
A Generalization of the Satisfiability Coding
Lemma and Its Applications
Milan Mossé #

Department of Philsophy, University of California Berkeley, CA, USA

Harry Sha #

Department of Computer Science, University of Toronto, CA

Li-Yang Tan #

Department of Computer Science, Stanford University, CA, USA

Abstract
The seminal Satisfiability Coding Lemma of Paturi, Pudlák, and Zane is a coding scheme for
satisfying assignments of k-CNF formulas. We generalize it to give a coding scheme for implicants
and use this generalized scheme to establish new structural and algorithmic properties of prime
implicants of k-CNF formulas.

Our first application is a near-optimal bound of n ·3n(1−Ω(1/k)) on the number of prime implicants
of any n-variable k-CNF formula. This resolves an open problem from the Ph.D. thesis of Talebanfard,
who proved such a bound for the special case of constant-read k-CNF formulas. Our proof is
algorithmic in nature, yielding an algorithm for computing the set of all prime implicants – the Blake
Canonical Form – of a given k-CNF formula. The problem of computing the Blake Canonical Form
of a given function is a classic one, dating back to Quine, and our work gives the first non-trivial
algorithm for k-CNF formulas.

2012 ACM Subject Classification Theory of computation

Keywords and phrases Prime Implicants, Satisfiability Coding Lemma, Blake Canonical Form,
k-SAT

Digital Object Identifier 10.4230/LIPIcs.SAT.2022.9

1 Introduction

State-of-the-art algorithms for k-SAT [17, 7] draw on an understanding of the structure
of satisfying assignments of k-CNF formulas. In particular, progress in the design of fast
k-SAT algorithms has benefited from an understanding of when satisfying assignments are
close together and when they are far apart. Roughly speaking, it is useful to understand
how many such assignments are “isolated” from others and “how isolated” they are. The
following definitions make precise the notion of a satisfying assignment’s degree of isolation
from other satisfying assignments:

▶ Definition 1. A clause C of a CNF formula is critical for a variable xi and with respect
to a satisfying assignment if flipping the value assigned to xi makes C false.

▶ Definition 2. A satisfying assignment of a CNF formula is j-isolated if j variables have
critical clauses.

Consider the hypercube graph with vertex set {0, 1}n where there is an edge between
u and v if they have Hamming distance 1. If we associate assignments on n variables to
elements of {0, 1}n in the natural way, a j-isolated satisfying assignment corresponds to a
vertex of the hypercube with j neighboring vertices which are not satisfying assignments.
For example, in Figure 1, the satisfying assignment 0000 is 2-isolated since it has just 2
non-satisfying neighbors, 1000, and 0010. Furthermore, the clause C = ¬x1 ∨ x3 ∨ x4 is
critical for x1 with respect to 0000 since C is true under the assignment 0000 but not 1000.
Similarly, x1 ∨ x2 ∨ ¬x3 is critical for x3 with respect to 0000.

© Milan Mossé, Harry Sha, and Li-Yang Tan;
licensed under Creative Commons License CC-BY 4.0

25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022).
Editors: Kuldeep S. Meel and Ofer Strichman; Article No. 9; pp. 9:1–9:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:milan_mosse@berkeley.edu
mailto:shaharry@cs.toronto.edu
mailto:liyang@cs.stanford.edu
https://doi.org/10.4230/LIPIcs.SAT.2022.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Implicant Coding Lemma

φexample = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ ¬x4) ∧ (¬x1 ∨ ¬x2 ∨ ¬x4) ∧ (¬x1 ∨ x3 ∨ x4)

Figure 1 Satisfying assignments of φexample (drawn in green).

To understand the structure of j-isolated satisfying assignments, one can provide an
encoding of them:

▶ Definition 3. A prefix-free encoding of a set S over an alphabet Σ is a map f : S → Σ∗

such that for no distinct x, y ∈ S is f(x) a prefix of f(y).

▶ Definition 4. A randomized, prefix-free encoding of a set S over an alphabet Σ is a map
F : S → Σ∗ which is sampled uniformly at random from a family F of prefix-free encodings
f : S → Σ∗. The expected encoding length of s ∈ S is Ef∼F [|f(s)|].

The seminal Satisfiability Coding Lemma of Paturi, Pudlák, and Zane [19] gives an
encoding scheme for j-isolated satisfying assignments of k-CNF formulas:

▶ Theorem 5 (Satisfiability Coding Lemma). There exists a randomized, prefix-free encoding
ENCk

PPZ(φ, σ) over the alphabet {0, 1}, such that any j-isolated satisfying assignment σ of a
k-CNF φ has expected encoding length at most n− j/k.

This lemma yields a bound on the number of j-isolated satisfying assignments and an
O(|φ|) · 2n(1−Ω(1/k)) time algorithm for k-SAT; obtaining an improved runtime of the form
O(|φ|) · 2n(1−ω(1/k)) remains a central open problem in complexity theory.

1.1 Our main result: A coding lemma for implicants
In this work, we generalize the PPZ Satisfiability Coding Lemma from satisfying assignments
to the more general notion of implicants and use it to prove new results on the structure of
satisfying assignments of k-CNF formulas.

▶ Definition 6. Given a boolean function φ, an implicant of φ is a set of literals I whose
conjunction implies φ. That is, every assignment that satisfies all the literals in I also
satisfies φ. The size of an implicant is its cardinality.

M. Mossé, H. Sha, and L.-Y. Tan 9:3

It will be convenient for us to view an implicant I as an map {x1, ..., xn} 7→ {0, 1, ∗}, by
defining for i ∈ [n]

I[xi] =


0 if ¬xi ∈ I

1 if xi ∈ I

∗ otherwise.

For example, every term in a DNF φ is an implicant of φ. As another example, {¬x1, x2} =
01**, is an implicant of size two for φexample in Figure 1 since each of 0100, 0101, 0110, 0111
are satisfying.

▶ Definition 7. Variables mapped to 1 or 0 are fixed by I, and variables mapped to ∗ are free.
When all variables are fixed, the implicant I is simply a satisfying assignment; otherwise, we
say that I is a partial implicant.

▶ Definition 8. An assignment J agreeing with I on I’s fixed variables is called a completion
of I.

Our goal of generalizing the Satisfiability Coding Lemma to implicants motivates the
following definitions of critical clauses and j-isolation for implicants:

▶ Definition 9. Fix an implicant I of a CNF formula φ. A clause C of φ is critical for
a variable xi with respect to I if I maps the literal involving xi in C to 1 and every other
literal in C to 0 or ∗. The implicant I is j-isolated if j variables have critical clauses.

Recall that if I is a satisfying assignment and C is critical for xi, flipping the value of
xi makes I into a falsifying assignment. On the other hand, if I is a partial implicant and
C is critical for xi, flipping the value of xi makes some completion J of I into a falsifying
assignment; indeed, let J be the completion of I that assigns 0 to all literals in C except for
the literal containing xi.

