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Abstract
Increasing maritime trade often results in congestion in busy ports, thereby necessitating planning
methods to avoid close quarter risky situations among vessels. Rapid digitization and automation
of port operations and vessel navigation provide unique opportunities for significantly improving
navigation safety. Our key contributions are as follows. First, given a set of future candidate
trajectories for vessels in a traffic hotspot zone, we develop a multiagent trajectory optimization
method to choose trajectories that result in the best overall close quarter risk reduction. Our novel
MILP-based optimization method is more than an order-of-magnitude faster than a standard MILP
for this problem, and runs in near real-time. Second, although automation has improved in maritime
operations, current vessel traffic systems (in our case study of a busy Asian port) predict only a single
future trajectory of a vessel based on linear extrapolation. Therefore, using historical data we learn
a generative model that predicts multiple possible future trajectories of each vessel in a given traffic
hotspot, reflecting past vessel movement patterns, and integrate it with our trajectory optimizer.
Third, we validate our trajectory optimization and generative model extensively using a real world
maritime traffic dataset containing 6 million Automated Identification System (AIS) data records
detailing vessel movements over 1.5 years from one of the world’s busiest ports, demonstrating
effective risk reduction.
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1 Introduction

Increasing maritime vessel traffic in some of the busiest ports of world such as Tokyo bay
and Singapore creates traffic hotspots and increases the risk of closer quarter near-miss
situations [17]. Recently, disruptions in global supply chains, and adverse weather events
have further endangered the navigational safety by causing unexpected traffic spikes in busy
waterways such as Singapore’s port [31]. Vessel collisions endanger not only human lives,
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(a) (b)

Figure 1 (a) Electronic navigation chart(ENC) of Singapore strait. ENC is used by vessels for
navigation through the strait. Traffic separation scheme (TSS) are the sea lanes through which
vessels enter and leave the strait. (b) Enlarged view of planning region from ENC, an instance of a
congested scenario in this region is shown. Green and red line denote first 10-step and next 10-step
trajectories from historical data respectively. This is the most congested region in the whole strait
because many vessels enter and come out of the port through this junction point.

but also endanger the environment by causing oil spills [20]. Therefore, our goal in this work
is to study and develop maritime traffic coordination techniques to mitigate close quarter
risky situations that may develop in near future, and improve safety of navigation.

Current model of operations, automation in maritime traffic. Most busy ports, such as
Singapore’s, have a vessel traffic information system (VTIS) that is manned by port watch
operators [19]. Operators keep a close watch over the vessel traffic 24x7 via radars and
other sensors, and take action if a risky navigation situation is about to develop in the near
future (e.g. in the next 10-15 mins). A key challenge is how to proactively advise involved
vessels in a traffic hotspot to avoid the close quarter situation. Based on our discussions with
Singapore’s port authority and our physical observation of their VTIS control center, watch
operators’ traffic monitoring software predicts how vessels would move over the next 10-15
mins by linearly extrapolating their course. And if this linear prediction based trajectories
suggest a close-quarter situation developing in the next 10-15 mins, it alerts the watch
operator. However, it is left to the watch operator to decide how to advise vessels (e.g.,
to alter course) to avoid such a close quarter situation. This lack of automated trajectory
optimization support creates high cognitive burden for watch operators, and is prone to
human error. Therefore, our automated trajectory optimization tool can act as a decision
support system for improved safety of maritime navigation.

In addition to improving current VTIS operations, developing automated trajectory
optimization methods would also be highly impactful for the future of maritime traffic.
E-Navigation [12] introduced by International Maritime Organisation (IMO) aims to improve
maritime industry operations by digitizing both vessel navigation and port-based operations
including digitizing communications between vessels and VTIS. Such digitization can further
enable the usage of automated tools for improved safety of navigation. There are also recent
advancements in the space of autonomous ships that have the potential to improve safety in
navigation and also reduce costs to the industry [8, 24, 23]. Maritime Autonomous Surface
Ships (MASS) [21] is an initiative by the IMO which provides regulations and guidelines on
the advancement of technologies in this space. An example use-case of our tool would be
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(autonomous) vessels, which are in a traffic hotspot, propose a set of candidate trajectories
which they can take in the near future and transmit it to the port authority. Using our
trajectory optimization tool, the port authority can then advise vessels to take the least-risky
trajectory.

Electronic navigation chart and planning region. Figure 1a shows the electronic navigation
chart of Singapore strait. The traffic separation scheme (TSS) are the sea lanes through
which vessels enter and leave the strait. Each smaller polygon represents a sea zone. Other
areas of interests are marked in different colors such as anchorages, landmass among others.
Our area of focus (or planning region) highlighted in dotted square is a typical hotspot region.
In this region, vessels enter port waters (in pink color) towards berths, outgoing vessels from
berths enter TSS, and some vessels transit through the TSS. As a result, this planning region
experiences heavy cross traffic with vessels often navigating across traffic separation areas to
avoid hotspots.

