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Abstract
While Machine Learning (ML) techniques are good at generating data similar to a dataset, they lack
the capacity to enforce constraints. On the other hand, any solution to a Constraint Programming
(CP) model satisfies its constraints but has no obligation to imitate a dataset. Yet, we sometimes
need both. In this paper we borrow RL-Tuner, a Reinforcement Learning (RL) algorithm introduced
to tune neural networks, as our enabling architecture to exploit the respective strengths of ML and
CP. RL-Tuner maximizes the sum of a pretrained network’s learned probabilities and of manually-
tuned penalties for each violated constraint. We replace the latter with outputs of a CP model
representing the marginal probabilities of each value and the number of constraint violations. As
was the case for the original RL-Tuner, we apply our algorithm to music generation since it is a
highly-constrained domain for which CP is especially suited. We show that combining ML and
CP, as opposed to using them individually, allows the agent to reflect the pretrained network while
taking into account constraints, leading to melodic lines that respect both the corpus’ style and the
music theory constraints.
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1 Introduction

Recurrent Neural Networks (RNNs) [14] are a class of Machine Learning (ML) algorithms
renowned for their ability to extract structural information from a corpus in order to generate
sequences that mimic said corpus’ style. However, some sequence-generation tasks require
the final output to respect a set of rules. Music generation, especially applied to Renaissance
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music, is a perfect example of these kinds of tasks. Given a series of melodic lines, RNNs are
able to produce sequences that resemble the style of a given composer. Nonetheless, RNNs
are not easy to control and it is hard to make them enforce music rules without injecting
domain knowledge. It is akin to asking someone with no musical training to extract rules
just from analyzing a pile of scores.

RL-Tuner [7] is an algorithm that uses Reinforcement Learning (RL) to bridge the gap
between RNNs and hard constraints, resulting in samples that both better respect the
constraints and are representative of the data the algorithm was trained on. However, the
constraints are enforced by manually tuning a reward for each rule. In this work we use
Constraint Programming (CP) with Belief Propagation (BP) to learn better how to satisfy
constraints. By using CP instead of checking each rule individually, we benefit from the
interactions between all the constraints and may anticipate violations. Furthermore, the
addition of BP is a recent advance in CP that provides marginal probabilities for every
selected value [12]. These marginals take into account the entirety of the sequence and act as
a metric to determine if choosing an action could potentially lead to a complete sequence with
no added constraint violations. This information is crucial in increasing what we introduce
as the constraint satisfaction of the generated sequences.

We illustrate our framework by applying it to contrapuntal music writing in the style of
the Renaissance period. We design two closely-related CP models implementing the rules of
counterpoint for melody writing according to a standard textbook [15]. We train our RNN
model using a Bach chorale corpus, a widely available source that is compatible to some degree
with the constraints we enforce.1 We combine our CP and RNN models within RL-Tuner
and analyze the evolution of the reward to show that our algorithm retains its acquired
knowledge from the Bach corpus while more-closely following the rules of counterpoint we
added. We also discuss why some constraints may be harder to learn than others.

Our main contribution with this paper is to show that RL can be used to combine RNNs
and CP in order to fine-tune training so that it generates sequences that reflect the corpus
while enforcing constraints. Even though we applied it here to music generation, such a
combination can be useful for other sequence-generation tasks with hard constraints.

In the rest of the paper, Section 2 provides some necessary background on RNNs, RL,
CP/BP, and music theory. Section 3 surveys related work. Section 4 describes the core of our
contribution: each component, how they interact, their specialization for melody generation.
Section 5 presents an empirical evaluation of our contribution. Section 6 discusses our present
and future work. Finally we conclude with Section 7.

2 Background

2.1 Recurrent Neural Network

Recurrent Neural Networks (RNN) [5] are a family of ML algorithms able to generate
sequences. At every iteration, a token is passed through the network and used to predict the
next token. After each prediction, the history is updated to make sure that the next token
takes into account the whole sequence.

ht = f(Whxt + Uhht−1 + bh) ŷt+1 = g(Wyht + by)

1 Even though Bach belongs to the Baroque period, he would have been (heavily) influenced by Renaissance
music.
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In the first equation, we obtain the current history ht by updating the old history ht−1
with the current token xt. Weights Wh and Uh and a bias bh are applied to control the
importance of xt and ht−1 in the update. The activation function f makes the update process
non-linear. In the second equation, we compute ŷt+1, a vector indicating the probability
distribution of each possible value for the next token using the current history ht. Once
again, weights, a bias and a non-linear activation function are used for the prediction. With
this distribution, we can select the value with the highest probability as x̂t+1. All the weights
and biases are adjusted and learned during the training of the RNN (see below) to produce
the best tokens. To measure how good an RNN is, we use the cross-entropy loss function

L = −
∑

t ytlog(ŷt).

