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Abstract
We present an extension of the OptiLog Python framework. We fully redesign the solvers module to
support the dynamic loading of incremental SAT solvers with support for external libraries. We
introduce new modules for modelling problems into Non-CNF format with support for Pseudo
Boolean constraints, for evaluating and parsing the results of applications, and we add support for
constrained execution of blackbox programs and SAT-heritage integration. All these enhancements
allow OptiLog to become a swiss knife for SAT-based applications in academic and industrial
environments.
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1 Introduction

In the last twenty years, the efficiency of SAT engines (solvers) has experimented a great
success. Actually, they have become the core engines of other higher-level engines: #SAT
(Sharp-SAT), MaxSAT (Maximum Satisfiability), QBF (Quantified Boolean Formulas),
PBO (Pseudo-Boolean Optimization), SMT (Satisfiability Modulo Theories), Model finding,
Theorem proving, ASP (Answer Set Programming), LCG (Lazy Clause Generation), CSP
(Constraint Satisfaction Problems), etc.

Despite the tremendous success of SAT applications in several domains, the access to
these resources by members of other research communities, industrial environments, and
students of undergraduate courses has been rather limited due to the absence of friendly
frameworks. The same story applies to other areas of computer science.

The Python programming language [40], thanks to its simplicity, has dramatically
turned the situation around, becoming the middleware to interconnect many scientific
libraries through Python bindings such as Numpy [24], Pandas [41], scikit-learn [38], Pytorch
[37], Keras [13], etc. This interconnection has definitely allowed to develop more complex
applications and to indirectly justify further the individual utility of each library.

In Constraint Programming we also find several Python applications or bindings such as
CPLEX [25], Gurobi [23], OR-Tools [21], COIN-OR [14], SCIP [19], Z3 [15], PySMT [20],
cnfgen [27], PySAT [26], PyPbLib [32], SAT Heritage [5], OptiLog [2], etc.
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In this paper, we focus on a new release of the OptiLog Python framework [2] for SAT-
based applications with significant contributions. The idea is to make of OptiLog the tool of
choice to support researchers, practitioners, or students along all the development process
that involves modelling the problem, implementing a solving approach, tuning the overall
approach, and evaluating its effectiveness. OptiLog covers all these steps. Moreover, thanks
to its versatility, it can be used to develop other systems not necessarily related to SAT
problems.

The paper is structured as follows: in Section 2 we present the general architecture of
the new OptiLog framework. In Section 3, we present the new Modelling module to define
problems. In Section 4 we describe how the Solvers module has been completely redesigned.
Next, in section 5 we introduce the new BlackBox module to execute external tools within
OptiLog. In Section 6 we describe the new additions to the Tuning module. In Section 7 we
describe the new Running module to execute experiments and parse the results. Finally, we
conclude with Section 8, providing some closing thoughts and future work.

We provide as supplementary material (also available from the OptiLog’s documenta-
tion [31]) a case study with full detail that covers all the steps of the development process.

2 OptiLog Framework Architecture

OptiLog [2] was designed as a Python library for rapid prototyping of SAT-based systems.
However, we will see that it provides features (such as the running and tuning modules) that
can be used in other scenarios not necessarily only for developing constraint programming
systems. In particular, OptiLog provided four main modules for its end-user API: The
Formula module, the PB Encoder module (renamed as Encoder Module), the SAT solver
module, and the Automatic Configuration (AC) module (renamed as Tuning module).

In this paper, we extend OptiLog’s end-user API to ease its usage in education and
industry by providing three new modules: a higher-level modelling language within the
Modelling module, a Running module that simplifies the execution of experiments and their
analysis, and a BlackBox Module that eases the integration of third-party tools. Additionally,
the original Solvers module, which allows executing within OptiLog the C++ libraries of
incremental SAT solvers, has been completely redesigned. Also, the Tuning module that
allows the interconnection with automatic configurators has been extended and integrated
with the new Running module.

