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Abstract
We present approaches to store and restore the state of a SAT solver, allowing us to migrate the
state between different compute resources, or even between different solvers. This can be used in
many ways, e.g., to improve the fault tolerance of solvers, to schedule SAT problems on a restricted
number of cores, or to use dedicated preprocessing tools for inprocessing. We identify a minimum
viable subset of the solver state to migrate such that the loss of performance is small. We then
present and implement two different approaches to state migration: one approach stores the state at
the end of a solver run whereas the other approach stores the state continuously as part of the proof
trace. We show that our approaches enable the generation of correct models and valid unsatisfiability
proofs. Experimental results confirm that the overhead is reasonable and that in several cases solver
performance actually improves.
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1 Introduction

Satisfiability solvers are powerful tools that are used in a wide range of applications, including
hardware and software verification [15,33]. When used in practice, the runtime of solvers can
vary significantly: while for some applications solvers take just a few milliseconds, for others
they require large amounts of time, often several hours or even days. Especially in the latter
case, being able to stop a solver and resume its computation at a later point – possibly even
on different hardware – opens up multiple opportunities.

For example, a user performing long-running SAT jobs on their computer can benefit
from the ability to resume a job at any time (instead of having to start from scratch) in
case it failed, e.g., due to power outage or other kinds of hardware failure. Similarly, in a
cloud environment where software must be resilient against hardware failures, and where the
runtime of jobs is often restricted (e.g., in serverless environments such as AWS Lambda [3]),
being able to migrate the state of a solver to a different compute architecture enables
significant flexibility in architecting and hosting SAT solvers.
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27:2 Migrating Solver State

But better fault-tolerance and increased flexibility are not the only benefits of migrating
solver state. If the state is stored in a solver-agnostic way, we can combine multiple solvers to
solve a single problem, e.g., by having them take turns. Finally, another possible application
is the efficient scheduling of parallel SAT jobs on restricted hardware by assigning (multiple)
limited time intervals to each job: this reduces resource contention by preventing hard jobs
from using up all resources while still allowing them to make progress.

The above are just a few of the many opportunities offered by state migration. In this
paper, we therefore propose effective mechanisms for storing and restoring (migrating) solver
state. There are a variety of possible implementation mechanisms that one can pursue to
implement state migration, including OS- and VM-level techniques for freezing a solver
process, extensions to solvers to store all or fragments of the solver state, and reconstruction
techniques based on the proof trace produced by the solver. We examine the range of possible
mechanisms and focus on two approaches.

The first approach stores a minimal representation of the solver state: the redundant and
irredundant clauses as well as the reconstruction stack necessary to reconstruct a satisfying
assignment. The second approach involves restoring the solver state directly from the proof
log. In order to restore the state, we describe extensions to the commonly-used DRAT proof
format [36], called Dual DRAT (DDRAT), that enable solution reconstruction and soundness
for both SAT and UNSAT results. With this extended proof format, there does not need to be
an explicit state serialization – the proof functions as a write-ahead log of the state, making it
resilient to compute-resource failures and process terminations. It also has potential benefits
for debugging solvers by pinpointing where a proof (of either satisfiability or unsatisfiability)
fails. We implement the first approach on top of the solver CaDiCaL [8], and both approaches
on top of MapleSat [39] (the distribution Maple_LCM_Dist_ChronoBT, which won the main
track of the SAT Competition 2018). As MapleSat is an advanced descendant of MiniSat [17],
our approaches can be implemented analogously on top of well-known related solvers (e.g.,
MiniSat and variants of MapleSat, Glucose [1], or MergeSat [41]).

We conduct an evaluation of our approaches from the perspective of efficiency, considering
the time to store and restore state as well as the overall effect on solving time and number of
solved problems. We also examine both approaches in terms of ease of implementation and
integration with MapleSat and CaDiCaL. We find that the store/restore mechanisms perform
slightly differently on each solver: For MapleSat, both approaches can lead to a degradation
of performance whereas for CaDiCaL, migrating the state leads to a surprising performance
improvement. Even though we did not concern ourselves with improving solver efficiency, we
believe our experiments reveal that “hard restarts”, where a solver forgets everything except
its current clause sets, can lead to a significant performance increase.

The main contributions of this paper are as follows:
Two solver-agnostic approaches to storing and restoring solver state that allow greater
flexibility in hosting, migrating, and combining SAT solvers.
An extension of the DRAT proof format, called Dual DRAT, that allows the extraction
of solver state from proofs, with only a small overhead over the standard DRAT format.
An evaluation of both techniques against monolithic solvers on a range of benchmarks.
Empirical evidence that hard restarts can improve solver performance significantly.

The rest of the paper is organized as follows. In Section 2, we present the background
required to understand our paper and discuss related work. In Section 3, we outline the
problems involved with migrating solver state and overview possible solutions. We present
our concrete approaches for solver-state migration in detail in Sections 4 and 5. In Section 6,
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we present an empirical evaluation of our approaches before concluding with final remarks
and an outlook for future work in Section 7. Supplemental material accompanying this paper
can be found at https://github.com/amazon-research/cadical.

2 Background and Related Work

Propositional satisfiability has been studied for many years; for a comprehensive overview,
see [11]. We first present the basics and afterwards the most important related work.

We consider propositional formulas in conjunctive normal form (CNF), which are defined
as follows. A literal is either a variable x (a positive literal) or the negation x̄ of a variable x

(a negative literal). The complement l̄ of a literal l is defined as l̄ = x̄ if l = x and as l̄ = x if
l = x̄. For a literal l, we denote the variable of l by var(l). A clause is a finite disjunction of
the form (l1 ∨ · · · ∨ ln) where l1, . . . , ln are literals. A formula is a finite conjunction of the
form C1 ∧ · · · ∧ Cm where C1, . . . , Cm are clauses. For example, (x ∨ ȳ) ∧ (z) ∧ (x̄ ∨ z̄) is a
formula consisting of the clauses (x ∨ ȳ), (z), and (x̄ ∨ z̄). Formulas can be viewed as sets of
clauses, and clauses can be viewed as sets of literals.

A truth assignment (or assignment for short) is a function from a set of variables to the
truth values 1 (true) and 0 (false). A literal l is satisfied by an assignment α if l is positive
and α(var(l)) = 1 or if l is negative and α(var(l)) = 0. A literal l is falsified by an assignment
if its complement l̄ is satisfied by the assignment. A clause C is satisfied by an assignment α

if α satisfies at least one of C’s literals. A formula F is satisfied by an assignment α if α

satisfies all of F ’s clauses, in which case α is a model of F . Given two assignments α and ω,
the composition α ◦ ω of α and ω is defined as α ◦ ω(x) = ω(x) if ω assigns a truth value to
x and α ◦ ω(x) = α(x) otherwise. We sometimes denote assignments by the sequences of
literals they satisfy, i.e., we write xȳ to denote the assignment that assigns 1 to x and 0 to y.

