching, cutting planes, and node selection, used to solve IPs max{c’z : Az < b,z >
0,2 € Z"} where c € R", A € Z™*™ b € Z™. The function fathom(7,Q, A) outputs true
if after having taken action A the LP relaxation at @ is integral, infeasible, or worse than
the best integral solution found so far in 7. The function children(7, @, A) outputs the
two subproblems generated by the branching procedure on the IP at @ after having taken
action A. For simplicity we refer only to IPs, but everything in our discussion applies to
mixed IPs as well. In our model of tree search, node selection is controlled by A. Cutting
planes and branching are types of actions and controlled by .

4.1 Branching

In this section, we provide guarantees for branching. Throughout this section we assume
A = O(n), as is the case with single-variable branching.

4.1.1 Multivariable branching constraints

It is well known that allowing for more general generation of branching constraints can result
in smaller B&C trees. Gilpin and Sandholm [17] studied multivariable branches of the form
Siesxlil < [Xies@iplil], Yies xlil = [X,cq @ipli]] where S is a subset of the integer vari-
ables such that), ¢ x{p[i] ¢ Z. Here, actions(7,Q) = 271 s0, Pdim({cost, »}) = O(n?).
So our sample complexity bound for multivariable branching constraints is, surprisingly, only
a constant factor worse than the bound for single-variable branching constraints.

We give a simple example where B&C using only single variable branches builds a tree of
exponential size, while a single branch on the entire set of variables at the root yields two
infeasible subproblems (and a B&C tree of size 3).

» Theorem 7. For any n, there is an IP with two constraints and n variables such that
with only single variable branches, BEC builds a tree of size 2"~V/2 while with a suitable
multivariable branch, BEC builds a tree of size three.

Proof. Let n be an odd positive integer. Consider the infeasible IP max{} ; , x[i] :
25" zlil =n,z € {0,1}"}. Jeroslow [26] proved that with only single-variable branches,
B&C builds a tree with 2"=1/2 nodes to determine infeasibility. However, with a suitable
multivariable branch, B&C will build a tree of constant size. The optimal solution to the LP
relaxation of the IP is attained when all variables are set to 1/2. A multivariable branch
on all n variables produces the two subproblems with constraints Y ;- z[i] < |n/2] and
o, x[i] > [n/2], respectively. Since n is odd, [n/2] < n/2 and [n/2] > n/2, so the LP
relaxations of both subproblems are infeasible. Thus, B&C builds a tree with three nodes. <«

Yang et al. [45] provide more examples of situations where multivariable branching yields
dramatic improvements in tree size over single variable branching. They also perform a
computational evaluation of a few different strategies for generating multivariable branching
constraints. Yang et al. [44] explore gradient-boosting for learning to mimic strong branching
for multiple variables.

4.1.2 Branching on general disjunctions

Branching constraints can be even more general than multivariable branches. Given any
integer vector w € Z"™ and any integer mg € Z (jointly referred to as a disjunction), the
constraints #7x < my or ®Tx > my + 1 represent a valid partition of the feasible region

M.-F. Balcan, S. Prasad, T. Sandholm, and E. Vitercik

into subproblems. Owen and Mehrotra [35] ran the first experiments demonstrating that
branching on general disjunctions can lead to significantly smaller tree sizes. Subsequent
works have posed different heuristics to select disjunctions to branch on [14, 33].

In practice it is known that additional IP constraints should not have coefficients that
are too large. If C' is a bound on the magnitude of the coefficient of any disjunction, then
actions(7,Q) = {-C,...,C}"", so Pdim({cost, \}) = O(n?logC). Karamanov and
Cornuéjols [28] conduct a computational evaluation of disjunctions derived from Gomory
mixed-integer cuts. In this setting, actions(7,Q) is the set of m or fewer disjunctions
corresponding to the m or fewer Gomory mixed-integer cuts derived from the simplex tableau
from solving the LP relaxation of Q. In this case, Pdim({cost, »}) = O(n? + nlogm).

4.2 Cutting planes

The action set can also correspond to cutting planes used to refine the feasible region of the
IP at any stage of B&C. Here, actions(7, Q) is any set of cutting planes derived solely using
the path from the root to the IP at (). Examples include the set of Chvéital-Gomory (CG)
derived from the simplex tableau [18], and various combinatorial families of cutting planes
such as clique cuts, odd-hole cuts, and cover cuts. The set actions(7T, Q) can also consist of
sequences of cutting planes, representing adding several cutting planes to the IP in waves.
For example, the set of all sequences of w CG cuts generated from the simplex tableau for
an IP with m constraints has size at most m® (regardless of whether the LP is resolved after
each cut). The number of such cutting planes provided by the LP tableau at any node in the
tree is at most O(m + nw) (the original IP has m constraints, and after at most n branches
there are an additional n branching constraints and at most nw cutting planes), which means
that |actions(7, Q)| < O(m + nw)®. Thus, Pdim({cost, \}) = O(n? + nwlog(m + nw)).

We can also handle arbitrary CG cuts (not just ones from the LP tableau). Balcan et al. [9]
proved that given an IP with feasible region {& € Z™ : Az < b,z > 0}, even though there
are infinitely many CG cut parameters, there are effectively only O(w2" [|Al|, ; 4+ 2% [|b[|; +
nw)! ™ distinct sequences of cutting planes that w CG cut parameters can produce. At any
node in the B&C tree, the number of constraints is at most O(m + nw). So, on the domain
of IPs with [|Al|, ; < avand [|b]|, < B, [actions(T,Q)| < O(w2%a + 2% § + nap) L Fw-Olm+nw),

Thus, Pdim({cost, »}) = O(n*w*mlog(a + 5+ n)).

4.2.1 Experiments on cover cuts for the multiple knapsack problem

In this section, we demonstrate via experiments that tuning a convex combination of scoring
rules to select cuts can lead to dramatically smaller branch-and-cut trees when done in a
data-dependent manner. We study the classical NP-hard multiple knapsack problem: given
a set N of items where each item ¢ € N has a value p; > 0 and a weight w; > 0, and
a set K of knapsacks where each knapsack k € K has a capacity Wy > 0, the goal is to
find a feasible packing of the items into the knapsacks of maximum value. We assume,
without loss of generality, that the items are labeled in descending order of weight, that is,
Wi > Wg = > WN|- This problem can be formulated as the following binary IP:

maximize D ;N D opci PiTh,i

subject to D,y Wik, < Wy Vke K
Zkerk’igl Vie N
xp € {0,1} Vie Nke K

3:11

CP 2022

3:12

Improved Sample Complexity Bounds for Branch-And-Cut

, 35500 , 45000 , 45000

4 35000 342500 § 42500

g 34500 5 40000 & 40000

£34000 g g

g € 37500 g 37500

<33500 < < 15000

23000 35000
0.00 025 050 0.75 1.00 0.00 025 050 0.75 1.00 0.00 025 050 0.75 1.00
Parameter Parameter p Parameter
(@ p-E+(1—p)-P. (b) p-E+ (1 —p)-D. (¢) p-D+ (1 —p)-P.

Figure 1 Chvatal distribution with 35 items and 2 knapsacks.

28000 27500 27500
& 825000 S
5 26000 ﬁ » 25000
224000 g 22300 222500
222000 £20000 £ 20000

20000 17500 17500

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Parameter p Parameter p Parameter p

(a) p-E+ (1—p)-P. (b) u-E+(1—p)-D. () D+ (1—p)-P.

Figure 2 Chvatal distribution with 35 items and 3 knapsacks.

A subset C' C N of items is called a cover for knapsack k € K if 3, ~w; > Wy. If C is
a cover, no feasible solution can have x;; = 1 for all i € C, s0 > ;.o aps < |C| —1is a
valid constraint — called a cover cut. When C is minimal (that is, C'\ {i¢} is not a cover
for every i €), such cover cuts help tighten the knapsack IP by cutting off fractional LP
solutions. We generate (a subset of all) cover cuts for each knapsack k as follows: for each
i € N, let j > i be minimal such that C = {i,i 4+ 1,...,5} is a cover for k (if such a j
exists). Since w; > w; for j >4, C'is a minimal cover, and moreover the extended cover cut

J_, ;i < |C|—1is valid and dominates the minimal cover cut 3, #; < |C|— 1. Extended
cover cuts generated from minimal covers are known to be facet defining for the integer hull
under certain natural conditions [12].

We investigate the relationship between three scoring rules for cutting planes. The first is
efficacy (E), which is the perpendicular distance from the current LP solution to the cutting
plane. The second is parallelism (P), which measures the angle between the objective and
the normal vector to the cutting plane. The third is directed cutoff (D), which is the distance
from the current LP solution to the cutting plane along the direction of the line segment
connecting the LP solution to the current best incumbent integer solution. More details,
including explicit formulas, can be found in [9] and references therein.

We consider two specific instances of the multiple knapsack problem, which are loosely
based on a class of knapsack problems introduced by Chvatal that are difficult to solve
with vanilla branch-and-bound [11, 45]. In the first, p; = w; for all ¢ € N, and W}, =
LO sen wi)/2|K|] + (k — 1) for each k = 1,...,|K|. In the second, p; = w|n|—it+1, 50 the
most valuable item is the lightest and the least valuable item is the heaviest, and Wy, is
defined as in the first type. We call the first class of problems Chuvdtal instances and the
second class reverse Chudtal instances. For a given N, K, we generate (reverse) Chvdtal
instances by drawing each weight independently as w; = |z;], where z; ~ N(50,2), and
sorting the items by weight in descending order.

M.-F. Balcan, S. Prasad, T. Sandholm, and E. Vitercik

20 90
g 80 " 40 o 80
560 B £60
50 £30 §50
240 g5 240
30 30
0.00 025 050 075 1.00 0.00 025 050 075 1.00 0.00 025 050 075 1.00
Parameter p Parameter u Parameter p
(@ p-E+(1—p)-P. (b) p-E+ (1 —p)-D. (€) p-D+ (1 —p)-P.

Figure 3 Reverse Chvétal distribution with 100 items and 10 knapsacks.

200

N
[=]
o
=
o
o

o
~
ul
-
w
o

=
o
=]

Average tree size

iy
N
wv

Average tree size
=
Ul
o
Average tree size

40 50
0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 025 050 0.75 1.00

Parameter Parameter p Parameter p

(@ p-E+(1—p) P (b) p-E+ (1 —p)-D. (€) p-D+(L—p)-P.

=
[=]
o
o
o

Figure 4 Reverse Chvatal distribution with 100 items and 15 knapsacks.

In our experiments, we add (whenever possible) two extended cover cuts obtained in the
aforementioned manner at every node of the B&C tree. The two cuts chosen are the two
with the highest score i - ascore; + (1 — u) - ascores among all extended cover cuts that are
violated by the current LP optimum, where ascore;, ascores € {E,D,P}. Figures 1-4 display
the average tree size over 1000 samples for different Chvatal and reverse Chvatal distributions
as a function of u, where the domain [0, 1] of p is discretized in increments of 0.01. We ran
our experiments using the Python API of CPLEX 12.10 with default cut generation turned
off. All other aspects of B&C (e.g. variable and node selection) are controlled by the default
settings of CPLEX. The key takeaway of our plots is that tuning a convex combination of
scoring rules can lead to significant savings in B&C tree size, and that this tuning must be
done with the IP distribution in mind. No single parameter produces small trees for all the
distributions we considered, and in fact a p that minimizes tree size for one distribution can
result in the largest trees for another (as in Figures 2b and 4b, for example). Furthermore,
many of the plots display discernible trends (and in some cases are quite smooth), suggesting
that the number of samples required to avoid overfitting in practice can be significantly
smaller than our theoretical bounds.

4.3 Improved bounds for branch-and-cut

To allow node selection, branching, and cutting-plane selection to be tuned simultaneously,
we apply Theorem 6. This allows us to bound the pseudo-dimension of the family of functions
{cost,, ., 2}, where p1 controls branching, o controls cutting-plane selection, and A controls
node selection. Let actions; (7, Q) denote the set of branching actions available at @, and
let actionss (7, Q) denote the set of cutting planes available at Q. Let by,bs € N be such
that actions;(7,Q) < by and actionss(7,Q) < be for all 7 and all Q € 7. Fix two
branching scores ascorei,ascorel, fix two cutting-plane selection scores ascore?, ascore3,
and fix two node-selection scores nscore;,nscores.

3:13

CP 2022

3:14

Improved Sample Complexity Bounds for Branch-And-Cut

» Theorem 8. Let cost(Q) be any tree-constant cost function, and let cost,, ., » be the cost
of the tree built by BEC using branching score ji1 - ascorel + (1 — 1) - ascorel, cutting-plane
selection score g - ascore? + (1 — ugz) - ascore3, and node-selection score X - nscore; + (1 —
A) - nscorey. Then, with A = O(n), Pdim({cost,, u,1}) = O(n? 4+ nlog(by + bs)).

4.3.1 Comparison to existing bounds

Balcan et al. [9] give a pseudo-dimension bound for tree search with a linear dependence
on a cap k on the number of nodes allowed in any tree. Their pseudo-dimension bound in
our setting is Pdim({cost,, 4, 2}) = O(klogk + rlogbs + klogbs). While k is treated as
a constant, it can be a prohibitively large quantity. In fact, without explicitly enforcing a
limit on the number of nodes expanded by B&C, Balcan et al. [9] obtain a pseudo-dimension
bound of O(2"(logb; + logbs)). Balcan et al. [7] use the path-wise property to prove that
Pdim({cost,}) = O(n?) for single-variable branching, but for the case where branching is
the only tunable component of B&C (and node selection is fixed).

5 Conclusions and future research

We presented a general model of tree search and proved sample complexity guarantees
for this model that improve and generalize upon the recent sample complexity theory for
configuring branch-and-cut. There are many interesting and open directions for future
research. One compelling open question is to obtain pseudo-dimension bounds when action
sets are infinite. Balcan et al. [9] alluded to this question in the case of cutting planes, and
neither the techniques of their work nor the techniques of the present work can handle, for
example, important infinite cutting-plane families such as the class of Gomory mixed-integer
cuts, or the infinitely many valid disjunctions that could be branched on. Beyond integer
programming, our model of tree search could potentially be applied to completely different
problem domains that exhibit tree structure. Another direction is to extend our results to
convex combinations of £ > 2 scoring rules pjscore; +... ugscorey, as Balcan et al. [7] do in
the special case of single-variable branching. However, their pseudo-dimension bound grows
exponentially in the number of variables n in that special case; developing techniques that
lead to a polynomial dependence on n remains a challenging open question.

—— References

1 Tobias Achterberg. Constraint Integer Programming. PhD thesis, Technische Universitét
Berlin, 2007.

2 Alejandro Marcos Alvarez, Quentin Louveaux, and Louis Wehenkel. A machine learning-based
approximation of strong branching. INFORMS Journal on Computing, 29(1):185-195, 2017.

3 Martin Anthony and Peter Bartlett. Neural Network Learning: Theoretical Foundations.
Cambridge University Press, 2009.

4 Egon Balas, Sebastian Ceria, and Gérard Cornuéjols. Mixed 0-1 programming by lift-and-
project in a branch-and-cut framework. Management Science, 42(9):1229-1246, 1996.

5 Maria-Florina Balcan. Data-driven algorithm design. In Tim Roughgarden, editor, Beyond
Worst Case Analysis of Algorithms. Cambridge University Press, 2020.

6 Maria-Florina Balcan, Dan DeBlasio, Travis Dick, Carl Kingsford, Tuomas Sandholm, and
Ellen Vitercik. How much data is sufficient to learn high-performing algorithms? Generalization
guarantees for data-driven algorithm design. In Annual Symposium on Theory of Computing
(STOC), 2021.

M.-F. Balcan, S. Prasad, T. Sandholm, and E. Vitercik

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Maria-Florina Balcan, Travis Dick, Tuomas Sandholm, and Ellen Vitercik. Learning to branch.
In International Conference on Machine Learning (ICML), 2018.

Maria-Florina Balcan, Vaishnavh Nagarajan, Ellen Vitercik, and Colin White. Learning-
theoretic foundations of algorithm configuration for combinatorial partitioning problems. In
Conference on Learning Theory (COLT), 2017.

Maria-Florina Balcan, Siddharth Prasad, Tuomas Sandholm, and Ellen Vitercik. Sample
complexity of tree search configuration: Cutting planes and beyond. In Annual Conference on
Neural Information Processing Systems (NeurIPS), 2021.

Antonia Chmiela, Elias B Khalil, Ambros Gleixner, Andrea Lodi, and Sebastian Pokutta.
Learning to schedule heuristics in branch-and-bound. In Annual Conference on Neural
Information Processing Systems (NeurIPS), 2021.

Vasek Chvatal. Hard knapsack problems. Operations Research, 28(6):1402-1411, 1980.
Michele Conforti, Gérard Cornuéjols, Giacomo Zambelli, et al. Integer programming, volume
271. Springer, 2014.

Giovanni Di Liberto, Serdar Kadioglu, Kevin Leo, and Yuri Malitsky. Dash: Dynamic approach
for switching heuristics. Furopean Journal of Operational Research, 248(3):943-953, 2016.
Matteo Fischetti and Andrea Lodi. Local branching. Mathematical Programming, 98:23-47,
2002.

Gerald Gamrath, Daniel Anderson, Ksenia Bestuzheva, Wei-Kun Chen, Leon Eifler, Maxime
Gasse, Patrick Gemander, Ambros Gleixner, Leona Gottwald, Katrin Halbig, Gregor Hendel,
Christopher Hojny, Thorsten Koch, Pierre Le Bodic, Stephen J. Maher, Frederic Matter,
Matthias Miltenberger, Erik Mithmer, Benjamin Miiller, Marc E. Pfetsch, Franziska Schlosser,
Felipe Serrano, Yuji Shinano, Christine Tawfik, Stefan Vigerske, Fabian Wegscheider, Dieter
Weninger, and Jakob Witzig. The SCIP Optimization Suite 7.0. Technical report, Optimization

Online, March 2020. URL: http://www.optimization-online.org/DB_HTML/2020/03/7705.

html.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact
combinatorial optimization with graph convolutional neural networks. In Annual Conference
on Neural Information Processing Systems (NeurIPS), pages 15554—15566, 2019.

Andrew Gilpin and Tuomas Sandholm. Information-theoretic approaches to branching in
search. Discrete Optimization, 8(2):147-159, 2011. Early version in IJCAI-07.

Ralph E. Gomory. Outline of an algorithm for integer solutions to linear programs. Bulletin
of the American Mathematical Society, 64(5):275-278, 1958.

Prateek Gupta, Maxime Gasse, Elias B Khalil, M Pawan Kumar, Andrea Lodi, and Yoshua
Bengio. Hybrid models for learning to branch. In Annual Conference on Neural Information
Processing Systems (NeurIPS), 2020.

Rishi Gupta and Tim Roughgarden. A PAC approach to application-specific algorithm
selection. SIAM Journal on Computing, 46(3):992-1017, 2017.

He He, Hal Daume III, and Jason M Eisner. Learning to search in branch and bound algorithms.
In Annual Conference on Neural Information Processing Systems (NeurIPS), 2014.

Eric Horvitz, Yongshao Ruan, Carla Gomez, Henry Kautz, Bart Selman, and Max Chickering.
A Bayesian approach to tackling hard computational problems. In Proceedings of the Conference
on Uncertainty in Artificial Intelligence (UAI), 2001.

Zeren Huang, Kerong Wang, Furui Liu, Hui-ling Zhen, Weinan Zhang, Mingxuan Yuan, Jianye
Hao, Yong Yu, and Jun Wang. Learning to select cuts for efficient mixed-integer programming.
arXiv preprint, 2021. arXiv:2105.13645.

Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. Sequential model-based optimization
for general algorithm configuration. In International Conference on Learning and Intelligent
Optimization (LION), pages 507-523, 2011.

Frank Hutter, Holger H Hoos, Kevin Leyton-Brown, and Thomas Stiitzle. ParamILS: An
automatic algorithm configuration framework. Journal of Artificial Intelligence Research,
36(1):267-306, 2009.

3:15

CP 2022

http://www.optimization-online.org/DB_HTML/2020/03/7705.html
http://www.optimization-online.org/DB_HTML/2020/03/7705.html
http://arxiv.org/abs/2105.13645

3:16

Improved Sample Complexity Bounds for Branch-And-Cut

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

Robert G Jeroslow. Trivial integer programs unsolvable by branch-and-bound. Mathematical
Programming, 6(1):105-109, 1974.

Serdar Kadioglu, Yuri Malitsky, Meinolf Sellmann, and Kevin Tierney. ISAC—instance-specific
algorithm configuration. In European Conference on Artificial Intelligence (ECAI), 2010.
Miroslav Karamanov and Gérard Cornuéjols. Branching on general disjunctions. Mathematical
Programming, 128(1-2):403-436, 2011.

Elias Khalil, Pierre Le Bodic, Le Song, George Nemhauser, and Bistra Dilkina. Learning to
branch in mixed integer programming. In AAAI Conference on Artificial Intelligence, 2016.
Elias Khalil, Bistra Dilkina, George Nemhauser, Shabbir Ahmed, and Yufen Shao. Learning
to run heuristics in tree search. In International Joint Conference on Artificial Intelligence
(IJCAI), 2017.

Robert Kleinberg, Kevin Leyton-Brown, and Brendan Lucier. Efficiency through procrastina-
tion: Approximately optimal algorithm configuration with runtime guarantees. In International
Joint Conference on Artificial Intelligence (IJCAI), 2017.

Kevin Leyton-Brown, Eugene Nudelman, and Yoav Shoham. Empirical hardness models:
Methodology and a case study on combinatorial auctions. Journal of the ACM, 56(4):1-52,
2009.

Ashutosh Mahajan and Theodore K Ralphs. Experiments with branching using general
disjunctions. In Operations Research and Cyber-Infrastructure, pages 101-118. Springer, 2009.
Nimrod Megiddo. Combinatorial optimization with rational objective functions. Mathematics
of Operations Research, pages 414-424, 1979.

Jonathan H. Owen and Sanjay Mehrotra. Experimental results on using general disjunctions
in branch-and-bound for general-integer linear programs. Computational Optimization and
Applications, 20(2):159-170, November 2001.

Ashish Sabharwal, Horst Samulowitz, and Chandra Reddy. Guiding combinatorial optimization
with UCT. In International Conference on AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems. Springer, 2012.

Tuomas Sandholm. Very-large-scale generalized combinatorial multi-attribute auctions: Lessons
from conducting $60 billion of sourcing. In Zvika Neeman, Alvin Roth, and Nir Vulkan, editors,
Handbook of Market Design. Oxford University Press, 2013.

Jialin Song, Ravi Lanka, Yisong Yue, and Bistra Dilkina. A general large neighborhood
search framework for solving integer programs. In Annual Conference on Neural Information
Processing Systems (NeurIPS), 2020.

Yunhao Tang, Shipra Agrawal, and Yuri Faenza. Reinforcement learning for integer program-
ming: Learning to cut. International Conference on Machine Learning (ICML), 2020.
Gellért Weisz, Andrdas Gyorgy, and Csaba Szepesvéari. LEAPSANDBOUNDS: A method for
approximately optimal algorithm configuration. In International Conference on Machine
Learning (ICML), 2018.

Franz Wesselmann and Uwe Suhl. Implementing cutting plane management and selection
techniques. Technical report, University of Paderborn, 2012.

Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Satzilla: portfolio-based
algorithm selection for SAT. Journal of Artificial Intelligence Research, 32(1):565-606, 2008.
Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Hydra-MIP: Automated
algorithm configuration and selection for mixed integer programming. In RCRA workshop on
Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion at
the International Joint Conference on Artificial Intelligence (IJCAI), 2011.

Yu Yang, Natashia Boland, Bistra Dilkina, and Martin Savelsbergh. Learning generalized
strong branching for set covering, set packing, and 0-1 knapsack problems. Technical report,
Technical Report, 2020., 2020.

Yu Yang, Natashia Boland, and Martin Savelsbergh. Multivariable branching: A 0-1 knapsack
problem case study. INFORMS Journal on Computing, 2021.

M.-F. Balcan, S. Prasad, T. Sandholm, and E. Vitercik

A Analysis of A’

Proof of Lemma 3. Let T denote the tree built by A’. For i € [A], let T[i] denote the

restriction of 7 to nodes of depth at most i. Let ascore, = - ascore; + (1 — u) - ascores.

We prove the lemma by induction on . In particular, we show that for each ¢ € [A], there
are k*(=1D/2b? subintervals partitioning [0, 1] such that 77i] is invariant over all y within any
given subinterval. Since 7T [A] = T, this implies the lemma statement. The base case of i = 1
is trivial since 7 [1] consists of only the root.

Now, suppose the statement holds for some ¢ € {1,...,A — 1}. That is, there are
T < k6=1D/2p disjoint intervals I; U--- U Iz = [0, 1] such that 7[i] is invariant over all y
within any given subinterval (our inductive hypothesis). Fix one of these subintervals I;. We
subdivide I; into subintervals such that 7 [+ 1] is invariant within each one of these smaller
subintervals. Let @) be any leaf of T[i], and for p € I, let 7, denote the state of the tree
using ascore, at the point that @ is selected. Since ¢ < A, @ is not fathomed at line 4,
regardless of p. Next, since actions is path-wise, the actions available at @ depend only on
the path T¢ from the root of T to @, which, by the inductive hypothesis, is invariant over
all i € I;. That is, actions(7,,Q) = actions(7q, Q) for all 4 € I;. Then, ascore, with
parameter u will select action A € actions(7g, Q) if and only if

A= argmax w-ascorei(7T,,Q, Ag) + (1 — p) - ascores(T,, Q, Ao)
Ap€actions(7q,Q)

= argmax w-ascore;(Tg,Q, Ag) + (1 — p) - ascoresx(Tg, @, Ao),
Ag€actions(7g,Q)

where the second equality follows from the fact that ascore; and ascores are path-wise.

Thus, for a fixed Ao, ascore,, is linear in p, so for each Ay there is at most one subinterval
of [0,1] such that for all x in that subinterval, Ay maximizes ascore,. Thus, each leaf
of T[i] contributes at most b subintervals such that for p within a given subinterval, the
action selected at each leaf of 7T [i] is invariant. 7[i] consists of at most k* leaves, so this is a
total of at most kb subintervals. Now, since the action A selected at each leaf Q of T [i] is
invariant, the set of children children(7,,@, A) = children(7g, @, A) of @ added to the
tree is also invariant, using the fact that children is path-wise. This shows that within
every subinterval, T [i 4 1] is invariant. The total number of subintervals is, by the induction
hypothesis, at most k*—1/2pt . kip = gO+D/2pi+1 a5 desired. <

B Multiple actions

Let actionsy,...,actionsy be path-wise. The multi-action version of Algorithm 1 is given

by Algorithm 2. There are two scoring rules ascore! and ascore), for each action type i € [d].

Algorithm 2 can then be parameterized by (u, \), where pu € R? is a vector of parameters

controlling each action: the ith action is selected to maximize y; -ascore! + (1 —p;)-ascoreb.

As before, we assume there are b, k € N such that |actions;(7,Q)| < b for any ¢ and any
Q € T, and |children(T,Q, A;,...,A4)| <k for all Q, A, ..., Aa.

Let A’, as in the single-action setting, be Algorithm 2 with the evaluations of fathom on
line 4 and line 8 suppressed. Then, we may prove a slight generalization of lemma 3.

» Lemma 9. Let ascore! and ascorel be two path-wise action-selection scores, for each
i€{1,...,d}. Fizx the input root node Q. There are T < kAAA=D/2pdA poxes of the form
Ry = I x -+ x Iy partitioning [0,1]¢ where for any boxr Ry, the action-selection scores
i - ascoret + (1 — ;) - ascorey results in the same tree built by A’ for all p € Ry, no matter
what node selection policy is used.

3:17

CP 2022

3:18 Improved Sample Complexity Bounds for Branch-And-Cut

Algorithm 2 Tree search with multiple actions.

Input: Root node @, depth limit A

1: Initialize T = Q.

2: while 7 contains an unfathomed leaf do

3: Select a leaf @ of 7 that maximizes nscore(7T, Q).

4 if depth(Q) = A or fathom(7,Q,None,...,None) then
5 Fathom Q.
6: else
7
8
9

Fori=1,...,d, select A; € actions,;(7,Q) that maximizes ascore;(7T,Q, 4;).
if fathom(7,Q, A1,...,A,) then

: Fathom Q.
10: else if children(7,Q, Ay,...,Ay) = 0 then
11: Fathom Q.
12: else
13: Add all nodes in children(7,Q, A1,...,A4) to T as children of Q.

Proof. Let 7 denote the tree built by A’. For i € [A], let T[i] denote the restriction of T
to nodes of depth at most i. Let ascorezi = p; - ascore! + (1 — ;) - ascoreb. We prove the
lemma by induction on 4. In particular, we show that for each i € [A], there are k41(i=1)/2pdi
boxes partitioning [0, 1]¢ such that 7[i] is invariant over all p within any given box. Since
T[A] = T, this implies the lemma statement. The base case of i = 1 is trivial since T[1]
consists of only the root, regardless of u € [0, 1]¢.

Now, suppose the statement holds for some i € {1,...,A — 1}. That is, there are
T < k¥0=1/2pd disjoint boxes Ry U --- U Ig = [0,1]¢ such that T[i] is invariant over all p
within any given boxes (our inductive hypothesis). Fix one of these boxes R;. We subdivide
R, into sub-boxes such that T [i + 1] is invariant within each one of these smaller boxes. Let
Q be any leaf of T[i], and for pu € R; let T, denote the state of the tree using ascoreLi for
each i at the point that @ is selected. Since i < A, @ is not fathomed at line 4, regardless
of p. Next, since actions; is path-wise for each ¢, the actions available at @ depend only
on the path 7¢ from the root of 7 to @), which, by the inductive hypothesis, is invariant
over all pp € R;. That is, for all ¢ actions;(7,,Q) = actions,;(7q,Q) for all u € R;. Then,

ascore], will select action A; € actions;(7¢, Q) if and only if

A; = argmax 1 - ascore} (Tw, Q, Ao) + (1 —) - ascoreé(n, Q, Ao)
Ap€actions; (79,Q)

= argmax ;- ascorel (79, Q, Ag) + (1 — ;) - ascorel (7o, Q, Ao),
Ap€actions; (7g,Q)

where the second equality follows from the fact that ascore! and ascore) are path-wise.
Thus, for a fixed Ay, ascoreii is linear in u;, so for each Ay there is at most one subinterval of
[0,1] such that for all p; in that subinterval, Ay maximizes ascore/, . Thus, each leaf of 7Ti]
contributes at most b subintervals such that for p; within a given subinterval, the action of type
i selected at each leaf of T[i] is invariant. 7[i] consists of at most k’ leaves, so this is a total of
at most k’b subintervals. Writing R, = I x - - - I, we have established that for each i, there are
k'b subintervals partitioning I; into subintervals such that as p; varies over each subinterval,
the action of type 7 selected at every leaf of T[¢] is invariant. These subintervals partition Ry
into at most (k’b)¢ boxes. As before, since the actions selected at each leaf Q of T[i] are

invariant, the set of children children(7,,Q, A1,...,Aq) = children(7q, @, A1, ..., Aq) of

M.-F. Balcan, S. Prasad, T. Sandholm, and E. Vitercik

Q@ added to the tree is also invariant, using the fact that children is path-wise. Therefore,
within every sub-box of Ry, T [i+1] is invariant. The total number of boxes over each possible
R; is, by the induction hypothesis, at most k% —1/2pdi . pdipd — dli+1)i/2pd(i+1) |

The proof of Lemma 2 is identical in the multi-action setting. The proof of Lemma 4
is also identical: here, we fix a box R in the partition established in Lemma 9, and get
an identical partition of R x [0, 1] such that the behavior of Algorithm 2 is invariant as A
varies in each subinterval of [0,1]. The number of boxes in the final partition of [0, 1]%+! is
EAAA=1)/2pdA | B5A < RdAO+A)pdA Our main pseudo-dimension bound for the multi-action
setting follows from the same argument that exploits the framework of Balcan et al. [6].

» Theorem 10. Let cost(Q) be any tree-constant cost function, and let cost, »(Q) be
the cost of the tree built by Algorithm 1 on input root node Q using action-selection scores
parameterized by p € R, where d = O(1), and node-selection score parameterized by .
Then, Pdim({cost, »}) = O(dA?logk + dAlogb).

When d = O(1) we get the same pseudo-dimension bound as in the single-action setting:
Pdim({cost, »}) = O(A%logk + Alogb), which is the statement of Theorem 6.

3:19

CP 2022

Weisfeiler-Leman Invariant Promise Valued CSPs

Libor Barto =4

Department of Algebra, Faculty of Mathematics and Physics,
Charles University, Prague, Czechia

Silvia Butti @&

Department of Information and Communication Technologies,
Universitat Pompeu Fabra, Barcelona, Spain

—— Abstract
In a recent line of work, Butti and Dalmau have shown that a fixed-template Constraint Satisfaction
Problem is solvable by a certain natural linear programming relaxation (equivalent to the basic
linear programming relaxation) if and only if it is solvable on a certain distributed network, and
this happens if and only if its set of Yes instances is closed under Weisfeiler-Leman equivalence. We
generalize this result to the much broader framework of fixed-template Promise Valued Constraint
Satisfaction Problems. Moreover, we show that two commonly used linear programming relaxations
are no longer equivalent in this broader framework.

2012 ACM Subject Classification Theory of computation — Constraint and logic programming

Keywords and phrases Promise Valued Constraint Satisfaction Problem, Linear programming
relaxation, Distributed algorithms, Symmetric fractional polymorphisms, Color refinement algorithm

Digital Object Identifier 10.4230/LIPIcs.CP.2022.4
Related Version Full Version: https://arxiv.org/abs/2205.04805

Funding Libor Barto: Libor Barto has received funding from the European Research Council (ERC)
under the European Unions Horizon 2020 research and innovation programme (Grant Agreement
No. 771005, CoCoSym).

Silvia Butti: Silvia Butti was supported by a MICCIN grant PID2019-109137GB-C22 and by a fellow-
ship from “la Caixa” Foundation (ID 100010434). The fellowship code is LCF/BQ/DI18/11660056.
This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Sktodowska-Curie grant agreement No. 713673.

Acknowledgements The authors are grateful to Victor Dalmau for his valuable comments.

1 Introduction

The Constraint Satisfaction Problem (CSP) is the problem of deciding whether there is an
assignment of values from some domain A to a given set of variables, subject to constraints
on the combinations of values which can be assigned simultaneously to certain specified
subsets of variables; the allowed combinations of values are specified by relations on A.

Many important computational problems, including various versions of logical satisfiability,
graph coloring, and systems of equations, can be obtained by fixing a finite domain and
restricting the set of allowed relations [7, 13]. The restrictions can be specified by fixing a
relational structure A, called a template. The CSP over A is then the CSP restricted to
instances that use only relations in A. For example, if A consists of a single binary relation
RA C A?, an instance of the CSP over A is, e.g.,

R(Il,xg), R(l‘g,Il), R(IQ,I4), R($3,1‘3). (1)

The goal is to decide whether there exists an assignment h : {z1,z2,...} — A that satisfies
all the constraints, that is, (h(z1), h(z2)) € RA, (h(x3), h(x1)) € RA, ete. (see Section 2 for
formal definitions). For instance, if R® is the disequality relation # on A, then the CSP
over A is essentially the Graph |AJ-Coloring Problem.

© Libor Barto and Silvia Butti;
37 licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 4; pp. 4:1-4:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:libor.barto@gmail.com
https://www2.karlin.mff.cuni.cz/~barto/
https://orcid.org/0000-0002-8481-6458
mailto:silvia.butti@upf.edu
https://sites.google.com/view/silviabutti/
https://orcid.org/0000-0002-0171-2021
https://doi.org/10.4230/LIPIcs.CP.2022.4
https://arxiv.org/abs/2205.04805
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2

Weisfeiler-Leman Invariant Promise Valued CSPs

This paper deals with CSPs over fixed templates with finite domains. In particular, the
phrase “a CSP” in the following discussion means the CSP over some template.

The (finite-domain, fixed-template) CSP has been a very active research area in the last 20
years, fueled by the tight connection between the complexity of a CSP and the polymorphisms
of its template — these are multivariate functions on the domain that preserve all relations
in the template (see [2]). The highlight in the area is the dichotomy theorem [3, 27]: every
CSP is either solvable in polynomial time or NP-complete (assuming P is not NP); moreover,
the polynomial cases are characterized by means of polymorphisms. Other major results
include characterizations of applicability of fundamental algorithms, e.g., certain convex
relaxations (see [11, 24]).

A natural linear programming relaxation, which is central in this paper, can be obtained
by formulating a CSP instance as a feasibility problem for a zero-one integer program
and then relaxing the requirement that each variable p is in {0,1} to p € [0,1]. In fact,
there are two widely used relaxations of this form, the Basic Linear Programming (BLP)
relaxation (see [14]) and a slightly stronger relaxation, which we denote by SA! to highlight
its connection to the Sherali-Adams hierarchy [21] for CSPs (see [5]). The difference between
the two relaxations is only in how they address repeated variables in a constraint. It turns
out that both relaxations (correctly) decide the same CSPs [5] in the sense that, for any
template A, all instances of the CSP over A are decided by the SA' relaxation if and only
if they are decided by BLP.! Moreover, this happens if and only if the template admits
symmetric polymorphisms of all arities [16] (see also [1]).

The class of CSPs decided by BLP (SA') has reappeared recently in [4], where it was
shown that it coincides with the class of CSPs which can be solved on a distributed network.
The distributed set-up here is based on the DCSP framework of Yooko et al. [26]; informally,
each constraint and each variable is controlled by an agent; the communication is only
between a constraint and a variable that participates in it; and the agents are anonymous,
they communicate in synchronous rounds, and they all run the same deterministic algorithm.

The papers [4, 5] contribute another interesting characterization, by means of an equival-
ence akin to the 1-dimensional Weisfeiler-Leman graph isomorphism test [17]. For two CSP
instances I, J we write I =; J if, very roughly, they cannot be distinguished by considering
their local structure around variables (number and type of constraints they participate in,
number and type of constraints their adjacent variables participate in, and so on). Now the
equivalent conditions discussed above are also equivalent to the CSP being invariant under

=;. Altogether, we have the following theorem, which witnesses the significance of this class
of CSPs.

» Theorem 1 ([4, 5, 16]). The following are equivalent for the CSP over a finite structure A.
(i) There exists a distributed algorithm that solves CSP(A). Moreover, in such a case,
there is a polynomial-time distributed algorithm that solves CSP(A).
(ii) If two instances of CSP(A) are =1-equivalent, then they are either both Yes instances
or both No instances.
(iii) SA' decides CSP(A).
(iv) BLP decides CSP(A).
(v) A has symmetric polymorphisms of every arity.

Our main result generalizes Theorem 1 to a much broader setting, which we introduce next.

! We remark that in the literature the difference between the two relaxations is sometimes neglected,
which occasionally leads to unjustified or slightly incorrect claims.

L. Barto and S. Butti

1.1 Promise Valued CSP

The framework of Valued CSP (VCSP) generalizes CSP as follows. Instead of relations we
consider valued relations (also known as cost functions) — mappings that assign to tuples
rational or positive infinite costs. Returning to the example above, R* is now a mapping
from A? to QU {oo} instead of a subset of A2. The objective of the search version of the
VCSP over A is to minimize a sum, e.g.,

R(z1,22) + R(zs,z1) + R(za,24) + R(xs,x3), (2)

that is, to find an assignment h such that RA(h(z1),h(z2)) + RA(h(z3), h(z1)) + ... is
minimal. In the decision version, which we consider in this paper, the instance is such a sum
together with a rational number 7 and we aim to decide whether the minimum is at most 7.

Notice that (the decision version of) VCSP indeed generalizes CSP since relations can
be modelled by {0, 00}-valued relations. On the other hand, MaxCSP — where the aim
is to maximize the number of satisfied constraints given a CSP instance — is exactly the
VCSP over {0, 1}-valued relational structures. The VCSP framework also includes many
problems of a mixed optimization and combinatorial nature, such as the Vertex Cover
Problem (see [14]). The VCSP area is also well developed; for instance, the approach via an
appropriate generalization of polymorphisms still works (see [14]), a dichotomy theorem is
available [10], and the equivalence of (iv) and (v) in Theorem 1 can be lifted as well [11].

The more recent framework of Promise CSP (PCSP) generalizes CSP in a different
direction. Here the relations are “crisp” but the template is a pair of structures (A, B) of the
same signature. Intuitively, R® is a “strict” form of R and RPB is its “relaxed” form. The
PCSP over (A, B) is the problem of distinguishing instances solvable in A from those which
are not solvable in B. Note that the problem only makes sense if every instance solvable in
A is also solvable in B (this is equivalent to A being homomorphic to B). A well-known
family of PCSP examples is the problem of distinguishing k-colorable graphs from those that
are not even [-colorable for fixed | > k; see [1] for further examples. A complete complexity
classification for PCSPs seems currently far away. Nevertheless, the algebraic approach via

polymorphism works, and the equivalence of (iv) and (v) in Theorem 1 also remains valid [1].

Finally, the Promise Valued CSP (PVCSP) combines both generalizations. A template is
a pair of valued structures of the same signature and the problem is, given a sum such as (2)
and a rational number 7, to distinguish sums whose minimum computed in A is at most 7
from those whose minimum in B is greater than 7. Again, the problem only makes sense if
the template satisfies certain properties. An exact characterization of when this happens,
Proposition 5, is one of the minor contributions of this paper.

We believe that the PVCSP is an extremely promising research direction for two reasons.

First, it is very broad: it includes, for example, all constant factor approximation problems
for MaxCSP (both the version where the aim is to approximately maximize the number
of satisfied constraints, see Example 2; and the version where the aim is to approximately
minimize the number of unsatisfied constraints). Second, the approach via generalized
polymorphisms, so successful in the above special cases, is still available [9] (the work is not
yet published). The only published work on PVCSP that we are aware of is [25] where the
authors, among other results, generalize (iv) <= (v) in Theorem 1 to the PVCSP setting
and even consider the more general infinite-domain case.

4:3

CP 2022

4:4

Weisfeiler-Leman Invariant Promise Valued CSPs

1.2 Contributions

Our main result, Theorem &, lifts the equivalence of (i), (ii), and (iii) in Theorem 1 to the
PVCSP framework.

The generalization of implication (i) = (ii) for connected input valued structures follows
easily from the nature of the message passing systems we deal with. General, possibly
disconnected input valued structures require an additional argument.? For the implication
(ii) = (iii) we employ the approach of [5] and, in a sense, “decompose” a solution to the
SA! relaxation of a PVCSP into three components. One component is a kind of morphism,
called here a dual fractional homomorphism, which appeared before in the context of VCSPs
with left-hand side (i.e., structural) restrictions [6].> The decomposition theorem, stated as
Theorem 7, might be of independent interest. We also point out that our construction for this
decomposition is much simpler than the construction used in [5] for the less general setting.
The distributed algorithm that we design to prove (iii) = (i) is completely different from the
one used for the CSP in [4]. The original algorithm relied on a deep theorem from the algebraic
CSP theory [12] about the strength of a certain local propagation algorithm and designed
a distributed version of that algorithm. This approach is no longer applicable, even in the
(non-valued) PCSP setting. However, we show that a substantially more straightforward and
simple idea of directly computing an adjusted form of SA' works even in the most general
PVCSP framework.

Surprisingly, the implication (iii) = (iv) is no longer true for PVCSPs: in Example 9 we
present a PVCSP template that is decided by SA' but not decided by BLP. The converse
implication remains valid since SA' is a stronger relaxation than BLP.

Recall that the equivalence of (iv) and (v) still holds for PVCSPs [25]; we give a
streamlined presentation of the proof using Proposition 5. We also mention, in Example 4,
some (P)(V)CSPs that satisfy these conditions, and thus also satisfy the equivalent statements
in the main result.

2 Preliminaries

For a tuple a € A¥, let a[i] denote the i'" entry of a. We say that a has a repetition if
there exist ¢ # j € [k] such that a[i] = a[j]. We use double curly brackets {{...}} to denote
multisets. For a non-negative integer n, n - {{...}} stands for the multiset obtained by
multiplying the multiplicity of each element in the original multiset by n. Slightly abusing
the notation, the set and the multiset of entries of a tuple a is denoted by {a} and {{a}},
respectively.

We denote by Q¢ the set of non-negative rational numbers and by Qo the set QU {0},
where oo is an additional symbol interpreted as a positive infinity. We set 0 - 0o = 0 and
c- 00 = o0 for ¢ > 0.

2.1 CSP and PCSP

We present the CSP and PCSP as homomorphism problems. The difference from the
presentation in the introduction is merely formal.

2 This subtle issue was not properly handled in [4]. The present paper thus also fills in a gap in the proof
of Theorem 1.

3 [6] uses the terminology “inverse fractional homomorphism”, however we feel that “dual” might better
fit the meaning of this concept.

L. Barto and S. Butti

A signature o is a finite collection of relation symbols, each with an associated arity. We
shall use ar(R) to denote the arity of a relation symbol R. Given a set A and a positive
integer k, a k-ary relation on A is a subset of A*. A (relational) structure A in the signature
o, or simply a o-structure, consists of a finite set A called the universe of A, and a relation
RA on A of arity ar(R) for each R € o. Notice that the universe of every structure in this
paper is assumed to be finite. Two structures are similar if they have the same signature.

Let I, A be o-structures. A homomorphism from I to A is a map h: I — A such that
for every R € o and every tuple v € R! it holds that h(v) € R®, where h is applied to v
component-wise. If there exists a homomorphism from I to A we say that I is homomorphic
to A.

For a relational o-structure A, the CSP over A, denoted CSP(A), is the problem of
deciding whether an input o-structure I is homomorphic to A. The structure A is also
referred to as a template in this context. The translation of the presented definition of
CSP(A) to the formalism used in the introduction is given by defining the set of constraints
Cr as the set of formal expressions of the form R(v) where R € 0 and v € RL.

Given two o-structures A and B, the Promise CSP over (A,B), denoted PCSP(A, B),
is defined as follows: given a o-structure I, output Yes if I is homomorphic to A, and output
No if T is not homomorphic to B.* This problem makes sense iff the sets of Yes and No
instances are disjoint. It is easy to see that this happens exactly when A is homomorphic to
B. Such pairs of structures (A, B) are called PCSP templates.

2.2 PVCSP

We formalize PVCSPs in a similar way to PCSPs. The difference from the presentation in
the introduction is slightly more substantial, as we shall briefly discuss later.

A k-ary valued relation on A is a function R : A¥ — Q.. A valued o-structure A consists
of a finite universe A, together with a valued relation R? of arity ar(R) on A for each R € o.
Valued structures are sometimes referred to as general-valued in the literature [11, 24] to
emphasize that relations in A may take non-finite values. A o-structure A is said to be
non-negative finite-valued if for every R € o, the range of R® is contained in Q>o.

Let I, A be valued o-structures, where I is non-negative finite-valued. The value of a
map h: I — A for (I, A), and the optimum value for (I, A) are given by

Val(T, A, h) = > > R'(v)RA(h(v)), Opt(I,A) = min Val(L A,h).
L=
Reo veJar(R)

For two valued o-structures A and B, the Promise Valued CSP over (A,B) [9, 25], denoted
PVCSP(A,B), is defined as follows: given a pair (I,7), where I is a non-negative finite-
valued o-structure and 7 € Q is a threshold, output Yes if Opt(I, A) < 7, and output No if
Opt(I,B) > 7. We call (A,B) a PVCSP template if the sets of Yes and No instances are
disjoint. We show in Proposition 5 that this least restrictive meaningful requirement on a
PVCSP template coincides with the choice taken in [25].

Notice that the values of R have a different intended meaning in the template valued
structures A, B and in the input valued structure I. For the template, R (a) and RB(b)
should be understood as the cost of a and b: we wish an assignment h to map tuples of
variables to tuples of domain elements that are as cheap as possible (and, in fact, RA or R

4 We do not impose any requirements on the algorithm in the case that I is neither a Yes instance nor a
No instance. Alternatively, we are promised that the input is a Yes instance or a No instance.

4:5

CP 2022

4:6

Weisfeiler-Leman Invariant Promise Valued CSPs

is often referred to as a cost function). On the other hand, R'(v) is the weight of the tuple
of variables v: we need to be more concerned about heavy tuples of variables, while we may
ignore the tuples of zero weight (recall that 0-oco = 0). As an example, observe that the
PCSP over a pair of structures (A’, B’) is essentially the same problem as the PVCSP over
the pair of {0, co}-valued structures (A, B), where tuples in the latter template are given
zero cost iff they belong to the corresponding relations in the former template; while to an
instance I’ of the PCSP corresponds a non-negative finite-valued structure I where the cost
of a tuple is zero iff the tuple does not belong to the corresponding relation in I’ (and costs of
the remaining tuples are arbitrary positive rationals), together with any threshold 7 € Q>o.

For a PVCSP input valued o-structure I we define the set of constraints Cy as the set of
formal expressions of the form R(v) where R € o, v € I*(®) and R!(v) > 0; the value R!(v)
is the weight of the constraint. This almost translates the presented definition of PVCSP
to the version from the introduction: weights of constraints can be emulated by repeating
constraints in (2) (and modifying the threshold 7 if necessary). However, the repetition can
cause an exponential blow up of the instance size. Nevertheless, this difference between the
two formalisms is inessential for our purposes.

We say that a valued relation R has no repetitions if RY(v) = 0 whenever v has a
repetition. Similarly, we say that an input valued structure I has no repetitions if none of its
valued relations has a repetition.

» Example 2. As mentioned in the introduction, the PVCSP framework can be used to
model constant factor approximation problems for MaxCSP. More concretely, suppose that
we want to find a c-approximation for CSP(A) for some (non-valued) o-structure A and some
¢ < 1. One can model this problem as PVCSP(A’,B’) where A’ =B’ = Aandforall R € ¢
and a € A7) RA'(a) = —1 if a € R® and RA (a) = 0 otherwise; and RP'(a) = %RA,(a).
Given an instance I of CSP(A) and a parameter 0 < § < 1, we turn it into an instance
(I',—Bm) of PVCSP(A’,B’) in a natural way, where I’ is a 0-1 valued structure and m is
the number of constraints in I’. Then, Opt(I', A’) < —fm if a S-fraction of all constraints of
I can be satisfied in A, and Opt(I’,B’) > —fm if not even a c¢S-fraction of the constraints
of I can be satisfied in A.

2.3 Linear programming relaxations

Given two valued o-structures I and A where I is non-negative finite-valued, the systems
of inequalities BLP(I, A) and SA'(I, A) contain a variable p,(a) for every v € I and every
a € A, and a variable pg(y)(a) for every R(v) € Cy and every a € A2(B) BLP(I, A) is the
following linear program.

OptPYP (I, A) := min Z Z PR(v) (a)RY(v)RA(a) (%)
R(v)€eCr ac Aar(R)
subject to:
Pr(v)(a) >0 R(v) € C1, ae A¥(R) (3)
va(a)zl vel (4)
acA
py(a) = Z Prv)(Q) a€ A, R(v)€(y, i€ lar(R)] s.t. v[i]=v (5)

ac A (R) ,alil=a

Prv)(2) =0 R(v) € (1, ac A st RAa) = o0 (6)

L. Barto and S. Butti

As for the program SA’(I, A), the objective function, denoted OptSAl (I, A), is given by
the same objective function as in BLP(I, A). The variables are subject to all the constraints
in BLP(I, A), but in addition, they are also subject to the following constraint.

PR(v)(@) =0 R(v) € (1, a€ A™(H) (7)
3, j € [ar(R)] such that v[i] = v[j] and a[i] # a[j]

Notice that in general OptBLP (L,A) < OptSAl (I, A). Moreover, in the particular case where
I has no repetitions, BLP and SA' are the same linear program and so OptBMFY (I,A) =
OptS4' (L, A).

For a linear program L € {BLP,SA'} we say that L(I, A) is feasible if there exists a
rational solution to the system L(I, A). Notice that then (x) makes sense since R*(a) = oo
implies pr(v) = 0 and 0 - co = 0 (formally, one should skip these summands in (x)). If the
linear program is infeasible, then we set OptL(I, A) = 0.

The LP constraints (3)-(5) ensure that, for each R(v) € Cy, the values of pp(v)(a) form
a probability distribution on A (which is additionally consistent with p,(a)’s). The
inner sum in (%) is equal to the expected “cost” of the constraint R(v) with weight RI(v)
when v is evaluated according to this distribution. From this observation it is apparent that
Opt™(1, A) < Opt(I,A). We say that L decides PVCSP(A, B) if, for every input structure I,
we have Opt(I, B) < Opt"(I, A). Note that in such a case the algorithm for PVCSP(A, B)
that answers Yes iff Opt™(I, A) < 7 (where 7 is the input threshold) is correct, so the

definition makes sense.?

2.4 Polymorphisms

An n-ary polymorphism of a pair of similar structures (A, B) is an n-ary operation f : A" — B
such that for every relation symbol R in the signature of A and B, the coordinate-wise
application of f to any list of n tuples from R” results in a tuple in R®. Note that a
unary polymorphism of (A, B) is just a homomorphism from A to B. An n-ary operation
f: A" — B is said to be symmetric if for every aq,...,a, € A and every permutation p on
[n] we have that f(ai,...,an) = f(a,),-- -, pm))-

An n-ary fractional polymorphism [25] of two valued o-structures (A, B) is a probability
distribution w on the set BA" := {f : A" — B} such that for every R € o and every list of
n tuples ag,...,a, € A2 we have that

> CHRP(far,) < -3 R @)
feBa™ i=1

where f is applied to ai,...,a, € A*() component-wise.®

The support of w is the set of functions f : A — B such that w(f) > 0. We say that w
is symmetric if every operation in its support if symmetric.

We remark that in [5], the feasibility of the program SA*(I, A) was alternatively phrased as the existence
of a “fractional homomorphism” from I to A, to stress that the linear system SA*(I, A) is a (fractional)
relaxation of homomorphism in the same way as the equivalence relation =1 defined below is a relaxation
of isomorphism. Nonetheless, in this paper we avoid this terminology as it clashes with the notion of
fractional homomorphism defined in Section 3 as a unary fractional polymorphism.

We use here a simpler concept than fractional polymorphism as defined in [25], which will be sufficient
for our purposes.

4:7

CP 2022

4:8

Weisfeiler-Leman Invariant Promise Valued CSPs

The following theorem was proved in [25]; we provide a somewhat streamlined argument
in the spirit of [1] in Section 3.

» Theorem 3. Let (A,B) be a promise valued template of signature o. Then the following
are equivalent.

(iv) BLP decides PVCSP(A,B);

(v) (A,B) has symmetric fractional polymorphisms of every arity.

» Example 4. A CSP that can be decided by BLP is e.g. the Horn-3-Sat, where the
template has domain {true, false} and two relations defined by -z V -y V -z and -z V -y V z.
A well-known class of templates with BLP-decidable VCSPs are those that contain only
submodular valued relations (see [14]). Finally, the 2-approximation of the Vertex Cover
problem [14] is a PVCSP decidable by BLP. In all the mentioned examples, it is not hard to
find symmetric (fractional) polymorphisms of every arity.

2.5 Graph of an input, iterated degree, distributed model

We represent an input o-structure I to a PVCSP as a labeled bipartite graph Gy, also known
as the factor graph of I in the non-valued setting [8]. This representation allows us to define
iterated degrees of variables and constraints as well as our distributed model.

Gt has one vertex for each constraint R(v) € Cp, labeled (R, q) where ¢ = RY(v) (> 0),
and one vertex for each variable, with empty label. Vertex v € I is adjacent to a vertex
R(v) € C1 if v € {v}; the edge is labeled S = {i : v[i] = v}. The label of a vertex z is
denoted £, the label of an edge {x,y} is denoted £y, ..

We call T connected if Gy is. Similarly, we say that I’ is a connected component of T if
Gy is a connected component of Gy.

The k™ iterated degree of a vertex z, where x is a variable or a constraint, is defined
inductively by 68(z) = £y, and 6%, (2) = {({{z 4}, 01 (y)) | y is adjacent to x in Gr}}. The
iterated degree of a vertex z is defined as 6'(x) = (6§(z), 61 (z),65(x),...). For vertices x
and y we write x =; y if they have the same iterated degrees. Note that the iterated
degrees are analogues of colors in the 1-dimensional Weisfeiler-Leman color refinement
algorithm [17] for graph isomorphism test. The iterated degree sequence of I is defined as
§(I) = {6 (z) | = € TUCr}}; for two o-structures I, J, we write I =; J if they have the same
iterated degrees sequence.” Notice that in order to prove that I =, J it is sufficient to show
that {{6%(x) |z € I}} = {67 (z) | = € J}}.

