
On the Enumeration of Frequent High Utility
Itemsets: A Symbolic AI Approach
Amel Hidouri 1 #

CRIL – CNRS UMR 8188, University of Artois, France
LARODEC, University of Tunis, Tunisia

Said Jabbour #

CRIL – CNRS UMR 8188, University of Artois, France

Badran Raddaoui #

SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris, France

Abstract
Mining interesting patterns from data is a core part of the data mining world. High utility mining,
an active research topic in data mining, aims to discover valuable itemsets with high profit (e.g., cost,
risk). However, the measure of interest of an itemset must primarily reflect not only the importance
of items in terms of profit, but also their occurrence in data in order to make more crucial decisions.
Some proposals are then introduced to deal with the problem of computing high utility itemsets
that meet a minimum support threshold. However, in these existing proposals, all transactions in
which the itemset appears are taken into account, including those in which the itemset has a low
profit. So, no additional information about the overall utility of the itemset is taken into account.
This paper addresses this issue by introducing a SAT-based model to efficiently find the set of all
frequent high utility itemsets with the use of a minimum utility threshold applied to each transaction
in which the itemset appears. More specifically, we reduce the problem of mining frequent high
utility itemsets to the one of enumerating the models of a formula in propositional logic, and then
we use state-of-the-art SAT solvers to solve it. Afterwards, to make our approach more efficient, we
provide a decomposition technique that is particularly suitable for deriving smaller and independent
sub-problems easy to resolve. Finally, an extensive experimental evaluation on various popular
datasets shows that our method is fast and scale well compared to the state-of-the art algorithms.

2012 ACM Subject Classification Computing methodologies → Artificial intelligence; Information
systems → Data mining

Keywords and phrases Data Mining, High Utility Itemsets, Propositional Satisfiability

Digital Object Identifier 10.4230/LIPIcs.CP.2022.27

1 Introduction

The broad topic of data mining research aims to discover a set of relevant patterns that
together represent the properties of the data. The successful use of data mining in e-commerce
and e-marketing became a core practice in the retail industry. Pattern discovery, one of
the most important sub-fields of data mining, involves computing interesting patterns in
databases. Retailers are using such patterns to find customer habits in order to provide better
services and increase sales. Traditional itemset mining models can be characterized into two
lines of work. The first one, known as Frequent Itemsets Mining (in short, FIM), is based
on the popular metric of support (i.e., the number of transactions involving the itemset) to
determining how interesting a motif is. Specifically, FIM seeks to identify patterns whose
frequency exceeds a predefined threshold. Nevertheless, frequency alone is often considered as
a poor measure of interestingness [29]. In fact, frequent itemsets have a significant bottleneck

1 Corresponding author

© Amel Hidouri , Said Jabbour, and Badran Raddaoui;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Principles and Practice of Constraint Programming (CP 2022).
Editor: Christine Solnon; Article No. 27; pp. 27:1–27:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hidouri@cril.fr
mailto:jabbour@cril.fr
mailto:badran.raddaoui@telecom-sudparis.eu
https://doi.org/10.4230/LIPIcs.CP.2022.27
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 SAT-Based Frequent HUIM

in that they only reflect the occurrence of items in a database and miss their importance,
e.g., items that can be rare but generate more profit. Typically, the significance of an item in
each transaction can be different. The second line of research consists of High Utility Itemset
Mining (HUIM, for short), which is an extension of FIM. Basically, HUIM is a research area
designed to address the shortcomings of frequency-based algorithms by taking in addition to
the item frequency the significance/interestingness of items into account, such as the price,
the quantity, etc., when mining patterns. A high utility itemset is then an itemset whose
utility value is greater than a user-specified threshold. Generally speaking, the utility can be
quantified in terms of cost, risk, profit or any other user preference relations among items.
The HUIM task has emerged as a key data mining primitive in many practical applications,
including market analysis, customer trend analysis and financial analysis [13]. The two
aforementioned lines of research, however, are generally considered separately. To be precise,
the two frameworks were designed with different goals in mind, either for mining the set of
items that occur frequently while ignoring their profit, or for computing the set of items that
yield the highest gain values as a sole criterion while avoiding the frequency measure. In
the last case, non-frequent itemsets could be considered as high utility itemsets. In recent
years, with ever-advancing technology, one may be more interested in finding at the same
time frequently purchased items with high gain values. In fact, computing such itemsets
can help sales managers understand customer research behavior and what she/he needs,
as well as provide appropriate product combinations. For example, a retail store manager
can use this knowledge to make decisions to keep products neighboring or also to promote
products. These itemsets can also be used to assess the risk of selling a product by removing
for instance very seldom interesting products from the market.

In the literature, a number of frequent utility-driven mining methods have been studied,
each with its own advantages. Specifically, Wei et al. [30] proposed a novel algorithm, called
FCHUIM, that combines the frequency and utility constraints to find frequent high utility
itemsets. This approach considers a candidate itemset as frequent if and only if it is covered
by a minimum number of transactions and his utility in these transactions is greater than a
user-specified minimum utility value. FCHUIM is based on a closed high utility representation
and it employs a nested list to eliminate non-frequent itemsets. Furthermore, HU-FIMi [28]
is another single phase algorithm to compute efficiently high utility frequent itemsets in
transactional databases. It exploits different orderings of items and introduces two new
pruning measures (cutoff and suffix utility) in order to reduce the search space exploring
cost. Another specialized form of frequent utility-based data mining field is to extract only
the itemsets with the highest utility values (i.e., above a fixed threshold value). As a result,
transactions involving the itemset with the lowest utility value are not considered as covers
for this itemset because no valuable information is added to the itemset’s overall utility value
in the database. 2P-UF algorithm [32] was the first to address the problem of computing such
patterns. It considers utility frequent motifs to be a subset of the high utility itemset problem.
This approach is a two-phases algorithm based on a quasi-support measure that addresses
the issue of the support-utility measure’s non-monotonicity. Consequently, this algorithm
is not suitable to handle large-scale databases. In contrast to 2P-UF, FUFM algorithm [27]
was introduced to handle the frequent-utility task as a subset of the frequent itemset mining
problem. To find such patterns among frequent itemsets, it employs a metric known as
extended support. Since it is based primarily on the frequent itemset mining approach,
this algorithm is very simple and fast. A parallel version of FUFM, called P-FUFM [26], is a
two-phases based algorithm that aims to reduce the running time of the FUFM algorithm. In
the first step, this algorithm generates candidates, and in the second phase, it computes

A. Hidouri, S. Jabbour, and B. Raddaoui 27:3

utilities. The scheme is to implement a parallel generation of candidates as well as the
corresponding utilities. Unfortunately, all these designed algorithms suffer from a degradation
in scalability for large scale databases.