A formula is satisfiable if there exists an assignment that satisfies it, otherwise it is unsat-
isfiable. Two formulas are logically equivalent if they are satisfied by the same assignments;
they are equisatisfiable if they are either both satisfiable or both unsatisfiable. A SAT solver
is a computer program that takes as input a propositional formula and decides whether
or not the formula is satisfiable. In case the formula is satisfiable, a solver can output a
satisfying assignment; in case the formula is unsatisfiable, a solver can output a proof of
unsatisfiability. We discuss proofs in more detail in Section 5.

There are two main techniques for parallelizing SAT problems: portfolio-based approaches
and divide-and-conquer approaches. In portfolio-based approaches (c.f. [2, 7, 9, 20,21,27,38,
45, 48]), multiple solvers or solver configurations all attempt to solve the same problem, and
the portfolio completes as soon as one of the solvers finishes the problem. Some portfolio
solvers use clause sharing to share conflict clauses between the solvers, allowing progress
from one solver to be used by other solvers within the portfolio. Sharing conflict clauses
involves similar engineering to the state-migration techniques described in this paper. The
winner of the last two SAT-competition cloud tracks [5, 6], mallob [44], uses this approach.
Portfolio solvers have also been used to parallelize SMT [14,31,47].

Divide-and-conquer approaches partition the search space into multiple – sometimes
millions or even billions of – subproblems [23,27,30,42]. A particularly successful approach
is cube-and-conquer, which uses look-ahead techniques to partition the search space and
then solves each of the subproblems using CDCL [27]. For various hard combinatorial
problems [24,26], cube-and-conquer can realize linear-time speedups, even when running on
thousands of cores. Such scaling cannot be achieved with portfolio-based approaches. Some
techniques combine divide-and-conquer with portfolio/clause sharing, e.g. [32].

SAT 2022
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· · ·Formula Solver1 Solver2 Solvern−1 Solvern
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S1 S2 Sn−2
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Figure 1 Storing and restoring solver state in external storage while solving a single SAT problem.

Recent work has examined how to use cloud resources and serverless computing to scale
SAT solving. Ozdemir et al. [43] examine the use of divide-and-conquer parallel algorithms
on AWS Lambda in a tool called gg-SAT. When a Lambda node approaches a timeout, it
splits the problem to run on several more Lambda nodes (the timeout and the splitting factor
are configurable). Solver state is discarded at the timeout, so the approach is orthogonal to
our idea of migrating state; it may be possible to combine both in the future. This work is
in turn built on gg [19], a tool for process management and I/O for serverless computing.

Our approaches increase the complexity of the solver. To ensure correctness, we support
proof logging in an extension of the commonly-used DRAT format [29,36,46]. We use two
extensions. The first adds information to the proof to validate the results on satisfiable
formulas by producing solutions for the original formula, similar to solution reconstruction [18,
36]. This extension is similar to dual proofs for quantified Boolean formulas [13, 28]. The
second extension adds weight to clauses in the proof. With this information it is possible
to identify and extract the most performance-critical information when migrating state via
proofs. Both extensions can also easily be used for stronger proof systems than DRAT [25].

3 Migrating Solver State

Our goal is to solve a given SAT problem over multiple solver runs, potentially involving
multiple different solvers on multiple compute architectures. For example, we want to run a
solver on a problem until a timeout is reached; at that point, we terminate the solver and
start another solver – possibly on a different machine – that continues solving the problem. In
case the second solver finishes before its timeout, we return a solution, otherwise we continue
by starting yet another solver run, and we keep doing so until the formula is eventually
solved. The main problem we need to address in order to reach our goal is to migrate the
state of a SAT solver, i.e., to serialize it and store it such that it can be subsequently re-used
to continue solving, as shown in Figure 1.

3.1 Which State to Migrate?
A naïve approach to migrating solver state would be to store the complete state of a solver
process, including the stack, heap, etc. This is known as application checkpointing, and while
there have been attempts to implement application-independent solutions (like Berkeley
Lab Checkpoint/Restart for LINUX [22]), the approach depends strongly on the underlying
compute architecture, making it a suboptimal choice on generic cloud infrastructure.

We want an infrastructure-independent solution that achieves sound and efficient solver
performance across multiple runs. Consider two contrasting approaches:
1. Store virtually all internal data structures of a solver.
2. Store only a “minimum viable subset” of the data structures.
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vector<Flags> ftab; // variable and literal flags
vector<int64_t> btab; // enqueue time stamps for queue
vector<int64_t> gtab; // time stamp table to recompute glue
vector<Occs> otab; // table of occurrences for all literals
vector<int> ptab; // table for caching probing attempts
vector<int64_t> ntab; // number of one-sided occurrences table
vector<Bins> big; // binary implication graph
vector<Watches> wtab; // table of watches for all literals

Figure 2 An excerpt from the state declarations inside CaDiCaL’s source code.

The first approach stores not only the obvious pieces of state such as clause sets, scores of
heuristics, and phases, but a multitude of other data structures maintained by a solver. This
has the advantage that a subsequent solver loading this information can continue exactly
where the previous solver left off. However, modern solvers are immensely complex; for
example, in the case of CaDiCaL, the internal state involves more than 90 interdependent
data structures (an excerpt is shown in Figure 2) that must be properly serialized. This
approach has substantial disadvantages: it is solver-specific, brittle to data-structure changes,
requires a maximal amount of storage and time to store and restore solver data structures,
and adds solver maintenance overhead for any change to the data structures.

As an alternative, we consider approaches that store only a small fragment of the entire
solver state. In the next section, we define a “minimum viable subset” of solver state (we do
not use the term minimal in a formal sense but rather in a vague sense of “practicality”); the
resulting approach is not only almost solver independent but also achieves surprisingly good
performance. In addition, as this subset of state is so succinct, we do not necessarily need to
store it explicitly at the end of a solver run. In Section 5, we show how a small modification
of the DRAT proof format allows a solver to store it continuously in its proof trace.

4 Migrating Solver State by Explicitly Writing Solver State

In this section, we describe the fragment of solver state necessary to achieve soundness and
acceptable performance over multiple solver runs, and we discuss practical considerations
for how it can be stored and restored. This fragment must obviously include the current
clause set maintained by the solver. However, if we are not only interested in a simple
SAT/UNSAT answer but also in a satisfying assignment (in case of SAT), storing only the
clause set is insufficient to achieve soundness. An additional piece of solver state, the so-called
reconstruction stack, is required for solution reconstruction of SAT results.