We give an encoding ENCk which generalizes the encoding ENCk
PPZ from j-isolated

assignments to all j-isolated implicants:

▶ Theorem 10 (Implicant Coding Lemma). There exists a randomized, prefix-free encoding
ENCk(φ, I) over the alphabet {0, 1, ∗}, such that any j-isolated implicant I of a k-CNF φ

has expected encoding length at most n− j/k.

We use Theorem 10 to study prime implicants of CNF formulas.

1.2 Applications of Theorem 10: Prime Implicants of k-CNF formulas
▶ Definition 11. A prime implicant is an implicant I, such that no strict subset of I is an
implicant.

To study prime implicants, we exploit a simple fact relating j-isolated implicants and
size-j prime implicants, which is shown in the appendix:

▶ Fact 12. Fix a k-CNF φ. A size-j prime implicant of φ is j-isolated, but the converse is
not generally true.

Prime implicants reveal information about the structure of the satisfying solutions of
Boolean formulas. Indeed, if we associate assignments on n variables to vertices of the
hypercube graph Qn, then the prime implicants of a Boolean formula φ correspond to

SAT 2022

9:4 Implicant Coding Lemma

subcubes of solutions not contained within a larger subcube. More specifically, a size-j
implicant corresponds to a (n − j)-cube of satisfying assignments. As an example, in
Figure 1, {x1, x3,¬x4} = 1*10 is a prime implicant of size 3, however, the implicant
{¬x1, x2, x3} = 011* is not prime, since the subset {¬x1, x2} = 01** is also an implicant.

We apply our implicant coding lemma to understand two basic questions regarding prime
implicants, the first structural and the second algorithmic:
◦ First, how many prime implicants can a function have?
◦ Second, how quickly can one enumerate all prime implicants of a given function?
We study these questions as they relate to k-CNFs, giving near-optimal answers in both
cases, and extending our results to m-clause CNFs and monotone k-CNFs.

1.2.1 Background and context
Historically, both questions have received a great deal of interest. Concerning the first question,
extremal bounds for the class of all n-variable functions are fairly well-understood. Let
#PrimeImplicants(φ) denote the number of prime implicants of a function φ. A classic result
of Chandra and Markowsky shows a universal bound of #PrimeImplicants(φ) ≤ O(3n/

√
n)

for every n-variable boolean function φ [2]. Even earlier work of Dunham and Fridshal
provides a near-matching lower bound, constructing an n-variable function that has Ω(3n/n)
prime implicants [5].

Turning to the second question, the algorithmic problem of obtaining the disjunction of
all prime implicants of a given function φ, called the Blake Canonical Form (BCF) of φ, is
also well-studied. Unlike a minimal equivalent DNF, the BCF of a formula is unique. Umans
showed obtaining a minimal DNF to be Σ2-complete [28], and a classic and well-known
approach to obtaining a minimal DNF, the Quine-McClusky algorithm [14, 20, 22], proceeds
by generating and then paring down the BCF. This algorithm obtains the BCF by converting
the arbitrary formula to a CNF, drawing up a table of satisfying assignments, and finding
prime implicants by iterated consensus. Alternative methods of obtaining the BCF include
a reduction to integer or 0-1 programming [12, 16] and the use of SAT-solvers, directly
or through a generalization [4, 9, 11]. While some of these approaches have been studied
empirically, none offers any runtime guarantees better than the trivial bound of O(|φ| · 3n)
associated with an exhaustive search.

Prime implicants and the BCF have recently been of interest in the field of explainable
AI, an important area of research that seeks to understand and interpret the decisions of
complex machine learning models. Let f : {0, 1}n → {0, 1} be a binary classifier with n

Boolean features, let x ∈ {0, 1}n be an input to the classifier, and let f(x) be the decision of
f on x. Then, if f(x) = 1, a prime implicant of f that has x as a completion is viewed as an
explanation of f ’s “decision” to label x with 1; similarly, if f(x) = 0, a prime implicant of ¬f
that has x as a completion is viewed an explanation of f ’s “decision” to label x with 0 ([25],
definition 5). An implicant I is viewed as a sufficient explanation for the model’s decision,
since toggling the features not contained in I does not change the model’s decision. Prime
implicants are then the simplest sufficient explanations, because no prime implicant can be
made shorter. Darwiche and Hirth build on this work to define the notion of a necessary
reason (i.e. explanation) for a decision, as well as a notion of decision bias [3]. Especially
relevant to this paper’s discussion is the same author’s definition of a complete reason (i.e.
explanation) for the decision made by a classifier f ; Darwiche and Hirth define this to be the
disjunction of all simplest sufficient explanations (prime implicants), i.e. the BCF. Further
work in explainable AI computes these explanations (prime implicants) for certain machine
learning models such as Neural Networks [9], Bayesian Networks [25], Boosted Trees [10],
and monotone machine learning models [13].

M. Mossé, H. Sha, and L.-Y. Tan 9:5

1.2.2 Our results
We focus on understanding these questions in the case where φ is represented as a k-CNF
formula, and show that our implicant coding lemma gives near-optimal answers to both. The
problem of bounding the number of prime implicants for k-CNF formulas was first considered
in the Ph.D. thesis of Talebanfard [26], who gave a non-trivial upper bound for read-r k-CNF
formulas, i.e. those in which each variable occurs in at most r clauses:

▶ Theorem 13 (Talebanfard [26]). Let φ be an n-variable read-r k-CNF formula. Then

#PrimeImplicants(φ) ≤ 3n(1−1/(rk)).

To prove Theorem 13, Talebanfard [26] himself generalized the Satisfiability Coding
Lemma to (d, k)-CSPs, constraint satisfaction problems in which variables can take d values
and each constraint has at most k variables. Given a read-r k-CNF formula, Talebanfard
generates a (3, rk)-CSP with isolated solutions that correspond exactly to prime implicants
in the original formula. For constant-read k-CNFs, this gives a bound of 3n(1−Ω(1/k)). In the
conclusion of his thesis, Talebanfard asked whether this bound in fact holds for all k-CNF
formulas, with no restriction on read. In [27], Talebanfard remarked that to answer this
question, one would need to develop a generalization of the Satisfiability Coding Lemma that
“can treat isolated solutions and prime implicants in general as the same objects.”

This is precisely what our implicant coding lemma achieves, and thus our first main
application is an affirmative answer to Talebanfard’s question:

▶ Theorem 14. There is a universal constant c > 0 such that for all n-variable k-CNF
formulas φ,

#PrimeImplicants(φ) ≤ n · 3n(1−c/k).

Theorem 14 is near-optimal, as [26] also shows the existence of a k-CNF formula with
3n(1−O(log k)/k) prime implicants. (The construction of this formula is based on the lower
bound construction of [5] discussed above.)