The computational model for solving PVCSP (A, B) on a distributed network is as follows.
An input valued structure I is represented as a bipartite message passing network designed as
Gi: we have an agent o(z) for every vertex € TUCy and the communication channels exactly
correspond to edges in Gy and have the same labels. Every agent in the network knows
only the template, the threshold, the number of variables (|I|), the number of constraints
(IC1]), and the labels of their controlled variable and of the adjacent channels. The agents are
anonymous, they all run the same deterministic algorithm, and the communication proceeds
in synchronous rounds. For a more detailed discussion on the distributed set-up, we refer the
reader to [4].

We say that a distributed algorithm solves an instance (I,7) of PVCSP(A,B) if the
algorithm terminates and the terminating state of every process is Yes if (I,7) is a Yes
instance of PVCSP(A,B), and No if (I,7) is a No instance of PVCSP(A,B). We say

7 The degree sequence is often defined to be a list. However, when looking at iterated degree it is
common [18; 19] and more practical to use multisets instead of lists, while maintaining the terminology
sequence to highlight that we are dealing with a generalisation of the classical concept of degree sequence.

L. Barto and S. Butti

that a distributed algorithm solves PVCSP(A, B) if it solves every connected instance of
PVCSP(A,B) (note here that it makes little sense to run a distributed algorithm on a
disconnected network).

3 Fractional homomorphisms and SA*'

We start by stating the characterization of PVCSP templates in terms of fractional homo-
morphisms. The result will also be useful in the proof of Theorem 3.

A fractional homomorphism [22, 25] from A to B is a unary fractional polymorphism of
(A, B), or equivalently, a probability distribution p over B4 such that for every R € ¢ and
every a € A*(R) we have that

> u(f)RB(f(a)) < RA(a). (8)

feBA

If there exists a fractional homomorphism from A to B, we say that A is fractionally
homomorphic to B and we write A — B.

The implication (1) = (2) in the following proposition is a well-known and easy calcula-
tion (see e.g. [22]). The converse implication appears to be new, although the proof technique
via Farkas’ Lemma [20] is standard in the VCSP area.

» Proposition 5. For any two valued o-structures A and B, the following are equivalent.
1. There exists a fractional homomorphism from A to B.
2. For all non-negative finite-valued o-structures I, Opt(I, B) < Opt(I, A).

Proof. (1) = (2) Let u be a fractional homomorphism from A to B, let g : I — A be such
that Opt(I,A) = Val(I, A, g), and let f € B* be some map that minimizes Val(I, B, f o g).
Then

Opt(I,B) < Val(ILB, fog) < > pu(f) Val(I,B, f' o g)

feBA
=D D B Y ulf)RE(f og(v)
Reo verar(R) freBA
<Y Y. R(WMERAMy(v) = Val(lA,g) = Opt(L A).

Re€o velar(R)

(2) = (1). The idea for this proof is to assume that there is no fractional homomorphism
from A to B, formulate this fact as infeasibility of a system of linear inequalities, and then
use a version of Farkas’ Lemma to find I with Opt(I, B) > Opt(I, A).

The existence of a fractional homomorphism from A to B can be reformulated as the
following system of linear inequalities, where there is a rational-valued variable p; for every
f € BA.

variables: s for all f € BA

constraints: Z ufRB(f(a)) < R%(a) for all R € o and a € A¥() (9)
fepA
Z pr =1
feBA
g >0 for all f € B4

4:9

CP 2022

4:10

Weisfeiler-Leman Invariant Promise Valued CSPs

If there is no fractional homomorphism from A to B, this system is infeasible.

We now deal with infinite coefficients. Define B4, = {f € B4 : VR € o,Va €
A2(R) - RA(a) < oo implies RB(f(a)) < oo}. Now consider the new linear system ob-
tained from the above by first removing all the inequalities in (9) where R4 (a) = oo (since
these inequalities are always satisfied), and second, by removing the variable py for all
f € BA\ B4 and changing (9) so that the sums run over B2 __ only (since we need to have
py =0 for f e B4\ B2 in any feasible solution). Clearly, the system of linear inequalities
resulting from this procedure remains infeasible and does not contain infinite coefficients.

This system of linear inequalities can be rewritten in matrix form as Mf < a subject

A
to f > 0, where f € Qf“" is the vector of unknowns, and M is a real-valued matrix. By
Farkas’ Lemma, the system of inequalities My > 0 subject to a’y < 0 and y > 0 is feasible.
Explicitly, the latter system is the following.

variables: ¥,z for every R € o and a € A with RA(a) < oo

constraints: Z Z zpaRB(f(a)) >y forall f e B2 (10)

Reo 5 p2r(R)
RA(a)<oo

Z Z ;vR,aRA(a)<

Reo e p2(R)
RA(a)<oo

Tra >0forall Reo,ac A2r(R)
y = 0.

Eliminating y, and adding trivially satisfied constraints to (10) for all f € B4\ B4 Zoor W
get that the following system is feasible.

variables: g for every R € o and a € A with RA(a) < 00

constraints: Z Z xRaRB Z Z TRalR) for allfeBA (11)

Reo 5 p2r(R) Reo zcp2r(R)
RA(a)<oo RA(a)<oo

Tra>0forall Re€o,ac Aar(i)

Let xpa for R € 0, a € A” be a feasible solution to (11), and consider the structure I
with domain I = A and relations given by RY(a) = g, for a € A*(®) with R4 (a) < oo
and R'(a) = 0 whenever RA(a) = oo. Notice that I is non-negative finite-valued, that the
right-hand side in the first inequality is equal to Val(I, A,id), (where id denotes the identity
function) and that the left-hand side is equal to Val(I, B, f). Therefore Opt(I, B) > Opt(I, A),
as required. <

Sketch of proof of Theorem 3. For an integer m > 1, let LP™(A) be the structure whose
universe consists of A-multisets of size m and whose valued relations are defined by the

following formula where R € o and s, ..., s, are from the universe.
RYP" A (51 8,) = — RA(t
(815-++,5r) o HE%AmZ i tr[d]).
{{ttif=s; =1

Variants of such structures have been defined in the literature both for (P)CSP [16, 1] and
for VCSP [22, 25]. These papers also explicitly or implicitly observe the following properties.

L. Barto and S. Butti

1. Opt® P (1, A) = min,,>; Opt(I, LP™(A)) for all non-negative finite-valued I.
2. For all m > 1, LP™(A) —¢ B if and only if (A, B) has an m-ary symmetric fractional
polymorphism.

The proof can be now finished using Proposition 5. For (iv) = (v) suppose that (A, B)
does not have a symmetric polymorphism of some arity m. Then, there is no fractional
homomorphism from LP™(A) to B. It follows from Proposition 5 that there exists some
structure I such that Opt(I,B) > Opt(I,LP™(A)) > OptBLP(I,A). Hence, BLP does
not decide PVCSP(A,B). On the other hand, for (v) = (iv), assume that (A,B) has
symmetric fractional polymorphisms of every arity. Let m > 1 be such that Opt(I,LP™(A))
is minimal. We know that LP™(A) is fractionally homomorphic to B and therefore for
all finite-valued structures I, Opt(I,B) < Opt(I,LP™(A)) = Opt®* (I, A). Hence, BLP
decides PVCSP(A, B). <

The decomposition theorem mentioned in the introduction uses a concept that is “dual”
to fractional homomorphism, as suggested by the following Proposition 6. Here we only
present the proof of the implication that is needed for the decomposition theorem. The proof
of the other implication uses techniques similar to the ones deployed in Proposition 5, and
we refer the reader to [6] for the details.

We define a dual fractional homomorphism from I to J (I =4 J) to be a probability
distribution 5 over J! such that for every R € o and every u € J*) we have that

R'u)> Y " n(f) >, R'(v) (12)
Jes et
u=f(v

» Proposition 6. For any two non-negative finite-valued o-structures I and J, the following
are equivalent.
1. There exists a dual fractional homomorphism from I to J.

2. For all valued o-structures A, Opt(I, A) < Opt(J, A).

Proof. (1) = (2). Let n be a dual fractional homomorphism from I to J, and ¢ : J — A be
such that Opt(J, A) = Val(J, A, g). Then

Opt(J,A)=> > R(wR*y(u)
Reo ue Jjar(R)
>33 Y 0 DY, R'WBRMgof(v) =D n(f) Val(L,A,go f),
Re&o uejar(R) fEJI velar(R) fEJI
u=f(v)
which implies that there exists some function f’ : I — J such that Val(I,A go f') <
Opt(J, A), hence Opt(I,A) < Opt(J, A) as required. Notice that this holds regardless of
whether A is finite-valued or general-valued. |

4 The decomposition theorem

In this section we state and prove the decomposition theorem. This provides a connection
between the combinatorial and the LP-based characterizations of the class of PVCSP
templates that are the subject of our main result, and thus is a fundamental step in
the proof of Theorem 8, namely the implication (ii) = (iii). We refer to [5] for a more
detailed discussion about (a weaker form of) this result.

4:11

CP 2022

4:12

Weisfeiler-Leman Invariant Promise Valued CSPs

» Theorem 7. Let I, A be a pair of similar valued structures, where 1 is non-negative and
finite-valued. Then there exist non-negative finite-valued structures Y1, Yo such that

1.1 —df Yl,
2. Y1 =1 YQ, and
3. Opt(Ya, A) < OptS (I, A).

Proof. If SAl(I, A) is not feasible, then we can take Y1 = Yo = I, and the statement follows
trivially, so from now on we shall assume that SA'(I, A) is feasible. Let p,(a), p R(v)(a) form
an optimal solution of SA'(I, A) and let 7 > 0 be an integer such that all the values mp,(a)
and mppr(v)(a) are integers. Note that these integers are non-negative by (3) and (5).

We define the universe of both valued structures Y; and Yy as Y1 = Y2 = [m] x I.
The valued structure Y; is simply a “scaled disjoint union” of m copies of I: we set
RY1((k,v[1]), (k,v[2]), ..., (k,v[ar(R)])) = 1/m - RY(v) for every k € [m], v € I*(F) and
the weight of the remaining tuples is set to 0. Observe that I —4 Y by the dual fractional
homomorphism given by the uniform distribution over fi, k € [m], where f : I — Y7 is
defined by fi(v) = (k,v) for all v € I. Also notice that the iterated degree of each (k,v)
is obtained from the iterated degree of v by scaling down each constraint label (R, q) to
(R,q/m).

The structure Yy is a “twisted” version of Y7 (the construction is a version of the twisted
product from [15]). For every v € I, fix a tuple p, € A™ in which a € A appears exactly
mpy(a) times — note that this is possible since the mp,(a) sum up to m by (4). We define
h:Yy — A by h(k,v) = p,[k] for all k € [m] and v € I. The structure Yy is constructed
so that the value of h for (Yo, A) is OptSAl (I, A), as follows. For every R(v) € Cy, denote
r = ar(R), and consider an m x r matrix @ that has, for each a € A", exactly mpg(v)(a)
rows equal to a. Note that the i*" column contains a € A exactly mpy[;)(a) times by (5), in
other words, the multiset of elements of this columns is equal to {{py; }}; in particular, @
indeed has m rows. Moreover, if v[i] = v[j], then the columns ¢ and j are identical by (7). It
follows that there are permutations p1, ..., p, : [m] — [m] such that

for every k € [m], the k*® row of Q is equal to (Pypay[P1(K)], Py [p2(K)], - s Py o (K)]);

for every i, j € [r], if v[i] = v[j] then p; = p;.
We set RY2((p1(k),v[1]), (p2(k),v[2]), ..., (pr(k),v[r])) = 1/m - RY(v) for every k € [m].
After running through all R(v) € C; we set the remaining weights to 0. The weights of those
tuples that correspond to R(v) were selected so that their contribution to Val(Ya, A, h) is
equal to the inner sum in the SA' objective function (*); therefore, the total value of h is
equal to OptSAl (I, A). It follows that Opt(Y2, A) < OptSAl (I,A). Moreover, the iterated
degree of a pair (k,v) in Yo is the same as in Y; (note here that the second item above
guarantees that repeated entries are handled correctly). It follows that Y; =1 Y2, and the
proof is concluded. <

The dual fractional homomorphism I =4 Y1, the equivalence Y; =; Y5, and assignments
Y2 — A that witness that Opt(Ys, A) < OptSAl (I, A) from the proof of Theorem 7 can all
be naturally associated with rational matrices (of dimensions I x Y7, Y7 x Y5, and Y3 x A,
respectively). It can be calculated that the product of these matrices is a matrix associated
to a solution to the SA'(I, A) linear program. This is why we regard Theorem 7 as a
decomposition theorem.

L. Barto and S. Butti

5 Main result

We are ready to prove the main result. The appropriate generalization of invariance under =,
(item (ii) in Theorem 1) is that if I =1 J and 7 € Q, then it cannot happen that (I,7) is a
Yes-instance while (J, 7) is a No-instance. Item (ii) in the following theorem is a reformulation
of this requirement.

» Theorem 8. Let (A,B) be a promise valued template of signature o. Then the following
are equivalent.
(i) There exists a distributed algorithm that solves PVCSP(A,B). Moreover, in such a
case, there is a polynomial-time distributed algorithm that solves PVCSP(A, B).
(ii) For all finite-valued o-structures I,J, if I =1 J then Opt(J,B) < Opt(I, A).
(iii) SA' decides PVCSP(A,B).

Proof. (i) = (ii). From the nature of the distributed model, it follows that agents with
the same iterated degree will be in the same state at any time during the execution of any
distributed algorithm. Therefore, if (i) holds and I =1 J are connected, then a terminating
distributed algorithm will report the same decision when run on input (I,7) or (J,7) (see
Proposition 2.2 and Corollary 2.3 in [4]), so by setting 7 = Opt(I, A) we obtain that (ii)
holds for all connected I, J. We now show how (ii) in its full generality follows from (ii)
restricted to connected I and J.

Let us call two finite-valued o-structures I and J weakly congruent it |J| - §(I) = |I]-6(J).

We claim that Opt(J,B)/|J| < Opt(I, A)/|I| whenever I and J are weakly congruent and
connected. The claim clearly holds when |I| = 1 or |J| = 1, so assume |I|,|J| > 2. For
any positive integer k, we define connected finite-valued o-structures I'®) and I*) (and
similarly J'®), J(*)) as follows. Let I = {vg,v1,... ;v7]—1} and let the universe of I'®) be
{0,1,...,k — 1} x I. Let n be the probability distribution over the mappings I — 1)
assigning probability 1/2k to each of the 2k mappings f;, fj, j € {0,1,...,k — 1}, where
fi(wi) = (J,vi) and fi(vi) = (i +j mod k,v;) for each v; € I. We define the weights in
I'®) in the unique way so that (12) holds for n with equality instead of inequality. Then 7
is a dual fractional homomorphism from I to I'*)| and the probability distribution which
assigns probability 1 to the projection onto I is a dual fractional homomorphism in the
opposite direction. By Proposition 6, Opt(I, C) = Opt(I'*), C) for any valued o-structure
C. Finally, let I%*) be the valued o-structure obtained from I'®) by multiplying weights by
2k; clearly, Opt(I*), C) = 2k Opt(I'®), C) for any C. It follows from the construction that
1) is connected. Moreover, if k is large enough (k > |I| suffices), then the iterated degree of
(j,v;) in I(®) is obtained from the iterated degree of v; in I by multiplying all the variable
multisets in each of the elements of 6'(v;) by 2 (in each inductive step in the definition
of iterated degree). It follows that, for all &', the valued structures JED and T* 17D are
connected and, when £’ is large enough, have the same iterated degree. By item (ii) for
connected valued structures, we get Opt(.](k/m)7 B) < Opt(I(k/‘JD, A) and the claim follows
using the equalities above and rearranging.

Before finishing the proof, notice a simple consequence of the definition of iterated degrees.
For a “variable vertex” = of Gy, a label S, and a “constraint vertex” y such that x and y
are adjacent in Gy, denote z[S,y] = {y' | 0(y') = 6(y), l{zy = S}. Observe that if there
exists an edge between x and y labeled S, then {«/[S,y] | 6(z') = d(x)} is a collection of
mutually disjoint sets of equal size, which cover {y’ | 6(y) = 6(¢')}; and, moreover, the same

claim holds when z’ and y’ are restricted to the connected component containing = (or y).

It follows that for a component I’ of T and a component J’ of J, where I =1 J, either the
iterated degrees §(I') and 6(J’) are disjoint, or I’ and J’ are weakly congruent.

4:13

CP 2022

4:14

Weisfeiler-Leman Invariant Promise Valued CSPs

This observations allows us to finish the proof as follows. Let I and J be finite-valued
o-structures such that I = J and let n = |I| = |J|. Then there are sequences (I, ...,I,) and
(J1,...,Jd5) such that the first (resp., second) sequence contains each connected component
I’ of I (resp., J' of J) exactly |I'| times (resp., |J'| times), and I; and J; are weakly congruent
for every i € [n]. From the claim above, we get Opt(J;, B)/|J;| < Opt(I;, A)/|I;| for every
i € [n]. Summing up these inequalities and observing that Opt(I, A) is equal to the sum of
Opt(T’, A) over all connected components I’ of I (and similarly for J), item (ii) now follows.

(ii) = (iii). We need to show that for every non-negative finite-valued o-structure I,
Opt(I,B) < OptSAl(I,A). Let Y1,Ys be the structures obtained from Theorem 7, i.e.,
Y =1 Yy, Opt(Yo, A) < OptSAl (I, A), and there is a dual fractional homomorphism from
I to Y;. Then, by (ii) we have that Opt(Y1,B) < OptSAl (I, A), and by Proposition 6,
Opt(I,B) < OptSAl(I,A) too, as required.

(iii) = (i). From Theorem 3.2 in [4] (adapted to the valued setting), if OptSAl (I,A) < oo,
then there is a solution to the linear program that assigns the same value to every class of
variables and constraints of I that have the same iterated degree.® This allows us to reduce
the linear program as follows. Let I/=; and C1/=; denote the sets of equivalence classes of
variables and constraints, respectively, under the equivalence =;. The new linear program,
denoted SAL(I, A), contains one variable pj,j(a) for every class [v] € I/=; and one variable
P(r(v) (@) for every class [R(v)] € C1/=;. The variables of the new program SAL(I, A) are
subject to the same constraints as in SA' (I, A), except they use the new reduced set of
variables. The new objective function is

Opt**=(LA):=min > kipw) D, Dirw)@R(V)R(a), (13)
[R(v)]€C1 =1 acAar(R)
where kig(v)] = [[R(V)]| is the number of constraints equivalent to R(v). By the above dis-

cussion, we have OptSAIE (I,A) = OptSAl (I, A). Therefore, since SA! decides PVCSP(A, B),
so does SAL. (We remark here that two input structures with the same iterated degree have
the same reduced SAL up to renaming of variables; this can be used e.g. to show that (iii)
implies (ii).)

In order to show that (iii) implies (i), assume that I is a connected input structure. We
show that every agent in the distributed network can obtain the reduced linear program of
SAIE via a polynomial-time distributed algorithm. As SA1E decides PVCSP(A, B), this will
conclude the proof.

The agents can calculate their iterated degree (or, rather, a finite and effectively com-
putable representation thereof) in polynomial time using a simple distributed version of the
color refinement algorithm. Each agent a(z),z € I UCy can then use the representation
of the iterated degree as an identifier, see [4, Lemma 4.8.] for a more detailed discussion.
Every agent can obtain sufficient information from its neighbours to compute the equations
in (4), (5), (6) and (7) that constrain its relevant LP variables of the reduced system (and
use the identifiers to name the LP variables), and can subsequently broadcast these along
the network. We are left to show that every agent can also compute the objective function
of SAL(I,A). In fact, it is sufficient that every agent a(R(v)) computes the summand
of OptSAIE (I, A) that corresponds to [R(v)] and then broadcasts it in order to obtain the
complete objective function. The only nontrivial piece of information to compute is the value
of the coefficients k(g(v))-

8 We remark here that this theorem also has a substantially simpler proof — it is enough to observe that
averaging over variables and constraints with the same iterated degrees does not increase the objective
function.

L. Barto and S. Butti

By the observation made in the proof of (i) = (ii), for each R(v) € (i, a participating
variable v € {v}, and S = £{, r(v)}, the coefficient kjp(y)) is equal to the number of S-labeled

edges from v into members of [R(v)] (denoted v[S, R(v)] above) multiplied by the size of [v].

The former value can be computed by a(v), so a(v) can compute the ratio kjr(v,)] : E[R(v.)]
for any two constraints R(vy), R(vz2) that v participates in. After broadcasting all these
ratios, each agent can compute the ratios between any two k[r(v) and, since the sum of these
coefficients is |Cy| (which is known to the agents), they can compute the coefficients. <

Clearly, the implication (iv) = (iii) in Theorem 1 remains true for PVCSP (so the equivalent
statements in Theorem 8 are satisfied in, e.g., the PVCSPs in Example 4). The following
example shows that, unlike for PCSPs, the converse implication does not hold in general: we
provide an example of a PVCSP template that is decided by SA' but not by BLP.

» Example 9. Let A, B be o-structures where o contains a single binary relation symbol R.

Let A= B ={0,1}, R*(a,a) = RB(a,a) = 3 for a € {0,1}, and R?(a,b) =2, RB(a,b) =0
for a # b € {0,1}. The probability distribution which assigns probability 1 to the identity
function is a fractional homomorphism, and so (A, B) is a PVCSP template.

We claim that BLP does not decide PVCSP(A, B). Indeed, let I be the PVCSP input
structure given by I = {v} and R'(v,v) = 1. Then, there is a feasible solution to BLP(I, A)

given by p,(a) = 1/2 for a € {0,1} and pg(y,v)(a,a) =0, Pr(v,v)(a,b) = 1/2 for a # b € {0,1}.

This solution witnesses that OptP“" (I, A) < 2, however, it is easy to see that Opt(I, B) = 3
and so BLP does not decide PVCSP(A, B).

On the other hand, we show that Opt(I, B) < OptSAl (I, A) for any input valued structure
L Let Vi(I) =Y, ; RYv,v) and V. (I) = Dt R(u,v) be the total weight of the constraints
in T with and without repetitions, respectively. We choose an assignment h : I — B at
random: each h(v) is chosen independently and uniformly (both 0 and 1 with probability
1/2). The expected value of Val(I, B, h) is 3V;(I) + 3/2V,(I), which implies that Opt(I, B) <
3Vi(I) + 3/2V.(I). As for SA', we know that any feasible solution must have p(, ,)(a,b) = 0
whenever a # b. Therefore, we get

Opt** (I, A) = min | 37 3" b (a, @) R (v,0) R (a,) +

vel acA
> D pr (@ bR (u,0)RA(a,b)| = 3Vi(T) + 2V.(1) > Opt(L, B).
u#vel a,beA

6 Conclusion

We have shown that solvability of a PVCSP by the SA' relaxation is equivalent to invariance
under the Weisfeiler-Leman-like equivalence =1, and also to solvability in a natural distributed
model. The distributed algorithm for the narrower CSP setting from [4] worked also for
the search version of the problem, but this is unfortunately not the case for the algorithm
presented in this paper. Is there an algorithm solving the search version of PVCSP(A, B)
whenever the PVCSP is solvable by SA'? Note that in the search version an instance consists

only of I and the goal is to find an assignment h : I — B such that Val(I, B, h) < Opt(I, A).

Another open problem emerges from Example 9 which shows that BLP and SA! are not
equivalent for PVCSPs. Tt follows from [5] that BLP and SA' are equivalent for PCSPs
and from [23] that they are also equivalent for finite-valued VCSPs. Are these relaxations
equivalent for general-valued VCSPs?

4:15

CP 2022

4:16

Weisfeiler-Leman Invariant Promise Valued CSPs

—— References

1

10

11

12

13

14

15

16

17

Libor Barto, Jakub Bulin, Andrei A. Krokhin, and Jakub Oprsal. Algebraic approach to
promise constraint satisfaction. J. ACM, 68(4):28:1-28:66, 2021. doi:10.1145/3457606.
Libor Barto, Andrei Krokhin, and Ross Willard. Polymorphisms, and How to Use Them. In
Andrei Krokhin and Stanislav Zivny, editors, The Constraint Satisfaction Problem: Complexity
and Approxzimability, volume 7 of Dagstuhl Follow-Ups, pages 1-44. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany, 2017. doi:10.4230/DFU.Vol7.15301.1.

A. A. Bulatov. A dichotomy theorem for nonuniform CSPs. In 2017 IEEE 58th Annual
Symposium on Foundations of Computer Science (FOCS), pages 319-330, October 2017.
doi:10.1109/F0CS.2017.37.

Silvia Butti and Victor Dalmau. The complexity of the distributed constraint satisfaction
problem. In Markus Bléser and Benjamin Monmege, editors, 38th International Symposium
on Theoretical Aspects of Computer Science, STACS 2021, March 16-19, 2021, Saarbriicken,
Germany (Virtual Conference), volume 187 of LIPIcs, pages 20:1-20:18. Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik, 2021. doi:10.4230/LIPIcs.STACS.2021.20.

Silvia Butti and Victor Dalmau. Fractional Homomorphism, Weisfeiler-Leman Invariance,
and the Sherali-Adams Hierarchy for the Constraint Satisfaction Problem. In Filippo Bonchi
and Simon J. Puglisi, editors, 46th International Symposium on Mathematical Foundations
of Computer Science, MFCS 2021, August 23-27, 2021, Tallinn, Estonia, volume 202 of
LIPIcs, pages 27:1-27:19. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2021. doi:
10.4230/LIPIcs.MFCS.2021.27.

Clément Carbonnel, Miguel Romero, and Stanislav Zivny. The complexity of general-valued
constraint satisfaction problems seen from the other side. SIAM Journal on Computing,
51(1):19-69, 2022. doi:10.1137/19M1250121.

Tomés Feder and Moshe Y Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: A study through datalog and group theory. SIAM Journal on
Computing, 28(1):57-104, 1998.

Ferdinando Fioretto, Enrico Pontelli, and William Yeoh. Distributed constraint optimization
problems and applications: A survey. J. Artif. Int. Res., 61(1):623-698, January 2018.
Alexander Kazda. Minion homomorphisms give reductions between promise valued CSPs,
2021. In preparation.

Vladimir Kolmogorov, Andrei A. Krokhin, and Michal Rolinek. The complexity of general-
valued CSPs. SIAM J. Comput., 46(3):1087-1110, 2017. doi:10.1137/16M1091836.
Vladimir Kolmogorov, Johan Thapper, and Stanislav Zivny. The power of linear programming
for general-valued CSPs. SIAM J. Comput., 44(1):1-36, 2015. doi:10.1137/130945648.
Marcin Kozik. Solving CSPs Using Weak Local Consistency. SIAM Journal on Computing,
50(4):1263-1286, 2021. doi:10.1137/18M117577X.

Andrei Krokhin and Stanislav Zivny. The Constraint Satisfaction Problem: Complexity and
Approxzimability, volume 7. Schloss Dagstuhl, 2017.

Andrei Krokhin and Stanislav Zivny. The Complexity of Valued CSPs. In Andrei Krokhin and
Stanislav Zivny, editors, The Constraint Satisfaction Problem: Complexity and Approzimability,
volume 7 of Dagstuhl Follow-Ups, pages 233-266. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, Dagstuhl, Germany, 2017. doi:10.4230/DFU.Vol7.15301.233.

Géabor Kun. Constraints, MMSNP and expander relational structures. Comb., 33(3):335-347,
2013. doi:10.1007/s00493-013-2405-4.

Gabor Kun, Ryan O’Donnell, Suguru Tamaki, Yuichi Yoshida, and Yuan Zhou. Linear
programming, width-1 CSPs, and robust satisfaction. In Proceedings of the 3rd Innovations
in Theoretical Computer Science Conference, ITCS ’12, pages 484-495, New York, NY, USA,
2012. Association for Computing Machinery. doi:10.1145/2090236.2090274.

AA Leman and B Weisfeiler. A reduction of a graph to a canonical form and an algebra arising
during this reduction. Nauchno-Technicheskaya Informatsiya, 2(9):12-16, 1968.

https://doi.org/10.1145/3457606
https://doi.org/10.4230/DFU.Vol7.15301.1
https://doi.org/10.1109/FOCS.2017.37
https://doi.org/10.4230/LIPIcs.STACS.2021.20
https://doi.org/10.4230/LIPIcs.MFCS.2021.27
https://doi.org/10.4230/LIPIcs.MFCS.2021.27
https://doi.org/10.1137/19M1250121
https://doi.org/10.1137/16M1091836
https://doi.org/10.1137/130945648
https://doi.org/10.1137/18M117577X
https://doi.org/10.4230/DFU.Vol7.15301.233
https://doi.org/10.1007/s00493-013-2405-4
https://doi.org/10.1145/2090236.2090274

L. Barto and S. Butti

18

19

20

21

22

23

24

25

26

27

Motakuri V. Ramana, Edward R. Scheinerman, and Daniel Ullman. Fractional isomorphism of
graphs. Discrete Mathematics, 132(1):247-265, 1994. doi:10.1016/0012-365X(94)90241-0.
Edward R Scheinerman and Daniel H Ullman. Fractional graph theory: a rational approach to
the theory of graphs. Courier Corporation, 2011.

Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons, Inc.,
USA, 1986.

Hanif D. Sherali and Warren P. Adams. A hierarchy of relaxations between the continuous
and convex hull representations for zero-one programming problems. SIAM J. Discret. Math.,
3(3):411-430, 1990. doi:10.1137/0403036.

Johan Thapper and Stanislav Zivny. The power of linear programming for valued CSPs.
In 58rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, New
Brunswick, NJ, USA, October 20-23, 2012, pages 669—678. IEEE Computer Society, 2012.
doi:10.1109/F0CS.2012.25.

Johan Thapper and Stanislav Zivny. The complexity of finite-valued CSPs. J. ACM, 63(4):37:1—
37:33, 2016. doi:10.1145/2974019.

Johan Thapper and Stanislav Zivny. The Power of Sherali-Adams Relaxations for General-
Valued CSPs. SIAM J. Comput., 46(4):1241-1279, 2017. doi:10.1137/16M1079245.
Caterina Viola and Stanislav Zivny. The combined basic LP and affine IP relaxation for
promise VCSPs on infinite domains. ACM Trans. Algorithms, 17(3):21:1-21:23, 2021. doi:
10.1145/3458041.

Makoto Yokoo, Toru Ishida, Edmund H Durfee, and Kazuhiro Kuwabara. Distributed constraint
satisfaction for formalizing distributed problem solving. In [1992] Proceedings of the 12th
International Conference on Distributed Computing Systems, pages 614—621. IEEE, 1992.
Dmitriy Zhuk. A proof of the CSP dichotomy conjecture. J. ACM, 67(5):30:1-30:78, August
2020. doi:10.1145/3402029.

4:17

CP 2022

https://doi.org/10.1016/0012-365X(94)90241-0
https://doi.org/10.1137/0403036
https://doi.org/10.1109/FOCS.2012.25
https://doi.org/10.1145/2974019
https://doi.org/10.1137/16M1079245
https://doi.org/10.1145/3458041
https://doi.org/10.1145/3458041
https://doi.org/10.1145/3402029

Trajectory Optimization for Safe Navigation in
Maritime Traffic Using Historical Data

Chaithanya Basrur &

Singapore Management University, Singapore
Arambam James Singh =
National University of Singapore, Singapore
Arunesh Sinha &

Singapore Management University, Singapore

Akshat Kumar &

Singapore Management University, Singapore

T. K. Satish Kumar &
University of Southern California, Los Angeles, CA, USA

—— Abstract

Increasing maritime trade often results in congestion in busy ports, thereby necessitating planning

methods to avoid close quarter risky situations among vessels. Rapid digitization and automation
of port operations and vessel navigation provide unique opportunities for significantly improving
navigation safety. Our key contributions are as follows. First, given a set of future candidate
trajectories for vessels in a traffic hotspot zone, we develop a multiagent trajectory optimization
method to choose trajectories that result in the best overall close quarter risk reduction. Our novel
MILP-based optimization method is more than an order-of-magnitude faster than a standard MILP
for this problem, and runs in near real-time. Second, although automation has improved in maritime
operations, current vessel traffic systems (in our case study of a busy Asian port) predict only a single
future trajectory of a vessel based on linear extrapolation. Therefore, using historical data we learn
a generative model that predicts multiple possible future trajectories of each vessel in a given traffic
hotspot, reflecting past vessel movement patterns, and integrate it with our trajectory optimizer.
Third, we validate our trajectory optimization and generative model extensively using a real world
maritime traffic dataset containing 6 million Automated Identification System (AIS) data records
detailing vessel movements over 1.5 years from one of the world’s busiest ports, demonstrating
effective risk reduction.

2012 ACM Subject Classification Computing methodologies — Multi-agent planning
Keywords and phrases Multi-Agent Path Coordination, Maritime Traffic Control
Digital Object Identifier 10.4230/LIPIcs.CP.2022.5

Supplementary Material
Audiovisual (Videos and Appendiz): https://github.com/rlr-smu/TrajOpt

Funding This research/project is supported by the National Research Foundation Singapore and DSO
National Laboratories under the AI Singapore Programme (AISG Award No: AISG2-RP-2020-016).

1 Introduction

Increasing maritime vessel traffic in some of the busiest ports of world such as Tokyo bay
and Singapore creates traffic hotspots and increases the risk of closer quarter near-miss
situations [17]. Recently, disruptions in global supply chains, and adverse weather events
have further endangered the navigational safety by causing unexpected traffic spikes in busy
waterways such as Singapore’s port [31]. Vessel collisions endanger not only human lives,

© Chaithanya Basrur, Arambam James Singh, Arunesh Sinha, Akshat Kumar, and T. K. Satish Kumar;

licensed under Creative Commons License CC-BY 4.0
28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 5; pp. 5:1-5:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:csbasrur@smu.edu.sg
mailto:jamesa@nus.edu.sg
mailto:aruneshs@smu.edu.sg
mailto:akshatkumar@smu.edu.sg
mailto:tkskwork@gmail.com
https://doi.org/10.4230/LIPIcs.CP.2022.5
https://github.com/rlr-smu/TrajOpt
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2

Traj. Opt. for Safe Nav. in Maritime Traf. Using Hist. Data

Planning Region

i

|

RN

—— Historical (Time=1:10)
—— Historical (Time=11:20)

Close Quarter Scenario

(a) (b)

Figure 1 (a) Electronic navigation chart(ENC) of Singapore strait. ENC is used by vessels for
navigation through the strait. Traffic separation scheme (TSS) are the sea lanes through which
vessels enter and leave the strait. (b) Enlarged view of planning region from ENC, an instance of a
congested scenario in this region is shown. Green and red line denote first 10-step and next 10-step
trajectories from historical data respectively. This is the most congested region in the whole strait
because many vessels enter and come out of the port through this junction point.

but also endanger the environment by causing oil spills [20]. Therefore, our goal in this work
is to study and develop maritime traffic coordination techniques to mitigate close quarter
risky situations that may develop in near future, and improve safety of navigation.

Current model of operations, automation in maritime traffic. Most busy ports, such as
Singapore’s, have a vessel traffic information system (VTIS) that is manned by port watch
operators [19]. Operators keep a close watch over the vessel traffic 24x7 via radars and
other sensors, and take action if a risky navigation situation is about to develop in the near
future (e.g. in the next 10-15 mins). A key challenge is how to proactively advise involved
vessels in a traffic hotspot to avoid the close quarter situation. Based on our discussions with
Singapore’s port authority and our physical observation of their VTIS control center, watch
operators’ traffic monitoring software predicts how vessels would move over the next 10-15
mins by linearly extrapolating their course. And if this linear prediction based trajectories
suggest a close-quarter situation developing in the next 10-15 mins, it alerts the watch
operator. However, it is left to the watch operator to decide how to advise vessels (e.g.,
to alter course) to avoid such a close quarter situation. This lack of automated trajectory
optimization support creates high cognitive burden for watch operators, and is prone to
human error. Therefore, our automated trajectory optimization tool can act as a decision
support system for improved safety of maritime navigation.

In addition to improving current VTIS operations, developing automated trajectory
optimization methods would also be highly impactful for the future of maritime traffic.
E-Navigation [12] introduced by International Maritime Organisation (IMO) aims to improve
maritime industry operations by digitizing both vessel navigation and port-based operations
including digitizing communications between vessels and VTIS. Such digitization can further
enable the usage of automated tools for improved safety of navigation. There are also recent
advancements in the space of autonomous ships that have the potential to improve safety in
navigation and also reduce costs to the industry [8, 24, 23]. Maritime Autonomous Surface
Ships (MASS) [21] is an initiative by the IMO which provides regulations and guidelines on
the advancement of technologies in this space. An example use-case of our tool would be

C. Basrur, A. J. Singh, A. Sinha, A. Kumar, and T. K. S. Kumar

(autonomous) vessels, which are in a traffic hotspot, propose a set of candidate trajectories
which they can take in the near future and transmit it to the port authority. Using our
trajectory optimization tool, the port authority can then advise vessels to take the least-risky
trajectory.

Electronic navigation chart and planning region. Figure la shows the electronic navigation
chart of Singapore strait. The traffic separation scheme (TSS) are the sea lanes through
which vessels enter and leave the strait. Each smaller polygon represents a sea zone. Other

areas of interests are marked in different colors such as anchorages, landmass among others.
Our area of focus (or planning region) highlighted in dotted square is a typical hotspot region.

In this region, vessels enter port waters (in pink color) towards berths, outgoing vessels from
berths enter T'SS, and some vessels transit through the T'SS. As a result, this planning region
experiences heavy cross traffic with vessels often navigating across traffic separation areas to
avoid hotspots.

Figure 1b shows a collection of real historical trajectories for different vessels (tankers

and cargos). Each dot in a trajectory shows the corresponding vessel position 1 minute apart.

Red circles highlight those locations where vessels are in a close quarter situation (distance
between them is less than 500 meters).

Generative trajectory modeling using historical data. Our trajectory optimization tool
requires a candidate set of possible future trajectory for each vessel involved in a hotspot
region. In the future with increased automation, vessels themselves can digitally compute
a number of feasible trajectories they can follow in the near future (next 10-15 mins) and
transmit them to the port authority. There are existing tools such as ECDIS [13] for vessel
route planning. However, the current vessel-port operations are unable to provide such
information. Similarly, current VTIS (such as Singapore port’s) predicts only a single
trajectory based on linear extrapolation.

To address this, we develop a generative model takes as input the past 10 minute trajectory
of each vessel in a specific hotspot area (‘time=1:10"), and then predicts a number of possible
trajectories for each vessel for the next 10 minutes (‘time=11:20"). Our generative model
is trained on a large historical dataset, which implies that generated future trajectories
are feasible (that is, they do not involve unrealistic manoeuvres such as taking U-turns, or
making vessels fully stop). Instead of vessels deciding independently their future trajectory
(‘time=11:20’), our trajectory optimization module can pick safest possible trajectories,
among the ones generated by our generative model, to decrease the risk by maximizing the
closest point of approach (CPA) between any two vessels. Note that all the information
required for this system is available with the port authority as they monitor movements
of all vessels, and based on our optimization tool, can advise vessels to follow a particular
trajectory. As traffic is dynamic, another property our tool must have is to produce results
in near real-time, and be able to run on a rolling horizon basis.

Contributions. Our key contributions are as follows. First, given a set of candidate future
trajectories of vessels in a hotspot region, we develop a mixed-integer linear programming
(MILP) based optimization method that can optimize over all possible combinations of
future vessel trajectories to minimize the risk of close quarter situations developing. Second,
using historical data of vessel movements in Singapore strait, one of busiest port in the
world, we learn a deep conditional generative model based on LSTM [11] that can predict
multiple possible future trajectories of vessels in a traffic hotspot region. Empirically, our

5:3

CP 2022

5:4

Traj. Opt. for Safe Nav. in Maritime Traf. Using Hist. Data

generative model is trained and evaluated on a real world historical data containing 6 million
data points (AIS records detailing vessel traffic data) over 1.5 years. We extensively test
several properties of our generative model, such as its ability to generate realistic and diverse
trajectories, and show that our method is significantly superior to another generative model
called social GAN [10]. We also show that our novel MILP-based trajectory optimization
method is more than an order-of-magnitude faster than a standard MILP model for this
problem, and can provide solutions in near real-time, a key requirement for the solver.

Generative modeling. The learning of probability distributions from data and ability to
sample from them is a fundamental learning task known as generative modelling. Within
generative models, a prominent sub-class are techniques that do not explicitly learn the
probability distribution (or density) function but are able to generate samples from it.
These include the classical Markov chain Monte Carlo methods [3] as well as modern
Generative Adversarial Networks [9] (GANs). GAN-based models have also been used for
generative trajectory modeling of pedestrians [10, 2, 15]. However, vessel traffic has movement
characteristics which are unlike pedestrians’ (such no sharp or uturns, prediction over longer
time duration among others). Our proposed generative model is also computationally efficient
than previous approaches such as Social GAN [10] which take much longer to train, and often
produce worse predictions as we show empirically.

Multi-agent path finding (MAPF). Given a set of agents with unique start and goal
locations in a shared environment, the MAPF problem [28] is to find collision-free paths for
all agents from their respective start locations to their respective goal locations. MAPF has
many real-world applications, including in video games [25], automated warehousing [32],
multi-drone delivery [5], and aircraft-towing vehicles [18]. Solving the MAPF problem
optimally for either the minimum sum-of-costs or the minimum makespan is NP-hard [34, 16].
Although many MAPF solvers exist, they are not directly applicable in our problem domain
for the following reasons. First, MAPF solvers require a discrete search space. They discretize
continuous spaces even when they use motion primitives and thereby generate only piecewise
smooth paths uncharacteristic of trajectories in our problem domain. Second, MAPF solvers
don’t constrain branching decisions at intermediate locations and therefore don’t reason about
historical data required for capturing the complex kinodynamic constraints on trajectories in
our problem domain. Third, MAPF solvers are typically interested in avoiding collisions as
hard constraints rather than optimizing close quarter risk reduction.

Maritime traffic optimization. Previous works [27, 26] have proposed a reinforcement
learning based approach to address the maritime traffic control problem. Their main focus
is to optimize the traffic for the entire Singapore Strait. Whereas, our focus is more on
the micro-level traffic optimization, that is, minimizing the close quarter incidents in the
near future. [1, 4, 35, 29] have also addressed the traffic control problem at the micro-level.
However the solution methodologies in these approaches do not model the uncertainty in the
maritime environment, which is an important real world feature. In this work, we capture
the uncertainty in vessel movements using our proposed generative model.

2 Problem Formulation and Statement

We tackle the problem of recommending seafaring vessels a navigation route in and around
congested ports (e.g., the planning region in figure 1a). The increasing number of vessels over
the years has led to an increase in the frequency of collisions and close quarter situations.

C. Basrur, A. J. Singh, A. Sinha, A. Kumar, and T. K. S. Kumar

Thus, the need of the hour is some intervention from a central port authority to encourage
safe navigation around crowded ports. We envision a route recommendation system that
suggest routes to vessels involved in a traffic hotspot. A number of competing considerations
need to be taken into account for such a system: the recommendations should follow typical
paths traversed historically, the path suggested must be easy to execute by the vessel, and
achieve a global objective of minimizing the close-quarter risk among vessels.

Problem Statement. To specify the problem formally, we consider a planning horizon H
and planning area Z; a polygon in sea space. The planning area is typically the port area
prone to traffic hotspots, such as where vessels either enter the port waters for berthing and
anchoring or pass through to open seas. Vessels enter and leave Z during the planning period
H. At a planning epoch ¢, we observe a snapshot of the whole planning region which includes
information such as, total number of vessels M and their previous trajectories until time t. We
use [M] as a shorthand for {1,..., M}. v € [M] denotes a vessel, 79" = (l¢,ls_1, ..., li—(n—1))
denotes the past n-step trajectory of vessel v at time ¢, where I; = (xy,y:) is the location on
2d plane. We also assume that time is discretized (e.g., 30 second intervals). The objective of

a maritime traffic controller is to recommend future m-steps trajectories 7,°° for each vessel

v so that it minimizes a risk function risk(r{®, 73°°, ..., 735°) given by
risk(71%¢, ..., 735)= — min {dist(T;eC, T;?C)} (1)
v,v' €[M],v#£v’

where the function dist provides the closest distance between the two input trajectories.

Thus, in words, the risk measures the negative of the closest point of approach between any
two vessels for the recommended trajectories. Minimizing the risk means maximizing the
closest point of approach (CPA), which is a standard notion for maritime safety [6].

3 Approach

Our approach to solve the trajectory recommendation problem has two parts. First, given
a set of candidate future trajectories for each vessel in a hotspot area, we develop an
optimization method that selects trajectories to minimize the risk. Second, we develop a
trajectory generation model that generates multiple plausible trajectories for each vessel that
can be recommended.

3.1 Vessel Trajectory Optimization

We first formulate the path planning problem as a trajectory optimization problem. Suppose
that {7}, 72,... 7K} are the K future plausible trajectories for a vessel v. There are multiple
ways in which such future trajectories can be collected — vessels themselves send future
possible trajectories they can follow (e.g., using route planning tools such as ECDIS as noted
in Section 1), VTIS can use their own prediction methods, or as in our case, trajectory
generation module can be used (described in next sub-section). Importantly, our trajectory
optimization method is not dependent on the manner in which such future trajectories are
collected.

Let ¥ be a binary decision variable that denotes whether the trajectory k is selected as
the recommendation. Thus, a natural constraint is Zszl % =1, Vv € [M] which enforces
that only one trajectory is selected per vessel.

5:5

CP 2022

5:6 Traj. Opt. for Safe Nav. in Maritime Traf. Using Hist. Data

Table 1 RiskOPT: Mixed-integer non-linear program for trajectory optimization.

. kK 4. k _K
max min Ty dist(Ty, 7)
x wvE[M] v €[M],v#v’

ke[K],k'€[K]
K
subject to fo =1, Yve[M]
k=1

¥ €{0,1} wve M) ke K]

We re-write the risk in terms of all the binary variables z%’s. Let x denote all the binary
variables for all vessels. For defining risk(x) only those traJectorles must be considered that
are selected, which we enforce by the bilinear term z*z¥, below:

; koK giop (kK
— min Ty Xy dist(7,), T } 2
ve[M],v' €[M],v#£v’ { Z () ()

ke[K],k'€[K]

We want to minimize risk, which given the negative sign in risk becomes the integer bilinear
optimization problem RiskOPT in Table 1.

Naive Formulation. The problem RiskOPT is non-linear because of the bilinear terms. A
naive and standard way of removing the bilinearity is to introduce additional continuous
variables 2y g v = xﬁxﬁ, and constraints zy g/ v > :v + 5%/ —1 and 2z x/ v < xfj and
Zik oo < @¥. Tt can be readily checked that this re-formulation is equivalent to the
original one. This reformulation uses K2M? extra variables and 3K2M? extra constraints
over the original bilinear formulation. However, our planning needs to be almost real time
(solve within one minute) and as observed in experiments, this naive reformulation does not
meet this requirement. Hence, we present a more compact reformulation that is orders of

magnitude faster than the naive one.

Improved Formulation. Observe that the key part of expression (2) can be re-written as:

Z (Z o dist (7%, 7%)) (3)

ke[K] k'€[K]

We use the shorthand:

Srew(Xy) = Z zk, dlst(TU,Tf,).
k' €[K]

K

Here x,» = (z},,...,2X) is the vector of variables for vessel v. Note that f ,(x,/) is linear

in x,s. The expression (3) now simplifies to:

Z xﬁfk,v(xv/) (4)

kE[K]

, X

We now replace ¥ f ,(x,/) with a real valued variable Zk.v,0 1O get a reformulation of (4) as:

§ Zkvv/* § xq;fkv Xv

ke[K] ke[K]

C. Basrur, A. J. Singh, A. Sinha, A. Kumar, and T. K. S. Kumar

Table 2 CompactRiskOPT: Compact Mixed-integer linear program for trajectory optimization.

max y
x,2,y

K
subject to Zw’; =1, Yve[M]
k=1
Constraint set from Eq. 7
Constraint set from Eq. 5
Constraint set from Eq. 6

¥ €{0,1} Yo e [M],k € [K]

Additionally, we also show that f ,(x,/) can be easily lower and upper bounded so that the
relationship between zy, ,, . and zk frw(Xy) can be expressed as linear constraints. Let lower
bound:

v

Ligp,or = 10D fi (Xor) = min dist (7}, 7).
X,/

The second equality above follows from the definition of fy ,(x,/) and the constraint that
Zk,e[K] xﬁ: = 1. Similarly, let upper bound:

v

Uk v = max fi »(Xy) = max diSt(Tk Tk//).
X, 7

Lower bounds L and U can be easily computed for each tuple (k,v,v’) before we setup the
optimization problem. To replace :cfj frw(xy) with a real valued zy ., we first add the
constraints:

Lot < 2p oy SUppwat Vk € [K],v e [M],v € [M],v#0 (5)

This constraint ensures that zj ., = 0 if 2% = 0. We still need to ensure that if 2¥ =1 then
Zkww = frw(Xy). Towards this end, we add the constraints:

fk,v (XU’) - Uk,'u,v’(l - -735) < 2k’ < fk,v (X’UI)_ (6)
Liww (1 —2F) VE € [K],ve [M],v € [M],v#

v

In the above constraint, if xfj = 1 then 2y y = fro(Xy) and this value of zy , . is also
feasible for the previous constraint. Also, when z¥ = 0 then the previous constraint gives
2k v, = 0 which is still feasible for the above constraint.

This adds K M? continuous variables and 4K M? inequalities; note the reduction in the
number of these additional variables and constraints as compared to the naive approach. Also,
note that the new objective Zke[K] 2wt is now completely continuous. By introducing

an additional variable y which is to stand for min, e[, e[a) 00 { Zke[K] zkﬂ,,v/} and the
constraints
Z 2k >y Yk €[K],v €[M],v" €[M],v # (7)
kE[K]

the max-min optimization becomes the Mixed Integer Linear Program (MILP)
CompactRiskOPT in Table 2.
The arguments presented till now directly leads to the following formal claim of correctness

» Propostion 1. Optimization CompactRiskOPT is equivalent to RiskOPT.

5:7

CP 2022

5:8

Traj. Opt. for Safe Nav. in Maritime Traf. Using Hist. Data

Compute loss of each output to ground truth from data,

Qutput = future trajectory and use min of these losses

Run multiple times

un m ho ly g L
|Wl-zlﬁl- to“;%t: ;:&:L::L:;}: g:;:l;.ens IWWW -
[| [| e [[

A I Iy Iy Is lg I L, Iy ly ls I

Input = trajectory till current time T input = trajectory till current time

(a) Architecture of generator. (b) Tllustration of diversity loss.

Figure 2 A LSTM based generative model (left) with diversity loss computation (right). This
instance of the generative model is shown with n = 6 and m = 4. The exact diversity loss formula is
in text in Equation 8.

3.2 Trajectory Generation

Our aim is to use historical data to generate the K plausible trajectories. In practice,
such generation would be performed by port authority using human expertise, their own
prediction methods or vessels themselves can compute it using routing tools such as ECDIS,
as mentioned in the introduction. However, these possible trajectories are not recorded in
the maritime traffic dataset that are commercially available', which only record historical
movement of vessels. Clearly, randomly generating trajectories produces very unrealistic
trajectories. Instead, we use a generative adversarial networks (GAN) [9] like set-up to learn
from historic data and generate multiple future trajectories; the GAN-like learning ensures
realism by generating trajectories close to observed ground truth trajectories in the data.
We generate a set of K trajectories {7}, 72,...7X} for each vessel v. The selection of one
trajectory among this set for each vessel is done in the path planning part as described in
the previous sub-section. We take inspiration from a GAN to build a simpler architecture
for trajectory generation that is easier to train and achieves better results in experiments.

More formally, the goal is to output multiple future trajectories {r},72,... 75} for each
of the M vessels starting from current time step ¢, where each trajectory 7! is of m time
steps. Each time step is 1 minute in wall-clock time. The input to this task is the previous
n-step trajectory 7P™. During training the future trajectory (ground truth) is known and
prue — (qimue o 1e) where [fT° = (x§¢, y™°) is the location of the vessel
on the 2D plane (this is available from the historical data).

specified as 7,

LSTM architecture. Our architecture for this generative task is shown in Figure 2a. It
is essentially a LSTM layer (we call this the generator gg). LSTMs are a special kind of
recurrent neural networks, capable of learning long-term dependencies [11]. All recurrent
neural networks have the form of a chain of repeating modules of neural network. A LSTM
layer also has this chain like structure where each repeating structure is called a LSTM cell.
Each LSTM cell takes in an input (one element of a sequence which is a location ; in our
case) and outputs a hidden value h; that is fed to the next LSTM cell. The chain structure
ensures that h; captures the information about all the inputs /; with j < 4. The last cells in
a LSTM layer output the predicted future elements of the sequence.

! https://www.marinetraffic.com

https://www.marinetraffic.com

C. Basrur, A. J. Singh, A. Sinha, A. Kumar, and T. K. S. Kumar

In our architecture, the first n LSTM cells take in as input the past n locations given by
7PV, The next m cells output the future prediction with a sequential structure where the
prediction at a time-step forms the input for the LSTM cell that predicts the location for
the next time step. The predicted location output is formed by transforming the h; value
from the output LSTM cells by passing h; through a fully connected layer represented by f
in Figure 2a.

Stochastic predictions. Importantly, all the future predictor cells also take in Gaussian
noise z; of dimension D as input, which enables stochastic predictions that provide the
multiple future trajectories we need. Multiple trajectories provide flexibility for the optimizer
to reach better solutions.

Next, we describe the loss function. During training, for any given predicted sequence
output 77 = (lAerl, .. ,T{+m> we define a loss L(7J,7ime) = Y7 [|l550e —lA{+i||2. However,
instead of using just one predicted sequence we invoke the generator S times with different
noise samples (and same past location input) to obtain S distinct predicted sequences and

form the overall loss £ as follows:

L Al,“./\S7 true) _ : L/\j’ true 8
({Tv T’u} T) je{r{l,luI.l,S} (TU T) ()

This loss is illustrated in Figure 2b. The above loss function is known as Minimum over N
(MoN) loss [7] in prior literature and has been used as an additional loss term for diverse
samples in Social GAN [10] for pedestrian trajectory prediction. To understand this loss, note
that replacing the min with average or max will force all generated trajectories to collapse
to that single trajectory that provides the lowest loss, thereby producing a deterministic
prediction instead of the desired stochastic prediction. The min allows for diverse samples
while still ensuring that the distribution that generates these samples is able to generate
samples close to the ground truth.

Observe that our stochastic prediction is history dependent, which implicitly takes into
account the speed of the vessel (which in turn depends on external but unknown factors
such as weather and vessel type). In particular, we use only the information that the current
VTIS system uses in Singapore port, which simply linearly extrapolates the vessel’s current
trajectory for prediction.

Also note the distinct aspect that unlike a GAN (e.g., SocialGAN) there is no discriminator
network in our architecture, but the loss function of the generator gy uses the diversity
loss to generate required trajectories. The absence of a discriminator removes the need for
adversarial training process of typical GANs, making our training process much more stable
and computationally faster, which is critical for us given the large data size. Moreover,
we demonstrate experimentally that our approach outperforms Social GAN as well as a
simple linear extrapolation which is the current approach followed by Singapore port’s
VTIS. In particular, we use three prior proposed metrics to demonstrate the superiority of
our approach; these include two common metrics in trajectory prediction, namely Average
Displacement Error (ADE) and Final Displacement Error (FDE), and a metric named
discriminative score proposed in time-series generation [33]. The ADE and FDE compare the
generated trajectories with the actual historical trajectory, and also showcase the diversity
in our stochastic predictions. The discriminative score metric ensures that our generated
trajectories are realistic (i.e., similar to trajectories in the historical dataset). These metrics
are explained in the experiment section.

5:9

CP 2022

5:10

Traj. Opt. for Safe Nav. in Maritime Traf. Using Hist. Data

4 Experiments

We evaluate our proposed learning and planning based system on real world maritime
dataset. We use 1.5 years of historical Automatic Identification System (AIS) data (spanning
the months between January 2018 -June 2019) of vessels voyaging in the Singapore Strait
purchased from the company MarineTraffic. Each AIS record contains information such as
timestamp, vessel unique id, lat-long (GPS) positions, course over ground (COG), speed over
ground (SOG) and navigation status (e.g anchored/sailing etc). The vital vessel navigation
information such as lat-long positions are logged every few seconds interval resulting in total
of around 6 million records. Our evaluation is mainly for tankers and cargo vessels because
majority of traffic involved in hotspot formation belong to these two types. They are also
generally considered as high-risk category vessels due to type and size of cargo they carry.