In this paper, we are mainly interested in mining more efficiently frequent high utility
itemsets from transaction databases in the case when the frequency metric is applied to
transactions in which the itemset appears, and also when such metric is restricted to
the transactions with highest gain value. To address these two problems, we propose a
novel symbolic framework based on propositional logic to efficiently extract a concise set
of itemsets that are frequently encountered while yielding the highest profit margins in
a transaction database. In fact, symbolic Artificial Intelligence (AI) approaches, such as
Boolean Satisfiability (SAT) and Constraint Programming (CP), are applied in data mining
by translating the problem of mining patterns in terms of constraints and then delegate the
enumeration of solutions to the appropriate solver (e.g., [2, 9, 14, 16, 20]). The application
of symbolic AI to data mining is supported by its theoretical and algorithmic foundations
and the flexibility it affords, i.e., the ability to add new user-specified constraints to control
interesting patterns without the need to modify, from scratch, the underlying algorithms.
Furthermore, the close relationship between constraint-based languages and pattern discovery
enables data mining problems to benefit from a variety of powerful propositional satisfiability-
based solving techniques in order to improve the efficiency of such approaches. In this paper,
we propose two SAT-based approaches: the first aims to compute the set of frequent high
utility itemsets, while the second is for identifying all patterns that are local high utility
frequent itemsets.

2 Formal Preliminaries

2.1 High Utility Itemset Mining

Let Ω denote a universe of items (or symbols), called alphabet. The elements of Ω are
denoted by the letters a, b, c, etc. A subset of Ω (I ⊆ Ω) is called an itemset. The set of all
itemsets over Ω are denoted as 2Ω, and the capital letters I, J, K, etc. are used to represent
the elements of 2Ω. Typically, a transaction is an ordered pair (i, I) where 1 ≤ i ≤ m, called
the transaction identifier (TID, for short), and I an itemset, i.e., (i, I) ∈ N× 2|Ω| \ ∅. When
there is no confusion, a transaction will be simply denoted as Ti. A transaction database D

is defined as a finite non-empty set of transactions where each transaction identifier refers
to a unique itemset. Given a transaction database D and an itemset I, the cover of I in
D is defined as follows: Cover(I, D) = {i ∈ N | (i, J) ∈ D and I ⊆ J}. The support of I

in D is then defined as the cardinality of Cover(I, D), i.e., Supp(I, D) = |Cover(I, D)|. A
high utility itemset I ⊆ Ω s.t. Supp(I, D) ≥ 1 is closed if and only if for any itemset J with
I ⊂ J , Supp(J, D) < Supp(I, D).

In the high utility setting, each item a ∈ Ω is associated with a positive number that
indicates its external utility (e.g., unit profit). We write wext(a) for the external utility of a.
In addition, each item a in a transaction Ti is associated with a positive value wint(a, Ti),
called its internal utility. Based on these two kinds of utility, the utility of an item a in
a transaction Ti, written u(a, Ti), is computed as follows: u(a, Ti) = wint(a, Ti) × wext(a).
Now, the utility of an itemset I in a transaction Ti, denoted by u(I, Ti), is defined as
u(I, Ti) =

∑
a∈I⊆Ti

u(a, Ti). Then, the utility of an itemset I in the entire database D is
defined as u(I, D) =

∑
Ti∈D | I⊆Ti

u(I, Ti).

CP 2022

27:4 SAT-Based Frequent HUIM

Given a transaction database D and a user-specified utility threshold θ, the classical high
utility itemset mining problem aims at finding the set of all itemsets in D whose utility value is
no less than θ. More formally, the aim is to compute the set {I : u(I, D) | I ⊆ Ω, u(I, D) ≥ θ}.
An itemset with a utility greater than the minimum utility threshold θ is called a high utility
itemset (HUI, for short).

In order to prune the search space, existing proposals of HUIM use the so-called Transac-
tion Weighted Utilization (TWU, for short), which is an upper bound of the utility measure,
together with the property of anti-monotonicity in order to filter out the candidate itemsets
that are not high utility [22]. More formally, the transaction utility of a transaction Ti in D,
denoted by TU(Ti), is the sum of the utility of all items in Ti, i.e., TU(Ti) =

∑
a∈Ti

u(a, Ti).
Then, the transaction weighted utilization of an itemset X in a transaction database D,
denoted by TWU(X, D), is defined as: TWU(X, D) =

∑
(i,Ti)∈D | X⊆Ti

TU(Ti).
Another task in data mining related to HUIM problem consists in enumerating the set

of HUIs by taking into account the frequency. Such itemsets are called frequent high utility
itemsets (FHUIs, for short). To be precise, given a support and utility minimum thresholds
δ and θ respectively, an itemset I is a FHUI in D iff. Supp(I, D) ≥ δ and u(I, D) ≥ θ. We
denote by FHUIM the task of computing the set of FHUIs in D. Clearly, the HUIM task is
a particular case of FHUIM where δ is set to 1.

▶ Example 1. Consider the transaction database shown in Table 1 (which will be used
throughout the paper). For the sake of simplicity, we set the external utility of each item to
1. In fact, every transaction database can be represented as a single table by multiplying the
internal and external utilities of items. In that sense, each item has a single number that
represents its utility in the transaction. Let θ = 20 be a minimum utility threshold, and
δ = 2 be a minimum support threshold. Then, the set of FHUIs in D are {a}, {a, b}, and
{a, b, g}.

Table 1 Sample Transaction Database.

TID Items
T1 (a, 8) (b, 2) (g, 1)
T2 (b, 6) (c, 3) (e, 2)
T3 (c, 4) (d, 3)
T4 (a, 6) (d, 4) (e, 1)
T5 (a, 8) (b, 7) (f, 2) (g, 1)

Now, we wish to emphasize that the utility of itemsets is over-estimated when mining
FHUIs from transaction databases. In other words, all transactions containing the candidate
itemset are considered without regard for their utility value in these transactions: even if
the utility of an itemset I in a transaction T is low, T is chosen if it contains I. To be
precise, the utility measure of an itemset I (i.e., u(I, D)) takes into account the utility of I

in all the transactions where I appears. To alleviate such over-estimation in the problem of
mining FHUIs, another specialized form of HUIM is to restrict the cover of the candidate
itemset I to only the transactions in which the utility of I (i.e., u(I, Ti)) is greater than a
local minimum utility threshold. Such HUIs will be called frequent local high utility itemsets
(FLHUIs, for short). To define such sets, we need the following additional terminology.

▶ Definition 2. Assume D is a transaction database, and θ′ a local minimum utility threshold.
Then, the utility-based cover of an itemset I in D is defined as: Coveru(I, D) = {(i, Ti) ∈
D, I ⊆ Ti, and u(I, Ti) ≥ θ′}. Then, the utility-based support of I is the cardinality of its
utility-based cover, i.e., Suppu(I, D) = |Coveru(I, D)|.

A. Hidouri, S. Jabbour, and B. Raddaoui 27:5

▶ Property 3. Let D be a transaction database, I an itemset, and δ a minimum support
threshold. Then, if Suppu(I, D) ≥ δ, then Supp(I, D) ≥ δ.

Given a support and local minimum utility thresholds δ and θ′ respectively, an itemset I

is a FLHUI in D iff. u(I, D) ≥ θ′.

▶ Example 4. Let us consider again Example 1. For the minimum support threshold δ = 2
and the local minimum utility threshold θ′ = 10, the sets {a, b} and {a, b, g} are FLHUIs.

To avoid ambiguity, we will refer to the second problem of enumerating all FLHUIs from
transaction databases as FLHUIM. This paper deals with a suitable reduction of both the
problems of FHUIM and FLHUIM to the propositional satisfiability model enumeration task,
and then the use of state-of-the-art SAT solvers to solve these two problems.