While Talebanfard showed Theorem 13 by generalizing the Satisfiability Coding Lemma
to (d, k)-CSPs and mapping prime implicants of an input formula φ to isolated solutions of
a corresponding (d, k)-CSP, we show that the Satisfiability Coding Lemma has a simple and
direct generalization to j-isolated partial implicants, namely Theorem 10, from which the
above result follows directly. Our approach is more straightforward than the one taken by
Talebanfard. Indeed, there is no need to generate an auxiliary formula; while Talebanfard
generates a CSP and bounds the isolated solutions of the CSP, we simply bound the j-isolated
implicants of φ directly and observe that this is also a bound on the size-j prime implicants
of φ. Moreover, unlike Talebanfard’s generalized encoding, our encoding operates directly on
prime implicants, and as a result, our proof of Theorem 14 is algorithmic in nature; we are
able to leverage known de-randomization techniques to give an algorithm for enumerating
the prime implicants of a given k-CNF formula, an algorithm which is the first to provide a
non-trivial performance guarantee:

▶ Theorem 15. There is a universal constant c > 0 and a deterministic algorithm which,
given as input an n-variable k-CNF formula φ, computes the Blake Canonical Form of φ in
time

O(|φ| · n2k+2 · 3n(1−c/k)).

The runtime of this algorithm is similarly near-optimal, given the aforementioned existence
of a k-CNF formula with 3n(1−O(log k)/k) prime implicants.

SAT 2022

9:6 Implicant Coding Lemma

Extensions: m-clause CNFs and monotone k-CNFs. We also give extensions of our results
to m-clause CNFs and monotone k-CNFs (those in which no variable is negated). For m-clause
CNFs, we give a similar bound and algorithm, where logm takes the place of k in the above
results. For monotone k-CNFs, we obtain better bounds on the number of prime implicants
and the runtime of our algorithm for k-CNFs, replacing the 3 in the base of the exponent by 2.
This yields an upper-bound on the minimum DNF size of monotone k-CNF formulas, and we
find that when k = o(n/ log(n)), for large n our bound is tighter than the best-known bound
of 2n(1−1/(100k)), due to Miltersen, Radhakrishnan and Wegner [15]. Notably, the latter
bound is shown using Håstad’s switching lemma [23], which, like PPZ’s Satisfiability Coding
Lemma, underlies a number of results in complexity theory. By extending the Satisfiability
Coding Lemma to give an encoding for partial implicants, we allow comparison between the
Satisfiability Coding Lemma and Håstad’s switching lemma, showing that the Satisfiability
Coding Lemma is “more powerful” in this context, in the sense that its extension yields a
tighter bound.

1.3 Overview of Proofs

We now give a prose overview of the ideas underlying our results. We begin with our encoding
ENCk for implicants, which generalizes the Satisfiability Coding Lemma’s encoding ENCk

PPZ
for satisfying assignments. For context and background, we give a brief description of the
latter. At a high level, the encoding ENCk

PPZ iterates through the variables in uniform
random order, writing down their values in the encoding and plugging in I[xi] for the i-th
variable xi in φ on iteration i. The formula φ is simplified with each iteration: clauses
containing 1 (i.e. satisfied clauses) and literals assigned 0 (i.e. falsified literals) are deleted.
The important exception is when xi appears as a unit clause – a clause comprising either xi

or its negation – appears in φ. The simple but key observation is that the value for xi does
not have to be included in the encoding in this case since the decoder will be able to infer
how xi must be assigned to satisfy the unit clause. This saves precious space.

In more detail, if a variable xi with a critical clause C comes after all variables in C in
the random ordering, we are guaranteed that C simplifies to a unit clause comprising only
the variable xi in this process. The probability that a variable xi comes after all variables in
a clause of length k is 1/k. With j isolated variables, at least j/k of them are eventually
unit clauses in expectation, leading to the expected encoding length of n− j/k.

Our encoding ENCk proceeds similarly, except now over the alphabet {0, 1, ∗}, and when
I[xi] = ∗, we delete literals xi and ¬xi from φ and append ∗ to the encoding. The analysis of
our encoding relies on our generalized notion of a critical clause being defined specifically so
as to provide an analogous guarantee: a variable xi with a critical clause C has probability
at least 1/k of coming after all variables in C, in which case it need not be recorded.

Since every size-j prime implicants is j-isolated, our encoding algorithm gives rise to a
bound on the total number of prime implicants of a k-CNF formula. We first bound the
number of size-j prime implicants, #PrimeImplicantsj(φ), for each j by 3n(1−c/k) for some
universal constant c, and then sum over j ∈ [n]. Our encoding algorithm also gives rise to
an algorithm for generating the Blake Canonical Form. An inefficient strategy is to decode
every ternary string of length at most n− j/k using every permutation of variables, since
every prime implicant is encoded as some such string for some such permutation. We obtain
our near-optimal algorithm by showing that our guarantees on encoding length only requires
k-wise independent permutations rather than fully random ones.

M. Mossé, H. Sha, and L.-Y. Tan 9:7

2 Implicant Coding Lemma

In this section, we prove Theorem 10. We first state our encoding and decoding algorithms
in prose, following up with formal presentations and a proof of the lemma.

The encoder ENCk
π(φ, I) is parameterized by a random permutation π, which it uses to

relabel the variables in φ and I. We initialize the encoding to be the empty string and then,
for each i ∈ [n], do the following. If xi is in some unit clause of φ, do nothing. Otherwise,
append the value to which xi is mapped to the encoding. We then replace φ with φ(i, I), the
result of substituting I[xi] for xi in φ. Thus if xi is free, all literals containing it are deleted,
and if xi is fixed, all literals which contain xi and are mapped to 0 are deleted, and all other
literals containing xi are mapped to 1, so that their clauses are satisfied and thus deleted.
Formally:

Algorithm 1 Encoding algorithm ENCk
π(φ, I) for k-CNFs.

relabel φ and I according to π
initialize an empty string y
φ0 = φ

for i in 1,...,n do
if xi not in a unit clause in φi−1 then

append I[xi] to y
end
φi = φi−1(i, I)

end
return y

The decoder DECk
π(φ, y) again relabels φ according to π, and then for each i ∈ [n] does

the following. If there is no unit clause, simply read the value for xi off of the encoding
y. Otherwise, if there is a unit clause containing a literal xi or ¬xi, the decoder sets the
variable xi to satisfy the clause instead of reading another value from the encoding. In both
cases, the decoder assigns the variable xi and simplifies the formula φ before proceeding to
the next iteration. Formally:

Algorithm 2 Decoding algorithm DECk
π(φ, y) for k-CNFs.

relabel φ according to π
ψ0 = φ

J = empty implicant
for i in 1,...,n do

if xi not a unit clause of ψi−1 then
J [xi] = read next symbol of y

else
J [xi] = 1 if unit clause is xi and 0 if the unit clause is ¬xi

end
ψi = ψi−1(i, J)

end
Relabel J according to π−1

return J

SAT 2022

9:8 Implicant Coding Lemma

We now prove Theorem 10:

Proof.
Prefix-free. To show this, we will show that the decoding algorithm inverts the encoding
algorithm. That is, DECk

π(φ,ENCk
π(φ, I)) = I for all implicants I of φ. Fix such an implicant

I and its encoding y = ENCk
π(φ, I). It suffices to show by induction that the following hold

at the beginning of iteration i.
1. The restriction of I to the first i− 1 variables is precisely the value of J constructed by

DECk
π(φ, y) so far.