We further process the data to get about 1.6 million individual vessel trajectories for
our proposed method in the planning region (shown in figure 1a) . Each vessel trajectory
includes 20 latitude-longitude reported at intervals of one minute. These trajectories are
used to train our generative model as explained later. Additional experimental details are in
the supplemental material.

4.1 Trajectory Generation

In addition to the maritime data we also evaluate our trajectory generation model on three
publicly available human pedestrian trajectory datasets (ETH, Hotel, Zaral) [14, 22]. The
data includes 2200 trajectories of human movement behaviour in congested environments.
The results are in the supplement and are provided mainly to showcase that our proposed
approach is competitive with social GAN even on datasets social GAN is optimized for.

Evaluation metrics. We use commonly adopted metrics — ADE and FDE [15, 2] and
discriminative score [33] for evaluating generated trajectories:
Average displacement error (ADE): Average L2 distance between the ground truth

rirue and the k' predicted trajectory 7% over all predicted locations in 7~.

i s — LIl

m

ADE(7), 7y™°) =

vt

9)

For a given trajectory 72" , we sample K future trajectories from the generator. The
best and mean ADEs are given by:

(best) ADE = min ADE(7F, 7tme) (10)
ke[K]
K ~
ADE 'k ltruc
(mean) ADE = Lizi G, ™) (11)

K

We compare our approach with Social GAN on both best and mean ADE.
Final displacement error (FDE): It is the L2 distance between the ground truth and
the k" prediction at the final predicted location for this trajectory.

FDE(7, 7,") = ([l — U512 (12)

The calculations for best and mean FDE is similar to the ones of the ADE in equation (10)
and (11).

The ADE and FDE metric show both the quality of predictions and diversity of trajectory
generation. If the best ADE (and FDE) is low, then it implies, there is at least one

C. Basrur, A. J. Singh, A. Sinha, A. Kumar, and T. K. S. Kumar

Table 3 ADE and FDE comparison between our approach and Social GAN for the Maritime
navigational data (lower is better).

Metric (in meters) ‘ Social GAN | Ours

(best) ADE 491.6 281.2
(best) FDE 975.5 | 496.3
(avg) ADE 698.3 463.7
(avg) FDE 1340.6 | 814.6

trajectory that is close to the actual ground truth trajectory. We also observe empirically
that average ADE and FDE are different than the best ADE and FDE. This implies that
there is diversity in predictions, which is incorporated by the MoN loss in (8).

Discriminative score [33]: It is a well adopted measure to validate the quality of
generated samples from a generator. Given a generator, we use a test trajectory dataset
(which is not used in training the generator) with N trajectories, each of length n + m:
{(zprv mire) o (R, Tiie) b We generate (using our already trained generator) N
future trajectories corresponding to each 70" for i € [N] to obtain {7,,,..., T,y }. Then,

we have a dataset of 2N trajectories, half of which are true trajectories {riue Thrue

e Ty
(labelled 1) and the other half generated using our generator {7,,, ... ,?vNi (labelledNO).
We train a classifier on this dataset and measure its accuracy. A perfect generator would
generate data indistinguishable from real ones and hence the classifier would have 50%
accuracy. Any deviation from this 50% is a measure of how inaccurate the generator is.
The discriminative score measures this deviation and is defined as abs(0.5 — accuracy).
A lower discriminative score quantitatively indicates a better generator. Empirically, our
generator achieves a low discriminative score, which implies that our generator generates
trajectories that are representative of the typical vessel movement patterns found in the

historical dataset.

Maritime data results. We divide the whole vessel trajectories data into training and testing
set in a 80/20 ratio. Each vessel trajectory consists of 20 locations, first 10 locations (i.e.,
n = 10) are used as input to the model and next 10 locations (i.e., m = 10) as the labels. This
corresponds to using last 10 mins of trajectory to generate trajectories for next 10 mins. We
use the same number of model parameters for both Social GAN and our approach, additional
details on hyper-parameter settings are provided in supplementary material. Table 3 shows
the ADE and FDE measures of both approaches. We observe empirically that in all four
metrics, our approach is able to achieve better solution quality than Social GAN. This result
shows effectiveness of our proposed generative model on the maritime data.

Note that tanker and cargo vessels are about 200-300 meter in length. Therefore, ADE
and FDE achieved by our approach are small relative to the size of tankers. Furthermore, best
ADE/FDE in our case are quite different than the average ADE/FDE. This demonstrates
that there is diversity in the generated trajectories.

Discriminative score. Our generator achieves a discriminative score of 0.19 as shown in
Figure 3a. As the classifier is trained the score steadily increases but hits a plateau of 0.19.
As reported in past work [33], 0.19 is competitive (better in some cases) with the scores
obtained for other time series generation tasks. Having a low discriminative score ensures
that the trajectories generated are realistic, and reflect typical movement patterns observed
in the historical dataset. However, this doesn’t necessarily imply that our samples are not

5:11

CP 2022

5:12

Traj. Opt. for Safe Nav. in Maritime Traf. Using Hist. Data

02 2

——=— Linear
Worst(ADE)
Best(ADE)
Median(ADE)

=
33

o
@

Mean Square Error

Discriminative Score
=4 =
2 2

0 20 40 60 80 100
20 50 80 110 140 170 200 230 260 290 320 350 380 Curvature Percentile
Classifier Training Epochs

(b) Comparison of best, median and worst of
(a) Discriminative score to distinguish between the generated trajectories against linear extra-
real or fake trajectory sample. A score between polation as a function of increasing curvature in
(0.0 — 0.2) is reasonable. the real trajectories.

Figure 3

diverse. The FDE values for the generated trajectories differ by a significant amount as
shown in Table 3; the average FDE is significantly higher than the best FDE. The same
argument can be made for the metric ADE as well.

Varying curvatures. To demonstrate the robustness of our trajectory generator, we test
it on trajectories with varying curvatures. We assign a curvature percentile to a trajectory
where having a higher percentile implies that the vessel trajectory is more curved. In
figure 3b, x-axis is curvature percentile, and y-axis is the average error of all trajectories in
that curvature bucket. Results in figure 3b show that while the generator’s performance is
comparable to linear extrapolation in the case of low curvature percentiles (vessels almost
moving in a straight line). It does much better with vessels that are changing their direction.
Even the worst of the trajectory samples start doing better than the linear extrapolation
as the curvature increases. This shows that our generator is a much better predictor in
challenging scenarios when vessels are turning, than the current linear extrapolation method
used by Singapore port’s VTIS. We also emphasize that linear extrapolation is a very good
metric in most cases, as large vessels typically are unable to turn sharply. Therefore, these
results show that our generator has learned much better movements patterns found in the
historical data than the linear prediction.

4.2 Path Planning

Here we present our experimental results for path planning module on the maritime data.
The path planning part requires a generative model for generating trajectory samples. As
empirically observed, Social GAN performs worse on the maritime data. Therefore, we use
our proposed model as the generative model for trajectory generation.

The evaluation of path planning part is mainly for close quarter scenarios where two or
more vessels come very close to each other (less than 500 meters). This number (500 meters)
was set after our discussions with maritime domain experts; however, it is configurable and
does not affect our algorithmic methods. We use the objective in Table 2 as our evaluation
criterion which essentially measures the minimum CPA between any any two vessels.

We use the naive formulation in Section 3.1 as baseline and refer to it as the naive solver.
We refer to the improved formulation as the accelerated solver. This is our main proposed
solver. We also test against the linearly extrapolated trajectories, which shows what would
be the risk if vessels moved over this trajectory (linear extrapolation is the current prediction
method Singapore port’s VTIS uses).

C. Basrur, A. J. Singh, A. Sinha, A. Kumar, and T. K. S. Kumar

* Mean of the distribution

= N
I °
o o

-
°
S

% Improvement in risk(I)
° g

'
o
©

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of trajectory samples

(a) Ship routes in the Singapore strait with high- (b) Improvement (I) in risk of trajectories recom-
lighted region in red is used as our planning region. mended by accelerated solver compared to historical
trajectories using boxplots.

Figure 4

Planning instance generation. For each day we generate instances from peak hour period
(7 AM - 9 AM) . Majority of close quarter incidents occur during this period. We first select
a planning region near the port waters that has high traffic activity based on historical
data as shown in Figure 4a. We also select an instance window of 20 minutes because our
complete trajectory is of 20 locations at one minute intervals. So a planning instance includes
a set of vessel trajectories that have at least one location present within the given planning
region and the time window. A snapshot of a planning instance is shown in Figure 1b. For
each instance we compute a risk value based on historical data as defined in Section 2. We
evaluate our path planning approach on 1000 different instances with the highest risk.

Distributional result. In Figure 4b, we show distributional information about improvement
of risk values in 1000 different instances . The x-axis denotes the number of samples (K) and
y-axis shows percentage improvement of risk using accelerated solver. For a given instance
the percentage improvement of risk (I) is given by

risk(r{™ue, ..., 7)) — [risk(TfeC . ,T]r\fjc)]

9

I =100.
abs(risk(Tf™me, ..., T5"))

(13)

Note that risk, as defined in Equation 1, is always negative. Thus, the absolute value in the
denominator is needed to show the percentage improvement [30]. We set optimization time
limit to one minute to test the near real-time performance of the trajectory optimization
module. We observe that the mean (in blue circle) values are higher than medians (orange)
thus indicating a positively skewed distribution with long tail. The boxes cover the data
range from 25th to 75th percentile. And the fences around the boxes cover the whole range
of data. There exist some rare outliers where recommended trajectories are slightly worse
off than historical trajectories. Based on our investigation, it was because a ship captain
performed an atypical maneuver (such as taking sharp turns) which is rarely observed in
the dataset. We also observe an overall good improvement (around 50%) of solution quality
across 1000 instances starting from 7 samples. This result show robustness of our proposed
accelerated solver across different instances in near real-time.

Different instances. In Figure 5a we demonstrate the performance of linear prediction,
naive and accelerated solvers on 1000 different instances. The x-axis denotes instance id and
y-axis denotes percentage improvement of risk compared to historical trajectories. Green color

5:13

CP 2022

5:14

Traj. Opt. for Safe Nav. in Maritime Traf. Using Hist. Data

400 » Linear Prediction 100

i 2

@ %

= Naive Solver = 804 1

.g 300 Accelerated Solver g 604

2 - °

£ w

.; 200 g 204

3 g o

E 100 ,E,—zo' .

H] > —&— Naive Solver >

o o g_ —40; —— Accelerated Solver

g E 6]

) ES

E : : :

= 0 200 400 600 800 5 19 15 20

Instances Number of trajectory samples
(a) Comparison of linear prediction, naive and ac- (b) Comparison of naive and accelerated solver on
celerated solver on improvement of risk compared improvement of risk over historical trajectories with
to historical trajectories. varying number of samples.
Figure 5

points denote the improvement using the accelerated solver, computed as per equation 13.
Similarly, blue and red color denotes the improvement using the linear prediction and naive
solver. We set an optimization time limit of one minute for solving each instance. We use
a sample size of K = 20 for each trajectory. For all the instances, the accelerated solver
achieves equal or better solution quality than both the linear prediction baseline and naive
solver. This is because optimization time limit of 1 minute is limited for the naive solver to
achieve good quality solution. On average the accelerated solver (green dotted line) achieves
around 80% improvement of risk. Linear prediction in blue color perform poorly than both
the solvers as it is just the linear extrapolation of data from previous time steps.

Varying samples. In our path planning optimization sample size is an important parameter.
Therefore, in this experiment we test both the solvers with varying number of sample sizes.
Results in Figure 5b show the comparison of naive and accelerated solver on solution quality
with varying number of samples K. The x-axis denotes number of samples used in the
optimization and y-axis denotes average percentage improvement of risk over historical data.
The results shown are averaged over 15 instances. For this experiment also we set the
optimization time limit to 1 minute. We observe that for accelerated solver solution quality
improve with increasing number of samples, and quality does not change much after 15
samples. This is an expected result because at low number of samples the solution space
is small. As the number of samples increase the solution space also increase which leads
to better solution quality. But beyond a certain point there are upper limits to maximum
possible distance between ships in a region with finite space. Thus the risk plateaus out
with increasing number of samples. In this experiment also we observe that the accelerated
solver is able to provide better solution quality than both historical data and the naive
solver. In case of naive solver after about 7-8 samples the effect of optimization time limit
kicks in. More number of samples would require longer optimization time to get the same
solution quality, and thus we see a drop in solution quality. This experiment provides vital
information about how to choose the sample size parameter in our approach.

Runtime comparison. Results in Figure 6a shows comparison of naive and accelerated
solver on optimization time with varying number of samples K. The x-axis denotes number
of samples and y-axis denotes average optimization runtime. The results shown are averaged
over 20 instances. For this experiment, we set the optimality gap of the solver to 10%. We
observe that runtime of naive solver rise almost exponentially with increasing number of

C. Basrur, A. J. Singh, A. Sinha, A. Kumar, and T. K. S. Kumar

18 —e— Decision

—e— Historical (Time=1:10)
—4&— Naive Solver —e— Historical (Time=11:20)
———— Accelerated Solver > Close Quarter Scenario

N
=1
S
=3

-
@
=3
=3

Averge Runtime (in seconds)
5
8

wea,
5001 \ .
= »
O 2
oot
oottt anssnnsnenn
12345678 91011121314151617 1819 20 2
Number of trajectory samples ®
(a) Comparison of naive and accelerated solver (b) Close quarter scenario.

on runtime with varying sample count.

Figure 6

samples. However, accelerated solver is able to maintain a constant runtime irrespective
of sample size. The solver has a runtime of around 4 seconds at 20 sample size. We also
observed that accelerated solver is able to achieve a runtime of around 5 seconds at 20 sample
size even for 5% optimality gap (not shown in the figure). For any system to be used in
real-time scenario, a decision time of few seconds is very crucial. The empirical result shows
our proposed system is well adapted for a real-time safe trajectory recommendation system.

Close quarter scenario. Figure 6b shows an instance of close quarter situation. Green and
red dotted line denote previous and next 10-step trajectories from historical data respectively.
Blue dotted line is the recommended trajectory from our learning and planning based system.
It is one of the predicted samples from the generative model. In the figure vessels with id 15
and 18 are heading in opposite direction. They come very close to each other (less than 500
meters) which is a close quarter situation as highlighted in the big red circle. We observe that
our recommended trajectories (in blue) are able to maintain a safe distance and thus avoid
the close quarter incident. We provide four video files for such instances of close quarter
situations using our maritime traffic simulator on our GitHub repo.

Close quarter scenario. Figure 7 shows qualitative results of some of the generated tra-
jectories from our generative model. Trajectories in green and red are complete historical
trajectories with time=1:10 and time=11:20 respectively. Trajectories in cyan color are
generated sample future trajectories (time=11:20). Trajectories in blue color are the selected
trajectories for time=11:20 from the path planning solver. Here we observe that the generated
trajectories in cyan are a good representative sample of the historical trajectories in red.

5 Conclusion

We have presented a multiagent path planning approach to the problem of alleviating close
quarter incidents in a highly congested maritime traffic environment. We proposed a data-
driven based optimization methodology to the problem. We first learn a generative model of
vessel movement behaviors from historical data. Empirically, we have shown the superior
quality of our generative model over the baseline model. The trajectory samples generated
from our model are then used in our proposed novel and efficient MILP solver to reduce close
quarter incidents. Empirically, we have shown that our solver is able to provide high quality
safe trajectory recommendations in near real-time in a variety of real-world close quarter
situations mined from past data.

5:15

CP 2022

5:16

Traj. Opt. for Safe Nav. in Maritime Traf. Using Hist. Data

/_/ . kV‘.////‘
e el
— —e— Historical (Time=1:10)
- —e— Historical (Time=11:20)

—e— Decision (Time=11:20)
Samples (Time=11:20)

Figure 7 Qualitative result for generative model.

—— References

1

10

11

12

13

14

15

Lucas Agussurja, Akshat Kumar, and Hoong Chuin Lau. Resource-constrained scheduling for
maritime traffic management. In AAAI Conference, 2018.

Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre Robicquet, Li Fei-Fei,
and Silvio Savarese. Social lstm: Human trajectory prediction in crowded spaces. In IEEE
conference on CVPR, pages 961-971, 2016.

Christophe Andrieu, Nando De Freitas, Arnaud Doucet, and Michael I Jordan. An introduction
to meme for machine learning. Machine learning, 50(1):5-43, 2003.

Saumya Bhatnagar, Akshat Kumar, and Hoong Chuin Lau. Decision making for improving
maritime traffic safety using constraint programming. In Proceedings of the 28th IJCAI 2019.
S. Choudhury, K. Solovey, M. J. Kochenderfer, and M. Pavone. Efficient large-scale multi-drone
delivery using transit networks. In IEEE ICRA, pages 4543-4550, 2020.

Lei Du, Floris Goerlandt, and Pentti Kujala. Review and analysis of methods for assessing
maritime waterway risk based on non-accident critical events detected from ais data. Reliability
Engineering and System Safety, 200, 2020.

Haoqgiang Fan, Hao Su, and Leonidas J Guibas. A point set generation network for 3d object
reconstruction from a single image. In IEEE conference on CVPR, pages 605-613, 2017.
Futurenautics. Autonomous ships | white paper. https://www.sipotra.it/old/wp-content/
uploads/2017/05/Autonomous-Ships.pdf, 2016.

Tan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications
of the ACM, 63(11):139-144, 2020.

Agrim Gupta, Justin Johnson, Li Fei-Fei, Silvio Savarese, and Alexandre Alahi. Social gan:
Socially acceptable trajectories with generative adversarial networks. In IEEE Conference on
CVPR, pages 2255-2264, 2018.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural Computation,
9(8):1735-1780, 1997.

IMO. E-navigation. https://www.imo.org/en/OurWork/Safety/Pages/eNavigation.aspx,
2019.

International Maritime Organization. Electronic Nautical Charts (ENC) and Electronic Chart
Display and Information Systems (ECDIS). https://www.imo.org/en/OurWork/Safety/
Pages/ElectronicCharts.aspx, 2022.

Laura Leal-Taixé, Michele Fenzi, Alina Kuznetsova, Bodo Rosenhahn, and Silvio Savarese.
Learning an image-based motion context for multiple people tracking. In IEEE Conference on
CVPR, pages 3542-3549, 2014.

Namhoon Lee, Wongun Choi, Paul Vernaza, Christopher B Choy, Philip HS Torr, and
Manmohan Chandraker. Desire: Distant future prediction in dynamic scenes with interacting
agents. In IEEE Conference on CVPR, pages 336—-345, 2017.

https://www.sipotra.it/old/wp-content/uploads/2017/05/Autonomous-Ships.pdf
https://www.sipotra.it/old/wp-content/uploads/2017/05/Autonomous-Ships.pdf
https://www.imo.org/en/OurWork/Safety/Pages/eNavigation.aspx
https://www.imo.org/en/OurWork/Safety/Pages/ElectronicCharts.aspx
https://www.imo.org/en/OurWork/Safety/Pages/ElectronicCharts.aspx

C. Basrur, A. J. Singh, A. Sinha, A. Kumar, and T. K. S. Kumar

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

H. Ma, C. Tovey, G. Sharon, T. K. S. Kumar, and S. Koenig. Multi-agent path finding with
payload transfers and the package-exchange robot-routing problem. In AAAI Conference,
pages 3166-3173, 2016.

Faris Mokhtar. Busy shipping lane’s narrow passageway hard for vessels to navigate.
https://www.todayonline.com/singapore/busy-shipping-lanes-narrow-passageway-
hard-vessels-navigate, 2017.

Robert Morris, Corina S. Pasareanu, Kasper Sge Luckow, Wagar Malik, Hang Ma, T. K. Satish
Kumar, and Sven Koenig. Planning, scheduling and monitoring for airport surface operations.
In AAAI Workshop on Planning for Hybrid Systems, 2016.

MPA. Vessel Traffic Information System. https://www.mpa.gov.sg/web/portal/home/
port-of-singapore/operations/vessel-traffic-information-system-vtis, 2021.

MPA Singapore. Over 250 participate in Joint Oil Spill Exercise to Test Responsiveness to Oil
Spills at Sea. https://www.mpa.gov.sg/web/portal/home/media-centre/news-releases/
mpa-news-releases/detail/091cd124-ca60-4£34-bdb6-a0967£82defd, 2018.

International Maritime Organization. Autonomous shipping. https://www.imo.org/en/
MediaCentre/HotTopics/Pages/Autonomous-shipping.aspx.

Stefano Pellegrini, Andreas Ess, and Luc Van Gool. Improving data association by joint
modeling of pedestrian trajectories and groupings. In European conference on computer vision,
pages 452-465. Springer, 2010.

Henrik Ringbom. Regulating autonomous ships — concepts, challenges and precedents. Ocean
Development & International Law, 50(2-3):141-169, 2019.

Rolls-Royce. Remote and autonomous ship — The next steps. https://www.

rolls-royce.com/~/media/Files/R/Rolls-Royce/documents/customers/marine/
ship-intel/aawa-whitepaper-210616.pdf, 2016.

David Silver. Cooperative pathfinding. In AIIDE, pages 117-122, 2005.

Arambam James Singh, Akshat Kumar, and Hoong Chuin Lau. Hierarchical multiagent
reinforcement learning for maritime traffic management. In Proceedings of the 19th AAMAS,
2020.

Arambam James Singh, Duc Thien Nguyen, Akshat Kumar, and Hoong Chuin Lau. Multiagent
decision making for maritime traffic management. In AAAI Conference, 2019.

Roni Stern, Nathan R. Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne T. Walker,
Jiaoyang Li, Dor Atzmon, Liron Cohen, T. K. Satish Kumar, Roman Bartdk, and Eli Boyarski.
Multi-agent pathfinding: Definitions, variants, and benchmarks. In SoCS, pages 151-159,
2019.

Teck-Hou Teng, Hoong Chuin Lau, and Akshat Kumar. Coordinating vessel traffic to improve
safety and efficiency. In Proceedings of the 16th AAMAS, pages 141-149. ACM, 2017.

Leo Tornqvist, Pentti Vartia, and Yrjé6 O Vartia. How should relative changes be measured?
The American Statistician, 39(1):43-46, 1985.

Kevin Varley. Ships Queues Worsen Port Delays From Singapore to Piraeus.
https://www.bloomberg.com/news/articles/2021-11-02/ships-queues-worsen-port-
delays-from-singapore-to-piraeus, 2021.

Peter R. Wurman, Raffaello D’Andrea, and Mick Mountz. Coordinating hundreds of cooperat-
ive, autonomous vehicles in warehouses. AI Magazine, 29(1):9-20, 2008.

Jinsung Yoon, Daniel Jarrett, and Mihaela van der Schaar. Time-series generative adversarial
networks. Advances in Neural Information Processing Systems, 32:5508-5518, 2019.

J. Yu and S. M. LaValle. Structure and intractability of optimal multi-robot path planning on
graphs. In AAAI Conference, pages 1443-1449, 2013.

Jinfen Zhang, Tiago A Santos, C Guedes Soares, and Xinping Yan. Sequential ship traffic
scheduling model for restricted two-way waterway transportation. Proceedings of the Institution
of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment,
231(1):86-97, 2017.

5:17

CP 2022

https://www.todayonline.com/singapore/busy-shipping-lanes-narrow-passageway-hard-vessels-navigate
https://www.todayonline.com/singapore/busy-shipping-lanes-narrow-passageway-hard-vessels-navigate
https://www.mpa.gov.sg/web/portal/home/port-of-singapore/operations/vessel-traffic-information-system-vtis
https://www.mpa.gov.sg/web/portal/home/port-of-singapore/operations/vessel-traffic-information-system-vtis
https://www.mpa.gov.sg/web/portal/home/media-centre/news-releases/mpa-news-releases/detail/091cd124-ca60-4f34-bdb6-a0967f82defd
https://www.mpa.gov.sg/web/portal/home/media-centre/news-releases/mpa-news-releases/detail/091cd124-ca60-4f34-bdb6-a0967f82defd
https://www.imo.org/en/MediaCentre/HotTopics/Pages/Autonomous-shipping.aspx
https://www.imo.org/en/MediaCentre/HotTopics/Pages/Autonomous-shipping.aspx
https://www.rolls-royce.com/~/media/Files/R/Rolls-Royce/documents/customers/marine/ship-intel/aawa-whitepaper-210616.pdf
https://www.rolls-royce.com/~/media/Files/R/Rolls-Royce/documents/customers/marine/ship-intel/aawa-whitepaper-210616.pdf
https://www.rolls-royce.com/~/media/Files/R/Rolls-Royce/documents/customers/marine/ship-intel/aawa-whitepaper-210616.pdf
https://www.bloomberg.com/news/articles/2021-11-02/ships-queues-worsen-port-delays-from-singapore-to-piraeus
https://www.bloomberg.com/news/articles/2021-11-02/ships-queues-worsen-port-delays-from-singapore-to-piraeus

Acquiring Maps of Interrelated Conjectures
on Sharp Bounds

Nicolas Beldiceanu

IMT Atlantique, LS2N (TASC), Nantes, France

Jovial Cheukam-Ngouonou
IMT Atlantique, LS2N (TASC), Nantes, France, and Université Laval, Québec, Canada

Rémi Douence
IMT Atlantique, LS2N, Inria, (Gallinette), Nantes, France

Ramiz Gindullin
IMT Atlantique, LS2N (TASC), Nantes, France

Claude-Guy Quimper

Université Laval, Québec, Canada

—— Abstract

To automate the discovery of conjectures on combinatorial objects, we introduce the concept of a

map of sharp bounds on characteristics of combinatorial objects, that provides a set of interrelated
sharp bounds for these combinatorial objects. We then describe a Bound Seeker, a CP-based system,
that gradually acquires maps of conjectures. The system was tested for searching conjectures on
bounds on characteristics of digraphs: it constructs sixteen maps involving 431 conjectures on sharp
lower and upper-bounds on eight digraph characteristics.

2012 ACM Subject Classification Computing methodologies — Heuristic function construction;
Mathematics of computing — Combinatorial optimization

Keywords and phrases Acquisition of conjectures, digraphs, bounds
Digital Object Identifier 10.4230/LIPIcs.CP.2022.6

Supplementary Material Software (Source Code): https://github.com/cquimper/MapSeekerCP2022
archived at swh:1:dir:e25840f81f3be49d17b827efeab9a5a285595703

Funding Nicolas Beldiceanu: partially founded by the EU-funded ASSISTANT project no. 101000165.
Jovial Cheukam-Ngouonou: founded by the ANR AIQIMT project and by Laval University.
Ramiz Gindullin: founded by the EU-funded ASSISTANT project.

Acknowledgements Thanks to Hervé Grall for his participation in the definition of the map concept,

and to Samir Loudni and Helmut Simonis for their comments on a preliminary version of this paper.

1 Introduction

Research on conjectures making systems in the context of discrete mathematics is a topic that
goes back to the late 1950s and the 1980s [8, 14, 32] and got renewed interest [20, 21, 29, 31].
Within CP, some initial research on the generation of implied constraints was done by Charley
et al. [11] and the most recent work focuses on model and constraint acquisition [4, 7, 10, 19,
27, 28] rather than on conjecture making. Within OR, Hansen’s AutoGraphiX system [1, 17]
focuses on finding unrelated bounds using Variable Neighbourhood Search.

Four reasons motivate our work: (i) to highlight that CP can contribute to the automatic
discovery of conjectures, (ii) to systematically search sharp bounds on characteristics of
objects that show up in combinatorial problems, (iii) to stress the need to develop conjecture
discovery programs that build up a body of strongly interrelated knowledge rather than
unrelated conjectures as it has been the case so far, (iv) by the fact that bounds are an essential
feature of branch-and-bound methods in optimisation but also a weakness of CP [16, 22]:
the development of sharp bounds that consider several interrelated characteristics is still a

© Nicolas Beldiceanu, Jovial Cheukam-Ngouonou, Rémi Douence, Ramiz Gindullin, and Claude-Guy

Quimper;

licensed under Creative Commons License CC-BY 4.0
28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 6; pp. 6:1-6:18

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CP.2022.6
https://github.com/cquimper/MapSeekerCP2022
https://archive.softwareheritage.org/swh:1:dir:e25840f81f3be49d17b827efeab9a5a285595703;origin=https://github.com/cquimper/MapSeekerCP2022;visit=swh:1:snp:25b3d7d4706f54dfa30a8f33e12b3dd734cab564;anchor=swh:1:rev:27a7d2df3230e3f2f59f84a314383982c283a900
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2

Acquiring Maps of Interrelated Conjectures on Sharp Bounds

manual process [3, 6]. Our approach is unique among all works for conjectures generation, as
the result is not a set, but rather a graph of conjectures, linked by projection (i.e. variable
elimination) operators. Our contributions are:

We introduce the concept of map of sharp bounds as a set of interrelated conjectures

providing sharp lower and upper-bounds wrt the characteristic of a combinatorial object.

For each conjecture on a sharp bound, the map gives some extremal characteristics i.e.,

the characteristic values common to all combinatorial objects achieving the bound.

By introducing secondary characteristics and by permitting the use of common sub-expres-

sions in a polynomial, as well as simple Boolean and conditional formulae, we tend to

produce explainable conjectures. This also reveals unified conjectures across different
subsets of characteristics.

We demonstrate the usefulness of CP for acquiring such maps: using digraphs as com-

binatorial objects, the system produces 431 conjectures distributed in 16 maps obtained

from 8 characteristics combined with lower and upper bounds. It retrieves a set of known
results, enhances some known bounds, and comes up with new conjectures, some of which
we proved to be true.
The significance of maps is twofold. Beyond sharp bounds, a map brings together the relations
between several sharp bounds and the structure of combinatorial objects reaching each bound
under the same edifice. A map can be used to test the mutual consistency of independently
acquired bounds by verifying that one bound can be derived from another bound.

In Sect. 2, we introduce the concept of a map that presents a set of conjectures for sharp
bounds and their logical relations. In Sect. 3.1, we provide the workflow of our acquisition
system. We introduce, in Sect. 3.2, a parameterised CP conjecture generator. We evaluate
the produced conjectures in Sect. 4, discuss related work in Sect. 5, and conclude in Sect. 6.

2 Conjectures map as a symbolic piece of knowledge

After providing an informal overview of maps of conjectures, and a first example of a
map, we motivate, define and illustrate the map concept. Then we show how the use of
secondary characteristics permits both acquiring formulae sharing common sub-expressions,
and sometimes come up with the same bound for different subsets of input characteristics.

Informal overview of maps. Consider digraphs as an example of combinatorial objects. It
is well known that any digraph G satisfies the following invariant: the number of arcs a of G
is less than or equal to the square of the number of vertices v2 of G, and the maximum value
v? is only reached when the number of vertices of the smallest connected component of G is
equal to v, i.e. G consists of a single connected component of v vertices.

We are interested in systematically generating such candidate invariants, a.k.a. conjectures,
for a richer set of characteristics, e.g. the number of connected components ¢ of G, the
number ¢ of vertices of the smallest connected component of G.

Our conjectures have one of the following forms: (7) sharp bounds of a digraph character-
istic wrt other digraph characteristics, e.g. a < v?, or () implication showing that, when a
sharp bound is reached, some characteristics are fixed or functionally determined by some
other characteristics, e.g. a =v? = c=1,and a = v? = ¢ = v.

Finally, we are interested in connecting sharp bounds, revealing that the right-hand side
of an implication of type (i) can be used to eliminate a characteristic of a sharp bound and
retrieve a sharp bound with one less characteristic. For instance, replacing ¢ by v in the
sharp bound a < ¢ + (v — ¢)?, we retrieve the sharp bound a < v2. We call these different
conjectures and the links connecting sharp bounds “map”.

N. Beldiceanu et al.

A first example of map. As an example of combinatorial objects, we use in this paper
digraphs with these characteristics: the number v of vertices, the number a of arcs, the
number ¢ (resp. s) of connected components (resp. strongly connected components), the
number ¢ (resp. €) of vertices of the smallest (resp. largest) connected component, the number
s (resp. 5) of vertices of the smallest (resp. largest) strongly connected component. To
compare the bounds obtained by the Bound Seeker with the database of invariants of the
global constraint catalogue, see Sect.4.3 of [2], we assume that each vertex of a digraph has
at least one incoming or outgoing arc.

» Example 1. Fig. 1 illustrates the map concept with a map containing three conjectures
labelled as @, A, and ®:

Two conjectures about the sharp bounds @ a < (v — (¢ — 1))2 + (¢ — 1), and ® a < v?

on the maximum number of arcs a in a digraph G wrt the number of vertices v, and the

number of connected components ¢ of G.

The conjecture ® of node (B) indicates that the bound v? is reached only when ¢ = 1.
The arrow going from node (A) to node (B) is labelled by ® as the bound v? is obtained by
replacing ¢ by 1 in the bound (v — (¢ — 1))? + (¢ — 1). The leftmost and rightmost parts of
Fig. 1 show, in brown, two digraphs achieving these bounds.

Node (A) {v.c}? Node (B) (v}
Oa<(w—(c—1))2+(c—1 i @a<? §
ad, OestoEowiresy ez gy
{ o ¢=2 @ ‘\\07y c [

ﬂ a=>5 ﬂ a=9

Figure 1 Map of two sharp bounds on the maximum number of arcs of a digraph.

In this paper, all maps of conjectures are presented in the same way as the map in Fig. 1:
(7) the upper left corner of a node gives a node label in black, (i) the upper right corner
provides the parameters used in the sharp bound of this node in red, (i) a dark label of the
form @ refers to the sharp bound itself, (iv) a light label of the form @ designates an equation
which must hold to reach the sharp bound given in (7), (v) a brown illustration shows a
witness to the sharpness of the bound. Finally, an arrow from a first node to a second node
indicates which equation(s) in the second node should be used to substitute some parameters
used in the first node’s bound to retrieve the bound given in the second node. For space
reasons, some large maps, e.g. Fig 4, may omit the elements (7) and (v).

Motivating and defining the concept of map. We introduce the concept of a map of
conjectures as a way to reveal the links between a set of conjectures related to sharp bounds
for a characteristic of a combinatorial object. Our goal is to describe conjectures on sharp
bounds of characteristics of a combinatorial object, e.g. a digraph, a tree, and to organise
these conjectures into a single structure, a map of sharp bounds, which (i) systematically
interconnects these conjectures, and which (ii) describes the structure of the combinatorial
objects for which the bounds are reached. In the map in Fig. 1, we consider for digraphs three

characteristics, a, v and ¢ for the number of arcs, of vertices, and of connected components.

» Definition 2. Given a finite set of input characteristics P and an output characteristic
0 ¢ P, a map of sharp upper bounds M%g is defined as a digraph where:
Each node of the map is associated with a subset P C P of input characteristics and
corresponds to a maximum conjecture of the form o< f(P). This inequality is tight, i.e.
there exist values that can be given to the parameters P in order to reach the equality.

6:3

CP 2022

6:4

Acquiring Maps of Interrelated Conjectures on Sharp Bounds

In addition, a node contains maximality conjectures, at most one per characteristic q
in the complement of P wrt P, represented by the symbolic equality ¢ = g,(P), where
gq s a function defined over realisable parameters values of P and called a maximum
characterisation, and expressing the following property: for any combination of parameters
P reaching the mazimum f(P), the characteristic q is equal to g,(P).

Each arc from conjecture o < f;(P;) to conjecture o < f;(P;) corresponds to a projection
from a subset P; of input characteristics to a subset P; of input characteristics, by
eliminating a characteristic ¢; ;, i.e. P; = P;\{qi;j}. The arc is labelled with an equality
G,j = 9q.;,;(Pj) where gq, . (Pj) is the value given to q;; to reach the equality in the
conjecture o < f;(P;). The equality q; j = gq, ,(P;) is called a maximality conjecture.

In a map, there is a single output characteristic that we bound using the other characterist-
ics called input characteristics. The output characteristic is the bounded characteristic, while
the input characteristics are the bounding characteristics. While the maximum conjecture
provides a bound on the output characteristic wrt the characteristics in P, the maximality
conjectures indicate the values taken by the characteristics not in P when the bound is
reached. Similarly to M%S, a map ./\/107,Z provides a collection of sharp lower bounds as a
set of minimum conjectures of the form o > f;(P;), and a set of minimality conjectures.

® Node (A) = 7,,[‘;2:K§7§3: 2,a=17 {v,c, L} ®

Ou<(c—1)-&+ (v—(c—1)-¢)? ;

 Node (B) {v.c}} | Node (C) {v,c}
Lo ®a<(c—1)+(w—(c—1))2 :

®c=@w=¢?1:2 _ 1o ®c=(c=1)?v:1 _ K5
{ Node (D) {7’}
{ g < ? :

@ @c=v ®c=1v=", 1
H a=49:

Figure 2 Map M‘Efc’c} with the sharp upper-bounds @, @&, &, @ for the number of arcs in a

digraph; each node presents an example in brown: given a value for the characteristics attached to
the node, a graph reaching the maximum is described, as a union of cliques K;, with i vertices, e.g.
in node (B), given the assignments v = 7 and ¢ = 2, the digraph with 2 cliques K3, K5 reaches the
maximum 29 for the number a of arcs; cond ? x : y denotes z if condition cond holds, y otherwise.

» Example 3 (Extending Ex. 1 to a map of four nodes). Fig. 2 presents Map M?USC ¢y» Where

we consider the following characteristics of digraphs: as input characteristics, the number v of
vertices, the number ¢ of connected components, and the number ¢ of vertices of the smallest
connected component; as output characteristic, the number a of arcs. In Map M?EC)C},
there are four nodes, corresponding to the subsets {v, ¢, c}, {v,c}, {v, ¢} and {v}, shown in
red, whereas the power set of {v, ¢, c} contains eight subsets. For the four other subsets,
namely {c, c}, {c}, {c} and @, no conjecture can be found, as the number of arcs is not upper
bounded wrt these characteristics. In the nodes (A), (B), (C) and (D), the items labelled
with @, @ ® and @ indicate a maximum conjecture wrt the number a of arcs, while the
elements marked with ®, ®, ® and ® show maximality conjectures wrt ¢ and ¢. For instance,
in Node (B), the maximum conjecture @ a < c® + (v — ¢)? really means: among all digraphs
with v nodes and whose smallest component contains ¢ nodes, the digraph with most arcs
has exactly ¢? + (v — ¢)? arcs. Each arc is labelled with a maximality conjecture giving the

N. Beldiceanu et al.

value of the characteristic that is eliminated. For instance, from Node (A) to Node (B), the
characteristic ¢ that is eliminated from @ satisfies this maximality conjecture ®: when the
maximum of number of arcs is reached, the value of ¢ is 1 if v = ¢, 2 otherwise.

Capturing more bounds with secondary characteristics. As the number of input charac-
teristics grows, the bound formulae can get rather complicated. Consequently, we introduce
a set A of auxiliary characteristics to obtain simpler formulae. Examples of such auxiliary
characteristics are, for instance, (7) c>1, (i) s>1, and (iii) ceg2 33 Which correspond to (4) the
number of connected components with more than one vertex, (i) to the number of strongly
connected components with more than one vertex, and (i) to the number of connected
components with two or three vertices and for which all strongly connected components have
only one vertex. Also initially introduced when searching for lower bounds on the number of
arcs, such characteristics have proved useful for many other bounds. We introduce the notion
of secondary characteristics of the node of a map, which will be illustrated in Ex. 5 and 6.

» Definition 4. Given a node of a map that is associated to a subset P C P of input
characteristics, to an output characteristics o, to a mazimum conjecture of the form o< f(P),
and a set of auziliary characteristics A, the set of secondary characteristics of the node is
defined as the characteristics of the set A U (P — P —{o}) which are functionally determined
by the set P when o = f(P).

To test that a secondary characteristic is functionally determined by P, we check for each
generated combination of values for P that the value of the secondary characteristic is unique.
This test is performed while generating our dataset used for acquiring conjectures.

To find bounds that exploit these secondary characteristics, we use a multi-level approach:
(¢) first, we look for a formula for each secondary characteristic; () then we try to catch
a sharp bound also considering the secondary characteristics for which we could find a
formula. Both in (7) and (i7) a formula can either use input characteristics and secondary
characteristics for which we already found a formula. As a result, we obtain formulae that
are easier to interpret, as we can associate a straightforward meaning to the sub-terms that
appear in a bound. Ex. 5 illustrates this point.

» Example 5 (Bound expressed wrt several secondary characteristics). This example shows the
only lower bound found by the Bound Seeker on the number of arcs a of a digraph G wrt the
size ¢ of its largest connected component and the size s of its smallest strongly connected
component. We have P = {v,qa,¢,¢,¢,s,s,5}, the bound parameters P = {¢, s}, the output
characteristic o = a, and the auxiliary characteristics A = {¢>1, s51}. All potential secondary
characteristics A U (P — P —{o}) = {v,¢,¢, 8,5, ¢>1, 851} are functionally determined by ¢
and s. The lower bound found by the Bound Seeker is a > ss1 — ¢51 + v with:

e s51 =min(—s+c¢+1,2- (s > 2)),

ecs1=(6=¢?0:¢), where ¢=14 (((¢—2-5) <0)A((€ mod s) > 1)),

ev =(c—¢=0%c:¢c+0¢), where ¢=((2-s—¢) <07¢: s),
where a Boolean expression such as (s > 2) is used as an integer, i.e. either 0 for false or 1
for true. While the main formula s<; — ¢~1 + v is simple, it uses a secondary characteristic
s>1 which is expressed directly wrt ¢ and s, and two other secondary characteristics ¢~ and
v which mention the two extra secondary characteristics ¢ and ¢ for which two formulae
involving only ¢ and s could be found. The occurrence of Boolean expressions reflects slight
variations in the structure of witness digraphs, i.e. digraphs reaching a sharp bound, as shown
in Table 1.

6:5

CP 2022

6:6

Acquiring Maps of Interrelated Conjectures on Sharp Bounds

Table 1 Digraphs minimising the number of arcs for four values of the bound parameters ¢ and s.

c s a vV Cc C C>1 S$>1 witness digraph $>1—C>1+v
6 1 5 6 1 6 1 0 oo —re—ese—se 0-1+6
6 3 7 6 1 6 1 2 S Satns ans SEasus] 2-1+6
6 4 10 10 2 4 2 2 (Xrteeey gemes 2-2410
6 6 6 6 1 6 1 1 e e ey 1-1+6

Within a same map, expressing bounds in terms of secondary characteristics may reveal a
same bound formula for several subsets of input characteristics. We observed this phenomenon
in the majority of the acquired maps. Ex. 6 illustrates this for the acquired map giving the
upper bound on the number of vertices of the largest connected component of a digraph.

» Example 6 (Map example illustrating how bounds can be unified by using secondary char-
acteristics). In the appendix, Fig. 4 depicts the maximum and maximality conjectures of
the map M?)S,c,c,sysi} found by the Bound Seeker for the upper-bound on the size of the
largest connected component ¢ with the related links. Note that v needs to be an input
characteristic, as otherwise the upper-bound of ¢ is unbounded. Part (A) shows the 16
bounds found when using only the input characteristics: these bounds are defined by 5
maximum conjectures @,...,0 and 4 maximality conjectures ®,...,@. Each link illustrates
how a maximum conjecture is projected onto an other maximum conjecture via a maximality
conjecture: e.g., the link @ 2, @ shows how the bound @ ¢ < s—c-s+wv is rewritten as
0 ¢ < v as we have @ ¢ = 1. Part (B) shows the bounds found when also using the secondary
characteristics r and ¢, where r is a secondary characteristic corresponding to v — c-c. We
only have 2 maximum conjectures @ ¢ < v and @ ¢ < r+ ¢, where r and ¢ are defined by the
5 maximality conjectures ®,...,@ shown on Part (B). The natural upper-bound of ¢ is the
number of vertices of the digraph (see @), unless ¢ or ¢ are part of the input characteristics
(see @), which requires to consider the feasibility conditions induced by the use of such
inputs.

Missing arcs are due to the lack of functional dependencies. For instance, in Part (A), we
have no arc from {v,s} to {v}, as the number of strongly connected components s is not
functionally determined by the number of vertices v when the sharp bound @ is reached, i.e.
when ¢ = v: e.g., for ¢ = v = 2 we both have s = 2 and s = 1 as shown by e—e and 7.

3 A Bound Seeker

3.1 Overview of the map acquisition system

Parts (A) and (B) of Fig. 3 gives the different phases for generating a map: software compo-
nents are shown in cyan and labelled with capital letters, while data is displayed in orange.
We now detail the phases (Al), (A2), (A3), (B1), (B2), and (B3). To illustrate each phase,
we use the bound table 7?;7%}’3 provided in Part (C1) of Fig. 3.

(A1) Generating data. To learn valid conjectures for any digraph of at most k vertices, we
produce all parameter combinations of interest for digraphs up to a maximum number n of
vertices. An exhaustive generation of such data is not a problem, as a program is used for
this purpose. However, the issue is to select the appropriate value of k, neither too small
to create invalid conjectures for digraphs with more than k vertices, nor too large to limit

N. Beldiceanu et al.

. . (C1) bound
(A1) Data Generation (domain dependent) \él% — Metadata Bound Tables — table
Q,
¥ = X T
. . y,c},3
vi_| Bound Tables (725, PCP, ic[2,n]): 9 (B1) Candidate Generation . {; C}a =
o & ~ =)
E: each column is an input, a bound, _fg - ‘L z ; } i ;
a, | or a secondary characteristic for o Candidate Formulae: > Qo9 o 9 1
. f o —_—
g :jilgr‘aphts Whosz nun.lber 19f Ytertlces % select formula type, used func- 2 &3 1 9 3
- i — a\llgwen Ll :: tions, and used functional de- 2‘ g 3 2 5 2
o pendency to generate a max- IS X3 3 3 1
:é: (A2) Metadata Generation ~ imum conjecture of the form ; 0
P g o< f(P) and maximality con- <
g > = jectures for the bound table "g
= Metadata (D35, PCP, i€[2,n]): T | oz &
A= o Pk "
E columns information, row con- g' 1 5 E
- . B 3] . =
8" sFralnts, functional dependen & \ (B2) CP Model Generation / e 3 G
& cies for each bound table. @ 2 M1 K,
+
s ¥ ‘ 2 B 5 o~ 2K,
5 (A3) Meta Metadata Generation 2 Candidate Conjectures § O 3K,k
9 4 K
+ D A 3 3
= , 5 Ky, K
< | Selected Tables (725, PCP): g (B3) Test Conjectures / 6 K? Ki e
= : 2oL L
selected size for each subset of E_')\ 1 - (C2) corres-
bound tables from which ac- m Selected Conjectures ponding
quire conjectures. ~ digraphs

Figure 3 Workflow in the Bound Seeker: (A) data and (B) conjecture acquisition phases;
Phase (A1) with a red background depends on the combinatorial objects we consider (digraphs in our
case), while Phases (A2), (A3), ..., (B3) are domain independent; (C1) example of an upper-bound
table for digraphs of at most 3 vertices with the input characteristic v, c, the output characteristics a,
and the secondary characteristic ¢ corresponding to the number of vertices of the largest connected
component; (C2) digraphs corresponding to each entry of the bound table shown in (C1).

the number of generated constraints to acquire the conjectures in Phase (B2). To this end,
Phase (A1) produces a table 7 with the characteristics values for digraphs of at most n
vertices in such a way that the size of the table 7 does not exceed a given memory limit.
With this table T, Phase (Al) extracts for each ¢ between 2 and n, for each subset of input
characteristics P of P, and each output characteristic o, a bound table Tgf based only on
the entries of T corresponding to digraphs with at most ¢ vertices. Each row of a bound
table represents a feasible combination of values for P, with the corresponding bound value
for o, and the values of the secondary characteristics.

Unlike all the next steps, Phase (A1) depends on the type of combinatorial objects for
which we generate conjectures. For digraphs, our data generation phase uses a CP model
to produce a set of bound tables that is used by the acquisition process. As illustrated in
Part (C1) of Fig. 3, the bound table ’T{‘Zi}’S provides a sharp upper bound of the output
characteristic a wrt the input characteristics v and ¢. A bound table may also mention
secondary characteristics, e.g. ¢ in 7?2’%})3, which are functionally determined by the input

. < P _
characteristics. Each column of the table 7?;7:} 5 refers to a characteristic, i.e. v, ¢, a, €,
while each row corresponds to a combination of parameter values for v, ¢ with the associated
maximum number of arcs a and the value of the secondary characteristic ¢.

(A2) Generating metadata. For each bound table Tﬁf (with P C P and ¢ € [2,n]),
with nrows rows, where Tﬁ? [r, 7] denotes the value of the r-th row and the j-th column,

Phase (A2) calculates the aggregated information D;% (with P C P and i € [2,n]) used to
select the size k employed when searching for the conjectures of the subset P and the output
characteristics o, such as:

6:7

CP 2022

6:8

Acquiring Maps of Interrelated Conjectures on Sharp Bounds

Table 2 Examples of candidates formulae and corresponding generated formulae for the bound

table 7%, 5 in Part (C1) of Fig 3.

Candidate formulae generated by Phase (B1) Formulae found by Phase (B2)

polynomial of degree 1 parameterised by v and ¢ to determinec c¢c=v —c+1

polynomial of degree 1 parameterised by v and ¢ to determine & none

polynomial of degree 2 parameterised by v and ¢ to determinea a=c®>—2-v-c+v —c+2-v
polynomial of degree 1 parameterised by v and ¢ to determine & none

polynomial of degree 2 parameterised by v and ¢ to determine a @ =¢ —¢+v

The minimum/maximum values of each column and the number of distinct values.

The minimal functional dependencies [24] that determine in the table Tﬁf the output
characteristic and the secondary characteristics. Each functional dependency gives a
subset of characteristics that functionally determine another characteristic. For instance,
in the bound table T{‘ii}’g, columns a and ¢ are functionally determined by columns v
and c. But column a is also functionally determined by columns v and €.
Binary constraints between two distinct columns ¢ and j of the table T;,,f, i.e. constraints
of the form Vr € [1, nrows, Tlgf[r, il op Tgf[r, J] (with op € {<,<,>,>}). In T{‘ZSC}& we
have for each row that the number of vertices is greater than or equal to the number of
connected components, i.e. v > ¢, and similarly v > ¢, a > v,a >c¢, a >¢.
Such knowledge is used to focus the search for conjectures: first by selecting promising
subsets of input parameters for a formula, and second by providing information that avoids
producing meaningless formulae. For instance, we do not generate a formula with a term
min(v, ¢) as v > ¢ is true. The generated metadata is also the input of the next phase.

(A3) Generating meta metadata to find the relevant size of the training dataset. Based
on the information computed by Phase (A2), Phase (A3) determines for the subset P and
the output characteristic o, the size k used when searching for conjectures. To select the size
k in the datasets 7}?? (with ¢ € [2,n]) from which we acquire the conjectures, we operate
as follows. As a functional dependency or a binary constraint of a table 7?;? may become
invalid for a table 7'}2]S with j > ¢, we identify the smallest size k from which the set of
minimal functional dependencies and the set of binary constraints of the tables ’7};’;, e ,TI(;,E
remain identical. In practice, for space reason, we generated digraphs with up to n = 26
vertices. To avoid overfitting when the number of rows of table T;f is too small, we select
the smallest size corresponding to the table with at least 200 rows: on average, conjectures
were produced using digraphs with up to 18 vertices.

(B1) Generating candidate formulae. This phase generates for a bound table Tﬁf, partially
instantiated candidate formulae to acquire the corresponding maximal and maximality
conjectures. Given the parameters P, the output characteristic o, the set of secondary
characteristics of the selected bound table T;ﬁ,f, Phase (B1) produces on request the next
candidate formula to find a conjecture. The set of potential characteristics that the formula
may mention, and the formula itself, are restricted by the functional dependencies and the
binary constraints that were identified by the metadata generation phase. Table 2 shows
some candidates formulae that are successively produced for table 7?2%}3

N. Beldiceanu et al.

(B2) Generating a CP model linking a parameterised formula with the data. This
phase uses a candidate formula generated by Phase (B1) to post an equational constraint
for each entry in a bound table TISE to obtain a formula where all input parameters and
coefficients are fixed and thus produce a conjecture. Phase (B2) queries Phase (B1) for
the next candidate parameterised formula, tries to instantiate it, and asks again for a next
candidate formula. To find a value for each coefficient of a candidate formula, we use a
constraint model to link a candidate formula to (¢) the functional dependencies and binary
constraints identified by the metadata generation phase, and (i) all the bound table entries
of the selected size. Many constraints break different symmetry types and force all sub-terms
of a formula to be meaningful. The second column of Table 2 shows for each candidate
formula the corresponding concrete formula found by the CP model.

(B3) Testing the candidate conjectures. This last phase tests the validity of the conjectures
against the largest bound table T,SS

7n’

i.e. against the largest available generated dataset.

3.2 A constraint approach for acquiring symbolic equations

The search for sharp bounds leads to the identification of equations in which the left-hand
side is an output or a secondary characteristic, and the right-hand side is a formula involving
input and secondary characteristics. As already noted in the introduction of [9] and in
the conclusion of [18], the space of candidate formulae constitutes a major challenge for
equation discovery methods. Rather than applying a bottom-up approach that generates
formulae of increasing complexity, we adopt the following strategy. As we aim at finding
simple formulae, we use three complementary classes of formulae that turned out to appear
concomitantly in a map: (1) Boolean formulae involving & arithmetic conditions linked by
a single commutative logical operator or by a sum, (2) simple conditional formulae, and
(3) formulae over polynomials that can share common sub-expressions. A first attempt to
use only polynomials without common sub-expressions missed some formulae, e.g. see Ex. 5,
and quite often provided too complicated formulae, as illustrated in Ex. 8. Based on the
metadata introduced in Sect. 3.1, we will present a CP approach for restricting the space of
formulae: for space reasons, we focus on polynomials sharing common sub-expressions.

3.2.1 A parameterised candidate formulae generator for Phase (B1)

Formula syntax. All conjectures we generate have the form characteristic op formula, where
op is one of the comparison operators <, =, >, and formula is a formula involving a set
of characteristics. Consequently, formulae are described by the following set of simplified
grammar rules, where “SMALL CAPITALS” indicates a non-terminal symbol, “Roman” denotes
a function or a known constant, “Italic” highlights a (digraph) characteristics, “Bold” denotes
an unknown integer constant. Within these rules, polynomial(PARAMS, degree) denotes a
polynomial whose maximum degree is fixed (with degree > 0) on a non-empty subset
of parameters of its potential parameters PARAMS, and the functions geq0(z), geq(x,y),
sum__consec(z), cmod(zx,y), dmod(z,y) resp. stand for 1 if z > 0 otherwise 0, 1 if x > y

otherwise 0, w, x — (y mod), x — (x mod y).
FORMULA = cst | BOOL | cst + BooL | COND | PoL | POLBINARY | POLUNARY
BooL = BooLOpP(BooLCONDS) BooLOP ::= AV | = |+
BooLCONDS ::= BooLCOND, BOOLCONDS | BOOLCOND
BOOLCOND ::=PARAM CMP cst CMP u=<|=|>|#
CoND ::= (BOOLCOND ? PARAMCST : PARAMCST) PARAMCST ::= PARAM|cst

6:9

CP 2022

6:10

Acquiring Maps of Interrelated Conjectures on Sharp Bounds

PoL ::= polynomial(PARAMS, degree)

PoOLBINARY ::= BrF(PorL,PoL) BF ::= min|max |floor | mod | cmod | dmod | prod
PoLUNARY ::= Url(PoL) | Ur2(PoL, cst)

UFrl1 = geq0|sum_consec UF2 ::= min | max | floor | mod | power

PARAMS = PARAM" PARAM ::= CHAR|BTERM|UTERM CHAR ::= v|c|c|¢|s|s|s
BTERM ::= BT(CHAR, CHAR)

UTERM = sum_ consec(CHAR) | UT(CHAR, cst) | CHAR € [cst, cst]

BT ::= min | max | floor | ceil | mod | cmod | dmod | prod

Ut ::= min | max | floor | ceil | mod | geq | power

» Example 7 (Examples of generated Boolean, conditional, polynomial formulae).
(s=1)A(ce€[2,3]) and (v=c) = (c = 1), where the 2nd formula denotes a condition
that is satisfied only if both conditions (v = ¢) and (¢ = 1) are true, or both false.
(s=17[3]:v)and (¢ —¢c) =07 c:c+¢c), where (cond?x : y) denotes x if the
condition cond holds, y otherwise.

(v mod €)%2—¢- (v mod €)+v-¢ where v mod € is a shared binary term BTERM, L%J
where (5 > 2) is a unary term UTERM of the form geq(s, 2).