2.2 Propositional logic
Let L be a propositional language built up inductively from a countable set PS of propositional
variables, the boolean constants ⊤ (true or 1) and ⊥ (false or 0) and the classical logical
connectives {¬,∧,∨,→,↔} in the usual way. We use the letters x, y, z, etc. to range over
the elements of PS. Propositional formulas of L are denoted by Φ, Ψ, etc. A literal is
a propositional variable (x) of PS or its negation (¬x). A clause is a (finite) disjunction
of literals. For any formula Φ from L , P(Φ) denotes the symbols of PS occurring in Φ.
A formula in conjunctive normal form (CNF, for short) is a finite conjunction of clauses.
A Boolean interpretation ∆ of a CNF formula Φ is defined as a function from P(Φ) to
{0, 1}. A model of a formula Φ is an interpretation ∆ that satisfies Φ, i.e., if there exists an
interpretation ∆ : P(Φ)→ {0, 1} that satisfies all clauses in Φ. The formula Φ is satisfiable
if it has at least one model. In the sequel, we write |= for the logical consequence relation
and |=UP for the consequence relation restricted to the application of unit propagation2.

The propositional satisfiability problem (SAT, for short) is a decision problem used to
solve constraint satisfaction problems. Specifically, given a CNF formula Φ, SAT determines
whether exists a model for each clauses in Φ. The application of SAT solvers in a range of real-
world scenarios, e.g., electronic design automation, software and hardware verification [25],
data mining [4], overlapping community detection in networks [17–19], has resulted from
the progress of this NP-Complete problem over the previous decade. SAT technology has
widely been used mainly in decision problems and its extensions such as SAT Modulo Theory
(SMT), Maximum Satisfiability (Max-SAT), Quantified Boolean Formulas (QBF) but also
recently in model enumeration problems built on top of modern SAT solvers such as Conflict
Driven Clause Learning (CDCL) solver.

3 Computing High Utility Itemsets with Propositional Satisfiability

3.1 A SAT Approach to Frequent High Utility Itemset Mining
In this subsection, we deal with the translation of the FHUIM problem into propositional
logic, so that SAT solvers can be used to enumerate FHUIs from transaction databases. We
recall first that the traditional HUIM task has been recently reduced to SAT [15]. Specifically,
in order to have a one-to-one mapping between the set of HUIs and the models of the

2 Unit propagation is a kind of inference technique based on resolution with unit clauses (i.e., clauses
containing exactly a single literal), e.g., Φ ∧ x ∧ (¬x ∨ α) |=UP α.

CP 2022

27:6 SAT-Based Frequent HUIM

underlying propositional formula, a set of propositional variables and logical constraints have
been introduced. More formally, given a transaction database D, the proposed encoding
associates to each item a (resp. transaction identifier i) of D a propositional variable referred
to as pa (resp. qi). Figure 1 depicts the different constraints that accomplish the SAT-based
encoding scheme of the HUIM problem. To be precise, Constraint 1 encodes the candidate
itemset’s cover. This constraint expresses the presence of the itemset in the ith transaction,
i.e., qi = 1. More specifically, the candidate itemset is not supported by the ith transaction
(i.e., qi is false), when there exists an item a (i.e., pa is true) that does not belong to the
transaction (a ∈ Ω\Ti); when qi is false. This means that at least one item not appearing
in the transaction i is set to true. Constraint (3) captures the closedness requirement of
HUIs. It ensures that if the candidate itemset is involved in all transactions containing the
item a ∈ Ω, then a must be added to the itemset (i.e., a must be propagated to true). The
constraint over the utility of the candidate itemset in the database D is expressed using
the linear inequality (4) w.r.t. the user threshold θ. Notice that Constraint (4) takes into
account the TWU property to prune the search space.

In contrast to the work of [15], we tackle in this paper the problem of mining the set of all
FHUIs from transaction databases. To do this, the previous encoding (Constraints (1), (3),
and (4)) should be extended with Constraint 2. In fact, Constraint (2) requires that at least δ

transactions involves the candidate itemset to be considered as a frequent HUI. Consequently,
the problem of FHUIM is encoded in propositional logic with the propositional formula
Φfhuim = (1) ∧ (2) ∧ (4). Moreover, a user can be interested in a more concise representation
of FHUIs, called closed FHUIs (in short CFHUIs). Recall that the closedness constraint is
encoded as Constraint 3. We shall note the formula encoding the computation of CFHUIs as
Φcfhuim = Φfhuim ∧ (3).

m∧
i=1

(¬qi ↔
∨

a∈Ω\Ti

pa) (1)
m∑

i=1
qi ≥ δ (2)

∧
a∈Ω

(pa ∨
∨

a ̸∈Ti

qi) (3)

m∑
i=1

∑
a∈Ti

u(a, Ti)× (pa ∧ qi) ⩾ θ (4)

Figure 1 SAT-based Encoding Scheme for the FHUIM Problem.

▶ Proposition 5. Let D be a transaction database, θ a minimum high utility threshold, and
δ a minimum support threshold. Let Φcfhuim = Φfhuim ∧ (3) be a propositional formula. Then,
there exists a one-to-one mapping between the models of Φcfhuim and the set of CFHUIs in D.

3.2 A SAT Approach to Frequent Local High Utility Itemset Mining
This subsection presents our formulation of the problem of FLHUIM into propositional
satisfiability. First, recall that a FLHUI in a transaction database D is a local high utility
itemset and it meets a minimum support threshold. In contrast to the previous SAT-based
encoding (see Figure 1), three subsets of propositional variables are introduced, namely
{pa, a ∈ Ω}, {qi, i ∈ [1..m]}, and {ri, i ∈ [1..m]}. Afterwards, to restrict the frequency metric
to the transactions with highest gain value, we consider the new Constraint (5). Specifically,
this constraint states that an itemset I is covered by a transaction Ti if it is contained in Ti

and the utility of I in Ti meets the required utility threshold. Alternatively, Constraint (5)
can be rewritten as the following formula:

∧m
i=1 ri ↔

∑
a∈Ti

u(a, Ti)(qi ∧ pa) ≥ θ′. Now, to

A. Hidouri, S. Jabbour, and B. Raddaoui 27:7

constrain the candidate itemset to be frequent, i.e., to be covered by at least δ transactions,
we add the cardinality constraint (Constraint (6)). If that is the case, we call such candidate
itemset as a FLHUI.

m∧
i=1

(ri ↔ qi ∧ (
∑
a∈Ti

u(a, Ti) pa ≥ θ′)) (5)
m∑

i=1

ri ≥ δ (6)

Figure 2 SAT Encoding Scheme for Frequent Local High Utility Itemset Mining Problem.

