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—— Abstract

Core-guided solvers are among the best performing algorithms for solving maximum satisfiability

problems. These solvers perform a sequence of relaxations of the formula to increase the lower
bound on the optimal solution at each relaxation step. In addition, the relaxations allow generating
a large set of minimal cores (MUSes) of the original formula. However, properties of these cores
in relation to the optimization objective have not been investigated. In contrast, minimum hitting
set based solvers (MaxHS) extract a set of cores that are known to have properties related to the
optimization objective, e.g., the size of the minimum hitting set of the discovered cores equals
the optimum when the solver terminates. In this work we analyze minimal cores and minimum
correction sets (MINCSes) of the input formula and its sub-formulas that core-guided solvers produce.
We demonstrate that a set of MUSes that a core-guided algorithm discovers possess the same key
properties as cores extracted by MaxHS solvers. For instance, we prove the size of a minimum hitting
set of these cores equals the optimal cost. We also show that it discovers all MINCSes of special
subformulas of the input formula. We discuss theoretical and practical implications of our results.

2012 ACM Subject Classification Theory of computation — Logic; Mathematics of computing —
Solvers

Keywords and phrases maximum satisfiability, unsatisfiable cores, correction sets

Digital Object Identifier 10.4230/LIPIcs.SAT.2022.26

1 Introduction

The MAXSAT problem takes a set of inconsistent constraints as an input. The goal is to find a
solution that minimizes the number of violated constraints. There are a number of successful
applications of MAXSAT technologies in real-world applications, including software package
upgrade and debugging, bioinformatics, timetabling, planning, and scheduling [24, 16, 15, 18].
The past decade has witnessed a significant performance leap in MAXSAT solving al-
gorithms, which now scale to millions of Boolean constraints. There are two state-of-the-art
families of MAXSAT solvers that perform well on industrial instances [13, 10, 23, 14, 3, 11, 7].
The first one is the MaxHS family of solvers that employ hitting set computations as a
sub-routine [11, 4, 7]. The idea is to gradually unveil the structure of unsatisfiable cores of
the original formula and explore ways to fix them using the minimum hitting set formulation.
Correctness of the algorithm relies on several properties of these cores, e.g. the size of the
minimum hitting set of the discovered cores equals the optimum when MaxHS terminates.
The second type of solvers is called core-guided solvers [12, 19, 17, 13]. These solvers
perform a sequence of relaxations of the original formula using cardinality constraints and
formula transformations (relaxations). These transformations are driven by inconsistencies
of relaxed formulas. It has been shown that, similar to MaxHS solvers, core-guided solvers
implicitly discover a set of minimal unsatisfiable cores of the original formula. However, in
contrast to MaxHS solvers, little is known about how the discovered cores relate to the optimal
cost. Research on investigating characteristics of intermediate relaxed formulas produced by
core-guided solvers is sparse with a few exceptions. For example, Morgado et al. [20] show
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that when a core-guided solver terminates all solutions of the relaxed formula correspond
exactly to minimum correction sets of the input formula. A relation between cores of the
original formulas and transformed formulas was demonstrated in [6].

In this work we focus on properties of relaxed formulas produced by core-guided solvers.
More concretely, we perform our analysis through the lens of unsatisfiable cores and correction
sets of original (sub)formulas that can be obtained from these relaxed formulas during
executions. Our first set of results show that cores of the original formula that core-guided
solvers extract have the same key properties as the core structure obtained by MaxHS solvers.
We carry out a detailed analysis of relaxed formulas obtained by core-guided solvers to
prove these properties. This is an interesting result, as it shows that there is an intrinsic
connection between these two search paradigms that operate in very different ways. Our
second set of results is to analyze both core-related and correction-set-related characteristics
of relaxed formulas. Finally, we discuss theoretical and practical implications of our findings.
For example, we argue that minimal cores extracted by a core-guided solver can be used as
an alternative certificate for the optimal solution. We demonstrate that these cores can be
used to rewrite cardinality constraints to reduce the total number of relaxation variables, or
improve the minimization procedure of unsatisfiable subsets obtained at each iterations.

2 Background

Basic definitions. A maximum satisfiability problem consists of a set of soft clauses Fy =
{C1,...,Cn} and a set of hard clauses Fy, = {Cpry1,...,Cmim | Over a set of Boolean
variables. We denote vars(v¢) a set of variables in clauses of ¢». W.l.o.g., we assume that
Fy, is SAT and F, A Fy, is UNSAT. A literal [ is either a variable x € vars(Fs U F},) or its
negation T. A clause C is a disjunction of literals (I; V --- VI,,). It is often useful to treat
clause literals as a set instead of a disjuction. Thus, [ € C' means that C contains a disjunct
[, and the intersection C7 N Cs is the disjunction of literals that are both in C; and Cy. An
assignment [ is a mapping vars(Fs U Fp,) — {0,1}. A clause C is satisfied by an assignment,
I(C) = 1, iff I(l) = 1 for some | € C, otherwise C is falsified by I and I(C) = 0. A set
of clauses Fy is satisfied by an assignment, I(Fy) = 1, iff I(C) =1forall C € F,. I'is a
solution of MAXSAT if it satisfies all hard clauses Fj,. I is an optimal solution if it minimizes
the number of violated clauses.

We define important subsets of clauses for unsatisfiable formulas: a minimal unsatisfiable
core and a minimum correction set.

» Definition 1 (Core). An unsatisfiable core is a subset of clauses core C Fy such that
core N\ Iy, is unsatisfiable.

» Definition 2 (Correction Set). A correction set is a subset of clauses cs C Fy such that
Fn A (Fs )\ cs) is satisfiable.

» Example 3. Suppose we have four soft clauses Fy : {(z1), (Z1), (x2), (Z1VZ2)}. An example
of a core is core = {(x1), (Z1), (z2)} as it is an unsatisfiable subset of clauses. An example of
a correction set is cset = {(Z1), (z2)}, since if we remove these clauses the remaining formula,
{(z1), (71 V Z2)}, is satisfiable. a

» Definition 4 (Minimal Core). A core is minimal, or MUS, if no proper subset is a core.

» Definition 5 (Minimum Correction Set). A correction set is minimum, or MINCS, if no
other correction set has a smaller cardinality.
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Figure 1 Tteration 0: the cores structure in Example 7 represented as a hyper-graph. Each
hyper-edge (a rectangle) corresponds to a core. Iterations 1-3: a visualization of an execution of PM;
from Example 10. It shows how unsatisfiable subsets of the original problem evolve as PM; relaxes
the formula.

The notions of minimum cores and minimal correction sets can also be defined, but we do
not use them in this paper.

» Example 6. Continue with Example 3. An example of a minimal core is MUS =
{(z1), (#1)}. An example of a minimum correction set is MINCS = {(z1)}. N

Next, we introduce our running example.

» Example 7 (Running example). Consider a MAXSAT problem with 8 soft clauses Fy =

{C1,...,Cs}. We assume that there are hard clauses F, but we do not need to specify them.