4.1 Solution Reconstruction
SAT solvers routinely perform clause-set simplifications that preserve equisatisfiability but
not necessarily logical equivalence. Even though these simplifications do not impact the
solver’s ultimate verdict on the formula’s satisfiability, they can weaken a formula enough to
admit assignments that do not satisfy the original formula. Some solvers, like MiniSat [17],
perform such simplifications only at the beginning, as preprocessing (see [12] for details),
whereas other solvers, like CaDiCaL and Kissat [9], also perform them during solving, as
so-called inprocessing. Example 1 illustrates the impact of these simplifications on a simple
formula.

SAT 2022
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▶ Example 1. Consider the formula (x ∨ y) ∧ (x̄ ∨ ȳ) ∧ (ȳ). A solver might conclude that
the deletion of the clause (x ∨ y) does not affect the satisfiability of the formula and thus
remove it (e.g., via the technique of blocked-clause elimination [35]). The resulting formula
(x̄ ∨ ȳ) ∧ (ȳ) is satisfied by the assignment α = x̄ȳ. However, α falsifies (x ∨ y) and is thus
not a valid model of the original formula.

To deal with this problem, solvers that perform such simplifications must maintain
information that allows them to turn a solution of the simplified formula into a valid solution
of the original formula. This process of restoring a solution is known as solution reconstruction,
and the data structure maintaining the required information is called the reconstruction
stack [34]. Hence, if we aim to solve a formula over multiple solver runs, and if we are
interested in a valid satisfying assignment, we also need to store the reconstruction stack.

Formally, the reconstruction stack is a sequence of pairs ⟨C, ω⟩, where C is a clause and
ω (called the witness) is a set of literals such that C ∩ ω ̸= ∅. Intuitively, the clauses on the
stack represent clauses that were deleted from the formula, and the witnesses contain literals
that should be made true during solution reconstruction in case their corresponding clause is
not satisfied by the current assignment. Algorithm 1 formalizes this intuition [18].

Algorithm 1 Solution-Reconstruction Algorithm.
function ReconstructSolution(assignment α, reconstruction stack σ)

while σ is non-empty do
⟨C, ω⟩ ← σ.pop() \\ Get the top pair from the stack.
if α falsifies C then α← α ◦ ω \\ Make the literals of ω true.

▶ Example 2. Consider Example 1 again. When deleting the clause (x ∨ y), the solver
can push the pair ⟨(x ∨ y), {x}⟩ on the reconstruction stack. When performing solution
reconstruction with the assignment x̄ȳ and the reconstruction stack σ = ⟨(x∨y), {x}⟩, it then
obtains the assignment xȳ, which does indeed satisfy the original formula (x∨y)∧(x̄∨ ȳ)∧(ȳ).

In Example 2, making x true does not falsify the original formula (if it did, solution
reconstruction would fail). In practice, solvers use only simplification techniques that ensure
this, and there are many subtleties involved with maintaining a correct reconstruction stack.
We do not discuss these subtleties here and instead refer to the existing literature [12,34].

4.2 A Minimum Viable Subset of Solver State

We have seen that in addition to storing the clauses of a solver, storing the reconstruction stack
is required for soundness. Considering soundness alone, we could ignore learned/redundant
clauses. For efficiency, however, we include them too; but we must make sure that subsequent
solver runs can distinguish them from the irredundant clauses. The reason is that CDCL
solvers eagerly remove learned clauses, which is unproblematic because they are implied by
the irredundant clauses. Removing some learned clauses improves performance by keeping
the size of the clause database small. To judge the quality of learned clauses, solvers usually
rely on the literal-block distance (LBD) [1], so we include the LBDs with the learned clauses.
This leaves us with the following minimum viable subset of solver state: (1) irredundant
clauses, (2) redundant clauses and their LBDs, and (3) the reconstruction stack.



A. Biere, M. S. Chowdhury, M. J. H. Heule, B. Kiesl, and M. W. Whalen 27:7

4.3 Migrating Minimum Viable Solver State: Practical Considerations
We implemented dedicated serialization and deserialization routines on top of CaDiCaL and
MapleSat.

At the end of a solver run (when a solver has finished or a time limit has been reached),
the solvers write minimum viable state to separate files, one for irredundant clauses, one
for redundant clauses, and one for the reconstruction stack. At the beginning of a solver
run, they can also accept as input a file with redundant clauses and LBDs in addition to the
irredundant clauses. Our implementations can serialize their state in a binary format and in
a plain-text format. We define both formats in Appendix A.

Both solvers depend on the invariant that learned clauses do not contain falsified literals
(i.e., literals whose complements have been derived as unit clauses, or equivalently, literals
that are false at decision level 0). Thus, when adding learned clauses at the beginning of
a solver run, we must remove these literals. In the spirit of the robustness principle (often
worded as “be conservative in what you send, be liberal in what you accept”), we remove
falsified literals both when storing clause sets and when restoring them.

For solution reconstruction, we use a dedicated script that takes a truth assignment
(in competition format, as printed by the solvers) and a serialized reconstruction stack,
and outputs the assignment obtained by applying Algorithm 1. This allows us to use the
reconstruction stacks of previous solver runs to transform an assignment returned by a final
solver call into an assignment of the original input formula.

Our experimental evaluation in Section 6 shows that – compared to solving a formula in
a single run – this approach leads to mixed impact on the performance of MapleSat and to a
surprising performance increase for CaDiCaL. Before presenting the results of our evaluation,
however, we consider an alternative approach to storing the minimum viable state.

5 Migrating Solver State Using Proofs

The previous approach requires time to store solver state at the end of a run. In addition,
it fails when a solver terminates unexpectedly. A more radical approach allows the state
of the solver to be reconstructed at any time by using the proof trace as a write-ahead log
that maintains the solver state. Most state-of-the-art solvers adhere to the DRAT proof
format [46], so we build on DRAT in the following.

Intuitively, a DRAT proof of a formula is a sequence of clause additions and deletions that
– when applied to the original formula – give rise to an “accumulated formula” maintained by
the solver. More formally, a proof is a sequence of pairs ⟨m, C⟩, where m ∈ {a, d} and C is a
clause. If m = a, the pair is an addition, and if m = d, it is a deletion. Given a propositional
formula F0 and a DRAT proof ⟨m1, C1⟩, . . . , ⟨mn, Cn⟩, the accumulated formula at point i

(1 ≤ i ≤ n) is defined as follows:

Fi =
{

Fi−1 ∪ {Ci} if mi = a
Fi−1 \ {Ci} if mi = d

For a proof to qualify as a valid DRAT proof, it is required that for each addition ⟨a, Ci⟩, the
clause Ci has the RAT property [36] with respect to the clause set Fi−1. The RAT property
is a specific syntactic criterion ensuring that the addition of Ci preserves satisfiability. The
specifics of the RAT property are irrelevant to our approach. In fact, our approach works
with any other syntactic criterion that preserves satisfiability and thus applies also to proof
systems like the blocked-clause proof system [37] or PR [25].

