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Abstract
Decision diagrams are an increasingly important tool in cutting-edge solvers for discrete optimization.
However, the field of decision diagrams is relatively new, and is still incorporating the library of
techniques that conventional solvers have had decades to build. We drew inspiration from the
warm-start technique used in conventional solvers to address one of the major challenges faced by
decision diagram based methods. Decision diagrams become more useful the wider they are allowed
to be, but also become more costly to generate, especially with large numbers of variables. We
present a method of peeling off a sub-graph of previously constructed diagrams and using it as
the initial diagram for subsequent iterations that we call peel-and-bound. We test the method on
the sequence ordering problem, and our results indicate that our peel-and-bound scheme generates
stronger bounds than a branch-and-bound scheme using the same propagators, and at significantly
less computational cost.
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1 Introduction

Multivalued decision diagrams (MDDs) are a useful graphical tool for compactly storing
the solution space of discrete optimization problems. In the last few years, a staggering
number of new applications for MDDs have been proposed [8], such as representing global
constraints [26, 27, 28], handling stochastic variables [20, 19], and performing post-optimality
analysis [25]. MDDs are particularly useful for generating strong dual bounds [6, 7, 14, 21],
especially on optimization problems where linear relaxations perform poorly. There is a
subset of MDD research that uses a highly paralellizable branch-and-bound algorithm based
on decision diagrams [5, 10, 11, 22] to maximize the utility of using MDD based relaxations.
This paper furthers the work on the decision diagram based branch-and-bound by introducing
a method, referred to as peel-and-bound, of reusing the graphs generated at each iteration
of the algorithm. Specifically, the contributions are as follows: (1) we present the peel-
and-bound algorithm, (2) we identify several heuristic decisions that can be used to adjust
peel-and-bound, and discuss their implications, (3) we show that peel-and-bound outperforms
branch-and-bound on the sequence ordering problem (SOP), and (4) we provide insight into
how the algorithm can be applied to other problems.
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The paper is structured as follows. The next section provides the necessary technical
background information and notation, as well as implementation details for the decision
diagram relaxations used in our experiments. In Section 3 we introduce the core contribution,
namely the peel-and-bound procedure. The algorithm is presented, and its limitations are
discussed. Computational experiments are proposed and discussed in Section 4.

2 Technical Background

The idea of using multivalued decision diagrams (MDDs) to generate relaxed bounds for
optimization problems was introduced by Andersen et al. (2010) [1]. This has been generalized
by Hadzic et al. (2008) [12] and Hoda et al. (2010) [13]. Following those papers, Bergman et
al. [5, 4] demonstrated the potential for a decision diagram based branch-and-bound solver
to be effective, and provided an efficient parallelization scheme. Gillard et al. (2021) [10]
further improved the decision diagram based branch-and-bound solver by adding pruning
techniques that can be used while the decision diagrams are being constructed, as well as to
remove nodes from the branch-and-bound queue.

This paper presents a new peel-and-bound scheme for combining restricted and relaxed
decision diagrams to find exact solutions. This section provides the required technical
background on how decision diagrams can be used to model sequencing problems, and how
to construct restricted/relaxed diagrams. It also introduces the notations used in this paper,
and details the existing algorithms considered in our experiments.

2.1 Decision Diagrams (DDs)

Let P be an instance of a discrete minimization problem with n variables {x1, ..., xn}, let
Sol(P) be the set of feasible solutions to P, let z∗(P) be an optimal solution to P, and let
D(xi) be the domain of variable xi, i ∈ {1, ..., n}. Let M be a multivalued decision diagram
that contains potential solutions to P . M is a directed acyclic graph divided into n+1 layers;
let ℓu be the index of the layer containing node u, u ∈M, and let Li be the set containing
the nodes on layer i. Layer 1 contains only a root node r (with no in arcs), and layer n + 1
contains just a terminal node t (with no out arcs). Each arc auv ∈ M goes from a node
u on layer ℓu ∈ {1, ..., n} to a node v on layer ℓu+1 (ℓu+1 = ℓv). Each arc auv has a label
representing the assignment of variable xℓu

to l ∈ D(xℓu
). An arc auv with label l (auv → l)

also has a value v(auv) equal to the value of being at node u and assigning xℓu
to l (xℓu

= l).
For simplicity, we sometime refer to v(auv) as v(a). Thus, each path from r to t represents
the assignment of the n variables to values, and a potential solution to P.

Let Sol(M) be the set of all paths in M from r to t, and let T ∗(u) be the value of the
shortest path from r to a node u. If Sol(M) = Sol(P), then M perfectly represents the
solution space of P , and we call M exact. If M is exact, then the value of the shortest path
through the diagram is z∗(P) (an optimal solution to P). Let the shortest path through
M be z∗(M). If Sol(M) ⊆ Sol(P), then M represents only feasible solutions to P, but
does not necessarily represent all feasible solutions to P. In this case, we call M restricted,
and use the notation M to mean that M is restricted. The shortest path through M is not
guaranteed to be optimal, but it is guaranteed to be feasible. If Sol(P) ⊆ Sol(M), then M
represents all of the feasible solutions to P, but potentially represents infeasible solutions as
well. In this case, we call M relaxed, and use the notation M to mean that M is relaxed.
The shortest path through M is guaranteed to be at least as good as z∗(P), but is not
guaranteed to be feasible.
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Constructing an exact decision diagram for P is often intractable for large values of n.
Observe that having an exact decision diagram means that the solution to P can be read
in polynomial time by recursively calculating the shortest path through M, so creating an
exact decision diagram for NP-hard problems, such as for the travelling salesperson problem
(TSP), is NP-hard as well [3]. The focus of most research that uses decision diagrams for
optimization is on the construction of M and/or M. Let w = w(M) be the width of the
largest layer of M. The creation of an exact decision diagram potentially leads to w being
an exponential function of n, but when creating M and/or M, w can be constrained to be
any natural number, limiting the number of operations construction will take. Let wm be
the largest width allowed during construction. As wm approaches the width necessary to
create an exact decision diagram, z∗(M) and z∗(M) approach z∗(P), but the number of
operations necessary to construct the diagram also increases.

Table 1 Example of a SOP instance: transition costs crow,col, with X indicating infeasible edges.

From
To

A B C D

A X 8 5 0
B X X 5 8
C X 5 X 5
D X X 1 X

Figure 1: Sequence Ordering Problem Instance
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Exact Diagram Restricted Diagram Relaxed Diagram
z∗ = [A, B, D, C] z∗ = [A, B, C, D] z∗ = [A, B, C, C]

T ∗ = 17 T ∗ = 18 T ∗ = 14

Figure 1 MDD Representation for the SOP instance presented in Table 1. Each arc a has the
format: (l, v(a)). The red path in each diagram indicates the shortest path from r to t.