2. The encoder and decoder have inspected the same number of characters in the encoding,
moving from left to right.

3. φi−1 = ψi−1.

The base case holds trivially. Assuming the claims hold at the start of iteration i, we
will prove the claims hold at the start of iteration i+ 1. Consider the ith iteration. By the
inductive hypothesis φi−1 = ψi−1, so both the encoding and decoding algorithms move into
the same case, depending on the presence of a unit clause.

In the if case, the encoder adds the encoding precisely the value used by the decoder,
by the inductive hypothesis on the second claim. This establishes the first claim. Both the
encoder and decoder use one character of the encoding, so the second claim holds as well.
The third claim then follows from the first claim and the fact that φi−1 = ψi−1.

In the else case, since I is an implicant, only one of xi and ¬xi can be a unit clause
in ψi−1 = φi−1. Therefore this uniquely (and correctly) determines the value used by the
decoder, establishing the first claim. Neither the encoder nor the decoder uses a character of
the encoding, so the second claim holds as well. Finally, the third claim follows from the
first claim and the inductive hypothesis on the third claim.

Therefore at the end of iteration i, or the beginning of iteration i+ 1, each claim holds,
completing the induction.

Encoding length. It suffices to show that for any j-isolated implicant I, the expected
encoding length of I under ENCk

π over uniformly random permutations π is at most n− j/k.
For then, to establish Theorem 10, one defines ENCk to sample π uniformly at random and
run ENCk

π.
Let I be any j-isolated implicant of φ, and π be a uniformly random permutation on [n].

If in the ordering after application of π, a variable xi comes after all other variables appearing
in its critical clause, then on iteration i, this clause remains unsatisfied and is a unit clause
containing xi. Thus ENCk

π passes over the variable xi, saving space by not adding I[xi] to
the encoding. The probability that xi comes after all other variables in its critical clause is
at least 1/k, there being at most k variables in the clause and π being uniform. Since I is
j-isolated, there are at least j critical clauses, so that by linearity of expectation, at least
j/k fixed variables are skipped, giving an encoding of expected length at most n− j/k. ◀

It will serve later discussion to have a bound on the runtime of these algorithms:

▶ Lemma 16. ENCk
π and DECk

π each run in time O(|φ| · n).

Proof. We consider only ENCk
π, as the proof for DECk

π is the same. It suffices to show that
each of the iterations i for i ∈ [n] takes time O(|φ|). On iteration i, we attempt to determine
whether the variable xi appears in a unit clause of φi−1 and update the formula. Each of
these can be done with a linear scan through the formula, requiring time |φi−1| ≤ |φ|. ◀

M. Mossé, H. Sha, and L.-Y. Tan 9:9

3 Bounding the Number of Prime Implicants for k-CNFs

Let φ be any k-CNF. In this section, we use our encoding lemma to give a new upper bound
on #PrimeImplicants(φ). Our bound implies that for all n and all k ≥ 2,

#PrimeImplicants(φ) ≤ n · 3n(1−.358/k).

Our bound requires the following key fact, the proof of which is deferred to the appendix.

▶ Fact 17. If ENC is a prefix-free encoding of S into strings formed from the alphabet {0,1,*},
and ENC has average code length ℓ, then |S| ≤ 3ℓ.

Since size-j prime implicants are j-isolated, together with Theorem 10, the above fact
gives a bound on #PrimeImplicantsj(φ), the number of size-j prime implicants of φ:

▶ Lemma 18. Let φ be a k-CNF. #PrimeImplicantsj(φ) ≤ 3n−j/k.

Proof. By Theorem 10, the average description length of a j-isolated implicant (over the
random choice in permutation) is at most n − j/k. This is also true when the average is
taken over all j-isolated implicants and all permutations. Hence, there exists a permutation π
such that the average description length under the coding ENCk

π is at most n− j/k when the
average is taken over all j-isolated implicants. Then as ENCk

π is prefix-free, from Fact 17, the
number of j-isolated implicants, and hence prime implicants of size j, is at most 3n−j/k. ◀

We now bound the total number of prime implicants for a k-CNF φ. Our bound invokes
the 3-ary entropy function H3(x) = x log3(2) − x log3(x) − (1 − x) log3(1 − x):

▶ Theorem 14. Let φ be a k-CNF. Let c ∈ [0, 2/3] satisfy H3(c) ≤ 1 − c/k. Then

#PrimeImplicants(φ) ≤ [n(1 − c) + 1] · 3n(1−c/k).

In particular, for all k ≥ 2, we can take c = 0.358.

Proof of Theorem 14. Let φ be a k-CNF. If j ≥ cn, by Lemma 18,

#PrimeImplicantsj(φ) ≤ 3n−j/k ≤ 3n(1−c/k).

Thus∑
j≥nc

#PrimeImplicantsj(φ) ≤ n(1 − c) · 3n(1−c/k). (1)

For j < nc, we observe that #PrimeImplicantsj(φ) is at most the number of ways of choosing
locations for j fixed variables and then assigning them, so that∑

j<nc

#PrimeImplicantsj(φ) ≤
∑

j<nc

(
n

j

)
· 2j ≤ 3n·H3(c), (2)

the final inequality following from a familiar bound on the volume of a Hamming ball of
radius nc (see, for example, Proposition 3.3.3 in [6]). Together, inequalities (1) and (2) imply
the first result in the statement of the theorem, given our choice of c.

To see that the second statement in the theorem follows from the first, we observe that
our choice of c is increasing in k, so that the desired bound holds for c with H3(c) ≤ 1 − c/2,
and this is satisfied for c = .358. ◀

SAT 2022

9:10 Implicant Coding Lemma

4 Obtaining Prime Implicants of k-CNFs

This section gives a deterministic algorithm for obtaining all the prime implicants of a k-CNF.
The proof proceeds by a now-familiar method of de-randomization that can be applied to
randomized algorithms which, like the encoding algorithm given in Section 2, depend only
on k-wise (not fully) independent random choices; the method is discussed for example in
Noga Alon and Joel Spencer’s The Probabilistic Method [1], and it is used in Daniel Rolf’s
deterministic algorithm for unique k-SAT [24] and in Paturi, Pudlák, and Zane’s deterministic
algorithm for k-SAT [18].