Figure 1b shows a collection of real historical trajectories for different vessels (tankers
and cargos). Each dot in a trajectory shows the corresponding vessel position 1 minute apart.
Red circles highlight those locations where vessels are in a close quarter situation (distance
between them is less than 500 meters).

Generative trajectory modeling using historical data. Our trajectory optimization tool
requires a candidate set of possible future trajectory for each vessel involved in a hotspot
region. In the future with increased automation, vessels themselves can digitally compute
a number of feasible trajectories they can follow in the near future (next 10-15 mins) and
transmit them to the port authority. There are existing tools such as ECDIS [13] for vessel
route planning. However, the current vessel-port operations are unable to provide such
information. Similarly, current VTIS (such as Singapore port’s) predicts only a single
trajectory based on linear extrapolation.

To address this, we develop a generative model takes as input the past 10 minute trajectory
of each vessel in a specific hotspot area (‘time=1:10’), and then predicts a number of possible
trajectories for each vessel for the next 10 minutes (‘time=11:20’). Our generative model
is trained on a large historical dataset, which implies that generated future trajectories
are feasible (that is, they do not involve unrealistic manoeuvres such as taking U-turns, or
making vessels fully stop). Instead of vessels deciding independently their future trajectory
(‘time=11:20’), our trajectory optimization module can pick safest possible trajectories,
among the ones generated by our generative model, to decrease the risk by maximizing the
closest point of approach (CPA) between any two vessels. Note that all the information
required for this system is available with the port authority as they monitor movements
of all vessels, and based on our optimization tool, can advise vessels to follow a particular
trajectory. As traffic is dynamic, another property our tool must have is to produce results
in near real-time, and be able to run on a rolling horizon basis.

Contributions. Our key contributions are as follows. First, given a set of candidate future
trajectories of vessels in a hotspot region, we develop a mixed-integer linear programming
(MILP) based optimization method that can optimize over all possible combinations of
future vessel trajectories to minimize the risk of close quarter situations developing. Second,
using historical data of vessel movements in Singapore strait, one of busiest port in the
world, we learn a deep conditional generative model based on LSTM [11] that can predict
multiple possible future trajectories of vessels in a traffic hotspot region. Empirically, our
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generative model is trained and evaluated on a real world historical data containing 6 million
data points (AIS records detailing vessel traffic data) over 1.5 years. We extensively test
several properties of our generative model, such as its ability to generate realistic and diverse
trajectories, and show that our method is significantly superior to another generative model
called social GAN [10]. We also show that our novel MILP-based trajectory optimization
method is more than an order-of-magnitude faster than a standard MILP model for this
problem, and can provide solutions in near real-time, a key requirement for the solver.

Generative modeling. The learning of probability distributions from data and ability to
sample from them is a fundamental learning task known as generative modelling. Within
generative models, a prominent sub-class are techniques that do not explicitly learn the
probability distribution (or density) function but are able to generate samples from it.
These include the classical Markov chain Monte Carlo methods [3] as well as modern
Generative Adversarial Networks [9] (GANs). GAN-based models have also been used for
generative trajectory modeling of pedestrians [10, 2, 15]. However, vessel traffic has movement
characteristics which are unlike pedestrians’ (such no sharp or uturns, prediction over longer
time duration among others). Our proposed generative model is also computationally efficient
than previous approaches such as SocialGAN [10] which take much longer to train, and often
produce worse predictions as we show empirically.

Multi-agent path finding (MAPF). Given a set of agents with unique start and goal
locations in a shared environment, the MAPF problem [28] is to find collision-free paths for
all agents from their respective start locations to their respective goal locations. MAPF has
many real-world applications, including in video games [25], automated warehousing [32],
multi-drone delivery [5], and aircraft-towing vehicles [18]. Solving the MAPF problem
optimally for either the minimum sum-of-costs or the minimum makespan is NP-hard [34, 16].
Although many MAPF solvers exist, they are not directly applicable in our problem domain
for the following reasons. First, MAPF solvers require a discrete search space. They discretize
continuous spaces even when they use motion primitives and thereby generate only piecewise
smooth paths uncharacteristic of trajectories in our problem domain. Second, MAPF solvers
don’t constrain branching decisions at intermediate locations and therefore don’t reason about
historical data required for capturing the complex kinodynamic constraints on trajectories in
our problem domain. Third, MAPF solvers are typically interested in avoiding collisions as
hard constraints rather than optimizing close quarter risk reduction.

Maritime traffic optimization. Previous works [27, 26] have proposed a reinforcement
learning based approach to address the maritime traffic control problem. Their main focus
is to optimize the traffic for the entire Singapore Strait. Whereas, our focus is more on
the micro-level traffic optimization, that is, minimizing the close quarter incidents in the
near future. [1, 4, 35, 29] have also addressed the traffic control problem at the micro-level.
However the solution methodologies in these approaches do not model the uncertainty in the
maritime environment, which is an important real world feature. In this work, we capture
the uncertainty in vessel movements using our proposed generative model.

