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Abstract
Constraint programming has proven to be a successful framework for determining whether a given
instance of the three-dimensional stable matching problem with cyclic preferences (3dsm-cyc) admits
a solution. If such an instance is satisfiable, constraint models can even compute its optimal solution
for several different objective functions. On the other hand, the only existing output for unsatisfiable
3dsm-cyc instances is a simple declaration of impossibility.

In this paper, we explore four ways to adapt constraint models designed for 3dsm-cyc to the
maximum relaxation version of the problem, that is, the computation of the smallest part of an
instance whose modification leads to satisfiability. We also extend our models to support the presence
of costs on elements in the instance, and to return the relaxation with lowest total cost for each of
the four types of relaxation. Empirical results reveal that our relaxation models are efficient, as in
most cases, they show little overhead compared to the satisfaction version.
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1 Introduction

Defined on three instead of two agent sets, the 3-dimensional stable matching problem [34] is
a natural generalisation of the well-known stable marriage problem [24]. Its most studied
variant is the 3-dimensional stable matching problem with cyclic preferences (3dsm-cyc) [42],
in which agents from the first set only have preferences over agents from the second set,
agents from the second set only have preferences over agents from the third set, and finally,
agents from the third set only have preferences over agents from the first set.

A matching is a set of triples such that each triple contains one agent from each agent
set and each agent appears in at most one triple. A weakly stable matching does not admit a
blocking triple such that all three agents would improve, while according to strong stability, a
triple already blocks if at least one of its agents improves, and the others in the triple remain
equally satisfied.
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Constraint programming approaches allow one to identify instances that do not admit a
weakly or strongly stable matching – these will be in the focus of our investigation. For such
an instance, how to construct a matching that is blocked by only a few triples? Alternatively,
which matching minimises the number of justifiably disappointed agents who appear in
a blocking triple? A somewhat more sophisticated approach is to assume that a central
authority is able to compensate blocking triples or even single agents appearing in blocking
triples. If such a compensation has been allocated, then the triple or agent withdraws their
claim to form a more advantageous coalition. How to find a matching with the lowest
compensation needed to eliminate all blocking triples?

In order to facilitate a general framework, we associate a cost with each agent. The goal
is then to minimise the total cost of triples or agents who block the matching, or have to be
compensated in order to withdraw from blocking.

1.1 Literature review
We first restrict our attention to related work in the 2-dimensional and non-bipartite stable
matching settings. We mention two already established relaxations of stability and also
elaborate on problem variants with costs. Then we turn to the 3-dimensional setting, review
related work on 3dsm-cyc, and finally discuss constraint models.

1.1.1 Relaxing stability
Various stable matching problems need not admit a stable solution. The relaxation of stability
by definition necessarily involves the occurrence of blocking pairs. In the literature, two main
relaxations have been defined.

The number of blocking pairs is a characteristic property of every matching. A natural goal
is to find a matching with the lowest number of blocking pairs; such a matching is called almost
stable. This approach has a broad literature: almost stable matchings have been investigated
in bipartite [33, 29, 6, 27] and non-bipartite stable matching instances [1, 5, 11, 14], but not
in the 3-dimensional setting yet.

Agents who appear in blocking pairs in a solution are called blocking agents. Besides
minimizing the number of blocking pairs, another intuitive objective is to minimise the
number of blocking agents [49]. The complexity of minimizing the number of blocking agents
in a non-bipartite stable matching instance is an open problem that was posed in the seminal
book of Manlove [38]. Similar, but slightly more complicated instability measures can be
found in the paper of Eriksson and Häggström [19].

1.1.2 Costs and preference negotiation in stable matching problems
Arguably the most natural extension of various matching problems is to consider graphs
with edge or vertex costs. For bipartite instances with edge costs, finding a minimum-cost
stable matching can be done in polynomial time [31, 28, 21, 22]. The same problem for
non-bipartite graphs is NP-hard, but 2-approximable under certain monotonicity constraints
using LP methods [53, 54].

Vertex costs play a role in stable matching problems if the agents are part of some type
of instance manipulation. In their theoretical study, Boehmer et al. [9] allow agents to
reshuffle their preference list. College admission is possibly the most widespread application
of stability. Surveys report that bribes have been performed in college admission systems
in China, Bulgaria, Moldova, and Serbia [30, 37]. However, preference list manipulation,
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potentially done by assigning money to the affected agents, does not imply an illegal action.
The internal assignment process of humanitarian organisations [52, 3, 48] aims at stability in
the first place, but it also routinely features salary premium negotiations for staff members
sent to a less desirable location.