We begin by noting that one can quickly check whether a given implicant is prime. The
proof of this fact is deferred to the appendix:

▶ Fact 19. Fix a k-CNF φ. One can confirm in time O(|φ| · n) that a partial assignment I
is a prime implicant.

We now give an algorithm for finding all size-j prime implicants. At a high level, the
idea is to try to decode every string s in {0, 1, ∗}n−j/k+1 using every permutation π. This
works because for each size-j prime implicant I, there is some permutation π such that ENCk

π

maps I to a prefix of some such s, and the encoding is prefix-free. The only problem is that
there are many permutations π; to make the algorithm faster, we will pick a smaller set of
permutations π that gives the same guarantee. We include in the appendix a proof of the
following standard fact:

▶ Fact 20. Fix k and a prime power N . There exist random variables X1,, XN uniformly
distributed over N which are k-wise independent, defined over a probability space of size Nk.

▶ Lemma 21. There exists a set Π of permutations of size O(n2k) such that for any size-j
prime implicant I, the expected encoding length of ENCk

π over π ∈ Π is at most n− j/k + 1.

Proof. Let N be the smallest power of 2 greater than n2. Use Fact 20 to obtain X1, ..., XN

that are k-wise independent and uniformly distributed over [N]. Keep only X = (X1, ..., Xn)
and discard the rest.

Define a permutation πX : [n] → [n] such that πX(i) maps i to Xi’s rank in {X1, ..., Xn},
where ties are broken by the subscripts of the variables:

πX(i) = |{Xj : Xj < Xi}| + |{Xj : Xj = Xi and j ≤ i}|.

Without loss of generality, suppose x1 is a critical variable with a critical clause containing
the variables x1, x2, ..., xk. Note that x1 appears last in this clause with respect to πX if
X1, ..., Xk are distinct and X1 > Xi for i ∈ [k]. Thus the likelihood that x1 comes last in
the critical clause according to πX is at least

P[X1, ..., Xk distinct] · P[X1 > X2, ..., Xk|X1, ..., Xk distinct].

Since X1, ..., XN are k-wise independent and uniformly distributed over [N], it follows
that (X1, ..., Xk) is distributed uniformly over [N]k. Thus, Pr[Xi = Xj] = 1/N for distinct
i, j ∈ [k]. By a union bound over all pairs, we have Pr[X1, ..., Xk are all distinct] ≥ 1 − k2

N .
Furthermore, conditioned on X1, ..., Xk being distinct, the probability that X1 > X2, ..., Xk

is 1/k. Thus the likelihood that x1 comes last in the critical clause is at least 1
k (1 − k2

N). By
linearity of expectation, the expected coding length is then at most

n− j

k

(
1 − k2

N

)
≤ n− j

k
+ jk

n2 ≤ n− j

k
+ 1.

Let Π contain all possible πX, of which there are Nk = O(n2k). ◀

M. Mossé, H. Sha, and L.-Y. Tan 9:11

We now consider the faster version of the naive algorithm described above and bound its
runtime:

Algorithm 3 Find size-j prime implicants of a k-CNF.

PI = ∅
Π = the permutations given by Lemma 21
for π ∈ Π and s ∈ {0, 1, ∗}n−j/k+1 do

I = DECk
π(s)

if I is a prime implicant then
add I to the set PI

end
end
Return PI

▶ Lemma 22. The above algorithm runs in time O(|φ| · n2k+1 · 3n−j/k).

Proof. By Lemmas 16 and 19, we repeatO(|φ|·n) operations forO(n2k·3n−j/k) iterations. ◀

We can now show Theorem 15:

▶ Theorem 15. Let φ be a k-CNF. Then for H3(c) ≤ 1 − c/k, we deterministically obtain
the BCF in time

O(|φ| · n2k+2 · 3n(1−c/k)).

Proof of Theorem 15. It suffices to show that one can find all size-j prime implicants in
time O(|φ| · n2k+1 · 3n(1−c/k)), since summing over j ∈ [n] then gives the desired result. As
in the proof of Theorem 14, we consider two cases. If j ≥ nc, we use Algorithm 3 and apply
Lemma 22. Otherwise, j < nc. Then we enumerate over all partial implicants with at most
j fixed coordinates, and, using Fact 19, check if each is a prime implicant. To do this for all
j < nc takes time

O(|φ| · n) ·
∑

j<nc

(
n

j

)
· 2j ≤ O(|φ| · n) · 3n(1−c/k),

by the same reasoning used in the proof of Theorem 14. ◀

5 Extensions

In this section, we lay out extensions of our results to m-clause and monotone CNFs.

5.1 m-clause CNFs

We give a coding lemma for m-clause CNFs using a width-reduction technique of Hirahara [8]

▶ Lemma 23. There exists a randomized, prefix-free encoding ENCm(φ, I) over the alphabet
{0, 1, ∗}, such that any j-isolated implicant I of an m-clause formula φ has expected encoding
length at most n− j/k + 1, where k = 2+log3(m)

1−log3(2) .

SAT 2022

9:12 Implicant Coding Lemma

As before, we first describe each algorithm in prose, following up with a more formal
presentation. Fix an m-clause CNF φ, and j-isolated implicant I. Set k = 2+log3(m)

1−log3(2) . For a
clause C, denote by Ck the truncation of C to the first k variables in C (with respect to
the ordering induced by π) and denote by φk the conjunction of Ck for all clauses C in φ.
Notice that φk is a k-CNF.

The encoding algorithm, ENCm
π , is a recursive procedure. In the base case, I is an

implicant of φk. We then set the encoding to be 1 ◦ ENCk
π(φk, I) where the 1 is used to mark

the case split. We will argue that I must be at least j-isolated with respect to φk and thus
we can use the ENCk

π to guarantee an expected encoding length of at most n− j/k

In the recursive case, I is not an implicant of φk. Here we select some clause Ck
i such

that I does not assign any literal in Ck
i to 1. We then communicate the case split, the (index

of) the selected clause, and the assignments I makes to the variables in the selected clause.
Formally, we append to our encoding 0 ◦ ⟨i⟩3 ◦ ⟨Ck

i , I⟩3, where ⟨Ck
i , I⟩3 is some canonical,

ternary representation of Ck
i , with I[xi] substituted for each variable xi in Ck

i . Note that
our choice in Ck

i ensures that I assigns all the literals in Ck
i to 0 or ∗ which requires at

most k log3(2) ternary digits to represent. Finally, we simplify the formula by assigning all
the variables in Ck

i according to I (as is done in ENCk) and call the encoding algorithm
recursively on the simplified formula and the remaining partial assignment. Letting S denote
the variables appearing in Ck

i , we let I|S denote the restriction of I to the set S, I|S̄ denote
the restriction of I to the variables not in S, and φ(I|S) denote the simplified formula.