Table 1 gives an instance of sequence ordering problem (SOP), and Figure 1 contains
simple examples of exact, restricted, and relaxed decision diagrams for that instance where
wm = 2 for M and M. The SOP requires finding the minimum-cost sequence of n elements
that includes each element exactly once, subject to transition costs cij of following xi with

CP 2022
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xj , and subject to precedence constraints requiring that certain elements precede others in
the sequence. In other words, the SOP is an asymmetric TSP with precedence constraints.
The label of each node matches the union of the labels of the incoming arcs. Each arc auv

is labeled in the format (l, val(auv)), representing the assignment of xℓu to l, and val(a)
represents the cost of the shortest path from the label of u to l. In other words, an arc with
label l leaving layer i, represents the assignment of l to the ith position of the sequence. The
red path in each diagram indicates the shortest path through the diagram, and T ∗ indicates
the cost of the shortest path through the diagram.

2.2 Restricted Decision Diagrams
Constructing M for a given width wm is a straightforward process that can be thought of as
a generalized greedy algorithm. Beginning with the root node r, an arc is generated for every
element in the domain of r, and a node is generated at the end of each arc in the second
layer. The process is repeated for each layer, except layer n where all outgoing arcs point to
the terminal, unless w(M) exceeds wm. Then the least promising node is removed from the
offending layer until w(M) is equal to wm. The definition of least promising is a heuristic
decision. For the purposes of this paper, the least promising node is the node u such that the
shortest path from r to u is longer than the shortest path from r to any other node v ≠ u in
layer ℓu.

It is of note that another method of reducing the width ofM is merging equivalent nodes.
In the SOP, two nodes can be considered equivalent if they have the same state (last element
in the sequence), and all incoming paths have visited the same set of elements. For example,
a node with exactly one incoming path [A, B, C] could be merged with a node in the same
layer with exactly one incoming path [B, A, C]. In many MDD applications this is a valuable
insight, and it helps motivate the algorithm for constructing M. However, for the SOP, we
observed that the work of finding equivalent nodes in M often outweighed the benefit of
being able to merge nodes.

2.3 Relaxed Decision Diagrams
There are many methods of constructing relaxed decision diagrams, and many heuristic
decisions that must be made when doing so. In this paper, we focus on the method described
by Cire and van Hoeve (2013) [9] for sequencing problems. As opposed to the top-down
construction described in Section 2.2, hereM will be constructed by separation. Constructing
DDs by separation usesM as a domain store over which constraints can be propagated. This
method starts with a weak relaxation, and then strengthens it by splitting nodes until each
layer is either exact, or has a width equal to wm. The algorithm begins from a 1-width MDD
with an arc from the node on layer ℓi to the node on layer ℓi+1 for each element that can be
placed at position ℓi in the sequence. Thus, even though each layer only has one node, there
can be several arcs between layers (see the relaxed diagram in Figure 1). Then a node u is
selected and split to strengthen the relaxation. The process of splitting u involves creating
two new nodes u′

1 and u′
2, and then distributing the in arcs of u between u′

1 and u′
2. Then

for each out arc auv from u, arcs au′
1v and au′

2v are added such that auv, au′
1v and au′

2v all
have the same label. Finally u′

1 and u′
2 are filtered to remove infeasible and sub-optimal arcs.

A collection of filtering rules are used to check each arc. As an example, given a feasible
solution to P with objective value zopt, an arc a can be removed if all paths containing a

have an objective value greater than zopt. The full process of identifying which arcs can be
removed is detailed in Cire and van Hoeve (2013) [9], and is not replicated here.
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The following notation and definitions are critical to understanding these algorithms. Let
All↓

u be the set of arc labels that appear in every path from r to u. Let Some↓
u be the set

of arc labels that appear in at least one path from r to u. Let All↑
u and Some↑

u be defined
as above, except that they refer to paths from u to t. Let J be the set of all possible arc
labels. For the SOP, we define an exact node u as a node where Some↓

u = All↓
u and all arcs

ending at u originate from exact nodes. Intuitively, a node u is exact if all paths to u contain
the same set of labels, and all parents of u are exact. Algorithm 1 formalizes the process of
strengthening M.

Algorithm 1 Refining Decision Diagrams for Sequencing [9].

1 Let M be an MDD such that Sol(M) ⊇ Sol(P)
2 for layer Lj ∈M from j = 1 to j = n do
3 while |Lj | < wm and ∃ some node y ∈ Lj such that y is not exact do
4 J← getAssignmentOrdering(P)
5 The getAssignmentOrdering() function returns a heuristically defined ordering of the

values that can be assigned to decision variables
6 for ϕ ∈ J while |Lj | < wm do
7 S ← selectNodes(Lj ,ϕ)
8 The selectNodes() function returns the set of nodes u ∈ Lj such that

ϕ ∈ Some↓
u\All↓

u

9 for u ∈ S while |Lj | < wm do
10 Create two new nodes u′

1, u′
2

11 Lj ← (Lj ∪ {u′
1, u′

2})
12 foreach arc avu do
13 if ϕ ∈ (All↓

v ∪ the label of a) then
14 Redirect a such that avu′

1

15 else
16 Redirect a such that avu′

2

17 end
18 end
19 foreach arc auv do
20 Create arcs au′

1v and au′
2v such that

label(auv) = label(au′
1v) = label(au′

2v)
21 filter(au′

1v), filter(au′
2v)

22 filter(a) runs a list of quick checks to see if an arc can be removed
23 end
24 Lj ← (Lj\u)
25 end
26 end
27 end
28 end
29 return M

Deciding which nodes to split, and how to split them, are heuristic decisions with a
significant impact on the bound that can be achieved without exceeding wm [3]. The
algorithm discussed here selects nodes that can be split into equivalency classes, such that
every path to the new node contains a certain label. Deciding which equivalency classes to
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produce first is another heuristic decision. The details of ordering the importance of the
labels are specific to the problem being solved, and are not discussed here. However, it is
important to note that the ordering for this implementation is static, and does not change
between iterations.