OptiLog is the evolution of our PyPbLib [32] package, which is also used by PySAT [26].
OptiLog is now also available through PyPi [18]:

$ pip install optilog

Figure 1 shows the new architecture we propose for OptiLog, a full description on the
current architecture can be found in the OptiLog manual [31]. This architecture supports
the user along the development process:
1. Model the problem into a more richer and compact formalism (combining Non-CNF

Boolean and Pseudo-Boolean expressions) through the Modelling module. And, translate
the model into a formalism supported by constraint programming solvers, e.g. Boolean
formulas in Conjunctive Normal Form (CNF) or Weighted CNF, thanks to the Formula
and Encoders modules.

2. Implement the solving algorithmic approach through: (i) the Solvers module that
allows using External Libraries such as libraries of incremental C++ SAT solvers and,
(ii) the BlackBox module to execute External Tools such as generators, preprocessors,
feature extractors, binaries of other solvers (such as the SAT solvers available from SAT
Heritage [6]), or any other system command, etc.
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3. Tune both the encoding and solving choices from a holistic point of view, through
the Tuning module, to increase the effectiveness of their interconnection on a given
training set.

4. Evaluate the resulting system on a test set thanks to the Running module.

In the following, we describe with further detail the new contributions.

Figure 1 OptiLog’s architecture.

3 Modelling Module

This module provides a rich and compact formalism to model problems. In particular, this
module allows modelling problems with non-CNF Boolean and Pseudo Boolean expressions
that can be automatically transformed into the SAT formula provided by the Formulas
module. The non-CNF expressions are translated into SAT using the Tseitin transformation.
The Pseudo-Boolean expressions are normalized [1] translated into SAT with the additional
use of the Encoders Module. The goal is to come up with a richer formalism, that frees the
user from reimplementing typical transformations to SAT, yet close enough to the formalism
accepted by the solvers in OptiLog. We think that OptiLog can be further used by other
Tools with higher formalism such as Minizinc [34], i.e, sort of OptiLog FlatZinc.

1 a = Bool(’a’)
2 b = Bool(’b’)
3 c = Bool(’c’)
4 e1 = ~a + ~b + ~c < 2
5 e2 = ~(a & b & c)
6 e3 = e1 & e2
7 e4 = If(a, b ^ c)
8 p1 = Problem(e1, name=’p1’)
9 p2 = Problem(e2, name=’p2’)

10 p3 = Problem(e3, name=’p3’)
11 p4 = Problem(e4, name=’p4’)
12 t = TruthTable(p1, p2, p3, p4)
13 t.print()

Figure 2 Basic example of a problem
definition.

| a | b | c | p1 | p2 | p3 | p4 |
+---+---+---+----+----+----+----+
| 0 | 0 | 0 | 0 | 1 | 0 | 1 |
| 0 | 0 | 1 | 0 | 1 | 0 | 1 |
| 0 | 1 | 0 | 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 | 1 | 0 | 0 |
| 1 | 0 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 0 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 0 | 0 | 0 |

Figure 3 Truth table representation for
p1, p2, p3 and p4.

In Figure 2, we can see a little example of the new modelling formalism. We first define
the Boolean variables that will appear in the formula (lines 1-3). These variables have to be
labelled with an identifier.

Then, in line 4 we create our first expression to encode the constraint ¬a + ¬b + ¬c < 2.
In general, we can directly use the Python logic operators (∼, &, |, ∧) and their counterparts
(Not, And, Or, Xor) to create Boolean expressions and the Python arithmetic operators
(+, −,*, <, <=, >=, >, ==) to create Pseudo-Boolean expressions. We can also use the If,

SAT 2022
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Iff classes to create implications and double implications1. Lines 5 and 7 encode the
constraints ¬(a ∧ b ∧ c) and a → (b ⊕ c) respectively, whereas in line 6 we encode the
conjunction of expressions e1 and e2.

Finally, in lines 8-11 we transform the created expressions to instances of the class Problem.
A Problem represents the conjunction of a set of expressions. In this case, we add a single
expression to each Problem, and we name each of the problems to reference them later.

In line 12, as an example of how this package can be used for also for educational purposes,
we create the truth table for our four problems and we print them in line 13 producing the
output shown in Figure 3. This is very useful not only to teach any introductory course on
propositional logic but also to double-check some small formulas.