Algorithm 4 Encoding algorithm ENCm
π (φ, I) for m-clause CNFs.

initialize an empty string y
let C1, ..., Cm enumerate the clauses in φ

if I is an implicant of φk then
append 1 ◦ ENCk

π(φk, I) to y
break

else
fix some truncated clause Ck

i such that I does not assign any variable in Ck
i to 1.

let S contain the variables appearing in Ck
i

append 0 ◦ i ◦ ⟨Ck
i , I⟩3 ◦ ENCm

π (φ(I|S), I|S̄) to y

The decoding algorithm DECm
π inverts the encoding as follows. It reads the first bit to

determine which case split was taken during the encoding. If it was 1, then simply return
DECk

π(φk, y). If it was 0, read i and I’s assignments to Ck
i from the next log3(m) and

k log3(2) bits respectively. From this, we can determine I’s assignments to the k variables in
Ck

i . Then, we simplify φ using these assignments and make a recursive call on the simplified
formula and the remainder of the encoding.

Algorithm 5 Decoding algorithm DECm
π (φ, y) for m-clause CNFs.

initialize an empty implicant I
case = read first bit of y
if case = 1 then

return DECk
π(φk, y)

else
i = read the next log3(m) symbols of y
fill I by the partial assignment defined by the next k log3(2) symbols
recursively call DECm

π (φ(I), y)

M. Mossé, H. Sha, and L.-Y. Tan 9:13

Proof of Lemma 23. First we will show the following.

▷ Claim 24 (Base case). If I is an implicant of φk, then it must be j′-isolated for j′ ≥ j

▷ Claim 25 (Recursive case). If I is not an implicant of φk, there is some clause Ck
i with

exactly k literals such that if S is the set of variables appearing in Ck
i , I|S̄ is a j′-isolated

implicant of φ(I|S) for j′ ≥ j − k.

For Claim 24, let C be a critical clause for xi in φ with respect to I. Then I maps every
literal to 0 or ∗ except the literal in C involving xi. Since I is still an implicant of φk, Ck

must contain this literal. Furthermore, since literals may only be deleted from C to get Ck,
the literal involving xi remains the only literal assigned 1 by I. Thus, Ck is again critical for
xi in φk with respect to I. Since critical clauses remain critical, at least j variables have
critical clauses in φk and thus I is a j′-isolated implicant of φk for j′ ≥ j.

For Claim 25, let Ck
i be a clause such that I does not assign any variable in Ck

i to 1.
Since I is an implicant of φ, there was a literal in Ci that was assigned 1, which is now
missing. Thus, Ci originally had more than k literals and the truncation Ck

i has exactly k
literals. Let S be the variables appearing in Ck

i . Let C be a critical clause for some variable
xj /∈ S of φ. Since xj is not assigned in φ(I|S), and the rest of the variables are assigned
consistently with I, C remains critical for xj in φ(I|S). Since |S| = k, and there were j
variables with critical clauses in φ, there are at least j − k variables with critical clauses in
φ(I|S) with respect to I|S̄ .

This concludes the proof of the two claims. We will now show that ENCm
π is prefix-free

and has the desired expected encoding length.

Prefix-free. We will show that DECm
π (φ,ENCm

π (φ, I)) = I for all implicants I of φ. The
recursive case is inverted by DECm

π since the ordering of the clauses and variables are fixed.
Then, ENCm

π eventually reaches the base case since k variables are removed at every recursive
call and I remains an implicant of φ at the start of each call to ENCm

π step by Claim 25.
The base case follows from the result on ENCk

π.

Encoding length. We claim by induction on the number of recursive calls that the length
of the encoding is in expectation (with respect to π) at most n− j/k + 1. For the base case,
by Claim 24, we have that I is a j′-isolated implicant of φk where j′ ≥ j, so the encoding
length is 1 more than the expected encoding length of ENCk

π(φk, I), which by Theorem 10 is
at most n− j′/k ≤ n− j/k, as required.

If there is a recursive call, by Claim 25, we have that φ(I|S) is a formula with n − k

variables, and I|S̄ is a j′-isolated implicant of φ(I|S) with j′ ≥ j − k. Then by the inductive
hypothesis, the average encoding length of I|S̄ is at most n− k − (j − k)/k + 1. Thus, the
average encoding length of I in this case is at most

1 + log3(m) + k log3(2) + (n− k) − (j − k)/k + 1
= 1 + log3(m) + k log3(2) + n− k − j/k + 2
= n− j/k + 1,

where the last equality follows from our choice of k, which gives

log3(m) + k log3(2) − k + 2 = 0. ◀

Let #PrimeImplicantsj(φ) denote the number of size-j prime implicants. As in the
k-CNF case, we get a bound from the encoding lemma, together with Fact 17:

SAT 2022

9:14 Implicant Coding Lemma

▶ Lemma 26. For an m-clause CNF, we have #PrimeImplicantsj(φ) ≤ 3n−j/k+1, where
k = 2+log3(m)

1−log3(2) .

We then repeat the analysis in the proof of Theorem 14:

▶ Theorem 27. Let φ be an m-clause CNF, k = 2+log3(m)
1−log3(2) and H3(c) = 1 − c/k. For

m-clause CNFs with m ≥ 3,

#PrimeImplicants(φ) ≤ [n(1 − c) + 1] · 3n(1−c/k)+1.

Replacing the decoder DECk
π with DECm

π in the k-CNF construction gives immediately:

▶ Theorem 28. Let φ be an m-clause CNF. Let k = 2+log3(m)
1−log3(2) , and H3(c) = 1 − c/k. We

deterministically obtain the BCF in time

O(|φ| · n2·k+2 · 3n(1−c/k)+1).

5.2 Monotone k-CNFs
We get a tighter bound and a faster algorithm in the monotone case, using the following fact,
the proof of which is deferred to the appendix.

▶ Fact 29. If φ is monotone, every prime implicant assigns every variable to either 1 or ∗.

It follows from this fact that 0 never appears in any encoding of a prime implicant in the
monotone case. We thus achieve a shorter encoding length, using the following analog of
Fact 17 shown by Paturi, Pudlák and Zane [19]:

▶ Fact 30. If ENC is a prefix-free encoding of S into strings formed from the alphabet
{1,*}, and ENC has average code length ℓ, then |S| ≤ 2ℓ.

Applying this to the analysis of our encoding scheme, we get the following.

▶ Corollary 31. For a monotone k-CNF, the number of size-j prime implicants is at most
2n−j/k.

▶ Theorem 32. If φ is a monotone k-CNF and c ∈ (0, 1/2] is such that H2(c) ≤ 1 − c/k,
then

#PrimeImplicants(φ) ≤ n · 2n(1−c/k).

In particular, for all k ≥ 2, one can take c = .282.

Proof. We will show that #PrimeImplicantsj(φ) ≤ 2n(1−c/k) for each j. If j ≥ cn, then
Corollary 31 gives

#PrimeImplicantsj(φ) ≤ 2n(1−c/k).