2.4 Branch-and-Bound with Decision Diagrams
In a typical branch-and-bound algorithm, the branching takes place by splitting on the
domain of the variables. With decision diagrams, the branching takes place on the nodes
themselves by selecting a set of exact nodes to represent the problem. The solver outlined by
Bergman et al. [4] defines an exact node as a node u for which every path from r to u ends
in an equivalent state. As mentioned above, we can be more specific when applying this to
sequencing problems, and define an exact node u as a node where Some↓

u = All↓
u and all arcs

ending at u originate from exact nodes. An exact cutset is defined as a set of exact nodes
that contain every path from r to t. Let M(u) be a relaxed decision diagram with root u,
and letM(u) be a restricted decision diagram with root u. The branch-and-bound algorithm
for MDDs proceeds by selecting an exact cutset of M, and using each node u in the cutset
as the root for a new restricted decision diagram M(u) and relaxed decision diagram M(u).
A node can be removed from the queue if the relaxation of that node is not better than the
best known solution to P , otherwise the exact cutset of the new node is added to the queue,
and the process repeats until the queue is empty. This is detailed by Algorithm 2.

Gillard et al. [10] expanded on Algorithm 2 by incorporating a local search. A heuristic is
used to quickly calculate a rough relaxed bound1 at each node, and if the length of the shortest
path to that node plus the rough relaxed bound is worse than the best known solution, the
node can be removed. More formally, let rrb(u) be a rough relaxed bound on P starting from
node u, and let zopt be the value of best known solution so far. If T ∗(u) + rrb(u) > zopt, the
node can be removed. They also provide evidence that if rrb(u) is inexpensive to compute,
it can be used to filter nodes in M and M. The method of using a rough relaxed bound to
trim nodes is used in this paper, but the details are problem specific and are discussed in a
later section.

3 Peel-and-Bound Algorithm

The motivation for peel-and-bound stems from an observation about Algorithm 1. When
implemented in a branch-and-bound structure, a large portion of the work done while
generating each M is repeated at every iteration. Creating the relaxation for some exact
node u in the queue requires creating a 1-width decision diagram, iterating over each layer
from the top down, and splitting nodes in a predetermined order. The static order of node
splits means that for each node y such that ℓy > ℓu, the first equivalency class created when
splitting y is the same inM(r) andM(u). The existing arcs for both diagrams will be sorted
in the same way, and the only difference is the possibility of filtering arcs inM(u) that could
not be filtered in M(r) due to the added constraint that all paths must pass through u.
The extra filtered arcs are the reason that M(u) may produce a stronger bound than M(r).
However, because equivalency classes are chosen in the same order each time, many arcs that
were filtered while constructing M(r) will also be filtered again while constructing M(u).

1 Gillard et al. [10] call the value rough upper bound, but since we are testing a minimization problem in
this paper, we use the term rough relaxed bound instead.
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Algorithm 2 Decision Diagram based Branch-and-Bound (BnB) [4].

1 Let Muu′ be a partial diagram with root u and terminal u′

2 Let v∗(u) be the lower bound of P resulting from starting at node u

3 Let zopt be the value of the best known solution
4 Q = {r}
5 v∗(r)← 0
6 zopt ←∞
7 while Q ̸= ∅ do
8 u←selectNode(Q), Q← Q\{u}
9 M←M(u)

10 if v∗(M) < zopt then
11 zopt ← v∗(M)
12 end
13 if M is not exact then
14 M←M(u)
15 if v∗(M) < zopt then
16 S ← exactCutset(M)
17 foreach u′ ∈ S do
18 let v∗(u′) = v∗(u) + v∗(Muu′)
19 Q← Q ∪ u′

20 end
21 end
22 end
23 end
24 return zopt

There is a sub-graph of M(r), induced by node u, that contains all of the paths that will be
encoded in M(u), but does not contain the arcs that are filtered from both diagrams during
construction. Thus, less work needs to be performed at each iteration of branch-and-bound
by starting from that sub-graph instead of a 1-width diagram. If the split order is static,
the same diagram is generated starting from either the 1-width diagram, or the sub-graph
induced by u. If the split order changes between branch-and-bound iterations, the sub-graph
induced by u is still a valid relaxation, but the generated diagram will differ from one that
began at width 1.

Consider a SOP instance where the goal is to order the elements [A, B, C, D], subject to
the precedence constraint that A must precede D, an alphabetical ordering heuristic, and
wm = 3. Figure 2 shows M(r), and M(A) in three stages. The first stage is the initial
1-width diagram. The second stage is after one split on each layer, and the third stage is
the complete diagram. The sub-graph shared by M(r) and M(A) is highlighted in blue,
indicating that in this case the first two splits could have been read from M(r) instead of
being re-created from scratch. For the sake of legibility, arc values and arc labels are not
included.

This mechanism can be embedded into a slightly modified version of the standard branch-
and-bound algorithm based on decision diagrams (Algorithm 2). In peel-and-bound, the
queue stores diagrams instead of nodes. After the initial relaxation M(r) is generated, the
entire diagram is placed into the queue Q such that Q = {M(r)}. Then a diagram M(u)
is selected from Q (for the first iteration M(u) =M(r)). However, instead of selecting an
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Figure 2 Example of an induced sub-graph for a SOP instance (shown in blue), and the associated
relaxed decision diagram with the same root.

exact cutset ofM(u), a single exact node e fromM(u) is selected. The process of selecting a
diagram and exact node are heuristic decisions that are discussed in Section 3.1. The process
of peeling e is as follows. Create an empty diagram u, remove e from M(u), and then put
e into u such that e is the root of u, and the arcs leaving e still end in M(u). Then for
each node y in M(u) with an in arc that originates in u, a new node y′ is made and added
to u. Each in arc aoy of y that originates in u is removed and then arc aoy′ is added to u.
Then the out arcs of y and y′ are filtered using the same filter function as Algorithm 1. The
process of removing and adding arcs is repeated until there are no arcs ending in M(u) that
originate in u. This procedure accomplishes a top-down reading of the sub-graph induced
by e, and potentially strengthens M(u) by removing nodes and arcs in the process. If the
shortest path through the modified M(u) is less than the best known solution, M(u) is put
back into Q. u is relaxed using Algorithm 1, let M(u) be the result; then if the shortest
path through the refined diagram M(u) is less than the best known solution, M(u) is added
to Q. The whole procedure is repeated until there are no nodes left in the queue (Q = ∅).
A peel operation is illustrated and explained in Figure 3. Peel-and-bound is formalized in
Algorithm 3, and the peel operation is formalized in Algorithm 4.