» Example 8 (Finding simpler bounds using Boolean and conditional formulae). We illustrate
with an example generated by the system on the lower bound of the number of arcs a wrt the
size of the smallest and largest connected components ¢ and ¢, and the size 5 of the largest
strongly connected component, how using Boolean and conditional formulae often leads to
simpler conjectures. Without using Boolean and conditionals, we get a > s~1 — ¢>1 + v with
s>1 = min(s—1,1), cs1 = min(min(c, 2), min(¢, 2) +¢—c—1), and v = min(c+c¢, c-¢—c?+7);
enabling Boolean and conditional formulae, we get the simpler bound: a > ss1 —c¢>1 + v
with 51 =(8>2),¢cs1=(c>2)+((c—¢)>1),andv=((c—¢c)=07¢c:¢c+7).

Candidate formulae generator. Since we want to try out a variety of formulae, we create
a parameterised candidate formulae generator, which, upon backtracking, proposes a new
candidate formula with non-fixed coefficients; these are variables for the constants and for the
input characteristics that will be used in a candidate formula. In this generator we specify:
The structure of the formula, that is whether we use (1) a Boolean formula, (2) a simple
conditional formula, or (3) a formula over polynomials; in this later case we also specify
how many unary and binary terms occur in each polynomial.
The arithmetic functions we may use in the terms.
The complexity of a polynomial, that is its potential maximum degree, its maximum
number of non-zero coefficients, the ranges of its coefficients.
The list of possible combinations of characteristics that the candidate formula can use in
its parameters. Such combinations correspond to functional dependencies identified by
the metadata generation phase, i.e. Phase (A2).
We use more than one generator to design a formula generation policy where the simplest
candidate formulae are tried first.

3.2.2 Constraint model for acquiring a conjecture for formulae over
polynomials for Phase (B2)

Given a candidate formula F, (corresponding either to POL, to POLBINARY, or to POLUNARY
as described in the set of grammar rules in Sect. 3.2.1), for which the set of used parameters
is partially determined, and for which the coefficients are not yet fixed, we create a constraint
model that relates these unknowns to all rows in a bound table. Our model includes four types
of constraints, namely (i) structural constraints on the input and secondary characteristics

N. Beldiceanu et al.

that will be used in F, (ii) symmetry-breaking constraints, (iii) constraints preventing the
generation of formulae in which a term could be simplified, and (iv) equational constraints
on each row of a bound table. We describe the model variables, the constraints on the
characteristics used in F, the constraints on the unary/binary terms and binary function
of F, and the equational constraints on the table entries. The number of variables and
constraints of the model is linear wrt the number of table entries as it is dominated by
the equational constraints. For reasons of space, concerning the constraints of the type (ii)
and (iii), we will only detail the constraints related to the min function.

Variables used in the model. Table 3 introduces the variables used to represent a non-
constant formula F involving at most n. characteristics (i.e. input and secondary charac-
teristics), n, unary terms, n;, binary terms, and n, polynomials, wrt a bound table 7 of
nrows rows. We use n as a shortcut for n. + n, + np. For the binary term B;, the variables
B_IND1;, B_IND2;, B_O; designate a term with the arguments (Cp nps,,CB IND2,)
when B_0; =0, and (Cp_inp2,,Cp_inp1,) otherwise. When the binary term is commut-
ative, e.g. min, the order of the arguments is irrelevant and B__ O; will be set to 0 (see
constraint (4.c) in Table 4), but otherwise, e.g. mod, the order matters.

Table 3 Variables of the model, where n., is an abbreviation of the term n. + n.,.

Objects Variables Comments
h teristi i

(Cj Zr?lc Z“]S) Coeqon C; = 1iff C; used by formula F
Unary term U; Ui,; € {0,1} .

’ U;, =1ifC; d b f

(i € [1,ma]) (G € [1ne]) o7 LG wed it

U_IND; € [1,n.] index of the used characteristics

U_MIN, minimum value of the used characteristics

U_MAX; maximum value of the used characteristics

U_CST, constant used in U;

value of term U; wrt r-th row and the

(r € [1, nrows]) U_VAL,, j-th column (with U, ; = 1) of table T
Binary term B; B;,; € {0,1} .

’ B; ; =1iff Cj used by B;

(i € [1, 7)) (G € [1,n]) 0T R ey

B_IND1; € [1,n.] index of first used characteristic

B_IND2; € [1,n.] index of second used characteristic

B_0,;€{0,1} order of used characteristics in arguments

value of term B; wrt r-th row, the B__IND1 ;-th,

(r & [1, nrows]) B_VAL;, and the B__IND2;-th columns of table T

: Pi; €{0,1} Pij=1,7€[l,n] =Cj used by P;

Pfog/nomla:il.'P, with j € [1,n] and Pj=1j€[nc+1,ncu]=Uj—n, usedbyP;

ob degree d; N = Ne + Ny + np Pij=1,7€ncu+1,n = Bj_n,—n,used by P;

(i € [1,n,]) M; i, M; i is the k-th coefficient of P;, the

P (k; c [17 ("Idl)}) coefficient with the largest k is the constant

(r € [1,nrows]) P_VAL,, value of polynomial P; wrt r-th row of table T~

Constraints on the structure of the formula. The upper part of Table 4 lists the constraints,
(i) specifying which characteristics the formula F uses, i.e. see (1a), (ii) forcing a unary
term, a binary term, and a polynomial to use the appropriate number of characteristics,
i.e. see (2a), (3a) and (4a), (iii) connecting the characteristics used by the unary and binary
terms with the characteristics used in the polynomials and the formula, i.e. see (5a), (6a),
(iv) restricting non-zero coefficients of polynomials, i.e. see (7a), (8a).

6:11

CP 2022

6:12

Acquiring Maps of Interrelated Conjectures on Sharp Bounds

Table 4 (Top) Constraints on the structure of a formula F; FD__TABLE is the list of characteristics
combinations that may be used by F, created by the candidate formulae generator, while mazz is
the maximum number of non-zero coefficients of a polynomial. (Mid) Constraints on a unary term
U; (with @ € [1,ny]), where uy, is the function assigned to U;, min; (with j € [1,n.]), is the smallest
value of the j-th characteristic. (Bottom) Constraints on a binary term B; (with ¢ € [1,ns]), where
by, is the function assigned to B;, and TABLE UNORDERED is the set of pairs of characteristics
indices such that the 1st characteristic is not always smaller, or greater, than 2nd characteristic;
char. is an abbreviation for characteristic.

Constraints Comments
(1a) TABLE((C1,...,C¢), FD__TABLE) restrict the char. used in F
(2a) Vi € [1,n4] : Ziz? Ui =1 U; uses 1 char.
(3a) Vi € [1,mp] : ijll‘ Bi; =2 B; uses 2 char.

P; uses at least one char., or
at least one unary or binary term

(4a) Vi € [l,np] : Zje[l,n] P >1
Vi € [1,TLC] : Cj = Vie[l,nu] Ui ;V
\/ie[l,nb] Bij v vie[l,np] Pij
(6a) Vj € [nc +1,n]: Zie[l,np] P;>0
: R<("5)
(7a) Vi € [Ling] : (D4, O

. k(0
(8a) Vi € [L,np]: Oy " [Mik #0]) < mazz

link Ul"j, Bq,"j, and PZ‘,]' to Cj

5a

force each unary/binary term to
be used by at least 1 polynomial
M;, #0]) >0 polynomials are not constant

each polynomial has a maximum
number of non-zeros coefficients

(1b) ELEMENT(U__IND;, (Ui 1,...,Uin.), 1) get index of used char.
(2b) ELEMENT(U__IND;, (mina, ..., min,), U_MIN,) get min. value of used char.
(3b) ELEMENT(U__IND;, (max1, ..., mazn,), U_MAX,;) get max. value of used char.

. U_CST; > U_MIN, cannot simplify unary term U;,
(4b) uy;, € {min} = { U_CST;, < U_MAX, as otherwise could remove U;
(1c) ELEMENT(B_IND1;,(B;1,-..,Bin.),1) get index of first used char.
(2¢) ELEMENT(B_IND2;,(B;1,...,Bin.),1) get index of second used char.
(3c) B_IND1; < B_INDZ2; indexes are ordered

fix order of the 2 arguments as
min is a commutative function

(B_IND1;,B_IND2,), assign two char.whose
TABLE _UNORDERED values are not ordered

(4c) by, € {min} =B 0;,=0

(5¢) by, € {min} = TABLE (

Constraints on unary/binary terms and on a binary function. Within Table 4, con-
straint (1b) (resp. (1c), (2c)), links the 0-1 variables U;; (resp. B; ;) to the index of
the characteristic involved in the term. To avoid generating unary terms of the form
min(Characteristic, Cst) which could just be rewritten as Characteristic or as Cst, con-
straint (4b) restricts the minimum and maximum values of the constant. When using the min
function in a binary term, constraint (4c) avoids generating equivalent binary terms whose ar-
guments are permuted. Constraint (5¢) prevents generating a binary term when the min could
be simplified, e.g. avoids generating min(c, ¢) as the metadata information found in Phase (A2)
indicates that ¢ is always smaller than or equal to ¢. Finally, when the candidate formula F
is a binary function corresponding to min, that uses the polynomials P; and P, of degree d,
we post the lexicographic ordering constraint (M 1, ..., Mly(n:d)> <pex (Maq,..., M27(n-;d,)>
between the monomial coefficients of P; and Ps. Note that, for space reason, besides con-
straints (4b), (4¢), and (5¢), we omit in Table 4 the symmetry and simplification constraints
related to functions that are different from min.

N. Beldiceanu et al.

Equational constraints. For each row r of the bound table 7 we post some constraints
linking the selected characteristics C; with (i) the value variable U_ VAL, , of each unary
term U;, (ii) the value variable B_ VAL, , of each binary term B;, and (iii) the value variable
P_VAL, , of each polynomial P;. For each row r we also post an equality constraint linking
the value of the candidate formula F on row r with the corresponding bound value on the
same row. Finally, for a binary function min between two polynomial P; and P2, we impose
that for at least one of the entries of the bound table the value of P; is strictly less than the
value of P, on the same entry, and that the converse applies for another entry of the table.
To avoid unnecessarily complex formulae, we minimise the sum of the absolute values of the
coefficients of a candidate formula F.

4 Evaluation of the Bound Seeker

We focus on constructing 16 maps on the lower and upper-bounds of the number of vertices,
the number of arcs, the number of connected (resp. strongly connected) components, and their
minimum and maximum sizes. The components of the system are written in SICStus Prolog
and consist of 10000 lines of code for the Data Generation, the Metadata Generation, the
Meta Metadata Generation, the Candidate Formulae Generation, the CP Model Generation,
and the Test phase. The Data Generation phase generates a total of 1944 bound tables
(occupying 2 Gb) for each maximum number of digraph vertices ranging from 2 to 26; each
bound table gives the lower or upper-bound of a characteristic wrt different subsets of input
characteristics. We evaluate the Bound Seeker from several standpoints:
The percentage of conjectures that, while acquired from the size selected by the Meta
Metadata, still hold for all entries of the largest generated bound tables, i.e. the tables of
digraphs containing up to 26 vertices.
The percentage of bounds from the database of invariants in [2] that was retrieved (resp.
not found).
Besides the conjectures retrieved from the global constraint catalogue database, we manu-
ally proved ten new conjectures. Using WolframAlpha, we also checked the consistency
of 105 projections of a sharp bound Bj onto a sharp bound By involving one less input
characteristic, by substituting in B; the input characteristic to be eliminated, by the
expression defined by the corresponding maximality conjecture.
As the complexity of a formula increases with the number of input characteristics, we limit
our evaluation to up to 3 input characteristics. All experiments to acquire the conjectures for
the 16 maps were done using the same system parameters, i.e. none of the components have
been tuned manually to behave differently depending on the considered map. Out of 350
(resp. 202) combinations of input characteristics for which the Bound Seeker tried to find a
sharp lower (resp. upper) bound, using only polynomials, it got at least one sharp bound
for 279 (resp. 149) combinations of characteristics, as well as 1236 (resp. 975) minimality
(resp. maximality) conjectures. Using also Boolean and conditional expressions it found 3
extra lower bounds and 93 new maximality /minimality conjectures. Table 5 provides the
results for the 16 maps using SICStus 4.6.0 on a 2015 iMac with a 4 GHz Core i7 and 32Gb
of memory: for each map, we give the number of formulae found using only polynomials
(see col. #P1), then using Boolean, conditional, and polynomial (see col. #B2, #C2 and
#P2). Using Boolean and conditional expressions generates 3.8% new formulae compared
to when using polynomials alone; moreover, 31.07% of the formulae that use polynomials
are replaced by simpler formulae that use Boolean or conditionals expressions. The time
spent is explained by a significant number of candidate formulae tested, as it comes from the

6:13

CP 2022

6:14

Acquiring Maps of Interrelated Conjectures on Sharp Bounds

Table 5 Number of minimum/maximum and minimality /maximality conjectures found for each
of the 16 maps and time in min. using only polynomials (see only Poly), and using Booleans,
conditionals and polynomials (see Bool/Cond/Poly).

Maps only Poly Bool/Cond/Poly Maps only Poly Bool/Cond/Poly
#P1 Time #B2 #C2 #P2 Time #P1 Time #B2 #C2 #P2 Time
MSZ 259 257 47 25 194 533 MSLS 100 218 9 17 77 439
M 129 230 0 13 120 476 M5 153 193 32 31 94 542
M 97 130 0 8 90 306 ML 102 392 15 31 60 999
MSZ 367 1248 38 102 255 3180 MG 384 2505 46 84 264 5939
MES 63 167 10 27 27 388 €S 130 223 16 14 102 457
MS® 43 54 0 18 25 226 M3S 48 171 1 8 40 365
M;Z 263 474 37 31 198 813 2593 100 5 17 73 267
Y2204 368 30 75 205 1570 VS 14 7 0 2 12 9

Table 6 Comparing the conjectures on the bounds found by the Bound Seeker (BS) with the
database of invariants of the global constraint catalogue (GCC).

Number of input characteristics 1 2 3 Total Percentage
Number of equivalent sharp bounds retrieved by BS 22 14 4 40 66,66%
Number of sharper bounds than the GCC found by BS 1 3 0 4 6,66%
Number of generalised sharp bounds found by BS 0 6 0 6 10%
Number of erroneous bounds found in the GCC by BS 1 1 1 3 5%
Number of bounds in the GCC not retrieved by BS 0 0 7 7 11,66%
Total bounds of the GCC per column 24 24 12 60

combination of minimal functional dependencies and grammar rules. Moreover, arithmetic
constraints like div and mod with multiple occurrences of the same variable are handled
poorly by CP solvers. The datasets used in the experiments and the sixteen maps found will
be available for download in a technical report.

Evaluation of the acquired conjectures wrt the largest data sets. Of the 3625 conjectures
acquired when only using polynomials, we found 5 invalid conjectures when tested against
all samples of the largest data set, i.e. all digraphs up to 26 vertices. Of the 3264 conjectures
acquired when also using Boolean and conditional expressions, we found 16 invalid conjectures.
Note that in this setting the Bound Seeker does not try to find polynomial formulae if it
already found a Boolean or a conditional formula.

Comparing the conjectures founds with proved bounds of the constraint catalogue. As
shown in Table 6, the Bound Seeker retrieves 66.66% of the bounds of the constraint catalogue,
even if the resulting formulae have sometimes a different form: e.g., the upper-bound on the
number of arcs a wrt the number of vertices v, connected components ¢, and strongly connected

components s in the catalogue is expressed as a < c—14+(v—s+1)-(v—c+1)+ L%J

while the Bound Seeker finds the equivalent inequality a < Lﬁﬁuvzw], with ¢ =
max(2-v—v-¢1),s=v—s+landr=v-[c>2]—c-[c > 2]; ris a secondary characteristic
corresponding to v —c¢-¢. Unlike the bound given by [2], the bound found by the Bound Seeker
defines the size ¢ of the smallest connected component, and the size 5 of the largest strongly

connected component of those extreme digraphs for which the upper-bound is reached.

)

N. Beldiceanu et al.

An example of a generalised bound found by the Bound Seeker is the lower bound
a>((v—72¢) <1?max(v—1,1) : v —2), with v = (¢ =¢7¢ : ¢+ ¢) which extends the
catalogue bound ¢ #¢ = a > ¢+ ¢—2+ (¢ = 1). An example of correct bound found

by the Bound Seeker replacing the erroneous bound (7) a > v — Lsglj of the catalogue is

(ii) a > v—ce(a,3) With ceqogy = (v==s7[%] : [252]): for the edge condition v = s = 2, (i)

returns 2, rather than 1 as (i) does. Bound (#) a > v — cc{2,3} can be interpreted as follows:

to minimise the number of arcs, one has to maximise the number of connected components
of the form e—e, e—e—e e—ei—e or e<—e—e . The missing bounds of the catalogue are partially
explained by the limited complexity of the common subexpressions (see BTERM, UTERM in
Sect. 3.2.1) of our polynomials, and by the lack of some secondary characteristics.

5 Related work

While there exist several discovery programs in the context of mathematics devoted to set
theory, number theory, finite algebra and knot theory [12, 23, 13], only a few systems focus
on finding bounds between characteristics of a combinatorial object. The two most notable
systems are S. Fajtlowicz’s Graffiti program [14] and P. Hansen’s AutoGraphiX system [1, 17].
The first difference is that the Bound Seeker attempts to systematically construct a set of
sharp bounds on all possible combinations of a set of input characteristics. The second main
difference is that the Bound Seeker introduces secondary characteristics and searches for key
properties of extreme combinatorial objects for which the bounds are reached.

In slightly different domains, recent work in CP uses machine learning techniques to
estimate the domain boundaries of an objective function [30] of an optimisation problem. Some
other work uses CP to extract equations from a spreadsheet [18, 25], and some recent work
investigates how to integrate integer programming solvers within neural networks [15, 26].

The specificity of our approach compared to machine learning and constraint acquisition [7]
is twofold: (¢) we can generate our input data, but we need to ensure that these data contain
the correct values of the sharp bounds we consider, as otherwise, we would necessarily obtain
wrong maximal conjectures; moreover, maximality conjectures only make sense for sharp
bounds; () we have to learn concise conjectures that fit perfectly to all available data, as
minimising an error measure would be irrelevant for acquiring conjectures on sharp bounds.

6 Conclusion

We introduce a structure that connects a set of sharp bounds. Based on this structure, we
propose a constructive approach to acquire a set of interrelated conjectures on sharp bounds.
We show the relevance of using a variety of types of formulae, i.e., Boolean, conditionals, and
polynomials with shared sub-expressions, to acquire simpler conjectures. This work opens
a new application domain for CP for automated conjectures-making systems. It creates a
new line of research to those already reported in a recent survey on machine learning for
combinatorial optimisation [5].

—— References

1 Mustapha Aouchiche, Gilles Caporossi, Pierre Hansen, and M. Laffay. Autographix: a survey.
Electron. Notes Discret. Math., 22:515-520, 2005. doi:10.1016/j.endm.2005.06.090.

2 Nicolas Beldiceanu, Mats Carlsson, and Jean-Xavier Rampon. Global Constraint Catalog, 2nd
Edition (revision a). Technical Report T2012-03, Swedish Institute of Computer Science, 2012.
Available at http://ri.diva-portal.org/smash/get/diva2:1043063/FULLTEXTO1.pdf.

6:15

CP 2022

https://doi.org/10.1016/j.endm.2005.06.090
http://ri.diva-portal.org/smash/get/diva2:1043063/FULLTEXT01.pdf

6:16

Acquiring Maps of Interrelated Conjectures on Sharp Bounds

10

11

12

13

14

15

Nicolas Beldiceanu, Mats Carlsson, Jean-Xavier Rampon, and Charlotte Truchet. Graph
invariants as necessary conditions for global constraints. In Peter van Beek, editor, Principles
and Practice of Constraint Programming - CP 2005, 11th International Conference, CP 2005,
Sitges, Spain, October 1-5, 2005, Proceedings, volume 3709 of Lecture Notes in Computer
Science, pages 92-106. Springer, 2005.

Nicolas Beldiceanu and Helmut Simonis. A Model Seeker: Extracting Global Constraint Models
from Positive Examples. In Michela Milano, editor, Principles and Practice of Constraint
Programming - 18th International Conference, CP 2012, Québec City, QC, Canada, October
8-12, 2012. Proceedings, volume 7514 of Lecture Notes in Computer Science, pages 141-157.
Springer, 2012. doi:10.1007/978-3-642-33558-7_13.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial
optimization: A methodological tour d’horizon. Eur. J. Oper. Res., 290(2):405-421, 2021.
Christian Bessi¢re, Emmanuel Hebrard, George Katsirelos, Zeynep Kiziltan, Emilie Picard-
Cantin, Claude-Guy Quimper, and Toby Walsh. The balance constraint family. In Barry
O’Sullivan, editor, Principles and Practice of Constraint Programming - 20th International
Conference, CP 2014, Lyon, France, September 8-12, 2014. Proceedings, volume 8656 of Lecture
Notes in Computer Science, pages 174—189. Springer, 2014.

Christian Bessiére, Frédéric Koriche, Nadjib Lazaar, and Barry O’Sullivan. Constraint
acquisition. Artif. Intell., 244:315-342, 2017. doi:10.1016/j.artint.2015.08.001.

V. Brankov, P. Hansen, and D. Stevanovié. Automated conjectures on upper bounds for the
largest laplacian eigenvalue of graphs. Linear Algebra and its Applications, 414(2):407-424,
2006.

Jure Brence, Ljupco Todorovski, and Saso Dzeroski. Probabilistic grammars for equation
discovery. Knowledge-Based Systems, 224:107077, 2021. doi:10.1016/j.knosys.2021.107077.
Céline Brouard, Simon de Givry, and Thomas Schiex. Pushing data into CP models using
graphical model learning and solving. In Helmut Simonis, editor, Principles and Practice
of Constraint Programming - 26th International Conference, CP 2020, Louvain-la-Neuve,
Belgium, September 7-11, 2020, Proceedings, volume 12333 of Lecture Notes in Computer
Science, pages 811-827. Springer, 2020. doi:10.1007/978-3-030-58475-7_47.

John William Charnley, Simon Colton, and Ian Miguel. Automatic generation of implied
constraints. In Gerhard Brewka, Silvia Coradeschi, Anna Perini, and Paolo Traverso, editors,
ECAI 2006, 17th European Conference on Artificial Intelligence, August 29 - September 1, 2006,
Riva del Garda, Italy, Including Prestigious Applications of Intelligent Systems (PAILS 2006),
Proceedings, volume 141 of Frontiers in Artificial Intelligence and Applications, pages 73-77. 10S
Press, 2006. URL: http://www.booksonline.iospress.nl/Content/View.aspx?piid=1649.
Simon Colton, Andreas Meier, Volker Sorge, and Roy L. McCasland. Automatic generation
of classification theorems for finite algebras. In David A. Basin and Michaél Rusinowitch,
editors, Automated Reasoning - Second International Joint Conference, IJCAR 2004, Cork,
Ireland, July 4-8, 2004, Proceedings, volume 3097 of Lecture Notes in Computer Science, pages
400-414. Springer, 2004. doi:10.1007/978-3-540-25984-8_30.

Alex Davies, Petar Velickovi¢, Lars Buesing, Sam Blackwell, Daniel Zheng, Nenad Tomasev,
Richard Tanburn, Peter Battaglia, Charles Blundell, Andrds Juhdsz, Marc Lackenby, Geordie
Williamson, Demis Hassabis, and Pushmeet Kohli. Advancing mathematics by guiding human
intuition with ai. Nature, 600(7887):70-74, 2021. doi:10.1038/s41586-021-04086-x.
Siemion Fajtlowicz. On conjectures of Graffiti. Discret. Math., 72(1-3):113-118, 1988. doi:
10.1016/0012-365X(88)90199-9.

Aaron M. Ferber, Bryan Wilder, Bistra Dilkina, and Milind Tambe. Mipaal: Mixed integer
program as a layer. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI
2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI
2020, New York, NY, USA, February 7-12, 2020, pages 1504-1511. AAAT Press, 2020. URL:
https://aaai.org/ojs/index.php/AAAI/article/view/5509.

https://doi.org/10.1007/978-3-642-33558-7_13
https://doi.org/10.1016/j.artint.2015.08.001
https://doi.org/10.1016/j.knosys.2021.107077
https://doi.org/10.1007/978-3-030-58475-7_47
http://www.booksonline.iospress.nl/Content/View.aspx?piid=1649
https://doi.org/10.1007/978-3-540-25984-8_30
https://doi.org/10.1038/s41586-021-04086-x
https://doi.org/10.1016/0012-365X(88)90199-9
https://doi.org/10.1016/0012-365X(88)90199-9
https://aaai.org/ojs/index.php/AAAI/article/view/5509

N. Beldiceanu et al.

16

17

18

19

20

21

22

23

24

25

26

27

28

Minh Hoang Ha, Claude-Guy Quimper, and Louis-Martin Rousseau. General bounding
mechanism for constraint programs. In Gilles Pesant, editor, Principles and Practice of
Constraint Programming - 21st International Conference, CP 2015, Cork, Ireland, August 31 -
September 4, 2015, Proceedings, volume 9255 of Lecture Notes in Computer Science, pages
158-172. Springer, 2015.

Pierre Hansen and Gilles Caporossi. Autographix: An automated system for finding con-
jectures in graph theory. FElectron. Notes Discret. Math., 5:158-161, 2000. doi:10.1016/
S1571-0653(05)80151-9.

Samuel Kolb, Sergey Paramonov, Tias Guns, and Luc De Raedt. Learning constraints in
spreadsheets and tabular data. Mach. Learn., 106(9-10):1441-1468, 2017. doi:10.1007/
510994-017-5640-x.

Mohit Kumar, Stefano Teso, and Luc De Raedt. Acquiring integer programs from data. In Sarit
Kraus, editor, Proceedings of the Twenty-Fighth International Joint Conference on Artificial
Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019, pages 1130-1136. ijcai.org, 2019.
doi:10.24963/ijcai.2019/158.

Guillaume Lample and Frangois Charton. Deep learning for symbolic mathematics. In 8th In-
ternational Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net, 2020. URL: https://openreview.net/forum?id=S1eZYeHFDS.
Craig E. Larson and Nicolas Van Cleemput. Automated conjecturing I: Fajtlowicz’s Dalmatian
heuristic revisited. Artif. Intell., 231:17-38, 2016. doi:10.1016/j.artint.2015.10.002.
Jimmy Ho-Man Lee, Ka Lun Leung, and Yu Wai Shum. Consistency techniques for polytime
linear global cost functions in weighted constraint satisfaction. Constraints, 19(3):270-308,
2014.

Doug Lenat. AM: An artificial intelligence approach to discovery in mathematics. PhD thesis,
Stanford University, 1976.

Thorsten Papenbrock, Jens Ehrlich, Jannik Marten, Tommy Neubert, Jan-Peer Rudolph,
Martin Schénberg, Jakob Zwiener, and Felix Naumann. Functional dependency discovery: An
experimental evaluation of seven algorithms. Proc. VLDB Endow., 8(10):1082-1093, 2015.
doi:10.14778/2794367.2794377.

Sergey Paramonov, Samuel Kolb, Tias Guns, and Luc De Raedt. Tacle: Learning constraints in
tabular data. In Ee-Peng Lim, Marianne Winslett, Mark Sanderson, Ada Wai-Chee Fu, Jimeng
Sun, J. Shane Culpepper, Eric Lo, Joyce C. Ho, Debora Donato, Rakesh Agrawal, Yu Zheng,
Carlos Castillo, Aixin Sun, Vincent S. Tseng, and Chenliang Li, editors, Proceedings of the
2017 ACM on Conference on Information and Knowledge Management, CIKM 2017, Singapore,
November 06 - 10, 2017, pages 2511-2514. ACM, 2017. doi:10.1145/3132847.3133193.
Anselm Paulus, Michal Rolinek, Vit Musil, Brandon Amos, and Georg Martius. Comboptnet:
Fit the Right NP-Hard Problem by Learning Integer Programming Constraints, 2021. arXiv:
2105.02343.

Emilie Picard-Cantin, Mathieu Bouchard, Claude-Guy Quimper, and Jason Sweeney. Learning
the parameters of global constraints using branch-and-bound. In J. Christopher Beck, editor,
Principles and Practice of Constraint Programming - 23rd International Conference, CP 2017,
Melbourne, VIC, Australia, August 28 - September 1, 2017, Proceedings, volume 10416 of Lecture
Notes in Computer Science, pages 512-528. Springer, 2017. doi:10.1007/978-3-319-66158-2_
33.

Steve Prestwich. Robust constraint acquisition by sequential analysis. In Giuseppe De Giacomo,
Alejandro Catald, Bistra Dilkina, Michela Milano, Senén Barro, Alberto Bugarin, and Jérome
Lang, editors, ECAI 2020 - 2/th European Conference on Artificial Intelligence, 29 August-8
September 2020, Santiago de Compostela, Spain, August 29 - September 8, 2020 - Including
10th Conference on Prestigious Applications of Artificial Intelligence (PAILS 2020), volume
325 of Frontiers in Artificial Intelligence and Applications, pages 355-362. IOS Press, 2020.
doi:10.3233/FAIA200113.

6:17

CP 2022

https://doi.org/10.1016/S1571-0653(05)80151-9
https://doi.org/10.1016/S1571-0653(05)80151-9
https://doi.org/10.1007/s10994-017-5640-x
https://doi.org/10.1007/s10994-017-5640-x
https://doi.org/10.24963/ijcai.2019/158
https://openreview.net/forum?id=S1eZYeHFDS
https://doi.org/10.1016/j.artint.2015.10.002
https://doi.org/10.14778/2794367.2794377
https://doi.org/10.1145/3132847.3133193
http://arxiv.org/abs/2105.02343
http://arxiv.org/abs/2105.02343
https://doi.org/10.1007/978-3-319-66158-2_33
https://doi.org/10.1007/978-3-319-66158-2_33
https://doi.org/10.3233/FAIA200113

6:18

Acquiring Maps of Interrelated Conjectures on Sharp Bounds

29

30

31

32

A

Gal Raayoni, Shahar Gottlieb, Yahel Manor, George Pisha, Yoav Harris, Uri Mendlovic, Doron
Haviv, Yaron Hadad, and Ido Kaminer. Generating conjectures on fundamental constants
with the Ramanujan Machine. Nature, 590:67-73, 2021. doi:10.1038/s41586-021-03229-4.
Helge Spieker and Arnaud Gotlieb. Learning objective boundaries for constraint optimization
problems. In Giuseppe Nicosia, Varun Kumar Ojha, Emanuele La Malfa, Giorgio Jansen,
Vincenzo Sciacca, Panos M. Pardalos, Giovanni Giuffrida, and Renato Umeton, editors,
Machine Learning, Optimization, and Data Science - 6th International Conference, LOD 2020,
Siena, Italy, July 19-23, 2020, Revised Selected Papers, Part II, volume 12566 of Lecture Notes
in Computer Science, pages 394—408. Springer, 2020. doi:10.1007/978-3-030-64580-9_33.
Ljupco Todorovski. Equation discovery. In Claude Sammut and Geoffrey I. Webb, ed-
itors, Encyclopedia of Machine Learning, pages 327-330. Springer, 2010. doi:10.1007/
978-0-387-30164-8_258.

Hao Wang. Toward mechanical mathematics. In Jorg Siekmann and Graham Wrightson,
editors, Automation of Reasoning: Classical Papers on Computational Logic 1957-1966, pages
244-264. Springer-Verlag, Berlin, 1983.

Map example

®{v,c5)!

[SEES S

;e{’U, (ﬂ}

®

/ N ® ® v=c?v:v—c)

—c-cHwv

{00D{v,5}

‘@B, (,} 0@@{1} <©— 09{v, g} 0@@{@ @} 0@®{v s}i

—c-s+v

@

(I VANR VAN VAN VAN VAN

[SE V- [}

@ @ (A)

9{1

I
==
+
S
~
<
—
N2

2_.9@{2;, c, §} g@@{u c, g} 0{v, s, E} [@0{v,c, 5} ‘@@{v,c, 3}

IIA
o S =
®

®

10
Il

[
g
o

A

J o~ a|

/U72970)

I
<
[
o

(90{v,5} [@O{v,c} > 0B{v}i«—@D{v,c}i i
{00{v,5}: :@6{ },®, {}@, fv, bt

®

® OPOOOPIDOOOOS
—Ns % s ala e o e o al o ol al

Il
S
—
o
Ny Ia
SIS
N
|
o
—
o
\Y
Do
N

[T
Il
=
5 -
i

® ® (B)

Il
S
+
|

—

o

Il

N

|

o
»

@6{v,c.5}1 10{v,ss} 0{vs5) [@6{vc s} 0DV, c 5} @ —v-

Figure 4 Map MES of upper-bounds of the output characteristic ¢ found by the Bound

{v,c,c,s,8,5}

Seeker, where each dotted node contains, from left to right, a reference to the maximum conjecture

o, ..

,©, 0.0 possibly a set of maximality conjectures ®,...,@,®,...,@, and the set of input

characteristics in red; Part (A) corresponds to the bounds found while only using the input
characteristics, and Part (B) refers to the bounds found using also the secondary characteristics.

https://doi.org/10.1038/s41586-021-03229-4
https://doi.org/10.1007/978-3-030-64580-9_33
https://doi.org/10.1007/978-0-387-30164-8_258
https://doi.org/10.1007/978-0-387-30164-8_258

Parallel Hybrid Best-First Search

Abdelkader Beldjilali =
Université Fédérale de Toulouse, INRAE, UR 875, 31326 Toulouse, France

Pierre Montalbano =
Université Fédérale de Toulouse, ANITI, INRAE, UR 875, 31326 Toulouse, France

David Allouche &=
Université Fédérale de Toulouse, ANITI, INRAE, UR 875, 31326 Toulouse, France

George Katsirelos &
Université Fédérale de Toulouse, ANITI, INRAE, MIA Paris, AgroParisTech, 75231 Paris, France

Simon de Givry &
Université Fédérale de Toulouse, ANITI, INRAE, UR 875, 31326 Toulouse, France

—— Abstract

While processor frequency has stagnated over the past two decades, the number of available cores in
servers or clusters is still growing, offering the opportunity for significant speed-up in combinatorial
optimization. Parallelization of exact methods remains a difficult challenge. We revisit the concept
of parallel Branch-and-Bound in the framework of Cost Function Networks. We show how to adapt
the anytime Hybrid Best-First Search algorithm in a Master-Worker protocol. The resulting parallel
algorithm achieves good load-balancing without introducing new parameters to be tuned as is the
case, for example, in Embarrassingly Parallel Search (EPS). It has also a small overhead due to its
light communication messages. We performed an experimental evaluation on several benchmarks,
comparing our parallel algorithm to its sequential version. We observed linear speed-up in some
cases. Our approach compared favourably to the EPS approach and also to a state-of-the-art parallel
exact integer programming solver.

2012 ACM Subject Classification Computing methodologies — Parallel algorithms
Keywords and phrases Combinatorial Optimization, Parallel Branch-and-Bound, CFN
Digital Object Identifier 10.4230/LIPIcs.CP.2022.7

Supplementary Material Software (Source Code): https://github.com/toulbar2/toulbar2
archived at swh:1:dir:93fd0c2246746901b0391ac4c4c04cab7980b3bb
Other (Results): https://miat.inrae.fr/degivry/Beldjilali22Supp.pdf

Funding This work has been partially funded by the French ”Agence Nationale de la Recherche”,
through grant ANR-19-P3IA-0004. It was performed using HPC resources from CALMIP (Grant
2022-P21010).

Carbon footprint The experiments in this paper took approximately 17,000 hours and emitted
68kg of CO2, with an estimate of 4¢g/h per core.

1 Introduction

Cost Function Networks (CFNs), also known as Weighted Constraint Satisfaction Problems
(WCSPs) [17] is a mathematical framework which has been derived from Constraint Sat-
isfaction Problems by replacing constraints with cost functions. In a CFN, we are given
a set of variables with an associated finite domain and a set of local cost functions. Each
cost function involves some variables and associates a non-negative integer cost to each of
the possible combinations of values they may take. The usual WCSP problem considered
is to assign all variables in a way that minimizes the sum of all costs. This minimization
problem is NP-hard, and exact methods usually rely on Branch and Bound (B&B) algorithms
exploring a binary search tree with soft local consistency maintained at each node in order
to improve the problem lower bound (represented by ¢p) and prune domain values with a
forbidden cost (represented by a maximum cost k) [5].

© Abdelkader Beldjilali, Pierre Montalbano, David Allouche, George Katsirelos, and Simon de Givry;

licensed under Creative Commons License CC-BY 4.0
28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 7; pp. 7:1-7:10

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:kader.beldjilali@free.fr
mailto:pierre.montalbano@inrae.fr
https://orcid.org/0000-0001-8126-892X
mailto:david.allouche@inrae.fr
mailto:gkatsi@gmail.com
https://orcid.org/0000-0002-3727-6698
mailto:simon.de-givry@inrae.fr
https://orcid.org/0000-0002-2242-0458
https://doi.org/10.4230/LIPIcs.CP.2022.7
https://github.com/toulbar2/toulbar2
https://archive.softwareheritage.org/swh:1:dir:93fd0c2246746901b0391ac4c4c04ca57980b3bb;origin=https://github.com/toulbar2/toulbar2;visit=swh:1:snp:c20c18e4bb55f2cae5001716347680c6197637b4;anchor=swh:1:rev:ef07d71bcd00950663baf2285af7b8899adbff18
https://miat.inrae.fr/degivry/Beldjilali22Supp.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2

Parallel Hybrid Best-First Search

Contraint Programming (CP) exact approaches usually rely on Depth-First Search (DFS)
methods while Integer Linear Programming (ILP) approaches explore the tree in a best-first
manner by exploiting strong bounds. We are interested in hybrid methods combining depth-
first and best-first with possibly weaker bounds but faster to compute. This is the case of the
Hybrid Best-First Search (HBFS) method [2]. HBFS is a B&B algorithm for solving WCSPs.

Dealing with parallel computers or grids to speed-up solving time of exact methods has
been explored in many different ways. For grids, with slow network interconnection, MapRe-
duce is a general approach exploiting problem decomposition into independent subproblems
solved in parallel (map on the grid processors) and then sequentially reduced at the end
of the resolution. In CP, this decomposition approach is called Embarrassingly Parallel
Search (EPS) [15]. MapReduce has been applied also in the context of non serial dynamic
programming in Graphical Models [19] and CFNs [3]. Message-passing approaches, on the
other hand, take advantage of the low-latency communication of supercomputers, consisting
of a large number of multiprocessor servers interconnected at high speed and low latency.
This allows for finer granularity in B&B parallelization. According to a recent survey [9],
parallelizing the search based on message-passing and parallel B&B in CP are difficult
problems and still poorly explored. In CP, for example, COMET [18] uses work-stealing
where workers which have run out of work take unexpanded nodes from other workers, leaving
them less work to do and keeping all workers busy. In ILP, a recent review on parallel B&B
was proposed in [21]. We selected the Master-Worker protocol as the basis for our approach.
Other approaches rely on portfolios.

In this work we describe a parallel version of HBFS. We give an empirical evaluation
on combinatorial optimization academic problems from Operations Research and real-life
Graphical Model problems occuring in genetics and biology. Our experimental study analyses
solving time and speed-ups of the parallel version compared to the original sequential HBFS.
We also compare our approach with a parallel ILP solver (IBM Ilog cplex). Moreover, we
performed experiments on a high-performance cluster to study the scalability of our algorithm
and compare with EPS.

2 Hybrid Best-First Search

The sequential version of HBFS [2] is a B&B method for CFNs that combines Best-First
Search (BFS) and Depth-First Search (DFS). Like BFS, HBF'S provides an anytime global
lower bound on the optimum, while also providing anytime upper bounds, like DF'S. Hence, it
provides feedback on the progress of search and solution quality in the form of an optimality
gap. Besides, it exhibits highly dynamic behavior that allows it to perform on par with
methods like Limited Discrepancy Search [11] and frequent restarting [10, 7] in terms of
quickly finding good solutions. As in BFS, HBFS maintains a frontier of open search nodes. It
expands each open node using DFS with a limit on its number of backtracks. Each bounded
DFS returns a new list of open nodes to be inserted in the BF'S frontier.

The pseudo-code of HBFS is given in Algorithm 1. The main procedure is in charge of the
BFS frontier of open nodes. Here a node v corresponds to a sequence of decisions v.d. The
root node has an empty decision sequence (line 1). When a node is explored by DFS (line 5),
an unassigned variable is chosen and a branching decision to either assign the variable to
a chosen value (left branch, positive decision) or remove the value from the domain (right
branch, negative decision) is taken. The number of decisions taken to reach a given node
v is the depth of the node, v.depth. HBFS always chooses the next open node to explore
with minimum lower bound v.lb (best-first principle) and, in case of ties, maximum depth

[N]

o N

A. Beldjilali, P. Montalbano, D. Allouche, G. Katsirelos, and S. de Givry

1
2/\
RN
3 6

@@ 7/\
®®

Figure 1 A tree that is partially explored by DFS with a backtrack limit Z = 4. Nodes with a
bold border are leaves, nodes with no border are placed in the open list after the backtrack bound is
exceeded. Nodes are numbered in the order they are visited.

v.depth (depth-first principle) in the frontier. The minimum of all open node lower bounds,
denoted [b(open), is a valid global lower bound (kept in ¢lb at line 6) for the problem. HBFS
also maintains the current upper bound (cub) as the cost of the best solution found so far by
DFS (line 5). The search ends when the open list is empty or contains nodes with a lower
bound greater than or equal to cub (line 2).

Algorithm 1 Hybrid Best-First Search. Initial call: HBFS(cy,k) with Z = 1.

Function HBFS(clb,cub): integer ; /* Returns the optimum value */
open :={v(d = @,lb = clb)} ; /* Initializes the open list with a Toot node */
while (open # & and clb < cub) do

v ::pop(open) ; /* Chooses a nmode with minimum lower bound and mazimum depth */

Restores state v.d, leading to assignment A,, maintaining soft local consistency ;
NodesRecompute := NodesRecompute + v.depth ;
cub :=DFS(A,,cub,Z) ; /* Increase Nodes and put all right open branches in open */
clb ;= max(clb, lb(open)) ;
if (NodesRecompute > 0) then

if (NodesRecompute/Nodes > ff and Z < N) then Z :=2 x Z;

else if (NodesRecompute/Nodes < o and Z > 2) then Z := Z/2;
return cub;

DFS increases a counter Nodes at each branching decision. It can backtrack (taking right
branches) up to a limit of Z backtracks. When this limit is reached, all the unexplored
right branches are placed in open. HBFS controls the balance between best-first search
(partially exploring more open nodes) and depth-first search (complete exploration from a
given starting node). Best-first search requires recomputing the state v.6 of a node (line 3)
which can be costly in practice. HBFS uses a simple rule to limit this recomputation effort
(measured by NodesRecompute at line 4). Tt tries to keep the ratio W in the
interval [a, 5] by increasing (by a power of two) the backtrack limit Z if the ratio value is
above (3 or decreasing Z if it is below alpha (lines 7-8). Initially, Z is set to 1. In order to
avoid exponential DFS behavior, HBFS limits the maximum value taken by Z to N. We kept
the same value o = 5%, 8 = 10%, N = 24 in our experiments as in the original paper [2].

3 Parallel HBFS

The parallel version of HBFS is based on the Master-Worker parallel paradigm [21] where
the Master is in charge of the open node frontier and dispatches the current best (with
minimum lower bound) open node plus the current best solution found so far to the next

7:3

CP 2022

7:4

10
11

Parallel Hybrid Best-First Search

available Worker. The Worker performs a bounded DFS starting from the received node and
returns to the Master the resulting list of open nodes (see Fig. 1, with a DFS limit here of 4
backtracks). The Worker also returns the best solution found during its restricted search
if any. Only the Master has a global view of the whole search and reports optimality gaps
(%) until the proof of optimality is reached: when the current best lower bound in the
frontier of open nodes, including active worker starting nodes, is equal or greater than the
cost of the best solution found so far or the frontier is empty and there are no active workers.
When the problem is solved, the Master kills all the workers and returns the optimum value.

According to a round robin schema, the Master sends open nodes to every idle worker
in a balanced way, ensuring a natural load balancing between the workers as soon as the
number of open nodes in the frontier is larger than the number of workers. Moreover, an
initial backtrack limit of Z; = 1 associated to each Worker i favors the production of open
nodes at the beginning of the search. Each Z; is bounded by N as in sequential HBFS so
that no worker takes too long.

The pseudo-code of the Master (resp. Worker) is given in Algorithm 2 (resp. Alg. 3).
In the implementation, we avoid to send the same solution twice to a Worker. Moreover,
workers send their solution only if it improves compared to the last solution sent by the
Master. This strategy allows to shorten messages in the Master-Worker protocol.

Algorithm 2 Parallel HBFS-Master. Initial call for p workers: HBFS-Master(cp,k,(1,...,p)).

Function HBFS-Master(clb, cub, S): integer ; /* S queue of workers, return the optimum */

open = {v(d = @,lb=1clb)} ; /* Initializes the open list with a root mode */
1:=5; /* Queue of idle workers */
A:=0; /* Maps active workers to open nodes currently being processed */

while ((open # @ or A # @) and clb < cub) do
while (open # @ and I # @) do

v ::pop(open) ; /* Chooses a mode with minimum lower bound and mazimum depth */

i::popFront(I) ; /* Unqueue the first idle worker */

A:=AU{(i,v)};

Send v and best solution cub to Worker 17 ;
Receive a list of open nodes V and solution cub’ by worker j ; /* Wait for message */
push(open, V) ; /* Adds worker open nodes to the Master open list */
cub := min(cub, cub’) ; /* Checks if a better solution as been found */
pushBack(I, j7) ; /* Pushes Worker j at the end of the idle worker queue I */
A= A\{(, A1)} ; /* Removes Worker j from active workers */
clb := max(clb, min(lb(open), min{lb(v) for (i,v) € A})) ; /* Global lower bound */

return cub;

3.1 Improving the ramp-up phase

We observed that at the beginning of the search the first active worker may take a long time
to build its list of open nodes when it reaches the initial backtrack limit (equal to one). It
can be explained by the fact that if it found a new solution then this improved upper bound
will possibly imply more work in subsequent propagation made later when assessing the
lower bound of each open node. This has the effect to slow-down the construction of the list
of open nodes when HBFS stops backtracking. During this period, called the ramp-up phase
(where some workers have not been assigned at least one task), no parallelism is exploited.
We modified our communication protocol to send a message to the master as soon as an
open-node has been collected or a new solution has been found by a worker inside its DFS

12

13
14
15

A. Beldjilali, P. Montalbano, D. Allouche, G. Katsirelos, and S. de Givry

Algorithm 3 Parallel HBFS-Worker. Initial call for Worker i: HBFS-Worker(k,i) with Z; = 1.

Procedure HBFS-Worker(cub,rank) ; /* rank: Worker ID */
while (true) do

open; ;= O ; /* local open list of Worker i */

Receive an open node v and solution cub’ by Master ; /* Wait for message */

cub := min(cub, cud’) ; /* Updates cub and best solution if any */

Restores state v.0, leading to assignment A, , maintaining soft local consistency ;
NodesRecompute := NodesRecompute + v.depth ;
cub :=DFS(A,,cub,Z;) ; /* Increase Nodes ; put all right open branches in open; */
if (NodesRecompute > 0) then

if (NodesRecompute/Nodes > 3 and Z; < N) then Z; := 2 X Z;

else if (NodesRecompute/Nodes < o and Z; > 2) then Z; := Z; /2;
Send open; and best solution cub to the Master ; /* or closing-node mes. in burst

mode */

subroutine (line 12). Such messages are received by the Master (line 9) which does not
change the Worker state to idle (lines 10 and 11) until it receives a closing-node message by
the Worker (sent at line 15). By doing so, it allows the Master to distribute open nodes to
idle workers earlier before the first active worker has finished its initial DFS. We call this
modified Master-Worker protocol the burst mode. However, the Worker can potentially send
O(nd) more messages and it disallows data compression of the open list messages.!

4 Experimental Results

We implemented in C++ our parallel HBFS in the CFN solver toulbar2.?2 We used the boost
MPI library for the Master-Worker communication protocol. We kept default parameters
of toulbar2 except no dichotomic branching in order to explore a binary search tree with
DFS (option -d:). The variable ordering heuristic is dom/wdeg [4] combined with last
conflict [14]. The value ordering heuristic exploits the last solution found if any [7] or else

EDAC existential value [6]. EDAC is also used as soft local consistency during search.

Instances were preprocessed by VAC [5] and the resulting CFNs saved to files before the
experiments to reduce the setup sequential time of paralllel HBFS. We compared both the
sequential and parallel version of HBFS and also with the integer programming solver cplex
(version 20.1 with non-premature stop parameters EPAGAP=EPGAP=EPINT=0). We set the
number of threads used by cplex to the desired number of cores.

Experiments were performed either on medium-scale computers (24-core Intel Xeon
E5-2687W v4 at 3 GHz and 256 GB) with 1-hour timeout or on a large-scale cluster with
more than 10,000 cores (36-core per node of Intel Skylake 6140 at 2.3 GHz and 192 GB)
with a longer 10-hour timeout for the sequential version only. Solving times are reported in
seconds and correspond to CPU (resp. wall-clock) time for the sequential (resp. parallel)
methods. No initial upper bounds were provided.

We tested the methods on four benchmarks selected from [12] with a total of 134 instances:
two academic benchmarks taken in Operations Research, uncapacitated warehouse location
problem (Warehouses) with 15 instances [13] and DIMACS maximum clique problem with

! In non-burst mode, all right branches share a common prefix in their v.6 and only the deepest &
information need to be sent to the Master.
2 https://toulbar2.github.io/toulbar2 version 1.2.

7:5

CP 2022

https://toulbar2.github.io/toulbar2

7:6

Parallel Hybrid Best-First Search

62 instances (MaxClique)® and two real-life Graphical Model benchmarks, linkage analysis
problem occuring in genetics (Linkage) with 22 instances coming from UAI Evaluation 2008 *
and computational protein design problem in biology (CPD) with 35 instances [1]. We
applied the tuple encoding to convert Linkage and CPD to integer linear programs [12]. For a
comparison on MaxClique with another parallel branch and bound implementation, see [16].

4.1 Comparison of parallel HBFS with its sequential version

1.2 T T T
1.15 | ‘ 1
A
1 | E_\sv '
1.05 |- —_— =
1k 4
HBFS 1-core
10-core without burst
0.95 |- 10-core with burst B
20-core without burst
20-core with burst
09 B
=7
0.85 //F’/‘;//_/—’—'—
08 1 1 1
0 0.05 0.1 0.15 0.2

Figure 2 Comparison on a medium-scale computer between sequential versus parallel HBFS
with or without burst mode. The x-axis represents normalized time (with 0.2 corresponding to 720
seconds). The y-axis corresponds to normalized lower and upper bounds on 134 instances (with 1
corresponding to the optimum or best known cost, see the text description).

We compared the anytime behavior of sequential (HBFS-1) and parallel HBFS (with 10
or 20 cores) with or without burst mode (see Sec. 3.1) on a medium-scale computer. We
summarize the evolution of lower (clb in Alg. 1 and 2) and upper bounds (cub) for each
method over all instances in Fig. 2. Specifically, for each instance we normalize all costs
as follows: the initial lower bound ¢y produced by EDAC is 0; the best but potentially
suboptimal solution found by any method is 1; the worst solution is 2. This normalization
is invariant to translation and scaling. Additionally, we simply normalize time from 0 to
1, corresponding to 1 hour. A point z,y on the lower bound line for method M in Fig. 2
means that after normalized runtime x, method M has proved on average over all instances
a normalized lower bound of y and similarly for the upper bound.

First, we observed that all parallel versions significantly outperformed the sequential
HBFS lower bound curve. Concerning upper bound curves, the burst mode gave a clear
advantage to parallel HBF'S especially at the beginning of the search. In the sequel of the
paper, we always report results of parallel HBFS with burst mode. As shown in the figure,
increasing the number of cores from 10 to 20 slightly improved the bounds.

In Table 1 we report the number of instances solved by sequential and parallel HBFS
for each benchmark. Parallel HBF'S solved 1 more instance than the single core version in
Linkage and 1 (resp. 3) in MaxClique using 10 (resp. 20) cores. We made local comparisons
of solving times (shown in parentheses) by averaging on the subset of instances solved by the

3 We removed the largest instances keller6 and p__hat1500-1,2,3 from the original 66 DIMACS instances.
4 Linkage instances were further preprocessed by variable elimination limited to at most 8 neighbors [8].

A. Beldjilali, P. Montalbano, D. Allouche, G. Katsirelos, and S. de Givry

three methods (HBFS-1, HBFS-10, HBFS-20). It allows us to display overall speed-up of
parallel approaches by giving the ratio of total sequential over parallel time. Parallel HBFS
obtained near linear speed-up on MaxClique. Recall that 1 core is used by the master and the
rest by the workers in the Master-Worker approach preventing us from full linear speed-up.
On CPD and Linkage the speed-up was halved. For Warehouses, only 50% of reduction in
overall time was observed. This can be explained partly by the limited number of search
nodes (Table 4 in Supplementary Material).We also observed that the evaluation of right
branches made by the first active worker starting from the root node took most of the time.
This is due to the fact that a first solution has been found by the worker resulting in more
propagation on the right branches especially near the root. This pathological phenomenon
did not appear on the other benchmarks.

Table 1 Number of solved instances within 1 hour (except for sequential HBFS-1 run on the
cluster with a larger timeout of 10 hours) and average time in seconds in parentheses. To compute
the mean we only consider for a given method (toulbar2 HBFS or cplex) the instances solved with
any number of cores on the same computer (server with 3 GHz cores or cluster with 2.3 GHz cores).

Method CPD (35) Warehouses (15) Linkage (22) MaxClique (62)
Speed-up Speed-up Speed-up Speed-up
HBFS-1 30 (43.44s) 15 (128.965) 20 (23.24s) 37 (364.255)
HBFS-10 30 (8s) 543 | 15 (30.174s) | 1.61 21 (3.55) 6.6/ | 38 (40.24s) 9.05
HBFS-20 30 (4.43s) 9.81 15 (85.39s) 1.51 21 (25) 11.62 | 40 (19.9s) 18.3
cplex-1 24 (331.2s) 15 (123.83s) 22 (8.04s) 42 (282.165)
cplex-10 24 (22651s) | 146 | 15 (68.82s) 1.8 22 (2.568) 5.1 | 45 (55.48s) 5.08
cplex-20 24 (198.49s) | 1.67 | 15 (72.06s) 172 | 22 (2.29s) | 551 | 46 (7147s) | 3.9
HBFS-1 (cluster) 30 (66.46s) 15 (392.30s) 21 (427.21s) 37 (504s)
HBFS-180 (cluster) | 30 (3.7s) | 17.96 | 15 (126s) 2.11 22 (1.15s) | 102.94 | 45 (6.44s) | 78.26

4.2 Comparison of parallel HBFS with integer programming

In Table 1 we also report the number of instances solved and their average solving time
(as explained above) by cplex using multithreading. It clearly dominates HBFS on Linkage
(Supp. Fig. 5).For Warehouses, the differences are less important still in favor of cplex.
For MaxClique, although the global picture shows that it solved six more instances than
HBFS with 20 cores, both methods performed well on different subsets of instances (e.g.,
HBF'S-20 solved two instances — brock400_ 4 and sanr400__0.7 — unsolved by cplex-20 whereas
cplex-20 solved eight instances unsolved by HBFS-20). For CPD, the CFN approach largely
dominates the integer programming approach for all the instances. Concerning anytime
curves shown in Fig. 3 (see also Supp. Fig. 4 and 5), the CFN approach is also significantly
superior to cplex on average in producing good upper bounds faster, HBFS-20 being the best
method. Concerning overall speed-up, cplex had difficulties to benefit from parallelism on
CPD, Linkage, and Warehouses where it usually develops a small amount of search nodes
(less than 7,059 nodes except on Linkage/pedigreel9 and pedigree40), resulting in poor
speed-up except in a few cases. The speed-up is better on MaxClique but seems to stagnate
when going from 10 to 20 cores (it was even slower on four instances).