Suppose there are 5 minimal cores:
O, C3},{C2, Cu}, {Cs, Cs},{C7, Cs},{C3,C4, C5, Cg, Cr 1}

There are several MINCSes here, e.g. {C1,Cy,Cs}. Hence, the optimal solution is 3 in this
case. Figure 1 (“Iteration 0”) visualizes this example with a graph where each soft clause
corresponds to a node. Each core is a hyper-edge highlighted using a rectangle. J

The core-guided solvers introduce relaxation variables b that are added to the original
clauses. For example, an original clause C; can be replaced with C' = (Cy V by V b3), where
bz, b3 are relaxation variables. We denote C' without relaxation variables as C'y and the set of

relaxation variables in C' as rel(C'), so (C1 V by Vbs)y = Cy and rel(Cy Vb V b3) = {bs, b3}

Note that C = Cy Urel(C). Let ¢ be a formula that contains relaxed clauses. We denote
the set of original clauses that are contained in ¢ as ¢y: ¢y = {Cy | C € ¥}.
Next, we introduce two oracle procedures all-mus(¢)) and all-mincs(¢)) that enumerate

all minimal cores and minimum correction sets for a given sub-formula 9 respectively.

Standard enumeration algorithms can be used to implement these procedures [5, 15, 22].

all-mus(¢p) ={S | S C ¢y, S A Fj, is UNSAT and S is minimal}
all-mincs(¢) ={T | T C vy, (¢y \T) A F}, is SAT and T is minimum}

Note that if ¢ is a relaxed formula produced by a core-guided solver, we project ¥ to the
original clauses ¢y before cores/correction sets are enumerated by these oracles. Next we
introduce hitting sets, which is a central notion in the MaxHS algorithm.

26:3
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» Definition 8. Let S = {S1,...,Sk} be a set of sets of items, where U = UF_|S; is the
universe of items. HS is a hitting set iff HS CU and HSN S; # {},i € [1,k]. A minimum
hitting set, MINHS, is a hitting set of the smallest cardinality.

There is a well-known duality between minimal cores and minimal correction sets. Each
minimal core hits each minimal correction set and vice versa [24].

3 Two MaxSAT algorithms

We describe standard versions of MaxHS and PM; algorithms for solving MAXSAT [11, 12].
We investigate how these algorithms behave given an input MAXSAT formula . Given a
MAXSAT algorithm and an input formula 1, we refer to the trace of all data-structure values
during the algorithm execution on ¢ as an execution of the algorithm. This includes all cores
that the algorithm finds, all transformations of relaxed formulas, cardinality constraints, etc.

Algorithm 1 MaxHS. Algorithm 2 py;.
Input: Fs, Fj Input: Fs, F,
Output: optcost Output: optcost
2 while truc do 1 ¢=0, F; = Fs, cards’ = {}, | p-cores’ = {}
3 hs® = MINHS (h-cores) 2 while true do ) ]
4 Ib* = |ns’| 3 (r,m", I) = SolveSAT(F; A F}, A cards®)
5 (r, cores’) = min-cores-maxhs(F; A F},, hs®) 4 if r then
6 if r then ) 5 .break ) -
7 return [b° ) ) 6 F;Jrl,cardsprl7 p-coresHrl —
8 h-cores’t! = h-cores’ U cores® T -
9 i=i+1 7 Relax(F;,n", cards”’, )
8 =i+l =1
9 return ¢
Algorithm 3 Relaz. Algorithm 4 cores-pm.

P B B Input: n®
p 5o, caras | preore Output: p-cores-meta

p-cores-meta = p-cores-meta U {k}
return p-cores-meta

Output: F§+1, cards®™?, m 1 p-cores-meta = {}
50 P 2 if jmcard(m®)| = 0 then
I n®=n" 0" ={},B={} 3 p-cores-meta — {MinimizeCore(me A Fp)}
2 ’ p-cores-meta’ = cores-pm(n®'©) ‘ 4 return p-cores-meta
5 SOLS = SOLUTIONS(mcard(m)).
’ p-cores’t! = p-cores’ U p-cores-meta’ ‘ 6 for I € soLs(mcard(n®)) do
for C}, € n*© do 7 I"@®) ={Cy | Cen®,CNI=0}
B =BU{b} where bl is fresh 8 # = MinimizeCore(I™ (%) A Fy,)
9
0

' =n' U {(Cy Vbi)}
Fit = (Fi \n"®) U’
i+1 . _ i _
card'™ " = (Zb;'ceB b, =1)

cards't! = cards’ U card’*!

10 return F;*l,cardsHl, m

=

© 00 NO Uk W

The minimum hitting set-based approach. Algorithm 1 shows pseudo-code for the MaxHS
algorithm. MaxHS works by iteratively retrieving the cores of the input formula. The solver
starts with an empty set of encountered cores h-cores® (line 1). At each iteration it finds a
minimum hitting set of these cores, hs’ (line 3). We assume that these cores are minimal.
This requirement does not affect properties of MaxHS but it is more convenient to analyze this
version. Next, the algorithm checks if hs’ is a minimum correction set of the formula. If so,
it terminates. Otherwise, it extracts a set of cores that are not hit by hs?, which explain why
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Table 1 Execution of MaxHS from Example 9.

[4 ] h-cores’ [ hs’ | cores’” |
0 h-cores’ = {} {} {C7,Cs}
1 | h-cores’ U{C7, Cs} {C+} {Cs,Cs}
2 | h-cores' U {Cs,Cs} {Cs} {C1,C3}
3 | h-cores® U {C1,Cs} {C1,Cs} {C2, Cu}
4 | h-cores® U{C,C4} | {C1,C4,Cs} {4

hs’ is not a correction set (line 5). It adds these newly discovered minimal cores to h-cores’
(line 8) and proceeds to the next iteration. We refer to h-cores’ as a core structure as it
stores discovered minimal cores collected up to the ¢’th step.

» Example 9. Consider an execution of MaxHS on Example 7. Table 1 shows an execution
of the algorithm. Initially, the core structure is empty h-cores® = {}, MINHS is empty,
hs® = {}. First we find a core {C7,Cs} and extend the core structure. For simplicity, we
assume that only one core is discovered at each iteration. We find the next minimum hitting
set, in this example it is {C7}, and continue until we find a MINHS that is also a correction
set of the formula. In this execution the size of hs* is 3. The second column shows how the
core structure evolves over the iterations. J

The core structure h-cores’ discovered by Algorithm 1 is a key component of the
algorithm. From a theoretical point of view, we know that the minimum hitting set of
these cores allows computing the optimal cost. Moreover, from the practical viewpoint, the
sequence of cores it finds affects how quickly the size of the minimum hitting set increases.

The core-guided approach. Algorithm 2 shows the standard PM; algorithm [12] (we ignore
parts highlighted in blue for now). The algorithm starts with the strengthening phase, which
checks for a solution with zero cost by hardening all soft clauses. If the resulting formula in
UNSAT, we get a subset of unsatisfied clauses m. During the relaxation phase, the Relax
procedure (Algorithm 3) takes m and relaxes it by adding one fresh variable to each clause
in the core (Algorithm 3, line 6). Finally, it adds a cardinality constraint card’*! so that
the sum of the relaxation variables added at this step is equal to 1 and move to the next
iteration. Note that the introduced cardinality constraints are hard constraints, but we keep
them in a separate set of constraints for convenience.

We deviate from common notational conventions when referring to unsatisfiable subsets.