Separating each node u during a peel requires creating a new node u′, moving the in arcs
of u that originate in the peeled diagram u to u′, copying the out arcs of u to u′, and then
filtering the out arcs of u and u′. Creating a new node in our implementation has a time in
O(n) due to storing state information that has a size in O(n) (such as All↓

u′). However, it is
possible that in other applications the size of a node is in O(1). The number of in arcs of u is
at most w, although this worst case is unlikely in practice because it requires u to have width
w and for each node in u on layer ℓu−1 to have an arc ending at u. Thus, moving the in arcs
of u has a time in O(w). The number of out arcs of u is at most n, and each arc has a size in
O(1), so copying the out arcs has a time in O(n). Each individual filtering process has a time
in O(1) as it uses only existing state information from u and u′, and it is performed on the
at most 2n out arcs of u and u′. Thus, filtering the out arcs has a time in O(n). Therefore,
separating one node during the peel process has a time in O(n + w). Separations during a
standard relaxation procedure require selecting a node (O(w)), making a new node (O(n)),
partitioning the in arcs (O(nw)), copying the out arcs (O(n)), and filtering the out arcs
(O(n)). The reason that there can be more in arcs during a standard relaxation procedure is
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Figure 3 An example of a peel operation. In (1), A is selected to induce the peel process and
removed from the the original diagram (M(r) from Figure 2). In (2) the arcs that connect A to the
original diagram are moved to copies of the nodes they originally ended at, and infeasible arcs are
filtered. In (3) and (4) the process is repeated until the diagrams are disconnected.

Algorithm 3 Peel-and-Bound (PnB) Algorithm.

1 Let v∗(u) be the lower bound of P resulting from starting at node u

2 Let zopt be the value of the best known solution
3 Q = {M(r)}
4 zopt ←∞
5 while Q ̸= ∅ do
6 D←selectDiagram(Q), Q← Q\{D}
7 u←selectExactNode(D)
8 u,D∗ ← peel(D, u) (See Algorithm 4)
9 if v∗(D∗) < zopt then

10 Q← Q ∪ {D∗}
11 end
12 M←M(u)
13 if v∗(M) < zopt then
14 zopt ← v∗(M)
15 end
16 if M is not exact then
17 M←M(u)
18 if v∗(M) < zopt then
19 Q← Q ∪ {M}
20 end
21 end
22 end
23 return zopt

because the nodes in a 1-width diagram can have in arcs with different labels coming from
the same node, whereas the structure of the diagram during a peel guarantees that each
node u can have only one in arc from each node on the layer ℓu − 1. Thus, the total time for
a separation in a standard relaxation is in O(nw).
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Algorithm 4 Peeling process used in Algorithm 3.

1 Let in(u) for some node u be the set of arcs that end at node u

2 Let out(u) for some node u be the set of arcs that originate from node u

3 Let in(M) for some MDD M be the set of arcs that end in M
4 Let out(M) for some MDD M be the set of arcs that originate in M
5 input: a relaxed MDD D, and an exact node u in D

6 Let u be an empty decision diagram
7 in(u)← ∅
8 D← D\u
9 u← u

10 while in(D) ∩ out(u) ̸= ∅ do
11 foreach node m ∈ D with an in arc that originates in u do
12 create a new node m′, and add it to u

13 foreach arc a ∈ in(m) that originates in u do
14 change the destination of a to m′

15 filter(a)
16 end
17 foreach arc a ∈ out(m) do
18 filter(a)
19 end
20 end
21 end
22 while ∃ some node m ∈ D with in(m) = ∅ or out(m) = ∅ (excluding r and t) do
23 in(m)← ∅
24 out(m)← ∅
25 D← D\{m}
26 end
27 return (u, D)

The maximum number of separations during a peel is the maximum number of nodes
in the peeled diagram. A peeled diagram can have at most (n − 3) × w + 2 nodes, and
thus the number of nodes is in O(nw). Therefore, the entire peel process has a time in
O(n2w + nw2). The maximum number of separations during a standard relaxation is the
exact same as during a peel, since the resulting diagram will be the same size. Thus, the
standard relaxation has a total time in O(n2w2). However, peel-and-bound uses a peel to
generate some fraction of the nodes, then a standard relaxation to generate the rest. Let α

be the percent of nodes that are peeled during the peel. It follows that the total time for an
iteration of peel-and-bound is in O(α(n2w + nw2) + (1− α)(n2w2)). Therefore, the larger
that α grows, the more time peel-and-bound saves over branch-and-bound.

3.1 Advantages and Implementation Decisions
The branch-and-bound algorithm proposed by Bergman et al. (2016) [4] requires selecting
an exact cutset of M. Peel-and-bound requires selecting a diagram from the queue, and
an exact node to start the peel process. The choice of node has a substantial impact on
how quickly the process converges to an optimal solution, because it serves two purposes
simultaneously. As discussed earlier, the first purpose of peeling is to avoid recreating a
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portion of the diagram at each iteration. The second purpose is to strengthen the overall
relaxation. Let u be a diagram peeled fromM, and letM∗ beM after the peel operation. If
Sol(P) ⊆ Sol(M) then Sol(P) ⊆ Sol(M∗) ∪ Sol(u). The only step of peel-and-bound that
removes paths is the filter step, which only removes an arc if no feasible solutions can pass
through that arc. If the node the peel is induced from contains the shortest path throughM,
then there will be a new shortest path through M∗ with T ∗(M∗) ≥ T ∗(M). Similarly after
peeling, the peeled diagram is going to be strengthened and T ∗(M(u)) ≥ T ∗(u). Therefore,
when implementing the selectDiagram and selectExactNode functions from Algorithm 3, we
propose selecting the diagram D with the weakest bound, and an exact node from D that
contains z∗(D) at each iteration. Using these parameters, the peel step of peel-and-bound
strengthens the relaxed bound of P, in addition to providing a stronger initial diagram to
use when generating M(u).

We propose two heuristics for selecting a node from D that contains z∗(D). The first
heuristic picks the first node in the shortest path through the diagram with at least one child
that is not exact, we call this the last exact node. The second heuristic picks the frontier
node, the highest-index exact node that contains z∗(D). Taking the last exact node is more
of a breadth-first search, taking the largest possible set of nodes that can be strengthened
(anything above the last exact node is exact, and cannot be improved). In contrast, taking
the frontier node is more of a depth-first search, taking fewer nodes and exploring those
nodes at greater depth.

Cire and van Hoeve (2013) [9] propose that each iteration of Algorithm 1 starts from a
1-width MDD. However, for peel-and-bound with a non-separable objective function, starting
from a 1-width MDD poses a problem. The arcs in such a diagram do not have exact values,
because they are dependent on the state of the node they originate from. As nodes are
peeled, the values of those arcs must be updated, and the operation becomes computationally
expensive at scale. This problem can be avoided by creating the initial diagram using a
structure where all of the arcs ending at a given node have the same label. The resulting initial
diagram has a width of n, and each node on the layer is assigned to one state s ∈ {1, ..., n}.
Then every possible feasible arc between consecutive layers is added. Thus, the nodes of M
do not have relaxed states, and each arc can only take one possible value. Starting from
such a diagram not only removes the need to update arc values, it ensures that every arc
generated during peel-and-bound is an exact copy of an arc that exists in the initial diagram,
since arcs are only copied or removed, never updated or added. An alternative method of
handling non-separable objective functions is explored by Hooker [15, 16, 17].