SAT 2022
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In practical SAT solving, a DRAT proof is stored either in plain text or in a dedicated
binary format. Example 3 shows a DRAT proof, its accumulated formula, and a serialization
of the proof in the plain-text DRAT format.

▶ Example 3. Consider the formula F = {(x ∨ y), (x̄ ∨ y), (x ∨ ȳ), (x̄ ∨ ȳ)}. The sequence
⟨a, (y)⟩, ⟨d, (x ∨ y)⟩, ⟨a, (ȳ)⟩ is a DRAT proof of F . The accumulated formula after the
first addition is the formula F ∪ {(y)} = {(x ∨ y), (x̄ ∨ y), (x ∨ ȳ), (x̄ ∨ ȳ), (y)}. The
accumulated formula after the subsequent deletion is the formula {(x̄∨y), (x∨ ȳ), (x̄∨ ȳ), (y)}.
Assuming that the variables x and y are respectively assigned the numbers 1 and 2,
the plain-text version of the formula in DIMACS and the proof in DRAT format are as follows:

DIMACS

p cnf 2 4
1 2 0

-1 2 0
1 -2 0

-1 -2 0

DRAT

2 0
d 1 2 0

-2 0

Observe that in the plain-text DRAT format – analogous to the DIMACS format – lines
end with a 0. Deletions are preceded by a d while additions are not preceded by a symbol.
Note that we do not require proofs to end with the empty clause.

The accumulated formula of a proof trace represents the most relevant piece of state
maintained by the solver, namely its current clause set. Thus, if a solver attempted to solve
a formula without finishing, the proof trace can be used to reconstruct the accumulated
formula, which can be passed to a new solver instance to continue.

This idea of extracting an accumulated formula from a proof is indeed the main idea
behind the approach we present in the following. However, as we discussed in Section 4,
extracting only a single clause set alone is not sufficient to ensure soundness and acceptable
performance. To achieve these goals, we need to extend the proof format slightly to enable
solution reconstruction and a separation of the accumulated formula into a redundant and
an irredundant clause set.

5.1 Dual DRAT: A Simple Extension of the DRAT Format
In the following, we introduce two slight modifications of the DRAT format that equip proofs
with enough information to extract the reconstruction stack and to separate the clause set into
irredundant and redundant clauses. For clause deletions we add a witness that can be used
for solution reconstruction (Section 4.1); for clause additions we add a non-negative integer
that indicates the usefulness of the clause and that allows us to distinguish redundant clauses
from irredundant ones. Although we consider both modifications of DRAT in combination,
they could be applied independently too. We start with a formal definition of proofs in our
format before discussing how to serialize these proofs in practice.

▶ Definition 4 (Dual DRAT Proof). A Dual DRAT (DDRAT) proof is a sequence of triples
⟨m, C, ω⟩, where m ∈ {a, d}, C is a clause, and ω is either a non-negative integer (if m = a)
or a set of literals (if m = d).

The non-negative integers added to clause-addition steps are meant to indicate the quality of
a clause – the lower the value, the more important the clause. In practice, we use the value 0
for irredundant clauses and the literal-block distance for redundant clauses.
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▶ Example 5. The following sequence of triples is a DDRAT proof: ⟨a, x ∨ y, 1⟩,
⟨d, x ∨ y ∨ z, ∅⟩, ⟨d, x̄ ∨ ȳ, {x̄}⟩, ⟨a, v ∨ w, 0⟩.

Given a DDRAT proof, we extract an accumulated state in the form of (1) an irredundant
formula F , (2) a redundant formula R, and (3) a reconstruction stack σ.

▶ Definition 6 (Accumulated Formulas). Let F0 and R0 be propositional formulas, and let
⟨m1, C1, ω1⟩, . . . , ⟨mn, Cn, ωn⟩ be a DDRAT proof. The accumulated irredundant formula Fi

and the accumulated redundant formula Ri (1 ≤ i ≤ n) are defined as follows:

Fi =


Fi−1 ∪ {Ci} if mi = a and ωi = 0
Fi−1 if mi = a and ωi ̸= 0
Fi−1 \ {Ci} if mi = d

Ri =


Ri−1 if mi = a and ωi = 0
Ri−1 ∪ {Ci} if mi = a and ωi ̸= 0
Ri−1 \ {Ci} if mi = d

In line with the original definition of DRAT, we define a DDRAT proof as valid if for every
clause addition ⟨a, Ci, ωi⟩, the clause Ci is a RAT with respect to the formula Fi−1 ∪Ri−1.
As mentioned earlier, the RAT property is not relevant to our approach and so we are not
going to discuss it further.

▶ Definition 7 (Accumulated Reconstruction Stack). Let ⟨m1, C1, ω1⟩, . . . , ⟨mn, Cn, ωn⟩ be a
DDRAT proof and let σ0 be a (possibly empty) sequence of pairs ⟨C, ω⟩. The accumulated
reconstruction stack σi is defined as follows:

σi =
{

σi−1 · ⟨Ci, ωi⟩ if mi = d and ωi ̸= ∅
σi−1 otherwise

▶ Example 8. Let F0 = {(ū), (u∨ v ∨w), (x̄∨ ȳ), (x∨ y ∨ z), (x∨ y ∨ z̄)}, let R0 = ∅, and let
σ0 be the empty sequence ϵ. Consider the proof from Example 5. After the first addition
⟨a, x∨ y, 1⟩, R1 = {(x∨ y)} while F1 = F0 and σ1 = σ0. After the deletion ⟨d, x∨ y∨ z, ∅⟩ we
get F2 = F1\{(x∨y∨z)} while R2 = R1 and σ2 = σ1. The subsequent deletion ⟨d, x̄∨ ȳ, {x̄}⟩
gives F3 = F2 \ {(x̄ ∨ ȳ)}, R3 = R2 and σ3 = ⟨(x̄ ∨ ȳ), {x̄}⟩. Finally, after the addition
⟨a, v ∨ w, 0⟩, we end up with F4 = F3 ∪ {(v ∨ w)} = {(ū), (u ∨ v ∨ w), (x ∨ y ∨ z̄), (v ∨ w)},
R4 = R3 = {(x ∨ y)}, and σ4 = σ3 = ⟨(x̄ ∨ ȳ), {x̄}⟩.