▶ Proposition 6. Let D be a transaction database, θ′ a local minimum utility threshold, and
δ a minimum support threshold. Let Φcflhuim = (1)∧ (5)∧ (6)∧ (3) be a propositional formula.
Then, there exists a one-to-one mapping between the models of Φcflhuim and the set of closed
FLHUIs in D.
▶ Example 7. Let us consider the transaction database depicted by Table 1. Then, the
formula that encodes the problem of enumerating all closed FLHUIs in D with θ′ = 10 and
δ = 2 is written as follows:

¬q1 ↔ (pc ∨ pd ∨ pe ∨ pf) pa ∨ q2 ∨ q3
¬q2 ↔ (pa ∨ pd ∨ pf ∨ pg) pb ∨ q3 ∨ q4
¬q3 ↔ (pa ∨ pd ∨ pf ∨ pg) pc ∨ q1 ∨ q4 ∨ q5
¬q4 ↔ (pb ∨ pc ∨ pf ∨ pg) pd ∨ q1 ∨ q2 ∨ q5
¬q5 ↔ (pc ∨ pd ∨ pe) pe ∨ q1 ∨ q3 ∨ q5
r1 ↔ q1 ∧ (8pa + 2pb + pg ≥ 10) pf ∨ q1 ∨ q2 ∨ q3 ∨ q4
r2 ↔ q2 ∧ (6pb + 3pc + 2pe ≥ 10) pg ∨ q2 ∨ q3 ∨ q4
r3 ↔ q3 ∧ (4pc + 3pd ≥ 10)
r4 ↔ q4 ∧ (6pa + 4pd + pe ≥ 10)
r5 ↔ q5 ∧ (8pa + 7pb + 2pf + pg ≥ 10)

r1 + r2 + r3 + r4 + r5 ≥ 2

The SAT encodings of FHUIM and FLHUIM tasks involve the so-called Pseudo-Boolean
constraints3 (e.g. Constraints (2), (4) and (6)). Solving such kind of constraints has received
an important attention by the SAT community since Pseudo-Boolean constraints naturally
arise in many propositional encodings of real-world problems, including classical pattern
mining, product configuration and community discovery in networks. A common way to
solve Pseudo-Boolean constraints is by transformation into a SAT equivalent propositional
formula and then use SAT solvers in order to verify satisfiability using various state-of-the-art
encoding techniques [11]. Another way is to handle Pseudo-Boolean-constraints directly in
the SAT solver [1]. Pseudo-Boolean problems can also be modeled as an integer program, in
which the nonlinear constraints are linearized like [6] which used cutting resolution. The
solver bsolo [23] also combines integer programming techniques with SAT-solving. On the
other hand, cutting resolution has also been used to solve Pseudo-Boolean constraints [6].
Conflict analysis, introduced by Marques-Silva and Sakallah [24], is an important component
of modern SAT-solvers. It allows SAT solvers to learn conflict clauses from intractable
sub-problems. These clauses allow the solver to prune other branches of the search tree and
use non-chronological backtracking. However, its extension to Pseudo-Boolean constraints is
not obvious [5, 8].

In our case, each transaction gives rise to a Pseudo-Boolean constraint. Moreover, we
deal with an enumeration based problem. Consequently, due to some scalability concerns, we
choose to manage these constraints lazily as in [21]. As described in Constraint (6), the PB

3 A Pseudo-Boolean constraint is an expression of the form
n∑

i=1

aixi op b, where ai and b are real

coefficients, xi (1 ≤ i ≤ n) are propositional variables, and the operator op belongs to {=, ≤, <, >, ≥}.

CP 2022

27:8 SAT-Based Frequent HUIM

constraint allows to catch the conditions under which ri is propagated particularly to false:
either when qi is false, or when the utility of the candidate itemset in Ti is less than the fixed
utility threshold θ′. The latter is managed thanks to the use of counters that allow to check
if the sum of the utilities of items in the transaction Ti not assigned to false is less than θ′.

3.3 SAT-based Enumeration for High Utility Mining
In this subsection, we present our method based on the classical DPLL procedure [7] to
enumerating the set of FHUIs and FLHUIs in transaction databases. We use a DPLL
procedure to avoid adding blocking clauses and then to circumvent the growing up of the
sub-formulas size. The enumeration is performed by a simple backtrack at each found model.
This is motivated by the fact that the number of models can be large particularly in pattern
mining. Algorithm 2 (See appendix) illustrates the pseudo-code of the enumeration process.
As mentioned previously, since our encoding includes both clauses and Pseudo-Boolean
constraints, the latter are managed lazily following [21]. As will be shown in the empirical
evaluation, the encoding of all Pseudo-Boolean constraints into CNF can make the resolution
inefficient for large databases, since each variable ri implies a Pseudo-Boolean constraint,
which can be huge depending on the number of transactions in the database. This can make
the SAT-based encoding intractable in practice. To address this issue, we propose a slight
modification of the DPLL-based algorithm by employing propagators, a key component of
CSP and SMT (Satisfiability Modulo Theory) solvers. The propagator is based on counters.
In fact, it proceeds in the same manner as the well-known TWU measure used in the HUIM
literature. When the propositional variable pa becomes false, the utility of the item a

is subtracted from the sum of the utility of the sub-tables in which the item a appears.
Propagators are used in Constraint (2). We use counters to detect when the total weight
of a transaction is less than the fixed threshold. If it is the case, then the variable qi is
propagated to false. As a result, our algorithm is divided into two parts: unit propagation for
the propositional part and propagators for dealing with Pseudo-Boolean constraints to handle
frequency and utility based constraints. Furthermore, propagators’ primary function is to
check the satisfiability of the Pseudo-Boolean constraint. The idea behind using propagators
within our DPLL based approach is mainly to check the consistency of the Pseudo-Boolean
constraints or to infer useful propagation. More precisely, for a Pseudo-Boolean constraint of
the form

∑n
i=1 wixi ≥ k, a counter is initialized with the value w =

∑n
i=1 wi. Each time an

xi is assigned to false, its corresponding weight wi is subtracted from w leading to w − wi.
If such value is less than k, then a backtrack is performed. Note that the FHUIM task
involves a cardinality and a Pseudo-Boolean constraints, while in the FLHUIM problem
we can rewrite the encoding using conditional Pseudo-Boolean Constraints of the form
y →

∑n
i=1 wixi ≥ k [3]. Such constraints allows to capture conditions under which ¬y can

be propagated. It is also worth noting that assigning the variables representing items (pa,
a ∈ Ω) allows to fix the remaining variables via propagation, i.e., pa, a ∈ Ω is a strong
backdoor [31]. Then, from an heuristic point of view, it is better to assign such variables first.