Lines 14-19 in Figure 4 show how we can use a SAT solver to obtain a solution for our
problem. First of all, we need to translate our formula into CNF DIMACS format [16] which
is the input format for SAT solvers. In line 14, we create an instance of the SAT solver
Glucose41. Then, in line 16, we add the clauses forming our CNF formula to the SAT solver
and execute the solver in line 17. If the input instance is satisfiable we can obtain a model
and decode that model according to the labels of our variables. The resulting model is finally
printed in line 19 obtaining the output: P3 solution: [a, b, ∼c].

13 (...)
14 s = Glucose41()
15 p3_cnf = p3.to_cnf_dimacs()
16 s.add_clauses(p3_cnf.clauses)
17 s.solve()
18 solution = cnf.decode_dimacs(s.model())
19 print(’P3 solution:’, solution)

Figure 4 Example on how to solve p3 and extract its model.

Now, we can also query whether problem p4 is a logic consequence of p3 (p3 entails p4),
i.e., ¬a + ¬b + ¬c < 2, ¬(a ∧ b ∧ c) |= a → (b ⊕ c) which is equivalent to ask whether the
conjunction of all the premises and the negation of the consequence, i.e., (¬a + ¬b + ¬c <

2) ∧ ¬(a ∧ b ∧ c) ∧ ¬(a → (b ⊕ c)) is unsatisfiable. Figure 5 shows how to do it in OptiLog.

19 (...)
20 s = Glucose41()
21 p5_cnf = Problem(e3 & ~e4).to_cnf_dimacs()
22 s.add_clauses(p5_cnf.clauses)
23 print(’Is p5 Satisfiable:’, s.solve())

Figure 5 Logic consequence example.

Since the logic consequence is valid the SAT solver reports the formula is unsatisfiable:
Is p5 Satisfiable: False.

In the OptiLog documentation[31], we can find a more complex application of OptiLog
to model, solve, tune and run the SlitherLink problem2. There exist other modelling python
libraries that can be used to model problems. For example, CPMpy [22] is a library that
allows the representation of matrix-related constraints using Numpy arrays [24]. pyAiger is a
circuit-oriented modelling library to model combinatorial circuits. Although it shares some
similarities with OptiLog’s Modelling module, it lacks some of its higher-level features such
as Pseudo-Boolean expressions support. As future work, we will integrate these libraries into
OptiLog to be used within the Modelling module.

1 These two classes do not naturally map to any Python operator.
2 Also in the appendix attached to this submission.
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4 Solvers Module

The solvers module has been completely redesigned with a more modular philosophy that
allows dynamic solver loading and a more flexible compilation pipeline:
1. Release of the iSAT interface: Within this version the python framework OptiLog is

able to use External Libraries provided they implement a given interface. In particular,
OptiLog releases the iSAT C++ interface to the developer community [30] and welcomes
solver developers to make their C++ SAT solvers compliant with this interface. Now, a
SAT solver compiled with the interface as a shared object (.so file) can be dynamically
loaded into OptiLog. At [30] GitHub repository several examples of solvers implementing
the iSAT interface can be found.

2. Dynamic Solver loading: On import, OptiLog will automatically bind all its incorpor-
ated solvers and the user-provided ones. A user may include a new SAT solver by setting
the OPTILOG_SOLVERS environment variable to the path where the .so files added by the
user are located.

3. Out of the box SAT solver integration: OptiLog integrates several state-of-the-art
SAT solvers as .so files that can be directly used in Python: Cadical 1.0.2 and Cadical
1.5.2 [12], Glucose 4.1 and Glucose 3.0 [7], Picosat [10], Minisat [17] and Lingeling 18 [11].
Unlike in PySAT these solvers can be also parameterized from OptiLog.