In practical SAT solving, we can serialize a DDRAT proof in plain-text format by
serializing irredundant-clause additions just as in DRAT. For redundant-clause additions,
we start with an l (lower-case L, for learned clause) and first add the LBD as usefulness
score before listing the literals. For deletions, we append the witness literals after the clause
literals – as the witness must intersect with the deleted clause, we don’t need an additional
symbol to separate the witness literals from the other literals, but we require the first literal
of the clause and the first literal of the witness to coincide (we thus know that the clause has
ended and the witness has started as soon as the first literal repeats). Deletions with empty
witnesses are thus serialized the same way as in DRAT.

▶ Example 9 (Plain-Text Serialization of a DDRAT Proof). The following proof is the
plain-text serialization of the proof from Example 5, obtained by respectively mapping the
variables v, w, x, y, z to the integers 1, 2, 3, 4, 5:

DDRAT

l 1 3 4 0 // add (x | y) as redundant clause with LBD 1
d 3 4 5 0 // delete (x | y | z), empty witness
d -3 -4 -3 0 // delete (-x | -y), witness is {-x}
1 2 0 // add (v | w) as irredundant clause
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Note that a DDRAT proof serialized as above can be easily transformed into an ordinary
DRAT proof. The resulting proof can then be checked with a proof checker like drat-trim [46].
Note also that proofs of multiple solver runs can be concatenated to obtain a proof of the
original formula. If a solver produces a DDRAT proof, we can easily extract its clause sets
and its reconstruction stack.

5.2 Producing Dual DRAT Proofs: Practical Considerations
As proof of concept, we extended the SAT solver MapleSat to enable the serialization of
DDRAT proofs.

Most importantly, witnesses must be added to clause deletions that do not preserve
logical equivalence. In addition, we believe that for performance it is crucial to ensure a
close correspondence between the accumulated clause sets of the proof and the clause sets
maintained internally by the solver – we must thus make sure that the accumulated clause
sets do not contain clauses that are not actually retained by the solver (e.g., because their
deletions were not logged in the proof). As discussed below, ensuring this for MapleSat
required some effort. Designing a proof format based on FRAT [4], which forces solvers to
be more careful with what they log, could thus lead to a fruitful alternative to DDRAT. The
following changes to MapleSat were required:

Serializing witnesses for bounded variable elimination: The solver performs bounded
variable elimination [16] in a preprocessing step. This leads to clause deletions that do not
preserve logical equivalence. When creating the proof, we thus must add the witnesses
(the literals of the eliminated variables) for each of these clause deletions.
Logging clause deletions from the parsing phase: When parsing the input formula from a
DIMACS file, the solver ignores trivially satisfied clauses. To remove these clauses from
the accumulated clause sets, we add proof logging for the corresponding deletions.
Adding unit clauses for locked-clause deletions: The solver regularly deletes satisfied
clauses. For clauses involved in top-level propagations (so-called locked clauses), we add
the corresponding unit clauses to the proof (as done by MergeSat).
Adding clause deletions: The solver regularly performs clause minimization as an inpro-
cessing step [40]. In the original code, when a clause was minimized, the new clause was
added to the proof but (presumably for performance reasons) the corresponding deletion
of the original clause was not logged. We add proof logging of these deletions.
Reading redundant clause sets: As discussed in Section 4.3, when reading redundant
clause sets from input files, we must remove falsified literals from all clauses.

Finally, there are two slight details that we omitted for the sake of simplicity: In practice,
accumulated clauses sets of proofs are not viewed as ordinary sets but as multisets.1 This
means that for each clause deletion, we only delete a single occurrence of the clause (instead of
all occurrences). Moreover, although Definition 6 does not add the LBDs to the accumulated
redundant formula, we store them with the clauses when extracting state from a proof.

Apart from minor implementation details, these changes allowed us to extract clause
sets and reconstruction stacks from the proofs produced by the solver, and to start sub-
sequent solver runs with these clause sets. Applying the solution-reconstruction algorithm
(Algorithm 1) led to valid solutions of satisfiable formulas, and concatenating the proofs and
converting them to ordinary DRAT led to verified proofs of unsatisfiable formulas.

1 https://github.com/marijnheule/drat-trim

https://github.com/marijnheule/drat-trim
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5.3 Advantages and Disadvantages of the Proof-Based Approach
The most obvious disadvantage of the proof-based approach is that we need to parse all of a
proof (of the previous run) to extract the clause sets and the reconstruction stack. While
this is costly, it removes the time required to explicitly store the state at the end of a run.
In our experiments (Section 6), the proof-based approach still takes significantly longer than
the alternative approach from Section 4. However, because the proof is written to disk
continuously as a write-ahead log, the proof-based approach has the advantage of being
robust to unexpected terminations of the solver.

Our implementation work on MapleSat revealed that adding support for DDRAT to a
solver is non-trivial and requires several careful changes. On the bright side, these format
extensions can provide debugging support for incorrect SAT results (similar to how DRAT
improved debugging UNSAT results), which may lead to better solver implementations.

6 Evaluation

In this section, we present an evaluation of our approaches for migrating solver state. We
start by defining the experimental setup and then present and discuss the results.

6.1 Experimental Setup
Our experiment attempts to simulate the behavior of two kinds of solver migration in the
cloud: in the first case, we consider an initial run on a serverless compute platform followed
by a migration to a long-running dedicated compute platform. This simulates an environment
in which we solve the easy cases using serverless resources and use managed computing
resources to solve harder problems. In the second case, we consider repeated use of serverless
resources until a problem is solved.

For all experiments, we set the timeout for migration to 500 seconds. The choice of 500
seconds is not arbitrary; it was chosen because – at the time of writing – the shortest timeout
for calls of serverless functions of the three big cloud providers is 540 seconds. With this
experiment we thus mimic the case where we start a solver run as part of a serverless function
call but (40 seconds before the timeout) determine that the solver will likely not finish in
time; we thus stop it and continue solving on another compute instance. As overall timeout,
we use 5000 seconds per problem, which was the timeout in the SAT Competition 2021.

We consider three experimental settings:
1. Single Run: Run a solver on the benchmarks with a timeout of 5000 seconds per instance.

This setting does not involve state migration and serves as a baseline for comparison.
2. Double Run: Run a solver until a timeout of 500 seconds, then start a second solver

that reads the state from the first solver and runs until an overall timeout (including the
time to store and restore state) of 5000 seconds. This setting describes migration from a
serverless platform to dedicated computing resources.

3. Multi Run: Run a solver until a timeout of 500 seconds, then migrate state to another
solver that runs again for 500 seconds. Repeat such 500 seconds runs until the formula is
solved, with an overall time limit of 5000 seconds.