3.4 A Decomposition-based Approach for FHUIM & FLHUIM
In practice, the DPLL based enumeration algorithm suffers from scalability issues, particularly
when the size of the propositional encoding is very large. This can have a significant impact
on the approach’s efficiency, as stated by [15]. In fact, without decomposition the number of
clauses of the encoding is equal to |Ω| × |D| − (

∑
Ti∈D |Ti|). This is equivalent to the number

of missing items in the database. This value can be very huge for large datasets (.e.g., for

A. Hidouri, S. Jabbour, and B. Raddaoui 27:9

Kosarak for δ = 1000, the number of non missing items is 34009483, then the number of clauses
that represent Constraint (5) is 41270× 990002− 34009483, which exceeds 40 billion clauses).
To address this issue, we apply a decomposition scheme to split the transaction databases
into numerous bases of reasonable size. Using decomposition, the size of each sub-problem is
significantly reduced. For instance, Constraint (5) leads to 31205214 clauses for Kosarak,
which is the total number of clauses of the different sub-problems instead of 40 billion clauses.
The main idea of decomposition is to avoid encoding the entire database in favor of solving
many independent sub-problems of small size rather than a single large problem. Basically,
given a propositional formula Φ and a variable x1 ∈ PS(Φ), the models of Φ are those of
Φ∧ x1 and Φ∧¬x1. By generalizing such principle for a subset of variables {x1, . . . , xn}, the
models of Φ are those of Ψ1, . . . , Ψn where Ψi = Φ ∧ xi ∧

∧
1≤j<i ¬xj . In our case, we have

{x1, . . . , xn} = {pa1 , . . . , pan
} and Φ corresponds to Φfhuim (or Φcfhuim for closed patterns) or

Φflhuim (or Φcflhuim for closed patterns). Hence, solving Ψi = Φ ∧ pai ∧
∧

1≤j<i ¬paj can be
obtained by considering only transactions containing the item ai. In fact, since the variable
pai is true, the models of Φi is restricted to those containing pai , which means the itemset
including ai. Clearly, splitting the CNF formula generates a set of independent sub-formulas
that encode subsets of a specific subset of transactions of the original database. Consequently,
this allows to avoid modeling the entire database and without causing too large number of
clauses as well as the associated computational problems. It is important to note here that
the order in which we solve the generated sub-problems has further a tremendous impact
on the effectiveness of our approach. In particular, we believe that starting from the last
sub-problem Φ ∧Ψn is the best choice since it is the simplest one. In fact, all the variables
representing items are assigned to false except one. This results to a smaller encoding
size for the current sub-problem compared to the previous sub-problems. Interestingly, the
declarativity of our SAT approach is preserved when applying the decomposition technique.
Thus, one just need to add the user-specific constraints to each sub-formula encoding the
sub-table obtained by decomposition.

▶ Example 8. Let us reconsider the transaction database in Table 1. Figure 3 depicts the
sub-tables obtained by applying the decomposition principle.

a8 b2 g1

a6 d4 e1

a8 b7 f2 g1

pa ¬pa

��a
8 b2 g1

b6 c3 e2

��a
8 b7 f2 g1

pb ¬pb

��b6 c3 e2

c4 d3

pc ¬pc

��c4 d3

��a
6 d4 e1

pd ¬pd

��b6 ��c3 e2

��a
6

��d
4 e1

pe

Figure 3 Item-based decomposition tree of the database in Table 1.

Algorithm 1 depicts our decomposition-based algorithm for mining frequent (local) high
utility itemsets from transaction databases. This algorithm takes a transaction database, a
(local) minimum utility threshold and a minimum support threshold as input, and returns all
(closed) frequent (local) high utility itemsets. Based on the previously stated decomposition
principle, our algorithm splits the transaction table into multiple independent sub-problems
and restricts the encoding to a sub-table each time in order to enumerate all models

CP 2022

27:10 SAT-Based Frequent HUIM

corresponding to motifs of interest using the enumeration procedure described in Algorithm 2.
To reduce the search space and, probably the encoding size, a pre-processing process is
used to prune all itemsets that cannot be included in the final output. More specifically,
in both FHUIM and FLHUIM, infrequent items are ignored. For the FHUIM method, if
TWU(a, D) < θ, then the item a is discarded, whereas for FLHUIM task, if

∑
a∈T u(a, T) < θ′

with T ∈ D, then the transaction is not considered to be part of the search space.

Algorithm 1 SAT based Frequent (Local) High Utility Itemset Mining Approach.

Input: D: a transaction database, θ: utility threshold, δ: support threshold
Output: S: the set of frequent (local) high utility itemsets

1 S ← ∅;
2 for i ∈ [1..n] do
3 if Suppu(ai, D) ≥ δ then
4 Di ← {(k, Tk) ∈ D | ai ∈ Tk}, Ω = ⟨a1, . . . , an⟩ ← items(Di), Γ← ∅;
5 for Tj ∈ Di do
6 if

∑
c∈Tj

u(c, Tj) < θ then

7 Γ← Γ ∧ ¬ri, Di ← Di \ {Tj};
8 end
9 end

10 for b ∈ items(Di) do
11 if Suppu(b, Di) < δ then
12 Γ← Γ ∧ ¬pb;
13 end
14 end
15 Ψ← pai

∧
∧

1≤j<i

¬paj ;

16 Φ← Φfhuim(Di, θ, δ) ∧Ψ ∧ Γ ; /* Φflhuim for FLHUIM */

17 S ← S ∪ DPLL_Enum(Φ)
18 end
19 end
20 return S;

4 Empirical Investigation

4.1 Experimental setup

Algorithm 1 is implemented in C++ language top-on the SAT solver MiniSAT [10], which is
adapted to compute all models of a propositional formula by performing a DPLL procedure [7]
as explained above. Our motivation here relies on the fact that we face on the problem of
enumerating a huge number of models. For this, we adapt MiniSAT solver by keeping watched
literals for unit propagation. Obviously, the restart and clause learning components can be
disabled for better scalability and also to avoid growing the sub-formulas size. Note that the
decomposition is performed by considering the frequency of items in ascending order, and the
resulting sub-problems are addressed in a sequential manner. We have compared our proposed

A. Hidouri, S. Jabbour, and B. Raddaoui 27:11

approaches against two baselines, namely HU-FIMi [28] and FUFM [27]4. In our empirical
evaluation, we conduct experiments over different commonly used benchmark datasets in the
HUIM setting. These datasets are downloaded from the open-source data mining library
SPMF [12]. All characteristics of both real and synthetic datasets are summarised in Table 4:
the number of transaction (#Trans), the number of items (#Items), the average length of
transactions (AvgTransLen), and the density (Density(%) for each dataset (see appendix).

Our experiments were performed on a machine with Intel Xeon quad-core processors with
32GB of RAM running at 2.66 GHz on Linux CentOS. Timeout was set to two hours for each
run of an algorithm on a dataset. All experiments were conducted by varying the minimum
support (δ) and the minimum high utility (θ) thresholds. It should also be mentioned that for
our proposed algorithms, the computation time includes both the time needed for generating
the CNF formulas and that for computing all models (i.e., itemsets of interest) of these
formulas. We also note that the reported runtime in all the experiments is in seconds.

4.2 Results on Mining FHUIs
To evaluate the performance of our approach for mining frequent high utility itemsets,
we consider a representative sample of real-world datasets (Chess, Retail, Kosarak, and
Chainstore). We compared our SATFHUIM algorithm to the existing method named HU-FIMi
[28]5. Our approach is compared to this baseline according to running time and memory
consumption for different minimum support and utility thresholds. Table 2 summarizes
the empirical performance of our method against HU-FIMi on each dataset for each θ and
δ values. Notice that the symbol (–) means that the algorithm is not able to complete the
mining process under the fixed time out (i.e., TO). The size of FHUIM encoding in terms of
the number of variables (#Var) and clauses (#Clauses) is given in Table 2.