4.3 Comparison of parallel HBFS with EPS on a cluster

The EPS approach is a two-phase procedure. First, the problem to be solved is decomposed
into a list of [independent subproblems. Next, all the subproblems are solved in parallel
(with at most p workers running at the same time) based on a particular scheduling strategy

77

CP 2022

7:8

Parallel Hybrid Best-First Search

1.2
1.15 | e
11 =
1.05
1r 4
HBFS 1-core ——
10-core ——
0.95 | 20-core _
cplex 1-core ——
10-core
09 1 20-core —— .
—
— e
0.85 /;/_///———_
08 1 1 1
0 0.05 0.1 0.15 0.2

Figure 3 Comparison on a medium-scale computer between toulbar2 using parallel HBFS (with
burst mode) and cplex using multiple threads. The x-axis represents normalized time (with 0.2
corresponding to 720 seconds). The y-axis corresponds to normalized lower and upper bounds on
134 instances (with 1 corresponding to the optimum or best known cost, see the text description).

with no communication between the workers. For optimization problems, we need to provide
a good initial upper bound. Otherwise the search tree can be much larger than needed. In
the first phase, we used the original HBFS method to collect | subproblems. As soon as
HBFS has more than [open nodes in its frontier it stops and returns the current upper
bound (cub) and the list of open nodes (without those having a lower bound Ib(v) > cub).
Each open node v defines an independent subproblem with partial assignment v.d. In order
to collect open nodes more rapidly we fix the (maximum) backtrack limit Z = N = 1. Ideally
I should be 30 x p with p the number of available cores [15]. In the second phase, we schedule
on the cluster the subproblems that are solved by the original HBFS method using a simple
scheduling heuristic based on increasing |v.d].

In Table 2 we report for nine difficult instances their optimum value, the upper bound
found at the end of EPS Phase-1, the actual number of generated subproblems, the average
solving time of all subproblems, the maximum solving time, the number of failed subproblems
(timeout of 1 hour) and the overall solving time of EPS Phase-2 using 180 cores on the cluster.
We compare with HBFS using the same number of cores. Our EPS strategy failed on 4/9
instances. In parentheses, we indicate the maximum depth v.depth of failed subproblems.
Clearly, finding the right number [of not-too-difficult subproblems corresponding to partial
assigments greater than a given depth is a challenging task. In our experiments, we tried
with different values for I € [50,6000], selecting the largest threshold value with a Phase-1
duration being less than 1 second for Linkage (I = 6000), 6 seconds for MaxClique (I = 6000)
and 44 seconds for CPD (I = 1000). On the opposite, we did not tune any specific parameter
for our parallel HBFS method.

In Table 1 we also report the overall speed-up of HBFS-180 compared to HBFS-1 on the
cluster. HBFS-180 got a two-order-of-magnitude speed-up on Linkage.

5 Conclusion

Although the speed-up offered by the parallel version of HBFS was very instance dependent,
we observed significant gain on several instances, outperforming in some cases state-of-the-
art solvers like cplex. Even if the scalability of our approach must be subject of deeper
investigation, due to the minimal size of the information shared between the Master and the
Workers, our approach is very likely compliant with a larger number of cores.

A. Beldjilali, P. Montalbano, D. Allouche, G. Katsirelos, and S. de Givry

Table 2 EPS and HBFS-180 results on hard instances (with n variables and maximum domain
size d). A ’-’ indicates that some (see #failed) subproblems could not be solved in less than 3, 600sec.

instance n d opt. cub l av. time | max. t. | #fail(depth) | EPS-180 | HBFS-180
linkage /pedigree19 259 | 5 4625 5684 5114 20.57 - 1 (4) - 69.1
linkage /pedigree40 274 | 6 7300 8838 5641 101.99 - 49 (21) - 1680
linkage /pedigree51 295 | 5 6406 6802 5798 0.61 | 497.38 0 499 5.7
cpd/1BRS 38 | 178 | 4007610 | 4007679 | 956 2.94 38.90 0 44 37.5
c¢pd/1CDL 38 | 170 | 3590514 | 3590825 | 1001 6.66 79.04 0 79 18.3
cpd/1GVP 52 | 170 | 5196719 | 5196841 | 979 14.59 170.66 0 171 17.0
maxcl. /brock400_ 1 400 | 2 373 379 6010 63.95 - 12 (1149) - 1812
maxcl. /brock400_ 2 400 | 2 371 379 5975 65.27 - 18 (149) - 880
maxcl./san400_0.5_1 | 400 | 2 387 392 6073 5.07 | 414.96 0 3652 1220

A more challenging task which remains as future work is to exploit the structure of

CFNs by parallelizing Backtrack with Tree Decomposition (BTD-HBFS) [2]. Shared memory
protocols may be more suitable for this task to make learnt nogoods available to all Workers.

On the practical side, our parallel HBFS could ran in conjunction with a parallel large

neighborhood search strategy [20] offering even better anytime lower and upper bounds.

—— References

1

10

11

12

D Allouche, J Davies, S de Givry, G Katsirelos, T Schiex, S Traoré, I André, S Barbe,
S Prestwich, and B O’Sullivan. Computational protein design as an optimization problem.
Artificial Intelligence, 212:59-79, 2014.

D Allouche, S de Givry, G Katsirelos, T Schiex, and M Zytnicki. Anytime Hybrid Best-First
Search with Tree Decomposition for Weighted CSP. In Proc. of CP-15, pages 12-28, Cork,
Ireland, 2015.

D. Allouche, S. de Givry, and T. Schiex. Towards parallel non serial dynamic programming
for solving hard weighted csp. In Proc. of CP-10, St Andrews, Scotland, 2010.

F Boussemart, F' Hemery, C Lecoutre, and L Sais. Boosting systematic search by weighting
constraints. In FCAI volume 16, page 146, 2004.

M. Cooper, S. de Givry, M. Sanchez, T. Schiex, M. Zytnicki, and T. Werner. Soft arc
consistency revisited. Artificial Intelligence, 174(7-8):449-478, 2010.

S. de Givry, M. Zytnicki, F. Heras, and J. Larrosa. Existential arc consistency: Getting
closer to full arc consistency in weighted csps. In Proc. of IJCAI’05, pages 84-89, Edinburgh,
Scotland, 2005.

E Demirovic, G Chu, and P J. Stuckey. Solution-based phase saving for CP: A value-selection
heuristic to simulate local search behavior in complete solvers. In Proc. of CP-18, pages
99-108, Lille, France, 2018.

A Favier, S de Givry, A Legarra, and T Schiex. Pairwise decomposition for combinatorial
optimization in graphical models. In Proc. of IJCAI-11, Barcelona, Spain, 2011.

I Gent, I Miguel, P Nightingale, C McCreesh, P Prosser, N Moore, and C Unsworth. A
review of literature on parallel constraint solving. Theory and Practice of Logic Programming,
18(5-6):725-758, 2018.

C. Gomes, B. Selman, and H. Kautz. Boosting combinatorial search through randomization.
In Proc. of AAAI’98, Madison, WI, 1998.

W. D. Harvey and M. L. Ginsberg. Limited discrepancy search. In Proc. of IJCAI’95, Montréal,
Canada, 1995.

B Hurley, B O’Sullivan, D Allouche, G Katsirelos, T Schiex, M Zytnicki, and S de Givry. Multi-
Language Evaluation of Exact Solvers in Graphical Model Discrete Optimization. Constraints,
21(3):413-434, 2016.

7:9

CP 2022

7:10

Parallel Hybrid Best-First Search

13

14

15

16

17

18

19

20

21

J Kratica, D Togic, V Filipovié¢, and I Ljubié. Solving the simple plant location problem by
genetic alg. RAIRO, 35(1):127-142, 2001.

C. Lecoutre, L Sais, S. Tabary, and V. Vidal. Reasoning from last conflict(s) in constraint
programming. Artificial Intelligence, 173:1592,1614, 2009.

A Malapert, J-C Régin, and M Rezgui. Embarrassingly parallel search in constraint program-
ming. Journal of Artificial Intelligence Research, 57:421-464, 2016.

C McCreesh and P Prosser. The shape of the search tree for the maximum clique problem and
the implications for parallel branch and bound. ACM Trans. Parallel Comput., 2(1), 2015.
P. Meseguer, F. Rossi, and T. Schiex. Soft constraints processing. In F. Rossi, P. van Beek,
and T. Walsh, editors, Handbook of Constraint Programming, chapter 9. Elsevier, 2006.

L Michel, A See, and P Van Hentenryck. Parallelizing constraint programs transparently.
In C Bessiére, editor, Principles and Practice of Constraint Programming — CP 2007, pages
514-528, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

L Otten and R Dechter. And/or branch-and-bound on a computational grid. JAIR, 59:351-435,
2017.

Abdelkader Ouali, David Allouche, Simon de Givry, Samir Loudni, Yahia Lebbah, Francisco
Eckhardt, and Lakhdar Loukil. Iterative Decomposition Guided Variable Neighborhood Search
for Graphical Model Energy Minimization. In Proc. of UAI-17, pages 550-559, Sydney,
Australia, 2017.

T Ralphs, Y Shinano, T Berthold, and T Koch. Parallel solvers for mixed integer linear
optimization. In Handbook of parallel constraint reasoning, pages 283-336. Springer, 2018.

Learning MAX-SAT Models from Examples Using
Genetic Algorithms and Knowledge Compilation

Senne Berden &
Declarative Languages and Artificial Intelligence, KU Leuven, Belgium

Mohit Kumar &

Declarative Languages and Artificial Intelligence, KU Leuven, Belgium

Samuel Kolb &

Declarative Languages and Artificial Intelligence, KU Leuven, Belgium

Tias Guns G4
Declarative Languages and Artificial Intelligence, KU Leuven, Belgium

—— Abstract

Many real-world problems can be effectively solved by means of combinatorial optimization. However,

appropriate models to give to a solver are not always available, and sometimes must be learned from
historical data. Although some research has been done in this area, the task of learning (weighted
partial) MAX-SAT models has not received much attention thus far, even though such models can be
used in many real-world applications. Furthermore, most existing work is limited to learning models
from non-contextual data, where instances are labeled as solutions and non-solutions, but without
any specification of the contexts in which those labels apply. A recent approach named HASSLE-SLS
has addressed these limitations: it can jointly learn hard constraints and weighted soft constraints
from labeled contextual examples. However, it is hindered by long runtimes, as evaluating even a
single candidate MAX-SAT model requires solving as many models as there are contexts in the
training data, which quickly becomes highly expensive when the size of the model increases. In this
work, we address these runtime issues. To this end, we make two contributions. First, we propose a
faster model evaluation procedure that makes use of knowledge compilation. Second, we propose
a genetic algorithm named HASSLE-GEN that decreases the number of evaluations needed to find
good models. We experimentally show that both contributions improve on the state of the art by
speeding up learning, which in turn allows higher-quality MAX-SAT models to be found within a
given learning time budget.

2012 ACM Subject Classification Computing methodologies — Machine learning
Keywords and phrases Machine learning, constraint learning, MAX-SAT
Digital Object Identifier 10.4230/LIPIcs.CP.2022.8

Supplementary Material Software (Source Code): https://github.com/ML-KULeuven/HASSLE-GEN
archived at swh:1:dir:6769420692514ea592885add6759177a0c221e8b

Funding This project was partially funded by the Research Foundation - Flanders (FWO) projects
G0G3220N and FWO-S007318N, as well as the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (Grant Nos. 101002802, CHAT-
Opt and 694980, SYNTH) and the “Agentschap Innoveren & Ondernemen” (VLAIO) as part of the
innovation mandate HBC.2021.0246. (S. Kolb).

Acknowledgements We would like to thank Luc De Raedt for his helpful comments.

1 Introduction

Many real-world problems can be effectively solved by means of combinatorial optimization.
With appropriate mathematical models, problems like planning [25], routing [20] and schedul-
ing [9] can be delegated to a highly-optimized solver that can quickly and automatically
yield one or more high-quality solutions. However, automatic solvers do not remove the need
? Senne Berden, Mohit Kumar, Samuel Kolb, and Tias Guns;

5v icensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 8; pp. 8:1-8:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:senne.berden@kuleuven.be
https://orcid.org/0000-0002-6473-5757
mailto:mohitkr092@gmail.com
https://orcid.org/0000-0002-7202-1818
mailto:samuel.kolb@kuleuven.be
https://orcid.org/0000-0002-7803-2198
mailto:tias.guns@kuleuven.be
https://people.cs.kuleuven.be/~tias.guns/
https://orcid.org/0000-0002-2156-2155
https://doi.org/10.4230/LIPIcs.CP.2022.8
https://github.com/ML-KULeuven/HASSLE-GEN
https://archive.softwareheritage.org/swh:1:dir:6769420692514ea592885add6759177a0c221e8b;origin=https://github.com/ML-KULeuven/HASSLE-GEN;visit=swh:1:snp:8c465dba87a56e093362b1b832290c3f07cf8b29;anchor=swh:1:rev:014dc50406ba1f4b45c666dbce7797feda551f5f
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2

Learning MAX-SAT Models Using Genetic Algorithms and Knowledge Compilation

for human effort altogether; they merely move it from the solving phase to the modeling
phase. Unfortunately, the manual construction of an appropriate model can be difficult for
several reasons. First, it requires both modeling and expert domain knowledge. Finding
people that possess both, or setting up a collaboration to marry both, is not a trivial issue.
Second, some optimization criteria and constraints might be hard to express explicitly for
a human modeler. Third, even with the criteria and constraints successfully modeled, the
potentially difficult task of weighting them by importance relative to each other remains, at
least for problems with multiple optimization criteria and problems that contain weighted
soft constraints. Finally, manual modeling can be a laborious process. It might require many
iterations of gradual refinement of the model, as well as a survey of the various stakeholders
to discover what is considered important and what constraints might apply. This arduous
model construction phase motivates another approach altogether: learning the model from
data, as opposed to manually constructing it.

This is the machine learning task we tackle in this work. Specifically, we focus on learning
MAX-SAT models, a type of mathematical model that can be used to represent many
interesting real-world problems [1, 9, 25, 26, 27]. The task involves jointly learning hard and
soft constraints — as well as appropriate weights for the latter — that best explain a set of
labeled contextual examples [16]. These examples are known solutions and non-solutions
to the considered problem. For instance, when learning a model for rostering nurses in a
hospital, historical rosters can be used as examples. The rosters would be labeled as positive
or negative depending on whether they were deemed suitable.

As alluded to above, the type of examples we consider are contertual; they come with
associated contexts. These contexts represent the states of affairs that the examples occurred
in. Let us examine their relevance. In the nurse rostering scenario, a roster in which
some nurses have to work several consecutive long shifts is likely not optimal in normal
circumstances, and thus not a solution. However, in the context of a pandemic taking place,
or many nurses being unavailable due to illness or other circumstances, such a roster might
be optimal and an appropriate solution to the rostering problem. Contexts are a useful way
of including this type of situational information in the example set, with the goal of learning
a model that can generalize across contexts. For any given context, such a model can then
be used to construct new solutions that are appropriate in that context. As will be discussed
in Section 2, learning from examples that are annotated with contexts is one of the things
that sets this work apart from most existing related work.

The problem of learning MAX-SAT models from labeled contextual examples has recently
been addressed in [16]. This work laid the theoretical groundwork, showing that, given enough
training data and time, high-quality models can be learned. Subsequent work introduced
HASSLE-SLS, a more efficient stochastic local search approach [17]. However, HASSLE-SLS
still suffers from long runtimes, which stem from the particularly expensive candidate model
evaluation involved in learning. Faster learning is desirable, as it would allow for better
models to be learned in a given training time budget. To this end, we make two contributions:

1. We develop a novel knowledge-compilation-based evaluation procedure that significantly
speeds up MAX-SAT model evaluation when learning small to medium-sized models, or
when learning from a large set of examples. Because evaluation is the major bottleneck
in the search for good models, improving its efficiency speeds up learning considerably.

2. We develop a novel genetic algorithm named HASSLE-GEN, whose crossover operator takes
much larger steps in the search space than HASSLE-SLS, reducing the number of model
evaluations needed to find a good model. Because of this, HASSLE-GEN learns high-quality
MAX-SAT models significantly faster than the state of the art.

S. Berden, M. Kumar, S. Kolb, and T. Guns

2 Related Work

We focus specifically on learning weighted partial MAX-SAT models. This work is positioned
in the research field of constraint learning, because the unweighted and weighted clauses
in these models can respectively be seen as hard and weighted soft constraints. Here, we
provide an overview of some of the most relevant works in constraint learning. For a more
thorough overview, we refer the reader to [8].

Learning hard constraints. We start by discussing a few approaches that are aimed at
learning constraint satisfaction problems (CSPs). The first of these, named ConAcq.1, is
a version space algorithm that learns CSPs from examples labeled as solutions and non-
solutions [5]. The version space is represented implicitly as a propositional CNF formula
over variables that denote binary constraints. Complete variable assignments that satisfy
the formula then correspond to CSPs in the version space, i.e., CSPs that are consistent
with respect to the given labeled examples. This approach was followed by ConAcq.2 [6] and
QuAcq [4], two active learning approaches that learn more efficiently by respectively asking
the user complete and partial membership queries.

Some other approaches are instead focused on learning global constraints. For exam-
ple, [23] and [24] focus on learning the parameters of global constraints from a small pool of
positive examples. Similarly, Model Seeker is effective at learning global constraints from
positive examples provided in matrix-form [3]. In Model Seeker, fitting constraints are taken
from a catalogue of constraints and related metadata (e.g., information about implication
relations between constraints), and then subjected to several types of redundancy checks and
simplifications. This method has proven to be very effective, even in the presence of many
variables or only few examples.

Finally, GenetiCS is a method that learns constraints for mathematical programming
models from known feasible and infeasible examples [22]. The approach is related to the
one developed in this work in that it involves an evolutionary algorithm, but differs in that
it learns linear and polynomial (in)equalities represented as abstract syntax trees (ASTs),
rather than weighted partial MAX-SAT models. Additionally, GenetiCS does not learn from
contextual examples.

Learning soft constraints. Several methods that focus on learning an objective to be
optimized, in the form of weighted soft constraints, also exist. They can be categorized
into parameter learning and structure learning approaches. The former is merely aimed
at learning the weights of a given set of constraints. The latter also learns the constraints
themselves.

One relevant example is CLEO, an interactive method whose purpose is to learn the
weights of clauses occurring in MAX-SAT or MAX-SMT models [7]. Although the focus lies
on learning weights, the algorithm is asked to weight many more constraints than are desired
in the final model. However, a sparsity assumption is applied by including the minimization
of the weight vector’s 1-norm as one of the method’s objectives, leading to a lot of constraints
getting assigned a weight of zero. In this sense, the approach can be seen as a form of
structure learning.

Another approach with the purpose of learning soft constraints and their weights is
presented in [13]. In this work, a type of weighted MAX-SAT model is learned. These
MAX-SAT models are an extension to the ones we consider, in that the constraints are
function-free disjunctive first-order logic clauses, and thus are not limited to propositional

8:3

CP 2022

8:4

Learning MAX-SAT Models Using Genetic Algorithms and Knowledge Compilation

logic. Another difference with the work presented here is the input given: the method
requires examples of possible worlds as well as preference relations between these worlds to be
provided. It then uses inductive logic programming to learn a set of appropriate constraints,
which are subsequently weighted using preference learning techniques.

HASSLE. The approaches discussed above are focused on learning either hard constraints
or soft constraints. They differ significantly with our approach, in which both types of
constraints are being learned jointly. This joint learning is desirable in the setting we
consider, as will be discussed in Section 4. Another large difference is that none of the above
works are aimed at learning from contertual examples. However, it is a realistic assumption
that what one considers optimal depends on the context one is positioned in.

Although none of the methods discussed above is applicable to the presently considered
problem setting, two approaches that do try to solve this task already exist. The first
approach, called HASSLE-MILP, was introduced in [16]. This work also proved that MAX-SAT
models are PAC-learnable, justifying empirical risk minimization. HASSLE-MILP formulates
the learning task as a mixed-integer linear program (MILP), which can be solved by an
off-the-shelf solver. The main drawbacks of this method are that it is not optimized for
efficiency and that, unless a solver that offers anytime functionality is used, it either produces
a solution that has zero empirical error, or no solution at all.

The second approach, called HASSLE-SLS, is a stochastic local search algorithm that
improves on HASSLE-MILP by offering anytime functionality and by increasing efficiency [17].
It keeps track of a current model and iteratively constructs and evaluates a neighborhood of
minimally altered models, of which the best neighbor then replaces the current model. To
make the approach tractable, the neighborhood is constructed heuristically, keeping only
those models that show some promise of improving on the current model according to the
employed heuristic.

One large drawback of HASSLE-SLS is its long runtime, which is exacerbated when the size
of the learning problem increases. The algorithm slows down significantly when the model
one aims to learn becomes larger, or when the number of distinct contexts occurring in the
training data increases. At the heart of this issue lies the high cost of model evaluation.
HASSLE-SLS is particularly affected by this, because in every iteration, it evaluates an entire
neighborhood of MAX-SAT models before making only a minimal alteration to the current
model. In this paper, we alleviate the runtime issues in two ways. First, we make model
evaluation less expensive by making use of knowledge compilation. Second, we reduce the
number of evaluations needed to find a good model, by developing a novel search strategy
called HASSLE-GEN.

3 Preliminaries

Weighted partial MAX-SAT. Let X = {X;,...,X,} be a set of Boolean variables. An
assignment x — also referred to as an instance — is a mapping of each variable X; € X to
either true or false.

Let L = {X;, X;|X; € X} be the set of literals defined over X, where X; is the negation
of X,;. A disjunctive clause C is a disjunction of literals from L. An assignment satisfies C
when it satisfies at least one of the literals occurring in C'. A formula in conjunctive normal
form (CNF) F is a conjunction of clauses. An assignment satisfies F' when it satisfies all
of the clauses occurring in F. A weighted clause (C,w) consists of a clause C' and a weight
w, which we assume lies in [0, 1] without loss of generality. A weighted CNF formula is a
conjunction of weighted clauses.

S. Berden, M. Kumar, S. Kolb, and T. Guns

A MAX-SAT problem is defined by a CNF formula F'. An assignment is a solution to the
MAX-SAT problem when it satisfies the maximum number of clauses that can simultaneously
be satisfied in F. A partial MAX-SAT problem is defined by two CNF formulas, Fj, and
F,. An assignment is a solution when it satisfies F}, and satisfies the maximum number of
clauses that can simultaneously be satisfied in Fs while satisfying F}. Finally, a weighted
partial MAX-SAT problem is defined by a CNF formula Fj and a weighted CNF formula
F,. An assignment is a solution when it satisfies F}, and accumulates the maximum total
weight in satisfied weighted clauses that can be accumulated in F, while satisfying F},. The
clauses in Fj, and the weighted clauses in Fy can respectively be seen hard and weighted soft
constraints. When an assignment is not a solution because it does not satisfy all the clauses
in Fy, it is called infeasible. When it does satisfy all clauses in F}, but does not accumulate
the maximum attainable weight in satisfied soft constraints of Fj, it is called suboptimal.

For the sake of brevity, we from now on refer to weighted partial MAX-SAT simply as
MAX-SAT. Because this work aims to learn MAX-SAT problems from known solutions and
non-solutions, we will generally refer to a MAX-SAT problem as a MAX-SAT model. When
we speak of the MAX-SAT learning problem, we refer to the problem of learning MAX-SAT
models.

Contexts. As explained in Section 1, there is a strong motivation to think of a historical
labeled example as an instance that is known to be a solution or non-solution in a specific
context. As a context might represent a state of affairs, it often makes sense for it to be a
conjunction. Most generally, however, a context ¢ is simply a propositional formula over
Boolean variables.

An assignment is a solution to a MAX-SAT model consisting of hard constraints F} and
weighted soft constraints Fy in a context ¢ if it satisfies Fj and ¢, and accumulates the
maximum total weight in satisfied weighted clauses that can be accumulated in F while
satisfying Fj and ¢. Thus, it is possible for an instance to be optimal in a particular context,
but suboptimal outside of that context.

4 Problem Statement

In this work, the goal is not to solve MAX-SAT problems, but to learn them from a set of

labeled, contextual examples. Specifically, such an example consists of:

1. A context ¢

2. An assignment x that satisfies context ¢

3. A Boolean label [, denoting whether assignment x is an optimal solution to the target
model in context ¢ or not

Note that the label “non-solution” does not specify whether the example is a non-solution
because it is infeasible or because it is suboptimal. We focus on this type of supervision,
because in real-world settings, the reason for the negative label is typically not available.
While this assumption on the input makes supervision easier to provide, it also gives rise
to a credit assignment problem: when a candidate model wrongly labels an example as a
solution, it is unclear whether the hard constraints or the soft constraints should be altered.
For this reason, both types of constraints should be learned jointly, rather than separately.
The learning task becomes:

» Definition 1 (MAX-SAT learning). Given Boolean variables X = {X1,...,X,} and a set
of labeled contextual examples S = {(¢s, x5, ;)i = 1,...,m}, find hard constraints Fy, and
weighted soft constraints Fs that define a MAX-SAT model which can be used to obtain
high-quality instances in any context ¢.

8:5

CP 2022

8:6

Learning MAX-SAT Models Using Genetic Algorithms and Knowledge Compilation

Something not yet specified is what constitutes a high-quality instance. Intuitively, an
instance is good when it is feasible and close to optimal with respect to the ground-truth
model. The learned model’s ability to generate high-quality instances is reflected in its
infeasibility and average regret, which will be the primary performance measures in the
experimental evaluation. The infeasibility expresses what proportion of solutions to the
learned model are actually infeasible with respect to the ground-truth model. The regret
captures how good the learned model’s solutions are with respect to the ground-truth model’s
soft constraints. In section 7, we will discuss how exactly these measures are computed.

As the ground-truth model is not available, infeasibility and regret cannot be used during
learning. Instead, we aim to maximize the model’s training set accuracy, which is the
proportion of examples whose label correctly denotes how the example relates to the model.

5 Knowledge Compilation

When learning MAX-SAT models, the vast majority of the runtime is spent evaluating
candidate models. Let us consider in more detail why this is the case.

To fully evaluate a model’s training set accuracy, it has to be evaluated on all contextual
examples included in the training data. Checking whether an instance is feasible or infeasible
is relatively straightforward: one merely has to loop over at most all hard constraints of the
model, and check for each whether it is satisfied by the instance. Checking optimality, however,
requires knowing the maximum total weight that can be accumulated while satisfying the
hard constraints. Attaining this information requires solving the model, which is NP-hard
[18]. An additional complication is the fact that examples are accompanied by contexts,
which might affect the optimal total weight that can be accumulated. So, in order to correctly
evaluate a single candidate model, HASSLE-SLS solves a separate MAX-SAT problem from
scratch for every distinct context occurring in the data (which can then be cached and reused
for all examples sharing that context). This causes model evaluation to be particularly slow,
which in turn significantly slows down learning.

The solution we present is based on a novel representation of a MAX-SAT model
as an algebraic decision diagram (ADD). An ADD is an extension of a binary decision
diagram (BDD), in which the terminal nodes can be assigned real values, rather than just
true or false [2]. It is a rooted, directed, acyclic graph which consists of two types of nodes:
decision nodes and terminal nodes. A decision node is associated with a Boolean variable
and branches into two child nodes; one for each truth assignment to the variable. A terminal
node is associated with a real value.

Our ADD representation of a MAX-SAT model maps every infeasible instance onto a
terminal node with value 0 and every feasible instance onto a terminal node with as value
the sum of the weights of all satisfied soft constraints. A useful aspect of this representation
is that the optimal value (in the absence of a context) can very easily be discovered: one
simply has to loop through all terminals in order to find the highest one. This information is
required to determine whether an instance is a solution. An example of a MAX-SAT model
and its corresponding ADD representation is shown in Example 2.

» Example 2.

Consider the MAX-SAT model with hard constraints Fj, = (a V b) and soft constraints
F; =(0.5:bVe)A(0.7: —c). This problem corresponds to the following ADD, in which
negative edges are represented as dashed lines and positive edges as solid lines:

S. Berden, M. Kumar, S. Kolb, and T. Guns

Although the construction of the ADD is necessarily an expensive operation — as it
practically solves the NP-hard MAX-SAT problem — there are potential time benefits in
reusing the resulting ADD for context-specific inference. The main idea is that each candidate
model can be converted to an ADD once, after which the diagram can be reused to compute
the optimal attainable value for all separate contexts occurring in the training data. Contrast
this with the original approach, in which a brand new MAX-SAT problem has to be solved
for every model-context combination.

The evaluation procedure. The full knowledge-compilation-based evaluation procedure
is shown at a high level in Algorithm 1. It takes as input a MAX-SAT model and a set of
labeled contextual examples, and it produces as output the model’s accuracy on the set of
examples. To do this, it performs three steps. First, it constructs an ADD that represents
the model in the absence of any context. Next, it runs through all the contexts present in
the example set and, for each, uses the ADD constructed in step 1 to compute the optimal
value in that context. Finally, it runs through all examples and, for each, uses the ADD
constructed in step 1 to compute the value the example achieves. Each example’s value,
along with its associated context’s optimal value computed in step 2, can then be used to
label the example. Finally, the assigned label is compared with the example’s label in the
training data.
This description naturally raises the following two questions, which we answer in turn:

1. How to convert a MAX-SAT model to an ADD?

2. How to incorporate contexts in the inference done on the ADD?

Constructing the ADD. To transform a MAX-SAT model defined by hard constraints F},
and soft constraints F; to an ADD, we make use of the basic operators defined on BDDs
and ADDs. We do not go over the details of these operations here. For more information,
we refer the reader to chapter 6 of the book Logic in Computer Science [12].

The transformation procedure starts by constructing a separate BDD for each disjunctive
clause, irrespective of whether it is weighted or not. In each BDD that corresponds to a soft
constraint from Fj, the terminal that denotes true is then given the constraint’s associated
weight as value. This effectively casts the BDD to an ADD representing the weighted soft
constraint.

All the BDDs that represent hard constraints are then combined using the multiplication
operator. This results in a single BDD that represents the conjunction of all hard constraints.
Similarly, the ADDs representing soft constraints are combined using the addition operator.
This results in a single ADD in which every instance leads to a terminal that denotes the
total weight in satisfied soft constraints accumulated by that instance. However, this ADD
does not yet consider whether the instances are feasible or not.

8:7

CP 2022

8:8

Learning MAX-SAT Models Using Genetic Algorithms and Knowledge Compilation

Algorithm 1 The evaluation procedure using knowledge compilation.

1: procedure EVALUATE(model: a MAX-SAT model, examples: a set of labeled contextual

examples)
2: score < 0
3: ADD,,ode1 < convert model to ADD
4: contexts < set of all separate contexts occuring in ezamples
5: for each context in contexts do
6: Compute best value of ADD,, qe; in context
7 Cache this best value
8: for each example in examples do
9: instance, context, label <— the instance, context and label of example
10: best-value < retrieve optimal value in context from cache
11: value < compute value of instance in ADD,,o4e1
12: if value = best-value then
13: asstgned-label < solution
14: else
15: assigned-label <— non-solution
16: if label = assigned-label then
17: score < score + 1
18: score < m
19: return score

Finally, the BDD representing the hard constraints and the ADD representing the soft
constraints are multiplied. The effect of this is that the terminals of all feasible paths of the
ADD representing the soft constraints are multiplied by 1, while the terminals of infeasible
paths are multiplied by 0. In turn, all feasible paths still end up in the same terminal node
as before, while infeasible paths are redirected to a terminal with value 0. For compactness,
the resulting diagram is then reduced to a reduced ordered BDD [12]. The resulting diagram
represents the entire MAX-SAT model.

Context-specific inference. Once a candidate model has been transformed into an ADD,
we want to be able to quickly infer the optimal value attainable in a specific context ¢.

A straightforward way of doing this involves multiplying the ADD that represents the
MAX-SAT model with a BDD that represents ¢, and doing inference on the resulting diagram.
However, we have found that this generally takes too long and does not shorten overall model
evaluation time. Similarly, performing restrict operations on the model’s ADD representation
in accordance with ¢ is not fast enough.

Instead, we go through the entire ADD, starting from the root node, and ignoring branches
that violate ¢. The maximum terminal value reached this way is the best attainable value
achievable in ¢.

This process is straightforward when ¢ is a conjunction of literals, as one simply has
to ignore branches that violate one of the literals in ¢. Luckily, this is arguably the most
common scenario, as a context typically represents a state of affairs, which is most naturally
represented using a conjunction.

When ¢ is a disjunction, or more generally a DNF formula, one can repeat the process
above for each conjunctive clause in ¢. The maximum terminal value reached for any of the
conjunctive clauses is then the maximum attainable value in ¢ as a whole.

S. Berden, M. Kumar, S. Kolb, and T. Guns

As an optimization, we perform a precomputation before any example or context is
considered, which involves finding and storing all paths leading to the terminal node with
the maximum value in the ADD representing the MAX-SAT model. A quick computation
can then be made for every context occurring in the training data to determine whether it
violates all of the paths leading to said terminal node. If any of these paths is not violated,
one knows immediately that the optimal value in the context is the same as the one in the
absence of a context, which has been precomputed. In the other case, the procedure detailed
above is used.

6 The Genetic Algorithm

As discussed above, the bottleneck in HASSLE-SLS is the evaluation of MAX-SAT models,
because it involves solving MAX-SAT problems, which is NP-hard. In every iteration of
HASSLE-SLS, an entire neighborhood — which frequently consists of several dozen models —
is evaluated, before the best neighbor is identified and a minimal alteration to the current
model is made. This is the crux of the problem: many expensive candidate model evaluations
lead only to a minimal step in the search space.

For this reason, we develop an alternative search strategy in the form of a genetic
algorithm, which we call HASSLE-GEN. Genetic algorithms form a class of population-based
metaheuristic optimization approaches that are loosely inspired by biological evolution
[10, 11, 21]. They aim to solve optimization problems by evolving a population of candidate
solutions, also referred to as individuals. They generally consist primarily of genetic selection,
mutation and crossover operators. An overview of HASSLE-GEN is given in Algorithm 2. In
what follows, we discuss its components in detail.

Algorithm 2 HASSLE-GEN, a genetic algorithm for learning MAX-SAT models from examples.

1: procedure HASSLE-GEN (examples: a set of labeled contextual examples, k: the
total number of constraints to learn, ¢: the population size, p.: the crossover probability,

[Pm1, Pma2, Pm3): the mutation probabilities, g: the maximum number of generations, ¢:
the cutoff time)

2: Randomly initialize a population of models containing k constraints

3: Evaluate population

4: while generation < g A runtime < ¢ do

5: new-population < empty population

6: while new-population not of size ¢ do

7 parenty, parenty + CROWDING-PARENT-SELECTION (population)

8: if RANDOM() < p. then

9: ind + CLAUSE-CROSSOVER (parenty, parents, examples)

10: else

11: ind < either parent, or parents, selected at random

12: ind <+ HARDNESS-MUTATION (ind, pm1)

13: ind + WEIGHT-MUTATION (ind, p;m2)

14: ind < LITERAL-MUTATION (ind, pn3, examples)

15: survy, surve < CROWDING-SURVIVOR-SELECTION (ind, parent;, parent2)
> Includes evaluation of ind

16: Add survy and surve to new-population

17: population <— new-population

18: return best individual in population

8:9

CP 2022

8:10

Learning MAX-SAT Models Using Genetic Algorithms and Knowledge Compilation

Selection. Selection consists of two components: parent selection and survivor selection.
The former is concerned with determining which individuals of the current population to
subject to the mutation and crossover operations. The latter is concerned with determining
which individuals to keep in the next generation’s population and which to discard. Good
selection strikes an appropriate balance between exploitation of useful information present in
the current population and exploration of new regions of the search space.

Both HASSLE-GEN’s parent and survivor selection are determined by its use of a variation of
the deterministic crowding scheme [19], which we employ because it is effective at maintaining
population diversity, which in turn benefits the search.

Parent selection is straightforward in deterministic crowding: in every generation, each
individual is selected to be a parent exactly once. Because HASSLE-GEN’s crossover operator
only produces a single offspring, this means that in every generation, every individual gives
rise to exactly one offspring, together with another parent individual.

Deterministic crowding’s survivor selection requires a distance metric d between individuals
to be defined. It uses this metric in the following way. Say parents p; and ps gave rise to
offspring o. Then, by the time survivors have to be selected, a matching is made. Parent
p1 is matched to o only if d(p1,0) < d(p2,0); otherwise, parent ps is matched to o. The
offspring and matched closest parent then compete, wherein only the individual with the
highest fitness makes it to the next generation. The other parent automatically survives.
Here, the fitness of a MAX-SAT model is simply its training set accuracy.

A first consequence of this scheme is that the average fitness of the population never
decreases, because a parent never gets replaced by a worse individual. Second, the best
individual is automatically kept in the next generation, unless this individual has produced
an even better offspring. Finally, and most importantly, there is a strong emphasis on
maintaining the initial population’s diversity. This is true because an offspring is typically
quite similar to its parents, with one of which it has to compete for survival, and because the
matching procedure sets up offspring-parent competitions in such a way that the distance
between the competitors is minimized. Having new individuals compete for survival with
similar old individuals is how diversity is maintained, because this prevents any specific
genetic information from quickly taking over the entire population.

What remains to be answered is how the distance metric d is instantiated. We opt for
a metric that captures the semantic distance between MAX-SAT models, rather than a
syntactic distance. The metric makes use of the notion of an accuracy bit vector.

» Definition 3 (Accuracy bit vector). Given a list of examples S, a MAX-SAT model M has
an associated accuracy bit vector v, which has as many entries as S has examples. For each
index i, the entry at index i in v is 1 iff M accurately labels the example at index i in S, and
0 otherwise.

» Definition 4 (Semantic distance). Let S be a list of m examples and let My and My be
two MAX-SAT models with respective accuracy bit vectors v1 and ve. Let their number of
correctly labeled examples be s1 and ss, respectively. Finally, let dg be the Hamming distance
between vy and vy. Then, the semantic distance dgen, between My and My is

dig —

A where L = |s1 — so| and U = m — |$1 + s2 — m|

dSem =
This semantic distance metric considers the Hamming distance of the accuracy bit vectors,
relative to a lower and upper bound. If we were to simply use the Hamming distance itself,
we would give inherent preference to matching highly accurate or highly inaccurate models.

S. Berden, M. Kumar, S. Kolb, and T. Guns

Mutation. A mutation operator takes a single individual as input. Usually, it only makes a
small modification to the individual, in order to slightly redirect the search or to introduce
new genetic information that can then be recombined by crossover operators.

HASSLE-GEN contains three mutation operators, which are all applied to any selected
parent. The first operator, named hardness mutation, loops over all of the individual’s con-
straints and, independently for each constraint, with probability p,,1, changes the constraint
from a hard to a soft constraint or vice versa.

The second operator, named weight mutation, loops over all of the individual’s weighted
soft constraints, and independently for each constraint, with probability p,,2, replaces the
constraint’s weight by a weight sampled uniformly at random from (0, 1].

Finally, literal mutation is responsible for altering the occurrences of variables in clauses.
This operator differs in nature from the first two in that it is more informed; it considers
the training data. It takes effect with probability p,,s. It starts by randomly selecting one
constraint of the individual being mutated. This constraint is the only one to be affected
by the mutation. The operator then constructs a neighborhood around this constraint,
consisting of all other constraints that differ in only a single variable occurrence (i.e., a
single literal appears, disappears or changes its sign), excluding all constraints that already
occur in the model. Finally, the operator uses a heuristic way of evaluating all neighboring
constraints, and mutates the selected constraint into the best neighboring one. The heuristic
evaluation of constraints is based on the notion of coverage, where constraints with higher
coverage are better according to the heuristic.

» Definition 5 (Covering). A constraint ¢ is said to cover an example e consisting of instance
1 and label | if and only if:

lis “solution” and i satisfies ¢

lis “non-solution” and i does not satisfy c.

» Definition 6 (Coverage bit vector). Given a list of examples S, a constraint ¢ has an
associated coverage bit vector v, which has as many entries as S has examples. For each
index 1, the entry at index i in v is 1 iff ¢ covers the example at index i in S, and 0 otherwise.
The sum of all of v’s entries is called c’s coverage.

Note that a constraint’s coverage is only a heuristic measure of its usefulness, as it
disregards the weights of soft constraints and the existence of contexts. Still, in preliminary
experiments, we found that the use of this heuristic leads to a much more effective operator
than one that simply alters literals at random.

Crossover. A crossover operator recombines information from multiple individuals, generally
two. The motivation is that by combining individuals that are fit for different reasons, new
individuals can be obtained that combine the strengths of both parents.

HASSLE-GEN contains one crossover operator, which we call constraint crossover. It
takes two parents as input and produces a single offspring. Unlike the mutation operators,
constraint crossover keeps the constraints themselves intact, but rearranges which constraints
co-occur. It is through this mechanism that HASSLE-GEN is able to take larger steps in the
search space than HASSLE-SLS. Like literal mutation, constraint crossover is an informed
operator and considers the training data. This allows it to bias its steps towards directions
that are likely to improve the model’s training set accuracy.

For any pair of parents, constraint crossover takes effect with probability p.. Given two
parents, each containing k£ constraints, it selects k constraints that are combined in the single
offspring. It does not do so blindly, but considers combinations of the constraints’ coverage
bit vectors.

8:11

CP 2022

8:12

Learning MAX-SAT Models Using Genetic Algorithms and Knowledge Compilation

» Definition 7 (Combining coverage bit vectors). Let S be a list of examples, and let ¢y and
co be constraints with respective associated coverage bit vectors vi and vo. The coverage bit
vector v of conjunction ¢y N co is attained by performing:

a pairwise AND operation on vy and ve for all examples in S labeled “solution”

a pairwise OR operation on vy and ve for all examples in S labeled “non-solution”
The sum of all of v’s entries is called the coverage of c1 A cs.

One option would be to choose the k constraints taken from the two parents which lead
to the largest coverage when combined. However, identifying these constraints involves
computing the coverage of (Zkk) combinations.

Instead, we opt for a sequential selection of constraints that works as follows. First, the
constraint with the highest coverage is selected and copied into the offspring. Then follows a
repeated selection of the constraint that leads to the highest coverage when combined with
the already selected constraints, until k£ constraints have been selected.

7 Experimental Evaluation

In this section, we thoroughly investigate the following research questions.

Q1 Does the knowledge-compilation-based model evaluation procedure speed up the evalua-
tion of candidate MAX-SAT models?

Q2 When given the same amount of time, is HASSLE-GEN able to learn higher-quality
MAX-SAT models than HASSLE-SLS?

Datasets. Each synthetic ground-truth model with k; hard constraints and ks soft con-
straints over n variables is generated such that none of its clauses is entailed by any
combination of the other clauses in the model. For each disjunctive clause, the number of
literals is chosen uniformly at random from [1,5]. The literals themselves are also selected
randomly. For k, of the generated clauses, a weight is sampled uniformly from (0, 1].

For each generated ground-truth model, a dataset is constructed in two phases. First,
a set of conjunctive contexts of n/2 literals is generated such that each included context
actually affects the maximum attainable value in the ground-truth model. Then, for each
context, a specified number of infeasible, suboptimal and solution instances are generated.
Infeasible and suboptimal instances are acquired simply by generating random instances that
satisfy the context until the desired number of infeasible and suboptimal ones are found. To
generate solution instances, a solver is used. To prevent overly similar solution instances, 10
times as many solutions as required are generated for every context, after which the desired
amount are sampled at random.

Performance measures. To answer Q1, we consider the relative increase in the number
of evaluations HASSLE-SLS makes per second when using the novel evaluation procedure
compared to when using the original procedure. For example, a speed-up factor of 3.4 would
mean that HASSLE-SLS was able to perform 3.4 times as many evaluations with the new
evaluation procedure than with the original procedure in the given cutoff time.

To answer Q2, we compute the learned model’s score, infeasibility and average regret.
A model’s score is simply its training set accuracy, which was used as training objective.
The other two metrics assess the quality of the learned model’s solutions with respect to the
ground-truth model that was used to generate the training data.

S. Berden, M. Kumar, S. Kolb, and T. Guns

A learned model M'’s infeasibility expresses what proportion of solutions of M are actually
infeasible with respect to the ground-truth model M*. It can be measured exactly by use
of model counting (MC), i.e., counting the number of solutions to a propositional formula.
However, the MAX-SAT models we consider are not just propositional formulas; they also
contain weighted soft constraints. For this reason, we require a propositional formula
expressing the solutions to the MAX-SAT model. Let M be a MAX-SAT model with hard
constraints Fj. Say that & is a solution to the model which realizes a value of ¢ in satisfied
soft constraints. We can then find each subset of soft constraints .S; for which the associated
weights sum up to ©. Using this, a propositional formula 6,; expressing the solutions of M
can be attained as:

O =Fu A\ N\ 05)

This formula expresses that an instance is a solution to the model if it satisfies the hard
constraints and satisfies one of the subsets of soft constraints that realizes the optimal value.
With Fj denoting the hard constraints of ground-truth model M*, the infeasibility of M
can be computed as:

. MC(0p; A -FF
infy« (M) = IE/Ig(QM) 9,

The average regret of a learned model M with respect to a ground-truth model M*
expresses how good the solutions of M are with respect to the soft constraints of M*. We
compute average regret using only solutions to M that are feasible in M*. Hence, infeasibility
and regret should be considered together to get a complete picture of a model’s quality. We
generate up to 1000 such feasible instances. For each such instance x, let v* be the value it
realizes with respect to M™’s soft constraints, and let ©* be M*’s optimal value. The regret
of z is then simply (9* — v*)/9*. The average regret of M with respect to M* is then the
average regret over the considered instances. The regret is computed in the global context,
i.e., outside of any particular context. Thus, achieving low regret requires good generalization
across contexts, as the model is evaluated in the global context, but is trained using only
contextual data in which the contexts actually matter (i.e., affect the optimal attainable
value of the ground-truth model).

Results. To answer Q1, we run HASSLE-SLS with a cutoff time of 60 seconds on learning
problems of various sizes. We consider sizes similar to the ones considered in [16] and [17]. By
default we use learning problems with 10 variables, 8 hard constraints and 8 soft constraints
in the ground-truth model and 100 contexts with 1 infeasible, 1 suboptimal and 2 solution
examples per context in the dataset. We change each of these properties in turn, while
keeping the others at their default values. When increasing the number of total constraints
of the ground-truth model, half are hard constraints and half are soft constraints. When
increasing the number of examples per context, half are solutions, a quarter are infeasible
and a quarter are suboptimal. For each learning problem size, we vary the randomization
seed to create 15 different learning problems, over which we average the results.

As shown in Figure 1, the novel ADD-based model evaluation procedure gives rise to a
significant speed-up for all learning problem sizes considered. It should be noted that, as the
number of variables or the number of constraints increases, the relative speed-up decreases.
This is caused by the ADD representation growing in size as the size of the MAX-SAT
model increases. On the other hand, when larger training sets are considered, the ADD

8:13

CP 2022

8:14

Learning MAX-SAT Models Using Genetic Algorithms and Knowledge Compilation

« Original evaluation procedure
* Knowledge-compilation-based evaluation procedure

6 7 -/-——I/I 7
. -:\\ - -
0 I) 1 I 1) 1 1 I I I) 1 1 I I I I
8 10 12 14 16 8 16 24 32 4 8 12 16 50 75 100125150

Number of variables Number of constraints Number of examples Number of contexts
per context

Speed-up factor

Figure 1 The speed-up in model evaluation realized by using the knowledge-compilation-based
model evaluation procedure decreases as the number of variables or the number of constraints in the
model increases. On the other hand, the speed-up increases as the example set grows larger.

representation can be reused to a higher degree, increasing the relative speed-up. We can
conclude that the knowledge-compilation-based evaluation procedure is most useful when
learning relatively small MAX-SAT models, or when learning from large training datasets.
This answers Q1.

To answer Q2, we again vary several aspects of the learning problem in turn, but
consider slightly larger learning problems. This time, by default we use 16 variables, 16
hard constraints and 16 soft constraints in the ground-truth model and 100 contexts with
1 infeasible, 1 suboptimal and 2 solution instances per context in the dataset. Again, 15
different randomization seeds are used for each learning problem size. We run HASSLE-SLS
and HASSLE-GEN— both using the knowledge-compilation-based evaluation procedure — on
each learning problem using a cutoff time of 150 seconds. HASSLE-GEN was run with a
population size of 20, p. = 0.5, p;p1 = 0.05, P2 = 0.05 and p,,3 = 1, which were determined
in a coarse grid search on a separate set of learning problems.

As the first row of Figure 2 shows, HASSLE-GEN consistently achieves a higher score than
HASSLE-SLS across many learning problem instances with varying properties. Furthermore,
when the size of the considered models increases, the difference between the scores achieved
by the search methods grows larger. This can be explained by the fact that HASSLE-SLS only
makes a minimal alteration to the current model in every iteration: it changes at most a
single literal, the hardness or the weight of a single constraint. These alterations become
increasingly inconsequential when considering larger models, resulting in exponentially larger
search spaces. By contrast, HASSLE-GEN’s constraint crossover allows for much larger steps
in the search space, and because it considers the training data, these steps tend to go into
an improving direction.

The second and third rows of Figure 2 show how the higher score achieved by HASSLE-GEN
in turn translates into lower infeasibility and regret. This shows that the models learned
by HASSLE-GEN do not merely achieve a higher training set accuracy than those learned by
HASSLE-SLS, but that the solutions they generate are also of a higher quality with respect to
the ground-truth model. This answers Q2.

8 Conclusion

We have made two contributions aimed at alleviating the runtime issues of the state-of-the-art
technique for learning MAX-SAT models from labeled contextual examples. First, to speed
up model evaluation, we proposed a knowledge-compilation-based evaluation procedure.
Our experiments showed this procedure to be most useful when learning relatively small

S. Berden, M. Kumar, S. Kolb, and T. Guns

e HASSLE-SLS
v HASSLE-GEN

DTS
B 7ali s
%g@ﬁﬁ%ﬁ%ﬁﬁ%ﬁ

Score

Infeasibility

1214161820 24 32 40 48 12 20 12 20 4 8 12 16 50 75100125150
Number of Number of Number of Number of Number of Number of
variables constraints hard constraints soft constraints examples contexts

per context

Figure 2 When given the same cutoff time, HASSLE-GEN consistently learns models with a higher
score (i.e., training set accuracy) than HASSLE-SLS. This in turn translates into lower infeasibility
and lower regret, which means that the models learned by HASSLE-GEN can be used to generate
higher-quality solutions than those learned by HASSLE-SLS.

MAX-SAT models or when learning from a large set of training data. Second, to reduce
the amount of evaluations required to find a good model, we proposed a genetic algorithm
named HASSLE-GEN. In the experiments, HASSLE-GEN consistently beat the state of the
art on learning problems of various sizes: when given the same amount of training time, it
learned models that can be used to generate higher-quality solutions.

One possible direction for future work is to try to speed up model evaluation even
further. In our proposed evaluation procedure, an ADD representing the MAX-SAT model
is computed in its entirety, to then be used for context-specific inference. However, some
parts of the ADD might not be relevant in any context occurring in the training data, and
thus do not strictly have to be computed. A “lazy” decision diagram construction procedure
could exploit this fact and lead to even faster evaluation.

Another possible direction is to focus on learning different types of models from examples.

One possible extension is to learn maximum satisfiability modulo theories (MAX-SMT)
models, where constraints are not limited to disjunctive clauses over binary variables, but
can be first-order logic formulas with respect to one or more background theories. Some work
has already been done on learning SMT models from examples [14], but learning MAX-SMT
models from contextual examples has thus far not been explored. Another possible extension
is to learn mixed-integer linear programs (MILP) from contextual data. To this end, recent
work [15] has proposed a search strategy that can be seen as a hybrid between stochastic
local search and stochastic gradient descent. However, the approach suffers from runtime
issues, suggesting that the ideas we proposed here might be of use.

8:15

CP 2022

8:16 Learning MAX-SAT Models Using Genetic Algorithms and Knowledge Compilation

—— References

1

10

11

12

13

14

15

16

17

18

19

20

21
22

Roberto Asin Aché and Robert Nieuwenhuis. Curriculum-based course timetabling with SAT
and MaxSAT. Annals of Operations Research, 218(1):71-91, 2014.

R Iris Bahar, Erica A Frohm, Charles M Gaona, Gary D Hachtel, Enrico Macii, Abelardo
Pardo, and Fabio Somenzi. Algebraic decision diagrams and their applications. Formal Methods
in System Design, 10(2):171-206, 1997.

Nicolas Beldiceanu and Helmut Simonis. A model seeker: Extracting global constraint models
from positive examples. In International Conference on Principles and Practice of Constraint
Programming, pages 141-157. Springer, 2012.

Christian Bessiere, Remi Coletta, Emmanuel Hebrard, George Katsirelos, Nadjib Lazaar, Nina
Narodytska, Claude-Guy Quimper, and Toby Walsh. Constraint acquisition via partial queries.
In Twenty-Third International Joint Conference on Artificial Intelligence, 2013.

Christian Bessiere, Remi Coletta, Frédéric Koriche, and Barry O’Sullivan. A SAT-based
version space algorithm for acquiring constraint satisfaction problems. In Furopean Conference
on Machine Learning, pages 23—-34. Springer, 2005.

Christian Bessiere, Remi Coletta, Barry O’Sullivan, Mathias Paulin, et al. Query-driven
constraint acquisition. In IJCAI, volume 7, pages 50-55, 2007.

Paolo Campigotto, Roberto Battiti, and Andrea Passerini. Learning modulo theories for
preference elicitation in hybrid domains. CoRR, abs/1508.04261, 2015. arXiv:1508.04261.
Luc De Raedt, Andrea Passerini, and Stefano Teso. Learning constraints from examples. In
Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Emir Demirovié¢, Nysret Musliu, and Felix Winter. Modeling and solving staff scheduling with
partial weighted maxSAT. Annals of Operations Research, 275(1):79-99, 2019.

Agoston E Eiben and James E Smith. Introduction to evolutionary computing, volume 53.
Springer, 2003.

David Edward Goldberg. Genetic algorithms in search, optimization, and machine learning.
Addison-Wesley Pub. Co., 1989.

Michael Huth and Mark Ryan. Logic in computer science: Modelling and reasoning about
systems. Cambridge University Press, 2004.

Samuel Kolb. Learning constraints and optimization criteria. In Workshops at the Thirtieth
AAAI Conference on Artificial Intelligence, 2016.

Samuel Kolb, Stefano Teso, Andrea Passerini, and Luc De Raedt. Learning SMT(LRA)
constraints using SMT solvers. In IJCAI, volume 18, pages 2333-2340, 2018.

Mohit Kumar, Samuel Kolb, Luc De Raedt, and Stefano Teso. Learning mixed-integer linear
programs from contextual examples, 2021. arXiv:2107.07136.

Mohit Kumar, Samuel Kolb, Stefano Teso, and Luc De Raedt. Learning MAX-SAT from
contextual examples for combinatorial optimisation. Proceedings of the AAAI Conference on
Artificial Intelligence, 34(04):4493-4500, April 2020. doi:10.1609/aaai.v34104.5877.
Mohit Kumar, Samuel Kolb, Stefano Teso, and Luc De Raedt. Learning MAX-SAT from
contextual examples for combinatorial optimisation, 2022. arXiv:2202.03888.

Chu Min Li and Felip Manya. MaxSAT, hard and soft constraints. In Handbook of satisfiability,
pages 613-631. IOS Press, 2009.

Samir W Mahfoud et al. Crowding and preselection revisited. In PPSN, volume 2, pages
27-36. Citeseer, 1992.

Patrick Mills and Edward Tsang. Guided local search for solving sat and weighted max-sat
problems. Journal of Automated Reasoning, 24(1):205-223, 2000.

Melanie Mitchell. An introduction to genetic algorithms. MIT Press, 1998.

Tomasz P Pawlak and Krzysztof Krawiec. Synthesis of mathematical programming constraints
with genetic programming. In European Conference on Genetic Programming, pages 178-193.
Springer, 2017.

http://arxiv.org/abs/1508.04261
http://arxiv.org/abs/2107.07136
https://doi.org/10.1609/aaai.v34i04.5877
http://arxiv.org/abs/2202.03888

S. Berden, M. Kumar, S. Kolb, and T. Guns

23

24

25

26

27

Emilie Picard-Cantin, Mathieu Bouchard, Claude-Guy Quimper, and Jason Sweeney. Learning
parameters for the sequence constraint from solutions. In International Conference on Principles
and Practice of Constraint Programming, pages 405-420. Springer, 2016.

Emilie Picard-Cantin, Mathieu Bouchard, Claude-Guy Quimper, and Jason Sweeney. Learning
the parameters of global constraints using branch-and-bound. In International Conference on
Principles and Practice of Constraint Programming, pages 512-528. Springer, 2017.

Nathan Robinson, Charles Gretton, Duc Nghia Pham, and Abdul Sattar. Partial weighted
MaxSAT for optimal planning. In Pacific Rim International Conference on Artificial Intelli-
gence, pages 231-243. Springer, 2010.

Sean Safarpour, Hratch Mangassarian, Andreas Veneris, Mark H Liffiton, and Karem A
Sakallah. Improved design debugging using maximum satisfiability. In Formal Methods in
Computer Aided Design (FMCAD’07), pages 13—-19. IEEE, 2007.