Otherwise, j < cn. In this case we use the fact that there are at most
(

n
j

)
prime implicants;

prime implicants for monotone formulas contain only 1 and ∗, we only need to pick j out of
n variables to assign 1. Using an entropy bound on the binomial coefficient,

#PrimeImplicantsj(φ) ≤
(
n

j

)
≤ 2H2(c)·n.

By our choice in c, #PrimeImplicantsj(φ) ≤ 2n(1−c/k). ◀

M. Mossé, H. Sha, and L.-Y. Tan 9:15

Denote by dnfsize(φ) the size of the shortest DNF equivalent to φ. We now show that
Theorem 32 also gives a bound on the dnfsize for monotone k-CNFs. To that end, we recall
that an essential prime implicant is one with a completion which is the completion of no
other prime implicant, and we use an observation due to Quine [21], the proof of which is
deferred to the appendix.

▶ Fact 33. If φ is a monotone formula, then:
1. All prime implicants of φ are essential.
2. The Blake Canonical Form of φ is the shortest DNF equivalent to φ

Combining Fact 33 and Theorem 32 yields:

▶ Corollary 34. If φ is a monotone k-CNF, then dnfsize(φ) ≤ n · 2n(1−c/k), for c = 0.282.

Thus when k = o(n/ log(n)), for large enough n the factor of n is negligible, and the
above bound is tighter than the best-known bound of 2n(1−1/(100k)), shown by Miltersen,
Radhakrishnan and Wegner [15]. We note that one can also obtain Corollary 31 from
the Satisfiability Coding Lemma; since every prime implicant is essential and so maps to
some unique satisfying assignment, the satisfying assignments can be partitioned by their
j-sensitivity and then bounded using the lemma. However, unlike the Satisfiability Coding
Lemma, our construction gives rise to an algorithm for obtaining the minimal DNF of a
monotone k-CNF. Indeed, the construction used in the general k-CNF case and the analysis
in Theorem 32 yield:

▶ Theorem 35. Let φ be a monotone k-CNF. Then for c ∈ (0, 1/2] such that H2(c) = 1−c/k,
we deterministically obtain the BCF (or, equivalently, the minimal DNF) in time

O(|φ| · n2k+1 · 2n(1−c/k)).

In particular, for all k ≥ 2, one can take c = .282.

References
1 Noga Alon and Joel H Spencer. The probabilistic method. John Wiley & Sons, 2004.
2 Ashok K Chandra and George Markowsky. On the number of prime implicants. Discrete

Mathematics, 24(1):7–11, 1978.
3 Adnan Darwiche and Auguste Hirth. On the reasons behind decisions. In Giuseppe De

Giacomo, Alejandro Catalá, Bistra Dilkina, Michela Milano, Senén Barro, Alberto Bugarín,
and Jérôme Lang, editors, ECAI 2020 - 24th European Conference on Artificial Intelligence,
29 August-8 September 2020, Santiago de Compostela, Spain, August 29 - September 8, 2020 -
Including 10th Conference on Prestigious Applications of Artificial Intelligence (PAIS 2020),
volume 325 of Frontiers in Artificial Intelligence and Applications, pages 712–720. IOS Press,
2020. doi:10.3233/FAIA200158.

4 David Déharbe, Pascal Fontaine, Daniel Le Berre, and Bertrand Mazure. Computing prime
implicants. In 2013 Formal Methods in Computer-Aided Design, pages 46–52. IEEE, 2013.

5 B Dunham and R Fridshal. The problem of simplifying logical expressions. The Journal of
Symbolic Logic, 24(1):17–19, 1959.

6 Venkatesan Guruswami, Atri Rudra, and Madhu Sudan. Essential Coding Theory. University
at Buffalo, 2012.

7 Thomas Dueholm Hansen, Haim Kaplan, Or Zamir, and Uri Zwick. Faster k-sat algorithms
using biased-PPSZ. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2019, pages 578–589, New York, NY, USA, 2019. Association for Computing
Machinery. doi:10.1145/3313276.3316359.

SAT 2022

https://doi.org/10.3233/FAIA200158
https://doi.org/10.1145/3313276.3316359

9:16 Implicant Coding Lemma

8 Shuichi Hirahara. A duality between depth-three formulas and approximation by depth-two.
arXiv preprint, 2017. arXiv:1705.03588.

9 Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva. Abduction-based explanations for
machine learning models. In Pascal Van Hentenryck and Zhi-Hua Zhou, editors, Proceedings
of AAAI19-Thirty-Third AAAI conference on Artificial Intelligence, number 1 in Proceedings
of the AAAI Conference on Artificial Intelligence, pages 1511–1519, United States of America,
2019. Association for the Advancement of Artificial Intelligence (AAAI). AAAI Conference on
Artificial Intelligence 2019, AAAI 2019 ; Conference date: 27-01-2019 Through 01-02-2019.
doi:10.1609/aaai.v33i01.33011511.

10 Alexey Ignatiev, Nina Narodytska, and João Marques-Silva. On validating, repairing and
refining heuristic ML explanations. CoRR, abs/1907.02509, 2019. arXiv:1907.02509.

11 Said Jabbour, Joao Marques-Silva, Lakhdar Sais, and Yakoub Salhi. Enumerating prime
implicants of propositional formulas in conjunctive normal form. In European Workshop on
Logics in Artificial Intelligence, pages 152–165. Springer, 2014.

12 Vasco M Manquinho, Paulo F Flores, João P Marques Silva, and Arlindo L Oliveira. Prime
implicant computation using satisfiability algorithms. In Proceedings Ninth IEEE International
Conference on Tools with Artificial Intelligence, pages 232–239. IEEE, 1997.

13 Joao Marques-Silva, Thomas Gerspacher, Martin C Cooper, Alexey Ignatiev, and Nina
Narodytska. Explanations for monotonic classifiers. In International Conference on Machine
Learning, pages 7469–7479. PMLR, 2021.

14 Edward J McCluskey. Minimization of boolean functions. The Bell System Technical Journal,
35(6):1417–1444, 1956.

15 Peter Bro Miltersen, Jaikumar Radhakrishnan, and Ingo Wegener. On converting CNF to
DNF. Theoretical computer science, 347(1-2):325–335, 2005.

16 Luigi Palopoli, Fiora Pirri, and Clara Pizzuti. Algorithms for selective enumeration of prime
implicants. Artificial Intelligence, 111(1-2):41–72, 1999.

17 Ramamohan Paturi, Pavel Pudlák, Michael E. Saks, and Francis Zane. An improved
exponential-time algorithm for k-sat. J. ACM, 52(3):337–364, May 2005. doi:10.1145/
1066100.1066101.

18 Ramamohan Paturi, Pavel Pudlák, Michael E Saks, and Francis Zane. An improved exponential-
time algorithm for k-sat. Journal of the ACM (JACM), 52(3):337–364, 2005.