We use metas to refer to unsatisfiable cores found by PM;. The standard name for m’ is
“an unsatisfiable core”, as indeed, m’ is a core of the corresponding relaxed formula. Our
convention is motivated by reserving the notion of “core” for cores of the original formula,
while meta refers to an unsatisfiable subset of relaxed formulas F?. Sometimes, we need to
explicitly refer to a meta before it is relaxed. We use m*© for the unsatisfiable core before
relaxation (Algorithm 3, line 1).

» Example 10. Table 2 shows a possible execution of PM; on Example 7 (we omit text
highlighted in blue). The second column shows metas obtained at each step. The third
column shows the corresponding relaxed versions of these metas. Finally, the last column
shows cardinality constraints introduced at each step. Figure 1 visualizes how unsatisfiable
subsets of the original formula are evolving as the algorithm progresses. We recall that each
box highlights an unsatisfiable subset. The algorithm terminates in 3 steps. The first meta
that the algorithm finds is m*© = {C3, Cy4, Cs5, Cs, C7}. Each clause in m%© is relaxed with
a fresh variable (see the “relaxed meta” column, ¢ = 0). A cardinality constraint is added
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to the set of cardinality constraints (Z;:?) b]l = 1) and the algorithm moves to the next
iteration. Interestingly, upon relaxation of m®©, all original cores evolve into new larger
unsatisfiable subsets (see Figure 1,Iteration 1). The algorithm completes in 3 steps as the

optimal solution is 3. N

Table 2 Execution of PM; from Example 10.

meta relaxed meta cardinality
" m’ card'*?
0 {03,04705,06707} ‘ {Cng%,Cﬁ\/b};,Cs\/b%,Cf;\/bé,C%\/b%} ZZZSb]l =1

p-cores-meta’ = {{C3,C4, C5,Cs,C7}}

p-cores' = p-cores-meta” = {{C5,C4,C5,Cs,Cr7}}
1] {CsVb;,Crvbr,Cs} | {CeVbs Vg, CrVbr Vb3, Cs V b3} Yt =1

p-cores-meta’ = {{C7,Cs},{Cs,Cs}}
p-cores® = p-cores' Up-cores-meta’ =
{{C3,C4,C5,Cs,C7},{C7,Cs},{Cs,Cs}}
2 | {Cs Vb, CaVbi,Cr,Co} | {Cs VB VS, Ca Vi VEE, CLvb, Co Vi) | 300 ) =1
p-cores-meta’ = {{Cy,C>}, {01,03%}

p-cores® = p-cores® U p-cores-meta® =

{{037 C47 057 067 07}7 {077 08}1 {Cﬁu CS}, {041 02}7 {Clv C3}}

4 MaxHS cores structure

In this section we discuss properties of the core structure, h-cores?, that MaxHS extracts
during execution of Algorithm 1. MaxHS works on the original formula and explicitly builds
up the cores structure h-cores’. We focus on well-known properties of the algorithm [11].

Given an input formula Fs A Fj,, we consider the sequence of sets of minimal cores
S = [cores’, ..., cores”], s.t. cores’~! C cores’,i € [0,k], where cores’ is a set of
minimal cores of Fy A F},. We refer to the ith element in the sequence as S[i] = cores’. We
call § a core-trace as these sets of MUSes are produced by solvers. Recall that all-mus(Fj)
is the set of all MUSes of Fs A F}, (see Section 2).

We consider an UNSAT formula with soft clauses F and its core-trace S produced by an
algorithm, i.e. MaxHS or PM; in our study. We assume that the optimal cost of F§ is opt and
Ib® is the lower bound on the optimal cost that the algorithm derives at the ith step. We

define the following properties of S = [cores?, ..., cores”].

» Property 1. S is incomplete iff S[k] C all-mus(Fy).

» Property 2. S is MINHS-monotonic iff Vi € [0,k] |[MINHS(S[i])| > 1b'.
» Property 3. S[k] is an optimality certificate iff |MINHS(S[k])| = opt.
Let S = [h-cores’, ... h-cores®] be a core-trace of a MaxHS execution.

» Theorem 11. There exists a MAXSAT formula v and a core-trace S of MazHS execution
on ¥ such that Property 1 holds. Properties 2-3 hold for every execution of MazHS.

Proof. Properties 2-3 follow from correctness of MaxHS. Example 9 proves Property 1. <«

We summarize these properties in Table 3 for MaxHS (the first column). Informally, they
mean that as MaxHS progresses, it finds a sequence of subsets of all minimal cores. Sets of
MUSes grow in size, so their [MINHS| is monotonic. Finally, the size of a minimum hitting
set of all discovered cores is equal to the optimal cost. Example 9 shows an example of a
core-trace. Namely, we have:
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S = [h-cores’ = {},h-cores’ = {{C7,Cs}},h-cores? = {{C, Cs}, {Cs,Cs}}, .. .].

The core structure h-cores® plays a critical role in MaxHS not only from a theoretical
perspective but also from a practical standpoint, e.g., we prefer to (a) discover a small
structure if possible and (b) extract cores that increase the size of MINHS at each step.

5 PM; cores structure

Table 3 Properties of the core structures obtained by MaxHS and PM;.

MaxHS PM;
S = [h-cores®, ... h-cores”] | S = [p-cores’, ... p-cores’]
Property 1 | & STk] € all-mus(F%) vl Slopt] € all-mus(F%)
Property 2 | @ IMINHS(S[4])| > 1b® a IMINHS(S[4])| > 1b!
Property 3 | @ |MINHS(S[I€]) = opt vl IMINHS(S[opt])| = opt

In this section we demonstrate that core-guided solvers reveal a core structure of the

original formula enjoying properties similar to the core structure h-cores that MaxHS discovers.

This result is important as it establishes a strong connection between MaxHS and PM;. We
call a counterpart of h-cores discovered by PM; as p-cores. We prove that p-cores possess
the same properties as h—-cores, listed in Table 3.

Algorithm 4 shows a pseudo-code for our cores extraction procedure. It is a modification
of the algorithm in [22]. We introduce a few additional notions. Let 1 C F!. We denote
mcard(t)) the set cardinality of constraints that overlap with relaxation variables in :

mcard(y) = {card € cards | vars(card) Nrel(vy) # {}},

where cards is a set of all introduced cardinality constraints.

» Example 12. Consider m*© from Example 10, mcard(m®*®) = {card'} as vars(card!) N
rel(m>®) = {bi,bi}. Note that if we consider the same meta after the relaxation, we
get mcard(m?) = {card!, card®} as vars(card!) N rel(m?) = {bi,bi} and vars(card®) N
rel(m?) = {b3,...,b3}. a

We consider solutions of cardinality constraints that PM; introduces. Let I be a solution
of mcard () represented as a set of literals.

» Example 13. Consider n?© from Example 12, mcard(m®©) = {card'}. A possible solution
of mcard(m®©) is I = {b}, b}, bk, bs, bk}, where b} = 1 and others are set to 0. N

Define a I"™-projection (miss-projection), I"™(v), as follows
Im(y) ={Cy | C ep,CNI=0}.

Intuitively, I™ (1)) is a subset of clauses of the original formula that are not satisfied by the
solution I. We also define a I"-projection (hit-projection), I" (1)), as follows

"y)={Cy | C ey, CNI#0}.