2 Problem Formulation and Statement

We tackle the problem of recommending seafaring vessels a navigation route in and around
congested ports (e.g., the planning region in figure 1a). The increasing number of vessels over
the years has led to an increase in the frequency of collisions and close quarter situations.
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Thus, the need of the hour is some intervention from a central port authority to encourage
safe navigation around crowded ports. We envision a route recommendation system that
suggest routes to vessels involved in a traffic hotspot. A number of competing considerations
need to be taken into account for such a system: the recommendations should follow typical
paths traversed historically, the path suggested must be easy to execute by the vessel, and
achieve a global objective of minimizing the close-quarter risk among vessels.

Problem Statement. To specify the problem formally, we consider a planning horizon H

and planning area Z; a polygon in sea space. The planning area is typically the port area
prone to traffic hotspots, such as where vessels either enter the port waters for berthing and
anchoring or pass through to open seas. Vessels enter and leave Z during the planning period
H. At a planning epoch t, we observe a snapshot of the whole planning region which includes
information such as, total number of vessels M and their previous trajectories until time t. We
use [M ] as a shorthand for {1, . . . , M}. v ∈ [M ] denotes a vessel, τprv

v = ⟨lt, lt−1, . . . , lt−(n−1)⟩
denotes the past n-step trajectory of vessel v at time t, where lt = (xt, yt) is the location on
2d plane. We also assume that time is discretized (e.g., 30 second intervals). The objective of
a maritime traffic controller is to recommend future m-steps trajectories τ rec

v for each vessel
v so that it minimizes a risk function risk(τ rec

1 , τ rec
2 , . . . , τ rec

M ) given by

risk(τ rec
1 , . . . , τ rec

M )= − min
v,v′∈[M ],v ̸=v′

{
dist(τ rec

v , τ rec
v′ )

}
(1)

where the function dist provides the closest distance between the two input trajectories.
Thus, in words, the risk measures the negative of the closest point of approach between any
two vessels for the recommended trajectories. Minimizing the risk means maximizing the
closest point of approach (CPA), which is a standard notion for maritime safety [6].

3 Approach

Our approach to solve the trajectory recommendation problem has two parts. First, given
a set of candidate future trajectories for each vessel in a hotspot area, we develop an
optimization method that selects trajectories to minimize the risk. Second, we develop a
trajectory generation model that generates multiple plausible trajectories for each vessel that
can be recommended.

3.1 Vessel Trajectory Optimization
We first formulate the path planning problem as a trajectory optimization problem. Suppose
that {τ1

v , τ2
v , . . . τK

v } are the K future plausible trajectories for a vessel v. There are multiple
ways in which such future trajectories can be collected – vessels themselves send future
possible trajectories they can follow (e.g., using route planning tools such as ECDIS as noted
in Section 1), VTIS can use their own prediction methods, or as in our case, trajectory
generation module can be used (described in next sub-section). Importantly, our trajectory
optimization method is not dependent on the manner in which such future trajectories are
collected.

Let xk
v be a binary decision variable that denotes whether the trajectory k is selected as

the recommendation. Thus, a natural constraint is
∑K

k=1 xk
v = 1, ∀v ∈ [M ] which enforces

that only one trajectory is selected per vessel.

CP 2022
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Table 1 RiskOPT: Mixed-integer non-linear program for trajectory optimization.

max
x

min
v∈[M ],v′∈[M ],v ̸=v′

{ ∑
k∈[K],k′∈[K]

xk
vxk′

v′ dist(τk
v , τk′

v′ )

}

subject to
K∑

k=1

xk
v = 1, ∀v ∈ [M ]

xk
v ∈ {0, 1} ∀v ∈ [M ], k ∈ [K]

We re-write the risk in terms of all the binary variables xk
v ’s. Let x denote all the binary

variables for all vessels. For defining risk(x) only those trajectories must be considered that
are selected, which we enforce by the bilinear term xk

vxk′

v′ below:

− min
v∈[M ],v′∈[M ],v ̸=v′

{ ∑
k∈[K],k′∈[K]

xk
vxk′

v′ dist(τk
v , τk′

v′ )
}

(2)

We want to minimize risk, which given the negative sign in risk becomes the integer bilinear
optimization problem RiskOPT in Table 1.

Naive Formulation. The problem RiskOPT is non-linear because of the bilinear terms. A
naive and standard way of removing the bilinearity is to introduce additional continuous
variables zk,k′,v,v′ = xk

vxk′

v′ and constraints zk,k′,v,v′ ≥ xk
v + xk′

v′ − 1 and zk,k′,v,v′ ≤ xk
v and

zk,k′,v,v′ ≤ xk′

v′ . It can be readily checked that this re-formulation is equivalent to the
original one. This reformulation uses K2M2 extra variables and 3K2M2 extra constraints
over the original bilinear formulation. However, our planning needs to be almost real time
(solve within one minute) and as observed in experiments, this naive reformulation does not
meet this requirement. Hence, we present a more compact reformulation that is orders of
magnitude faster than the naive one.