3.2 Limitations and Handling Memory
The focus of this paper is sequencing problems, but peel-and-bound can be easily applied
to other optimization problems. However, some existing MDD based methods conflict with
peel-and-bound. For example, some MDD algorithms use a dynamic variable order [18], such
that the variables the layers on M are mapped to in one iteration of branch-and-bound,
are different in the next. Peel-and-bound as it is presented in this paper cannot be paired
with a dynamic variable order. Furthermore, the method in this paper is specific to decision
diagrams generated using separation. We believe the method can be extended to decision
diagrams that use a merge operator, but it has not been shown here.

Memory limitations present a problem for peel-and-bound in theory, but not in practice.
Each open diagram remains in the queue, and thus must be stored in memory. However, this
problem can be handled in many ways; two are given here. A dynamic method of handling the
problem is to start targeting large diagrams with bounds close to zopt as memory limitations
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start to become a problem. Such diagrams can usually be closed quickly, and subsequently
removed from memory, freeing up space for the algorithm to continue. Alternatively, the
diagrams with bounds closest to zopt can be deleted in favor of storing just the root node,
then when they need to be processed, initial diagrams are generated for those once again.
This method essentially falls back to branch-and-bound until memory limitations cease to be
a problem. Additional approaches for working with memory limitations, and evidence that
the problem can be handled efficiently, are presented in Perez and Régin (2018) [23].

3.3 Integrating Rough Relaxed Bounds
This implementation incorporates the rough relaxed bounding method proposed by Gillard
et al. [10]. Rough relaxed bounding was used to trim the domain of each node during
construction of the restricted DDs, and was also added as a check to the filter function in
Algorithm 1. When the initial model is created, a map is also created from each node u, to a
list of the other nodes sorted by their distance from u. The rough relaxed bound rrb(a) of
an arc afg was calculated as follows. For each node u that has not necessarily been visited
(u /∈ All↓

g), look up the shortest distance from that node to a different node that has also not
been visited. Then, sort the resulting list, and repeatedly remove the largest value until the
list has a length equal to the number of remaining decisions. The sum of the values in the
list, plus the value of the shortest path from r to the end of a, is the rough relaxed bound of
a. If rrb(a) is worse than the best known solution, the arc is removed.

4 Experiments on the Sequence Ordering Problem

The goal of this section is to assess the performances of the peel-and-bound algorithm (PnB,
Algorithm 3). To do so, a comparison with the standard decision diagram based branch-
and-bound algorithm (BnB, Algorithm 2) is proposed. Both algorithms are implemented
in Julia and are open-source2. To ensure a fair comparison, both algorithms resort to the
same function for generating relaxed decision diagrams (Algorithm 1), and the same function
for generating restricted decision diagrams. While the functions being called are the same,
there are two differences at run-time. At the end of line 26 in Algorithm 1, an additional
operation runs during BnB where the values of the arcs leaving layer j are updated. The
second difference is that BnB starts each relaxation from a 1-width DD, while PnB passes a
partially completed diagram to the relaxation function as a starting point.

The testing environment was built from scratch to ensure a fair comparison, so it lacks the
many propagators used by cutting-edge solvers like CPO to remove nodes from the PnB/BnB
queue [2, 9]. However, it provides a clean comparison of the two algorithms by requiring
that every function used by both BnB and PnB is exactly the same between the two, with
the only differences arising due to PnB’s ability to ensure that all arcs are exact from the
beginning. All of the heuristic decisions that were made are identical for both algorithms.

4.1 Description of the Heuristics Considered
The sequence ordering problem can be considered as an asymmetric travelling salesperson
problem with precedence constraints. The objective is to find a minimum cost path that visits
each of the n elements exactly once, and respects the precedence constraints. The method

2 https://github.com/IsaacRudich/PnB$_$SOP

https://github.com/IsaacRudich/PnB$_$SOP
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used for generating relaxed DDs requires creating a heuristic ordering of all possible arc
assignments by importance. The arc values in this case are representative of the n elements
in the path. The ordering used was generated by sorting the n elements, first by their average
distance from the other elements, and then by the number of elements each element must
precede. The resulting order places a higher importance on elements that are far away from
other elements and must precede many other elements.

The branch-and-bound algorithm processes nodes in an order designed to try and improve
the existing relaxed bound at each iteration. When a node u is added to the BnB queue, it
is assigned a value equal to the value of the shortest path from the root r to the terminal t,
that passes through u. The best known relaxed bound on the problem is the smallest value
of a node in the queue, and that node is always chosen to be processed. Peel-and-bound
is implemented with the same goal of improving bounds at each iteration. However, PnB
stores diagrams, not nodes. Let the value of a diagram be the value of the shortest path
to the terminal. At each iteration of peel-and-bound, the diagram with the lowest value is
selected, and then a node is chosen from that diagram to induce the peel process. All of the
experiments here used a process where the selected node is the first node in the shortest
path from r to t with a child node that is not exact (the last exact node). Testing was
done to determine whether using the last exact node or the frontier node would perform
better for the problem being considered, but there was not a significant difference between
the two during any of the tests. Several of the benchmark problems were run using various
decision diagram widths, and the last exact node was chosen because it sometimes showed a
very slight improvement over the frontier node. While it is likely that this choice makes a
difference on some problems, it does not matter for the SOP.

4.2 Experimental Results
The experiments were performed on a computer equipped with an AMD Rome 7532 at 2.40
GHz with 64Gb RAM. The solver was tested using DD widths of 64, 128, and 256 on the
41 SOP problems available in TSPLIB [24]. For comparisons between PnB and BnB, a
timestamp, new bounds, and the length of the remaining queue were recorded each time
the bounds on a problem were improved. Another experiment was performed to test the
scalability of PnB at width 2048, for which only the final bounds were recorded. Execution
time was limited to 3, 600 seconds.

The smallest DD width tested for both methods was 64, and the largest DD width tested
was 256. Table 2 has summary statistics for those widths as the percentage improvement
demonstrated by PnB. A positive percentage always indicates that PnB performed better
than BnB in that category, while a negative percentage indicates that BnB performed better.
Figure 4 shows performance profiles for all of the experiments. Table 3 contains summary
statistics comparing PnB at width 256 to PnB at width 2048, where a positive percentage
always indicates that the width of 2048 performed better.