1.1.3 3DSM-CYC

Several applications areas have been modeled by extended 3dsm-cyc instances. Cui and
Jia [16] modeled three-sided networking services, such as frameworks connecting users, data
sources, and servers. In their setting, users have identical preferences over data sources,
data sources have preferences over servers based on the transferred data, and servers have
preferences over users. Building upon this work, Panchal and Sharma [44] provided a
distributed algorithm that finds a stable solution. Raveendran et al. [47] tested resource
allocation in Network Function Virtualisation. They demonstrated the superior performance
of the proposed cyclic stable matching framework in terms of data rates and user satisfaction,
compared to a centralised random allocation approach.

A recent real application was described by Bloch et al. [8] who analysed the Paris public
housing market. In their work, the first agent set consists of various housing institutions
such as the Ministry of Housing, the second agent set is the set of households looking for an
apartment, and finally, the third agent set contains the social housing apartments that are to
be assigned to these households. Institutions have preferences over household-apartment pairs,
and households rank apartments in their order of preference. Cseh and Peters [15] studied a
restricted variant where the institutions have preferences directly over the households, no
matter which apartment they are matched to.

Maximum relaxations in these applications correspond to the smallest number or cost of
users, data sources, servers, households, or housing agencies, who need to be compensated
for being part of a blocking triple.

As for the complecity of 3dsm-cyc, Biró and McDermid [7] showed that deciding
whether a weakly stable matching exists is NP-complete if preference lists are allowed to
be incomplete, and that the same complexity result holds for strong stability even with
complete lists. However, the combination of complete lists and weak stability proved to
be extremely challenging to solve. After a series of papers [10, 20, 45] proving that small
3dsm-cyc instances always admit a weakly stable matching, Lam and Plaxton [36] recently
showed NP-hardness for instances with at least 90 agents per agent set – this is also the size
of the smallest known no-instance.

1.1.4 CP models for 3DSM-CYC

Several constraint models have been developed for the bipartite stable matching problem and
its many-to-one variant [26, 56, 55, 39, 43, 50]. We build upon the recent work of Cseh et
al. [13], who introduced five constraint models for 3dsm-cyc. Besides capturing both weak
and strong stability, they translated three fairness notions into 3-dimensional matchings.

1.2 Our contribution
In this paper we study four types of relaxation to 3dsm-cyc, based on two established and
two new relaxation principles. For each of these types we propose CP approaches that are
built on top of the best two approaches from Cseh et al. [13]. We carry out a comprehensive
empirical evaluation on a generated data set that includes both satisfiable and unsatisfiable
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instances. We analyse the behaviour of our constraint models based on different preference
structures, cost functions, and their scalability. The results of the evaluation give insight
into the convenience of the introduced types of relaxation, in particular in those cases where
the four methods agree on the optimal relaxation.

2 Notation and problem definitions

In Section 2.1 we formally define input and output formats for 3dsm-cyc, using previous
notations [13]. The four ways of relaxing stability are then discussed in Section 2.2. Finally,
matching costs are introduced in Section 2.3.

2.1 Problem definition

Input and output. Formally, a 3dsm-cyc instance is defined over three disjoint sets of
agents of size n, denoted by A = {a1, . . . , an}, B = {b1, . . . , bn}, and C = {c1, . . . , cn}. A
matching M corresponds to a disjoint set of triples, where each triple, denoted by (ai, bj , ck),
contains exactly one agent from each agent set. Each agent is equipped with her own
preferences in the input. The cyclic property of the preferences means the following: each
agent in A has a strict and complete preference list over the agents in B, each agent in B has
a strict and complete preference list over the agents in C, and finally, each agent in C has a
strict and complete preference list over the agents in A. These preferences are captured by
the rank function, where rankai(bj) is the position of agent bj in the preference list of ai,
from 1 if bj is ai’s most preferred agent to n if bj is ai’s least preferred agent.

Preferences over triples. The preference relation of an agent on possible triples is derived
naturally from the preference list of this agent. Agent ai is indifferent between triples
(ai, bj , ck1) and (ai, bj , ck2), since she only has preferences over the agents in B and the
same agent bj appears in both triples. However, when comparing triples (ai, bj1 , ck1) and
(ai, bj2 , ck2), where bj1 ̸= bj2 , ai prefers the first triple if rankai

(bj1) < rankai
(bj2), and she

prefers the second triple otherwise. The preference relation is defined analogously for agents
in B and C as well.