4. Fast and Flexible Development: This new way of managing External Libraries
allows fast integration of the solvers by decoupling the solvers from the framework itself.
Moreover, now solver developers are in control of the compilation pipeline, which allows
them to link or include external libraries and modules. On the other hand, PySAT requires
solver developers to implement their interface with a full binding through Python’s C API
and a corresponding Python wrapper class, forcing developers to have extensive knowledge
of Python’s C API. OptiLog’s approach is simpler and less error-prone by removing code
repetition and does not require solver developers to have Python knowledge.
Since the last release, we have also expanded the capabilities of the interface. Now with
automatic support for bz2 compression, solver cloning, SIGINT handling, and multithread
support:

5. Signal handling and multithread support: OptiLog is able to handle SIGINT signals
while providing multithread support by releasing the Global Interpreter Lock (GIL)
before calling solve or propagate, while PySAT cannot handle signals when multithread
support is enabled. This may be a bottleneck for complex SAT-systems where one thread
is executing a SAT solver and other threads are dedicated to other tasks. In this case,
PySAT can not manage signals sent to the SAT solver.
Moreover, OptiLog handles SIGINT signals gracefully, allowing multiple SIGINT signals
to be caught and handled, meanwhile, PySAT implementation blocks and does not throw
exceptions after the first signal.

6. Support for Solver cloning: We have added support for solver cloning. Solver cloning
allows solvers to copy their current state and create a new solver object that is equivalent
to the original. Cloning can involve replicating the internal state of all the data structures
of the solver. The goal is that we can guarantee that the search in the new solver will
evolve exactly as in the original solver at the point where the cloning was performed.

7. Efficient formula loading: In contrast with PySAT, our formula loading methods
are implemented directly in C++, which allows very efficient loading. These formulas
may be loaded into Formula objects or directly into the solvers, avoiding the inefficient

SAT 2022
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representation in Python. OptiLog provides support for .cnf and .wcnf files that may be
compressed with gz or bz2. Here we can find a comparison in runtime speed between
PySAT and OptiLog. The benchmark instantiates a Glucose 4.1 solver and loads the
hard clauses of every WCNF instance in the Incomplete Weighted track of the MaxSat
Evaluation 2021. The graph below shows the mean of the loading times of the 33
uncompressed instances that took more than 30 seconds to load on PySAT. OptiLog was
able to load all the instances with less than 12GB of RAM, while PySAT required 36GB.
Their average size of the instances in number of clauses is 34.5M, while their average
size in MB for uncompressed, compressed in .gz, and in .bz2 is 1055.5 MB, 176.37 MB,
and 102.7 MB respectively. Additionally, the largest instance that we used had 132.7M
clauses, and a size of 3.7GB, 501MB, 200MB for its uncompressed version, compressed
with .gz, and .bz2 respectively.
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5 BlackBox Module

Executing External tools such as: generators, preprocessors, feature extractors, binaries of
other solvers, or any other system command, usually becomes a very ad-hoc and contrived
procedure. These are the main contributions:

1. Execution and configuration of External Tools: We have developed the BlackBox
module that allows the execution and parsing of arbitrary programs while running in a
memory and time-constrained environment with the help of the runsolver tool [39]. These
black boxes are also integrated with the Tuning module so that they can be automatically
configured (see section 6). We also provide utilities to parse the output of the execution
of these programs with regular expressions.

2. Integration with Satex: We have further merged the Blackbox module with SAT
Heritage [6]. This allows OptiLog to run any SAT solver developed in SAT Competitions
[9] since 2000. We are in the process of collecting the configurable parameters for these
solvers to enable the tuning of them. We have integrated the wrapper wSatex (see
Figure 1) that acts as a bridge for the SAT Heritage Docker Images. With this wrapper,
OptiLog can call solvers from all the SAT competitions and automatically parse their
output. Solvers can be called with .cnf files or by using the CNF formula, which will
transparently use memory files that do not write to disk for a more efficient resource
usage.
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6 Tuning Module

This module allows the user to define a configuration scenario to tune a given application
(solver, algorithm, function, blackbox, etc). With this scenario OptiLog automatically
generates all the files and resources to run independently an automatic configurator (tuner)
3 (see example in the supplementary material). These are the new features we have added:
1. Automatic deployment of the winning configuration. We have also simplified the

user interaction with the tuning process. Now, the winning configuration reported by
the tuner can be automatically recovered. The user can now get a new instance of the
application properly set to the wining configuration and ready to be executed.