Table 2 Summary Statistics: percentage improvement of peel-and-bound over branch-and-bound.
RB = Relaxed Bound, BS = Best Solution, OG = Optimality Gap, QL = Queue Length. Tables 4
and 5 in Appendix A show the comprehensive results.

Width: 64 Width: 256
RB BS OG QL RB BS OG QL

Average % Improvement 114% 0.5% 22.8% 1, 647% 545% 3.3% 181% 308%
Median % Improvement 26% 0.05% 17.4% 734% 80% 1.7% 35% 141%
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Table 3 Summary Statistics: percentage improvement of peel-and-bound at width 2048 over
peel-and-bound at width 256. Table 6 in Appendix A shows the comprehensive results.

PnB: 2048 v PnB: 256
Relaxed Bound Best Solution Optimality Gap

Average % Improvement 19.5% 0.8% 18.6%
Median % Improvement 16.3% 0.5% 13.7%

Figure 4 Performance Profiles: the optimality gap = upper_bound−lower_bound
upper_bound

.

As shown in Table 2, peel-and-bound vastly outperforms branch-and-bound in these
experiments. The average and median improvements from using peel-and-bound at both
widths are significant in terms of the relaxed bound, the remaining optimality gap, and the
number of nodes that still need to be processed. The best solution found by the end of the
runtime also tends to be slightly better with peel-and-bound, but the found solutions are
often so close to the real optimal solutions that there is little room for improvement. At
both widths, six of the problems were solved to optimality. BnB was faster in only one of
those cases, and in that case the difference was .04 seconds. The median time for PnB to
close in these cases was 191% faster at a width of 64, and 580% faster at a width of 256.
The relaxed bound produced by PnB at a width of 64 was better for 28 of the remaining
35 problems, and at a width of 256 was better for 34 of the remaining 35 problems. The
optimality gap was similarly better for peel-and-bound on every problem except the ones
where branch-and-bound found a better relaxed bound. However, of the problems where
branch-and-bound had a better optimality gap, the improvement was less than 1% for all
but one problem. Figure 4 reinforces that even though there are some instances where a
specific branch-and-bound setting slightly outperforms a specific peel-and-bound setting, the
gap in those cases is small relative to the general gap between all peel-and-bound settings
and all branch-and-bound settings.

As shown in Table 3, increasing the width to 2048 from 256 led to an 19.5% average
improvement (16.3% median improvement) in the relaxed bound. Figure 4 shows that the
performance of peel-and-bound nearly uniformly increases with the maximum allowable
width. Similar to the difference between branch-and-bound and peel-and-bound, some specific
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instances see a small out-performance of the peel-and-bound running at a smaller width, but
the gap is small relative to the usual gap between the 2048-width experiment and the rest of
the experiments. Additionally, Figure 4 shows that peel_2048 solved 50% of instances to
within a 42% optimality gap, peel_64 solved 50% of instances to within a 67% optimality
gap, and the best performing branch and bound (bnb_64) solved 50% of instances to within
only a 79% optimality gap. The overall performance of peel-and-bound improves as more
problems are considered, especially as the maximum allowable width for the decision diagrams
is increased.
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Figure 5 Dual bounds of ESC25 and ft70.1 over the runtime of the experiment.

The selected graphs shown in Figure 5 are representative of the two main types of behavior
observed over the problem set. On problems where the underlying relaxation method works
well, the relaxed bound moves quickly towards convergence with the best found solution. On
problems where the underlying relaxation does not work well, both algorithms slowly improve
the relaxed bound, but PnB starts stronger as it can use exact arc values, and it maintains
the advantage throughout. It is clear from the time-series data that to be competitive with
cutting-edge solvers, peel-and-bound must be combined with other constraint programming
propagators. However, it is also clear that peel-and-bound can have a significant edge over a
propagator that generates the required decision diagrams from scratch at each iteration.

5 Conclusion and Future Work

This paper presented a peel-and-bound algorithm as an alternative to branch-and-bound. In
peel-and-bound, constructed decision diagrams are repeatedly reused to avoid unnecessary
computation. Additionally, peel-and-bound can be used in combination with a decision
diagram structure that only admits exact arc values, to increase scalability and further
reduce the amount of work needed at each iteration of the algorithm. We identified several
heuristic decisions that can be used to adjust peel-and-bound, and provided insight into how
the algorithm can be applied to other problems.

We compared the performance of a peel-and-bound scheme to a branch-and-bound scheme
using the same DD based propagator. We tested both algorithms on the 41 instances of the
SOP from TSPLIB. Results show that peel-and-bound significantly outperforms branch-and-
bound on the SOP by generating substantially stronger relaxed bounds on instances that were
not closed during the experiment, and reaching optimality faster when the instances were
closed. This paper provides strong support for the value of re-using work in DD based solvers.
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Furthermore, peel-and-bound benefits from scaling the maximum allowable width. Thus,
relaxed DDs that yield strong bounds at scale, but are too costly to generate iteratively, only
need to be constructed once. The method detailed in this paper focused on DDs generated
by separation; future research could focus on DDs generated using a merge operator.
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A Experimental Data

Table 4 Comparison Data for width 64 experiments: RB = Relaxed Bound, BS = Best Solution,
T = Time in Seconds, OG = Optimality Gap, QL = Queue Length. Full time series data is available
in the GitHub repository.

Problem Info BnB: width 64 PnB: width 64 Percent Improvements
Name n RB BS T OG QL RB BS T OG QL RB BS T OG QL
ESC07 9 2,125 2,125 0.03 0% - 2,125 2,125 0.07 0% - -57%
ESC11 13 2,075 2,075 0.65 0% - 2,075 2,075 0.42 0% - 55%
ESC12 14 1,675 1,675 1.99 0% - 1,675 1,675 0.64 0% - 211%
ESC25 27 1,681 1,681 956 0% - 1,681 1,681 353 0% - 171%
ESC47 49 334 1,542 78% 8,842 368 1,676 78% 1,295 10.2% -8.0% 0.4% 583%
ESC63 65 8 62 87% 2,756 44 62 29% 15 450.0% 0.0% 200.0% 18273%
ESC78 80 2,230 19,800 89% 1,040 5,000 20,045 75% 316 124.2% -1.2% 18.2% 229%
br17.10 18 55 55 260 0% - 55 55 5 0% - 4652%
br17.12 18 55 55 138 0% - 55 55 21 0% - 546%
ft53.1 54 1,785 8,478 79% 8,841 3,324 8,244 60% 917 86.2% 2.8% 32.3% 864%
ft53.2 54 1,946 8,927 78% 7,356 3,450 8,633 60% 938 77.3% 3.4% 30.3% 684%
ft53.3 54 2,546 12,179 79% 5,594 4,234 12,327 66% 1,147 66.3% -1.2% 20.5% 388%
ft53.4 54 3,780 14,811 74% 11,907 6,500 14,753 56% 2,372 72.0% 0.4% 33.1% 402%
ft70.1 71 25,444 41,926 39% 4,781 31,123 41,607 25% 412 22.3% 0.8% 56.0% 1060%
ft70.2 71 25,239 42,805 41% 3,998 31,195 42,623 27% 427 23.6% 0.4% 53.1% 836%
ft70.3 71 25,810 48,073 46% 4,036 31,872 47,491 33% 475 23.5% 1.2% 40.8% 750%
ft70.4 71 28,593 56,644 50% 8,642 35,974 56,552 36% 1,087 25.8% 0.2% 36.1% 695%