Intuitively, 1(¢) is a subset of clauses of the original formula that are satisfied by solution I.
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Cs I = {b§, b3, ..., 03,07} Cs
CGVbtli C?Vb% — M C7 V'Y
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J = {b7,b3,...,b5}
[ Cs V bl Cy Vb —— C(;VWM

1,

Figure 2 A visualization of the core extraction process from m"'® in Example 15 for solutions I

and J.

» Example 14. Consider the solution I from Example 13: T = {b}, b}, b1, bk, bL}. In this case,
I™(m?°) = {C,4,Cs,Cs, C7} as these clauses are not relaxed by I in m>©. I"(n?°) = {C3}
as Cjs is relaxed by I. 4

Now, we describe a procedure to extract a core structure by PM;. PM; produces one meta
m’ per iteration. For each discovered m’, core extraction is performed individually using
Algorithm 4. Algorithm 4 takes a meta before relaxation, m*© (Algorithm 3, line 2), as an
input m®. It finds a set of cardinality constraints mcard(m®). If mcard(m®) is empty then
we just minimize m® and return. Otherwise, we go over solutions of mcard(m®). For each
solution I, we build I"™(m®). According to [6], I"(m®) is a core of the original formula and
we extract a minimal core from each I"™(m®). We assume that MinimizeCore returns some
minimal core of I"™(m®) A F}, (Algorithm 4, line 8). We use p-cores’ to store discovered
cores (Algorithm 3, line 3). By construction, p-cores’ contains all minimal cores that have
been collected up to iteration i using Algorithm 4. We can again consider a sequence of
core structures S = [p-cores’, ... p-cores®’!], e.g., S[opt] = p-cores®! that is generated
by PMl.

» Example 15. Consider an execution from Example 10. At the initial step, mcard(m®©) =
{}, as vars(m®®) does not contain relaxation variables (see Table 2, the second column
with m“©). Hence, we learn a minimal core {C3,Cy,Cs,Cq,C7}. In the next step we
consider m"© = {Cg Vv b}, C7 V b}, Cs}. We have vars(card') Nrel(m"®) = {b},b:}. So,
mcard(m!®) = {card!} (see Table 2, the third column with card’). We only consider
solutions that set variables in the intersection, b$ or b3, to one. Hence, we have two solutions:

IT={bs, 0%, ... b5, b} and J = {b},b%,...,b8}.  Therefore,
Im(m!®) = {C7,Cs} and J™(mb) = {Cq,Cs}  are corresponding miss-projections and

{C7,Cs} and {Cs,Cs} are two corresponding minimal cores.

Figure 2 visualizes this process. It shows how each solution maps a meta to a core of
the original formula. In the final step we consider m>© = {C3 Vv b3, Cy V b}, C1,Co}. We
have vars(card!) Nrel(m®®) = {b},bl}. So, mcard(m*“) = {card!'}. Hence, we have two
solutions that set variables in the intersection, b3 or b}, to one.
1= {bé, bi,..., B%} and J = {bi,gé, e ,B%}. Therefore,
I (@>®) = {C4,C1, Ca}, J™(m*>®) = {Cs3,C1,Ca} are corresponding miss-projections;

{C4,C5} and {C3,C1} are two corresponding minimal cores.

In total we discovered 5 cores. We also summarize the cores extraction process in Table 2
(see text highlighted in blue). J

For the rest of the paper, we assume that PM; calls Algorithm 4 for each discovered meta.
The code of PM; highlighted in blue is used to store cores that Algorithm 4 finds for each m*©.
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Figure 3 The sequences of metas M in Example 18 represented as a hyper-graph G2(M). Each
node corresponds to an original clause. Each meta-edge (a rectangle) corresponds to a meta m*.

Consider the sequence of p-cores®. It is a sequence of sets of minimal cores by construction:
[p-cores’, ... p-cores®’!], where p-cores’~! C p-cores’. So, this sequence forms a core-
trace of PMy.

» Example 16. Example 10 shows a core-trace produced by PM; on the running ex-
ample. Namely, S = [p-cores’ = {}, p-cores! = {{C3,C4,C5,Cs,Cr}},p-cores? =
{{O3ac4vc5706507}7{07508}7{06708}}7'"]' -

Our first result is Theorem 17 that is counterpart of Theorem 11: the core structure
p-cores has the same properties as h-cores. Let S = [p-cores’,... , p-cores®’] be a
core-trace of a PM; execution.

» Theorem 17. There exists a MAXSAT formula ¥ and a core-trace S of PMy execution on
1 such that Property 1 holds. Properties 2-3 hold for every execution of PM;.

Table 3 restates properties for p-cores's for PM; (the second column).

To see that Property 1 holds we consider our running example and assume that we
find disjoint metas: m*° = {C;,C3},m"© = {Ca,C4}, and m*© = {Cg, Cs}. In this case,
p-cores? = {{C1,C3},{Ca,Cy4},{Cs,Cs}}, so PM; discovers 3 out of 5 minimal cores. The
next section is devoted to establishing Properties 2-3.

6 Analysis of covers of metas

To establish Properties 2-3, we need to analyze the execution of PM; at each step and prove
a few properties for intermediate subformulas, i.e., m’ and related formulas. We recall that
PM; produces one m’ per step. Hence, if we consider a step i, we have a sequence of metas
accumulated: M = [m?,...,m’]. We call M a meta-trace of PM;.

It will also be useful to define a new hyper-graph structure over M similar to core
structures from Figure 1. Starting with M, build a new sequence of projected metas that
contains sets of original clauses My = [mﬂ, e ,mﬁ]. Then build a m-structure hyper-graph

G;(M) with vertices that are clauses in U;:O mﬂ and hyper-edges {mfL |0<j<i}. When
mﬂ is used as a hyper-edge, we refer to it as m’-edge.

» Example 18. Consider metas in Example 10. We have three metas: M = [m% m!,m?].

Figure 3 shows the corresponding Ga(M) graph. Consider, for instance, m! = {Cs V b} Vv
b5, C7 V by V bz, Cg V b3 }. We have mj = {Cs, C7, Cs}. Hence, we have a meta-edge m' over
nodes {Cs, C7,Cs} (Figure 3, the m!' rectangle). N

We define a cover over a meta m. A similar notion was used for subformula optimization
in [1].
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» Definition 19. A cover of m?, cv(mP) in the graph G;(M) is a set of metasm’ € M that
are reachable from mP-edge in the graph via overlapping meta-edges.

» Example 20. Consider metas in Example 10. We have three metas: M = [m°,m*, m?]. In
G2(M), we have cv(m’) = {m®,m', m?},i € [0,2]. 4

The next observation follows from the construction of a cover.

» Observation 21. Consider the ith iteration and a meta-trace M = [m°,... m?]. A cover
cv(mP), mP € M, is a maximal connected component in G;(M) at the ith iteration.

Next observation is that the number of cardinality constraints over clauses in cv(m) is
equal to the number of metas in the cover. In contrast, this property does not hold for
individual metas as we might have multiple cardinality constraints over clauses in a single m.

» Observation 22. Vm € M the following holds |cv(m)| = |mcard(cv(m))|, where
mecard(cv(m)) = Unp e cym)meard(n?).