According to our experimental results, our method outperforms the baseline across all
datasets. In fact, SATFHUIM achieves interesting results on all databases when δ and θ are
varied. For Retail, Chainstore and Kosarak datasets, SATFHUIM was respectively up to 39, 30
and 70 times faster than HU-FIMi. It can also be observed that on Chess dataset, HU-FIMi
was enable to mine the target itemsets under the timeout except for δ = 50% and θ = 400k
where the baseline took more than 4000 seconds to mine all FHUIs. However, for the same
dataset SATFHUIM is able to scale for all minimum support and utility threshold values with
a maximum running time of 1300 seconds. In terms of memory usage, SATFHUIM performs
very well on both dense and sparse datasets, except for Retail and Kosarak datasets. This
can be explained by the fact that even if the size of the generated sub-bases is small, the
sub-problems could be numerous for these two datasets.

In our experiments, we also investigate the behavior of our SAT-based proposal SATFHUIM
w.r.t. the running time and the number of FHUIs while varying both the values of θ and δ

thresholds. The empirical results are depicted in Figures 4 and 5. The results show that
SATFHUIM is able to solve all datasets even for small support and utility thresholds values
where the number of obtained itemsets is huge. As illustrated in Figure 4, it is clear that the
performance of our algorithm depends on the overall dataset characteristics. In addition, the
minimum support δ as well as the minimum utility θ thresholds have a strong impact on the
performance of the mining process. Specifically, for low values of θ and δ, SATFHUIM needs
more time to discover all itemsets. The density value also has an impact on the execution

4 We have used the C++ implementation for HU-FIMi, and the Python implementation for FUFM.
5 We did not provide a comparison with FCHUIM because the source code is not public.

CP 2022

27:12 SAT-Based Frequent HUIM

Table 2 Experimental results using different values of θ and δ.

SATFHUIM HU-FIMi

Dataset δ(%) θ Time(s) Memory
(MB) #conf #Var #Clauses Time(s) Memory

(MB) #cand

Chess

30
200k 1341.21 118 5417007

75
4003366 – – –

300k 380.89 117 3722143 4003184 – – –
400k 250.98 118 539285 4002718 – – –

40
200k 363.171 117 673551

75
3240897 – – –

300k 192.04 117 1071967 3240897 – – –
400k 47.32 117 426604 3240870 4022.47 149.16 1064837

50
200k 102.33 87 103010

75
2930270 – – –

300k 70.14 87 212158 2930270 3650.06 169.83 2485694
400k 28.15 87 170565 2930243 1786.03 96.87 634997

Retail

0.2
1k 1.83 290 3167

16470
5835070 195.87 145.44 95912

8k 1.6 207 1529 5500626 100.68 146.92 5877
30k 3.7 156 1049 5084829 46.52 131.91 958

0.4
1k 0.96 125 163

16470
2696209 61.48 123.78 30167

8k 0.92 125 325 2650864 36.74 123.22 2652
30k 0.81 124 402 2520038 18.95 122.71 482

0.6
1k 1.99 125 163

16470
1785564 30.02 118.44 14591

8k 0.71 105 121 1764079 20.64 117.87 1624
30k 0.64 105 217 1710400 12.99 118.4 318

Kosarak

0.2
200k 38.91 3011 21977

41270
117031877 – – –

400k 32.20 3004 4887 115627789 5348.66 876.24 191819
600k 28.71 2986 1425 111434918 4002.07 870.56 75344

0.4
200k 18.23 1514 1174

41270
49791548 1231.01 860.74 56174

400k 17.10 1516 1306 49636024 849.15 858.98 18521
600k 16.03 1509 816 49166188 652.24 856.3 7198

0.6
200k 12.79 1154 446

41270
31646467 540.8 839.82 16552

400k 12.37 1153 594 31594030 385.69 826.5 5531
600k 11.78 1156 514 31498639 294.35 826.89 2358

Chainstore

0.2
1M 7.8 754 234

46086
15404456 245.79 939.4 1095

1.4M 7.5 752 288 15184184 208.97 933.56 670
1.8M 7.19 747 313 14899579 462.76 932.04 500

0.4
1M 5.44 523 42

46086
7915721 123.13 896.05 503

1.4M 5.34 523 69 7915721 117.42 877.91 346
1.8M 5.17 523 89 7915721 269.54 887.14 240

0.6
1M 4.24 465 10

46086
4481837 81.33 841.47 292

1.4M 4.16 465 15 4481837 77.11 839.75 181
1.8M 4.08 465 22 4481837 77.15 838.29 141

time. To be precise, SATFHUIM becomes slow on dense datasets, for instance it takes more
than 1000 seconds to find all FHUIs for Chess dataset. In contrast, on sparse datasets, it
is become easier to compute all FHUIs even for low thresholds values. This is the case for
Chainstore dataset where the time needed to enumerate all patterns is only 80 seconds for
low threshold values.

Figure 4 Running time of SATFHUIM w.r.t. minimum support threshold on real-world datasets.

A. Hidouri, S. Jabbour, and B. Raddaoui 27:13

Figure 5 Number of FHUIs w.r.t. minimum support threshold on real datasets.

According to Figure 5, it is clear that the number of FHUIs always depends on the chosen
values of θ and δ. In fact, for lowest threshold values this number becomes huge even for
small datasets. For instance, on Chess and Retail the number can be more than 107 and
104, respectively, but still clearly small compared with the number of itemsets generated
by HUIM algorithms6 as the support constraint allows to discard an important number of
patterns. Overall, we note that the number of FHUIs is always less to the number of HUIs.

4.3 Results on Mining FLHUIs
The second experiment was conducted to evaluate the performance of our SATFLHUIM al-
gorithm and compare it with the state-of-the-art method FUFM [27]. This experiment was
carried on the real datasets (i.e., Chess, Retail, Mushroom, Accidents, and Chainstore) and
also on a synthetic one called T60D10kI1k. Note that T60D10kI1k was constructed using
the transaction database generator in SPMF [12] (see Table 4 for the characteristics of this
dataset). For this dataset, the internal (resp. external) utility values was generated using
a uniform distribution in range [1,10] (resp. [1,6]). The parameters θ′ and δ values were
varied for the different datasets. Similarly to the previous experiment, we compare our
approach against the baseline FUFM on both running time and memory usage for mining
FLHUIs, followed by the number of generated FLHUIs. As our SATFLHUIM algorithm allows
us also to mine closed FLHUIs, we add in the last column of Table 3 the number of closed
FLHUIs (#CFLHUIs). Table 3 shows in addition the encoding size in terms of the number
of variables (#var) and clauses (#Clauses). All experimental results are shown in Table
3. According to this latter, both algorithms produced the same output. On running time,
SATFLHUIM performs well on all of datasets. Interestingly enough, our method outperforms
the baseline FUFM for low values of δ and θ′ where the number of generated FLHUIs is large.
For instance, on Chess dataset and θ′ = 100 and δ = 70%, FUFM takes more than 1 hour to

6 If the minimum support threshold δ = 1, the set of FHUIs correspond exactly to the set of HUIs.

CP 2022

27:14 SAT-Based Frequent HUIM

find all FLHUIs whereas SATFLHUIM does not exceed 2 seconds for the same task. This is
primarily due to the fact that FUFM is a candidate generation-based method with a large
number of candidates. Furthermore, as the support and minimum utility thresholds decrease,
FUFM’s runtime increases dramatically. From a memory usage point of view, there is a gap in
terms of memory between SATFLHUIM and FUFM. For instance, FUFM consumes up to 18 times
more memory than SATFLHUIM for Chess dataset. Roughly speaking, when the parameters δ

and θ′ decrease, the overall performance of the two algorithms begin to decrease, and vice
versa. When compared to the number of FLHUIs, it can be seen that the number of closed
FLHUIs does not decrease significantly for almost datasets, except for Mushroom and Chess
where the number of closed FLHUIs decreases to half w.r.t. the number of FLHUIs.