kro124p.1 101 10,773 46,158 77% 2,173 17,579 46,158 62% 105 63.2% 0.0% 23.8% 1970%
kro124p.2 101 11,061 46,930 76% 1,898 17,633 46,930 62% 109 59.4% 0.0% 22.4% 1641%
kro124p.3 101 12,110 55,991 78% 1,055 18,586 55,991 67% 117 53.5% 0.0% 17.3% 802%
kro124p.4 101 13,838 85,533 84% 2,990 24,388 85,316 71% 244 76.2% 0.3% 17.4% 1125%

p43.1 44 630 29,450 98% 12,945 380 29,380 99% 1,022 -39.7% 0.2% -0.9% 1167%
p43.2 44 440 29,000 98% 8,519 420 29,080 99% 1,125 -4.5% -0.3% -0.1% 657%
p43.3 44 595 29,530 98% 12,802 490 29,530 98% 1,122 -17.6% 0.0% -0.4% 1041%
p43.4 44 1,370 83,855 98% 21,105 1,050 83,890 99% 4,694 -23.4% 0.0% -0.4% 350%

prob.42 42 99 289 66% 16,742 97 286 66% 2,613 -2.0% 1.0% -0.5% 541%
prob.100 100 170 1,841 91% 1,731 182 1,760 90% 117 7.1% 4.6% 1.2% 1379%
rbg048a 50 76 379 80% 12,938 47 380 88% 1,551 -38.2% -0.3% -8.8% 734%
rbg050c 52 63 566 89% 11,480 154 512 70% 1,481 144.4% 10.5% 27.1% 675%
rbg109a 111 91 1,196 92% 2,773 379 1,196 68% 612 316.5% 0.0% 35.3% 353%
rbg150a 152 63 1,874 97% 241 565 1,865 70% 222 796.8% 0.5% 38.6% 9%
rbg174a 176 119 2,157 94% 809 626 2,156 71% 117 426.1% 0.0% 33.1% 591%
rbg253a 255 113 3,181 96% 403 708 3,180 78% 39 526.5% 0.0% 24.1% 933%
rbg323a 325 89 3,519 97% 437 289 3,529 92% 17 224.7% -0.3% 6.2% 2471%
rbg341a 343 68 3,038 98% 366 321 3,064 90% 8 372.1% -0.8% 9.2% 4475%
rbg358a 360 69 3,359 98% 289 73 3,373 98% 6 5.8% -0.4% 0.1% 4717%
rbg378a 380 52 3,429 98% 266 50 3,429 99% 5 -3.8% 0.0% -0.1% 5220%
ry48p.1 49 5,201 17,555 70% 10,480 6,171 17,454 65% 1,395 18.7% 0.6% 8.9% 651%
ry48p.2 49 5,291 18,046 71% 9,286 6,577 17,840 63% 1,445 24.3% 1.2% 12.0% 543%
ry48p.3 49 6,207 21,161 71% 9,039 6,985 20,962 67% 1,707 12.5% 0.9% 6.0% 430%
ry48p.4 49 13,610 34,517 61% 15,819 14,293 33,804 58% 3,217 5.0% 2.1% 4.9% 392%
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Table 5 Comparison data for width 256 experiments: RB = Relaxed Bound, BS = Best Solution,
T = Time in Seconds, OG = Optimality Gap, QL = Queue Length. Full time series data is available
in the GitHub repository.

Problem Info BnB: width 256 PnB: width 256 Percent Improvements
Name n RB BS T OG QL RB BS T OG QL RB BS T OG QL
ESC07 9 2,125 2,125 0.04 0% - 2,125 2,125 0.04 0% - 0%
ESC11 13 2,075 2,075 0.48 0% - 2,075 2,075 0.41 0% - 17%
ESC12 14 1,675 1,675 1.66 0% - 1,675 1,675 0.34 0% - 388%
ESC25 27 1,681 1,681 2,643 0% - 1,681 1,681 303 0% - 771%
ESC47 49 312 1,590 80% 720 658 1,339 51% 740 110.9% 18.7% 58.0% -3%
ESC63 65 9 62 85% 53 44 62 29% 3 388.9% 0.0% 194.4% 1667%
ESC78 80 2,230 20,345 89% 59 5,600 20,135 72% 109 151.1% 1.0% 23.3% -46%
br17.10 18 55 55 275 0% - 55 55 3 0% - 9468%
br17.12 18 55 55 105 0% - 55 55 5 0% - 2146%
ft53.1 54 1,708 8,424 80% 760 4,603 8,244 44% 271 169.5% 2.2% 80.5% 180%
ft53.2 54 1,856 9,059 80% 632 3,555 8,648 59% 272 91.5% 4.8% 35.0% 132%
ft53.3 54 2,493 12,598 80% 477 4,852 11,095 56% 390 94.6% 13.5% 42.6% 22%
ft53.4 54 3,619 14,867 76% 1,240 7,560 14,611 48% 797 108.9% 1.8% 56.8% 56%
ft70.1 71 25,507 41,686 39% 373 31,122 41,235 25% 108 22.0% 1.1% 58.3% 245%
ft70.2 71 25,261 42,901 41% 297 31,630 42,182 25% 123 25.2% 1.7% 64.4% 141%
ft70.3 71 25,891 47,806 46% 377 32,539 46,488 30% 151 25.7% 2.8% 52.8% 150%
ft70.4 71 31,186 56,366 45% 958 37,984 56,366 33% 356 21.8% 0.0% 37.0% 169%

kro124p.1 101 10,683 48,866 78% 152 19,224 45,643 58% 43 79.9% 7.1% 35.0% 253%
kro124p.2 101 10,706 52,038 79% 125 19,299 48,102 60% 43 80.3% 8.2% 32.6% 191%
kro124p.3 101 12,078 58,562 79% 64 20,145 57,358 65% 45 66.8% 2.1% 22.3% 42%
kro124p.4 101 14,511 82,672 82% 281 25,002 82,364 70% 102 72.3% 0.4% 18.4% 175%