For each token xt in the dataset, we feed the previous tokens to the RNN and obtain the
predicted distribution ŷt. yt represents the target distribution. It is a one-hot vector where
all the components are 0, except for the component representing xt, which is equal to 1.

Training is done with gradient descent by modifying the weights and the biases to decrease
the loss. Once training is over, we use the final weights and biases to predict new sequences.

2.2 Reinforcement Learning and DDQNs
The basic idea of Reinforcement Learning [8] is to learn through interaction with an environ-
ment, in order to maximize the sum of the rewards. The agent will sample from the policy
(state-dependent probability distribution) to pick an action. Once an action has been picked,
the environment will update its state based on said action and return a reward, indicating
how good the action is. This reward will then be used to update the estimated value of that
state-action pair. Once the value has been updated, the policy will be adjusted to encourage
actions that have a higher value.

Different families of RL algorithms define ways to compute state-action values. For
example, in Q-Learning, the following equation is used:

Q(s, a) = [1 − α]Q(s, a) + α[r + γ max
a′

Q(s′, a′)]

In this equation, state-action value Q(s, a) is updated by summing the reward r and the
maximum value of the next state s′. Two hyper-parameters α and γ control the magnitude
of the update.

In Deep Q-Networks (DQN) [9], a neural network is used to compute the state-action
value from the current state. To update the state-action values, we can compute the loss of
the network by using the difference between the current value Q(s, a) and the update part of
the Q-learning equation (see above):

δ = r + γ max
a′

Q(s′, a′) − Q(s, a)

We can then adjust the parameters by applying one iteration of gradient descent per
update to decrease this loss. However, since Q-Learning uses the maximum value of the next
state (maxa′ Q(s′, a′)), overestimated values will be encouraged. Double Deep Q-Networks
(DDQN) [17] reduce this effect by adding a second network to compute the state-action
values:

δA = r + γQB(s′, argmaxa′QA(s′, a′)) − QA(s, a)

Here we use network A to pick the best next action with argmaxa′QA(s′, a′). However,
instead of using A to compute its value, we will use network B, mitigating A’s possible
overestimation. Once δA has been computed, only the parameters of network A will be
updated. Note that these two roles (A and B) are assigned randomly every time.

CP 2022



30:4 Combining RL and CP for Sequence-Generation Tasks with Hard Constraints

2.3 CP-Based Belief Propagation
CP-based Belief Propagation, introduced in [12], offers a new way to propagate constraints.
Instead of simply removing unsupported values from domains, the solver computes the
probability that each value will respect a given constraint. These partial probabilities
are then sent as messages to the other constraints through their shared variables, which
makes them update and refine their own probabilities. Out of these interactions, marginal
probabilities are derived for each variable-value pair. These marginals approximate the
probability that, if a variable is assigned a given value, all the constraints will be satisfied.
They also provide information as to how many possible values respect the constraints.

2.4 Music Basics
We provide a brief introduction to music concepts essential to the understanding of this
paper. Generally, music is built from musical notes each having a pitch and a duration.
Pitches an octave apart are grouped in a pitch class. A scale is an organized subset of pitch
classes. There are many kinds of scales – we will consider diatonic scales and in particular
the major scale featuring the seven natural pitch classes (c, d, e, f, g, a, b). We loosely use
the term melody for a sequence of notes (pitch, duration) sounded consecutively. An outline
in a melody is a maximal subsequence of notes between a temporary high point and the next
temporary low point (in terms of pitch) or vice-versa. The distance between two pitches
is called an interval, identified by the integral number of pitch steps from one to the other
(e.g. a third between c and e) and by the quality of the interval based on the number of
semitones between them (e.g. a major third between c and e; a minor third between d and
f). The melodic motion between two consecutive notes can either be by step, if the notes are
adjacent in the scale, or by skip.