Weak and strong stability. A triple t = (ai, bj , ck) is said to be a strongly blocking triple
to matching M if each of ai, bj , and ck prefer t to their respective triples in M . Practically,
this means that ai, bj , and ck could abandon their triples to form triple t on their own, and
each of them would be strictly better off in t than in M . If a matching M does not admit
any strongly blocking triple, then M is called a weakly stable matching. Similarly, a triple
t = (ai, bj , ck) is called a weakly blocking triple if at least two agents in the triple prefer t to
their triple in M , while the third agent does not prefer her triple in M to t. This means that
at least two agents in the triple can improve their situation by switching to t, while the third
agent does not mind the change. A matching that does not admit any weakly blocking triple
is referred to as strongly stable. By definition, strongly stable matchings are also weakly
stable, but not the other way round. Observe that it is impossible to construct a triple t that
keeps exactly two agents of a triple equally satisfied, while making the third agent happier,
since the earlier two agents need to keep their partners to reach this, which then defines the
triple as one already in M .
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2.2 Relaxing stability
We examine four different ways to relax stability in 3dsm-cyc. Two of them are standard in
the stable matching literature and are based on minimising the number of blocking elements,
see Section 2.2.1. The other two relaxation notions are introduced in Section 2.2.2, and they
build upon elements that are prohibited to be part of a blocking triple. We remark that all
four relaxations can be translated to other stable matching problems as well.

2.2.1 Almost stable matchings
Let sbt(M) denote the set of strongly blocking triples, and wbt(M) denote the set of weakly
blocking triples to a matching M . Since strongly blocking triples are also weakly blocking,
sbt(M) ⊆ wbt(M).

▶ Definition 1. A strong triple-almost stable (TAS) matching is a matching that minimises
the function |wbt(M)| over all matchings M . Analogously, a weak TAS matching is a
matching that minimises the function |sbt(M)| over all matchings M .

If the instance admits a strongly stable matching, then it minimises both functions, but
otherwise, there is no connection between the sets of weak TAS and strong TAS matchings.

The agents involved in a strongly blocking triple are called strongly blocking agents,
and form the set sba(M). Analogously, agents involved in any weakly blocking triple are
called weakly blocking agents, and form the set wba(M). Notice that sba(M) ⊆ wba(M). A
natural objective is to find a matching that minimises the functions sba(M) or wba(M).

▶ Definition 2. A matching that minimises sba(M) is called weak agent-almost stable
(AAS), while a matching that minimises wba(M) is called strong AAS.

Notice that weak AAS and strong AAS matchings are not identical to weak TAS and
strong TAS matchings. As an example, consider two matchings M1 and M2 such that
wbt(M1) = {(a1, b1, c1), (a1, b1, c2), (a1, b1, c3)} and wbt(M2) = {(a1, b1, c1), (a2, b2, c2)}. We
have |wbt(M1)| = 3 and |wbt(M2)| = 2, so M2 is a better strong TAS candidate than M1.
However |wba(M1)| = |{a1, b1, c1, c2, c3}| = 5 and |wba(M2)| = |{a1, a2, b1, b2, c1, c2}| = 6,
so M1 is a better strong AAS candidate than M2.

2.2.2 Accommodating elements
Instead of minimising the number of blocking elements, we can eliminate them altogether by
setting some agents to be accommodating. Accommodating agents never report that they are
part of a blocking triple, which eliminates all blocking triples containing at least one of those
agents. In a realistic scenario, accommodating agents are allocated compensation for their
poor match.

▶ Definition 3. A weak minimally-accommodating stable (MAS) matching is a matching
that minimises the number of accommodating agents needed to eliminate all of its strongly
blocking triples. Analogously, a strong MAS matching is a matching that minimises the
number of accommodating agents needed to eliminate all of its weakly blocking triples.