Qiang Yang, Kangheng Wu, and Yunfei Jiang. Learning action models from plan examples
using weighted MAX-SAT. Artificial Intelligence, 171(2-3):107-143, 2007.

8:17

CP 2022

Complexity of Minimum-Size Arc-Inconsistency
Explanations

Christian Bessiere &
CNRS, University of Montpellier, France

Clément Carbonnel &
CNRS, University of Montpellier, France

Martin C. Cooper =
IRIT, University of Toulouse, France

Emmanuel Hebrard &
LAAS CNRS, Toulouse, France

—— Abstract

Explaining the outcome of programs has become one of the main concerns in Al research. In

constraint programming, a user may want the system to explain why a given variable assignment is
not feasible or how it came to the conclusion that the problem does not have any solution. One
solution to the latter is to return to the user a sequence of simple reasoning steps that lead to
inconsistency. Arc consistency is a well-known form of reasoning that can be understood by a
human. We consider explanations as sequences of propagation steps of a constraint on a variable
(i-e. the ubiquitous revise function in arc consistency algorithms) that lead to inconsistency. We
characterize, on binary CSPs, cases for which providing a shortest such explanation is easy: when
domains are Boolean or when variables have maximum degree two. However, these polynomial cases
are tight. Providing a shortest explanation is NP-hard if the maximum degree is three, even if the
number of variables is bounded, or if domain size is bounded by three. It remains NP-hard on trees,
despite the fact that arc consistency is a decision procedure on trees. Finally, the problem is not
FPT-approximable unless the Gap-ETH is false.

2012 ACM Subject Classification Theory of computation — Constraint and logic programming;
Theory of computation — Fixed parameter tractability; Theory of computation — Problems,
reductions and completeness

Keywords and phrases Constraint programming, constraint propagation, minimum explanations,
complexity

Digital Object Identifier 10.4230/LIPIcs.CP.2022.9

Funding This work was supported by the AI Interdisciplinary Institute ANITI, funded by the French
program “Investing for the Future — PIA3” under grant agreement no. ANR-19-PI3A-0004. The
first two authors received funding from the European Union’s Horizon 2020 research and innovation

programme under grant agreement No 952215.

1 Introduction

Constraint Programming (CP) is a technology that allows the user to solve combinatorial
problems formulated as constraint networks. A constraint network is characterized by a set
of variables taking values in a finite domain that are subject to constraints. Constraints
restrict the combinations of values that specified subsets of variables can take. One of the
advantages of using CP is that in general constraint networks represent the problem to
solve much more compactly than would an integer linear program or a SAT formula. CP
formulations are not only compact but also easy to understand for the user thanks to the
expressiveness of constraints that allow to remain close to the original problem. However,
nowadays, Al becomes even more demanding in terms of explainability. A user may want to
? Christian Bessiere,. Clément Carbo'nnel, Martin C. Cooper, and Emmanuel Hebrard;

5v icensed under Creative Commons License CC-BY 4.0
28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 9; pp.9:1-9:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:bessiere@lirmm.fr
https://orcid.org/0000-0003-4059-6403
mailto:clement.carbonnel@lirmm.fr
https://orcid.org/0000-0003-2312-2687
mailto:cooper@irit.fr
https://orcid.org/0000-0003-4853-053X
mailto:hebrard@laas.fr
https://orcid.org/0000-0003-3131-0709
https://doi.org/10.4230/LIPIcs.CP.2022.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2

Complexity of Minimum-Size Arc-Inconsistency Explanations

not only understand the formulation of their problem as a constraint network but also to be
provided with explanations of why this assignment is the only solution, why that value is not
feasible, or why the problem does not have any solution.

An abductive explanation for a proposition is often defined as a prime implicant of
that proposition, i.e. an implicant that cannot be generalized further. For instance, an
explanation of a Machine Learning model’s prediction is often defined as a minimal subset
of features that entails that prediction [16, 10]. Similarly, a minimal unsatisfiable core
(irreducible unsatisfiable subset of constraints) can be seen as an abductive explanation for
unsatisfiability since it is a sufficient and minimal reason for unsatisfiability. At least one
term of an abductive explanation must be relaxed in order to change the outcome. This is
the viewpoint adopted in many existing approaches. For instance by providing explanations
in the form of minimal sets of choices of the user that lead to the given value removal (e.g.,
product configuration [1]), or explanations in the form of minimal sets of constraints that
lead to an inconsistency [11]. The purpose of such approaches is to help the user to repair
the inconsistency, not to let them understand why it is an inconsistency.

Intuitively, an explanation is more than a sufficient condition. In particular, if an
abductive explanation answers the “why” question, it does not answer the “how” question.
An intuitive definition of an explanation also covers the demonstration of how the considered
cause has that consequence. For instance, when solving a logic puzzle, we may want to
let the user understand why the zebra is necessarily in the middle house, not by providing
a set of constraints of the problem that rule out all other positions for the zebra, but by
displaying a sequence of simple reasoning steps that lead to that conclusion. This notion
of demonstrative explanation can be related to proof systems and to the notion of formal
proof. A formal proof better explains unsatisfiability by making every step explicit down to
axiomatic definitions. For instance, a refutation proof log using the reverse unit propagation
(RUP) system [8, 9] allows one to formally verify the unsatisfiability of a formula, provided
that one can “trust” the application of the unit propagation rule, i.e. trust that a given
formula that is refutable via unit propagation is indeed unsatisfiable. This is valid in the
context of formal proof verification where each unit propagation refutation can be checked
efficiently. However, this may produce very long proofs in which each step might be too
complex for an explanation to a non-expert.

We would therefore want to produce demonstrative explanations, allowing a trustworthy
verification, however with minimal requirements on the recipient of the explanation. This is
of course impossible in general. In [17, 2], the choice was made to provide explanations in
the form of sequences of inferences performed by constraint propagation. We consider an
even simpler, and also incomplete, proof system: Arc Consistency. Arc consistency has often
been considered as a sufficiently strong inference technique on applications where the human
is in the loop (configuration [12], logic puzzles [17]).

Our goal is to analyze the complexity of providing the shortest possible explanation of arc
inconsistency of a problem. For simplicity of presentation, we restrict ourselves to normalized
networks of binary constraints. We show that when variables have degree two or domains
are Boolean, finding a shortest explanation of arc inconsistency is polynomial. However, the
problem is NP-hard in general and the two polynomial cases above are tight. Finding a
shortest explanation of arc inconsistency is NP-hard as soon as variables have degree three,
even if the number of variables is bounded (even though the problem is obviously polynomial
to solve). It is also NP-hard if domain size is bounded by three. Perhaps more surprisingly,
it remains NP-hard on trees, where arc consistency is known to be a decision procedure.
We also show that there is little hope that we can efficiently find short (if not shortest)
explanations: the problem is not FPT-approximable unless the Gap-ETH is false.

C. Bessiere, C. Carbonnel, M. C. Cooper, and E. Hebrard

2 Background and Definitions

The constraint satisfaction problem (CSP) involves finding solutions to a constraint network.
A constraint network (or CSP instance) is defined as a set of n variables X = X;,..., X,
a set of domains D = {D(X),...,D(X,)}, where D(X;) is the finite set of values that X;
can take, and a set C of constraints. A binary constraint ¢(X;, X;) is a binary relation that
specifies which combinations of values (tuples) the variables (X;, X;) are allowed to take. A
CSP is binary when all the constraints are binary. A binary CSP is said to be normalized if
there is at most one constraint per pair of variables. A degree-2 CSP does not contain any
variable involved in more than two constraints. Arc consistency (AC) is the basic form of
inference reasoning on constraint networks. A tuple 7 of values on (X;, X;) is called a support
on constraint ¢(X;, X;) for a value v € D(X;) (and 7[X}] its support in D(X})) if and only
if 7[X;] = v, 7[X;] € D(X;) and 7 € ¢(X;, X;). A value v in D(X;) is arc consistent if and
only if v has a support on every constraint involving X;. A network is arc consistent if all
values in all domains are arc consistent. The operation revise(X;, ¢(X;, X;)), often denoted
by X; & X ; in the following, removes from D(X;) all values that do not have any support
on ¢(X;, X;). If enforcing arc consistency on a network (that is, applying revise() operations
until a fix point is reached) leads to a domain wipe out (i.e. an empty domain), we say that
the network is arc inconsistent.

» Definition 1 (Arc Inconsistency Explanation). An arc inconsistency explanation for a CSP
instance is a sequence of revise() operations such that one of the domains is wiped out by
the execution of the sequence of revise() operations.

» Definition 2 (Shortest Arc Inconsistency Explanation). The shortest arc inconsistency
explanation problem consists in finding an arc inconsistency explanation of minimum length.

» Example 3 (Explaining the Zebra puzzle). The Zebra puzzle, which may (or may not) be
due to Lewis Carroll, has a well known CSP model whereby, for each of the 5 house colors,
nationalities, beverages, cigarette brands, and pets, we have a variable whose value is the
number of the corresponding house (e.g., Xzeprq stands for the house where the Zebra lives).
The constraints are statements such as The Englishman lives in the red house or The Old
Gold smoker owns snails. Moreover, each house has a unique colour, its owner has a unique
nationality, drinks a unique beverage, smokes a unique brand, and has a unique pet.
Applying arc consistency on this CSP detects that “the Kools smoker does not live
in the 2nd house”. A demonstrative explanation would be: The Norwegian lives in the

first house. Since the Norwegian lives next to the blue house, then the 2nd house is blue.

Since the 2nd house has a single color, then it is not yellow. Since Kools are smoked in the
yellow house, then the Kools smoker does not live in the 2nd house.

Each step corresponds to the arc consistency revision of some domain knowledge (in bold)
with respect to a constraint (in italic), that is, it corresponds in our framework to the following

. . 4 -
sequence of Temse() operations: <XBlue — XNorwegiam Xvellow ¢ XBlue; XKools XYellow>-

3 Complexity of Explaining Arc Inconsistency: Structure

We show that if all variables are involved in no more than two constraints, finding shortest
arc inconsistency explanations is polynomial. We then show that this class is tight. As soon
as we allow a variable to be in the scope of three constraints, the problem becomes NP-hard,
even if the CSP has no more than four variables. Perhaps even more surprising, the problem
is NP-hard on CSPs structured as trees, despite arc consistency being a decision procedure
on trees.

9:3

CP 2022

9:4

Complexity of Minimum-Size Arc-Inconsistency Explanations

3.1 Tractability on degree-2 CSPs

» Theorem 4. SHORTEST ARC INCONSISTENCY EXPLANATION is solvable in time polynomial
in the number of variables and values when restricted to binary normalized networks with
mazximum degree two.

Proof. A constraint network of maximum degree two is composed of unconnected cycles
and paths. A shortest arc inconsistency explanation clearly always concerns only one of the
connected components of the network. An exhaustive search over all connected components
only increases complexity by at most a linear factor. Since, furthermore a path can be viewed
as a degenerate cycle (a cycle in which one constraint disallows no tuples), it follows that we
only need consider the case of a single cycle.

Without loss of generality, we suppose that the cycle is X, ..., X,,, with constraints
(X, Xi41), where here and in the rest of the proof addition within subscripts is understood to
be modulo n, so that for example X,, 11 actually refers to X;. We say that revise() operations
are clockwise (resp. anticlockwise) if they are of the form X, 1 < X; (resp. X; < X;y1). We
say that a pair of revise() operations R;, Ro commute if the two sequences R; Ry and RoRy
produce the same result. It is easy to verify that the only revise() operations that may not
commute are those in which the destination variable of one is the source variable of the other.
Furthermore, revise() operations in opposite directions (clockwise and anticlockwise) always
commute, even X; < X, 1 and X;; + X,. Thus the only pairs of revise() operations that
do not commute are of the form {X; < X;;11, X;+1 < Xit2}. What’s more, if we have the
operations X; <= X;11, X;+1 < X;42 in this order, then the set of value-eliminations cannot
decrease if we inverse the order of these two operations.

In a shortest arc inconsistency explanation E, a revise() operation must be useful: it must
eliminate a domain value whose elimination is essential for a subsequent revise() operation
or for the final domain wipe-out. In the former case, the operation X; < X;;1 must be
followed later in the sequence by X;_1 + X;. Let S be the sequence of revise() operations
in E between the operation X; < X, and the next subsequent occurrence of X; 1 < Xj.
By the above discussion on commutativity, we can shift the operation X; <— X; 1 just after
S without decreasing the set of value-eliminations since S does not contain X; ; < X;. In
this way, we can group together all the anticlockwise revise() operations to form a sequence
of anticlockwise operations on consecutive edges in the cycle. The same argument holds
for clockwise operations which can be grouped together to form a sequence of clockwise
operations on consecutive edges in the cycle.

An obvious observation is that a shortest arc inconsistency explanation is necessarily of
length bounded by nd, where d is the maximum domain size, since at least one elimination
must occur at each operation. Moreover, there are up to n possible starting points for the
sequence of clockwise (resp. anticlockwise) operations. Hence a shortest explanation can be
found in polynomial time, by exhaustive search over the starting points and lengths of the
clockwise/anticlockwise sequences. |

3.2 Intractability on CSPs with four variables

The result in Theorem 4 is tight. We show that as soon as we allow variables to have degree 3,
finding a shortest explanation becomes NP-hard. This is true even if the number of variables
is bounded by four. (Observe that all binary normalized CSPs on three variables have degree
at most 2.) We use a reduction from CLIQUE, which is NP-complete [13], to prove hardness.

C. Bessiere, C. Carbonnel, M. C. Cooper, and E. Hebrard

» Definition 5 (CLIQUE).
Input: An undirected graph G = (V, E) and an integer k
Question: Is there S CV such that |S| < k and for alli#j€ S, {i,j} € E?

It is noticeable that CSPs with a bounded number of variables have a constant number
of possible revise() operations available at each step —only 12 in the case of four variables.
This is not sufficient to make the problem of finding a shortest explanation easy.

» Theorem 6. SHORTEST ARC INCONSISTENCY EXPLANATION is NP-hard, even on binary
normalized networks with four variables.

» Lemma 7. Deciding whether there exists an arc inconsistency explanation of length smaller
than or equal to k is NP-complete, even on binary normalized networks with four variables.

Proof. Membership. Given a sequence of revise() operations, we decide whether this sequence
is an arc inconsistency explanation by executing each revise() in the order of the sequence
and checking whether one of the domains is empty after these executions. As constraints
have bounded arity, executing a revise() operation is polynomial, so the whole process is
polynomial.

Completeness. We reduce the CLIQUE problem to the problem of deciding whether there is
an arc inconsistency explanation of length at most 3n + 3 for a CSP instance. Let G = (V, E)
be a graph with set of vertices V = {1,...,n}.

We construct the CSP instance Pg with four variables X = {X, X5, X3, X4}, all with
domain {(p,i) :p€0.n+1,i€l.nfU{s :t € 1l..k+1}.

We build the set of constraints

C = {c1(X1,X2), c2(X1, X3),c3(X2, X3), X1 = Xy, Xo = Xy, X3 = X4}
with:

c1(X1, X2) = {((p = 1,4), (p,7)) : p € [0,n + 1], Vi # p € [1,n]}
U{((p —2,1),(p,7)) : p € [0,n+1],¥i € [1,n]}
U{(st,8¢) : t €[l k+1]}
(X1, Xs) ={lp—1,%),(p,3)) :p € [0,n+1],Vi € [1,n]} U{(st—1,8:) : t € [1,k+ 1]}
5(Xo, X5) = ({{(p.1) :p € [0, + 1]i € L]} }\
{((n+1,0),(n+1,5)):i=j Vv {i,j} € E})
U{{ss:te[l,k+1]}?}

The constraint network for a graph with 3 vertices and the edges {1,2} and {2, 3} is shown
in Figure 1.

We first show that if G contains a k-clique, then, there exists an arc inconsistency
explanation of length 3n + 3 for Pg.

Assume that the set of vertices S is a k-clique. We build the sequence R(S) of revise()
operations in the following way, and we will say that R(S) encodes the set S, since there is a
one-to-one mapping between subsets S C V' and this type of explanation:

If p ¢ S, the (3p — 2)th element in the sequence R(S) is Xy €~ X, the (3p — 1)th element

is X4 «— X, and the (3p)th element is X; < Xj.

If p € S, the (3p — 2)th element in the sequence R(S) is X3 < X, the (3p — 1)th element

is X4 < X3, and the (3p)th element is X; < Xj.

9:5

CP 2022

9:6

Complexity of Minimum-Size Arc-Inconsistency Explanations

X9 C1 X1 Cc2 X3 Cc3 X2
(0,1) (0,1) (0,1) (0,1)
(0,2) (0,2) (0,2) (0,2)
(0,3) (0,3) (0,3) (0,3)
(1,1) (1,1) (1,1) (1,1)
(1,2) (1,2) (1,2) (1,2)
(1,3) (1,3) (1,3) (1,3)
(2,1) (2,1) (2,1) (2,1)
(2,2) (2,2) (2,2) (2,2)
(2,3) (2,3) (2,3) (2,3)
(3,1) (3,1) (3,1) (3,1)
(3,2) (3,2) (3,2) (3,2)
(3,3) (3,3) (3,3) (3,3)
(4,1) (4,1) 4,1) ~oo__ - (4,1)
(4,2) (4,2) (4,2) <2227 TIz= (4,2)
(4,3) (4,3) (4,3) -=-" """ 7=-- (4,3)

vl
g
vl
fary

S1 S1 \
S2 S2 \ S2 S92
S3 S3 S3 S3

Figure 1 The CSP Pg, reduction of the graph G = ({1, 2,3}, {(1,2), (2,3)}). Solid edges represent
allowed tuples for ¢; and c2, while dashed edges stand for forbidden tuples of c3. The equality
constraints are not represented. There are two explanations of Arc-Inconsistency of length 12.
The first encodes the clique {2,3} with the revise() operations X» & X1, X3 & X, X3 & X3
at positions 1, 4, and 7 in the sequence. The second encodes the clique {1,2} with the revision
operations X5 < X1, X3 & X1, X2 & X at positions 1, 4, and 7.

Then the last three elements in the sequence R(S) are X, & X1, X3 & X1, and X5 & X3.
In the following, the subsequence composed of the (3p — 2)th, the (3p — 1)th, and the (3p)th
operations (that is, (Xs E X, Xy & X0, Xy & X4) or (X3 E X, Xy & X3, X, & Xy)), is
called the pth iteration.

Before each iteration p € {1,...,n} of three domain revisions, the invariants are:
(¢:i) ¢ D(X1) Vg <p—1,Yi € [L,n] (1)
s;€D(Xy) <= k+1>j>|5n{0,...,p— 1} (2)
(p—1,i) e D(X;) < ieSU{p,...,n} (3)

All invariants are verified before entering iteration p = 1. For each one, we show that if it
is true before entering iteration p > 1 then it remains true before entering iteration p + 1.

Invariant 1: Notice that a value (¢,¢) € D(X3) (resp. D(X3)) is only supported by values
(¢’,i) € D(X1) such that ¢’ < q. If Invariant 1 is true before iteration p, then when revising
the domain of either X5 or X3, D(X;) contains no value (g,¢) with ¢ < p — 1 and therefore
all values (p — 1,1) are removed from D(Xs) (resp. D(X3)). The revisions w.r.t. equality
constraints make sure that this is propagated back to D(X7).

Invariant 2. Notice that a value s; € D(X3) is only supported by value s;_1 € D(X3),
whereas the tuple (s¢, s¢) is a support in all other constraints. If Invariant 2 is true before
iteration p, then either p € S in wich case the operation X5 € X, removes the value s (with
j=15n{0,...,p—1} +1) from D(X3) since the value s;_; was its only support and is not
in D(X1); or Xp €& X removes no s value and |S N {0,...,p — 1}| does not change.

Invariant 3. For any ¢ € [1,n]:

C. Bessiere, C. Carbonnel, M. C. Cooper, and E. Hebrard

If ¢ > p, then we have (p — 1,i) € D(X;) which is a support for (p,i) w.r.t. ¢; and co
hence (p,) is not removed and the invariant holds because i € {p+1,...,n}.

If i < p, notice that by Invariant 1, the tuple ((p — 2,1), (p,?)) cannot be a support
for (p,i) € D(X3). Therefore, both constraints ¢; and ¢y have the same unique potential
support for the value (p,) (in D(X3) and D(X3) respectively): ((p—1,%), (p,)). So we have:
“(p—1,17) € D(X;) before iteration p” iff “(p,4) € D(X;) before iteration p 4+ 1”. In addition,
1€ SU{p,....,n} <= 1€ SU{p+1,...,n} because i < p. Finally, by the induction
hypothesis we have “(p — 1,7) € D(X;) before iteration p” iff i € SU{p,...,n}, and hence
by transitivity: “(p,i) € D(X1) before iteration p+ 17 iff i € SU{p+1,...,n}.

If i = p, there are two cases: If p € S, then the first operation at iteration p is X3 < X,
(p,) is not removed since it is supported by (p — 1,), and the invariant is true at iteration
p+1since i € S. If p ¢ S, then the first operation at iteration p is Xy < X1, (p,i) is
removed, and the invariant is true at iteration p+ 1 since i € SU{p +1,...,n}.

After n iterations, the invariants hold for p =n + 1 (i.e. after the 3n-th operation) and
hence D(X) is {(n,i)Vi € S} U {(n+ 1,i)Vi} U {sp41}}. The call to X5 €& X; then yields
D(X3) = {(n+1,i)Vi € S} U{sk;1} and the call to X3 & X yields D(X3) = {(n+1,i)Vi €
S}. Therefore, the last call to Xo & X5 produces a wipe-out, since on layer n + 1, the
remaining vertices stand for a clique of G and the allowed tuples are non-edges of G.

We then prove that if G does not contain any k-clique, then the shortest arc inconsistency
explanation for Pg is of length strictly greater than 3n 4+ 3. We first show that the shortest
explanation must use constraint cz, then we show that only explanations that encode a set
S CV (as defined above) such that S is a clique of size k of G can be the shortest.

Suppose first that the constraint ¢z does not appear in any revise() of the explanation.
By construction, the values (p,i) are organized in layers, where a layer ¢ is the set of
values (g,1),Vi. Wiping out the domain of a variable requires removing the n + 2 layers
0 to n + 1 from its domain. Moreover, removing a layer ¢ from X; (resp. Xy or X3)
requires having already removed layer ¢ + 1 (resp. ¢ — 1) from X5 or X3 (resp. Xj).
Removing a layer ¢ from X, requires having already removed layer ¢ from X;, X5, or
Xs3. Hence, removing a layer ¢ from a variable requires iteratively removing layers 0
to g —1or n+ 1 down to g+ 1 from other variables. The only way to do that is to
execute a sequence of revise() operations looping on a cycle of variables {X7, Xa, X4},
or on {X1,X3,X4}, or both. Looping in the order (X; & Xo Xy & X1, Xy & X4) or
(X1 & Xg, Xy & X1, X5 & X4) removes layers from n+ 1 down to ¢, whereas looping in the
order (Xo E X, Xy & X0, Xy & X4) or (X3 & X, Xy & X3, X, & X4) removes layers
from 0 up to ¢g. We can then compute the number of revise() operations necessary to remove
a layer ¢ from a variable given the order in which we loop. If we execute revise() operations
in the orders (X; & X5, Xy & X1, Xo & Xy) or (X1 & X3, Xy & X1, X3 & X,), layer ¢
is removed from the domain of X; (resp. X5/Xs, or X4) in 3(n + 1 — ¢q) + 1 operations
(resp. 3(n+1—¢q)+3, or 3(n+ 1 — ¢q) + 2 operations). If we execute revise() operations
in the orders (Xo <& X1, X4 & Xo, X1 & Xy) or (X3 & X1, Xy & X3, X1 < X4), layer ¢ is
removed from the domain of X; (resp. Xo/X3, or Xy4) in 3¢ + 3 operations (resp. 3¢ + 1, or
3q + 2 operations). As wiping out a domain requires, given a value ¢, removing layers 0 to ¢
from below and layers n + 1 down to ¢ + 1 from above, we conclude that a domain wipe out,
on either X7, Xo, X3, or Xy, requires at least 3n + 4 revise() operations. This means that
there does not exist any arc inconsistency explanation for Pg of length smaller than or equal
to 3n + 3 if we do not use c3 in the explanation.

9:7

CP 2022

9:8

Complexity of Minimum-Size Arc-Inconsistency Explanations

Hence, we must use c3. However, by construction of c3, every value in D(X32) (resp.
D(X3)) is supported as long as at least one value (p,?) with p € [0,n], and any value s, is
in the domain of D(X3) (resp. D(X3)). In other words, to remove a layer with a revise
on c3, the domains of X3 and X3 must only contain (p,i) values from layer n + 1. This
requires us to remove all layers from 0 to n — 1 from X; by executing n loops by a sequence of
revise() operations (Xo/X3 X1, X4 + Xo/X3, X1 < Xy) for a cost of 3n operations, plus
aXo & X; and a X5 & X, to remove layer n from X5 and X3. In other words, it must be
a sequence of revise() operations that encodes a set, i.e., R(S) for some set S C {1,...,n}.
Now, suppose that S is not a clique and let i; and i5 be two non-adjacent vertices in S. By
Invariant 3, at iteration n + 1, we have (n,i;) € D(X;) and (n,i3) € D(X7) and hence after
operations Xo ¢~ X; and X3 & X, we have (n + 1,i1) € D(X5) and (n + 1,i5) € D(X3).
Therefore, neither Xo < X5 nor X3 € X, would fail, and at least one more operation is
necessary. Finally, suppose that |S| < k. Then by Invariant 2, at iteration n + 1, we have
sk € D(Xy) and hence after operations Xs & Xp and X3 € X;, we have sp+1 € D(Xo)
and sg+1 € D(X3). Therefore, at least one more operation is necessary. Consequently, the
number of operations can be equal to 3n + 3 only if S is a clique of size k of G. |

3.3 Intractability and inapproximability on trees

We have seen in Section 3.2 that SHORTEST ARC-INCONSISTENCY EXPLANATION is already
NP-hard on networks with four variables. This result does not completely settle the intract-
ability of the problem. For example, it is still possible that a polynomial-time algorithm
exists for some broad generalization of degree-2 networks that does not contain 4-cliques (for
instance, networks of treewidth 2). We show that it is not the case. We use a simple reduction
from DOMINATING SET, which is NP-complete [7], to derive NP-hardness of SHORTEST
ARC-INCONSISTENCY EXPLANATION, even on trees.

» Definition 8 (DOMINATING SET).
Input: An undirected graph G = (V, E) and an integer k
Question: Is there S C V such that |S| < k and for alli € V, there is j € S with {i,j} € E?

The NP-hardness of SHORTEST ARC-INCONSISTENCY EXPLANATION on trees circum-
scribes even more tightly the degree-2 tractability island of Section 3.1. However, these
NP-hardness results do not rule out efficient approximation algorithms nor fixed-parameter
tractable algorithms, which could be satisfactory for applications where only short explan-
ations are worth computing and optimality is not strictly necessary. We again show that
such desirable scenarios are not possible. We show that our reduction from DOMINATING
SET can be used to derive (conditional) fixed-parameter inapproximability of SHORTEST
ARC-INCONSISTENCY EXPLANATION.

We must briefly introduce some terminology before we can formally present the result.
A minimization problem P is fpt-approzimable [4] if there exist computable functions f,p :
N — R>; such that n - p(n) is nondecreasing and an algorithm A that, given as input a
non-negative integer k and an instance I of P that has a solution of cost at most k, computes
a solution to I of cost at most k - p(k) in time f(k) - [I|°"). Here, p is the approximation
ratio and f is possibly exponential. Note that if a problem is not FPT-approximable, then no
such algorithm A exists for any computable functions f and p; such problems are sometimes
called completely inapprozimable [15].

Our FPT-inapproximability result is conditional on a complexity hypothesis known as the
Gap-ETH [6, 14], which states that there exists a constant € > 0 such that no algorithm with
runtime 2°(") can distinguish satisfiable 3-SAT instances from those in which no assignment

C. Bessiere, C. Carbonnel, M. C. Cooper, and E. Hebrard

satisfies a (1 — €) fraction of the clauses. It has been shown recently [3] that the MINIMUM
DOMINATING SET problem (which consists in finding the smallest dominating set in a graph)
is not FPT-approximable unless the Gap-ETH is false.

» Lemma 9. Deciding whether there exists an arc inconsistency explanation of length smaller
than or equal to k is NP-complete, even on binary tree-structured normalized constraint
networks.

Proof. Membership. As in Lemma 7.

Completeness. We reduce the DOMINATING SET problem to the problem of deciding
whether there is an arc inconsistency explanation of length at most k for a CSP instance.

Let G = (V, E) be a graph, V = {v1,...,v,}. We construct a constraint network Pg as
follows: the set of variables is {Y, X1,..., X, }, where the domain of Y is {v1,...,v,} and
the domain of each X, is {v;}, and Py contains a constraint ¢(Y, X;) = {(v;,v;) : {vi,v;} ¢
E and v; # v;} for all i > 1. An example of this reduction is shown in Figure 2. We claim
that G has a dominating set of size k if and only if Pg has an arc-inconsistency explanation
of length k.

If G has a dominating set S of size k, then let R be a sequence containing every operation
Y < X; such that v; belongs to S. Since every v; € V is dominated by some v, € S (which
is either v; itself or one of its neighbours), by construction v; is removed from D(Y) by
Y < Xj. Therefore D(Y') is empty at the end of the sequence and R is an arc-inconsistency
explanation of length k.

Conversely, if R is a minimal arc-inconsistency explanation of Pg of length k£ then we can
assume that it is a sequence of operations of the form Y «+ X;. (Since each D(X;) contains
a single value, only the last operation could be X; +— Y for some ¢, and in that case it can be
replaced with Y <— X;.) Then, the set S = {v; : Y + X, occurs in R} must be a dominating
set of size k: at the end of R every v; € D(Y) has been pruned by some operation ¥ < Xy,
and every value removed at this step is by construction dominated by vy in G.

Pg is a tree-structured constraint network and can be constructed in polynomial time
from G. Therefore, SHORTEST ARC-INCONSISTENCY EXPLANATION is NP-hard on such
networks. <

» Theorem 10. SHORTEST ARC INCONSISTENCY EXPLANATION is NP-hard and not FPT-
approzimable unless the Gap-ETH is false, even on binary tree-structured normalized con-
straint networks.

Proof. In the reduction of the proof of Lemma 9, the size-k dominating sets of G are in one-
to-one correspondence with arc-inconsistency explanations of Pg of length k. Furthermore,
the dominating set corresponding to an explanation can be computed in polynomial time,
so any FPT-approximation algorithm for SHORTEST ARC-INCONSISTENCY EXPLANATION
translates into one for MINIMUM DOMINATING SET. By the results of [3], this would imply
that the Gap-ETH is false. <

As a final remark, we note that the same inapproximability result can be established
under the weaker (and more conventional) complexity hypothesis FPT # W/[2]. However,
the proof is significantly more involved and has been left out for the sake of brevity.

4 Complexity of Explaining Arc Inconsistency: Domain Size

We show that finding shortest arc inconsistency explanations is polynomial on binary
normalized CSPs with Boolean domains. Again, this class is tight: As soon as we allow three

9:9

CP 2022

9:10 Complexity of Minimum-Size Arc-Inconsistency Explanations

Y

1 4 X1:u0 v1 va : Xg
\ 3
9 3 X9 1 v2 U3
/ :

5 X3 :vs3 Vs vs : X5

Figure 2 Left: a graph G. Right: the constraint network Pg in the proof of Lemma 9.

values per domain, the problem becomes NP-hard.

4.1 Tractability on Boolean domains

» Theorem 11. SHORTEST ARC INCONSISTENCY EXPLANATION is solvable in polynomial
time when restricted to binary normalized networks with all domains of size at most two.

Proof. Let P = (X, D,C) be a binary CSP with domain size at most two. We assume,
without loss of generality, that all domains D(X;) are non-empty subsets of {0,1} and
that no constraint relation is empty. Let X,. be the variable at which a domain wipe-out
occurs in a shortest arc inconsistency explanation. Complexity is only multiplied by n
if we perform an exhaustive search over all possible variables X, so in the following we
consider X, to be fixed. We construct a directed causal graph Gp in which shortest arc
inconsistency explanations correspond to particularly simple subgraphs. In Gp there are
two types of vertices: source-variable vertices X7 (i = 1,...,n), and variable-value vertices
(Xi,a) i=1,...,n,a € {0,1}). Gp has the following directed edges: (X7, (X;,b)) (for all
i,7,b such that b € D(X;) has no support in D(X;)), and ((X;,a), (X;,b)) (for all 4,7,a,b
such that a € D(X;) is the only support of b € D(X;)). Each arc corresponds to a possible
revise operation: (X7, (X;,b)) corresponds to the elimination of b from D(Xj) since it has
no support in D(X;), and ((X;,a), (X;,b)) corresponds to the elimination of b from D(X})
when its unique support a € D(X;) has been eliminated. An example of the causal graph for
a simple CSP is shown in Figure 3.

Let R be a shortest arc inconsistency explanation, and let X, be the variable at which
a wipe-out occurs. By minimality of R, each revise operation in R eliminates a value from
a domain. Indeed, each operation, except possibly the last, eliminates exactly one value
otherwise there would be a domain wipe-out before the end of R. Furthermore, the only way
that the final revise operation X,. +— X; of R can cause the simultaneous elimination of both
0 and 1 from D(X,) (without there already being a wipe-out at D(X;)) is that (1) some
value b € D(X,) never had any support at X; and (2) the other value 1—b lost its unique
support a at X; by a previous operation in R. We can deduce from (1) and (2) that just
before the execution of X, < X;, the value 1—a in D(X;) has no support at X,.. This implies
that we can replace the last operation X, +— X; of R by its inverse operation X; < X, to
produce an arc inconsistency explanation of the same length as R but in which the final
operation eliminates a single value (namely 1—a from D(X;) leading to a wipe-out at X;).

For any revise operation in R, eliminating b from D(X;), there is a corresponding arc
(u,v) in Gp where v is the vertex (X;,b) and w is the cause of the elimination of b from
D(X,). By the above argument, we can assume that each revise operation in R corresponds
to a single elimination and hence a single arc in Gp. Let G be the subgraph of G p consisting

C. Bessiere, C. Carbonnel, M. C. Cooper, and E. Hebrard

X1<X2 A

Xy < X3 X{ — (X2,0) (X3,0) (X4,0) (Xs5,0) — (X5,0) (X1,0)
X3 < Xy \X

X4 < X5

X< Xg X5 — (X6,1) — (X5,1) — (X4,1) — (X3,1) — (X2, 1)
X < X4 ‘\/
Xo # X4

Figure 3 Left: a Boolean binary CSP P (the domain of every variable is {0,1}). Right: the
causal graph Gp of the proof of Theorem 11. The shortest explanation involves the two paths in red
originating from X7 and corresponds to the sequence (X2 + X1, X3 < X, X4 + X3, X4 + Xo).

of the arcs corresponding to the operations of R. Let X, be again the variable at which a
wipe-out occurs at the end of R. For each a € D(X,), in G there must be a directed path
P, from a source-variable vertex to (X, a). By minimality, the set of arcs of G is the union
of the set of arcs of P, (a € D(X,)). Since each elimination has a unique cause (given by
the arc corresponding to the revise operation in R producing the elimination), the in-degree

of each vertex in Gg is at most one. Furthermore, source-variable vertices have in-degree 0.

It follows that Py and P; can only possibly share arcs along an initial common subpath.

If D(X,) is a singleton {a}, then G must be a shortest path in Gp from a source-variable
vertex to (X, a) and hence can be found in polynomial time by a standard shortest-path
algorithm. So now suppose that D(X,) = {0,1}. If the set of edges of Py and P; are disjoint
then Py and P; must both be shortest paths in Gp from source-variable vertices to (X, 0)
and (X, 1), respectively. If Py and P; have an initial common subpath, then they must
diverge at some vertex v of Gp, the common initial subpath is a shortest path in Gp from a
source-variable vertex to v and the remaining divergent paths Pj and Pj are shortest paths
from v to (X,,0) and (X,, 1), respectively. By an exhaustive search over the O(n) vertices v
of Gp, we can determine the paths Py and P; in polynomial time. |

Tt is interesting to note that in the proof of Theorem 11, one of the paths P}, P| may
actually be empty. In this case, Gy is a path (either Py or P;). This occurs if the elimination
of a from D(X,) triggers a sequence of revise operations that leads to the elimination of 1—a
from D(X,). Another interesting point is that if P, P are both non-empty, then the revise
operations corresponding to P; can all be inversed (i.e. each X; < X; becomes X; <+ X,)
and their order reversed in R to produce an alternative shortest arc inconsistency proof R

which ends in a wipe-out at the variable X at which Pj and P| diverged. For instance,

the sequence (X5 < X1, X3 + X9, Xy < X3, X5 < X4) is also a shortest explanation in
the example of Figure 3. In this case, G is a path (obtained in the example by using the
edge in blue ((X4,0), (X2, 1)) instead of ({(X3,0), (X4,1))). Hence, we can optimise since the
exhaustive search over vertices v is unnecessary.

4.2 Intractability on domains with three values

» Theorem 12. SHORTEST ARC INCONSISTENCY EXPLANATION is NP-hard, even on binary
normalized networks with all domains of size at most three.

9:11

CP 2022

9:12 Complexity of Minimum-Size Arc-Inconsistency Explanations

Figure 4 The constraint network Pg in the proof of Lemma 13 when looking for a dominating
set in the graph G = ({1,2,3,4},{(1,2),(2,4),(2,3),(3,4)}).

» Lemma 13. Deciding whether there exists an arc inconsistency explanation of length
smaller than or equal to k is NP-complete, even on binary normalized networks with all
domains of size at most three.

Proof. Membership. As in Lemma 7.

Completeness. We reduce the DOMINATING SET problem (whether a graph G has
a dominating set of size at most k) to the problem of deciding whether there is an arc
inconsistency explanation of length at most 4n + k + 1 for a CSP instance. Let G = (V, E)
be a graph with V = {1,...,n}.

We construct the CSP instance Pg with 5n + 2 variables

X={Xy,...,Xn,X,,....X,X,,....X, ,Hy,...,Hy,By,..., By, Y}

all with domain {0, 1,2} except By whose domain is {0} and Y whose domain is {2}.
We build the set of constraints
C = {a(X,,X):iel,n]} U {ca(X),X;) i €[L,n]}
U {Cg(Xi,Xj) : {Z,]} € E} @] {C4(X1',HZ‘) NS [l,n]}
U {C5(Bi_1,Hi) NS [1,n]} U {CG(Hi;Bi) NS [l,n]} @] {Bn = Y}}
where
(X7, X)) = {(0,0)}
02(X2{,Xi) = {(07 0)7 (1’ 1)) (27 2)}
CS(Xian) = {07 1v2} X {O’ 1a2} \ {(0v2)> (270)}
C4(Xia Hi) = {0’ 1, 2} X {O’ 1, 2} \ {(O, 1)’ (17 1)}
(Hl) :{071’2} X {O’LZ}\{(OvQ)a(LZ)}
CG(HiaBi = {Ov 172} X {07 172} \ {(072)}

cs(Bi—1,

The constraint network is shown in Figure 4 for a graph with n = 4 vertices and 4 edges.
We first prove that if G contains a k-dominating set, then there exists an arc inconsistency
explanation of length 4n + k + 1 for Pg. Assume that the set of vertices S is a k-dominating

C. Bessiere, C. Carbonnel, M. C. Cooper, and E. Hebrard

set. We build the sequence R of revise() operations in the following way. The first k elements
in R are X/ & X;/ for each vertex i in S. The k next elements in R are X; £ X!, again
for vertices 7 in S. After those 2k revise() operations, for all ¢ in S, D(X;) = {0}. Then,
for each vertex j in V' \ S, R contains X; ¢ X;, where i € S and {i,j} € E. We know
such a vertex i exists for each j because S is a dominating set. After those additional
n — k revise() operations, for all ¢ not in S, D(X;) = {0,1}. The n next elements in R are
H; & X;, removing value 1 from D(H;) because 2 ¢ D(X;). The 2n next elements in R are
(H; & Bi4,B; & H;) in increasing order of ¢ from 1 to n. Each H; £ B,_1 removes value
2 from D(H;) if 2 ¢ D(B;—1) and B; £ H; removes value 2 from D(B;) if 1,2 ¢ D(H;).
As By = 0 and value 1 has already been removed from all H;’s domains, those 2n revise()
remove value 2 from the domain of all B;. Finally, after these 2k + (n — k) +n+2n=4n+k
revise() operations, the last element in R, Y < B, wipes out the domain of Y and proves
arc inconsistency.

We then prove that if there exists an arc inconsistency explanation for Pg of length
dn+k+1, then G contains a k-dominating set. We first observe that if we remove c5(Byg, Hy)
or B, =Y from Pg, the instance becomes satisfiable. (By is necessary to trigger removals of
value 2 from the H;s and Y to trigger removals of value 0.) Hence, no wipe out can occur
without executing 2n + 1 revise() operations on the path from By to Y. Furthermore, if
a single variable H; still has value 1 in its domain, the propagation of removals stops. As
a result, value 2 needs to be removed from all X;s and a revise() needs to be executed on
the n constraints c4. We then have n + k remaining available operations to remove value 2
from all X;s. If we do these removals thanks to the sequence (X! & X', X; € X/), it costs
2n operations, which is more than n + k. To reach n + k, we need to remove value 2 in a
single operation for at least n — k variables. The only way to do that is through a X; & Xx;
for n — k variables X;. Now, X; £ X; removes value 2 from D(X;) only if D(X;) = {0}
and c3(X;,X;) € C. D(X,) is equal to {0} only if X; is one of the k variables on which
(X! & X, X; € X!) has been executed. c3(X;, X;) belongs to C only if {i,j} € E. As
a result, the set of k vertices ¢ corresponding to the k variables with D(X;) = {0} is a
dominating set. |

5 Conclusion

We have investigated the complexity of finding a shortest proof of inconsistency of a binary
CSP in the form of a sequence of arc consistency operations. Our characterisation in terms
of structure or domain size shows that this problem is polynomial when variables have degree
two or domains are Boolean. The problem is NP-hard if the CSP has four variables of
degree three or if the domain size is bounded by three. It is also NP-hard on trees. In
addition, the problem is not FPT-approximable unless the Gap-ETH is false. Although
our initial motivation was to provide short explanations for human users, there are other
possible applications. Virtual Arc Counsistency (VAC) algorithms for cost-function networks
use arc-inconsistency explanations in the CSP of zero-cost tuples in order to update cost
functions [5]. Our NP-hardness results can be seen as a justification for the use of minimal
rather than minimum-cardinality arc-inconsistency explanations by VAC algorithms. On a
final positive note, the polynomial-time algorithm for the special case of size-2 domains may
prove an inspiration for heuristic methods to improve minimal arc inconsistency explanations
via the search for shortest paths in the causal graph described in the proof of Theorem 11.

—— References

1 Jérome Amilhastre, Héléne Fargier, and Pierre Marquis. Consistency restoration and explan-
ations in dynamic CSPs application to configuration. Artif. Intell., 135(1-2):199-234, 2002.

9:13

CP 2022

9:14

Complexity of Minimum-Size Arc-Inconsistency Explanations

10

11

12

13

14

15

16

17

doi:10.1016/S0004-3702(01)00162-X.

Bart Bogaerts, Emilio Gamba, and Tias Guns. A framework for step-wise explaining how
to solve constraint satisfaction problems. Artif. Intell., 300:103550, 2021. doi:10.1016/j.
artint.2021.103550.

Parinya Chalermsook, Marek Cygan, Guy Kortsarz, Bundit Laekhanukit, Pasin Manurangsi,
Danupon Nanongkai, and Luca Trevisan. From Gap-ETH to FPT-inapproximability: Clique,
dominating set, and more. In Chris Umans, editor, Proceedings of the 58th IEEE Annual
Symposium on Foundations of Computer Science (FOCS’17), pages 743-754. IEEE Computer
Society, 2017. doi:10.1109/F0CS.2017.74.

Yijia Chen, Martin Grohe, and Magdalena Griiber. On parameterized approximability. In
Hans L. Bodlaender and Michael A. Langston, editors, Parameterized and Ezxact Computation,
Second International Workshop, IWPEC, volume 4169 of Lecture Notes in Computer Science,
pages 109-120. Springer, 2006. doi:10.1007/11847250_10.

Martin C. Cooper, Simon de Givry, Marti Sanchez-Fibla, Thomas Schiex, and Matthias
Zytnicki. Virtual arc consistency for weighted CSP. In Dieter Fox and Carla P. Gomes, editors,
AAAT 2008, pages 253-258. AAAI Press, 2008. URL: http://www.aaai.org/Library/AAAT/
2008/2aai08-040. php.

Irit Dinur. Mildly exponential reduction from gap 3SAT to polynomial-gap label-cover.
Electronic Colloguium on Computational Complexity, page 128, 2016.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness (Series of Books in the Mathematical Sciences). W. H. Freeman, first edition
edition, 1979.

Allen Van Gelder. Verifying RUP proofs of propositional unsatisfiability. In ISAIM, 2008.
E. Goldberg and Y. Novikov. Verification of proofs of unsatisfiability for CNF formulas. In
2008 Design, Automation and Test in Europe Conference and Exhibition, pages 886-891, 2003.
doi:10.1109/DATE.2003.1253718.

Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva. Abduction-based explanations
for machine learning models. Proceedings of the AAAI Conference on Artificial Intelligence,
33(01):1511-1519, 2019. doi:10.1609/aaai.v33101.33011511.

Ulrich Junker. QUICKXPLAIN: preferred explanations and relaxations for over-constrained
problems. In Deborah L. McGuinness and George Ferguson, editors, Proceedings of the
Nineteenth National Conference on Artificial Intelligence, Sizteenth Conference on Innovative
Applications of Artificial Intelligence, pages 167-172. AAAT Press / The MIT Press, 2004.
Ulrich Junker. Configuration. In Francesca Rossi, Peter van Beek, and Toby Walsh, editors,
Handbook of Constraint Programming, volume 2 of Foundations of Artificial Intelligence, pages
837-873. Elsevier, 2006.

R. Karp. Reducibility among combinatorial problems. In R. Miller and J. Thatcher, editors,
Complexity of Computer Computations, pages 85-103. Plenum Press, 1972.

Pasin Manurangsi and Prasad Raghavendra. A birthday repetition theorem and complexity of
approximating dense CSPs. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca
Muscholl, editors, Proceedings of the 44th International Colloguium on Automata, Languages,
and Programming (ICALP’17), volume 80 of LIPIcs, pages 78:1-78:15. Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik, 2017. doi:10.4230/LIPIcs.ICALP.2017.78.

Déniel Marx. Completely inapproximable monotone and antimonotone parameterized problems.
In Proceedings of the 25th IEEE Annual Conference on Computational Complexity, pages
181-187, 2010. doi:10.1109/CCC.2010.25.

Andy Shih, Arthur Choi, and Adnan Darwiche. A symbolic approach to explaining Bayesian
network classifiers. In IJCAI’18, pages 5103-5111. AAAI Press, 2018.

Mohammed H. Sqalli and Eugene C. Freuder. Inference-based constraint satisfaction supports
explanation. In William J. Clancey and Daniel S. Weld, editors, AAAI 96, IAAI 96, Volume
1, pages 318-325. AAAI Press / The MIT Press, 1996.

https://doi.org/10.1016/S0004-3702(01)00162-X
https://doi.org/10.1016/j.artint.2021.103550
https://doi.org/10.1016/j.artint.2021.103550
https://doi.org/10.1109/FOCS.2017.74
https://doi.org/10.1007/11847250_10
http://www.aaai.org/Library/AAAI/2008/aaai08-040.php
http://www.aaai.org/Library/AAAI/2008/aaai08-040.php
https://doi.org/10.1109/DATE.2003.1253718
https://doi.org/10.1609/aaai.v33i01.33011511
https://doi.org/10.4230/LIPIcs.ICALP.2017.78
https://doi.org/10.1109/CCC.2010.25

A Constraint Programming Approach to Ship Refit

Project Scheduling
Raphaél Boudreault &
Thales Digital Solutions, Québec, Canada

Vanessa Simard &
NQB.ai, Québec, Canada

Daniel Lafond =&
Thales Digital Solutions, Québec, Canada

Claude-Guy Quimper &

Université Laval, Québec, Canada

—— Abstract

Ship refit projects require ongoing plan management to adapt to arising work and disruptions.
Planners must sequence work activities in the best order possible to complete the project in the
shortest time or within a defined period while minimizing overtime costs. Activity scheduling
must consider milestones, resource availability constraints, and precedence relations. We propose a
constraint programming approach for detailed ship refit planning at two granularity levels, daily
and hourly schedule. The problem was modeled using the CUMULATIVE global constraint, and
the Solution-Based Phase Saving heuristic was used to speedup the search, thus achieving the
industrialization goals. Based on the evaluation of seven realistic instances over three objectives,
the heuristic strategy proved to be significantly faster to find better solutions than using a baseline
search strategy. The method was integrated into Refit Optimizer, a cloud-based prototype solution
that can import projects from Primavera P6 and optimize plans.

2012 ACM Subject Classification Computing methodologies — Planning and scheduling; Theory of
computation — Constraint and logic programming

Keywords and phrases Ship refit, planning, project management, constraint programming, scheduling,
optimization, resource-constrained project scheduling problem

Digital Object Identifier 10.4230/LIPIcs.CP.2022.10

Supplementary Material Software (Source Code): https://github.com/raphaelboudreault/chuffed/
releases/tag/SBPS; archived at swh:1:dir:3eb166e6188719513b62f76255922420c13c9997

Funding This project has received financial support from the Scale Al Canadian Innovation Super-
cluster and from the Mitacs Accelerate program.

Acknowledgements Thanks are due to the many members of the Refit Optimizer project team
and our collaborators at Dalhousie University, Polytechnique Montréal, Sodan, Simwell and Genoa
Design International. We are very grateful to the many domain experts consulted and to Seaspan

Victoria Shipyards for their invaluable feedback.

1 Introduction

Ship refit planning is a complex and tedious endeavor that requires scheduling several hundred
(or thousand) tasks across a time horizon that may span several weeks, months or even over
a year [2]. Planners must ensure that precedence relations between tasks are respected, that
the required human and material resources are available, and that the scheduled work is
completed within the maximum allocated project duration. For instance, dry-dock work
periods need to be fixed years in advance, thus leaving no flexibility for increasing project

© Raphaél Boudreault, Vanessa Simard, Daniel Lafond, and Claude-Guy Quimper;
37 licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).

Editor: Christine Solnon; Article No. 10; pp. 10:1-10:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:raphael.boudreault@thalesgroup.com
https://orcid.org/0000-0002-5602-7515
mailto:vanessa.simard@nqb.ai
https://orcid.org/0000-0001-8861-8902
mailto:daniel.lafond@thalesgroup.com
https://orcid.org/0000-0002-1669-353X
mailto:claude-guy.quimper@ift.ulaval.ca
https://orcid.org/0000-0002-5899-0217
https://doi.org/10.4230/LIPIcs.CP.2022.10
https://github.com/raphaelboudreault/chuffed/releases/tag/SBPS
https://github.com/raphaelboudreault/chuffed/releases/tag/SBPS
https://archive.softwareheritage.org/swh:1:dir:3eb166e6188719513b62f762559a2420c13c9997;origin=https://github.com/raphaelboudreault/chuffed;visit=swh:1:snp:ff1764f3cbf74a1eccfe4b906da5fefa8d013f64;anchor=swh:1:rev:7ae65707e5d6323432668fc5dac1326c3bf0a90a
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2

A CP Approach to Ship Refit Project Scheduling

time span. Potential goals of planners in this context are to create schedules minimizing the
project total duration or, in case the planning horizon prevents the work to be accomplished
in time, minimizing the overtime labor costs. Some planners focus on other needs, such as
creating robust schedules leaving flexibility to adjust to unforeseen delays. Indeed, while
initial plans must be free of conflicts, unplanned events, delays and their arising work require
ongoing re-planning efforts throughout the project. While initial planning may take several
weeks for large projects, leaving time for planners to manually attempt optimizing the task
scheduling, replanning leaves very little time for planners to consider their options and thus
is mainly an opportunistic and reactive process.

There exist multiple enterprise resource planning tools such as Microsoft Project [25],
Primavera P6 [33], and IBM Maximo [18], which are typical software solutions to support
ships refit planning. Yet beyond the core project management functionalities, the support for
optimizing schedules with computational methods from operations research remains limited
to resources leveling, i.e. spreading the workload more evenly across the project duration.
Some optimization solutions have been previously created for custom projects, yet lack
reusability. To our knowledge, the only generic and reusable schedule optimization capability
currently available is the Aurora (Stottler Henke) intelligent scheduling solution [35]. While
the available information about Aurora’s proprietary optimization algorithms is limited,
these are described as being based on heuristics, as opposed to exact methods, derived from
domain experts. While this satisfying approach is highly relevant and effective for human
problem solving given the human brain’s bounded computational capabilities, we posit that
optimization algorithms can be developed to do better than human-derived heuristics. The
current work aims to push further the state-of-the-art in this area by producing a general
purpose exact method enhanced with metaheuristics.

Thales Canada has set out to create Refit Optimizer, a prototype solution for multi-
objective optimization in the ship refit domain, while also designing it to be reusable across a
wide variety of other scheduling contexts [22]. The key motivation for this work comes from
challenges and innovation opportunities identified in the context of the Arctic/Offshore Patrol
Ships and Joint Support Ships in-service support (AJISS) program with the Royal Canadian
Navy. Herein, the focus is on detailed planning, using either days or hours as the basic time
unit. The Refit Optimizer prototype is currently operational, deployed on a secure cloud
platform, and combines several complementary services for importing/exporting project
data (from/to Primavera P6), visualizing the schedule using an interactive Gantt chart
and tasks list, editing the schedule, freezing scheduled tasks, and optimizing the schedule
according to one of three different objectives (makespan, overtime costs or robustness).
Additional capabilities include comparing options, analyzing and visualizing geospatial
conflicts, forecasting progress, modeling uncertainties and assessing risks using discrete-event
simulations (see [22]).

We propose a constraint programming approach for detailed ship refit planning that is
currently fully integrated into Refit Optimizer. The problem considered is closely related to
the Resource-Constrained Project Scheduling Problem (RCPSP) [16, 17, 34] and is modeled
using the efficient CUMULATIVE global constraint [1, 38]. We use the Solution-Based Phase
Saving (SBPS) value selection heuristic [13, 42] to speedup the search and obtain better
solutions in a reasonable time. We evaluate our approach on a benchmark formed of seven
instances supplied by our industrial partners, namely Sodan, the AJISS team and Seaspan
Victoria Shipyards, which are compared to each other using RCPSP complexity metrics from
the literature.

R. Boudreault, V. Simard, D. Lafond, and C.-G. Quimper

The paper is organized as follows. Section 2 describes the ship refit planning problem.

Section 3 presents background notions on scheduling, constraint programming, SBPS and
RCPSP complexity measures. The CP model is presented in Section 4, as well as its
extensions and the search heuristics developed in our context. Our approach is evaluated on
the benchmark instances in Section 5. Finally, Section 6 addresses the applicability of the
solution to an industrial setting, followed by a conclusion suggesting directions for future
work.

2 Problem Description

Ship refitting is an important shipyard event during which all ship’s activities are suspended
for improvements. The objective of a refit is to restore, customize, modify, or modernize
part of a ship. Most of the time, however, stopping all activities can become costly, which
makes efficient ships refit planning important. The time window, or horizon, during which a
refit takes place can be decided years in advance. When the horizon is exceeded, the dock
is no longer available and the ship has to leave. Thus, in order to estimate the required
duration, planners have to consider a large number of daily or even hourly tasks depending on
multiple capacity-limited resources, both human and material. Furthermore, due to physical
limitations, a maximum number of workers must be simultaneously allowed in some work
areas. Precedence relationships must be considered between many of the tasks, while some
date constraints, such as milestones, must be achieved. Finally, specific tasks must be idle
over the weekends. In practice, the initial planned time is often insufficient, in which case
overtime for some tasks can be scheduled to fit in the restrictive horizon.

Three main objectives are targeted in this project according to the challenges faced by
shipyards. First, to support planners in their horizon estimation, the prototype solution

has to offer to minimize the refit total duration, also known in scheduling as makespan.

This helps the planner at the tactical level by identifying the minimum time needed for
a certain ship refit, according to the constraints on tasks. Then, it has to allow the user

to produce an operational plan over a fixed horizon that minimizes the overtime costs.

Since a lot of unplanned delays happen during the actual refit execution, this option helps

a shipyard respect their obligation while minimizing costs associated with overtime labor.