Next, we rewrite M = [m?,... m‘] as a sequence of covers. First, we obtain a sequence
[ev(m®),. .., cv(m')]. If two metas m’ and m” belong to the same cover then cv(m’/) = cv(m")
(see Example 20). Hence, we remove all duplicates leaving cv(m’), where j is the largest
index of meta in the cover. So we rewrite M as cv(M) = [ev(m/), ..., cv(m’?)]. Note that

this rewriting preserves all metas, i.e., Upep M = Uj_s cv(m/*), so we just partition them.

» Example 23. Consider Example 10. We have M = [m° m!, m?]. First, we rewrite cv(M) =
[ev(m?), cv(m!), cv(m?)]. As cv(m®) = cv(m!) = cv(m?), cv(M) = [cv(m?)]. Indeed, we have a

single connected component in the graph in Figure 3. a
Finally, we define

p-cores(m’) = p-cores-meta’ (from Algorithm 3, line 2) and
p-cores(cv(m’)) = Upsccvmi)p-cores-meta’.
In other words, minimal cores of a cover is a union of all minimal cores discovered by

cores-pm for each meta in the cover. The next observation states that cardinality constraints
in mcard(cv(m)) relax only clauses in metas of this cover:

» Observation 24. Vcard € mcard(cv(m)) we have vars(card) C rel(cv(m)).
Proof. Follows from Observation 21. |

Next we show how to relate a cover of m* in G;(M) and covers from previous step
in Gi_1(M\ {m’}). Let M’ = M\ {mn’} = [m°,...,m""1] be a sequence of metas at the
(i — 1)*" step. We define a new sequence of covers in G;_;(M’) that overlap with m':
cvs(M’,m") = {cv(w’) € cv(M’) | rel(m’) Nrel(cv(m’)) # {}}. The next properties follow
from the definition of a cover and are useful for the induction argument.

» Proposition 25. Let M and M' = M\ {n'} be sequences of metas at the (i)'" and (i —1)*"
steps. The following holds

GZ(M) = Gifl(M/) U {mi—edge} (]_)

p-cores(cv(m’)) = p-cores(m’) U U p-cores(cu(m’)) (2)
cU(mi)e cvS(M’ m?)

|mcard(cu(m®))| = [{card'}| + Z |mcard(cu(m?))] (3)

cumi)e cvS(M’ mé)
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Intuitively, Proposition 25 (2) reflects the fact that when a new meta-edge is added to
the graph it creates a new connected component. It merges a set of disjoint connected
components in G;_1(M’) that overlap with it. Note that the set cvs(M’,m?) contains exactly
the covers that correspond to these connected components to be merged. Therefore, we can
partition cores of the cover p-cores(cv(m)) into groups: newly discovered cores p-cores(m?)
and cores in covers cv(M’) that m*-edge overlaps with. Similarly, Proposition 25 (3) says that
the number of cardinality constrains can be computed as the sum of cardinality constraints
of relevant covers in cvs(M’,m?) and the last cardinality constraint added at the ith step.

Lemma 26 is key to establishing Properties 2-3. It says that we need to analyze MINHS
of minimal cores of a cover cv(m®) and the number of cardinality constraints that overlap with
metas in cv(m®) on relaxation variables. Informally, |]MINHS(p-cores(cv(m®)))| characterizes
the quality of the discovered core structure of PM;, while |mcard(cv(m?))| specifies the number
of relaxation steps relevant to cv(m?). The lemma establishes that the size of the minimum
hitting set of discovered minimal cores in the cover is at least the number of relaxation steps
to clauses in cv(m?).

» Lemma 26. Vm € M the following holds IMINHS(p-cores(cv(m)))| > |mcard(cv(m))|.

Proof. Sketch We prove by induction on the number of iterations. The induction hypothesis
ensures

IMINHS (p-cores(cv(m’)))| > |mcard(cv(m’))| Vev(m’) € cvs(M’,m)  follows from T.H.

We need to consider two cases in the induction step. The first case is when for some
m’, the inequality from the induction hypothesis is strict: |[MINHS(p-cores(cv(m’)))| >
Imcard(cv(m?))|. In this case we can ignore newly discovered minimal cores p-cores(m) as
argued by:

IMINHS (p-cores(cv(m)))|

= IMINHS(Ueymiyecvs(a mi) p—cores(cv(mj)))| by Proposition 25 (2) ‘

= Y cva)ecvs(mrmi) IMINHS(p-cores(cv(m’)))| by disjointness of covers cv(m’)

> 14X evmiecvs(m m) Imcard(cv(m?))| by I.H. and strictness assumption
= mcard(cv(m')) by Proposition 25 (3)

The second case is when all inequalities are tight: |MINHS(p-cores(cv(m?)))| =
Imcard(cv(m?))|, Vev(m?) € cvs(M’,m’). In this case, we need to show that newly discovered
cores p-cores(m’) must push the minimum size of a hitting set over the core structure at
the previous step (Ucv(mj)ecvs(M/’mi)p_CoreS(CV(mj))) by 1. The full argument is given in
the appendix. |

» Theorem 27. Let S = [p-cores®, ..., p—cores!] be a core-trace of a PM; execution.

Property 2 holds for every execution of PM;.
Proof. Consider again a meta-trace M = [m’, ... m] and recall our re-writing via a sequence
of covers cv(M) = [ev(mi), ..., cv(m’?)].

IMINHS (p-cores?)|
IMINHS (Ueymiyecvmyp-cores(cv(m?))|  as cores can be split into the union
> cvam)ecv (M) IMINHS (p-cores(cv(m?))| by disjointness of covers cv(m?)

Y]

cvmi)ecv(M) Imcard(cv(m?))| by Lemma 26

Z;:o card’ as all introduced cards are included
in mcard(cv(m’))s by Observation 24
g as we add one card per iteration |
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( 0)
Cy o
Cs Cs
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Ch a
A& L
Figure 4 A cores structure in Lemma 29. Figure 5 A meta structure in Lemma 29.
» Theorem 28. Let S = [p-cores’, ..., p-cores®] be a core-trace of a PM; execution.

Property 8 holds for every execution of PM;.

Proof. From Theorem 27 it follows |MINHS(p-cores®!)| > [b°P* = opt. Moreover,
IMINHS (p-cores®")| < opt by definition. <

7 Analysis of metas

We focus on individual metas produced by algorithm PM;. As metas are key objects in
PM; execution, there is a lot of work on understanding what a good meta is (e.g., disjoint
or cardinality-minimal), different encodings of card® are investigated, etc. [11, 17, 9, 2, 8].
However, we show that as a standalone object, a meta has strictly weaker properties compared
to a cover of meta (shown in Section 6), e.g., Lemma 26, Observation 24.

The next lemma explains why metas are not very useful standalone objects to consider
in our study. The amount of relaxation that clauses in a meta get via cardinality constraints
in PM; does not reflect the size of the minimum hitting set of discovered minimal cores of m.

» Lemma 29. There exists an execution of PM; producing a sequence of metas M andm € M
such that IMINHS(p-cores(m))| < |mcard(m)|.