Table 3 Experimental results using different values of θ′ and δ.

SATFLHUIM FUFM

Dataset δ(%) θ′ Time(s) Memory
(MB) #Var #Clauses Time(s) Memory

(MB) #FLHUIs #CFLHUIs

Chess

70
100 2.51 68

75
1594175 3784.971 1469 17201 9167

130 1.36 68 1590608 3741.68 1214 6004 3469
150 0.83 68 1587442 3752.159 1071 2197 1378

75
100 1.04 68

75
1476874 1434.251 577 5347 3343

130 0.57 68 1472986 1420.615 530 1366 959
150 0.37 68 1469384 1431.31 420 350 277

80
100 0.42 54

75
1165792 541.532 259 1176 880

130 0.25 54 1161235 540.855 271 147 129
150 0.19 54 1157227 539.979 279 9 9

Retail

2
10 0.4 104

16470
814001 3108.718 186 39 39

15 0.39 104 785221 3139.677 186 31 31
20 0.38 104 763051 3106.071 186 28 28

4
10 0.32 96

16470
554031 372.061 155 16 16

15 0.3 96 531227 375.671 155 14 14
20 0.3 96 514102 376.369 155 13 13

6
10 0.29 96

16470
494337 256.184 148 14 14

15 0.29 95 473078 254.18 148 12 12
20 0.27 95 456605 255.564 148 7 7

8
10 0.3 96

16470
494337 232.043 145 12 12

15 0.28 95 473078 230.931 145 8 8
20 0.28 95 456605 230.95 145 1 1

Mushroom

30
30 0.67 91

119
2205546 88.592 59 2286 383

40 0.64 91 2200604 88.75 65 1869 343
50 0.61 91 2193490 88.957 65 1390 282

40
30 0.32 72

119
1554782 46.279 55 268 84

40 0.31 72 1548637 45.725 55 146 53
50 0.28 72 1539823 46.191 59 59 30

50
30 0.15 58

119
806424 17.389 49 45 19

40 0.15 58 799408 17.575 46 18 11
50 0.16 58 790047 17.316 47 2 2

Accidents

70
40 21.46 2544

468
69675386 6798.121 3178 133 133

45 19.92 2555 69542270 6950.867 3177 86 86
48 19.23 2553 69466628 6841.843 3176 67 67

75
40 14.97 1977

468
55728869 4190 3893 42 42

45 14.44 1977 55599338 4216.008 3892 24 24
48 14.16 1976 55523819 4259.47 2335 17 17

80
40 10.15 1851

468
36447084 2238.2 1051 13 18

45 9.96 1844 36271268 2170.082 1488 4 4
48 9.96 1843 36177935 2133.187 1488 2 2

Chainstore

0.2
100 10.49 929

46086
18210234 777.52 1257 407 407

500 9.84 909 16437597 775.13 1257 51 51
800 9.61 903 16199306 768.64 1259 10 10

0.4
100 6.22 769

46086
9475966 530.86 1263 142 142

500 5.94 672 8255824 531.46 1265 18 18
800 5.91 668 8101301 515.35 1266 3 3

0.6
100 4.26 676

46086
5617273 206.81 1256 79 79

500 4.08 611 4711977 212.15 1256 9 9
800 4.02 608 4596272 198.97 1256 1 1

Figure 6 provides the execution times on the different datasets in the first line followed by
the variation of the number of patterns in the second line. Due to space limitation, we did
not provide the results for all θ′ and δ values. Instead, each bar corresponds to the average
number of FLHUIs for each δ threshold in terms of the average of all fixed θ′ values.

According to these experimental results, the performance of our proposal is highly
dependent on the dataset characteristics, and also on the thresholds values chosen. In fact,
when θ′ and δ are set to large values the runtime is quite similar for almost all datasets. This
is understandable as the number of discovered patterns is small. However, for small threshold
values there is a gap between the runtimes. It is also worth noting that the output size (i.e.,
the set of FLHUIs) is significantly decreased when compared to our SATFHUIM algorithm
w.r.t. θ′ threshold values. For instance, on Chess, the average number of FLHUIs is about
21744362 for all fixed θ′ values and δ = 30%, whereas the number of FHUIs is 24081372 for
the same δ value and θ′ = 200k.

A. Hidouri, S. Jabbour, and B. Raddaoui 27:15

Figure 6 Experimental results of SATFLHUIM on several datasets.

5 Conclusion

In this paper we investigated how to solve the problem of mining (closed) FHUIs and FLHUIs
from transaction databases using propositional logic. For the FHUIM task, we extended the
existing approach of [15] with the frequency constraint, while for the FLHUIM problem we
provided a new encoding using the well-known Pseudo-Boolean constraints. We extended
the DPLL procedure to deal with both clauses and Pseudo-Boolean constraints in order to
compute all models of CNF formulas. To scale up, a decomposition approach was presented,
which allows the problem to be divided into several sub-problems of reasonable size. Empirical
evaluation have shown how our approaches are very promising w.r.t. state-of-the-art.

In the future, we plan to investigate how to use propositional satisfiability to implement
a limited but efficient clause learning in the context of patterns mining. In addition, by
extending our approach for multi-objective optimization, we plan to investigate the problem
of computing skyline HUIs from transaction databases using the two measures of interest
(i.e., utility and frequency).

CP 2022

27:16 SAT-Based Frequent HUIM

References
1 Fadi A Aloul, Arathi Ramani, Igor Markov, and Karem Sakallah. Pbs: a backtrack-search

pseudo-boolean solver and optimizer. In International Symposium on Theory and Applications
of Satisfiability, pages 346–353, 2002.

2 Mohamed-Bachir Belaid, Christian Bessiere, and Nadjib Lazaar. Constraint programming for
mining borders of frequent itemsets. In IJCAI, pages 1064–1070, 2019.

3 Abdelhamid Boudane, Saïd Jabbour, Badran Raddaoui, and Lakhdar Sais. Efficient sat-based
encodings of conditional cardinality constraints. In LPAR, pages 181–195, 2018.

4 Abdelhamid Boudane, Saïd Jabbour, Lakhdar Sais, and Yakoub Salhi. SAT-based data mining.
Int. J. Artif. Intell. Tools, pages 1840002:1–1840002:24, 2018.

5 D. Chai and A. Kuehlmann. A fast pseudo-boolean constraint solver. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, pages 305–317, 2005.

6 W. Cook, C.R. Coullard, and Gy. Turán. On the complexity of cutting-plane proofs. Discrete
Applied Mathematics, pages 25–38, 1987.

7 Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem-
proving. Commun. ACM, pages 394–397, 1962.

8 Heidi E. Dixon and Matthew L. Ginsberg. Inference methods for a pseudo-boolean satisfiability
solver. In AAAI, pages 635–640, 2002.