Finally, the solution has to propose an operational plan taking the robustness into account
when planning overtime. The idea is to minimize the risk of exceeding the refit deadline by
planning the overtime work, as much as possible, at the beginning of the horizon. Thus, if
unforeseen events during the execution increase the need for overtime before the end of the
refit, it is still possible to proceed. With the option of these three objectives, a user can
efficiently estimate a ship refit duration, while being supported during its execution.

Our research is based on the practical needs of our industrial partners which supplied us
with realistic use cases. Table 1 presents seven instances of different sizes that were made
available for our tests. Each instance is defined by a horizon, given in days or in hours
depending on the planning granularity, which represents the available time to complete all
tasks. The proposed horizon comes from the initial planners overestimate and can be seen as
a baseline for the makespan minimization. The number of tasks, precedence relations, and
resources, as well as the task duration range (without overtime), help to better evaluate and
compare the size of the instances. The number of tasks that can be performed in overtime
(#0) is given, where a “*” indicates that those tasks must be idle during weekends. Some

tasks do not follow any work hours requirement and thus cannot be shortened nor suspended.

A common example of this in a ship refit is paint drying tasks. The number of work areas
(#WA) is also presented and included as a specific type of resource.

10:3

CP 2022

10:4 A CP Approach to Ship Refit Project Scheduling

Table 1 Size comparison of the seven instances supplied by our industrial partners.

. Tasks Task Precedence Resources

Instance Horizon #E#O) duration # relations # (#WA)
day-yacht21 29 days 1 (20) 1-3 days 32 9 (2)
hour-yacht21 704 hours 21 (20) 1-8 hours 32 9 (2)
generic136 178 days 136 (136%*) 1-20 days 99 9 (4)
softwarel38 183 days 138 (138*) 1-10 days 341 8 (0)
navy253 728 hours 253 (253%) 1-8 hours 246 92 (87)
cruise510 268 days 510 (464*) 1-15 days 550 32 (24)
navy830 6200 hours 830 (830*) 1-200 hours 816 146 (128)

The first four instances, day-yacht21, hour-yacht21, generic136, and software138,
were artificially created by the team for testing purposes. They are used to test the limits of
the optimization algorithms, since realistic instances are somewhat simpler because they are
manually created by human experts. The instances day-yacht21 and hour-yacht21 are two
versions of the same ship with different task durations and planning granularities, respectively
days and hours. This simple problem has been used in user workshops to compare the result
of a manual optimization to the result of our approach. Instance generic136 does not
describe a particular ship refit and was created to test simultaneously various precedence
and date constraint types. Instance software138 describes the management of a software
development project, which is used to show the genericity of our approach to scheduling
problems with resources. Other instances are anonymized versions of real, or closely inspired
by real, refit use cases from recent years. Instances navy253 and navy830 are two versions
of a real use case provided by the AJISS team, while cruise510 is inspired by a sample
problem provided by Seaspan Victoria Shipyards.

3 Background
3.1 Scheduling

The problem we consider is part of the great family of scheduling problems. In the operations
research and optimization literature, scheduling problems are many and varied. Given a set
of tasks Z, these problems require finding when to execute each task over a definite timeline
T :=40,1,...,tm}, where each t € T is a discrete time point, so that an objective function
is optimized while different constraints are satisfied. Specifically, our scheduling use case is
highly related to the Resource-Constrained Project Scheduling Problem (RCPSP). Introduced
in 1969 by Pritsker et al. [34], its standard definition (see e.g. [16, 17]) supposes first that
preemption is forbidden, i.e. that each task cannot be interrupted once started. Then, a
finite set of resources R is considered, where each task ¢ € Z requires an amount h; , € 720
of resource r € R used for its whole duration. Each resource r € R has a constant usage
capacity ¢, € Z° and is fully available at any time (renewable). Also, the resources are
cumulative, i.e. more than one task can use a resource at a time. Thus, the RCPSP assumes
at each time point ¢ € T that each resource’s total usage by tasks does not exceed its capacity.
Finally, precedence relationships between some tasks are considered. The objective is to find
a schedule with the earliest project ending date or, in other words, the minimal makespan.

Blazewicz et al. [7] have shown that the RCPSP belongs to the strongly NP-hard problems.
Thus, its computation complexity and industrial application interest has led to a plethora of
techniques, both exact and heuristic, in various research domains. These approaches include

R. Boudreault, V. Simard, D. Lafond, and C.-G. Quimper

notably specialized branch-and-bound methods [12, 21, 40], mized-integer programming [11, 20]
and, as presented in Section 3.2, constraint programming. We refer the reader to Pellerin et
al. [30] for a recent survey of current heuristic approaches.

Among the various RCPSP benchmark instance sets in the literature, three are usual:
PSPLIB [19], BL [5] and PAck [8]. While these contain from 17 to 120 tasks, our instances
listed in Table 1 are significantly larger. Furthermore, the number of resources in these
benchmarks is at most 5, while ours can go up to 146. Planning horizons, as well as navy830
maximal task duration, are also greater than the ones in these benchmarks that go up to
139 and 19 time points respectively, but are comparable to the ones in the more realistic
instances of Koné et al. [20].

3.2 Constraint Programming

Constraint Programming (CP) is a powerful programming paradigm to solve combinatorial
problems. In particular, it can be used to optimally solve many large-scale optimization
problems under constraints [36]. A CP model is formed of decision variables, each provided
with a finite set of possible values called domain and denoted dom(X) for a variable X.
The relationships between the variables are defined by constraints, each provided with a
specialized inference algorithm. Optimization problems also have an objective function to
minimize. CP solvers generally perform a tree search to find feasible solutions, where each
node of the tree corresponds to a partial solution, and each branching is a node created from
its parent with an additional assignment of an unfixed variable to a value. The branching
selection rules for variables and values are defined using heuristics.

Significant efforts have been made in the constraint programming community to effi-
ciently solve scheduling problems involving resource constraints. Introduced by Aggoun and
Beldiceanu [1], the CUMULATIVE global constraint enforces the usage of a resource by tasks
to be at most its capacity for each time point in the optimization timeline. Formally, for a
resource r € R, given variables S; and D; are respectively the starting time and duration of
task ¢ € Z, CUMULATIVE([S; | € Z|,[D; | i € Z], [hir | i € Z],¢,) is logically equivalent to

Z hi,r S Cp Vt e T

i€l
Si<t<Si+D;

Over the years, many efficient rules for the CUMULATIVE constraint have been developed
to detect failures and filter variables’ domains (see e.g. [4, 6, 14, 29, 41]). Furthermore,
important progress towards solving large-scale RCPSP instances with CP has been made by
Schutt et al. [37, 38] by combining some of these rules with lazy clause generation. Introduced
by Ohrimenko et al. [28], this technique is a hybrid between CP and boolean satisfiability
(SAT) solvers. During the search, each filtered value is now recorded with an explanation as
a SAT clause. When a failure is detected, the solver uses its explanations to learn a nogood,
a core reason for what led to this conflict. This nogood is then added as a new constraint to
the solver’s underlying SAT mechanism. As a result, this process allows avoiding reproducing
the same choices later during the search. Furthermore, it enables SAT-based branching
heuristics depending on variables’ activity in conflicts, notably Variable State Independent
Decaying Sum (VSIDS) [26]. Several modern and efficient CP solvers, such as Chuffed [9]
and OR-Tools [31], are based on the lazy clause generation technique.

10:5

CP 2022

10:6

A CP Approach to Ship Refit Project Scheduling

3.3 Solution-Based Phase Saving

Large Neighborhood Search (LNS) [32, 39] is a metaheuristic that has been successfully used
in many contexts for scaling exact solving methods to large optimization problems. Given
an initial solution, the technique iteratively improves the best known solution according
to the considered objective. At each iteration, a neighborhood is chosen such as a part of
the variables are fixed to their value in the current solution, whereas the others are relaxed,
which generates a smaller subproblem. Solutions of the latter can then be quickly found by
any chosen method.

One of the major drawbacks of relying on LNS to find better solutions for an optimization
problem is the loss of exactness from the initial solving method. Thus, a relatively simple,
efficient and closely related to LNS value selection heuristic for CP solvers has been introduced
by Vion and Piechowiak [42] as Best-Solution. Demirovié¢ et al. [13] introduced the same
heuristic soon after under the name Solution-Based Phase Saving (SBPS). We refer in the
following to this heuristic as the latter terminology.

Given an optimization problem with variables Xi,..., X, a variable selection heuristic
H,,, and a value selection heuristic Hyal, let b = (b1, ..., b,) denote the current best solution,
if one exists, where b; corresponds to the value of X; in this solution. If X} is the variable
chosen by H,,;, the SBPS branching strategy does the following;:

a) If b exists and by € dom(Xy), then choose the value by, for X;
b) Else, choose a value for X}, following H.,).

Thus, the strategy focuses the search around the current best solution as much as possible.
Combined with a restart strategy and a dynamic variable selection heuristic such as VSIDS,
SBPS effectively mimics LNS [13]. Indeed, starting from the root node, the search fixes almost
all variables to their current best solution value, and then searches around this solution for a
subset of unassigned variables with backtracking, thus implicitly building a neighborhood.
The size of the latter is then limited by the restart strategy. Also, the dynamic aspect of
the search produces a built-in diversification of neighborhoods, besides that VSIDS tends
to select closely related variables. The resulting strategy produced interesting results on a
variety of instances [13, 42].

3.4 RCPSP Complexity

In order to properly assess the performance of our approach on the instances in Table 1,
it is important to compare them on a similar scale. To do so, Artigues et al. [3] listed a
selection of state-of-the-art indicators that characterize the complexity of RCPSP instances.
These indicators are typically used to generate instances of a targeted complexity level, but
are also relevant to evaluate existing instances. They can be classified in four categories:
precedence-oriented, time-oriented, resource-oriented, and hybrid.

The Order Strength (OS) is a precedence-oriented indicator showing how much the
instance’s precedence constraints induce an ordering of the tasks [3, 24]. If P denotes the set
of task pairs {i,j} (i,j € Z, i # j) which cannot be executed in parallel due to a chain of
precedence constraints between them, OS is defined as the ratio of |P| over the total number
of task pairs:

_
O T

We have OS € [0,1]. It has been observed that the closer the value is to 1, the more ordered
the tasks and the lower the complexity.

R. Boudreault, V. Simard, D. Lafond, and C.-G. Quimper

The Resource Factor (RF) is a resource-oriented indicator which evaluates the resource
usage by tasks [3]. It is defined as the ratio of the average number of required resources by
task over the number of resources:

ZiEI,TER Ui,r

RF =
IZIIR|

where u; , equals 1 if task ¢ € 7 requires resource r € R (h;, > 0), and 0 otherwise. We

have RF € [0, 1]. It has been shown that as the RF value increases, the complexity also does.

The Resource Strength (RS) indicator combines a time-oriented view with the resource

max

18X when tasks

complexity [3, 10]. For each resource r € R, it considers its maximal usage ¢
are scheduled at their earliest while satisfying precedence constraints,

max

=

= h;
rtnea;’{ i
ieZps
where ZFS C T is the subset of tasks executed at time point ¢ in this schedule. The resource’s
strength RS, is then defined by the ratio of its overall availability over its availability in the
earliest schedule:

¢ — Cmin
RST = cmax _Tcmin7
T T
where c?““ = max;ez h; . In the case where ¢ < ¢,, RS, is instead fixed to 1. Thus,

every resource r € R with RS, = 1 is always sufficiently available and is not a constraint.
The RS value is obtained by averaging RS, over all resources. We have RS € [0, 1], and the
complexity generally increases as RS decreases.

The Disjunctive Ratio (DR) indicator is a hybrid between the precedence and resource
complexities [3, 5]. The set of task pairs P which cannot be executed in parallel from OS
is extended with a set D of pairs that would violate a resource constraint if both tasks
overlapped in time, i.e. D = {{4,5} :3r € R, hi, + hj, > ¢, }. DR is then defined as the
ratio of the number of elements in this new set over the total number of task pairs:

|PUD|
DRi= ————.
IZ|(1Z] — 1)/2

We also have DR € [0, 1]. It has been established that the higher DR is, the more disjunctive
the instance is.

4 Methodology
4.1 Main model

In the following, we present the main CP model developed for the ship refit planning problem,
as described in Section 2. It is inspired from the classical RCPSP model for CP [38]. Note
that in this model, we assume a planning granularity in days. Extensions to support hours
and other specific constraints are discussed in Section 4.2.

Reusing the scheduling notation introduced in Section 3.1, we define the input parameters.
The horizon t,, € Z~° determines the scheduling timeline as the set 7 = {0,1,...,t,,}. If
T is the given set of tasks to schedule, each task i € T is associated with sZ, s¥ € T and
ek, eV € T which are lower (L) and upper (U) bounds on the task starting (s) and ending
(e) times as implied by the date constraints. Each task ¢ € 7 also has a processing time

10:7

CP 2022

10:8

A CP Approach to Ship Refit Project Scheduling

p; € T which corresponds to the task duration in days without overtime. The precedence
requirements form the set P and are encoded as triples (¢, j,1), asking for task ¢ € Z to
be completed [€ T days before task j € T\ {i} starts. Each resource r in the given set
of resources R has a constant capacity ¢, € Z>°, a daily standard usage cost w? € R=°,
and a daily overtime usage cost w? € RZ°, with w? < w?. The amount of resource r € R
required by task ¢ € Z is given by h;, € 720, A working day is defined by three parameters,
d®,d°,d¥ € {0,1,...,23}, with d° < d° < d¥, where [d°,d° — 1] are standard hours and
[d©, d¥] are overtime hours. Finally, tasks that can be performed in overtime are contained
in the set Z* C 7.

The integer decision variables of our model are as follows. For each task i € Z, S; is the
task starting time, while F; is the task total elapsed time between its start and its completion.
We define dom(S;) = [sF, sY] and dom(E;) = T, for each i € 7.

The constraints of the model are presented below.

CUMULATIVE([S; | i € Z], [E; | i € Z], [hir | § € Z], ;) VreR (1)

eF <Si+E <el Viel (2)

Si+E;+1<8; v(i,j,1) € P (3)
dO - dS Di . *

PdE_dg wSEiﬁpi VieT (4)

E; = pi Vie I\I* (5)

The CUMULATIVE constraints (1) ensure that the cumulative usage of each resource by tasks
does not overload its capacity at any given point in the timeline. Since S; + E; represents
the ending time of task ¢ € Z, constraints (2) force the ending time of each task to respect
its upper and lower bounds, as implied by the problem date constraints. Constraints (3)
impose the precedence requirements from set P. Constraints (4) define the possible values
for the elapsed time E; of task ¢ € Z* that can include some overtime work hours. First,
the value must be at most p; since it corresponds to the task duration without overtime.
Second, note that performing overtime hours reduces the overall elapsed time in days of a
task. The number of standard hours required by task ¢ € Z* is given by (do —d®) pi, which
is redistributed over longer days of d¥ — d° hours, fully using the overtime hours each day,
thus a lower bound on E;. For example, if (d°,d?,d”) = (8,16, 20), a typical day is formed
of 8 standard hours and 4 overtime hours. A task i € 7* with p; = 3 requires 3 x 8 = 24
standard hours, but can be completed in {%W = 2 days when working 12-hour shifts (8
hours is in overtime). Finally, constraints (5) force tasks that cannot be executed in overtime
(Z\ Z*) to have their standard duration.

We considered three different objective functions, where the model can be used with
either of them. First, the makespan objective, which is the minimization of the schedule
duration, is modeled as follows:

min max (S; + E;) .
ieT

This objective is considered without allowing overtime, which is done by assuming Z* := ().

Then, the overtime objective is to minimize the costs associated with overtime work.
For a task i € Z*, the number of standard working days transformed into overtime is given
by p; — E;. Since each overtime day costs w? — w? per resource r € R used, the total cost
is given by >-,c7. Yo e hir (W€ — w?)(p; — E;). Equivalently, we minimize the following
linear expression where the inner summation is pre-computed for each i € Z*:

min Y~ (pi — E;) (Z hir (W) — wf)) :

1€EL* reR

R. Boudreault, V. Simard, D. Lafond, and C.-G. Quimper

Finally, the robustness objective is to minimize the risk of exceeding the deadline of a
schedule by planning the overtime early in the project. To evaluate this criterion for a task
1 € 7%, we multiply its amount of used overtime p; — E; by its starting time S;, leading to
the following non-linear function:

ieL*

4.2 Extensions

The model presented in Section 4.1 has been extended in several ways to better suit the
ship refit planning reality. First of all, more types of precedence constraints were considered
other than the ones in (3). Indeed, our current model supports any precedence of the form
X, +1<Y,, where X,)Y € {S,S+E} forl € T and i,j € T (i # j). It was also asked
that our model consider that some tasks, but not all, should be suspended on weekends.
To this end, additional variables N; representing the non-working (idle) time points of task
i € 7 were considered. In the model, the non-working time is included in the elapsed time

of the task. Thus, constraints (4) and (5) are instead applied on the working time E; — N;.

Additional constraints are considered to enforce a value for N; when the task overlaps at least
one weekend. Finally, the model has been extended to support a scheduling granularity in
hours. In this case, the overtime constraints (4) and (5) are replaced by additional variables
O, encoding the number of hours in overtime for task ¢ € Z*. Each of these variables is
closely related via special constraints to its associated N; which also includes the non-working
hours during the nights. Thus, in hours, the elapsed times are simply equal to p; + IV;.

4.3 Search Heuristics

Two branching heuristics for the CP model are considered herein as a basis. For the
makespan objective, we select the starting time variable S;, ¢ € Z, with the smallest value
in its domain, and we assign it to this value. This way, the search focuses as much as possible
around the schedule where each task begins at its earliest starting time. For the overtime
and robustness objectives, the branching heuristic selects the task i € Z that has a starting
time variable .S; with the smallest value in its domain. Then, it assigns, in order, the smallest
value in dom(S;) to S; and the greatest value in dom(E;) to E;. In the hour granularity case,
this last branching is replaced by assigning the smallest value in dom(O;) to O;, and then
the smallest value in dom(E;) to E;. In both cases, the intuition is to place the tasks as early
as possible, while simultaneously choosing a task duration with as few overtime time points
as possible. The resulting heuristic can be formulated with the priority search annotation
from the MiniZinc modeling language [15, 27], and is supported by Chuffed CP solver [9].

5 Experimentation

The benchmark we considered for our experiments is formed of the seven instances presented
in Section 2. In order to compare them on the same basis and assess their complexity, we
computed for each instance the indicators OS, RF, RS and DR introduced in Section 3.4.
The resulting values are presented in Table 2. In the case of RS, since many resources gave a
value RS, =1 which makes the comparison difficult, we decided to compute RS by averaging
RS, over all resources r € R that are in fact restrictive (RS, < 1). Values in bold font
highlight the most complex instances according to each indicator.

10:9

CP 2022

10:10

A CP Approach to Ship Refit Project Scheduling

Table 2 Complexity indicators of the seven instances.

Instance 0OS RF RS DR

day-yacht21 0.72 0.28 040 0.82
hour-yacht21 0.72 0.28 0.40 0.82
generic136 0.02 023 024 0.06
softwarel38 0.27 0.12 0.01 0.32

navy253 0.19 0.02 071 0.18
cruise510 0.07 0.06 0.27 0.07
navy830 0.02 0.01 0.66 0.02

Each instance has its strengths and weaknesses. Looking first at OS, instance generic136
is one with the least ordered structure. It can be explained by the fact that the instance was
created with arbitrary precedence relations as a means of testing. It seems nonetheless that
our three realistic use cases, navy253, cruise510 and navy830, are also relatively complex
according to this indicator. In terms of resource usage (RF) and disjunctive structure (DR),
the two smallest instances, day-yacht21 and hour-yacht21 are the most complex ones. A
big part of that comes from the fact these instances contain a lot less resources, but are
more often used at full capacity. Finally, considering the time-oriented view (RS), the typical
RCPSP instance software138 is the most constrained in terms of resources. Although the
realistic instances seem to be less affected by their resource constraints, their complexity lies
in the large number of tasks to schedule and the lack of artificially induced ordering.

The CP model presented in Section 4 was modeled in the MiniZinc 2.5.5 language [27]. We
implemented! the SBPS scheme as described in Section 3.3 into the solver Chuffed [9], which
we used to solve the instances. The CUMULATIVE constraint was set to apply the optional
Time-Table-Edge-Finding (TTEF) checking and filtering rules [37, 41]. The experiments
were performed on a MSI GP63 Leopard 8RE machine with an Intel i7-8750H CPU at 2.2
GHz, 6 cores and 16 GB of RAM. Each optimization execution was given a timeout of 4
hours, and a constant restart strategy of 100 failures.

Each instance was solved for each objective, makespan, overtime and robustness. For
the last two objectives, we have empirically chosen a “restricted” horizon for each instance
corresponding to a reduction between 2% and 30% of the best known makespan. However,
due to its specific constrained nature preventing overtime to be performed, generic136 could
not be considered for these objectives.

For each optimization, two search methods were compared. The BASELINE strategy
consists simply of using the search heuristics defined in Section 4.3. The SBPS strategy,
on the other hand, also uses these heuristics until a first solution is found. When it is the
case, the SBPS branching procedure activates. Furthermore, the variable selection scheme
of choosing S;, i € Z, with the smallest value in dom(S;) is replaced by selecting .S; with
the greatest conflict activity, as provided by the VSIDS score of Chuffed [9, 26]. The latter
modification allows the resulting procedure to effectively reproduce an LNS [13]. We did
not directly use the free search (-f) option of Chuffed, which is alternating between the
user-defined heuristic and the VSIDS strategy (on all the variables), since we observed the
solving process was generally slowed down by its usage. However, since no solution was
found before the timeout without it, we added the free search for instance software138
when optimizing the overtime and the robustness.

L The code is available at https://github.com/raphaelboudreault/chuffed/releases/tag/SBPS. We
thank Emir Demirovi¢ for providing his original implementation [13].

https://github.com/raphaelboudreault/chuffed/releases/tag/SBPS

R. Boudreault, V. Simard, D. Lafond, and C.-G. Quimper

Table 3 Results on the benchmark instances when considering the makespan objective.

BASELINE SBPS Time (s)
Instance .
Objective Time (s) Objective Time (s) Improv.
day-yacht21 28 days 0.2* 28 days 0.2%* 0.2
hour-yacht21 78 hours 0.4* 78 hours 0.4* 0.4
generic136 178 days 0.7* 178 days 0.7* 0.7
software138 144 days 14 119 days 41.6 1.1
navy253 389 hours 4.2 389 hours 3.7 3.7
cruiseb10 228 days 14.7 227 days 785.7 229.3
navy830 5216 hours 18.7 5144 hours 199.7 18.2

Table 4 Results on the benchmark instances when considering the overtime objective.

BASELINE SBPS Time (s)
Instance .
Objective Time (s) Objective Time (s) 1mprov.
day-yacht21 1560 0.3* 1560 0.3* 0.3
hour-yacht21 485 0.4* 485 0.4* 0.4
softwarel38 5600 14 359.6 2600 153.4 34.3
navy253 70 4.2 66 5.0 4.0
cruise510 26 000 11.7 15760 7555.3 5.8
navy830 227 25.2 36 276.5 26.6

Table 5 Results on the benchmark instances when considering the robustness objective.

BASELINE SBPS Time (s)
Instance .
Objective Time (s) Objective Time (s) lmprov.
day-yacht21 47 0.3* 47 0.3* 0.3
hour-yacht21 192 0.4* 192 0.4* 0.4
softwarel138 900 13571.8 258 320.2 15.3
navy253 10686 5057.6 3480 1411.9 6.7
cruiseb510 4870 13022.5 842 1321.7 14.2
navy830 146 794 11208.9 9076 13863.4 41.1

Tables 3, 4, and 5 present respectively the results obtained when considering the
makespan, overtime and robustness objectives. In each table, we report the best
objective value found (Objective) as well as the solving time (Time) in seconds. When the
timeout was reached, we instead show the required time to find the best solution. A “*” next
to a solving time value indicates that the instance was optimally solved. For comparison
purposes, we also report the time in seconds taken with SBPS to find a solution with an
objective value less than or equal to the best one found with BASELINE (Time improv.).

For the makespan objective (Table 3), instances day-yacht21, hour-yacht21, and
generic136 are quickly solved optimally using both strategies. For the other instances, the
BASELINE method finds its best solution in the first 20 seconds of the search, without being

10:11

CP 2022

10:12

A CP Approach to Ship Refit Project Scheduling

able to improve it after. In comparison, the SBPS strategy improves the minimal makespan
for software138 by 25 days, cruise510 by 1 day and navy830 by 9 days, while instance
navy253 gave the same solution. The use of SBPS thus reduced the best makespan by 5%
on average. Furthermore, the improved solutions are found in a similar time than BASELINE,
except for cruise510 where the solution of 227 days is found 15.6 times slower.

For the overtime objective (Table 4), the objective value corresponds to the costs induced
by overtime work. Since our benchmark is formed of abstract and anonymized realistic
instances, the obtained costs are of different sizes and units, thus incomparable in-between
instances. Note that instances day-yacht21 and hour-yacht21 are still trivially solved
optimally with both strategies. Bigger instances see their best objective value from BASELINE
considerably improved with SBPS. The best cost is reduced by 48% on average using SBPS,
while the best solution of BASELINE is found 94 times faster for software138, and 2 times
faster for cruise510.

For the robustness objective (Table 5), the unconventional way of representing it is
a challenge for the BASELINE method. While day-yacht21 and hour-yacht21 are still
optimally solved, the larger instances need a lot of computation time to settle on a good
solution. In fact, for software138 and cruise510, the time to find the best solution is close
to the timeout (14400 seconds). In comparison, the SBPS strategy finds a solution with the
same robustness value much faster, in no more than 42 seconds. For cruise510, the solution
is found 917 times faster. Furthermore, the best objective found by BASELINE is reduced on
average by 79%.

6 Discussion

The main goal of this research was to create a prototype solution for multi-objective opti-
mization in the ship refit domain. By successfully proposing plans to the targeted instances
supplied by our industrial partners within a reasonable time limit, we have demonstrated
the applicability of our constraint programming model. It was important for practical use to
obtain a good solution under predetermined time limits: 15 minutes for instances under 100
tasks, one hour for instances between 100 and 500 tasks, and four hours for instances over
500 tasks. In comparison, an expert manually planning smaller instances like day-yacht21
could take up to four hours. While it was possible to consider the BASELINE strategy as an
attempt to solve the biggest instances, the computation time and the solution’s quality were
sometimes less than satisfactory for industrial purposes. The use of SBPS proved to be a
fairly good strategy, leading to improved objective values in a significantly shorter amount
of time for the makespan, overtime and robustness objectives. These experiments also
demonstrated the Refit Optimizer prototype’s relevance for real-world project planning and
ongoing project management with re-optimization. Qualitative user feedback from usability
tests with domain experts also supports this assessment.

A lot of effort was put in designing Refit Optimizer to be reusable across a wide variety
of other scheduling contexts. The terminology and architecture of the product database
were made consistent with the terms and structures from the project management field.
Plus, the genericity of the constraints formulation allows to consider more than ten different
types of precedence and time constraints on tasks. Resources can include workers as well as
locations and equipment, which opens to future improvements with geospatial constraints [22].
Preliminary tests on real projects in the naval, avionics, and ground transportation domains
also show that the solution has a strong cross-domain potential.

R. Boudreault, V. Simard, D. Lafond, and C.-G. Quimper

The main reason why we chose Chuffed [9] over other CP solvers was its proven efficiency on
large-scale RCPSP instances by combining state-of-the-art CUMULATIVE filtering algorithms
with lazy clause generation [37, 38]. Its built-in VSIDS branching heuristic allowed us to
easily reproduce the gains obtained in recent SBPS-related work [13, 42]. Furthermore,
Chuffed could directly support the priority search MiniZinc annotation [15, 27] used to
formulate our baseline search heuristics. We did try the OR-Tools CP-SAT solver [31] via its
FlatZinc implementation, but preliminary results showed greater computation times to find
similar or worse solutions. We did also try a standard LNS procedure prior implementing
SBPS. However, we rapidly found that the technique was rather inefficient for the overtime
and robustness objectives, while it was difficult to find a suitable solution deconstruction
rule.

There were many challenges in working in an industrial setting. First, the importance of
anonymity for the industrial partners made it difficult to analyze some results. For many
instances, the estimated workforce costs were changed to abstract values, which produced
unrealistic execution costs. Having access to real data would have allowed us to produce
more complex realistic instances to challenge our prototype. Explainability of results was
also an important challenge. Since the tool needs to be used in an industrial setting by many
different people, it is important to document and explain each potential source of incoherent
results encountered. Thus, a lot of effort was put on explaining the input data format and
importance of each parameter to untrained users in order to avoid as much illogical data
as possible. It was also important to focus on results interpretation and solution selection.
Furthermore, one recurring issue was that, in a lot of situations, real projects could not be
optimized because of an unsatisfiability proof by the algorithm. Without any feedback to
the users as to why it is the case, users were at a loss for identifying which constraints to
relax or remove. An automated method for identifying causes and potential solutions to help
overcome over-constrained problems appears to be an essential requirement for the successful
use of the prototype in the field. We did use FindMUS [23] from the MiniZinc tool suite to
help us identify the data inconsistencies. However, its usage required complete knowledge of
the optimization model, thus was not a viable option for end users.

A comparison of the complexity of our seven instances to the complexity of PSPLIB [19],
BL [5] and PACK [8] benchmarks, as evaluated by Artigues et al. [3], shows the difference
between real-life and theoretical applications. Our set of realistic instances is more complex
on average when looking at OS (precedence) and RS (resources over time), although the
difference is small. This can be explained by the significant greater size of our instances.
However, the literature benchmarks are widely more complex in terms of RF (resource
usage) and DR (resources and precedence). That can be explained by the changes made by
experts so the instances could be manually planned. Manually defined resources are also less
restrictive than in computer generated instances.

It would have been interesting to test our CP approach on the three literature benchmarks,
as well as the extended ones from Koné et al. [20]. We established that our set of seven
instances, although closer to the ship refit reality, were less complex than the computer
generated instances, thus more extensive tests would be necessary to complete the constraint
programming prototype. Although our industrial partners may not be subject to high levels
of precedence-resource complexity, it is important to be aware of the prototype’s limits in the
hopes of further improving the solution. Being able to consider more complex problems could
also become a strategic advantage for shipyards, allowing them to include more constraints
normally not considered with manual plans.

10:13

CP 2022

10:14

A CP Approach to Ship Refit Project Scheduling

7 Conclusion

In this paper, we introduced a CP approach to the ship refit planning problem. Our prototype
solution was successfully tested on seven realistic instances supplied by our industrial partners
with varying levels of complexity, which demonstrated the CP applicability for this problem.
The proposed CP model is highly related to the classical RCPSP model, while multiple
extensions are considered to address problem-specific constraints and objectives. As a means
to speedup the search of better solutions, we proposed to use the SBPS value selection
heuristic. Its usage improved on average the objective value by 5%, 48% and 79% when
minimizing respectively the makespan, the overtime costs and the robustness, as better
solutions are found significantly faster than with our baseline heuristics.

Directions for future work include the integration of an optimization algorithm based on
mixed-integer programming, and extending algorithms by considering task priority levels
for scope optimization, i.e. when work requirements surpass the capacity. We also aim to
further explore the use of probabilistic discrete-event simulations for robustness assessment,
and the use of geospatial modeling and visualization to improve planning as well as users
understanding.

—— References

1 Abderrahmane Aggoun and Nicolas Beldiceanu. Extending chip in order to solve complex
scheduling and placement problems. Mathematical and Computer Modelling, 17(7):57-73,
April 1993. doi:10.1016/0895-7177(93)90068-A.

2 Rashpal Ahluwalia and Denis Pinha. Decision support system for production planning in the
ship repair industry. Industrial and Systems Engineering Review, 2(1):52-61, July 2014.

3 Christian Artigues, Oumar Koné, Pierre Lopez, Marcel Mongeau, Emmanuel Néron, and
David Rivreau. Benchmark instance indicators and computational comparison of methods. In
Resource-Constrained Project Scheduling, pages 107-135. John Wiley & Sons, Ltd, 2008.

4 Philippe Baptiste, Claude Le Pape, and Wim Nuitjen. Constraint-Based Scheduling: Applying
Constraint Programming to Scheduling Problems. International Series in Operations Research
& Management Science. Springer, Boston, MA| first edition, 2001.

5 Philippe Baptiste and Claude Le Pape. Constraint propagation and decomposition techniques
for highly disjunctive and highly cumulative project scheduling problems. Constraints, 5(1):119—
139, January 2000. doi:10.1023/A:1009822502231.

6 Nicolas Beldiceanu and Mats Carlsson. A new multi-resource cumulatives constraint with
negative heights. In Pascal Van Hentenryck, editor, Principles and Practice of Constraint
Programming - CP 2002, Lecture Notes in Computer Science, pages 63-79, Berlin, Heidelberg,
2002. Springer. doi:10.1007/3-540-46135-3_5.

7 J. Blazewicz, J. K. Lenstra, and A. H. G. Rinnooy Kan. Scheduling subject to resource
constraints: Classification and complexity. Discrete Applied Mathematics, 5(1):11-24, January
1983. d0i:10.1016/0166-218X(83)90012-4.

8 Jacques Carlier and Emmanuel Néron. On linear lower bounds for the resource constrained
project scheduling problem. Furopean Journal of Operational Research, 149:314-324, September
2003. doi:10.1016/50377-2217(02)00763-4.

9 Geoffrey G. Chu. Improving Combinatorial Optimization. PhD thesis, The University of
Melbourne, 2011. GitHub: https://github.com/chuffed/chuffed.

10 Bert De Reyck and Willy Herroelen. On the use of the complexity index as a measure of
complexity in activity networks. European Journal of Operational Research, 91(2):347-366,
June 1996. doi:10.1016/0377-2217(94)00344-0.

11 Sophie Demassey. Mathematical programming formulations and lower bounds. In Resource-
Constrained Project Scheduling: Models, Algorithms, Extensions and Applications, pages 49—62.
John Wiley & Sons, Ltd, 2008.

https://doi.org/10.1016/0895-7177(93)90068-A
https://doi.org/10.1023/A:1009822502231
https://doi.org/10.1007/3-540-46135-3_5
https://doi.org/10.1016/0166-218X(83)90012-4
https://doi.org/10.1016/S0377-2217(02)00763-4
https://github.com/chuffed/chuffed
https://doi.org/10.1016/0377-2217(94)00344-0

R. Boudreault, V. Simard, D. Lafond, and C.-G. Quimper

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Erik L. Demeulemeester and Willy S. Herroelen. New benchmark results for the resource-
constrained project scheduling problem. Management Science, 43(11):1485-1492, November
1997. d0i:10.1287/mnsc.43.11.1485.

Emir Demirovié¢, Geoffrey Chu, and Peter J. Stuckey. Solution-Based Phase Saving for CP:
A Value-Selection Heuristic to Simulate Local Search Behavior in Complete Solvers. In
John Hooker, editor, Principles and Practice of Constraint Programming, Lecture Notes
in Computer Science, pages 99-108, Cham, 2018. Springer International Publishing. doi:
10.1007/978-3-319-98334-9_7.

Hamed Fahimi, Yanick Ouellet, and Claude-Guy Quimper. Linear-time filtering algorithms
for the disjunctive constraint and a quadratic filtering algorithm for the cumulative not-first
not-last. Constraints, 23(3):272-293, July 2018. doi:10.1007/s10601-018-9282-9.

Thibaut Feydy, Adrian Goldwaser, Andreas Schutt, Peter J Stuckey, and Kenneth D Young.
Priority Search with MiniZinc. In ModRef 2017: The Sixzteenth International Workshop on
Constraint Modelling and Reformulation, 2017.

Sonke Hartmann and Dirk Briskorn. An updated survey of variants and extensions of the
resource-constrained project scheduling problem. FEuropean Journal of Operational Research,
297(1):1-14, February 2022. doi:10.1016/j.ejor.2021.05.004.

Willy Herroelen, Bert De Reyck, and Erik Demeulemeester. Resource-constrained project
scheduling: A survey of recent developments. Computers & Operations Research, 25(4):279-302,
April 1998. doi:10.1016/80305-0548(97)00055-5.

IBM Maximo Application Suite. IBM, 2021. Website: https://www.ibm.com/ca-en/
products/maximo.

Rainer Kolisch and Arno Sprecher. PSPLIB - A project scheduling problem library. Furopean
Journal of Operational Research, 96(1):205-216, January 1997. doi:10.1016/S0377-2217(96)
00170-1.

Oumar Koné, Christian Artigues, Pierre Lopez, and Marcel Mongeau. Event-based MILP
models for resource-constrained project scheduling problems. Computers & Operations Research,
38(1):3-13, January 2011. doi:10.1016/j.cor.2009.12.011.

Philippe Laborie. Complete MCS-based search: Application to resource constrained project
scheduling. In Proceedings of the 19th International Joint Conference on Artificial Intelligence,
IJCAT05, pages 181-186, San Francisco, CA, USA, July 2005. Morgan Kaufmann Publishers
Inc.

Daniel Lafond, Dave Couture, Justin Delaney, Jessica Cahill, Colin Corbett, and Gaston
Lamontagne. Multi-objective schedule optimization for ship refit projects: Toward geospatial
constraints management. In Tareq Ahram, Redha Taiar, and Fabienne Groff, editors, Human
Interaction, Emerging Technologies and Future Applications IV, Advances in Intelligent Systems
and Computing, pages 662-669, Cham, 2021. Springer International Publishing. doi:10.1007/
978-3-030-74009-2_84.

Kevin Leo and Guido Tack. Debugging unsatisfiable constraint models. In Domenico
Salvagnin and Michele Lombardi, editors, Integration of AI and OR Techniques in Con-
straint Programming, Lecture Notes in Computer Science, pages 77-93, Cham, 2017.
Springer International Publishing. GitLab: https://gitlab.com/minizinc/FindMUS. doi:
10.1007/978-3-319-59776-8_7.

Anthony A. Mastor. An experimental investigation and comparative evaluation of production
line balancing techniques. Management Science, 16(11):728-746, July 1970. doi:10.1287/
mnsc.16.11.728.

Microsoft Project. Microsoft, 2019. Website: https://wuw.microsoft.com/en-ca/
microsoft-365/project/project-management-software.

M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an
efficient SAT solver. In Proceedings of the 38th Design Automation Conference, pages 530-535,
June 2001. doi:10.1145/378239.379017.

10:15

CP 2022

https://doi.org/10.1287/mnsc.43.11.1485
https://doi.org/10.1007/978-3-319-98334-9_7
https://doi.org/10.1007/978-3-319-98334-9_7
https://doi.org/10.1007/s10601-018-9282-9
https://doi.org/10.1016/j.ejor.2021.05.004
https://doi.org/10.1016/S0305-0548(97)00055-5
https://www.ibm.com/ca-en/products/maximo
https://www.ibm.com/ca-en/products/maximo
https://doi.org/10.1016/S0377-2217(96)00170-1
https://doi.org/10.1016/S0377-2217(96)00170-1
https://doi.org/10.1016/j.cor.2009.12.011
https://doi.org/10.1007/978-3-030-74009-2_84
https://doi.org/10.1007/978-3-030-74009-2_84
https://gitlab.com/minizinc/FindMUS
https://doi.org/10.1007/978-3-319-59776-8_7
https://doi.org/10.1007/978-3-319-59776-8_7
https://doi.org/10.1287/mnsc.16.11.728
https://doi.org/10.1287/mnsc.16.11.728
https://www.microsoft.com/en-ca/microsoft-365/project/project-management-software
https://www.microsoft.com/en-ca/microsoft-365/project/project-management-software
https://doi.org/10.1145/378239.379017

10:16

A CP Approach to Ship Refit Project Scheduling

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J. Duck,
and Guido Tack. MiniZinc: Towards a standard CP modelling language. In Christian
Bessiére, editor, Principles and Practice of Constraint Programming — CP 2007, Lecture
Notes in Computer Science, pages 529-543, Berlin, Heidelberg, 2007. Springer. Website:
https://www.minizinc.org/. doi:10.1007/978-3-540-74970-7_38.

Olga Ohrimenko, Peter J. Stuckey, and Michael Codish. Propagation via lazy clause generation.
Constraints, 14(3):357-391, September 2009. doi:10.1007/s10601-008-9064-x.

Yanick Ouellet and Claude-Guy Quimper. A O(nlog®n) checker and O(n?logn) filtering
algorithm for the energetic reasoning. In Willem-Jan van Hoeve, editor, Integration of
Constraint Programming, Artificial Intelligence, and Operations Research, Lecture Notes in
Computer Science, pages 477-494, Cham, 2018. Springer International Publishing. doi:
10.1007/978-3-319-93031-2_34.

Robert Pellerin, Nathalie Perrier, and Frangois Berthaut. A survey of hybrid metaheuristics
for the resource-constrained project scheduling problem. Furopean Journal of Operational
Research, 280(2):395-416, January 2020. doi:10.1016/j.ejor.2019.01.063.

Laurent Perron and Vincent Furnon. OR-Tools. Google, 2022. Website: https://developers.
google.com/optimization/.

David Pisinger and Stefan Ropke. Large Neighborhood Search. In Michel Gendreau and
Jean-Yves Potvin, editors, Handbook of Metaheuristics, International Series in Operations
Research & Management Science, pages 399-419. Springer US, Boston, MA, 2010. doi:
10.1007/978-1-4419-1665-5_13.

Primavera P6 Enterprise Project Portfolio Management (P6 EPPM). Oracle,
2022. Website: https://docs.oracle.com/en/industries/construction-engineering/
primavera-p6-project/index.html.

A. Alan B. Pritsker, Lawrence J. Waiters, and Philip M. Wolfe. Multiproject scheduling with
limited resources: A zero-one programming approach. Management Science, September 1969.
do0i:10.1287/mnsc.16.1.93.

Robert Richards and Richard Stottler. Complex project scheduling lessons learned from NASA,
boeing, general dynamics and others. In 2019 IEEE Aerospace Conference, pages 1-9, March
2019. doi:10.1109/AER0.2019.8741996.

Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of Constraint Program-
ming, volume 2 of Foundations of Artificial Intelligence. Elsevier, 2006.

Andreas Schutt, Thibaut Feydy, and Peter J. Stuckey. Explaining time-table-edge-finding
propagation for the cumulative resource constraint. In Carla Gomes and Meinolf Sellmann,
editors, Integration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems, Lecture Notes in Computer Science, pages 234-250, Berlin, Heidelberg,
2013. Springer. doi:10.1007/978-3-642-38171-3_16.

Andreas Schutt, Thibaut Feydy, Peter J. Stuckey, and Mark G. Wallace. Explaining the cumu-
lative propagator. Constraints, 16(3):250-282, July 2011. doi:10.1007/s10601-010-9103-2.
Paul Shaw. Using Constraint Programming and Local Search Methods to Solve Vehicle Routing
Problems. In Michael Maher and Jean-Francois Puget, editors, Principles and Practice of
Constraint Programming — CP98, Lecture Notes in Computer Science, pages 417-431, Berlin,
Heidelberg, 1998. Springer. doi:10.1007/3-540-49481-2_30.

Arno Sprecher. Scheduling resource-constrained projects competitively at modest memory
requirements. Management Science, 46(5):710-723, 2000.

Petr Vilim. Timetable edge finding filtering algorithm for discrete cumulative resources. In
Tobias Achterberg and J. Christopher Beck, editors, Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems, Lecture Notes in Computer
Science, pages 230245, Berlin, Heidelberg, 2011. Springer. doi:10.1007/978-3-642-21311-3_
22.

Julien Vion and Sylvain Piechowiak. Une simple heuristique pour rapprocher DFS et LNS
pour les COP. In Actes des 13e Journées Francophones de la Programmation par Contraintes,
JFPC 2017, pages 38-45, Montreuil sur Mer, France, June 2017.

https://www.minizinc.org/
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/s10601-008-9064-x
https://doi.org/10.1007/978-3-319-93031-2_34
https://doi.org/10.1007/978-3-319-93031-2_34
https://doi.org/10.1016/j.ejor.2019.01.063
https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://doi.org/10.1007/978-1-4419-1665-5_13
https://doi.org/10.1007/978-1-4419-1665-5_13
https://docs.oracle.com/en/industries/construction-engineering/primavera-p6-project/index.html
https://docs.oracle.com/en/industries/construction-engineering/primavera-p6-project/index.html
https://doi.org/10.1287/mnsc.16.1.93
https://doi.org/10.1109/AERO.2019.8741996
https://doi.org/10.1007/978-3-642-38171-3_16
https://doi.org/10.1007/s10601-010-9103-2
https://doi.org/10.1007/3-540-49481-2_30
https://doi.org/10.1007/978-3-642-21311-3_22
https://doi.org/10.1007/978-3-642-21311-3_22

On Redundancy in Constraint Satisfaction
Problems

Clément Carbonnel &4
CNRS, LIRMM, University of Montpellier, France

—— Abstract

A constraint language I" has non-redundancy f(n) if every instance of CSP(I") with n variables
contains at most f(n) non-redundant constraints. If I' has maximum arity r then it has non-
redundancy O(n"), but there are notable examples for which this upper bound is far from the best
possible. In general, the non-redundancy of constraint languages is poorly understood and little is
known beyond the trivial bounds (n) and O(n").

In this paper, we introduce an elementary algebraic framework dedicated to the analysis of the
non-redundancy of constraint languages. This framework relates redundancy-preserving reductions
between constraint languages to closure operators known as pattern partial polymorphisms, which
can be interpreted as generic mechanisms to generate redundant constraints in CSP instances. We
illustrate the power of this framework by deriving a simple characterisation of all languages of arity
r having non-redundancy ©(n").

2012 ACM Subject Classification Theory of computation — Constraint and logic programming;
Mathematics of computing — Discrete mathematics

Keywords and phrases Constraint satisfaction problem, redundancy, universal algebra, extremal
combinatorics

Digital Object ldentifier 10.4230/LIPIcs.CP.2022.11

Funding This work was supported by the Al Interdisciplinary Institute ANITI, funded by the French
program “Investing for the Future — PIA3” under grant agreement no. ANR-19-PI3A-0004. The
author also received funding from the European Union’s Horizon 2020 research and innovation

programme under grant agreement no. 952215.

1 Introduction

The constraint satisfaction problem (CSP) is a fundamental computer science problem with
many applications in artificial intelligence and operational research. An instance of the CSP
is a set of variables, a set of domain values, and a set of constraints, which are relations
imposed upon certain sequences of variables. The goal is to decide whether it is possible to
assign domain values to variables in such a way that all constraints are satisfied. The CSP is
a natural common framework for a wide variety of well-studied combinatorial problems, such
as satisfiability and graph homomorphism, and is in general intractable.

Following early work of Schaefer on the Boolean domain [25], Feder and Vardi initiated
the systematic study of CSPs with fixed constraint languages and famously conjectured that
all these “non-uniform” CSPs are either polynomial-time solvable or NP-complete [14]. This
conjecture prompted a considerable research effort aimed at identifying generic sufficient
conditions for the tractability of non-uniform CSPs, which eventually coalesced into a
powerful, unified algebraic framework for analysing and classifying the complexity of constraint
languages [2, 4]. After more than two decades of research, the Feder-Vardi conjecture was
finally settled in the affirmative with two independent proofs by Bulatov [8] and Zhuk [26].

The success and flexibility of the algebraic framework motivated the study of constraint
languages from a broader perspective. Beyond the classical “P versus NP-complete” question,
classifications of constraint languages have been obtained for a wide variety of properties,

© Clément Carbonnel;
37 licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 11; pp. 11:1-11:15

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:clement.carbonnel@lirmm.fr
http://www.lirmm.fr/~ccarbonnel/
https://orcid.org/0000-0003-2312-2687
https://doi.org/10.4230/LIPIcs.CP.2022.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2

On Redundancy in Constraint Satisfaction Problems

including solvability by specific classes of polynomial-time algorithms [3, 16], membership in
fine complexity classes within P [12], learnability [10, 5], definability in certain logics [1, 22],
and more.

In this paper we will study non-uniform CSPs from a different perspective. The central
question we ask is the following: given a finite constraint language I" of arity r, what is the
maximum number of non-redundant constraints in a CSP instance over I'? If we denote by
n the number of variables, then this quantity (which we call the non-redundancy of ') is
O(n"), and if I' is non-trivial (i.e. at least one relation is neither empty nor complete) then it
is Q(n). As extreme examples, a set of affine relations over a finite field has non-redundancy
O(n), while sets of r-clauses are easily seen to have non-redundancy ©(n"). Curiously, very
little is known beyond these trivial bounds, especially outside the Boolean domain. The
purpose of this paper is to describe an elementary algebraic framework for classifying the non-
redundancy of constraint languages, which we illustrate by deriving a simple combinatorial
characterisation of r-ary constraint languages with non-redundancy ©(n").

We draw motivation for studying non-redundancy from two different lines of work. The
task of learning a constraint network from answers to queries (sometimes called constraint
acquisition) has attracted considerable interest in the past decades [7, 10], and a significant
effort has been devoted to designing systems that can learn CSPs with as few queries as
possible. In this context, it was observed in [5, 6] that the non-redundancy of a language T’
corresponds exactly to its VC-dimension, which is a lower bound on the number of yes/no
queries (of any kind) that is necessary in order to learn exactly a constraint network over
I". Therefore, any progress on lower bounds for non-redundancy immediately translates
into unconditional, universal lower bounds for constraint acquisition. More generally, for
applications where non-uniform CSPs are used to represent knowledge, the non-redundancy
of a constraint language is a good estimate of its representational power: if I' has non-
redundancy f(n) and arity r, then the number of n-variable CSP instances over I" with
pairwise distinct solution sets is Q(2/(™)) and O(2/(")rlogn),

Our second motivation comes from a series of recent results on the sparsification of
non-uniform Boolean CSPs [9, 20]. In these papers, the goal is to determine whether there
exists a polynomial-time algorithm that takes as input an instance of CSP(I") (with up
to roughly n" constraints if I' has arity) and outputs an equisatisfiable instance of size
q(n), g¢(n) = o(n”). On the surface, this question looks quite different from estimating the
non-redundancy of I': sparsification is in essence an algorithmic question, and sparsification
algorithms are not limited to removing redundant constraints because they only have to
maintain equisatisfiability. Nevertheless, all sparsification algorithms for NP-hard Boolean
CSPs presented in [9, 20] operate purely by removing redundant constraints, and to the best
of our knowledge all CSPs whose non-redundancy is known to be O(n4) also have an O(n?)
sparsification algorithm. While non-redundancy and sparsifiability cannot be equivalent in
general (for instance, all polynomial-time non-uniform CSPs have a sparsification algorithm
that outputs an instance of size O(1)), this suggests that an improved understanding of
non-redundancy in constraint languages would help design sparsification algorithms.

Our results

Our first contribution is a generic algebraic framework for the asymptotic study of non-
redundancy in non-uniform CSPs. More precisely, we establish a tight connection between
redundancy-preserving reductions for constraint languages and pattern partial polymorphisms,
a type of closure operator that was recently introduced in the context of exponential algorithms
for certain classes of non-uniform Boolean CSPs [21]. A key property of this algebraic duality

C. Carbonnel

is that both sides are easily interpretable in terms of non-redundancy. We observe that each
pattern partial polymorphism of a constraint language I' describes a rule to identify (or
produce) redundant constraints in CSP instances over I'. In some cases, knowledge of a single
non-trivial pattern partial polymorphism of I' can be sufficient to establish an improved
upper bound on its non-redundancy.

Then, we combine our framework with a theorem of Erd6s on the maximum cardinality of
K -free hypergraphs [13] to obtain an explicit characterisation of those constraint languages
of arity r having non-redundancy ©(n"). Incidentally, we show the existence of a small gap:
either a constraint language of arity r has non-redundancy ©(n"), or it has non-redundancy
O(n"=¢) for e = 2'=". This (improperly) extends a result of Chen et al. [9] for Boolean
languages, which was obtained using very different methods. Beyond non-redundancy, our
main result has direct consequences for sparsification, which will be discussed towards the
end of the paper.

Related work

A recent series of papers on the sparsification of Boolean languages have established a number
of results on the non-redundancy of constraint languages as byproducts. In [9], Chen et
al. show that every Boolean language of arity r that does not contain an r-clause can
be expressed using multivariate polynomials of total degree at most » — 1. Coupled with
elementary arguments on Boolean clauses (see e.g. the proof of Lemma 15 in Section 3),
this implies that the non-redundancy of any Boolean constraint language of arity at most
r is either ©(n") or O(n"~!). Other results in the same paper imply a non-redundancy
classification for Boolean constraint languages of arity at most 3, and a characterisation
of symmetric Boolean constraint languages with linear non-redundancy. The framework
presented in our paper is inspired from their methods, although it is extended to work
with arbitrary domains and adapted to study specifically the non-redundancy of constraint
languages.

Building upon these results, Lagerkvist and Wahlstrom [20] devised an O(n) sparsification
algorithm for the class of languages with a Mal’tsev embedding, which generalises linear
equations over finite fields. Their algorithm operates by removing redundant constraints,
and hence implies a similar bound on the non-redundancy of these languages. To the best

of our knowledge, all languages known to have non-redundancy O(n) belong to this class.

The same paper also provides a sufficient condition for having non-redundancy O(n?),q > 1
based on the closely related notion of k-edge embedding.

Bessiere et al. [5] initiated the direct study of non-redundancy of constraint languages,
with a focus on applications in machine learning. They established the equivalence between
non-redundancy and VC-dimension, classified the non-redundancy of constraint languages of
arity at most 2, and identified a class of ternary constraint languages whose non-redundancy
is o(n?) and cannot be fully determined using results based on algebraic embeddings.

2 Preliminaries

Relations, languages and constraint satisfaction problems

A relation R of arity r = ar(R) over a domain D is a subset of D". Given a tuple ¢ of length
rand S C {1,...,7}, we denote by t[S] the tuple obtained from ¢ by discarding elements
whose index is not in S. Similarly, the projection on S C {1,...,r} of a relation R of arity
r is denoted by R[S] = {¢[S] | t € R}. A (finite) constraint language T is a finite set of

11:3

CP 2022

11:4

On Redundancy in Constraint Satisfaction Problems

relations over a finite domain D, and the arity of a constraint language I' is defined as the
maximum arity of its relations. Given a constraint language I', a CSP instance over I is a
pair (X, C), where X is a finite set of variables and C' is a finite set of constraints, that is,
pairs (R, S) with R € T and S € X**(®)_ A solution to a CSP instance (X,C) is a mapping
¢ : X — D such that for every (R, S) € C, we have ¢(S) € R. We will denote the set of all
solutions to a CSP instance I by sol(I). The constraint satisfaction problem over T'; denoted
by CSP(T"), takes as input a CSP instance I over I' and asks whether sol() is non-empty.

Primitive-positive definitions and polymorphisms

Given a constraint language T, a relation R of arity r is primitive-positive definable (pp-
definable) over T if there exists a first-order formula ¢ with r free variables z1,...,x, that
only uses existential quantification, conjunction, equality, and relations from I'" such that R =
{(f(x1),..., f(x:))] fis amodel of ¢}. In that case, we will often write R(x1,...,2,) = .
If 4 is quantifier-free, then R is gfpp-definable over I'. We denote by (I') (resp. (I')3) the
set of all relations that are pp-definable (resp. qfpp-definable) from T'. Tt is well-known
that CSP(T”) is log-space reducible to CSP(T") for all I C (T") [17]. If in addition we have
I'" C (T')3, then the reduction is tighter: if CSP(T") is solvable in time O(c"), then so is
CSP(T”) [18].

Given a set D, a partial operation over D of arity k is an operation f : Dy — D with
Dy C DF. Given a relation R of arity r over D, f is a partial polymorphism of R if for
all tuples ¢1,...,t € R such that for all 1 < ¢ < r we have (t1]i],...,tx[i]) € Dy, the
tuple f(t1,...,tk) = (f(t[1],. .., te[1]), ..., f(ta]r],- ... t[r])) belongs to R. By extension,
an operation is a partial polymorphism of a language if it is a partial polymorphism of each
of its relations. A polymorphism of a relation over D is a partial polymorphism f with
D; = D*. Given a language T, we denote by pol(T') the set of polymorphisms of T

Geiger’s theorem [15] states that for any two languages I', T over the same domain, we
have IV C (') if and only if pol(T") C pol(I”). A similar duality was observed between qfpp-
definability and partial polymorphisms by Romov [24]. These results form the foundation of
the algebraic approach to non-uniform CSPs, in which the complexity of constraint languages
is studied through the lens of their (partial) polymorphisms. We refer the reader to recent
surveys for a more in-depth treatment of the subject [4][11].