Improved Formulation. Observe that the key part of expression (2) can be re-written as:∑
k∈[K]

xk
v

( ∑
k′∈[K]

xk′

v′ dist(τk
v , τk′

v′ )
)

(3)

We use the shorthand:

fk,v(xv′) =
∑

k′∈[K]

xk′

v′ dist(τk
v , τk′

v′ ).

Here xv′ = ⟨x1
v′ , . . . , xK

v′ ⟩ is the vector of variables for vessel v′. Note that fk,v(xv′) is linear
in xv′ . The expression (3) now simplifies to:∑

k∈[K]

xk
vfk,v(xv′) (4)

We now replace xk
vfk,v(xv′) with a real valued variable zk,v,v′ to get a reformulation of (4) as:∑

k∈[K]

zk,v,v′ =
∑

k∈[K]

xk
vfk,v(xv′).
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Table 2 CompactRiskOPT: Compact Mixed-integer linear program for trajectory optimization.

max
x,z,y

y

subject to
K∑

k=1

xk
v = 1, ∀v ∈ [M ]

Constraint set from Eq. 7
Constraint set from Eq. 5
Constraint set from Eq. 6

xk
v ∈ {0, 1} ∀v ∈ [M ], k ∈ [K]

Additionally, we also show that fk,v(xv′) can be easily lower and upper bounded so that the
relationship between zk,v,v′ and xk

vfk,v(xv′) can be expressed as linear constraints. Let lower
bound:

Lk,v,v′ = min
xv′

fk,v(xv′) = min
k′

dist(τk
v , τk′

v′ ).

The second equality above follows from the definition of fk,v(xv′) and the constraint that∑
k′∈[K] xk′

v′ = 1. Similarly, let upper bound:

Uk,v,v′ = max
xv′

fk,v(xv′) = max
k′

dist(τk
v , τk′

v′ ).

Lower bounds L and U can be easily computed for each tuple ⟨k, v, v′⟩ before we setup the
optimization problem. To replace xk

vfk,v(xv′) with a real valued zk,v,v′ , we first add the
constraints:

Lk,v,v′xk
v ≤ zk,v,v′ ≤ Uk,v,v′xk

v ∀k ∈ [K], v ∈ [M ], v′ ∈ [M ], v ̸= v′ (5)

This constraint ensures that zk,v,v′ = 0 if xk
v = 0. We still need to ensure that if xk

v = 1 then
zk,v,v′ = fk,v(xv′). Towards this end, we add the constraints:

fk,v(xv′) − Uk,v,v′(1 − xk
v) ≤ zk,v,v′ ≤ fk,v(xv′)− (6)

Lk,v,v′(1 − xk
v) ∀k ∈ [K], v ∈ [M ], v′ ∈ [M ], v ̸= v′

In the above constraint, if xk
v = 1 then zk,v,v′ = fk,v(xv′) and this value of zk,v,v′ is also

feasible for the previous constraint. Also, when xk
v = 0 then the previous constraint gives

zk,v,v′ = 0 which is still feasible for the above constraint.
This adds KM2 continuous variables and 4KM2 inequalities; note the reduction in the

number of these additional variables and constraints as compared to the naive approach. Also,
note that the new objective

∑
k∈[K] zk,v,v′ is now completely continuous. By introducing

an additional variable y which is to stand for minv∈[M ],v′∈[M ],v ̸=v′

{ ∑
k∈[K] zk,v,v′

}
and the

constraints∑
k∈[K]

zk,v,v′ ≥ y ∀k ∈ [K], v ∈ [M ], v′ ∈ [M ], v ̸= v′ (7)

the max-min optimization becomes the Mixed Integer Linear Program (MILP)
CompactRiskOPT in Table 2.

The arguments presented till now directly leads to the following formal claim of correctness

▶ Propostion 1. Optimization CompactRiskOPT is equivalent to RiskOPT.

CP 2022
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(a) Architecture of generator. (b) Illustration of diversity loss.

Figure 2 A LSTM based generative model (left) with diversity loss computation (right). This
instance of the generative model is shown with n = 6 and m = 4. The exact diversity loss formula is
in text in Equation 8.

3.2 Trajectory Generation

Our aim is to use historical data to generate the K plausible trajectories. In practice,
such generation would be performed by port authority using human expertise, their own
prediction methods or vessels themselves can compute it using routing tools such as ECDIS,
as mentioned in the introduction. However, these possible trajectories are not recorded in
the maritime traffic dataset that are commercially available1, which only record historical
movement of vessels. Clearly, randomly generating trajectories produces very unrealistic
trajectories. Instead, we use a generative adversarial networks (GAN) [9] like set-up to learn
from historic data and generate multiple future trajectories; the GAN-like learning ensures
realism by generating trajectories close to observed ground truth trajectories in the data.
We generate a set of K trajectories {τ1

v , τ2
v , . . . τK

v } for each vessel v. The selection of one
trajectory among this set for each vessel is done in the path planning part as described in
the previous sub-section. We take inspiration from a GAN to build a simpler architecture
for trajectory generation that is easier to train and achieves better results in experiments.