Notice that MAS matchings are distinct from AAS matchings. As an example, consider
the matchings M2 from before, where wbt(M2) = {(a1, b1, c1), (a2, b2, c2)}, and the matching
M3 such that wbt(M3) = {(a1, b1, c1), (a1, b2, c2), (a1, b3, c3)}. We have |wba(M2)| = 6 and
|wba(M3)| = 7, so M2 is a better strong AAS candidate than M3. However, we need both an
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Table 1 Different ways of interpreting relaxation.

single agent more than one agent
minimise the number agent-almost stable triple-almost stable
of blocking elements (AAS) (TAS)
minimise the number minimally-accommodating stable minimally-pair-accommodating stable
of accommodating elements (MAS) (MPAS)

agent from {a1, b1, c1} and an agent from {a2, b2, c2} to be accommodating to eliminate the
blocking triples in wbt(M2), while setting a single agent, a1, to be accommodating eliminates
all blocking triples in wbt(M3). Therefore M3 is a better strong MAS candidate than M2.

We can extend the definition of accommodating to groups of agents. Agents x and y

from different agent sets form an accommodating pair if they are prevented from appearing
together in a blocking triple. In 3dsm-cyc, exactly one of the two agents has preferences
over the other agent, without loss of generality let us assume that it is x. Setting x and y to
be an accommodating pair expresses that x receives compensation for not being matched
to y specifically. However, x can appear in a blocking triple with another agent from the
set of y, and y also can block with any other agent than x. This compensation is thus less
powerful than the previous one.

▶ Definition 4. A weak minimally-pair-accommodating stable (MPAS) matching is a
matching that minimises the number of accommodating pairs needed to eliminate all of its
strongly blocking triples. Analogously, a strong MPAS matching is a matching that minimises
the number of accommodating pairs needed to eliminate all of its weakly blocking triples.

The sets of MPAS and MAS matchings are incomparable. As an example, consider the
matching M3 from before, where wbt(M3) = {(a1, b1, c1), (a1, b2, c2), (a1, b3, c3)}, and the
matching M4 such that wbt(M4) = (a1, b2, c3), (a1, b2, c2), (a2, b3, c1). Only the agent a1
needs to be accommodating to eliminate all blocking triples in wbt(M3), but no single agent
appears in all blocking triples of wbt(M4), so M3 is a better strong MAS candidate than M4.
On the other hand, we can eliminate all blocking triples in wbt(M4) by setting only two
pairs to be accommodating, while we need three to do the same for wbt(M3). Therefore M4
is a better strong MPAS candidate than M3.

Further extending MPAS to groups of three agents would mean minimising the number
of accommodating triples, which is equivalent to TAS.

Table 1 summarises the four different notions of relaxation that we have explored. We
remark that while AAS and TAS require that the relaxation set covers every blocking element,
for MAS and MPAS, the relaxation set must hit every blocking element.

2.3 Matching costs
When computing a minimal set of elements for relaxation, not all agents might be given
equal importance. The central authority might allocate a higher compensation to prioritised
blocking pairs or to popular agents. For a given relaxation version, the cost of a matching is
the sum of the costs of the elements in the minimal set of this particular relaxation. For a
given matching M and arbitrary costs on agents and triples, we thus have for strong stability:

CostAAS(M) =
∑

a∈wba(M)

Cost(a)

CostTAS(M) =
∑

t∈wbt(M)

Cost(t)
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The definitions for weak stability can be obtained by replacing wbt by sbt and wba by sba.
For CostMAS and CostMPAS, we need a further definition.

▶ Definition 5. For a matching M , set S of agents is agent-convenient if setting all agents
in S to accommodating implies that M is stable. Analogously, set S of pairs of agents is
pair-convenient for M if setting all pairs in S to accommodating implies the stability of M .

This definition is the same for both types of stability. We can now write the remaining
matching cost definitions for arbitrary agent and pair costs as follows.

CostMAS(M) = min
S is agent-convenient for M

∑
a∈S

Cost(a)

CostMPAS(M) = min
S is pair-convenient for M

∑
p∈S

Cost(p)

Notice that in all four types of relaxation, not specifying element costs is equivalent to having
them all set to 1. We will therefore refer to a relaxation as an arbitrary-cost relaxation when
elements have an explicit cost, and as a unit-cost relaxation when they do not.

3 Methodology

In this section, we explain how we modified the two best performing models for 3dsm-cyc,
called div-ranks and hs [13], to enable them to deal with soft constraints.