We perform an experiment with the full benchmark suite from the SAT Competition
2021 (400 formulas), using the following solver variants:
1. The original, unmodified CaDiCaL (version 1.5.2).
2. The original, unmodified MapleSat.
3. Our variant of CaDiCaL that stores state explicitly at the end of a run.
4. Our variant of MapleSat that stores state explicitly at the end of a run.
5. Our variant of MapleSat that stores state in the proof trace.

SAT 2022
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Table 1 Overview of solved instances per experiment. Black numbers describe median solved
instances over 5 runs, and gray ranges describe the min and max solved over 5 runs.

Solver Variant Experiment Solved SAT UNSAT
CaDiCaL Original Single Run 270 [270, 270] 131 [131, 131] 139 [139, 139]

CaDiCaL Dump Double Run 274 [271, 277] 130 [127, 135] 144 [142, 146]

CaDiCaL Dump Multi Run 279 [275, 280] 134 [131, 135] 145 [144, 146]

MapleSat Original Single Run 245 [244, 250] 108 [108, 112] 137 [134, 138]

MapleSat Dump Double Run 246 [244, 255] 113 [110, 117] 133 [133, 138]

MapleSat Dump Multi Run 217 [215, 221] 100 [97, 103] 117 [113, 119]

MapleSat Proof Double Run 241 [238, 244] 108 [107, 113] 133 [129, 133]

MapleSat Proof Multi Run 222 [220, 225] 108 [104, 108] 114 [114, 120]

CaDiCaL+Maple Dump Double Run 276 [274, 277] 128 [127, 129] 148 [146, 149]

CaDiCaL+Maple Dump Multi Run 280 [278, 283] 132 [131, 136] 148 [146, 148]

Maple+CaDiCaL Dump Double Run 273 [270, 278] 128 [126, 135] 145 [143, 145]

Maple+CaDiCaL Dump Multi Run 278 [277, 280] 132 [130, 133] 146 [145, 148]

In addition, we consider combinations of solvers, in the following way:
6. Alternate CaDiCaL (var. 3) and MapleSat (var. 4) at each timeout, starting with CaDiCaL.
7. Alternate CaDiCaL (var. 3) and MapleSat (var. 4) at each timeout, starting with MapleSat.

We perform single-run experiments with unmodified versions of CaDiCaL and MapleSat
(variants 1 and 2), and we perform double-run and multi-run experiments with all other
variants (variants 3-7). For variants 6 and 7, where we combine both solvers, one solver starts
the first run, afterwards either the other solver runs until the overall timeout (double run) or
the two solvers take turns (multi run). We refer to the combination where CaDiCaL performs
the first run (variant 6) as CaDiCaL+Maple and to the combination where MapleSat performs
the first run (variant 7) as Maple+CaDiCaL. Each solver in the experiment produces proofs in
binary format. To account for runtime variance induced by migrating state, we perform five
independent runs per combination of experiment setting and solver variant/combination.

The experiments were performed on Amazon EC2 m5d.metal bare metal instances. Each
instance is powered by AWS-custom Intel Xeon Scalable (Skylake) processors (96 vCPUs per
instance), has 384 GiB memory and four SSDs with 900 GB of storage each. The instances
run Amazon Linux 2, and for each experiment we ran 24 parallel processes per instance.

6.2 Results
Table 1 contains an overview of the numbers of solved instances per solver variant and
experiment. As we performed five runs per experiment, the numbers in the table represent
for each row the solved instances of the median run, i.e., the run for which there were two
other runs that performed better and two other runs that performed worse in terms of overall
solved instances.

In the table, Dump stands for the solver variants that store their state explicitly at the
end of a solver run (the approach from Section 4), and Proof stands for the solver variant
that stores its state as part of the proof trace (the approach from Section 5).

Even though the number of solved instances is a good performance indicator, it does not
tell the full story. As an extreme example, consider a benchmark set where on each problem
solver A either takes less than 2500 seconds or times out (taking more than 5000 seconds).
In this setting, if solver B took exactly twice the time of solver A, it would still solve the
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Figure 3 Cactus plot for all solver variants and experiments (median runs).
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Figure 4 Distribution of runtimes for the instances solved by CaDiCaL in the double-run setting
(state migration after 500 seconds). Left: satisfiable instances. Right: unsatisfiable instances.

exact same number of problems as A, giving the wrong impression that B was as efficient
as A. To give a better indication of the actual solver runtime, Figure 3 shows a cactus plot
for all combinations of experiments and solvers. Each curve represents the performance of a
specific solver (or solver combination) in a specific experimental setting (single run, double
run, or multi run). For each time (x-axis), the number on the y-axis denotes the number
of problems for which the solver took at most that time to solve it. For example, a y-value
of 110 at x = 1000 says that there were 110 problems for which the solver took at most
1000 seconds (each) to solve. Note that the solving time in Figure 3 includes the time spent
on storing and reading the solver state. Appendix C contains additional cactus plots that
separate the runs, making it easier to distinguish solvers.

As mentioned earlier, migrating solver state induces variance to the runtime, which is the
reason why we performed multiple runs per experiment. To illustrate the run-time variance,
we generated plots of the runtimes for the double-run experiment with the solver variant
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Figure 5 Left: MapleSat state store+restore time when storing state explicitly (purple triangles)
and proof process time when restoring state from proof (yellow circles) by formula size after the first
500 seconds run. Right: MapleSat proof process time by proof size after the first 500 seconds run.

of CaDiCaL that stores state explicitly at the end of a run (Figure 4). Notice that there is
considerably more variance on the satisfiable instances than on the unsatisfiable instances.
The median runtime for each problem is shown in purple, and the runtimes of the other
four runs are shown in yellow. The diagrams look similar for MapleSat (see Figure 8 in
Appendix D).

6.2.1 Time Spent on Storing and Restoring State

Figure 5 compares the time MapleSat spent on explicitly storing and restoring solver state
with the time required (by a dedicated tool) for extracting solver state from a proof in the
proof-based approach. We measured this time after the first run in the double-run experiments
with MapleSat (data is from the median runs in terms of overall solved instances; notice
that time and formula size are in log scale). The time required for storing and restoring state
with CaDiCaL is given in Figure 9 in Appendix E.

Note that for the proof-based approach, the state is stored continuously as part of the
proof trace, so we did not measure the storing time explicitly. For our experiments, we
implemented a dedicated tool that processes a proof trace, extracts the clause sets and the
solution-reconstruction stack, and writes them to separate files. The time shown in the plots
is the time that our tool spent on reconstructing both the clause sets and the reconstruction
stack in memory, excluding the time it spent on writing them to disk. We considered this
fair for comparison because a solver could be extended to parse the proof directly (without
writing to disk) if more efficiency is desired.