3 Related Work

The abundance of previous work on music generation, both in ML and in CP, shows that the
task we are tackling is especially well suited for both these approaches. Surveys from Briot et
al. [1], Fernandez Rodriguez and Vico [13], and the book edited by Truchet and Assayag [16]
provide an extensive view on ML and CP being applied to music. In this literature review,
we focus on the most relevant ones to us.

RL-Tuner [7] has been the greatest source of inspiration for our work. In the paper,
the authors present a Reinforcement Learning algorithm that combines probabilities from
an RNN with a reward function measuring how much the generated sequence respects a
set of rules. They apply it to music generation. The RL agent used is a Double Deep
Q-Network (DDQN). The authors show that RL-Tuner enforces both the music theory laws
and the similarity to the RNN. The main difference from our work is that they compute the
music theory reward by checking each rule individually in an ad hoc fashion based only on
the previous notes. We argue that we can improve this algorithm by using CP with belief
propagation to compute marginals that take into account the whole sequence and not just
the previous notes.

On the ML side, C-RNN-GAN [10] is a classical music generation system that uses a
generative adversarial network (GAN). GANs work by having two networks: the generator
that creates the piece and the discriminator that tries to distinguish between fake and real
music. The goal of the generator is to fool the discriminator, so it learns to create music
that is as similar as possible to the dataset.
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DeepBach [4] combines two LSTMs (a type of RNN) and one neural network. The first
LSTM picks a note based on the previous notes. The second one picks a note based on the
future notes. The neural network picks a note based on the notes that will be played at the
same time on other voices. Finally, these three note candidates are sent to another neural
network, which will choose the note to be added to the piece.

Coconet [6] uses a Convolutional Neural Network (CNN) to generate Bach chorales. CNNs
are usually used for image classification tasks because they are able to handle 2D patterns
(whereas RNNs are limited to linear sequences). Combining all four voices of a chorale creates
a 2D structure that is well suited for CNNs. Coconet’s CNN is used to compute probabilities
of a note with respect to its context. Once the probabilities have been computed, Gibb’s
sampling is applied to populate the music piece. To remove bad choices due to less context
information, a window of notes is resampled, with the window’s size decreasing over time.

Anticipation-RNN [3] combines two RNNs to enforce unary constraints. In this algorithm,
the first RNN is used to predict a unary constraint based on the future notes. This constraint
is then used to condition the output of the second RNN, which will pick the note based on
the partial sequence and the future constraints.

Young et al. [19] introduce a generative model able to generate music with relational
constraints. What is really interesting about this work is that the constraints are synthesized
from the dataset instead of being hard-coded. These constraints include equality of different
notes and transposition of a sequence of notes (repeating the same pattern with each note
transposed by the same amount). They try three different techniques to incorporate the
constraints: sampling from the model and rejecting if the token doesn’t respect the constraints,
representing the constraints in a graph convolutional network, and using MIP to maximize
an objective function.

4 Sequence Generation with Hard Constraints

Figure 1 gives an overview of our architecture. We describe the training process:
(i) The partial sequence is sent to the DDQN.
(ii) The DDQN produces the next note.
(iii) The RNN computes p(a|s) from both the partial sequence s and the next note a. The

CP models do the same to obtain the marginals and the violations.
(iv) The output of the RNN and of the CP models are used to compute the reward.
(v) The DDQN’s weights are updated based on that reward and the next note is added to

the sequence.
The different components are detailed below. Our code is publicly available2.

4.1 CP models
Among several textbooks that teach counterpoint, the relatively recent “Modal Counterpoint,
Renaissance Style” by P. Schubert [15] is of particular interest to create our CP models. It
gathers rules from several treatises, including the seminal Fux, draws from the works of many
period composers, and pays much attention to the quality of melodic lines. But foremost
it strongly appeals to the constraint programmer: rules are declarative and classified as

2 https://github.com/chandar-lab/RL-Tuner-CP

CP 2022
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Figure 1 An overview of our training architecture.

hard and soft. The constraint models we built are based on the rules in this book. We
implemented our models using the MiniCPBP solver3 in order to have access to marginal
probabilities.

4.1.1 Variables and domains
Even though rhythm is an important part of a melody, these rules (and those typical of the
period, aside from the general recommendation that there should be rhythmic variety) do
not take it into consideration. Accordingly, we represent a melody as a sequence of n pitches
(notes). As is standard practice, we transpose the melodic lines from the corpus so that they
are all in the same key (c major) and generate sequences in that same key.