2. Automatic configuration of BlackBoxes. Thanks to the addition of the BlackBox
module, we now allow to automatically configure any of the executables that the BlackBox
module can handle (see section 5). We follow the same interface that we use to configure
Python functions and iSAT solvers, as it can be seen in Figure 6. This addition opens
the door to use OptiLog to ease the configuration process of any External tool and be
applied in other research communities, education programs, or industrial environments.

Configurable

BlackBox

SystemBlackBoxSatexBlackBox

iSAT

...Cadical152Glucose41

Figure 6 Diagram of the Configurable classes in OptiLog.

As we can see in the example on the Slitherlink problem in the documentation and
the supplementary material, by applying the tuner GGA[3] we are able to solve 25% more
instances and we decrease the PAR10 metric by 66%.

7 Running Module

To evaluate the performance of an application (e.g. SAT-based system) we typically evaluate
it on test data-sets (e.g. set of SAT instances) and analyze the results according to some
metric. In this context, a task is the evaluation of the application on a particular data-set.

In this work, we have also extended OptiLog to tackle this tedious and error-prone step
by providing an automatic procedure. This procedure submits all these tasks to (potentially)
any execution environment, collects and parses the output of these tasks, and aggregates the
results. These are the main features of the new Running module:
1. Execution scenario. An execution scenario is defined by: (i) the application(s), (ii)

the data-sets (e.g. SAT instances) that will be used, (iii) the execution limits (CPU,
memory. . . ), and (iv) a submitter script.

2. Running the scenario. In order to execute the scenario, OptiLog will call a submitter
script supplied by the user. OptiLog provides example scripts for executing locally (using
Task Spooler [29]) and in a High Performance Cluster (using Sun Grid Engine [33]), and
potentially on the cloud (currently under development). Note that OptiLog remains
agnostic against execution platforms, thus allowing the user to provide ad-hoc scripts for
custom execution environments without hassle. Upon execution, the logs for each task
will be stored in the scenario directory.

3 We currently support GGA [3] and SMAC [28].

SAT 2022
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3. Parsing and aggregating results. Optilog also provides tools to extract information
of the logs, once the experiment has finished. It will read the raw output of each task and
will parse the information that the user specifies using filters. The information is then
presented to the user as a Pandas [41] dataframe. We decided to use this data structure
as, over the years, it has become the de facto standard by data scientists. Its flexibility,
as well as the large support from third-party tools (such as visualization tools), allows
the user to extract insights from the results of the experiment painlessly.
A filter is defined by:

The regular expression for the value to be extracted.
If we want to retrieve all the matches of the regular expression.
If we want to store the timestamp from when the value was reported.
A name for the value. This will correspond to a column in the dataframe.

In particular, for SAT-based solvers that follow a standardized output format, we provide
some templates. Currently, we support SAT solvers and MaxSAT solvers that conform to
the DIMACS output format used by the SAT competition [9] and MaxSAT evaluation [8].
For example, the SAT template comes with filters to detect the satisfiability of a formula
and its model. The MaxSAT filter also detects the cost.

Competition organizers, research groups, etc. have already their own tools, less or more
automatized, to carry out their experiments. This is a very time-consuming part, error-prone
of the research process and a non-negligible task of software engineering. Even in the same
research group or community different individuals reinvent the wheel systematically when it
has to do with managing experiments.

OptiLog aims to provide a common baseline so that we can all build on top and mitigate
the impact of this step in the development process. Moreover, having this common base we
enforce the reproducibility and trust on experimental results.

8 Conclusions and Future Work

We have presented new extensions for the framework OptiLog which opens a new range
of applications. These new applications range from supporting researchers, educators, and
practitioners to create more ambitious end-to-end applications cases where SAT plays a key
role. OptiLog allows to focus our energy on modelling and solving problem issues while still
being able to carry out comprehensive experimental studies involving also tuning steps.

As future work, we plan to enrich the OptiLog framework. From a more technical
perspective, we plan to extend it with support for distributed algorithms (including cloud
computing) and a new module for metaheuristic algorithms. From a more educational point
of view, we will generate a database of course assignments with instructions for educators
and students including autograders.
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A Preliminaries

▶ Definition 1. A literal is a propositional variable x or a negated propositional variable ¬x.
A clause is a disjunction of literals. A formula in Conjunctive Normal Form (CNF) is a
conjunction of clauses.