3.1 Soft DIV-ranks model
The div-ranks model for 3dsm-cyc with only hard constraints consists of 3n variables
X = {x1, . . . , xn}, Y = {y1, . . . , yn}, and Z = {z1, . . . , zn}, where the domain of each
variable v is set as D(v) = {1, . . . , n}. Assigning xi = j (respectively yi = j, or zi = j)
corresponds to matching ai (respectively bi, or ci) to her jth preferred agent. The constraints
used to find a stable matching M , if any exists, are defined in [13] in the following manner.

(matching) For all 1 ≤ i, j, k ≤ n, the constraint xi = rankai(bj) ∧ yj = rankbj (ck) ⇒
zk = rankck

(ai) is added. This is to ensure that each solution corresponds to a feasible,
if not stable, matching. Since domain values correspond to positions in preference lists
and not to agents, it is possible for two variables from the same agent set to be assigned
the same value. This is why all-different constraints are not used for this model.
(stability) Under weak stability, for all 1 ≤ i, j, k ≤ n, the constraint xi ≤ rankai(bj)∨yj ≤
rankbj

(ck) ∨ zk ≤ rankck
(ai) is added. This is to ensure that the triple (ai, bj , ck) is not

strongly blocking. When solving the problem under strong stability, the inequalities
are strict but the following part is added to each disjunction: ∨(xi = rankai

(bj) ∧ yj =
rankbj (ck) ∧ zk = rankck

(ai)).
(redundancy) For all 1 ≤ i, j, k ≤ n, the constraint yj = rankbj

(ck) ∧ zk = rankck
(ai) ⇒

xk = rankai
(bj) is added.

(redundancy) For all 1 ≤ i, j, k ≤ n, the constraint zk = rankck
(ai) ∧ xi = rankai(bj) ⇒

yj = rankbj
(ck) is added.

For the relaxation version of 3dsm-cyc, we add to the div-ranks model an integer variable
crel corresponding to the cost of the relaxation, as well as additional Boolean variables whose
exact number depends on the type of relaxation.

AAS and MAS: a Boolean variable relAi for each of the n agents ai in A, a Boolean
variable relBj for each of the n agents bj in B, and a Boolean variable relCk for each of
the n agents ck in C, which amounts to 3n additional variables.
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TAS: a Boolean variable reli,j,k for each of the n3 potential blocking triples (ai, bj , ck).
MPAS: a Boolean variable relABi,j for each of the n2 agent pairs ai, bj from A × B, a
Boolean variable relBCj,k for each of the n2 agent pairs bj , ck from B × C, and a Boolean
variable relCAk,i for each of the n2 agent pairs ck, ai from C × A, which amounts to 3n2

additional variables.

For all four types, a variable set to 1 means that its corresponding element is part of
the correction set. Determining from the composition of the correction set whether a given
triple is allowed to be blocking is expressed in the model by extending the disjunction of the
stability constraint corresponding to this triple. The part added depends on the type of the
relaxation but not on the kind of stability, so for a given type of relaxation the same part
will be added to both weak and strong stability constraints.

For AAS, we add ∨(relAi ∧relBj ∧relCk) to the constraint that checks whether the triple
(ai, bj , ck) is blocking. If all three agents are in the correction set, then the constraint is
satisfied, and whether this triple is blocking has no effect on the stability of the instance.
For TAS, we add ∨reli,j,k to the stability constraint. This immediately satisfies the
constraint when the triple is in the correction set.
For MAS, we add ∨(relAi ∨ relBj ∨ relCk). Because of the distinction between blocking
and accommodating agents, for MAS we only need one agent to be in the correction set
for the triple to be disregarded, while for AAS we needed all three agents.
For MPAS, we add ∨(relABi,j ∨ relBCj,k ∨ relCAk,i). The constraint is satisfied when
any two agents in the triple are present as an accommodating pair in the correction set.

Because relaxation has been added to the stability constraints in a disjunctive way, a
trivial solution for the instance can be obtained by assigning 1 to all Boolean variables.
Therefore we add a final constraint for the objective function which sums the costs of the
elements in the correction set. Minimising this value results in a correction set of minimum
cardinality (for unit-cost relaxation), or in a solution of mininum cost (for arbitrary-cost
relaxation). Both cases represent a maximum relaxation for the instance. For the unit-cost
relaxation, all cost factors in the objective function are replaced by 1.

For AAS and MAS:
crel =

∑n
i=1(relAi × Cost(ai)) +

∑n
j=1(relBj × Cost(bj)) +

∑n
k=1(relCk × Cost(ck)).