Pitches should belong to the key, though we allow an accidental b♭ to avoid tritone
intervals (i.e., augmented fourth or diminished fifth) from f. We also want a melody to stay
within the octave range of its key, possibly extending it by one note below and above that
range (resp. b♭ and d). The pitch values represent the number of semi-tones above the
lowest pitch in the dataset (value 0 is g). Because of the range restriction explained above,
the lowest value allowed in the CP domain is 3 (or b♭). We define our variables as:

pitch[i] ∈ {3, 4, 5, 7, 9, 10, 12, 14, 15, 16, 17, 19} 1 ≤ i ≤ n

Schubert’s book adds restrictions about the permitted values of the intervals. An interval
can span no more than a sixth (9 semi-tones), except that an octave is also allowed and that
a tritone is not. That interval can be sung up or down. We also want to avoid intervals of a
sixth, except for an ascending minor sixth. Finally, two consecutive notes should not have
the same pitch:

interval[i] ∈ {±1, ±2, ±3, ±4, ±5, ±7, +8, ±12} 1 ≤ i ≤ n − 1

An interval is computed as the number of semi-tones between two consecutive notes. In
other words:

interval[i] = pitch[i + 1] − pitch[i] 1 ≤ i ≤ n − 1

3 https://github.com/PesantGilles/MiniCPBP

https://github.com/PesantGilles/MiniCPBP
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Figure 2 A legal augmented fifth outline (left) and two forbidden ones (right).

4.1.2 Constraints
Now that the main variables have been defined, we describe the melodic constraints we
consider. Though some of them are considered soft by Schubert, here all are expressed as
hard constraints for our system to learn.

(i) End on the tonic.

pitch[n] = c

(ii) End by stepwise descent.

−2 ≤ interval[n − 1] < 0

(iii) Use more steps than skips.∑n−1
i=1 (interval[i] < −2 ∨ interval[i] > 2) < n−1

2

(iv) An accidental b♭ should be followed by a descending interval.

pitch[i] ̸= b♭ ∨ interval[i] < 0 1 ≤ i ≤ n − 1

(v) Tritone outlines. An outline of an augmented fourth is prohibited. An outline of
a diminished fifth is allowed only if it is completely filled in by step (interval smaller
than 2) and then followed by a step in the opposite direction. Fig. 2 gives examples
of one legal and two forbidden tritone outlines. This rule is not as straightforward to
express and requires that we consider several consecutive notes.
A useful observation is that the only allowed tritone outline spans four steps (which
could correspond to more than five notes if we have repeated notes). We express this
using a regular [11] constraint on interval variables with an automaton recording in
its states the number of steps and semi-tones in a potential outline. Fig. 3 gives the
automaton for ascending outlines – the case of a descending outline is similar. Though
admittedly a little hard to decipher, it shows our ability to model complex rules.

(vi) A skip should be preceded or followed by a step in the opposite direction.
(vii) Avoid more than two successive skips.
(viii) Avoid skipping on both sides of a temporary high or low point.
(ix) Two successive skips in the same direction should be small. We consider a

skip of a third or fourth to be small.
(x) “Pyramid” rule. An ascending outline should not have large skips following smaller

skips or steps; a descending outline should not have large skips preceding smaller skips
or steps. As when building a pyramid, larger blocks should be used at the bottom and
smaller ones at the top. (Keep in mind that such rules are derived from practice at
that time according to aesthetics and “singability”.)
Because they are closely related, the previous five rules ((vi) to (x)) are handled together,
through a single cost-regular [2] constraint on a characterization of individual intervals
as ascending/descending steps, small skips (a third or a fourth), and skips (fifth, sixth,

CP 2022
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Figure 3 Automaton to check for ascending tritone outlines. Negative transitions to descending
tritone states are not shown.

or octave). It is sufficient to create a state for each pair of characterizations of intervals.
All states are accepting but each transition carries a cost corresponding to the sum of the
penalties for every rule broken on that transition. An interval value of 0, corresponding
to a repeated note, loops to the same state. In the interest of clarity, we do not show
this automaton.

(xi) Modal range. A melody must cover (include notes from) the whole octave range.
Longer melodies are encouraged to cover that range every so many notes. Through a
single gcc constraint on pitch variables, we express the requirement that each pitch in
that range should appear at least once (setting their minimum number of occurrences
to 1).