▶ Definition 2. A truth assignment for an instance ϕ is a mapping that assigns to each
propositional variable in ϕ either 0 (False) or 1 (True). A truth assignment is partial if the
mapping is not defined for all the propositional variables in ϕ.

▶ Definition 3. A truth assignment I satisfies a literal x (¬x) if I maps x to 1 (0); otherwise,
it is falsified. A truth assignment I satisfies a clause if I satisfies at least one of its literals;
otherwise, it is violated or falsified. A truth assignment that satisfies all the clauses of a
CNF formula is a model.

▶ Definition 4. The SAT problem asks whether there exists a model for a CNF formula. If
that is the case, the formula is said to be satisfiable, otherwise it is unsatisfiable.

▶ Definition 5. An unsatisfiable core is a subset of clauses of a SAT instance that is
unsatisfiable.

▶ Definition 6. Let A and B be SAT instances. A |= B denotes that A entails B, i.e. all
assignments satisfying A also satisfy B. It holds that A |= B iff A ∧ ¬B is unsatisfiable.

▶ Definition 7. A pseudo-Boolean (PB) constraint is a Boolean function of the form∑n
i=1 qili ⋄k, where k and the qi are integer constants, li are literals, and ⋄ ∈ {<, ≤, =, ≥, >}.

A Cardinality (Card) constraint is a PB constraint where all qi are equal to 1.

B Example: Modelling, Solving, Tuning and Running the Slitherlink
Problem using OptiLog

In these sections, we show how to model, solve, tune and run a concrete problem using
OptiLog. We focus on the Slitherlink problem, originally invented by Nikoli [35] which was
shown to be NP-Compete in [42]. We assume that OptiLog is installed, and runsolver [39]
exists in the PATH. For more implementation details see the official documentation [31].
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Modelling the Slitherlink problem

In the Slitherlink problem, we are given an n × m grid. A cell in the grid can be empty or
contain a number between 0 and 3. Each cell has 4 associated edges (its borders). The goal
is to select a set of edges among all cells such that: (1) if a cell has a number k, then k of its
edges have to be selected; and (2) the selected edges form exactly one cycle that does not
cross itself.

Figure 7 Problem representation (left) and solution (right).

In Figure 7 we can see an example of the Slitherlink problem and its only correct solution.
Figure 8 shows the code needed to model the problem into a SAT instance. We generate a
Problem (line 2) instance where the constraints are added (lines 7, 13). Then, we convert
this Problem to a CNF formula (line 14). Notice that this model is not taking into account
the fact that there has to be exactly one cycle.

1 def encode_slitherlink(sl):
2 p = Problem()
3 # Vertex Constraints: ensure the path is contiguous
4 for i in range(sl.m + 1):
5 for j in range(sl.n + 1):
6 edges = sl.vertex_edges(i, j) # edges that intersect at vertex i,j
7 p.add_constr((Add(edges) == 0) | (Add(edges) == 2))
8 # Cell Constraints
9 for j, row in enumerate(sl.cells):

10 for i, cell in enumerate(row):
11 if cell == None: continue
12 edges = sl.cell_edges(i, j)
13 p.add_constr(Add(edges) == cell)
14 return p.to_cnf_dimacs()

Figure 8 Encoding to SAT for the Slitherlink problem.

Solving the Slitherlink problem

In this section, we describe an incremental SAT-based solving approach (implemented in
function solve_slitherlink of Figure 9) for the Slitherlink problem. We use the encoding
described in the previous section to obtain a solution to the CNF formula generated in line 3
that guarantees that for each cell exactly the amount of edges described by the number
associated with the cell are selected and they form a continuous path.
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1 def solve_slitherlink(instance, seed):
2 sl = SlitherLink(instance)
3 cnf = encode_slitherlink(sl)
4 s = Cadical()
5 s.set(’seed’, seed)
6 s.add_clauses(cnf.clauses)
7 while s.solve() is True:
8 n_cycles = sl.manage_cycles(s, cnf)
9 if n_cycles > 1: continue

10 print(’s YES’, flush=True)
11 return cnf.decode_dimacs(s.model())
12 print(’s NO’, flush=True)
13
14 def manage_cycles(self, solver, cnf):
15 model = solver.model()
16 cycles = self.find_cycles(cnf.decode_dimacs(model))
17 if len(cycles) > 1:
18 for cycle in cycles:
19 clause = [~edge for edge in cycle]
20 solver.add_clause(cnf.to_dimacs(clause))
21 return len(cycles)

Figure 9 Incremental SAT-based approach to solve the Slitherlink problem.