More formally, the goal is to output multiple future trajectories {τ1
v , τ2

v , . . . τK
v } for each

of the M vessels starting from current time step t, where each trajectory τ i
v is of m time

steps. Each time step is 1 minute in wall-clock time. The input to this task is the previous
n-step trajectory τprv

v . During training the future trajectory (ground truth) is known and
specified as τ true

v = ⟨ltrue
t+1 , . . . , ltrue

t+m⟩, where ltrue
t = (xtrue

t , ytrue
t ) is the location of the vessel

on the 2D plane (this is available from the historical data).

LSTM architecture. Our architecture for this generative task is shown in Figure 2a. It
is essentially a LSTM layer (we call this the generator gθ). LSTMs are a special kind of
recurrent neural networks, capable of learning long-term dependencies [11]. All recurrent
neural networks have the form of a chain of repeating modules of neural network. A LSTM
layer also has this chain like structure where each repeating structure is called a LSTM cell.
Each LSTM cell takes in an input (one element of a sequence which is a location li in our
case) and outputs a hidden value hi that is fed to the next LSTM cell. The chain structure
ensures that hi captures the information about all the inputs lj with j ≤ i. The last cells in
a LSTM layer output the predicted future elements of the sequence.

1 https://www.marinetraffic.com

https://www.marinetraffic.com
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In our architecture, the first n LSTM cells take in as input the past n locations given by
τprv

v . The next m cells output the future prediction with a sequential structure where the
prediction at a time-step forms the input for the LSTM cell that predicts the location for
the next time step. The predicted location output is formed by transforming the hi value
from the output LSTM cells by passing hi through a fully connected layer represented by f

in Figure 2a.

Stochastic predictions. Importantly, all the future predictor cells also take in Gaussian
noise z1 of dimension D as input, which enables stochastic predictions that provide the
multiple future trajectories we need. Multiple trajectories provide flexibility for the optimizer
to reach better solutions.

Next, we describe the loss function. During training, for any given predicted sequence
output τ̂ j

v = ⟨l̂j
t+1, . . . , l̂j

t+m⟩ we define a loss L(τ̂ j
v , τ true

v ) =
∑m

i=1 ||ltrue
t+i − l̂j

t+i||2. However,
instead of using just one predicted sequence we invoke the generator S times with different
noise samples (and same past location input) to obtain S distinct predicted sequences and
form the overall loss L as follows:

L
(
{τ̂1

v , . . . τ̂S
v }, τ true

v

)
= min

j∈{1,...,S}
L(τ̂ j

v , τ true
v ) (8)

This loss is illustrated in Figure 2b. The above loss function is known as Minimum over N
(MoN) loss [7] in prior literature and has been used as an additional loss term for diverse
samples in SocialGAN [10] for pedestrian trajectory prediction. To understand this loss, note
that replacing the min with average or max will force all generated trajectories to collapse
to that single trajectory that provides the lowest loss, thereby producing a deterministic
prediction instead of the desired stochastic prediction. The min allows for diverse samples
while still ensuring that the distribution that generates these samples is able to generate
samples close to the ground truth.

Observe that our stochastic prediction is history dependent, which implicitly takes into
account the speed of the vessel (which in turn depends on external but unknown factors
such as weather and vessel type). In particular, we use only the information that the current
VTIS system uses in Singapore port, which simply linearly extrapolates the vessel’s current
trajectory for prediction.

Also note the distinct aspect that unlike a GAN (e.g., SocialGAN) there is no discriminator
network in our architecture, but the loss function of the generator gθ uses the diversity
loss to generate required trajectories. The absence of a discriminator removes the need for
adversarial training process of typical GANs, making our training process much more stable
and computationally faster, which is critical for us given the large data size. Moreover,
we demonstrate experimentally that our approach outperforms SocialGAN as well as a
simple linear extrapolation which is the current approach followed by Singapore port’s
VTIS. In particular, we use three prior proposed metrics to demonstrate the superiority of
our approach; these include two common metrics in trajectory prediction, namely Average
Displacement Error (ADE) and Final Displacement Error (FDE), and a metric named
discriminative score proposed in time-series generation [33]. The ADE and FDE compare the
generated trajectories with the actual historical trajectory, and also showcase the diversity
in our stochastic predictions. The discriminative score metric ensures that our generated
trajectories are realistic (i.e., similar to trajectories in the historical dataset). These metrics
are explained in the experiment section.

CP 2022
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4 Experiments

We evaluate our proposed learning and planning based system on real world maritime
dataset. We use 1.5 years of historical Automatic Identification System (AIS) data (spanning
the months between January 2018 -June 2019) of vessels voyaging in the Singapore Strait
purchased from the company MarineTraffic. Each AIS record contains information such as
timestamp, vessel unique id, lat-long (GPS) positions, course over ground (COG), speed over
ground (SOG) and navigation status (e.g anchored/sailing etc). The vital vessel navigation
information such as lat-long positions are logged every few seconds interval resulting in total
of around 6 million records. Our evaluation is mainly for tankers and cargo vessels because
majority of traffic involved in hotspot formation belong to these two types. They are also
generally considered as high-risk category vessels due to type and size of cargo they carry.