(xii) Minimum number of modal skips. The final of the mode (c) and the pitch class
four steps above it (g) are more important than the other pitch classes. Skips between
these two pitches are characteristic of the mode and help establish it. We can enforce
it by lower bounding to 3 the sum of reified constraints expressing modal skips.∑n−1

i=1 [(pitch[i] = c ∧ pitch[i + 1] = g) ∨ (pitch[i] = g ∧ pitch[i + 1] = c)] ≥ 3

We thus have a total of 12 constraints − 4 (because 5 constraints are handled together)
+ 4 constraints (the ones used to restrict the domains of our variables) = 12.

4.1.3 Marginals model
Our goal is to have a model that, given a sequence of notes, will compute the marginal
probabilities of the next note. Since that sequence is provided by the RL-Tuner, it is possible
that there have already been constraint violations. To clearly measure the impact of the
next note, regardless of previous violations, we apply the constraints and domain restrictions
only on the future notes. However, this requires some adjustments in our constraints. For
instance, since our automata can no longer start at the beginning of our sequence, we need
to modify the starting state according to the previous notes. Furthermore, if we want to
respect a certain lower bound (for example, the minimum number of modal skips in constraint
(xii)), we need to adjust that bound based on the input to the CP model. After the first
propagation of the constraints, we compute the marginals using belief propagation and return
the corresponding value for the chosen next note, provided by the RL agent.
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4.1.4 Violations model
This model is very similar to the one presented above. The main difference is that, instead
of enforcing the constraints, we use reified constraints to count the number of violations
for each constraint. This causes a little bit of a challenge for some constraints. The tritone
outline constraint (v) is limited to 25 different interval values (the domain of the intervals
is from -12 to +12). However, if we allow the possibility of any interval, which we must
since no constraints are enforced, we have a total of 57 different interval values (from -28
to +28). To deal with values not supported by the automaton, we use a soft version of
that constraint [18]. If the interval is illegal, the tritone outline constraint will return one
constraint violation.

Something similar is done for the other automaton (constraints (vi) to (x)). However,
since this is a cost-regular constraint, we cannot assign to it a single violation. To compute
the number of violations for this constraint, in case of an invalid interval, we decompose
the cost in two sections. First, we compute the cost associated to the current transition by
averaging the costs associated to transitions from the current state. Afterwards, we compute
the cost of the future transitions with the same cost-regular constraint, but applying it
only on the future transitions and modifying the current state.

For the rest of the constraints, we use reified constraints. For example, instead of
restricting the domain of the notes, we compute the number of notes that are outside of this
domain. The number of violations for each constraint is then a variable, and we return the
smallest value in its domain.

This model receives as input the note sequence and the value of the chosen note. It will
then only return the minimum number of violations for each of the twelve constraints, for
that chosen note.

4.2 Training the RNN
We extracted melodic lines from the Boulanger-Lewandowski corpus of Bach chorales4. We
used publicly-available code5 to preprocess our midi files. During this preprocessing, we check
every repeated note (midi files having a really small granularity, every repeated note has to
be a note that is held) and replace the subsequent repetitions with a special token, indicating
which notes are held. We then extracted melodic lines using a quarter-note granularity,
where we ignored the hold token since we do not take into account the note duration. We
transposed all sequences in the key of c and kept only the chorales in c major, for a total of
200 sequences. That dataset was split into 150 examples for training and 50 examples for
validation. In order to have notes in similar ranges, we used only the soprano voice which
usually represents the main melody. Since the RNN used in the RL-Tuner was trained with
the Magenta library, we created our own set of inputs and outputs, using one-hot encoding
of length 29 – two and a half octaves, similar to the vocal range – for the input representing
the last note and a single value for the output representing the predicted note. We trained
the RNN on 1000 iterations using the basic-rnn configuration provided by Magenta6 with a
batch size of 64 and two layers of 64. These hyperparameters were tailored to our dataset.
The loss function used is the softmax cross-entropy loss (softmax meaning that the activation
function used to compute the probability distribution is the softmax function).

4 http://www-ens.iro.umontreal.ca/~boulanni/icml2012
5 https://medium.com/analytics-vidhya/convert-midi-file-to-numpy-array-in-python-

7d00531890c
6 https://github.com/magenta/magenta/tree/main/magenta/models/melody_rnn
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Though we were able to reach a training accuracy of 90%, the final validation accuracy
obtained was 50% (compared to 92% in the original paper). This is likely due to the size of
our dataset (200 sequences vs 30 000), which is substantially smaller than the one used in
the RL-Tuner (more on that in Section 7).