Lines 4 to 6 instantiate the SAT solver with a seed, where the clauses generated in
Figure 8 are added. Then, we iteratively query the SAT solver (line 7) to provide a solution
(a model). In line 8, we call manage_cycles that checks the number of cycles reported by the
SAT solver solution and adds to the SAT solver the clauses that forbid these cycles in the
solution. Then, if only one cycle was found we are done and we have found a solution. We
return the solution once decoded the model provided by the SAT solver (line 11). Otherwise,
we will exit the main loop (line 7) if there is not a solution with just one cycle and we report
the problem has no solution.

Tuning with OptiLog

Now that we have concluded the modelling and solving part for the Slitherlink problem, we
can try to improve its performance by tuning our algorithm. In particular, we found that
the Cadical SAT solver has a total of 146 discrete finite domain parameters that would be of
interest to configure. In order to do so, we will use OptiLog’s Tuning module.

The first thing we need to do is to update the solve_slitherlink function to receive a
Cadical SAT solver with its parameters already set, which we achieve by using CfgCls from
the Tuning module, as shown in line 2 of Figure 10.

1 @ac
2 def solve_slitherlink(instance, seed, Solver: CfgCls(Cadical)):
3 sl = SlitherLink(instance)
4 cnf = encode_slitherlink(sl)
5 s = Solver()
6 s.set("seed", seed)
7 s.add_clauses(cnf.clauses)
8 (...)

Figure 10 Modifications in solve_slitherlink to configure the Cadical SAT solver.
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Introducing this change to the function signature does not produce any change to how it
was called before4, so there is no need to modify any of the calls to solve_slitherlink.

Then, we can proceed to create an automatic configuration scenario as shown in Figure 11.
In this example, we will use the GGAConfigurator class to generate the scenario files for
PyDGGA [3, 4]. The following configuration describes a GGA scenario with a PAR10
score5, a memory and time limits for execution of 6GB and 300s respectively, and a total
configuration time limit of 4 hours. The configurator will be trained on a set of 100 random
instances different to the ones used to evaluate its performance. Finally, we generate the
scenario at the directory gga_scenario.

1 from optilog.tuning.configurators import GGAConfigurator
2 from optilog.blackbox import ExecutionConstraints
3 from slitherlink import solve_slitherlink
4
5 time_limit = 300
6 configurator = GGAConfigurator(
7 solve_slitherlink, global_cfgcalls=[solve_slitherlink],
8 input_data="instances/training/*.txt", run_obj="runtime",
9 data_kwarg="instance", seed_kwarg="seed", seed=1,

10 cost_min=0, cost_max=10 * time_limit,
11 tuner_rt_limit=60 * 60 * 4,
12 constraints=ExecutionConstraints(memory=f’6G’, wall_time=time_limit),
13 )
14 configurator.generate_scenario("./gga_scenario")

Figure 11 Script to generate the tuning scenario for GGA.

We configured Cadical with PyDGGA 1.5.8 on a computer cluster with Intel Xeon Silver
4110 CPUs at 2.1GHz cores with 4 parallel processes each. Once the automatic configuration
process has finished, we can automatically extract the best configuration found by GGA by
using the GGAParser functionality of OptiLog’s Tuner module, as shown in Figure 12.

1 from optilog.tuning.configurators.utils import GGAParser
2
3 parser = GGAParser("<GGA output log>")
4 parser.save_configs("./configs", "./gga_scenario", name="best-conf")

Figure 12 Script to parse the best configuration found by the GGA tuner.