Proof. Consider the example in Figure 4. We have five clauses, Fs; = A?_;C; and four
minimal cores is shown in Figure 4. The next table shows a possible execution.

meta relaxed meta cardinality
i m*® m’ card'*t?
0 {C3,C4, Co} {C3 Vv b3,Cy Vb, Co v b3} S bhi=1
1{01,02\/[)%,03\/@%,05} {6’1\/bf,Cz\/bé\/b%,Cg\/bévb§7C5vb§} Zie{1235}b?:1

Consider M = {m’,m'} (See Figure 5 for the meta structure). We focus on the second
meta m'. To enumerate cores, p-cores considers m1»© = {Cy, Cy V b}, C5 vV b3, C5} (m! before
relaxation) and the corresponding cardinality constraints: mcard(m!'©) = {card!'}. We have
two solutions of the cardinality constraint, so we have:

I = {b%,l_)é} = ™M= {01,03,05} = K = {01,03,05}
I = {B%,bé} = ™M = {01702,05} = K = {01,02}

Note that p-cores(m!) = {{C1,C5,C5},{C1,C2}} by definition and
IMINHS (p-cores(m!))| = [{C1}| = 1. However, |mcard(m!)| = |{card!, card?}| = 2. <

In other words, Lemma 29 states that Lemma 26 does not hold for metas.
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8 Analysis of MINCS

In this section we consider minimum correction sets of the original formulas or its sub-formulas
that PM; produces. We recall that solutions of FP* A F},, as this final relaxed formula is
satisfiable, are exactly minimum correction sets of the original formula [20]. Our goal is to
focus on intermediate steps, so we consider subformulas of F A F},, and analyze how solutions
of cardinality constraints relate to minimum correction sets of these subformulas.

We will focus on covers of metas as we found these to have more potential for
practical use. Next we define how to extract minimal correction sets from a formula
cv(m). Let ¢ = Upecymm’ be a set of all clauses in cv(m), cvy(m) = ¢y and SOLS =
SOLUTIONS(mcard(cv(m))). We define p-sets as a set of minimum correction sets extrac-
ted from solutions:

p-sets(cv(m)) = U {7 | I"(¢)) contains a MINCS of ¢y A F},, and
IeSOLS

7 := ChooseMinCS(I"(z))}

where ChooseMinCS(I"(v))) chooses some subset of I"(¢)) that is a minimum correction set
for ¥y A Fy, if it exists.

» Example 30. Consider M = [m’m!] from Example 10. We get cv(m!) =
{m%,m'} and mcard(cv(m')) = {card!,card?}. There are a lot of solutions for these
two cardinality constraints. However, solutions that contribute to p-sets(cv(m!))
are such that their hit-projection belongs to the following set: [I"(cv(m!)) €
{{Cs, C7},{Cs, C3},{Cs, Cu},{Cs, Cs5},{Cs, Cs},{Cs,C7}}. Eg, I = {bg,b2 U{b| b e
vars(card! A card?)\ {b},b2}} gives I"(cv(m')) = {Cs, C7}. N

Effectively, we consider solutions of mcard(cv(m)) and get a minimum correction set
per hit-projection if it exists. We now establish when p-sets(cv(m)) contains all minimum
correction sets.

» Proposition 31. For all metas m € M we have that if |mcard(cv(m))| = [MINCS(cvy (m))]
then p-sets(cv(m)) = all-mincs(cu(m)).

Proof. Introduce shorthand s := |MINCS(cvy(m))|. Consider again ¢ = Upm’ € cv(m).
Suppose that the order in which metas are added to v is [m’t,... , m’s], m = m’s. Recall
Observation 22, that |cv(m)| = |mcard(cv(m))|, hence, |cv(m)] = s. We run a core-guided
algorithm on v as a standalone formula. There is an execution of the algorithm that
finds the same metas, [m’!,... m’s], and the same cardinality constraints are introduced.
We obtain a formula ¥° A Fj, that must be SAT. The reason for this is that there exists
a minimum correction set of (AR of size s by our assumption. Hence, correctness of
PM; guarantees that the resulting formula is SAT. According to [20], solutions of ¥* A Fy,
correspond to its minimum correction sets. Namely, clauses that are relaxed by auxiliary

variables form a minimum correction set for each solution. <
» Example 32. We continue with Example 30. We recap cv(m!) = {m’ m!}
and mcard(cv(m')) = {card',card’}.  Then, |mcard(cv(m!))] = 2, cvy(m!) =
{m),mj} = {Cs,...,C8}.  There are three cores in this sub-formula, namely,

{{Cﬁ, Cg}, {07, Cg}, {03, Cy, C5, Cg, 07}} Hence, ‘MINCS(CVU(ml)” = |mcard(cv(m1))| =2
and the precondition of Proposition 31 holds. Note that {Cs,Cr}, {Cs,Cs}, {Cs,Cys},
{Cs,C5}, {Cs,Cs}, and {Cs, C7} are ezactly minimum correction sets of cvy(m'). Hence,
p-sets(cv(m)) = all-mincs(cv(m)). J
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Figure 6 Core structure in Proposition 33. Figure 7 meta structure in Proposition 33.

The next proposition highlights another contrast between metas and its cover. If a meta
m© is minimal then relaxing this meta guarantees that its relaxed version m is satisfiable,
namely m A Fj, is SAT. We shows that this property does not hold for covers.

» Proposition 33. 3m € M such that |mcard(cv(m))| < IMINCS(cvy(m))| even if eachm € M
is minimal.

Proof. Consider an example in Figure 6. There are 8 soft clauses in a formula Fj : /\§:1C¢-
Figure 6 shows the core structure. Consider the following execution for the first three steps.

meta relaxed meta
7 mt© m’
0 {05’06707708} {C5\/bé,CGVbé,C7Vb%,Cg\/bglg}
1 {C1,C%,C3,Cu} {C1\/b%,CQVb%,CE\/bg,CAL\/bz}
2 [ {U5s{Ch Vb } Up—y {Ch VOi}Y [ {Ui—s{Cr Vb VUi} Uy {Ch V bi V bt}

Consider M = {m° m!,m?} (see Figure 7). We focus on m?>. We compute cv(m?) =
{m% m',m?}. Note that cvy(m?) = Fs. There are 6 cores in cvy(m?), it contains all cores. The
minimum correction set of cvy(m?) is of size 4. However, |mcard(cv(m?))| = 3. <

9 Discussion

We discuss theoretical and potential practical implications and limitations of our results. Our
first set of results is summarized in Table 3. The first implication of these properties is that
there is a connection in the way MaxHS and PM; explore the search space. It shows that both
algorithms explicitly (MaxHS) or implicitly (PM;) explore the core structure of the original
formula. Moreover, properties of these core structures are the same. Another interesting
observation is that Properties 1-3 are well-known for h-cores, and correctness of the MaxHS
algorithm relies on these properties. In contrast, correctness of PM; does not depend on
Properties 1-3 as it is based on correctness of the cost-preserving transformation of the
relaxation step. However, our results demonstrate that p-—cores can be seen as an alternative
certificate for the optimal solution that PM; outputs. Another theoretical implication follows
from Proposition 31. Given a precondition, our minimal correction set extraction procedure
finds all minimal correction sets of a subformula cvy (m). This result hints that covers of metas
are interesting objects to consider in their own right. For example, it might be beneficial to
perform a meta cover exhaustion procedure to speed up search. We consider more potential
practical implications using a set of use-cases in Appendix B.
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Next we discuss limitations of our results. Namely, whether it is possible to extend these

results to other core-guided solvers, like OLL-based solvers, e.g. RC2 [13], and PMRESs [21].