4.3 RL-Tuner
We copy the weights of the RNN to initialize the DDQN. Before training, the value of each
action (or note) is equal to the probability returned by the RNN since it is exactly the same
network. During training, the next note, sampled from this distribution by the DDQN, is
used to compute the reward, by using the probability returned by the RNN and evaluating
with respect to each constraint applied. With the final reward, the weights (and the policy)
of the DDQN are updated, without changing the original RNN, thus making the DDQN able
to learn independently from the RNN.

The architecture briefly described above can also be found in the original RL-Tuner
paper [7]. The sections below explain the changes we made to the RL-Tuner in order to
include our CP models.

4.3.1 Restricting sampling to the feasible domain
In the original paper, a note is chosen either randomly or sampled from the DDQN prob-
abilities. This leads to a lot of bad choices with respect to the constraints. That is why
we considered an additional option, where the output of the DDQN is restricted according
to the number of violations, at training time only. In other words, the algorithm can only
sample from notes that have 0 violations. We called this option “restrict domain”.

4.3.2 Reward functions
We implemented seven different reward functions. Here v represents the number of violations
for each constraint, m is the marginal for the chosen note and p(a|s) is the probability of the
chosen note a according to the RNN, based on s, the partial note sequence. We added two
constants, k and c to weigh the different parts of the reward and bring them to a similar
range 7.

violations = −
∑

v

marginals = km

marginals_violations = km −
∑

v

rnn = log(p(a|s))
rnn_violations = log(p(a|s)) − c

∑
v

rnn_marginals = log(p(a|s)) + ckm

rnn_marginals_violations = log(p(a|s)) + c(km −
∑

v)

5 Experiments

We ran experiments to answer the following research questions:
1. Can CP reduce the number of constraint violations?
2. Can this be done without forgetting stylistic knowledge acquired by the RNN?
3. What is the impact of restricting the domain while sampling notes?
4. Are all constraints as easy to learn?

7 Unlike for the RNN probabilities we do not use log-marginals because several marginals are null, which
would generate −∞ rewards.
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Table 1 Hyper-parameters of our RL-Tuner.

Parameter Value Parameter Value
random_action_probability 0.1 one_hot_length 29
store_every_nth 1 algorithm q
train_every_nth 5 reward_scaler (c) 2
minibatch_size 32 cp_reward_scaler (k) 40
discount_rate 0.5 output_every_nth 5000
max_experience 100000 num_notes_in_melody 32
target_network_update_rate 0.01 num_steps 50000
rnn_layer_sizes [64, 64] exploration_period 25000

5.1 Experimental Setup
We performed experiments for each reward function twice, one where we restricted the
domain and one where we did not. We chose the same constant c as in the original paper [7],
since it allegedly produced better samples. The value for k was set to 40, converting our
marginals to values between 0 and 40. Table 1 presents the hyper-parameters chosen to train
our model as named in the RL-Tuner configuration.

Each experiment was averaged across 10 different seeds for a total of 50 000 iterations.
Every 5000 iterations, we generated 10 sequences of 32 notes to evaluate our model and
measure the evolution of our metrics. We focused mainly on two performance metrics. To
answer Question 1, we measure the constraint satisfaction, a value between 0 and 1
indicating how good the algorithm is at following constraints (1 being perfection):

constraint_satisfaction =

∑n
i=1(1 − vi

vmax
i

)
n

where n is the number of constraints, vi is the number of violations for constraint i,
summed over all 10 sequences, and vmax

i is the maximum number of potential violations for
that constraint during all the 10 sequences.

The second metric used to answer Question 2 is log(p(a|s)), the rnn reward. For each
chosen note, we check the RNN probability and compute an average reward over every note
and every sequence. The higher it is, the closer the generated sequence is to the trained
model. This metric was also used in the RL-Tuner paper to show that the model does not
“forget” the stylistic knowledge learnt from the corpus while enforcing the constraints.

Question 3 can be answered by comparing our two metrics, while restricting the domain
or not. To answer Question 4, we analyze the number of violations for each constraint
separately by plotting the values returned by the violations model.

Table 2 presents the final constraint satisfaction and average rnn reward for each of our
reward functions.