For TAS: crel =
∑n

i=1
∑n

j=1
∑n

k=1(reli,j,k × (Cost(ai, bj , ck))).
For MPAS:
crel =

∑n
i=1

∑n
j=1(relABi,j × (Cost(ai, bj))) +

∑n
j=1

∑n
k=1(relBCj,k × (Cost(bj , ck)))

+
∑n

k=1
∑n

i=1(relCAk,i × (Cost(ck, ai))).

3.2 Soft HS model
We extend the hs model from Cseh et al. [13] by relaxing the constraints that enforce the
stability of the matching. Following Cseh et al. [13], in the soft hs model, we assume that T

is the set of all possible triples {(a1, b1, c1), (a1, b1, c2), . . . , (an, bn, cn)}, where without loss
of generality, the triples in T are ordered, that is, ti ∈ T refers to the ith triple of T . We also
borrow their definition of non-blocking triples, that is, given a triple t ∈ T , we denote by
BT (t) all the triples in T that prevent t from becoming a blocking triple given the preferences.
The variables and constraints of the model are as follows:
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Let M be a set variable whose upper bound is T .
Let S be a set variable whose upper bound is as follows.

For AAS/MAS: A ∪ B ∪ C

For TAS: T

For MPAS: A × B ∪ B × C ∪ C × A

Let c be an integer variable corresponding to the cost of the relaxation.
(matching) Ensure that each agent from each set is matched by having:

∀a ∈ A :
∑

ti∈T :a∈ti
(ti ∈ M) = 1;

∀b ∈ B :
∑

ti∈T :b∈ti
(ti ∈ M) = 1;

∀c ∈ C :
∑

ti∈T :c∈ti
(ti ∈ M) = 1.

(stability) In the original version, each stable matching is a hitting set of the non-blocking
triples (i.e., ∀tj ∈ T : M ∩ {i : ti ∈ BT (tj)} ≠ ∅). We relax this definition as follows.

For AAS: ∀tj ∈ T : ∃⟨a, b, c⟩ ∈ BT (tj) : ⟨a, b, c⟩ ∈ M ∨ {a, b, c} ⊆ S
For TAS: ∀tj ∈ T : ∃ti ∈ BT (tj) : ti ∈ M ∨ ti ∈ S
For MAS: ∀tj ∈ T : ∃⟨a, b, c⟩ ∈ BT (tj) : ⟨a, b, c⟩ ∈ M ∨ {a, b, c} ∩ S ̸= ∅
For MPAS: ∀tj ∈ T : ∃⟨a, b, c⟩ ∈ BT (tj) : ⟨a, b, c⟩ ∈ M ∨ {⟨a, b⟩, ⟨b, c⟩, ⟨c, a⟩} ∩ S ̸= ∅

(cost of relaxation) The cost variable is constrained as follows:
For AAS/MAS: c =

∑
x∈S Cost(x)

For TAS: c =
∑

⟨a,b,c⟩∈S Cost(a, b, c)
For MPAS: c =

∑
⟨x,y⟩∈S Cost(x, y)

The type of stability is addressed in the computation of the BT sets – the model as such
is not concerned with this aspect. In hs, matching M is constrained to be a set of triples
representing M as defined in Section 2.1, so the cost of the relaxation follows the definitions
in Section 2.3. In the actual implementation, M is represented in terms of an array of n3

Boolean variables, where each variable refers to the inclusion/exclusion of the corresponding
triple in the mapping. Similarly, S is also represented as an array of Boolean variables. The
size of this array is either 3n, 3n2 or n3, depending on the type of relaxation.

4 Experimental results

All experiments were performed on machines with Intel(R) Xeon(R) CPU with 2.40GHz
running on Ubuntu 18.04. Tests for the div-ranks model were processed by MiniZinc
2.5.5 [41] before being given to the two constraint solvers Chuffed 0.10.4. [12], which is based
on lazy-clause generation, and Gecode 6.3.0 [25]. The hs model on the other hand has been
directly encoded using Gecode 6.2.0.

4.1 Dataset
4.1.1 Preference lists
The instances used in our experiments belong to three different classes: Random, ML1swap,
and ML2swaps. In the latter two, the preferences are based on master lists. Master list
instances are instances where the preference lists of all agents in the same agent set are
identical. Master lists provide a natural way to represent the fact that in practice agent
preferences are often not independent. Examples of their real-life applications occur in
resident matching programs [4], dormitory room assignments [46], cooperative download
applications such as BitTorrent [2], and 3-sided networking services [16].