We further process the data to get about 1.6 million individual vessel trajectories for
our proposed method in the planning region (shown in figure 1a) . Each vessel trajectory
includes 20 latitude-longitude reported at intervals of one minute. These trajectories are
used to train our generative model as explained later. Additional experimental details are in
the supplemental material.

4.1 Trajectory Generation
In addition to the maritime data we also evaluate our trajectory generation model on three
publicly available human pedestrian trajectory datasets (ETH, Hotel, Zara1) [14, 22]. The
data includes 2200 trajectories of human movement behaviour in congested environments.
The results are in the supplement and are provided mainly to showcase that our proposed
approach is competitive with socialGAN even on datasets socialGAN is optimized for.

Evaluation metrics. We use commonly adopted metrics – ADE and FDE [15, 2] and
discriminative score [33] for evaluating generated trajectories:

Average displacement error (ADE): Average L2 distance between the ground truth
τ true

v and the kth predicted trajectory τ̂k
v over all predicted locations in τ̂k

v .

ADE(τ̂k
v , τ true

v ) =
∑m

i=1 ||lk
t+i − ltrue

t+i ||2
m

(9)

For a given trajectory τprv
v , we sample K future trajectories from the generator. The

best and mean ADEs are given by:

(best) ADE = min
k∈[K]

ADE(τ̂k
v , τ true

v ) (10)

(mean) ADE =
∑K

k=1 ADE(τ̂k
v , τ true

v )
K

(11)

We compare our approach with Social GAN on both best and mean ADE.
Final displacement error (FDE): It is the L2 distance between the ground truth and
the kth prediction at the final predicted location for this trajectory.

FDE(τ̂k
v , τ true

v ) = ||lk
t+m − ltrue

t+m||2 (12)

The calculations for best and mean FDE is similar to the ones of the ADE in equation (10)
and (11).
The ADE and FDE metric show both the quality of predictions and diversity of trajectory
generation. If the best ADE (and FDE) is low, then it implies, there is at least one
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Table 3 ADE and FDE comparison between our approach and SocialGAN for the Maritime
navigational data (lower is better).

Metric (in meters) SocialGAN Ours

(best) ADE 491.6 281.2
(best) FDE 975.5 496.3
(avg) ADE 698.3 463.7
(avg) FDE 1340.6 814.6

trajectory that is close to the actual ground truth trajectory. We also observe empirically
that average ADE and FDE are different than the best ADE and FDE. This implies that
there is diversity in predictions, which is incorporated by the MoN loss in (8).
Discriminative score [33]: It is a well adopted measure to validate the quality of
generated samples from a generator. Given a generator, we use a test trajectory dataset
(which is not used in training the generator) with N trajectories, each of length n + m:
{(τprv

v1
, τ true

v1
), . . . , (τprv

vN
, τ true

vN
)}. We generate (using our already trained generator) N

future trajectories corresponding to each τprv
vi

for i ∈ [N ] to obtain {τ̂vi
, . . . , τ̂vN

}. Then,
we have a dataset of 2N trajectories, half of which are true trajectories {τ true

v1
, . . . , τ true

vN
}

(labelled 1) and the other half generated using our generator {τ̂vi , . . . , τ̂vN
} (labelled 0).

We train a classifier on this dataset and measure its accuracy. A perfect generator would
generate data indistinguishable from real ones and hence the classifier would have 50%
accuracy. Any deviation from this 50% is a measure of how inaccurate the generator is.
The discriminative score measures this deviation and is defined as abs(0.5 − accuracy).
A lower discriminative score quantitatively indicates a better generator. Empirically, our
generator achieves a low discriminative score, which implies that our generator generates
trajectories that are representative of the typical vessel movement patterns found in the
historical dataset.

Maritime data results. We divide the whole vessel trajectories data into training and testing
set in a 80/20 ratio. Each vessel trajectory consists of 20 locations, first 10 locations (i.e.,
n = 10) are used as input to the model and next 10 locations (i.e., m = 10) as the labels. This
corresponds to using last 10 mins of trajectory to generate trajectories for next 10 mins. We
use the same number of model parameters for both SocialGAN and our approach, additional
details on hyper-parameter settings are provided in supplementary material. Table 3 shows
the ADE and FDE measures of both approaches. We observe empirically that in all four
metrics, our approach is able to achieve better solution quality than SocialGAN. This result
shows effectiveness of our proposed generative model on the maritime data.

Note that tanker and cargo vessels are about 200-300 meter in length. Therefore, ADE
and FDE achieved by our approach are small relative to the size of tankers. Furthermore, best
ADE/FDE in our case are quite different than the average ADE/FDE. This demonstrates
that there is diversity in the generated trajectories.