5.2 Comparing metrics to the RL-Tuner
Since we have a different corpus (Bach instead of pop music) and different constraints, we
cannot compare our results directly with those in the RL-Tuner paper. However, line 4
without domain restriction allows us to compare to the RL-Tuner approach because we only
count the number of violations. We can see here that line 4 is better than line 7. This is
similar as what was showed in the paper. However, we can also see that adding the marginals
in the mix offers another improvement of 4%.

CP 2022
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Table 2 Constraint satisfaction (sat) and average rnn reward (log(p(a|s))) with different reward
functions. Takeaway: rnn + marginals + violations yields the best constraint satisfaction and its
rnn reward is still higher than without using CP.

Restrict domain
No Yes

Reward function sat (%) log(p(a|s)) sat (%) log(p(a|s))

1. violations 60.1 -4.9 62.1 -4.5
2. marginals 75.1 -2.1 75.8 -2.2
3. marginals + violations 76.9 -1.8 74.3 -2.3
4. rnn + violations (similar to RL-Tuner) 77.2 -1.8 74.7 -2.4
5. rnn + marginals 77.4 -1.4 76.6 -2.0
6. rnn + marginals + violations 81.6 -1.9 75.4 -2.3
7. rnn 74.5 -2.2 76.9 -2.0

5.3 Without domain restrictions
Without domain restrictions, as we expected, most of our CP models yield a better constraint
satisfaction than just using the output from the RNN (lines 2 to 6 vs 7). This shows that,
overall, CP helps the agent to respect the constraints. However, it is not the case for the
violations reward function, which does a lot worse than the RNN alone (line 1 vs 7). Further
experimentations would be required to understand if it simply takes more iterations to see
an improvement in that case.

We wondered if CP and the RNN would counteract each other, the RNN wanting to stay
close to the corpus and CP aiming to constrain the algorithm. On the contrary, combining
them yields better constraint satisfaction than using them separately (lines 4 to 6 vs 1 to
3). This could be due to our choice of corpus: it is likely that Bach generally followed the
music rules we imposed and so the RNN learnt them to some degree. However, adding
the marginals and the violations gave the model a second push towards a better constraint
satisfaction. The same can be said for the rnn reward. Yet again, it seems like the CP model
generally helps the RNN to stylistically represent the corpus (lines 4 to 6 vs 1 to 3). This is
once again due to concordance between our corpus and our constraints.

5.3.1 Combining violations and marginals
The reward function yielding the best constraint satisfaction is the rnn + marginals +
violations function (line 6). Both CP models are necessary because the marginals provide
information about how good the chosen note is to respect the constraints in the long run and
the violations provide information about how big the constraint violation is. If a note does
not break any constraint, the violations will be 0 but the marginals will give new information
(it could return 100% if the chosen note is the only good choice). If a note breaks some
constraints, the marginals will be 0 but the violations will provide new information on the
number of constraints that were violated, in other words, how bad this choice is. That’s why
the best performance is obtained by combining marginals and violations, both providing
information in different contexts.

The algorithm with the highest rnn reward is the rnn + marginals (line 5). It appears
that adding the violations to this function increases the constraint satisfaction at the expense
of the rnn reward. However, even if the rnn reward of line 6 (best constraint satisfaction) is
lower than line 5, it is still an improvement over the initial rnn (line 7).
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Figure 4 Number of violations for each constraint for different reward functions without domain
restriction (red = rnn + violations, blue = rnn + marginals, green = rnn + marginals + violations,
gray = rnn). Takeaway: For most of the constraints, the green curve quickly learns to produce close
to no violations, better than the other curves.

5.4 With domain restriction
Now if we compare with the right part of Table 2, we see that adding domain restriction
seems to have a mixed effect on both performance metrics. Only for lines 1, 2 and 7, we
can see some improvement. What is interesting is that these three reward functions are the
functions with only one of our three components (rnn, marginals and violations). It seems as
if domain restriction has a good impact when the reward function is simple, but is harmful
when the complexity increases.

Another interesting fact is that generally both metrics evolve in the same direction. Indeed,
when we compare both halves of Table 2 on the same line, there is only one occurrence of the
constraint satisfaction increasing and the rnn reward decreasing. This shows an alignment
between the corpus and the constraints.