With MapleSat, explicitly storing and restoring state never takes more than about 10
seconds, and much less than that in the majority of cases. For the proof-based approach,
restoring state takes less than about 100 seconds in most cases, but on some problems it
takes even more than that. Notice the time spent on explicitly storing and restoring state
is strongly correlated with the size of the input formula. In the proof-based approach, the
restore time is strongly correlated with the size of the proof trace.
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6.3 Discussion

Our experiments show that migrating solver state leads to mixed results for MapleSat, where
in the double-run experiment our approaches perform about the same as when solving a
formula in a single run with the original solver, but in the multi-run setting they perform
considerably worse. The proof-based approach performs similarly to the approach that stores
state explicitly, even though it spends more time on restoring state.

For CaDiCaL, where we implemented only the approach that stores state explicitly (and
not in the proof), migrating state does not only perform on par with solving a formula in a
single run but actually leads to more solved instances and better runtimes.

The combinations of the two solvers also perform well in our experiments. In fact, it is
the combination of CaDiCaL and MapleSat in the multi-run setting, where both solvers take
turns, that performed best in the experiment. This is especially interesting since MapleSat
performed considerably worse than CaDiCaL in the experiments where solvers performed on
their own. Three of the problems were only solved by a combination of the two solvers but
not in any of the experiments involving only a single solver.

Our experiments indicate that hard restarts – like the ones we perform when migrating
solver state, where only the clause sets and the LBDs are preserved – can improve the overall
solving time significantly. Note that the usual restarts performed by CDCL solvers keep
more state (e.g., phases and parts of the trail) than just the clause sets [10].

Migrating solver state generally (both for MapleSat and CaDiCaL) increases the variance
in solving time, where especially on the satisfiable instances it can lead to huge differences.
This could be explained by the fact that luck plays a greater role on satisfiable instances,
where a good guess can make a huge difference, than on unsatisfiable instances, where a
proof has to be derived laboriously by examining the entire search space.

Finally, observe that there is a strong correlation between store/restore time and formu-
la/proof size. Storing state explicitly at the end of runs is much faster than restoring state
from proofs, but for both approaches the time spent on storing and restoring state is mostly
negligible compared to the overall solving time.

7 Conclusion and Future Work

We have examined mechanisms to migrate solver state across different computational resources.
This allows us to stop and resume solvers at any point in time, and even to migrate from one
solver to another. In a large experiment, we found that the cost in terms of time and storage
necessary to migrate state was reasonable and in many cases even led to an unexpected
performance improvement. This indicates that hard restarts, where a solver forgets everything
except its clause sets, can lead to significant increases in solver performance.

For future work, we hope to extend our approach to support incremental solving, where
we can store solver state – after solving an increment – for later retrieval. This would allow
us to cache incremental problems, which may be useful for a variety of explorations of hard
SAT problems. For example, one could imagine approaches such as gg-SAT [43] in which
computations that time out are migrated using incremental queries that split the subformulas,
preserving the learned clauses from the base problem. This approach could also lead to a
variety of interesting portfolio approaches: for example, we could “late bind” parallelism,
migrating an initial query to several solvers, permuting clauses, changing seeds, etc. We hope
our paper serves as a starting point for a broader discussion on migrating solver state that
will lead both to better proof formats and to fruitful alternative approaches.
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A Formats for State Serialization

We propose both a plain-text format and a binary format for the irredundant clauses,
redundant clauses (with their usefulness scores), and the reconstruction stack.

A.1 Plain-Text State Format

A.1.1 Irredundant Clauses
Irredundant clauses are serialized in the common DIMACS format, which we summarize here
for the sake of completeness. A DIMACS file starts with a header line of the following form:

p cnf #number-of-variables #number-of-clauses

After the header line, all clauses are listed, literal by literal, with positive integers representing
positive literals, and negative integers representing negative literals. Each clause must go to
its own line ending with 0. Lines that start with the symbol c represent comments and are
thus ignored.

▶ Example 10. Let F = (x2 ∨ x̄3) ∧ (x̄1) ∧ (x1 ∨ x̄4). The DIMACS encoding of F is as
follows:

DIMACS

c this line is a comment
p cnf 4 3
2 -3 0
-1 0
1 -4 0
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A.1.2 Redundant Clauses
Redundant clauses are serialized in a similar way as in DIMACS, with the only difference
that files do not contain a header and that for each clause, the literals are preceded by the
usefulness score.

▶ Example 11. Let R = {⟨(x2 ∨ x̄3), 1⟩, ⟨(x̄1), 1⟩, ⟨(x1 ∨ x̄4), 2⟩} be a redundant-clause set,
i.e., a set of pairs where the first element is a clause and the second element is the clause’s
usefulness score. The plain-text encoding of R is as follows:

Plain-Text Redundant Clauses

1 2 -3 0
1 -1 0
2 1 -4 0

A.1.3 Reconstruction Stack
We serialize a reconstruction stack by listing one clause-witness pair per line (we first list the
literals of the clause and then the literals of the witness), ending each line with a 0. Similar
to deletions in DDRAT, we require the first literal of the witness to coincide with the first
literal of the clause. The stack is serialized bottom-to-top (i.e., earlier pairs in the sequence
are serialized earlier in the file).

▶ Example 12. Let σ = ⟨(x2∨x̄3), {x2, x̄3}⟩, ⟨(x̄1), {x̄1}⟩, ⟨(x1∨x̄4), {x̄4}⟩ be a reconstruction
stack, i.e., a sequence of clause-witness pairs. The plain-text encoding of σ is as follows:

Plain-Text Reconstruction Stack

2 -3 2 -3 0
-1 -1 0
-4 1 -4 0

A.2 Binary State Format
We propose binary formats that rely on the same integer encoding that is used for encoding
literals in the binary DRAT format.2

A.2.1 Integer Encoding
Literals are identified by signed integers that are first mapped to unsigned (positive) integers
and then serialized as variable-length byte strings (using an encoding known as variable-length
quantity). The mapping of signed integers to positive integers is defined as follows:

u(n) =
{

2n if n > 0
−2n + 1 if n ≤ 0

Positive integers are then serialized as variable-length byte strings where the most-significant
bit of each byte indicates whether the byte is the last byte in a sequence or whether there
are more bytes to follow (to be precise, the most significant bit of a byte is 0 if and only if

2 https://www.cs.utexas.edu/~marijn/drat-trim/

https://www.cs.utexas.edu/~marijn/drat-trim/
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the byte is the last byte in the sequence). The remaining seven bits of each byte then encode
the actual number in big-endian (i.e., earlier bytes are more significant). More precisely,
given an integer n, we can split the conventional binary representation of u(n) into a finite
sequence wm . . . w0 of seven-bit words such that:

u(n) = w0 + 27w1 + 214w2 + · · ·+ 27mwm

In our binary integer format, the number n is now serialized as the byte sequence

nB = 1wm . . . 1w21w10w0

Note that for a given seven-bit word w, we denote by 0w the byte obtained by setting the
most significant bit to 0 and then appending the bits of w. For example, if w is represented
by the seven bits 1000000, then 0w = 01000000, and similarly 1w = 11000000.