9 Imen Ouled Dlala, Saïd Jabbour, Badran Raddaoui, and Lakhdar Sais. A parallel SAT-based
framework for closed frequent itemsets mining. In CP, pages 570–587, 2018.

10 Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In SAT, pages 502–518, 2004.
11 Niklas Eén and Niklas Sörensson. Translating pseudo-boolean constraints into sat. J. Satisf.

Boolean Model. Comput., pages 1–26, 2006.
12 Philippe Fournier-Viger, Jerry Chun-Wei Lin, Antonio Gomariz, Ted Gueniche, Azadeh Soltani,

Zhihong Deng, and Hoang Thanh Lam. The spmf open-source data mining library version
2. In Joint European conference on machine learning and knowledge discovery in databases,
pages 36–40, 2016.

13 Wensheng Gan, Jerry Chun-Wei Lin, Philippe Fournier-Viger, Han-Chieh Chao, Vincent S.
Tseng, and Philip S. Yu. A survey of utility-oriented pattern mining. IEEE Transactions on
Knowledge and Data Engineering, pages 1306–1327, 2021.

14 Tias Guns, Anton Dries, Siegfried Nijssen, Guido Tack, and Luc De Raedt. Miningzinc: A
declarative framework for constraint-based mining. Artif. Intell., pages 6–29, 2017.

15 Amel Hidouri, Said Jabbour, Badran Raddaoui, and Boutheina Ben Yaghlane. Mining closed
high utility itemsets based on propositional satisfiability. DKE, page 101927, 2021.

16 Saïd Jabbour, Fatima Ezzahra Mana, Imen Ouled Dlala, Badran Raddaoui, and Lakhdar Sais.
On maximal frequent itemsets mining with constraints. In CP, pages 554–569, 2018.

17 Saïd Jabbour, Nizar Mhadhbi, Badran Raddaoui, and Lakhdar Sais. Triangle-driven community
detection in large graphs using propositional satisfiability. In AINA, pages 437–444, 2018.

18 Saïd Jabbour, Nizar Mhadhbi, Badran Raddaoui, and Lakhdar Sais. Sat-based models for
overlapping community detection in networks. Computing, 102(5):1275–1299, 2020.

19 Saïd Jabbour, Nizar Mhadhbi, Badran Raddaoui, and Lakhdar Sais. A declarative framework
for maximal k-plex enumeration problems. In AAMAS, pages 660–668, 2022.

20 Saïd Jabbour, Lakhdar Sais, and Yakoub Salhi. Mining Top-k motifs with a SAT-based
framework. Artif. Intell., pages 30–47, 2017.

21 Daniel Le Berre and Anne Parrain. The SAT4J library, Release 2.2, System Description.
Journal on Satisfiability, Boolean Modeling and Computation, pages 59–64, 2010.

22 Ying Liu, Wei-keng Liao, and Alok Choudhary. A two-phase algorithm for fast discovery of
high utility itemsets. In Pacific-Asia Conference on Knowledge Discovery and Data Mining,
pages 689–695, 2005.

23 Vasco Manquinho and J. Marques-Silva. On using cutting planes in pseudo-boolean optimiza-
tion. Journal on Satisfiability, Boolean Modeling and Computation, 2006.

A. Hidouri, S. Jabbour, and B. Raddaoui 27:17

24 João P. Marques-Silva and Karem A. Sakallah. Grasp: A search algorithm for propositional
satisfiability. IEEE Trans. Comput., pages 506–521, 1999.

25 A Morgado and J Marques-Silva. Algorithms for propositional model enumeration and counting.
Technical report, Citeseer, 2005.

26 A Sakthi Nathiarasan and M Manikandan. Performance oriented mining of utility frequent
itemsets. In International Conference on Circuits, Communication, Control and Computing,
pages 317–321, 2014.

27 Vid Podpecan, Nada Lavrac, and Igor Kononenko. A fast algorithm for mining utility-frequent
itemsets. Constraint-Based Mining and Learning, page 9, 2007.

28 R Uday Kiran, T Yashwanth Reddy, Philippe Fournier-Viger, Masashi Toyoda,
P Krishna Reddy, and Masaru Kitsuregawa. Efficiently finding high utility-frequent itemsets
using cutoff and suffix utility. In Pacific-Asia Conference on Knowledge Discovery and Data
Mining, pages 191–203. Springer, 2019.

29 Jilles Vreeken and Nikolaj Tatti. Interesting patterns. In Frequent Pattern Mining, pages
105–134. Springer, 2014.

30 Tianyou Wei, Bin Wang, Yuntian Zhang, Keyong Hu, Yinfeng Yao, and Hao Liu. FCHUIM:
Efficient frequent and closed high-utility itemsets mining. IEEE Access, pages 109928–109939,
2020.

31 Ryan Williams, Carla Gomes, and Bart Selman. On the connections between backdoors,
restarts, and heavy-tailedness in combinatorial search. structure, 23(4), 2003.

32 Jieh-Shan Yeh, Yu-Chiang Li, and Chin-Chen Chang. Two-phase algorithms for a novel
utility-frequent mining model. In Emerging Technologies in Knowledge Discovery and Data
Mining, pages 433–444, 2007.

A Appendix

Algorithm 2 DPLL_Enum: A DPLL backtrack search for Model Enumeration.
Input: Φ: a CNF formula
Output: S: the set of all models of Φ

1 ∆ = ∅; S = ∅;
2 if (Φ |=UP p) then
3 return DPLL_Enum(Φ ∧ p) ; /* unit clause */
4 end
5 if (Φ |=UP ⊥) then
6 return ∅ ; /* conflict */
7 end
8 if check_Pseudo_Boolean_constraint() == F alse then
9 return ∅;

10 end
11 if (∆ |= Φ) then
12 S ← S ∪ {∆} ; /* new found model */
13 return ∅
14 end
15 p = select_variable(V ar(Φ));
16 ∆← ∆ ∪ {p}; S ← S ∪ DPLL_Enum(Φ ∧∆);
17 ∆← ∆ ∪ {¬p}; S ← S ∪ DPLL_Enum(Φ ∧∆);
18 return S;

Table 4 Datasets Characteristics.

Instance #Trans #Items AvgTransLen Density(%)
Chess 3196 75 37 49.33

Mushroom 8124 119 23 19.33
Retail 88162 16470 10.3 0.06

Accidents 340183 468 33.8 7.22
Kosarak 990002 41270 8.1 0.02

Chainstore 1112949 46086 7.23 0.02
T60D10kI1k 10000 1000 30.4 3.04

CP 2022

	1 Introduction
	2 Formal Preliminaries
	2.1 High Utility Itemset Mining
	2.2 Propositional logic

	3 Computing High Utility Itemsets with Propositional Satisfiability
	3.1 A SAT Approach to Frequent High Utility Itemset Mining
	3.2 A SAT Approach to Frequent Local High Utility Itemset Mining
	3.3 SAT-based Enumeration for High Utility Mining
	3.4 A Decomposition-based Approach for FHUIM & FLHUIM

	4 Empirical Investigation
	4.1 Experimental setup
	4.2 Results on Mining FHUIs
	4.3 Results on Mining FLHUIs

	5 Conclusion
	A Appendix