Redundancy

In a CSP instance (X,C), a constraint ¢ € C is non-redundant if and only if (X,C) and
(X, C\{c}) have different solution sets. Given a constraint language I', the non-redundancy
of ', denoted by NRDr, is the function that maps each n € N to the maximum number of
non-redundant constraints in an instance of CSP(T") with n variables. It is easily seen that if I'
is a constraint language of arity r that does not contain only empty or complete relations, then
NRDr(n) = O(n") and NRDr(n) = Q(n). It is also known that the asymptotic behaviour of
the NRDr function for a finite language I' is governed by that of its individual relations, as
witnessed by these two inequalities:

< >
NRDr < RXE:FNRD{ R} NRDr > max(NRD{r})

The second inequality holds because each instance over {R} is also over I', and the first
holds because the property of being non-redundant is monotone. (If ¢ = (S, R) is non-
redundant in I, then it is non-redundant in the subinstance of I consisting only of those

C. Carbonnel

constraints with relation R. Repeating this reasoning with all R € I" provides the desired
upper bound.) Formal proofs can be found in [5]. In this paper we are only interested
in the asymptotic behaviour of the NRDr function; it follows from the inequalities above
that classifying single-relation languages is sufficient to deduce a classification for all finite
constraint languages.

3 Redundancy-preserving reductions

It is easily observed that primitive-positive definability does not preserve non-redundancy
in general, in the sense that two constraint languages I'; and I'y with T'y C (I's) and
s C (T'y) may have very different non-redundancy asymptotics. (An extreme example is
I, = {(0,0,1),(0,1,0),(1,0,0)} and T's being the set of all ternary Boolean clauses. By
the results of [9], NRDr, (n) = ©(n) but NRDr,(n) = ©(n?). The pp-interdefinability of
these languages is well known and can be verified by inspecting Post’s lattice [23].) On
the other hand, qfpp-definitions do preserve non-redundancy, but have limited expressive
power. In this section, we attempt to construct an ideal notion of definability tailored for
non-redundancy, with three goals in mind: the corresponding reductions between constraint
languages must preserve non-redundancy bounds, a useful algebraic duality must exist, and
the framework should be as general as possible.
We start by presenting our proposed notion of definability.

» Definition 1. Let D be a set and I be a constraint language over D. We say that a relation
R of arity v has an fgpp-definition over I' if R has a pp-definition

R(z,...,xy) = Jy1, .. Yg s V(@1, -0 e, Y1, -+, Yq)

over TU{Qq, | g : D — D}, where Q; = {(d,g(d)) | d € D}, and for each existentially
quantified variable y; there exists some x; such that Qq(x;,y:) is an atom in .

In Definition 1, “fgpp-definition” stands for functionally guarded pp-definition. Note
that qfpp-definability implies fgpp-definability, but that fgpp-definability does not imply
pp-definability in general. (This is due to the functional atoms (),, which may not belong to
I'.) On the Boolean domain, fgpp-definitions are equivalent to the cone-definitions of Chen
et al. [9].

Given a constraint language I" over D, let (I')¢; denote the set of relations over D that
are fgpp-definable over I'. The next proposition is the first step towards proving that
fgpp-definitions are suitable for studying the NRD function.

» Proposition 2. Let 'y and 'y be two non-trivial languages over the same finite domain D.
IfT'y C (T'1)4y, then NRDp,(n) = O(NRDr, (n)).

Proof. Let I be an instance of CSP(I'2) with variable set X, | X| = n, and exactly NRDr, (n)
non-redundant constraints. Without loss of generality, we assume that no constraint in 7 is
redundant.

Let R € I'; be some relation and R(z1,...,%y) = 3Y1,...,Yq : VX1, ..., Tr, Y1, .., Yq) DE
an fgpp-definition of R over I';. For each constraint ¢; = (R, (z%,...,2%)) in I, we introduce
a set Y of ¢ fresh variables yi, ..., yé and replace ¢; with the set of constraints

St = {(P, (zjl,,z;“)) | P(z]l,,zf) is an atom in w(x’i,...,xf,,yi,...,yé)}

Repeating this process for all R € I'; and constraint ¢; yields a CSP instance I* over
'y U{Qg | g: D — D} whose solution set, when projected onto X, is exactly sol([).

11:5

CP 2022

11:6

On Redundancy in Constraint Satisfaction Problems

By construction, for each y € Y = U;Y? there exist g : D — D and = € X such that
for all ¢ € sol(I*), we have ¢(y) = g(¢(x)). In particular, if there exist y1,y2 € Y, 2z € X
and g : D — D such that y; = g(z) and y» = g(z) then we have ¢(y1) = ¢(y2) for all
¢ € sol(I*). Tt follows that y; and y2 can be merged into a single variable without changing
the number of non-redundant constraints in I*. After exhaustive application of this rule, we
have |Y| < n - |D|PL.

Now, we greedily remove redundant constraints from I* until all constraints are non-
redundant. Observe that this process cannot remove all constraints from a set S?, for any 1.
Indeed, by assumption, for each constraint ¢; in I there exists an assignment ¢ : X — D that
only violates ¢; in I. This assignment can be extended to an assignment ¢* : X UY — D
that is not a solution to I* and may only violate constraints in S%. Therefore, removing
all of S; would increase the solution set of I*, which cannot happen since only redundant
constraints are removed.

In addition, the language {Q, | g : D¢ — D} contains only functional constraints and
hence has linear non-redundancy. (This follows, for example, from [5, Theorem 13].) Since
|X|+ Y] < n-(1+|D|IP), we deduce that I* contains O(n) constraints that are not from T';.

By the three paragraphs above, I* has at most n - (1 4+ |D|IP!) variables and at least
NRDr, (n) — O(n) non-redundant constraints from I';. By definition of NRD this implies
NRDr,(n) = O(NRDr, (n)) + O(n), and finally NRDr,(n) = O(NRDr, (n)) since I'y is
non-trivial. |

» Example 3. Let p > 1 be a prime number, D = {0,...,p — 1} and consider the relation
R ={(z,y,2) | 23+ y> + 22 = 1}, where sum and product are understood as operations over
the finite field of order p. If we let Ry, = {(z,y,2) |t +y+2=1} and f,g: D — D such
that f(d) = d® and g(d) = d?, we can equivalently define R as

R(z,y,2z) = 3a,b,c: Rin(a,b,c) N Qs(x,a) A Qs(y,b) A Qq(z,¢)

which implies that R € ({Riin})fs. From Proposition 2 and the fact that linear equations
over finite fields have linear non-redundancy, we deduce that { R} has non-redundancy O(n).

» Example 4. Following [20], a language I'; over non-empty domain Dy has an embedding
over a language 'y over domain Dy O D; if there exists a bijective function h : T'y — I'y
such that for all R € T'y, ar(R) = ar(h(R)) and R = h(R) N D;. If we interpret both I'; and
T’y as languages over Do and define g : Dy — D5 such that g(d) = d if d € Dy and g(d) = d3
otherwise (where dj is an arbitrary value in D;), then each R € T’y can be written as

R(z1,...,z,) = h(R)(z1,...,z,) /\ Qq (i, ;)

1<i<r

and hence I'y C (I'3)g,. Therefore, by Proposition 2, embeddings preserve the non-redundancy

asymptotics of constraint languages.

We will establish an algebraic duality for fgpp-definitions based on pattern partial poly-
morphisms, which were introduced by Lagerkvist and Wahlstrom [21] in a different context
(the study of exponential algorithms for sign-symmetric Boolean languages).

A polymorphism pattern of arity k is a set of pairs (¢, z), where ¢ is a sequence of variables
of length k£ and x occurs in ¢. A k-ary partial operation f : Dy — D satisfies a k-ary
polymorphism pattern P if

Dy ={(¢(x1),...,0(zx)) | ((z1,...,2x),2) € P, ¢ : {x1,..., 25} — D}

C. Carbonnel

and f(¢(z1),...,0(zx)) = ¢(z) for all ((z1,...,2x),2) € P, ¢ : {z1,...,2} — D. It follows
from definition that for any pattern P and finite set D, there is at most one partial operation
on D that satisfies P. We denote this function by f5 and call it the interpretation of P
on D.

We say that a partial operation f is a pattern partial operation if it satisfies some
polymorphism pattern P. We will often use the following equivalent characterisation.

» Observation 5. Let D be a finite set, k be a nonnegative integer and Dy C D*. A partial
operation f : Dy — D 1is a pattern partial operation if and only if for every t € Dy and
g: D — D, we have that g(t) € Dy and fog(t) =go f(t).

Proof. Suppose that f is a pattern partial operation because it satisfies a certain polymorph-
ism pattern P. In particular, for every ¢t € Dy there exists some ((z1,...,2x),z) € P and
¢ :{x1,...,2k} = D such that t = (¢(z1),...,d(xx)). Then, for any mapping g : D — D we
have g(t) = (g9(¢(x1)), ..., 9(¢(zr))), which must belong to Dy as witnessed by the mapping
¢’ = g o ¢. Furthermore, by definition we have f(¢'(z1),...,¢ (zx)) = ¢'(x), or equivalently
Foglt)=gof(t).

Conversely, suppose that for every t € Dy and g : D — D, we have that g(t) € Dy
and fog(t) = go f(t). Let DP = {z1,...,2,} be a set of variables in bijection with
D ={dy,...,d,}, and let P denote the pattern

{((xiu"'?xik)?xj) | (di17""dik) eDfaf(dila'“vdik) :dj}

Then, we must have «; € {x;,,...,2;, } for any ((z;,,..., ;.),2;) € P. Indeed, if it were not
the case then there would exist a tuple t = (d;,, ..., d;,) € Dy such that f(t) ¢ {d;,,...,d;,},
and we would have f o g(t) # g o f(t) for the mapping ¢ : D — D such that g(d) = d if
de{d,...,d;} and g(d) = d;, otherwise.

Furthermore, mappings ¢ from D to D can be identified with mappings from D to D,
so with a slight abuse of notation we have

f(o(zs,), .-, (b(xu)) = o(f(zsy,. .. 23,)) = ¢($J)
for all ¢ : DY, ((z4y,...,2i,),2;) € P and f satisfies P. <

On the Boolean domain, pattern partial operations are called pSDI operations [21] (for
partial self-dual idempotent operations). Beyond the Boolean domain, notable examples
of pattern partial operations are the first Pizley partial operation of [5] and the universal
Mal’tsev partial operations of [20], the simplest of which is presented in Example 6.

» Example 6. Let P2M denote the polymorphism pattern

((z,,9),9)
((y,z,2),y)

and consider the partial operation f }?QM over some set D, which is an example of a pattern
partial operation with domain {(d1,dz,d3) € D | (d1 = dg) or (dz = d3)}. By definition, a
binary relation R admits f PDZM as a partial polymorphism if and only if it is rectangular, that
is, R does not contain three tuples (a,b), (a,c), (d,c) such that (d,b) ¢ R. It can be further
observed (although it is not immediately obvious) that a binary relation admits f}?M as a
partial polymorphism if and only if it is fgpp-definable from the empty constraint laﬁguage.
This polymorphism pattern plays a critical role in the characterisation of the non-redundancy
of binary constraint languages obtained in [5], and we will revisit it in the next section.

11:7

CP 2022

11:8

On Redundancy in Constraint Satisfaction Problems

Throughout this note we will use p?pol(I') to denote the set of all pattern partial
polymorphisms of T'. The following proposition shows that p?pol(I') determines precisely the
set of relations that are fgpp-definable over T'.

» Proposition 7. Let I'; and I's be two constraint languages over the same finite domain D.
Then, p*pol(T'1) C p?pol(T's) if and only if Ta C (T'1) 4.

Proof. We first prove the backward implication. Suppose that I's C (I'1)¢; but there exists
some pattern partial operation f € p?pol(I'y) of arity k that is not a partial polymorphism
of some relation R € T's. Let R(z1,...,2,) = Jy1,...,Yq : Y(z1,...,Zr,Y1,...,Yq) be an
fgpp-definition of R over I'y and define Ry(x1,...,%r,y1,...,Yq) = V(T1,. .-, Tr, Y1, -, Yq)-
First, observe that for all g : D — D and k tuples t; = (d1, g(d1)), ..., tx = (dk, g(dg)) of Qq
such that f(t1,...,t) is defined, it holds that

f(tlv' .. 7tk) = (f(dla .. ~7dk)af(g(d1)v' .. ,g(dk))) = (f(db . 'adk)ag(f(dlv s 7dk))) € Qg

so f is a partial polymorphism of I'1 U{Qy | g : D — D}. Since Ry is qfpp-definable over
I'U{Qg | g : D — D}, this implies that f is a partial polymorphism of Rz. However,
f is not a partial polymorphism of R, so there exist k = ar(f) tuples ¢1,...,t; € R such
that f(ti,...,tx) is defined and does not belong to R. Let t},...,t;, € Rz be such that
tj[1,...,r] =t; for all | < k. By Definition 1, there exists for each r < i < r 4 ¢ an index
J <rand a mapping g : D — D such that ¢][;] = g(¢[j]) for all I < k. Since the domain of
[is closed under all unary operations from D to D, ty = f(t},...,t}) is defined and belongs
to R?, a contradiction since t¢[1,...,7] = f(t1,...,tx) ¢ R=R?[1,...,r].

The forward implication is a bit more difficult. Let R denote the set of all relations
R over D such that R ¢ (I'1)¢ and every pattern partial polymorphism of I'y is a partial
polymorphism of R. Towards a contradiction, suppose that R is non-empty. Let R be a
relation in R with minimum arity r. Note that (I'1)¢ contains all unary relations over D, so
we may assume that r > 2. Now, we define

and observe that R is well defined (because D" € (T';)g,) and strictly contains R. In particular,
there exists a certain tuple t € R\ R. We pick an arbitrary ordering ¢1, ..., t,, of the tuples of
R, and for all [< r we define the Ith column of R as ¢; = (t1[l],...,tm[l]). Then, we define

Dy ={g(e) |1 <1<r,g:D— D}

andlet p = |Dy¢|, as wellas o : Dy — {1,...,p} be an arbitrary bijection such that o= (i) = ¢;
for i < r. Now, consider the relation Rf(y1,...,¥r) = Wrt+1,---,Yp : V(Y1,...,Yp), Where
(Y1, ..., Yp) is given by

N QUowtt ottt Yot ar(@) o ar(@)) A Qq(vi:y))
Qel 4,j<p,9:D—D:
(t], 0)EQ o (i)=g(a71(5))
and the first conjunction is restricted to tuples of variables that are well-defined with respect
to 0. By construction, the tuples of R; are in one-to-one correspondance with the pattern
partial polymorphisms of I'y of arity m whose domain is the closure of ¢y, ...,c, under
all unary operations D — D. In particular, Ry contains the tuples corresponding to the
m partial projection operations on D; and hence Ry contains R. Then, since Ry is fgpp-
definable over I'y, it follows that t € R;. This particular tuple ¢ corresponds to a certain
pattern partial polymorphism f; of I'1, of arity m, domain D and such that f(c;) = t[l] for
all] <r. Since t ¢ R, f; is not a partial polymorphism of R, which concludes the proof. =

C. Carbonnel

4 Pattern partial polymorphisms and redundancy

Recall from Section 2 that in order to study the function NRDr, we can assume without
loss of generality that I' contains a single relation R. Then, it will be convenient to rephrase
CSP(T") as a homomorphism problem: given a relation Rx over some finite set X of the
same arity as R, is there a homomorphism from Rx to R? Here, a homomorphism is a
mapping ¢ from X to D such that ¢(t) € R for all t € Rx. We will use hom(Rx, R) to
denote the set of all homomomorphisms from Rx to R. In this formulation, the constraint
scopes are given by the tuples of Ry and a constraint (R,t), t € Ry, is redundant if and
only if hom(Rx, R) = hom(Rx\{t}, R).

» Lemma 8. Let Ry, R be relations with respective domains X, D and let f5 be a k-ary
partial polymorphism of R that satisfies a pattern P. Ift ty,... t, are tuples of Rx such
that t = fX (t1,...,tx), then hom(Rx, R) = hom(Rx\{t}, R).

Proof. For the sake of contradiction, suppose that there exists a homomorphism A : X — D
such that h(t) ¢ R but h(t1),...,h(tx) € R. Observe that fA"P is a partial polymorphism
of R (when interpreted as a relation over X U D) and define g : X U D — X U D such that
g(u) = h(u) if u € X and g(u) = u otherwise. Since f& P is a pattern partial operation, we
have that

FEP(g(tn), - g(te) = g(fB VP (oo t)) = g(fF (b, tr)) = g(8) = h(t) ¢ R
which contradicts the fact that X" is a partial polymorphism of R. |

In essence, a (partial) polymorphism is an operator that combines solutions (tuples of
values) to produce new ones. What this lemma says is that pattern partial polymorphisms
can also be used to combine constraints and produce new ones that are valid for the instance,
i.e. redundant. The is particularly interesting in light of the algebraic duality uncovered in
Proposition 7: if I' can fgpp-define a relation R with high non-redundancy, then I'" has high
non-redundancy by Proposition 2, and if it cannot then Proposition 7 and Lemma 8 provide
a non-trivial mechanism to identify redundant constraints that is valid for CSP(T") but not

for CSP({R}).

» Example 9. Let R be a relation with the operation f}%M of Example 6 as partial poly-
morphism. Consider a CSP instance (Rx, R) and suppose that there exist four variables
x1,T2,y1,Yy2 € X such that (z1,y1), (21,¥2), (T2,¥2), (x2,y1) are tuples of Rx (i.e. are scopes
of constraints with relation R). Then, the pattern partial polymorphism f EM combined with
Lemma 8 implies that the constraint (R, (z2,y1)) is redundant, as it is the image through
fl):'iM of the first three constraints.

Given a relation R over a set X and a set F of partial operations on X, we denote by
F(R) the transitive closure of R under operations from F. If no tuple ¢ of R can be generated
from tuples in R\{t} via an operation in F, we say that R is F-independent. The following
two propositions are natural consequences of Lemma 8 regarding upper bounds on the NRD
function.

» Proposition 10. Let R be a relation over a set D, Pgr be the set of polymorphism patterns
that are satisfied by partial polymorphisms of R, and Pj5 denote the set of interpretations of
Pgr on set S. If for every relation Rx over a set X of n elements such that ar(Rx) = ar(R)
there exists a relation R% of cardinality at most f(n) such that Ry C Rx C Py (RY%), then
NRD(gy(n) < f(n).

11:9

CP 2022

11:10

On Redundancy in Constraint Satisfaction Problems

Proof. Suppose that such a relation R% exists for every relation Rx. Let (Rx,R) be
an instance of CSP({R}) and Ry C Ry C ... C R, be the sequence of distinct relations
obtained by transitive closure of R% under PZ, with Ry = R% and R; = Rx. For every
1 <4 < g, there exists a pattern P € Pr and tuples t1,...,t; in R; such that R,y = R;U{t},
t= f&(t1,...,tx). By Lemma 8, we have hom(R;, R) = hom(R;41, R). This is true for all
i, so in particular we have hom(R%,R) = hom(Rx, R). Therefore, every non-redundant
constraint in (Ry, R) must be of the form (R, t) with ¢ € R%, and their total number is at
most f(n). <

» Example 11. Consider a relation R of arity r over a set D, and suppose that R has the
pattern partial polymorphism f F[’)QM of Examples 6 and 9. We will use Proposition 10 to show
that NRD¢gy(n) < 2n9, where ¢ = [r/2].

Let (Rx, R) be an instance of CSP({R}) with n variables and no redundant constraint.
Let RY denote the projection of Rx onto its first ¢ indices and R% be its projection
onto the remainder. For simplicity, we will interpret Rx as a binary relation over disjoint
domains R} and R%. Let Gx be the bipartite graph with domain RY U R% and edge
relation Ry. Observe that for any path (v, vq), (ve,vs),..., (Vg—1,v%) in Gx with an odd
number of edges, repeated application of fJ)DZM on the corresponding tuples of Rx eventually
produces the edge (v1,vy). Therefore, the smallest subrelation R% of Rx that contains Rx
in its transitive closure via fz):'iM corresponds to a forest subgraph Fx of Gx. In particular,

|R%| = |E(Fx)| < |RX|+ |R%| < 2n%, and by Proposition 10, NRDg;(n) < 2n9.

» Proposition 12. Let R be a relation over a set D, Pg be the set of polymorphism patterns
that are satisfied by partial polymorphisms of R, and Pg denote the set of interpretations of
Pr on set S. If every relation Rx over a set X of n elements that is P -independent and
such that ar(Rx) = ar(R) has cardinality at most f(n), then NRD{gy(n) < f(n).

Proof. Follows immediately from Proposition 10 as every minimal relation R% with R C
Rx C PX(RY%) is PX-independent. <

We conclude this section with a straightforward lower bound on the non-redundancy
of constraint languages that do not admit a certain polymorphism pattern related to the
fgpp-definability of k-clauses, whose properties are well known on the Boolean domain.

» Definition 13. Let k > 2 and c1,...,con_1 be the lexicographic ordering of the relation
{z,y}*\{(y,...,y)} with respect to y > x. The k-universal polymorphism pattern PZ is the
set of all pairs (t;,y) with t; = (c1[i], ..., con_1[i]), i < k.

The interpretation of P on the Boolean domain is called the Boolean k-universal partial
operation [21]. In the definition above, the ordering of {x,y}*\{(y,...,%)} is not important:
a different ordering would produce a different pattern, but it would be equivalent in the sense
that it would have the same interpretation on all sets, up to a permutation of the arguments.
(For instance, the pattern P37 of Example 6 is equivalent to P3'.)

» Example 14. Py is the pattern given by the following pairs:

((m, z) :177 x? y’ y7 y)? y)
(z, 2z, 9,9, 7,2,9),y)
(zy, 2, y,2,y,2),y)

Observe that the left-hand side of these pairs corresponds to the three columns of the relation
corresponding to a 3-clause with no negated literals, modulo the renaming = < 1, y < 0.
The right-hand side is the missing tuple (0,0, 0) in the clause.

C. Carbonnel

» Lemma 15. Let R be a relation of arity r over a domain D and r > k > 2. If f}% ¢
p?pol({R}), then NRD{py(n) = Q(nF).

Proof. Suppose that f{% ¢ p?pol({R}). For simplicity of notation we write f = f}% and
assume that {0,1} C D. (Note that |D| > 1 since otherwise we would have f € p?pol(R).)
We claim that Cy € ({R})t;, where Ci(x1,...,21) = 21 V...V 2. Let p = |Dy| and
o: Dy — {1,...,p} be a bijection such that o=1(i) = ¢(t;) for all i < k, where (t;,y) € P
is as in Definition 13 and ¢ : {x,y} — D is such that ¢(z) = 1 and ¢(y) = 0. We define

w(yla R 7yp)

A R(Yo((t: 1]t 11D)s -+ Yo (4 1)t 7))
(t1,..,t;)ER
Vi, (t1[4],...,tr[i]) €Dy

and note that the set of models of this formula are in one-to-one correspondance with the
partial polymorphisms of R with domain Dy. Then, the formula

AY1s - Uk) = FWkt1, -5 Yp 2 V(Y155 Yp) /\ Qqy(Yj,Yi)

4,j<p:
3g:D—=D o (D)=g(c 7" (7))
is an fgpp-definition of a relation of arity k that contains every tuple of C}, (as projections with
domain Dy are pattern partial operations) and cannot contain the tuple (0,...,0) (otherwise
this tuple would extend to the model of 1 that corresponds to f, and by assumption
f ¢ p?pol({R})). Since the unary relation {(0), (1)} is fgpp-definable from any language, we
have Cj, € ({R})tg, as claimed.

Now, by Proposition 2 we need only prove that the language {C}} has non-redundancy
Q(n*). A simple argument is to define for any n a CSP instance I,, = (X,C) over {Cy}
with n variables and such that C' contains one constraint (Cy, (z1,...,xx)) for all distinct
r1,...,o in X. This instance has Q(n*) constraints, and none is redundant: for any
constraint ¢ = (C, (1, ...,2x)) € C, the assignment that maps every variable to 1 except
x1,...,x) satisfies every constraint except c. <

» Example 16. Let p > 2, D = {1,...,p} and consider the relation R = {(z,y, z) € D? |
max(z,y) > z}. Observe that the set of tuples S = ({1,2}2 x {2,3})\{(2,2,2)} is a subset
of R, while the missing tuple (2,2,2) does not belong to R. It follows that there exist some
ordering t1,...,tg of S such that f}% (t1,...,tg) is defined and is equal to (2,2,2), and hence
f}% ¢ p?pol({R}). By Lemma 15, { R} has non-redundancy Q(n?), which is tight since R
has arity 3.

In general, the largest value k for which Lemma 15 applies on a relation R gives a simple
lower bound on its non-redundancy. This bound is unlikely to be tight in general, although
we do not know any counter-examples.

5 A classification for languages with maximum non-redundancy

In this section, we will combine the lower bound of Lemma 15 with an upper bound derived
from Proposition 12 and a well-known theorem in extremal hypergraph theory to prove our
main result: a characterisation of constraint languages of arity » whose non-redundancy has
the fastest possible asymptotic growth ©(n"). Our approach suggests a simple connection
between the non-redundancy of constraint languages and hypergraph Turdn numbers.

11:11

CP 2022

11:12

On Redundancy in Constraint Satisfaction Problems

» Definition 17 ([19]). Let H be a family of r-uniform hypergraphs. The nth Turdn number
of H, denoted by ex(n,H), is the mazimum number of edges in an r-uniform hypergraph with
n vertices that does not contain any hypergraph in H as a subgraph.

The following theorem of Erdés is a fundamental result on this topic.

» Theorem 18 ([13]). If K be the complete r-uniform r-partite hypergraph with vertex
classes of size two and K5 € H, then ex(n,H) = O(n"~¢), where e = 217",

We will link relations and hypergraphs in a slightly unusual way. If R is a relation over
X, then we define H*(R) as the r-partite r-uniform hypergraph over vertex set Xi,..., X,
where each X; = {z' | # € X} is a copy of X, and edge set {{z1,...,2"} | (1,...,2,) € R}.
Note that %M (R) has cardinality exactly |R|, and its vertex set is of size 7 - | X| = O(|X]).

» Lemma 19. Let R be a relation of arity r > 2 over a domain D with partial polymorphism
1%. If I = (Rx, R) is an instance of CSP({R}) and H™ (Rx) contains K5 as a subgraph,
then I contains a redundant constraint.

Proof. Suppose that K% occurs in HM (Ry) as a subgraph. Let ti,...,tsr be 2" tuples of
Rx whose images in HM (Rx) are the edges of a subgraph H isomorphic to Kj. Because
both HM(Rx) and K} are r-uniform r-partite hypergraphs and K} contains for each vertex
class {z,y} two edges e1, ex with e; = ex\{z} U {y}, the vertex classes of H are subsets of
the vertex classes of HM (Rx). This implies that for each j < r, there exist two elements
xj,y; such that ¢;[j] € {z;,y;} for all i < 2". Furthermore, all tuples ¢; are distinct,
so {t; | © < 2"} = Ilj<,{z;,y;} and some tuple, say ti, is exactly (yi,...,yr). After

reordering lexicographically the other tuples t,,...,t5 with respect to y; > x;, we obtain
that fa.(ta,...,tar) = t1, so by Lemma 8 the constraint (R,#;) is redundant in I and the
claim follows. |

» Corollary 20. Let R be a relation of arity r > 2 over a domain D. If {5, € p*pol({R}),
then NRD(py(n) = O(n"~°), where e = 21" > 0.

Proof. Let I = (Rx, R) be an instance of CSP({R}) with exactly NRDyzy(n) constraint,
all of which are non-redundant. By Lemma 19, H™ (Rx) does not contain K3 as a subgraph.
Since HM (Rx) has O(n) vertices, by Theorem 18 it has O(n"~¢) edges. By construction we
have |Rx| = |HM(Rx)|, so |Rx| = O(n"~¢) and finally NRDzy(n) = O(n"~°). <

Combining Corollary 20 with Lemma 15, we can fully characterise constraint languages
with worst-case non-redundancy ©(n").

» Theorem 21. Let I" be a constraint language with domain D and maximum arity r > 2.
If fB. & p*pol(T') then NRDr(n) = ©(n"), and otherwise NRDr(n) = O(n"~¢), where
e=21"">0.

Proof. Recall from Section 2 that the non-redundancy of a constraint language is asymp-
totically determined by the non-redundancy of its individual relations, i.e. NRDr(n) =
O(maxger NRDypy(n)). If fgg ¢ p2pol(T') then there exists R € T such that f}% ¢
p?pol({R}), and by Lemma 15 we have NRDr(n) = ©(n"). If instead f5. € p*pol(I), then
by Corollary 20 we obtain NRDp(n) = O(n"). ’ <

It is unlikely that the literature on Turdn numbers can be used to derive tight upper
bounds. Most results on this topic focus on forbidding a single fixed subhypergraph, while
in our case the list of forbidden structures in irredundant instances is typically infinite and

C. Carbonnel

equipped with an algebraic structure; this discrepancy makes any bound obtained this way
quite loose. For instance, on the elementary case r = 2, Corollary 20 only produces an upper
bound of O(n3/?) for binary rectangular relations while more direct arguments (Example 11)
easily establish the tight bound ©(n). Similarly, on Boolean languages the same result holds
for e = 1, but proving such a bound using Lemma 8 (rather than polynomials, as in [9])
would necessitate a much deeper analysis of the pattern partial polymorphisms of constraint
languages preserved by f5,.

Finally, we remark that the proof of Corollary 20 implies a simple polynomial-time
sparsification algorithm for all languages T" of arity » with NRDr(n) = o(n").

» Theorem 22. Let I' be a constraint language with domain D and mazximum arity r > 2.
If fE. € p?pol(T"), then there exists a polynomial time algorithm that takes an instance of
C’SP(TF) as input and outputs an equisatisfiable instance of CSP(T') with O(n"~¢) constraints,
where € = 217" > 0.

Proof. Let I = (X, C) be an instance of CSP(I"). For each relation R € I, the algorithm
constructs the relation Rx = {(z1,...,z,) | (R,(x1,...,2,)) € C} and enumerates all
sequences t1, ..., tor of tuples of Rx. For each sequence, it tests whether ¢; = fffu (tay ... tar)
and discards the constraint (R,t;) from I when the test succeeds. By Lemma 8: this process
only removes redundant constraints. The algorithm then outputs the residual instance.
After this algorithm has terminated, for each relation R the corresponding relation Rx
contains at most O(n"~¢) tuples because the r-uniform r-partite hypergraph H (Rx) has
cardinality |Rx| and does not contain Kj as a subhypergraph. There are O(1) distinct
relations in T', so the total number of remaining constraints is O(n”~¢). <

6 Conclusion

We have presented an algebraic framework based on fgpp-definitions and pattern partial
polymorphisms dedicated to the study of non-redundancy of constraint languages, extending
earlier work on Boolean languages [9, 21]. Based on this framework, we have established
a loose connection with extremal hypergraph theory and deduced a characterisation of
constraint languages of arity r with non-redundancy ©(n"). The progress we have made in
this paper is modest, and much is still unknown on this topic. We believe that the following
challenges are the natural next steps towards a better understanding of non-redundancy.

Find a characterisation of constraint languages with non-redundancy O(n). In this paper
we have characterised constraint languages whose non-redundancy is the highest possible
with respect to their arity, so it would be interesting to do the same for languages whose
non-redundancy is the lowest possible. It is conceivable that this class coincides with that of
languages with a finite Mal’tsev embedding [21] since no counter-example is known. However,
proving that it is the case will likely require a better understanding of the pattern partial
polymorphisms of these languages and lower bounds more sophisticated than those based on
Boolean clauses.

Determine whether all r-ary constraint languages with non-redundancy o(n") have
non-redundancy O(n"~'). This is known to be true for the Boolean domain by the results
of Chen et al. [9], but for larger domains we are only able to prove the existence of a
considerably smaller gap which vanishes as r grows. Both our approach and that of Chen
et al. have intrinsic limitations when dealing simultaneously with large domains and large
arities, so it would be interesting to see how they could be combined.

11:13

CP 2022

11:14

On Redundancy in Constraint Satisfaction Problems

Determine the non-redundancy of all ternary constraint languages. A classification is
known for binary languages (see [5], although a more direct proof follows from Example 11
and Lemma 15) and ternary Boolean languages [9], but not on ternary languages with
arbitrary domains.

Clarify the relationship between non-redundancy, sparsification, and learnability. In
particular, it would be interesting to determine whether non-redundancy O(n?) implies
sparsification algorithms with output size O(n?) and whether non-redundancy is asymptotic-
ally equivalent to chain length, a closely related measure that characterises the efficiency of
a class of learning algorithms for constraint acquisition [5].

—— References

1 Albert Atserias, Andrei A. Bulatov, and Anuj Dawar. Affine systems of equations and
counting infinitary logic. Theoretical Compututer Science, 410(18):1666—-1683, 2009. doi:
10.1016/j.tcs.2008.12.049.

2 Libor Barto, Zarathustra Brady, Andrei Bulatov, Marcin Kozik, and Dmitriy Zhuk. Minimal
taylor algebras as a common framework for the three algebraic approaches to the CSP. In
36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS’21), pages 1-13.
IEEE, 2021. doi:10.1109/LICS52264.2021.9470557.

3 Libor Barto and Marcin Kozik. Constraint satisfaction problems solvable by local consistency
methods. Journal of the ACM, 61(1):3:1-3:19, 2014. doi:10.1145/2556646.

4 Libor Barto, Andrei Krokhin, and Ross Willard. Polymorphisms, and how to use them. In
Dagstuhl Follow-Ups, volume 7. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

5 Christian Bessiere, Clément Carbonnel, and George Katsirelos. Chain length and csps learnable
with few queries. In Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence
(AAAT’20), pages 1420-1427, 2020. doi:10.1609/aaai.v34i02.5499.

6 Christian Bessiere, Remi Coletta, Emmanuel Hebrard, George Katsirelos, Nadjib Lazaar, Nina
Narodytska, Claude-Guy Quimper, and Toby Walsh. Constraint acquisition via partial queries.
In Francesca Rossi, editor, Proceedings of the 23rd International Joint Conference on Artificial
Intelligence (IJCAI’13), pages 475-481, 2013.

7 Christian Bessiere, Frédéric Koriche, Nadjib Lazaar, and Barry O’Sullivan. Constraint
acquisition. Artificial Intelligence, 244:315-342, 2017. doi:10.1016/j.artint.2015.08.001.

8 Andrei A. Bulatov. A dichotomy theorem for nonuniform csps. In Chris Umans, editor, 58th
IEEE Annual Symposium on Foundations of Computer Science (FOCS’17), pages 319-330.
IEEE Computer Society, 2017. doi:10.1109/F0CS.2017.37.

9 Hubie Chen, Bart M. P. Jansen, and Astrid Pieterse. Best-case and worst-case sparsifiability
of Boolean csps. Algorithmica, 82(8):2200-2242, 2020. doi:10.1007/s00453-019-00660-7y.

10 Hubie Chen and Matthew Valeriote. Learnability of solutions to conjunctive queries. Journal of
Machine Learing Research, 20:67:1-67:28, 2019. URL: http://jmlr.org/papers/v20/17-734.
html.

11 Miguel Couceiro, Lucien Haddad, and Victor Lagerkvist. A survey on the fine-grained
complexity of constraint satisfaction problems based on partial polymorphisms. J. Multiple
Valued Log. Soft Comput., 38(1-2):115-136, 2022.

12 L&szl6 Egri, Pavol Hell, Benoit Larose, and Arash Rafiey. Space complexity of list H-
colouring: a dichotomy. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA’14), pages 349-365. SIAM, 2014.
doi:10.1137/1.9781611973402.26.

13 P Erdos. On extremal problems of graphs and generalized graphs. Israel Journal of Mathematics,
2(3):183-190, 1964.

https://doi.org/10.1016/j.tcs.2008.12.049
https://doi.org/10.1016/j.tcs.2008.12.049
https://doi.org/10.1109/LICS52264.2021.9470557
https://doi.org/10.1145/2556646
https://doi.org/10.1609/aaai.v34i02.5499
https://doi.org/10.1016/j.artint.2015.08.001
https://doi.org/10.1109/FOCS.2017.37
https://doi.org/10.1007/s00453-019-00660-y
http://jmlr.org/papers/v20/17-734.html
http://jmlr.org/papers/v20/17-734.html
https://doi.org/10.1137/1.9781611973402.26

C. Carbonnel

14

15

16

17

18

19
20

21

22

23

24

25

26

Tomés Feder and Moshe Y. Vardi. The computational structure of monotone monadic snp
and constraint satisfaction: A study through datalog and group theory. SIAM Journal on
Computing, 28(1):57-104, 1998.

David Geiger. Closed systems of functions and predicates. Pacific journal of mathematics,
27(1):95-100, 1968.

Pawel M. Idziak, Petar Markovic, Ralph McKenzie, Matthew Valeriote, and Ross Willard.
Tractability and learnability arising from algebras with few subpowers. SIAM Journal on
Computing, 39(7):3023-3037, 2010. doi:10.1137/090775646.

Peter Jeavons, David Cohen, and Marc Gyssens. Closure properties of constraints. J. ACM,
44(4):527-548, July 1997. doi:10.1145/263867.263489.

Peter Jonsson, Victor Lagerkvist, Gustav Nordh, and Bruno Zanuttini. Strong partial
clones and the time complexity of SAT problems. J. Comput. Syst. Sci., 84:52-78, 2017.
doi:10.1016/j.jcss.2016.07.008.

Peter Keevash. Hypergraph turdan problems. Surveys in combinatorics, 392:83-140, 2011.
Victor Lagerkvist and Magnus Wahlstrém. Kernelization of constraint satisfaction prob-
lems: A study through universal algebra. In Proceedings of the 23rd Conference on
Principles and Practice of Constraint Programming (CP’17), pages 157-171, 2017. doi:
10.1007/978-3-319-66158-2_11.

Victor Lagerkvist and Magnus Wahlstréom. Which np-hard SAT and CSP problems admit
exponentially improved algorithms? CoRR, abs/1801.09488, 2018. arXiv:1801.09488.
Benoit Larose, Cynthia Loten, and Claude Tardif. A characterisation of first-order constraint
satisfaction problems. Logical Methods in Computer Science, 3(4), 2007. doi:10.2168/
LMCS-3(4:6)2007.

Emil L. Post. The two-valued iterative systems of mathematical logic. Annals of Mathematics
studies, 1941. doi:10.2307/2268608.

Boris A Romov. The algebras of partial functions and their invariants. Cybernetics, 17(2):157—
167, 1981.

Thomas J. Schaefer. The complexity of satisfiability problems. In STOC ’78: Proceedings
of the tenth annual ACM Symposium on Theory of Computing (STOC’78), pages 216-226.
Association for Computing Machinery, 1978. doi:10.1145/800133.804350.

Dmitriy Zhuk. A proof of the CSP dichotomy conjecture. Journal of the ACM, 67(5):30:1-30:78,
2020. doi:10.1145/3402029.

11:15

CP 2022

https://doi.org/10.1137/090775646
https://doi.org/10.1145/263867.263489
https://doi.org/10.1016/j.jcss.2016.07.008
https://doi.org/10.1007/978-3-319-66158-2_11
https://doi.org/10.1007/978-3-319-66158-2_11
http://arxiv.org/abs/1801.09488
https://doi.org/10.2168/LMCS-3(4:6)2007
https://doi.org/10.2168/LMCS-3(4:6)2007
https://doi.org/10.2307/2268608
https://doi.org/10.1145/800133.804350
https://doi.org/10.1145/3402029

From Crossing-Free Resolution to Max-SAT
Resolution

Mohamed Sami Cherif &

Aix-Marseille Univ, Université de Toulon, CNRS, LIS, France

Djamal Habet =
Aix-Marseille Univ, Université de Toulon, CNRS, LIS, France

Matthieu Py &=
Aix-Marseille Univ, Université de Toulon, CNRS, LIS, France

—— Abstract
Adapting a SAT resolution proof into a Max-SAT resolution proof without considerably increasing
its size is an open problem. Read-once resolution, where each clause is used at most once in the
proof, represents the only fragment of resolution for which an adaptation using exclusively Max-SAT
resolution is known and trivial. Proofs containing non read-once clauses are difficult to adapt because
the Max-SAT resolution rule replaces the premises by the conclusions. This paper contributes to
this open problem by defining, for the first time since the introduction of Max-SAT resolution, a
new fragment of resolution whose proofs can be adapted to Max-SAT resolution proofs without
substantially increasing their size. In this fragment, called crossing-free resolution, non read-once
clauses are used independently to infer new information thus enabling to bring along each non
read-once clause while unfolding the proof until a substitute is required.

2012 ACM Subject Classification Theory of computation — Proof theory
Keywords and phrases Satisfiability, Proof, Max-SAT Resolution

Digital Object Identifier 10.4230/LIPIcs.CP.2022.12

1 Introduction

The maximum satisfiability (Max-SAT) problem is an optimization extension of the satisfiab-
ility (SAT) problem and consists, given a formula in Conjunctive Normal Form (CNF), in
determining the maximum number of clauses that it is possible to satisfy by an assignment
of the variables. This well known formalism is used to represent and solve many real-world
and crafted problems making it of great academic and industrial interest [3, 4]. SAT and
Max-SAT are strongly related and share many aspects. In fact, SAT solving techniques are
often used in the context of Max-SAT solving, particularly in SAT-based and Branch and
Bound (BnB) algorithms for Max-SAT [1, 2, 21]. Yet, in theory, bridging the gap between
SAT and Max-SAT inference remains one of the main challenges in the last decade.

One of the first proof systems for Max-SAT is based on an inference rule called Max-SAT
resolution [6, 7, 16, 17], which is an extension of the resolution rule [28] introduced in the
context of SAT. Max-SAT resolution is sound, complete and is the most studied inference
rule for Max-SAT, both in theory and practice [1, 5, 18, 19, 23, 24, 27]. However, adapting
a resolution proof to get a valid Max-SAT resolution proof of reasonable size remains an
open problem. Bonet et al. state that “it seems difficult to adapt a classical resolution proof
to get a Maz-SAT resolution proof, and it is an open question if this is possible without
increasing substantially® the size of the proof” [7]. Indeed, unlike resolution, the Max-SAT
resolution rule replaces the premises with the conclusions, which is necessary to maintain

1 typically when the size of the adapted proof is exponential with respect to the size of the initial one.

© Mohamed Sami Cherif, Djamal Habet, and Matthieu Py;

37 licensed under Creative Commons License CC-BY 4.0
28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 12; pp. 12:1-12:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:mohamed-sami.cherif@univ-amu.fr
https://orcid.org/0000-0003-4646-9982
mailto:djamal.habet@univ-amu.fr
mailto:matthieu.py@univ-amu.fr
https://doi.org/10.4230/LIPIcs.CP.2022.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2

From Crossing-Free Resolution to Max-SAT Resolution

Max-SAT equivalence after its application. Moreover, aside from the traditional resolvent
clause, additional clauses? are also added to ensure Max-SAT equivalence. In [17], Larrosa
et al. describe Max-SAT resolution as “a movement of knowledge”. As such, read-once
resolution proofs, where each clause is used once, represent the only fragment of resolution
for which an immediate and trivial adaptation is possible [6, 7, 12]. Recent works [11, 24]
try to circumvent this problem by allowing the use of the split rule, which intuitively allows
to duplicate a clause by adding one literal, to linearly adapt tree-like resolution refutations.
More specifically, the adaptation takes advantage of the structure of such proofs and applies
the split rule to fix the non read-once input clauses. However, the resulting proofs are in
the ResS proof system [18] in which Max-SAT resolution is augmented with the split rule.
To bridge the gap between SAT and Max-SAT resolution, non read-once clauses need to be
inferred using the clauses produced by Max-SAT resolution.

In this paper, we contribute to this open problem by identifying a new fragment of
resolution, that we call crossing-free resolution, for which an adaptation using only Max-SAT
resolution is possible without substantially increasing the size of the proof. Crossing-free
derivations are defined using the ensuing derivations of non read-once clauses. Intuitively, non
read-once clauses are used independently to infer new information in crossing-free resolution
proofs. The adaptation of such proofs to Max-SAT resolution proofs is shown possible
modulo some minor syntactic subtleties. Furthermore, we show that k-stacked diamond
patterns, which were shown exponential for the adaptation in [24], fall within the crossing-free
resolution fragment and can be adapted into Max-SAT resolution proofs without increasing
their size.

This paper is organized as follows. Section 2 gives some necessary definitions and notations
and presents the necessary background on resolution for SAT and Max-SAT as well as related
work. The crossing-free resolution refinement is introduced in Section 3 and its adaptation
to Max-SAT resolution is presented in Section 4. We study (k-stacked) diamond patterns
and show that they can be adapted without increasing their size in Section 5. Finally, we
conclude in Section 6.

2 Preliminaries

2.1 Definitions and Notations

Let X be the set of propositional variables. A literal [is a variable z € X or its negation T.
A clause C is a disjunction (or a set) of literals. If |C| = 1, C' is a unit clause. A formula in
Conjunctive Normal Form (CNF) ¢ is a conjunction (or a multiset) of clauses. An assignment
I:X — {true, false} maps each variable to a boolean value and can be represented as a set
of literals. A literal [is satisfied (resp. falsified) by an assignment I if [€ I (resp. [€ I). A
clause C'is satisfied by an assignment [if at least one of its literals is satisfied by I, otherwise
it is falsified by I. The empty clause O contains zero literals and is always falsified. A clause
C is a tautology if it contains both a literal I and its negation [, i.e., 3l € C's.t [€ C, and in
such case it is always satisfied. A clause C opposes a clause C’ if C contains a literal whose
negation is in C’, i.e., 3 € C s.t | € C'. We denote var(l), var(C) and var(¢) the variables
appearing respectively in the literal [, the clause C' and the formula ¢. The width of a clause
C is the number of literals occurring in it. A CNF formula ¢ is satisfied by an assignment I,
that we call model of ¢, if each clause C' € ¢ is satisfied by I, otherwise it is falsified by I.

2 referred to as compensation clauses

M. S. Cherif, D. Habet, and M. Py

Solving the Satisfiability (SAT) problem consists in determining whether there exists an
assignment [that satisfies a given CNF formula ¢. In the case where such an assignment

exists, we say that ¢ is satisfiable, otherwise we say that ¢ is unsatisfiable or inconsistent.

The cost of an assignment I, denoted costr(¢), is the number of clauses falsified by I. The
Maximum Satisfiability (Max-SAT) problem is an optimization extension of SAT which, for
a given CNF formula ¢, consists in determining the maximum number of clauses that can
be satisfied by an assignment of the variables. Equivalently, it consists in determining the
minimum number of clauses that each assignment must falsify, i.e., mlin costr(p).

2.2 Resolution for SAT

A well-known proof and refutation system for SAT is based on the resolution rule [28]. Given
two opposed clauses, this rule, defined below, deduces a resolvent clause which can be added
to the formula. A resolution proof or derivation of a clause C'is a finite sequence of resolutions
starting from the clauses of ¢ and deducing C usually represented as a finite sequence of
clauses. If C' is the empty clause [, the proof is referred to as a refutation of ¢. A resolution
proof can also be represented in the form of a Directed Acyclic Graph (DAG) whose nodes
are clauses in the proof either having two or zero incoming arcs (resp. if they are resolvents
or clauses of the initial formula). The size of a resolution derivation 7, denoted s(), is the
number of resolvents in it whereas its width, denoted w(w), is the maximum width of all its
clauses.

» Definition 1 (Resolution [28]). Given two opposed clauses Cy and Cs, the resolution rule
is defined as follows:

Ci=xzVA Co=72VB
C3=AVB

Many restricted classes of resolution have been studied in the literature, e.g read-once
resolution [13], tree (or tree-like) resolution [15] and linear resolution [22] among others. In
particular, a resolution proof is read-once if each clause is used at most once in the proof.
Similarly, a resolution derivation is tree-like if every intermediate clause, i.e., resolvent, is
used at most once in the derivation. Linear resolution, defined below, lies between tree-like
and general resolution in terms of proof complexity [8, 9]. In this fragment, the proofs are
linear in the sense that each deduced clause is used as premise in the next resolution step.
Note that, when the first condition of (c¢) holds in the definition, the clause D; is called the
input parent clause of C; 1.

» Definition 2 (Linear resolution [22]). Let ¢ be a CNF formula and C be a clause. A linear

resolution derivation of C' from ¢ is a sequence of clauses C1, ..., Cy, such that:

(a) Cy is a clause in ¢

(b) Cy, is the clause C

(c) For every i < m, Ciy1 is the resolvent of C; either with a clause D; from ¢ or with a
clause Cy, for some k < i.

2.3 Resolution for Max-SAT

One of the first and most studied proof systems for Max-SAT is the Max-SAT resolution
calculus (MaxRes) which relies on an inference rule extending resolution for Max-SAT
[6, 7, 16, 17]. Other than the resolvent clause, this rule, called Max-SAT resolution and
defined below, introduces new clauses referred to as compensation clauses and essential to

12:3

CP 2022

12:4

From Crossing-Free Resolution to Max-SAT Resolution

preserve Max-SAT equivalence. As a sound and complete rule for Max-SAT [6, 7], Max-SAT
resolution plays an important role in the context of Max-SAT theory and solving [5, 18, 24, 27].
In particular, for a given CNF formula, it is possible to generate a Max-SAT resolution proof
of its optimum by applying the saturation algorithm [7]. Furthermore, it is extensively used
and studied in the context of Branch and Bound algorithms for Max-SAT [1, 10, 14, 19] and
more marginally in the context of SAT-based ones [12, 23].

» Definition 3 (Max-SAT equivalence). Let ¢ and ¢' be two CNF formulas. ¢ and ¢’ are
Max-SAT equivalent iff for any assignment I : var(¢) Uvar(¢') — {true, false}, we have
costr (@) = costr(¢').

» Definition 4 (Max-SAT resolution [6, 7, 16, 17]). Given two opposed clauses C1 and Cs,
the Max-SAT resolution Tule is defined as follows:

Ci=xzVA Cy=ZVB
C.=AVB
CC,=zVAVB
CCy=TVAVB

where C,. is the resolvent clause and CCy, CCy are compensation clauses.

Note that the following rewriting is used to represent the compensation clauses in
compacted form: CVa; Vas V...Va, = (CVa)A(CVaVaz)A...AN(CVaiVasV...VVay,).
This rewriting was introduced in [17] as a recursive rule to transform the compensation
clauses into CNF form. This also entails that the Max-SAT resolution rule depends on the
ordering of the literals, as reported in [7, 17]. For the sake of simplification, we will allow the
use of this rewriting as two full-fledged rules to manipulate clauses in compacted form. We
will refer to the left-right rewriting as expansion and right-left one as compaction. This may
entail abusing some notations but it is useful to further simplify the proofs. Furthermore,
given three sets of literals A, B and C, the equality C'V AV B = CV AV AV B is sound for
Max-SAT as reported in [17] (c.f. Remark 13) and may be as such used in the proofs. We
discuss these subtleties following Theorem 14 in Section 4.

A Max-SAT resolution proof or derivation of a formula ¢’ from ¢ is a finite sequence of
Max-SAT resolutions starting from the clauses of ¢ and deducing ¢’ and is usually represented
as a finite sequence of formulas. Note that we may allow the addition of tautological clauses
to any formula in the proof. We discuss this syntactic subtlety at the end of Section 4. A
Max-SAT resolution proof can also be represented as a bipartite DAG whose nodes are either
clauses or inference steps (in which case they will be omitted for more simplicity). A sequence
of Max-SAT resolution steps deducing one empty clause is referred to as Max-SAT resolution
refutation. For a given CNF formula, it is possible to generate a Max-SAT resolution proof
of its optimum by applying the saturation algorithm [7]. Note that other inference rules and
proof systems were also studied in the context of Max-SAT [5, 11, 18, 20, 27].

Unlike resolution, the Max-SAT resolution rule replaces the premises by the conclusions.

Larrosa et al. describe Max-SAT resolution as “a movement of knowledge” [17]. Because of
this specificity, it is not easy to adapt a resolution proof to obtain a Max-SAT resolution proof.
Indeed, in resolution proofs, several resolution steps can share the same premise, because the
premises are not consumed after the application of a resolution step. On the other hand, the
premises of a Max-SAT resolution step are consumed after its application. Consequently, the
immediate adaptation of a resolution proof for Max-SAT is only possible if it is read-once
[6, 7, 12]. In this fragment, it is simply sufficient to replace every resolution step in the

M. S. Cherif, D. Habet, and M. Py

proof by a Max-SAT resolution step to produce a Max-SAT resolution proof of similar size.

However, adapting any resolution proof to a Max-SAT proof without substantially increasing
its size remains an open problem.

Recent works [11, 24] augment the Max-SAT resolution rule by the split rule defined
below, forming a new system stronger than MaxRes and called ResS [18], to linearly adapt
tree-like resolution refutations into ResS refutations. More specifically, the adaptation takes
advantage of the structure of such proofs and applies the split rule, which intuitively allows to
duplicate a clause by adding one literal, to fix the non read-once input clauses. Furthermore,
the substitution algorithm introduced in [26] also enables to generate substitutes for non
read-once clauses using SAT oracles but no guarantee is provided for the size of the computed
ResS refutations. To the best of our knowledge, read-once resolution remains the only
fragment of resolution for which an adaptation using exclusively Max-SAT resolution is
possible without substantially increasing the proof size. In the next section, we define a new
refinement of resolution for which this is possible.

» Definition 5 (Split). Given a clause C and variable x, the split rule is defined as follows:

C
zVvC zVvC

3 Crossing-Free Resolution

The main difficulty in adapting resolution proofs to Max-SAT resolution ones lies in inferring
a substitute for non read-once clauses. Indeed, such clauses must be naturally inferred using
Max-SAT resolution while unfolding (i.e., reading and applying) the initial resolution proof,
contrary to previous works [11, 24] where non read-once clauses are artificially fixed using the
split rule before the actual unfolding of the proof. In this section, we define a new fragment
of resolution, referred to as crossing-free resolution. The idea behind this refinement is to
ensure enough manoeuvrability of proofs in terms of structure in order to infer substitutes
for non read-once clauses when necessary. To this end, we define below the notion of ensuing
derivation of a non read-once clause. Intuitively, this particular derivation is ensued from a
non read-once clause in the sense that it is sufficient to delimit the impact of its multiple use.
Note that a node where a set of given paths in a resolution proof intersect will be referred to
as their junction node.

» Definition 6 (Ensuing derivation). Let ¢ be a CNF formula and 7 a resolution derivation
of clause C' from ¢. The ensuing derivation of a non read-once clause C' in 7, denoted
ED(C"), is the sub-derivation of m formed by all the resolution steps in the paths starting
from C" in 7 until their first junction node. We call the clause derived in the junction node,
the ensued clause of C’, denoted EC(C").

» Example 7. We consider the resolution derivation 7 represented in Figure 1 of clause
C = zg from the formula ¢ = {ZT7 V a3V Tq, x4 V x5, T4V T5, 1 V Tq, 2 VI1V 26, T5V
T7, T3 VT3V x7, Ty V T7}. The non read-once clauses x4 and T3 V T3 V 7 and their ensuing
derivations are respectively represented in red and blue. Furthermore, we have EC(x4) = x¢
and EC(T2 VT3V x7) = T3 V T3.

Recall that clauses are consumed after the application of Max-SAT resolution. Therefore,
it seems difficult to adapt resolution derivations in which ensuing derivations of non read-once
clauses cross. Indeed, in such cases, the formula can significantly evolve as compensation
clauses may be used while others may be generated. As such, crossing-free resolution ensures
that ensuing derivations are disjoint, i.e., do not cross, as defined below.

12:5

CP 2022

12:6

From Crossing-Free Resolution to Max-SAT Resolution

T4V Ts T4V Ty x5V T7 To VT3V Iy Ts VT7
T1 Va3 VTg Ty x1V Ty T2V TyV Tg To VT3V s To VT3V Ty

NS N

T V3 1 T2 V Xg To VT3

N e
\;U g/ s

Figure 1 Ensuing derivations in a crossing-free resolution proof.

» Definition 8 (Crossing-free resolution derivation). Let ¢ be a CNF formula and m a resolution
derivation of clause C from ¢. 7 is crossing-free iff for every pair of non read-once clauses
(C1,Cs), ED(Cy) and ED(C3) are disjoint, i.e., they do not contain a shared arc.

» Example 9. We consider the same formula ¢ in Example 7. The resolution derivation 7
of clause C' = xg from ¢ represented in Figure 1 is crossing-free since the ensuing derivations
of the non read-once clauses x4 and T3 V T3 V x7 are disjoint.

Note that the crossing-free resolution refinement entails an interesting propert