First, we discuss Algorithm 4. This algorithm can be adjusted to work with both RC2 and
PMREs. RC2 introduces soft cardinality constraints to relax the formula. Therefore, at the
ith iteration, i < opt, every solution of active cardinality constraints has to be refuted by a
core of the original formula, otherwise the current relaxed formula is satisfiable. Similarly,
PMRES rewrites the formula at each step by introducing new variables and clauses. These
new variables and clauses form a set of Boolean circuit constraints (an interested reader can
find examples of visualizations of constraints introduced by RC2 and PMRES as circuit-like
structures in [2]). At the ith iteration, i < opt, every solution of these circuit constraints
has been refuted by a core of the original formula. So, in summary, Algorithm 4 can be
integrated in RC2 and PMRES and generate cores of the original formula. Second, we discuss
Theorem 17. We note that our proofs rely on a specific property of PM;. Namely, consider a
solution J of mcard(cv(m>®)), a clause Cy in m“® and a relaxation variable b} of Cj at the
ith iteration. Then J U {b%} is a solution of mcard(cv(m’)) = mcard(cv(m>®)) U card’. In
other words, we can relax any clause of m* in addition to clauses relaxed by J and it is a valid
solution of mcard(cv(m?)). This is used in Lemma 34, Appendix A,for example. However,
this property does not hold for RC2, as its cardinality constraints enforce an upper bound on
the number of clauses that can be relaxed for different subsets of clauses in cv(m’). Similarly,
PMRES’s constraints might not guarantee the property above. To summarize, it is matter
of future research to determine if Theorem 17 holds for RC2 and PMRES algorithms.

10 Related work

There are a few lines of work related to our results. A relaxation and strengthening framework
for minimal correction sets enumeration was proposed in [20]. The authors showed that
solutions of the last relaxed formula correspond to exactly minimum correction sets of the
input formula. We extended this result by demonstrating new properties about solutions of
relaxed subformulas of the original formula. In [6], a connection between metas of relaxed
formulas and cores of the original formula was identified. Namely, they showed that solutions
of cardinality constraints can be used to extract cores of the original formula. In this work,
we establish important properties of these extracted cores. Finally, in [22], minimal cores and
minimal correction sets enumeration procedure was proposed that is based on theoretical
results from [20, 6]. In our work, we use a conceptually similar enumeration procedure for
minimal cores, while our contribution is to prove properties of the enumerated cores.

11 Conclusion and Future Work

In this work we investigate properties of intermediate formulas that core-guided solvers
generate during execution. We showed a number of interesting properties that reveal a
relation between these formulas and minimal cores and minimum correction sets of the
original (sub-)formulas. The main direction for future work is to investigate how these
properties can be used to speed up MAXSAT in practice. One challenge is that the minimal
cores extraction procedure is computationally expensive. We require enumerating all solutions
of cardinality constraints as we find one MUS per solutions. As the solver proceeds, the
number of solutions grows exponentially. Therefore, it is interesting to identify whether we
can consider subsets of solutions or to perform enumeration more efficiently. For example,
in the scenario for compressing a core, it is sufficient to enumerate solutions that produce
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a large set of disjoint cores. Another direction to investigate is how our results can better
guide the search procedure. For example, would it be more efficient to drive search to keep
a number of disjoint covers or to grow a single cover at each step by adding metas to this
cover? Finally, we plan to investigate how our results can be extended to core-guided solvers

that use soft cardinality constraints for the relaxation step [17, 13].
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A Analysis of covers of metas (missing proofs)

We recall few notations. We define p-cores(cv(m)) = Upjecv(m)cores-pm(m”®). In other
words, minimal cores of a cover is a union of all minimal cores discovered by cores-pm
for each meta in the cover. Similarly, mcard(cv(m)) = Upjecvmymcard(m’) and its solution
I"(cv(m)) = I"(Uns ccvmm?).

We work with minimum hitting sets of minimal cores p-cores. A hitting set H is defined
as a set of clauses. A solution I of mcard is a set of literals and I" is defined as the subset
relaxed clauses in m. Hence, we can define a subset relation between H and I7.

» Lemma 34. Consider a meta-trace M = [m°,... m‘], m =m’. Let H be a minimum hitting
set of minimal cores in p-cores(cv(m)). There is a solution I of mcard(cv(m)) such that
I"(cv(m)) C H.

Proof. We prove by induction on m‘.
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Base case. In the base case, M = [m°]. We have cv(m’) = {m°}. Hence, p-cores(cv(m®)) =
p-cores(m®). In turn, jmcard(m®®)| = 0, as rel(m”®) = {} — no relaxation variables have
been introduced at this point. So, we compute x = MinimizeCore(m”® A F},) (Algorithm 4,
line 3). So, p-cores(m”) = {x}. The minimum hitting set H of p-cores(cv(m)) must contain
a clause in k to hit this minimal core k. Suppose, Cy € H and C}, € k.

We construct a solution I of mcard(cv(m®)) that satisfies the statement. As cv(m®) = {m°},
mcard(cv(m’)) = mcard(m®) = {card'}.

Note that the cardinality constraint card! can be used to relax any clauses in m
clause is relaxed in m°, i.e. Cy € m* is replaced with Cy, V b}, during the relaxation. Consider
a solution I s.t. bl € I. Then, I"(cv(m®)) = I"(m°) = {C} and I"(w") C H.

0 as each

Induction step. Suppose, the proposition holds for 7 — 1 steps. Consider the ith step. Let
H be a minimum hitting set of p-cores(cv(m’)). By induction, we know that there is a
solution I of mcard(cv(m’)) such that I"(cv(m?)), j < i, s.t. I*(cv(m?)) C H.

We recall that by Proposition 25( 2)—(3), we have

p-cores(cv(m')) = p-cores(m’) U U p-cores(cv(m’)),
CV(IJ)eCvs(M’,m?)
Imcard(cv(m’))| = [{card’}| + Z Imcard(cv(m’))|,

CV(Mi)ecvs(M’,mt)

where M’ = [m°, ..., m""].

Constructing a solution I of mcard(cv(m’)). We construct a desired solution of mcard(cv(m’)).
Let I; be a solution of mcard(cv(m’)), where cv(m’) € cvs(M’,m’). By the induction
hypothesis, we have that I7'(cv(m’)) € H. Note that solutions I}, cv(n/) € cvs(M',n’)
contain disjoint sets of literals, so we can concatenate I; to obtain a solution J such that
J"(Ueymiyecvs(mrmiyev(m?)) € H by construction.

Note that J € SOLUTIONS(mcard(cv(m>©))) as mcard(cv(m©)) =
Ucvmi)ecvs(mmmeard(cv(m’)).  There is a minimal core s in p-cores(m’) such
that J does not relax as m* is UNSAT. H must hit the core k by definition of a minimum
hitting set. Let Cy € H N k. Note, all clauses in m’ are relaxed by card‘*! (see Algorithm 3,
line 6), e.g. Cj is transformed to Cj V bi. So, we can form a solution I = J U {bi} of
mcard(cv(m?)), and get that I"(cv(m')) C H. <

Proof of Lemma 26. We prove by induction on m’.

Base step. In the base case, we consider the first cover cv(m®). It must contain a single

meta m* and mﬁ must be a core of the original formula, cv(m®) = {m’}. Hence,
p-cores(cv(m’)) = p-cores({m"}) = {x}, where x = MinimizeCore(n’°).
|cards(cv(m®))| = |cards(m®)| = |{card!}| =1

Any MINHS of a minimal core k is of size at least 1, so the proposition holds.