Discriminative score. Our generator achieves a discriminative score of 0.19 as shown in
Figure 3a. As the classifier is trained the score steadily increases but hits a plateau of 0.19.
As reported in past work [33], 0.19 is competitive (better in some cases) with the scores
obtained for other time series generation tasks. Having a low discriminative score ensures
that the trajectories generated are realistic, and reflect typical movement patterns observed
in the historical dataset. However, this doesn’t necessarily imply that our samples are not

CP 2022



5:12 Traj. Opt. for Safe Nav. in Maritime Traf. Using Hist. Data

20 50 80 110 140 170 200 230 260 290 320 350 380

Classifier Training Epochs

0

0.05

0.1

0.15

0.2

D
is

c
r
im

in
a

t
iv

e
 S

c
o

r
e

(a) Discriminative score to distinguish between
real or fake trajectory sample. A score between
(0.0 – 0.2) is reasonable.

0 20 40 60 80 100

Curvature Percentile

0

0.5

1

1.5

2

M
e

a
n

 S
q

u
a

re
 E

rr
o

r

Linear

Worst(ADE)

Best(ADE)

Median(ADE)

(b) Comparison of best, median and worst of
the generated trajectories against linear extra-
polation as a function of increasing curvature in
the real trajectories.

Figure 3

diverse. The FDE values for the generated trajectories differ by a significant amount as
shown in Table 3; the average FDE is significantly higher than the best FDE. The same
argument can be made for the metric ADE as well.

Varying curvatures. To demonstrate the robustness of our trajectory generator, we test
it on trajectories with varying curvatures. We assign a curvature percentile to a trajectory
where having a higher percentile implies that the vessel trajectory is more curved. In
figure 3b, x-axis is curvature percentile, and y-axis is the average error of all trajectories in
that curvature bucket. Results in figure 3b show that while the generator’s performance is
comparable to linear extrapolation in the case of low curvature percentiles (vessels almost
moving in a straight line). It does much better with vessels that are changing their direction.
Even the worst of the trajectory samples start doing better than the linear extrapolation
as the curvature increases. This shows that our generator is a much better predictor in
challenging scenarios when vessels are turning, than the current linear extrapolation method
used by Singapore port’s VTIS. We also emphasize that linear extrapolation is a very good
metric in most cases, as large vessels typically are unable to turn sharply. Therefore, these
results show that our generator has learned much better movements patterns found in the
historical data than the linear prediction.

4.2 Path Planning
Here we present our experimental results for path planning module on the maritime data.
The path planning part requires a generative model for generating trajectory samples. As
empirically observed, SocialGAN performs worse on the maritime data. Therefore, we use
our proposed model as the generative model for trajectory generation.

The evaluation of path planning part is mainly for close quarter scenarios where two or
more vessels come very close to each other (less than 500 meters). This number (500 meters)
was set after our discussions with maritime domain experts; however, it is configurable and
does not affect our algorithmic methods. We use the objective in Table 2 as our evaluation
criterion which essentially measures the minimum CPA between any any two vessels.

We use the naive formulation in Section 3.1 as baseline and refer to it as the naive solver.
We refer to the improved formulation as the accelerated solver. This is our main proposed
solver. We also test against the linearly extrapolated trajectories, which shows what would
be the risk if vessels moved over this trajectory (linear extrapolation is the current prediction
method Singapore port’s VTIS uses).
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(a) Ship routes in the Singapore strait with high-
lighted region in red is used as our planning region.

(b) Improvement (I) in risk of trajectories recom-
mended by accelerated solver compared to historical
trajectories using boxplots.

Figure 4

Planning instance generation. For each day we generate instances from peak hour period
(7 AM - 9 AM) . Majority of close quarter incidents occur during this period. We first select
a planning region near the port waters that has high traffic activity based on historical
data as shown in Figure 4a. We also select an instance window of 20 minutes because our
complete trajectory is of 20 locations at one minute intervals. So a planning instance includes
a set of vessel trajectories that have at least one location present within the given planning
region and the time window. A snapshot of a planning instance is shown in Figure 1b. For
each instance we compute a risk value based on historical data as defined in Section 2. We
evaluate our path planning approach on 1000 different instances with the highest risk.

Distributional result. In Figure 4b, we show distributional information about improvement
of risk values in 1000 different instances . The x-axis denotes the number of samples (K) and
y-axis shows percentage improvement of risk using accelerated solver. For a given instance
the percentage improvement of risk (I) is given by

I = 100.
risk(τ true

1 , . . . , τ true
M ) −

[
risk(τ rec

1 , . . . , τ rec
M )

]
abs(risk(τ true

1 , . . . , τ true
M )) (13)

Note that risk, as defined in Equation 1, is always negative. Thus, the absolute value in the
denominator is needed to show the percentage improvement [30]. We set optimization time
limit to one minute to test the near real-time performance of the trajectory optimization
module. We observe that the mean (in blue circle) values are higher than medians (orange)
thus indicating a positively skewed distribution with long tail. The boxes cover the data
range from 25th to 75th percentile. And the fences around the boxes cover the whole range
of data. There exist some rare outliers where recommended trajectories are slightly worse
off than historical trajectories. Based on our investigation, it was because a ship captain
performed an atypical maneuver (such as taking sharp turns) which is rarely observed in
the dataset. We also observe an overall good improvement (around 50%) of solution quality
across 1000 instances starting from 7 samples. This result show robustness of our proposed
accelerated solver across different instances in near real-time.