The precise method to create an instance from each class is as follows:
Random: generated randomly from uniform distribution.
ML1swap: all agents in the same agent set follow the same randomly chosen master list.
Then in each preference list, the positions of two randomly chosen agents are swapped.
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Figure 1 A comparison of total time spent by all Gecode models on the unsatisfiable unit-cost
instances.
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Figure 2 A comparison of total time spent by all Gecode models on the unsatisfiable popularity-
cost instances.

ML2swaps: each agent set has a randomly chosen master list that all agents in the set
follow. First, two agents are randomly chosen from each agent’s preference list, and their
positions are swapped. Then, two more agents from each list are randomly chosen such
that the new agents were not involved in the first swap, and their positions are swapped.

For each instance class and each odd size n ∈ {5, 7, . . . , 19}, we generated instances with
n agents in each agent set, solved the instances under strong stability, and kept the first
50 that were satisfiable and the first 50 that were unsatisfiable. This gave us a total of 300
instances for each size, 150 with a strongly stable matching and 150 without. We had to
restrict ourselves to strong stability for unsatisfiability, because the smallest known instance
without a weakly stable matching is of size 90 [36], so it would not have been feasible to
obtain a representative sample of reasonably-sized unsatisfiable instances for weak stability.
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Figure 3 A comparison of total time spent by all Chuffed models on the unsatisfiable unit-cost
instances.
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Figure 4 A comparison of total time spent by all Chuffed models on the unsatisfiable popularity-
cost instances.
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The three types of instances that we studied have been previously used to test the
div-ranks and hs models, along with a fourth class named ML_oneset [13]. Since ML_oneset
instances always admit a strongly stable matching [13], we did not include this additional
instance class in our experiments.

4.1.2 Cost formulas
For each configuration of the model, solver, and relaxation type, each instance was set up with
two definitions of costs on its elements. The first one is a unit-cost relaxation, corresponding
to a cost of 1 for every agent, pair, and triple in the instance. For the second one, that we
call popularity-cost relaxation, the cost of an agent is a measure of how well she is ranked in
other agents’ preference lists. Formally the cost of an agent b ∈ B is defined as:

Cost(b) =
n∑

i=1
n − rankai

(b).

The costs of agents from A and C are defined analogously. The intent is to penalise
putting popular agents in the correction set, by giving a higher cost to better ranked agents.
The cost of a pair (respectively triple) of agents is the sum of the individual costs of the two
(respectively three) agents composing it.

4.2 Scalability
In this section we evaluate the performance of div-ranks and hs by considering how well
they scale with respect to the number of agents in the set. We have decided to classify the
experiments into eight groups depending on: (a) the satisfiability of the instance, (b) the
solver used and (c) whether the soft constraints have unit cost or not.

The focus of this paper is on dealing with unsatisfiable instances. However, since in
practice we cannot always know in advance whether an instance admits a solution, we found
it important to check that the satisfiable cases are solved efficiently too. As the instances are
satisfiable, the cost of the optimal relaxation is 0 for each one of them, regardless of the type
of relaxation. While we could not include the results because of lack of space, all approaches
deal with satisfiable instances without major issue.

In Figures 1, 2 3, and 4 we present the results for the unsatisfiable instances. The
approaches evaluated are classified in terms of: (a) the model used (div-ranks vs hs), (b)
the solver used (Gecode vs Chuffed) and (c) the search strategy used (Bottom Up (bu) vs
Top Down (td)). Bottom Up consists of branching on the cost variable first by selecting
the smallest value in the domain first. Effectively this means that we follow a succession of
unsatisfiable checks and end with a satisfiable check, which is bound to lead to an optimal
solution since we have already proved that there is no solution with a smaller cost. With
the Top Down strategy we do the opposite: we find a solution and keep on restricting the
next one to be better until that is no longer possible. Effectively this means that we follow a
succession of satisfiable checks and end with an unsatisfiable check. The unsatisfiable check
ensures that the last satisfiable check corresponds to an optimal solution [18].

