
SAT-Based Leximax Optimisation Algorithms
Miguel Cabral #

INESC-ID, IST, University of Lisbon, Portugal

Mikoláš Janota #

Czech Technical University in Prague, Czech Republic

Vasco Manquinho #

INESC-ID, IST, University of Lisbon, Portugal

Abstract
In several real-world problems, it is often the case that the goal is to optimise several objective
functions. However, usually there is not a single optimal objective vector. Instead, there are many
optimal objective vectors known as Pareto-optima. Finding all Pareto-optima is computationally
expensive and the number of Pareto-optima can be too large for a user to analyse. A compromise
can be made by defining an optimisation criterion that integrates all objective functions.

In this paper we propose several SAT-based algorithms to solve multi-objective optimisation
problems using the leximax criterion. The leximax criterion is used to obtain a Pareto-optimal
solution with a small trade-off between the objective functions, which is suitable in problems where
there is an absence of priorities between the objective functions. Experimental results on the
Multi-Objective Package Upgradeability Optimisation problem show that the SAT-based algorithms
are able to outperform the Integer Linear Programming (ILP) approach when using non-commercial
ILP solvers. Additionally, experimental results on selected instances from the MaxSAT evaluation
adapted to the multi-objective domain show that our approach outperforms the ILP approach using
commercial solvers.

2012 ACM Subject Classification Computing methodologies → Optimization algorithms

Keywords and phrases Multi-Objective Optimisation, Leximax, Sorting Networks

Digital Object Identifier 10.4230/LIPIcs.SAT.2022.29

Supplementary Material Software (Source Code): https://github.com/miguelcabral/leximaxIST

Funding This work was partially supported by Portuguese national funds through FCT, under
projects UIDB/50021/2020, PTDC/CCI-COM/31198/2017, PTDC/CCI-COM/32378/2017 and
DSAIPA/AI/0044/2018. The results were supported by the Ministry of Education, Youth and Sports
within the dedicated program ERC CZ under the project POSTMAN no. LL1902. This article is
part of the RICAIP project that has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 857306.

1 Introduction

In many real-world problems such as Virtual Machine Consolidation [46], trip planning [50],
automated program repair [70] or Package Upgradeability [39], there are several objective
functions to minimise. The challenge with having more than one objective function is that
the objective functions may be conflicting. Decreasing one objective function may lead to
an increase of another objective function. Despite this trade-off, it is possible to discard
feasible solutions for which there exists another feasible solution that is able to decrease all
objective functions at the same time. For example, suppose we have two objective functions
f1 and f2 and two feasible solutions α, α′ with objective vectors (f1(α), f2(α)) = (10, 10) and
(f1(α′), f2(α′)) = (20, 20). In this case there is no trade-off and α is clearly preferred over
α′. This motivates the well-known notion of Pareto-optimality. A Pareto-optimal solution is
such that there does not exist another feasible solution that decreases all objective functions
at the same time.

© Miguel Cabral, Mikoláš Janota, and Vasco Manquinho;
licensed under Creative Commons License CC-BY 4.0

25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022).
Editors: Kuldeep S. Meel and Ofer Strichman; Article No. 29; pp. 29:1–29:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:miguel.cabral@tecnico.ulisboa.pt
mailto:mikolas.janota@gmail.com
https://orcid.org/0000-0003-3487-784X
mailto:vasco.manquinho@tecnico.ulisboa.pt
https://orcid.org/0000-0002-4205-2189
https://doi.org/10.4230/LIPIcs.SAT.2022.29
https://github.com/miguelcabral/leximaxIST
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


29:2 SAT-Based Leximax Optimisation Algorithms

When solving a Multi-Objective Boolean Optimisation problem, one can try to enumerate
or approximate the set of Pareto-optima (also known as Pareto frontier) and leave it to an
expert to choose one of those solutions. The expert does not have to analyse all Pareto-optima,
since there are criteria to select a representative subset of Pareto-optimal solutions [33]. A
different approach is to transform the multi-objective problem into a single-objective one by
using a linear combination of the objective functions. However, defining the weight for each
objective function is often unclear for users.

One can also compute a Pareto-optimal solution that is minimal according to a certain
order. For example, in the lexicographic order [52], users define priorities to the objective
functions. In this case, an optimal solution corresponds to minimising the highest priority
objective function, then the second highest priority objective function, and so on. For
instance, the vector (20, 50) is lexicographically smaller than the vector (40, 30), assuming
an order of priorities from left to right. However, defining a lexicographic order corresponds
to selecting one feasible solution from the extremes of the Pareto frontier. As a result, the
lexicographic-optimum will likely be very unbalanced, i.e. some objective functions will have
very small values and other objective functions will have very large values.