▶ Example 13. Let n = 979. Then, u(n) = 2 × 979 = 1958. The conventional binary
representation of 1958 is 11110100110. We can now split this bit string into the two seven-bit
words w1 = 0001111 = 15 and w0 = 0100110 = 38 such that 1958 = w0 +27w1 = 38+27×15.
Thus, we obtain the two-byte encoding 979B = 1w10w0 = 10001111 00100110.

▶ Example 14. Let n = −979. Then, u(n) = −2×−979 + 1 = 1959, which is 11110100111
in conventional binary. Thus, w1 = 0001111 = 15 and w0 = 0100111 = 39, resulting in the
two-byte encoding −979B = 1w10w0 = 10001111 00100111.

A.2.2 Irredundant Clauses: Binary DIMACS
For the irredundant clauses, we define a binary DIMACS format. A binary DIMACS file
starts with 0x00, i.e., with a 0-byte (this initial 0-byte allows a solver/parser to identify the
file as a binary DIMACS file) and is then followed by a sequence of clauses where each clause
is represented by a sequence of integers (in the binary format defined in Section A.2.1) that
is followed by 0x00. Similar to DIMACS, positive literals are mapped to positive integers
and negative literals are mapped to negative integers before they are encoded.

▶ Example 15. Let F = (x2 ∨ x̄3) ∧ (x̄1) ∧ (x1 ∨ x̄4). The binary DIMACS encoding of F is
the byte sequence 0x00 2B −3B 0x00 −1B 0x00 1B −4B 0x00, which boils down to:

Binary DIMACS

0x00 0x04 0x07 0x00 0x03 0x00 0x02 0x09 0x00

Note that in contrast to the plain-text DIMACS format, we do not require a binary
DIMACS file to explicitly mention the number of clauses or the number of variables.

A.2.3 Redundant Clauses
Redundant clauses are serialized in a similar way as irredundant clauses. Files start with a
0-byte and then list the clauses, with the only difference being that we precede the literals of
a clause with the binary encoding UB of its usefulness score.

▶ Example 16. Let R = {⟨(x2∨x̄3), 2⟩, ⟨(x̄1), 1⟩, ⟨(x1∨x̄4), 1⟩} be a redundant-clause set. The
binary encoding of R is the byte sequence 0x00 2B 2B −3B 0x00 1B −1B 0x00 1B 1B −4B 0x00,
which boils down to:

Binary Redundant Clauses

0x00 0x04 0x04 0x07 0x00 0x02 0x03 0x00 0x02 0x02 0x09 0x00

SAT 2022
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A.2.4 Reconstruction Stack

For reconstruction stacks in binary format, we do not start files with a 0-byte. This allows
for straight-forward concatenation of multiple reconstruction-stack files, which is often useful.
Apart from that, the binary format is analogous to the plain-text format: Each clause-witness
pair is serialized by first listing the literals (now in binary format) of the clause and then the
literals of the witness, whereby the first literal of the witness must also be the first literal of
the clause. We also add a 0-byte after each pair.

▶ Example 17. Let σ = ⟨(x2∨x̄3), {x2, x̄3}⟩, ⟨(x̄1), {x̄1}⟩, ⟨(x1∨x̄4), {x̄4}⟩ be a reconstruction
stack, i.e., a sequence of clause-witness pairs. The binary encoding of σ is the byte sequence
2B −3B 2B −3B 0x00 −1B −1B 0x00 −4B 1B −4B 0x00, which boils down to:

Binary Reconstruction Stack

0x04 0x07 0x04 0x07 0x00 0x03 0x03 0x00 0x09 0x02 0x09 0x00

B Binary DDRAT Format

In the binary DDRAT format, additions of irredundant clauses and deletions without witnesses
are serialized in the exact same way as in binary DRAT. Additions of redundant clauses and
deletions with witnesses are defined by introducing a separate starting symbol for both of
them.

Additions of irredundant clauses start with the byte 0x61 (ASCII for the character ‘a’),
followed by the binary encoding of the clause’s literals, and ending with the zero-byte
0x00.
Additions of redundant clauses start with the byte 0x72 (ASCII for the character ‘l’),
followed by the binary encoding UB of the clause’s usefulness score U , then the binary
encoding of the clause’s literals, and finally the zero-byte 0x00.
Deletions start with the byte 0x64 (ASCII for the character ‘d’), followed by the binary
encoding of the clause’s literals. If the witness is non-empty, the clause’s literals are
followed by the binary-encoded literals of the witness, whereby the first literal of the
clause and the first literal of the witness must be the same. Finally, deletions end with
the zero-byte 0x00.

▶ Example 18. Consider the DDRAT proof from Example 5: ⟨a, x ∨ y, 1⟩, ⟨d, x ∨ y ∨ z, ∅⟩,
⟨d, x̄ ∨ ȳ, {x̄}⟩, ⟨a, v∨w, 0⟩. Assuming that the variables v, w, x, y, z are respectively identified
by the integers 1, 2, 3, 4, 5, the binary DDRAT encoding of this proof is the byte sequence
0x72 1B 3B 4B 0x00 0x64 3B 4B 5B 0x00 0x64 −3B −4B −3B 0x00 0x61 1B 2B 0x00, which boils
down to:

Binary DDRAT

0x72 0x02 0x06 0x08 0x00 0x64 0x06 0x08 0x0A 0x00 0x64 0x07 0x09 0x07 0x00
0x61 0x02 0x04 0x00
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C Additional Cactus Plots
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Figure 6 Cactus plot excluding the combinations of two solvers (median runs).
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Figure 7 Cactus plot for solver combinations and single runs of original solvers (median runs).
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D Runtime Plots for MapleSat
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Figure 8 Distribution of runtimes for the instances solved by MapleSat in two runs (state is
stored explicitly between runs). Left: satisfiable instances. Right: unsatisfiable instances.

E State Store and Restore Time for CaDiCaL
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Figure 9 CaDiCaL state store+restore time by formula size after 500 seconds run.
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