5.5 Comparing constraints
Figure 4 shows the number of violations during all 50 000 iterations, for each constraint
enforced, averaged over 10 seeds. We are mostly interested in the green curve, representing the
rnn + marginals + violations reward function. As we can see, the first seven constraints
and the last constraint have a very similar behavior. Indeed, the number of violations drops
close to 0 at around step 100 (20 000th iteration). However, constraints 8 to 11 seem to be a
lot harder to learn. This can be explained by the fact that these constraints create violations
only at the end of the sequence. For two of these four constraints, the best reward function

CP 2022
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Figure 5 Evolution of our four metrics with different reward functions (red = rnn + violations,
blue = rnn + marginals, green = rnn + marginals + violations, gray = rnn). The domains were not
restricted. The origin of each curve shows the initial value before training the DDQN. Takeaway:
All of the CP curves improve on the gray curve for all the metrics. The green curve achieves the
best constraint satisfaction and the best violations reward.

is the rnn itself, which could mean that constraints only having an impact at the end are
easier to learn from data than by using CP. We can also see that the green curve yields fewer
violations for 9 out of 12 constraints.

The unexpected increase of the blue curve for constraint avoidSixths could be a sign that
an agent keeping track only of the marginals doesn’t hesitate to break more constraints when
the marginals are already 0. That could explain why this behavior is not seen for reward
functions that take into account the number of violations.

5.6 Comparing rewards
Figure 5 shows the evolution of the constraint satisfaction and the three rewards averaged
over 10 seeds. By looking at these plots, it is obvious that adding CP outputs improves all
four metrics. The great improvement for the constraint satisfaction, the marginals reward and
the violations rewards is not surprising since the CP outputs are added to enforce constraints.
However, even the rnn reward is increasing, showing that satisfying constraints also improves
the capacity of the RL agent to reflect what the RNN learned from the corpus. We can also
see that the rnn + marginals + violations function (green curve) is the winner for half
of the metrics.

6 Discussion and future work

Even though our algorithm is an extension of the RL-Tuner, our results cannot be compared
directly with those in the original paper. This is mainly due to our choice of corpus and
constraints. However, the violations returned by the CP model are similar in spirit to
evaluating each constraint one by one as is done in the original paper. We can then consider
the rnn + violations reward function as reflecting what the original paper would have
obtained, had the authors used the same RNN and constraints. If we use this reward function
as a baseline for comparison, we see that the marginals provide an advantage and that the
best performance is achieved by combining them with violations. Furthermore, we see that
most of our constraints reach 0 violations in the first 20 000 iterations which decreases the
number of steps required for convergence (more than 50 000 iterations for the red curve).

Experiments on the number of BP iterations required for convergence of the marginals
could be useful to increase the speed of the CP model. As of now, it takes around 500
ms to compute either the marginals or the violations for each partial note sequence. The
full training process for all 50 000 iterations takes a few hours. To increase efficiency, we
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store a list of marginals and violations to reuse them. With the marginals and violations
already computed, the training process takes a few minutes. Unfortunately the length of the
sequences prevents us from precomputing them for each possible note sequence.

It would also be relevant to evaluate our algorithm with a human study (e.g. Turing
test or Likert scale). Given that our task was to generate melodic lines, we could not create
samples without rhythmic information. Ongoing work adds rhythmic constraints to convert
melodic lines to note sequences with pitches and durations. This will allow us to generate
samples and conduct human studies.

We are aware that the performance of our RNN is not nearly as high as that of the one
used in the RL-Tuner paper. However, our goal here was to show that the RL agent is able
to combine the RNN’s predictions with the constraints, and this goal is not affected by the
initial RNN performance. To evaluate the aesthetic quality of generated sequences, we would
need to have an RNN with a higher accuracy.

We also plan to investigate such a combination of ML and CP for sequence generation
tasks in other application domains.

7 Conclusion

In this work, we presented an extension of the RL-Tuner algorithm: adding the output
of CP models to the reward function in order to learn hard constraints. We applied our
algorithm to the generation of melodic lines. We showed that combining the pretrained
RNN’s probability with the marginals and the number of constraint violations yields the
best constraint satisfaction, while increasing the rnn reward obtained by the model without
CP. This shows that combining ML and CP yields generated sequences that are better at
both reflecting the corpus and respecting constraints than using only ML (or CP). We also
studied each constraint individually and showed that for most of the constraints, the best
reward function quickly converged to no violations. Our work allowed us to generate melodic
lines that respect constraints without forgetting structural knowledge obtained from the
Bach corpus.
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