Unlike the lexicographic order, the leximax relation tends to provide a small trade-off
between the several objective functions. Moreover, the leximax relation does not require the
user to predefine an order of priority between the objective functions. Hence, computing
a leximax-optimal solution is suitable in problems where there is an absence of priorities
between the objective functions. In practice, the leximax-optimum corresponds to minimising
the maximum value among all objective functions, then the second maximum of the objective
functions, and so on. Therefore, besides minimising the worst value among all objective
functions, the solution found using the leximax criterion is usually balanced. Thus, leximax
is a natural criterion for solving problems where an order among the objective functions is
not defined, returning a balanced solution with good performance. Finally, observe that the
lexicographic-optimum and the leximax-optimum are both a Pareto-optimum [28].

In this paper, we propose several SAT-based leximax optimisation algorithms. The main
contributions of our work are:
1. new incremental SAT-UNSAT and UNSAT-SAT leximax optimisation algorithms,
2. the use of unsatisfiable cores to improve the performance of UNSAT-SAT leximax

optimisation algorithms,
3. dynamical construction of the CNF representation of the objective functions, and
4. an extensive empirical evaluation of our algorithms on the Multi-Objective Package

Upgradeability Optimisation problem [49] and on randomly generated multi-objective
instances based on the MaxSAT Evaluation 2021 benchmarks [55].

This paper is organised as follows. In Section 2 we formally define the Multi-Objective
Boolean Optimisation problem using the leximax criterion and highlight related work in
Multi-Objective Boolean Optimisation and leximax optimisation. Section 3 describes the
new SAT-based leximax optimisation algorithms. In Section 4 we evaluate our leximax
optimisation algorithms against other state of the art leximax optimisation algorithms.
Finally, Section 5 summarises the main contribution of our work.

2 Background

This paper assumes the standard definitions and notation of propositional logic, including the
notions of Boolean variable, literal, clause, conjunctive normal form (CNF) and the Boolean
satisfiability (SAT) problem [16]. Given a set of m literals l1, . . . , lm and respective coefficients
ω1, . . . , ωm ∈ N, a Pseudo-Boolean (PB) expression is a weighted sum of literals

∑m
i=1 ωi · li.

Given an integer k ∈ N, a linear PB constraint has the form
∑m

i=1 ωi · li ▷◁ k, ▷◁ ∈ {≤,≥, =}.



M. Cabral, M. Janota, and V. Manquinho 29:3

▶ Definition 1 (Multi-Objective Boolean Optimisation problem (MOBO)). An instance of
MOBO is defined by a vector f(X) = (f1(X), . . . , fn(X)) of n PB expressions and a set
of PB constraints defined over a set X of Boolean variables. We assume, without loss of
generality, that each objective function is a weighted sum of Boolean variables, with positive
weights.

▶ Definition 2 (Objective vector). Let α : X → {0, 1} be a complete assignment that satisfies
all PB constraints in a Multi-Objective Boolean Optimisation instance. Given an assignment
α and objective functions f = (f1, . . . , fn), the vector f⃗(α) = (f1(α), . . . , fn(α)) is called the
objective vector where fi(α) is the value of function fi considering the assignment α.

▶ Definition 3 (Pareto-optimal). Let a⃗ = (a1, . . . , an) ∈ Nn and b⃗ = (b1, . . . , bn) ∈ Nn. We
write a⃗ ≺Par b⃗, if for all i ∈ {1, . . . , k}, ai ≤ bi and there exists j ∈ {1, . . . , k} such that
aj < bj. A feasible solution α is Pareto-optimal if there does not exist another feasible
solution α′ such that f⃗(α′) ≺Par f⃗(α).

▶ Example 4. Consider two objective vectors (20, 20, 20) and (40, 40, 40). In this case we
have that (20, 20, 20) ≺Par (40, 40, 40).

▶ Example 5. Consider two objective vectors (20, 20, 20) and (10, 40, 40). In this case, we
have that (20, 20, 20) ̸≺Par (10, 40, 40) and (10, 40, 40) ̸≺Par (20, 20, 20). That is, the two
vectors are not comparable using the relation ≺Par.

▶ Definition 6 (Lexicographically optimal). Let a⃗ = (a1, . . . , an) ∈ Nn and b⃗ = (b1, . . . , bn) ∈
Nn. We define the lexicographic relation, ≺lexico, as follows. We write a⃗ ≺lexico b⃗ whenever
there exists i ∈ {1, . . . , n} such that ai < bi and, for all j ∈ {1, . . . , i− 1}, aj = bj . A feasible
solution α is lexicographically optimal if there does not exist a feasible solution α′ such that
f⃗(α′) ≺lexico f⃗(α).