Different instances. In Figure 5a we demonstrate the performance of linear prediction,
naive and accelerated solvers on 1000 different instances. The x-axis denotes instance id and
y-axis denotes percentage improvement of risk compared to historical trajectories. Green color

CP 2022



5:14 Traj. Opt. for Safe Nav. in Maritime Traf. Using Hist. Data

(a) Comparison of linear prediction, naive and ac-
celerated solver on improvement of risk compared
to historical trajectories.
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Figure 5

points denote the improvement using the accelerated solver, computed as per equation 13.
Similarly, blue and red color denotes the improvement using the linear prediction and naive
solver. We set an optimization time limit of one minute for solving each instance. We use
a sample size of K = 20 for each trajectory. For all the instances, the accelerated solver
achieves equal or better solution quality than both the linear prediction baseline and naive
solver. This is because optimization time limit of 1 minute is limited for the naive solver to
achieve good quality solution. On average the accelerated solver (green dotted line) achieves
around 80% improvement of risk. Linear prediction in blue color perform poorly than both
the solvers as it is just the linear extrapolation of data from previous time steps.

Varying samples. In our path planning optimization sample size is an important parameter.
Therefore, in this experiment we test both the solvers with varying number of sample sizes.
Results in Figure 5b show the comparison of naive and accelerated solver on solution quality
with varying number of samples K. The x-axis denotes number of samples used in the
optimization and y-axis denotes average percentage improvement of risk over historical data.
The results shown are averaged over 15 instances. For this experiment also we set the
optimization time limit to 1 minute. We observe that for accelerated solver solution quality
improve with increasing number of samples, and quality does not change much after 15
samples. This is an expected result because at low number of samples the solution space
is small. As the number of samples increase the solution space also increase which leads
to better solution quality. But beyond a certain point there are upper limits to maximum
possible distance between ships in a region with finite space. Thus the risk plateaus out
with increasing number of samples. In this experiment also we observe that the accelerated
solver is able to provide better solution quality than both historical data and the naive
solver. In case of naive solver after about 7-8 samples the effect of optimization time limit
kicks in. More number of samples would require longer optimization time to get the same
solution quality, and thus we see a drop in solution quality. This experiment provides vital
information about how to choose the sample size parameter in our approach.

Runtime comparison. Results in Figure 6a shows comparison of naive and accelerated
solver on optimization time with varying number of samples K. The x-axis denotes number
of samples and y-axis denotes average optimization runtime. The results shown are averaged
over 20 instances. For this experiment, we set the optimality gap of the solver to 10%. We
observe that runtime of naive solver rise almost exponentially with increasing number of
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samples. However, accelerated solver is able to maintain a constant runtime irrespective
of sample size. The solver has a runtime of around 4 seconds at 20 sample size. We also
observed that accelerated solver is able to achieve a runtime of around 5 seconds at 20 sample
size even for 5% optimality gap (not shown in the figure). For any system to be used in
real-time scenario, a decision time of few seconds is very crucial. The empirical result shows
our proposed system is well adapted for a real-time safe trajectory recommendation system.

Close quarter scenario. Figure 6b shows an instance of close quarter situation. Green and
red dotted line denote previous and next 10-step trajectories from historical data respectively.
Blue dotted line is the recommended trajectory from our learning and planning based system.
It is one of the predicted samples from the generative model. In the figure vessels with id 15
and 18 are heading in opposite direction. They come very close to each other (less than 500
meters) which is a close quarter situation as highlighted in the big red circle. We observe that
our recommended trajectories (in blue) are able to maintain a safe distance and thus avoid
the close quarter incident. We provide four video files for such instances of close quarter
situations using our maritime traffic simulator on our GitHub repo.

Close quarter scenario. Figure 7 shows qualitative results of some of the generated tra-
jectories from our generative model. Trajectories in green and red are complete historical
trajectories with time=1:10 and time=11:20 respectively. Trajectories in cyan color are
generated sample future trajectories (time=11:20). Trajectories in blue color are the selected
trajectories for time=11:20 from the path planning solver. Here we observe that the generated
trajectories in cyan are a good representative sample of the historical trajectories in red.

5 Conclusion

We have presented a multiagent path planning approach to the problem of alleviating close
quarter incidents in a highly congested maritime traffic environment. We proposed a data-
driven based optimization methodology to the problem. We first learn a generative model of
vessel movement behaviors from historical data. Empirically, we have shown the superior
quality of our generative model over the baseline model. The trajectory samples generated
from our model are then used in our proposed novel and efficient MILP solver to reduce close
quarter incidents. Empirically, we have shown that our solver is able to provide high quality
safe trajectory recommendations in near real-time in a variety of real-world close quarter
situations mined from past data.

CP 2022
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Figure 7 Qualitative result for generative model.
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