This function extracts the best configuration found by GGA and creates the executable
./configs/best-conf.sh with the function solve_slitherlink properly set to the best
configuration. With this final step we have all the required pieces to evaluate and compare
the final performance of our approach by using the OptiLog’s Running module.

Running Experiments
We are interested on comparing the performance of the default configuration with the
tuned configuration of our solve_slitherlink function. To achieve that we will create an
execution scenario by using OptiLog’s Running module, as shown in Figure 13.

First, we describe the settings of our scenario. In particular, we will run the default
configuration by executing the slitherlink.py file, and the tuned configuration found by
GGA (with the wrapper generated by the Tuning module). The problem instances are

4 Although we added a new parameter, CfgCls will automatically add a default value.
5 PAR10 score for a given time limit T is a hybrid measure, defined as the average of the runtimes for

solved instances and of 10 × T for unsolved instances.
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1 from optilog.running import SolverRunner
2 from optilog.blackbox import ExecutionConstraints
3
4 runner = SolverRunner(
5 solvers={"default": "slitherlink.py", "gga": "./configs/best-conf.sh"},
6 tasks="./instances/test/*.txt", scenario_dir=f"./default_running",
7 submit_file="./enque.sh",
8 constraints=ExecutionConstraints(memory=f’6G’, wall_time=300),
9 slots=1, seeds=[1, 2, 3], unbuffer=False, runsolver=False,

10 )
11 runner.generate_scenario()

Figure 13 Execution scenario for the Slitherlink problem.

located by expanding the glob ./instances/test/*.txt. Other execution constraints such
as the time and memory limits can be set, as well as the number of slots. A list of seeds is
provided to the seeds parameter such that each experiment will be executed for each of the
seeds.

OptiLog provides a computing-agnostic running environment. The submit_file para-
meter points to the script that launches each task6 to the computing backend.

Finally, the method generate_scenario() in line 11 of Figure 13 creates an scenario
directory containing all the necessary settings to run the experiments (by default it will create a
directory called default_running). Then, the user can easily run these experiments by using
the optilog-scenario command provided by OptiLog. Unless a specific directory for storing
the logs is indicated using the logs parameter, the directory ./default_running/logs will
be automatically created.

Processing Experimental Results
We include in OptiLog a new functionality within the Running module to automatically
process the logs of the experiments. Figure 14 shows the code to parse the logs for the
Slitherlink problem and its output.

1 >>> from optilog.running import ParsingInfo, parse_scenario
2
3 >>> pi = ParsingInfo()
4 >>> pi.add_filter("res", r"^s (.+)", timestamp=True)
5 >>> df = parse_scenario("./default_running", parsing_info=pi)
6
7 >>> def solved(col): return (col == "YES").sum() / col.shape[0]
8 >>> def parK(col, k=10): return col.fillna(1000 * 300 * k).mean()
9

10 >>> def stats(df, solver):
11 ... print("* Pctg solved:", df[(solver, "res")].agg(solved))
12 ... print("* PAR10:", df[(solver, "time_res")].agg(parK), end="\n\n")
13
14 >>> stats(df, "default")
15 * Pctg solved: 0.51
16 * PAR10: 1541310.3933333333
17 >>> stats(df, "gga")
18 * Pctg solved: 0.87
19 * PAR10: 520862.7966666667

Figure 14 Log processing for the Slitherlink experiment in Figure 13.

6 We provide some example scripts for submitting jobs on OptiLog’s official documentation [31].
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The experiments are parsed line by line following a set of filters that are described with
a ParsingInfo object. A ParsingInfo object is instantiated (line 3), where we add filters
(line 4) to parse the ouptut (specifically ’s YES’ or ’s NO’ lines), and also records the time
at which the result is reported in milliseconds. The parse_scenario function (line 5) parses
the result of the experiments and returns a Pandas [36] dataframe with the parsed data.

Lines 7-12 process the experiment results by using some basic Pandas functions. Finally,
lines 14-19 show the final results of our experiments. In particular, we found that the
automatic configuration of the solve_slitherlink function allows us to solve about 25%
more instances than the default configuration, and improves the PAR10 score by about 66%.
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