Induction step. Suppose the result holds for i — 1 steps. Consider m* that we obtained at

the ith step. By the induction hypothesis for all m’ € M’ the following holds. Note that a

cover cv(m’) is computed in the graph G;(M;), M; = m% m!,... m’].

IMINHS (p-cores(cv(m’)))| > [mcard(cv(m’))| Vo’ € M.
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Consider again cv(m’) € cvs(M’,m%). The inequality above holds for cv(m’) in the
corresponding graph G;(M,), where M; = [m%,m!, ..., m/]. However, as m’ is the last meta
added to this cover cv(m?) up to step i — 1, so cv(m’) in G;(M;) is identical to cv(m?) in the

graph G;_1(M’). So, we derive
IMINHS (p-cores(cv(m’)))| > |mcard(cv(m’))| Vev(m!) € cvs(M',m?).

We need to consider two cases in the induction step. The first case is when for some
m/, the inequality from the induction hypothesis is strict: |[MINHS(p-cores(cv(m’)))| >

Imcard(cv(m?))|. In this case we can ignore newly discovered minimal cores p-cores(m’) as
argued by the chain of inequalities:

IMINHS (p-cores(cv(m)))]
IMINHS (Ucy miyecvs(a mi) p—cores(cv(mj)))| by Proposition 25 (2) |
MINHS(p-cores(cv(m?)))| by disjointness of covers cv(m’)

ch(mf)ecvs(/vl’,mi) ’
1+ > evmiecvs(m mi) meard(ev(m’))| by L.H. and strictness assumption

= mcard(cv(m')) by Proposition 25 (3)

v

In the second case all inequalities are tight:
IMINHS (p-cores(cv(m’)))| = |mcard(cv(m’))|, Vev(m) € cvs(M,m").
In this case, we have

> IMINHS (p-cores(cv(m’)))| = > lmcard(cv(m’)))| <

CvV(mJ)eCcvs(M’ m?) CV(IJ)eCvs(M’ m?)

IMINHS (Uey uccvsoum p-cores(ev(n’)))| = lmcard(cv(n))| - 1.

In other words, the size of minimum hitting set of Ueymi)ecvswm miyp-cores(cv(m’))) is
equal to [mcard(cv(m?)))| — 1.

We need to show that adding p-cores(m’) to Uey(mi)ecvs(m,miyp-cores(cv(m’)) increases
the size of its minimum hitting set by one. We prove by contradiction.

Suppose there is a minimum hitting set H of p-cores(cv(m')) of size |mcard(m))| — 1.
Consider a cover cv(m’), cv(m’) € cvs(M’,;m‘). We know that |mcard(cv(m’)))| =
IMINHS (p-cores(cv(m’)))| by our assumption. By Lemma 34, there is a solution of
mcard(cv(n)), I, such that I7'(cv(m’)) € H. As these covers are disjoint, we concatenate
solutions for all covers to obtain J that is a solution of Ucv(mj)ecvs(M/7mi)mcard(m‘j) and
I (Uevmiyecvs(mr myev(w?)) © H. However, |J* (Ueymieevs(mr miyev(m’))] = jmcard(u’)|—
1 by definition. Hence, J"(Ucymiyecvs(mrmiycv(m’)) = H as |H| = |mcard(m)| — 1.

As J is a solution of Ucv(mj)ecvs(M/7mi)mcard(mj)7 there must be a minimal core k in
p-cores(m’) that proves that J cannot relax all cores in mﬁ, otherwise m’ would not be an
unsatisfiable subset. Hence, as Jh(Ucv(mj)ecvs(M/,mi)CV(mj)) = H, H is not a hitting set of
p-cores(cv(m’)). This leads to a contradiction and we show that MINHS(p-cores(cv(m'))) >
mcard(cv(m’))|. <

1+ ch(mj)ecvs(/vl',ml)

B Potential practical scenarios

» Scenario 1 (Compressing a core structure). Consider Example 7. Now, we assume that this
problem is a subformula from a larger problem. Consider the execution of Algorithm 4 from
Table 2 described in Example 15. We recall that Algorithm 4 extracts cores from three metas
as shown in Table 2. So,

p-cores® = {{C1,Cs},{Cs5,C4},{Cs, Cs},{C7,Cs},{C3,C4,C5,Cs,C7}}.
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If we analyze a core structure, we can see that there are three disjoint cores, H =
{{C1,C3},{Ca,C4},{C7,Cs}}. As MINHS(H) is three we can replace card', card?, card?
form Table 2 with three new cardinality constraints, one per disjoint core, and proceed.
This compression significantly simplifies the set of cardinality constraints, we get 8 binary
cardinality constraints instead of 8 constraints with large scopes. Such reductions are very
important for core-guided solvers.

We can generalize this example. Suppose we are at the ith step. By analysing cores in
p-cores’, we find i — p disjoint cores, where p is small, p € [0,2] for instance. We can
replace i cardinality constraints with i — p constraints, and reduce the lower bound by p. It
requires redoing p steps but it might still be beneficial if we reduce the number of relaration
variables significantly due to compression of the first i — p steps. 1

» Scenario 2 (Towards Cutting Planes). Consider a special case when we have a
clique of minimal cores. For instance, we have a subformula  with three cores
{{C1,C5},{C5,C5},{C1,C5}}. A typical execution of a core-guided solver discovers
n’° = {C1,03} and relazes it. Then it discovers m»© = {C; V b1, Cy Vv bi,C3}
and relazes it. Algorithm / finds p-cores-meta’ = {{C;,C2}} on seeing n®° and
p-cores—metal = {{Cy,C3},{C1,C3}} on seeing mb©, respectively. Hence, p-cores® =
{{C1,C5},{C5,C5},{C1,C5}}. We conclude that we have a clique of cores of size 3. So we
can introduce a stronger constraint by +ba + bz = 2 together with {C1 Vb1, CoVba, C3Vbs}. 4

» Scenario 3 (Minimization of a meta). Consider again Example 7. Consider the execution
where m® = {C3V b3, Cy Vb, Cs Vbt Co Vb, Cr VLY, as before, and we get meta m™© = {C3V
b, CyVbi, Cs Vi, Co Vb, Cr VUL, Cs}. Algorithm /4 takes mb© and returns p-cores-metal =
{{Cs,Cs},{C7,Cs}}, for example. Note that clauses Cs,Cy and Cs are not in any minimal
core in p-cores-meta'. Hence, we can remove {C3V b3, CyV by, C5V bt} from mb© to reduce
the meta size. To see this, we note that for all I, I € SOLUTIONS(mcard(m'©)), we have a
core k € p—cores—-metal s.t. k C I™ by construction of p-cores-meta'. The set of clauses
n' = {C|C € m"® and Cy € clauses(p-cores-meta')} is UNSAT. N

We note that developing a tool that performs core enumeration is not trivial in practice.
The main reason is that Algorithm 4 is computationally expensive as the algorithm is going
over all solutions of mcard(m) and the number of solutions can be large. Therefore, it requires
development of new heuristics that reduce the number of enumerated solutions of cardinality
constrains and/or cores.
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