19 Ramamohan Paturi, Pavel Pudlák, and Francis Zane. Satisfiability coding lemma. In
Proceedings 38th Annual Symposium on Foundations of Computer Science, pages 566–574.
IEEE, 1997.

20 Willard V Quine. The problem of simplifying truth functions. The American mathematical
monthly, 59(8):521–531, 1952.

21 Willard V Quine. Two theorems about truth-functions. Journal of Symbolic Logic, 1954.
22 Willard V Quine. A way to simplify truth functions. The American mathematical monthly,

62(9):627–631, 1955.
23 Alexander A Razborov. Bounded arithmetic and lower bounds in boolean complexity. In

Feasible Mathematics II, pages 344–386. Springer, 1995.
24 Daniel Rolf. Derandomization of ppsz for unique-k-sat. In International Conference on Theory

and Applications of Satisfiability Testing, pages 216–225. Springer, 2005.
25 Andy Shih, Arthur Choi, and Adnan Darwiche. A symbolic approach to explaining bayesian

network classifiers. In Proceedings of the 27th International Joint Conference on Artificial
Intelligence, IJCAI’18, pages 5103–5111. AAAI Press, 2018.

26 Navid Talebanfard. On the Combinatorics of SAT and the Complexity of Planar Problems.
PhD thesis, Department Office Computer Science, Aarhus University, 2014.

27 Navid Talebanfard. On the structure and the number of prime implicants of 2-CNFs. Discrete
Applied Mathematics, 200:1–4, 2016.

28 Christopher Umans. The minimum equivalent DNF problem and shortest implicants. Journal
of Computer and System Sciences, 63(4):597–611, 2001.

http://arxiv.org/abs/1705.03588
https://doi.org/10.1609/aaai.v33i01.33011511
http://arxiv.org/abs/1907.02509
https://doi.org/10.1145/1066100.1066101
https://doi.org/10.1145/1066100.1066101

M. Mossé, H. Sha, and L.-Y. Tan 9:17

A Proofs of Facts

In this appendix, we include proofs of the facts used in the paper.

Proof of Fact 12. To see that I is j-isolated, note that each of variables xi for which
I[xi] ∈ {0, 1} must have some critical clause, since otherwise all clauses in which xi appears
are twice satisfied, so that the set of literals I \ {xi} is an implicant, contradicting the
primality of I. To see that the converse is not generally true, consider J = {xi} ∪ I for any
size-j prime implicant I and any xi ̸∈ I. Then J is j′-isolated for some j′ ≤ j, and J is not
a prime implicant, and in particular is not a size-j′ prime implicant. ◀

Proof of Fact 17. Let ℓI denote the length of ENC(I) for I ∈ S. Then ℓ =
∑

I∈S ℓI/|S| is
the average encoding length. Since ENC is prefix-free, the events EI of rolling a three-sided die
and stopping upon generating I are disjoint, and their probabilities sum to 1:

∑
I∈S 3−ℓI ≤ 1.

We wish to show that ℓ ≥ log3 |S|:

ℓ− log3 |S| =
∑
I∈S

1
|S|

(ℓI − log3 |S|) = −
∑
I∈S

1
|S|

(log3 3−ℓI + log3 |S|)

= −
∑
I∈S

1
|S|

log3(|S|3−ℓI) ≥ − log3

(∑
I∈S

3−ℓI

)
≥ 0,

where the penultimate inequality follows from concavity of log. ◀

Proof of Fact 19. We wish to check whether a partial assignment I is a prime implicant of
φ. First, compute φ(I), the result of replacing each variable xi in φ with I[xi]. Then, iterate
over all clauses in φ(I). If any clause in φ(I) is all 0’s, reject I, which is not a satisfying
assignment; otherwise, delete all 0’s appearing in the clause. If a clause contains only one
literal which is assigned to 1, this is a critical clause for the variable xi mentioned in that
literal; delete this clause (which is satisfied) entirely, and add xi to a set S.

After these deletions, we are left with a CNF formula φ̃. Because all variables appearing
in φ̃ are free and we have deleted clauses from φ satisfied by I and the literals which are
assigned 0 by I, it follows that I is an implicant if and only if φ̃ is a tautology. Now, φ̃
is a tautotology if and only if each of its disjunctive clauses is a tautology, and one can
easily check whether any such clause C is a tautology: simply ensure that for each literal ℓ
mentioned in the disjunction C, some literal equivalent to its negation of ℓ is also mentioned
in C. Thus one can check whether I is an implicant. To check whether I is a prime implicant,
simply confirm that S contains all variables fixed by I; if not, reject I, which fixes variables
that do not have critical clauses.

In total this takes time O(|φ|+n·logn), where the linear term corresponds to computation
of φ(I) and iteration over all clauses, and the remaining term corresponds to operations on
S. We will only be needing the looser bound of O(|φ| · n). ◀

Proof of Fact 20. Let F be a finite field of N elements. Sample uniform c0, ...ck−1 ∈ F. Let
Xα =

∑
i ciα

i. There are Nk choices of coefficients, and k-wise independence follows by
Lagrange interpolation. ◀

Proof of Fact 29. Let I be an implicant of φ. It suffices to show that if ¬xi ∈ I for some
i, the assignment I ′ = I \ {¬xi} is a smaller implicant of φ. Indeed, let J be some total
assignment agreeing with I ′ on its fixed variables. If Ji = 0, then J agrees with I well, and
so satisfies φ. Otherwise, Ji = 1, then J ⊕ i satisfies I, and hence φ, and J ⊕ i ≤ J , so by
monotonicity, J again satisfies φ, as required. ◀

SAT 2022

9:18 Implicant Coding Lemma

Proof of Fact 33. Let φ be any monotone formula. We show the first statement, as the
second follows immediately. Let I be some prime implicant of φ, viewed as a set of un-negated
literals. Let σ be the total assignment that assigns everything in I to 1 and every other
variable 0. We claim that no other prime implicant covers σ. Indeed, let J be a prime
implicant that covers σ; we will show that J ⊆ I. If not, there is some variable i such that
xi ∈ J , and xi /∈ I, but then J does not cover σ because σ is the ith variable assigned 0.
Thus we have that J ⊆ I, as I was prime, it must be the case that J = I, which shows that
the only prime implicant that covers σ is I. ◀

	1 Introduction
	1.1 Our main result: A coding lemma for implicants
	1.2 Applications of Theorem 10: Prime Implicants of k-CNF formulas
	1.2.1 Background and context
	1.2.2 Our results

	1.3 Overview of Proofs

	2 Implicant Coding Lemma
	3 Bounding the Number of Prime Implicants for k-CNFs
	4 Obtaining Prime Implicants of k-CNFs
	5 Extensions
	5.1 m-clause CNFs
	5.2 Monotone k-CNFs

	A Proofs of Facts