p43.1 44 610 29,460 98% 1,033 27,255 28,635 5% 146 4368% 2.9% 1932% 608%
p43.2 44 460 29,020 98% 547 27,455 29,020 5% 391 5868% 0.0% 1725% 40%
p43.3 44 750 29,530 97% 1,016 27,780 29,530 6% 764 3604% 0.0% 1545% 33%
p43.4 44 1,425 83,880 98% 1,365 28,195 83,435 66% 1,380 1879% 0.5% 48.5% -1%

prob.42 42 90 289 69% 1,166 103 275 63% 617 14.4% 5.1% 10.1% 89%
prob.100 100 157 1,886 92% 113 178 1,721 90% 45 13.4% 9.6% 2.3% 151%
rbg048a 50 80 389 79% 794 80 373 79% 534 0.0% 4.3% 1.1% 49%
rbg050c 52 62 583 89% 810 175 503 65% 442 182.3% 15.9% 37.0% 83%
rbg109a 111 89 1,181 92% 394 406 1,106 63% 204 356.2% 6.8% 46.1% 93%
rbg150a 152 115 1,845 94% 406 571 1,845 69% 100 396.5% 0.0% 35.8% 306%
rbg174a 176 362 2,172 83% 337 646 2,171 70% 57 78.5% 0.0% 18.6% 491%
rbg253a 255 359 3,177 89% 139 727 3,176 77% 22 102.5% 0.0% 15.0% 532%
rbg323a 325 99 3,476 97% 114 346 3,480 90% 14 249.5% -0.1% 7.9% 714%
rbg341a 343 84 3,016 97% 120 340 3,016 89% 7 304.8% 0.0% 9.6% 1614%
rbg358a 360 88 3,280 97% 92 88 3,382 97% 5 0.0% -3.0% -0.1% 1740%
rbg378a 380 44 3,385 99% 35 53 3,385 98% 6 20.5% 0.0% 0.3% 483%
ry48p.1 49 5,470 17,464 69% 897 9,432 17,071 45% 377 72.4% 2.3% 53.5% 138%
ry48p.2 49 5,606 18,060 69% 834 6,615 17,627 62% 383 18.0% 2.5% 10.4% 118%
ry48p.3 49 6,558 21,142 69% 859 8,723 20,850 58% 513 33.0% 1.4% 18.6% 67%
ry48p.4 49 17,359 34,074 49% 1,557 17,322 33,773 49% 990 -0.2% 0.9% 0.7% 57%
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Table 6 Comparison of PnB at 2048 over PnB at 256: RB = Relaxed Bound, BS = Best Solution,
OG = Optimality Gap.

Problem Info PnB: width 256 PnB: width 2048 Percent Improvements
Name n RB BS OG RB BS OG RB BS OG
ESC47 49 658 1,339 51% 882 1,304 32% 34.0% 2.7% 57.2%
ESC63 65 44 62 29% 44 62 29% 0.0% 0.0% 0%
ESC78 80 5,600 20,135 72% 6,025 20,505 71% 7.6% -1.8% 2.2%
ft53.1 54 4,603 8,244 44% 5,167 8,237 37% 12.3% 0.1% 18.5%
ft53.2 54 3,555 8,648 59% 4,910 8,598 43% 38.1% 0.6% 37.3%
ft53.3 54 4,852 11,095 56% 7,722 11,092 30% 59.2% 0.0% 85.2%
ft53.4 54 7,560 14,611 48% 7,466 14,618 49% -1.2% 0.0% -1.4%
ft70.1 71 31,122 41,235 25% 33,382 41,476 20% 7.3% -0.6% 25.7%
ft70.2 71 31,630 42,182 25% 32,964 41,833 21% 4.2% 0.8% 18.0%
ft70.3 71 32,539 46,488 30% 34,366 46,001 25% 5.6% 1.1% 18.6%
ft70.4 71 37,984 56,366 33% 40,919 56,310 27% 7.7% 0.1% 19.3%

kro124p.1 101 19,224 45,643 58% 21,954 47,425 54% 14.2% -3.8% 7.8%
kro124p.2 101 19,299 48,102 60% 22,746 49,571 54% 17.9% -3.0% 10.7%
kro124p.3 101 20,145 57,358 65% 25,566 54,633 53% 26.9% 5.0% 21.9%
kro124p.4 101 25,002 82,364 70% 29,377 81,050 64% 17.5% 1.6% 9.2%

p43.1 44 27,255 28,635 5% 27,755 28,960 4% 1.8% -1.1% 16%
p43.2 44 27,455 29,020 5% 27,725 29,000 4% 1.0% 0.1% 23%
p43.3 44 27,780 29,530 6% 27,755 29,530 6% -0.1% 0.0% -1%
p43.4 44 28,195 83,435 66% 28,680 83,020 65% 1.7% 0.5% 1.2%

prob.42 42 103 275 63% 152 261 42% 47.6% 5.4% 49.8%
prob.100 100 178 1,721 90% 220 1,735 87% 23.6% -0.8% 2.7%
rbg048a 50 80 373 79% 93 367 75% 16.3% 1.6% 5.2%
rbg050c 52 175 503 65% 184 501 63% 5.1% 0.4% 3.1%
rbg109a 111 406 1,106 63% 453 1,126 60% 11.6% -1.8% 5.9%
rbg150a 152 571 1,845 69% 672 1,841 63% 17.7% 0.2% 8.7%
rbg174a 176 646 2,171 70% 1,104 2,121 48% 70.9% 2.4% 46.5%
rbg253a 255 727 3,176 77% 1,186 3,101 62% 63.1% 2.4% 24.9%
rbg323a 325 346 3,480 90% 421 3,449 88% 21.7% 0.9% 2.6%
rbg341a 343 340 3,016 89% 329 2,965 89% -3.2% 1.7% -0.2%
rbg358a 360 88 3,382 97% 107 3,131 97% 21.6% 8.0% 0.8%
rbg378a 380 53 3,385 98% 74 3,338 98% 39.6% 1.4% 0.7%
ry48p.1 49 9,432 17,071 45% 10,386 17,124 39% 10.1% -0.3% 13.7%
ry48p.2 49 6,615 17,627 62% 7,896 17,461 55% 19.4% 1.0% 14.0%
ry48p.3 49 8,723 20,850 58% 10,558 20,686 49% 21.0% 0.8% 18.8%
ry48p.4 49 17,322 33,773 49% 24,248 32,953 26% 40.0% 2.5% 84.4%
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