Our first observation is that the Chuffed approaches clearly outperform the Gecode
approaches. As demonstrated by Figures 3 and 4, all Chuffed approaches solve the vast
majority of instances of size 15 in less than 10 seconds, while the Gecode approaches struggle
with instances of size 11 in quite a few cases. The Chuffed approaches also result in much
fewer failures – in some cases the gap is of more than two orders of magnitude.
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We consider 9 relaxation types. The first one (none) corresponds to the case where all
soft constraints are considered hard. This category was included to gauge the amount of
overhead added by modeling each type of relaxation. The other 8 categories correspond
to the unit-cost and popularity-cost versions of the four relaxation options introduced in
Section 2.2.

In general we observe that our approaches deal much better with MAS and MPAS
than with TAS and AAS. In instances where all relaxation types lead to the same optimal
relaxation, we can save a considerable amount of time by computing one of our two relaxation
types. When it comes to the type of cost, this does not seem to deteriorate much the
performance of the Chuffed approaches. In the Gecode approaches we actually observe an
improvement in performance when we consider our popularity-cost instances in most of the
cases. The situation might be different for instances with completely arbitrary costs.

The Bottom Up vs Top Down comparison is another point where we observe differences
between the Chuffed and the Gecode approaches. In the Chuffed approaches, even though
in most of the cases we did not observe major differences, in some cases the Top Down
exploration led us to visibly better results. The situation in Gecode is quite the opposite.
The very same model (div-ranks) presented very different behaviours depending on whether
Top Down or Bottom Up was used. The Bottom Up tests were completed for all the (small)
sizes. However, we had to discard some of the Top Down tests since it was already known
that they were going to time out. It is important to remark, though, that the Bottom Up
strategy did not always lead to improvements. The improvements were mostly observed when
dealing with AAS/TAS instances. Similarly, we observed differences in the performance of
hs with respect to the Bottom Up vs Top Down comparison. The Bottom Up strategy led
us to better results when dealing with the popularity-cost instances in most of the cases.

We test the scalability of the different relaxation versions on a few large instances in
Appendix A.

5 Conclusion and future work

We extended 3dsm-cyc constraint models to four relaxation versions of the problem, two
based on already established two-dimensional relaxation notions, and two that we introduced.
For each of these four relaxations, we tested our models on instances of various sizes and
types, for two different cost functions, and using both a bottom-up and a top-down approach.
Our results show that our models are able to efficiently compute a maximum relaxation for
unsatisfiable 3dsm-cyc instances.

While our relaxation models performed well for the two cost functions that we studied,
it would be interesting to know in what ways their behavior would be affected when given
different formulas for the costs of the elements in the instance. For example, one could set the
cost of a triple as the difference between the highest and lowest costs of its agents, mirroring
the definition of sex-equal [32, 55, 40, 51] optimisation for satisfiable instances. It would be
also interesting to find out how the presence of mandatory agents/pairs/triples affect the
performance since these constraints are highly motivated in the literature [17, 23, 35].

Another possible avenue of research would be to explore the relations between minimum
correction sets of different relaxation types. If for a particular class of instances the maximum
relaxations are identical for different types, then one could use our findings that the two new
relaxation versions lead to better performance, and search for minimally-accommodating
stable matchings instead of almost stable matchings to get the same result faster.
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Table 2 Largest solved instance sizes and smallest unsolved instance sizes for each relaxation
version when run with a timeout of one hour, using the DIV-ranks model and the Chuffed solver.
⋆: There were two ML1swap instances of size 29 in the dataset. A popularity-cost TAS matching
was found before timeout for one but not for the other.

Random ML1swap ML2swaps
Relaxation largest smallest largest smallest largest smallest

solved unsolved solved unsolved solved unsolved
none 35 - 110 - 90 -

unit-cost AAS 35 - 90 110 70 90
popularity-cost AAS 32 35 29 90 70 90

unit-cost TAS 23 29 29 90 35 45
popularity-cost TAS 23 29 29⋆ 29⋆ 29 35

unit-cost MAS 35 - 90 110 70 90
popularity-cost MAS 35 - 90 110 70 90

unit-cost MPAS 35 - 90 110 70 90
popularity-cost MPAS 32 35 90 110 70 90

unsatisfiable for strong stability in the experiments by Cseh et al. [13]. We chose the DIV-
ranks model with the Chuffed solver, using the Bottom Up strategy for unit-cost relaxation
and Top Down for popularity-cost, because this showed the best performance in our other
tests. The results, displayed in Table 2, confirm that it is more efficient to compute MAS
relaxations, although AAS and MPAS also scale well for some combinations of instance class
and cost function.
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