▶ Example 7. We have that (10, 40, 40) ≺lexico (20, 20, 20), since 10 < 20.

Observe that the lexicographic relation is a strict total order. Thus, there exists exactly
one lexicographically optimal objective vector.

▶ Proposition 8. Every lexicographically optimal solution is Pareto-optimal [28].

▶ Definition 9 (Leximax-optimal). Let a⃗ = (a1, . . . , an) ∈ Nn and b⃗ = (b1, . . . , bn) ∈ Nn. The
leximax relation ≺leximax is defined as follows. Let a⃗↓ denote the n-tuple with the elements of
a⃗ sorted in decreasing order. We call the i-th component of a⃗↓ the i-th maximum of a⃗. The
tuples a⃗ and b⃗ are leximax-indistinguishable if a⃗↓ = b⃗↓. We write a⃗ ≺leximax b⃗, if a⃗↓ ≺lexico b⃗↓.
A feasible solution α is leximax-optimal if there does not exist a feasible solution α′ such that
f⃗(α′) ≺leximax f⃗(α).

▶ Example 10. We have that (20, 20, 20) ≺leximax (10, 40, 40), since the following holds for
their sorted versions: (20, 20, 20) ≺lexico (40, 40, 10).

The leximax relation is not trichotomous, since any permutation of the components of
a vector is indistinguishable (e.g. (10, 20)↓ = (20, 10)↓). However, since the lexicographic
relation is a strict total order, there is exactly one leximax-optimal sorted objective vector.
Any permutation of the values of a leximax-optimal objective vector is also leximax-optimal.
So there are at most n! leximax-optimal objective vectors, where n is the number of objectives.

▶ Proposition 11. Every leximax-optimal solution is Pareto-optimal [28].

SAT 2022



29:4 SAT-Based Leximax Optimisation Algorithms

Algorithm 1 ILP-based leximax optimisation algorithm.

Input: Integer Linear Programming constraints C and objective functions f1, . . . , fn.
Output: A leximax-optimal solution of the problem, α.

1 for i← 1 to n do
2 C ← C ∪ {0 ≤ ri

j ≤ 1 : j = 1, . . . , n}
3 C ← C ∪ {fj ≤ vi + ri

jM : j = 1, . . . , n}
4 C ← C ∪

{∑n
j=1 ri

j ≤ i− 1
}

5 α← min(vi, C)
6 C ← C ∪ {vi = α(vi)}
7 return α

Related Work in Multi-Objective Boolean Optimisation

There are several frameworks based on stochastic search in order to approximate MOBO [24,
71]. These stochastic solvers can sometimes be complemented with the selective integration
of constraint solvers [36, 69].

In recent years, several SAT-based algorithms have been proposed that enumerate all
Pareto-optimal solutions. For instance, Neves et al. [68] showed that one can find all Pareto-
optimal solutions by enumerating all Minimal Correction Subsets of a Boolean formula.
Moreover, Soh et al. [67] show that there is a one to one correspondence between p-minimal
models and Pareto-optimal solutions. More recently, a hitting set based approach has also
been proposed [40] for Multi-Objective optimisation with two objective functions where one
function is a black box.

There are several algorithms and applications using lexicographic optimisation [52]. In
Answer Set Programming, the tool asprin [19, 7] uses a general algorithm that computes
optimal solutions according to several criteria, including Pareto-optimal, lexicographically
optimal and minmax-optimal solutions. In the context of leximax optimisation of discrete
problems, we highlight the work of Bouveret and Lemaître [18]. One of the algorithms has
been adapted to Integer Linear Programming (ILP) and is implemented in the Package
Upgradeability solver mccs [56, 35, 57].

The pseudo-code is shown in Algorithm 1. Given the problem constraints C and the n

objective functions, the algorithm iteratively solves single-objective ILP instances. It iterates
over the number of objective functions n, and in each iteration, i, it finds the value of the i-th
maximum of the objective vector, using the integer variable vi. To find the i-th maximum it
defines n new Boolean variables ri

1, . . . , ri
n (line 2) in order to relax the constraints on the

maximum value of each objective function (line 3). The idea is that for all objective functions
fj , j = 1, . . . , n, we have that fj ≤ vi is enforced if and only if ri

j is false. Observe that the
constant M must be large enough so that fj ≤ vi + M is trivially satisfied (e.g., M can be an
upper bound of f1, . . . , fn). Note also that in the first iteration all objective functions must
be bounded by the first maximum. In the second iteration, only n− 1 objective functions
are bounded by the second maximum. In general, in the i-th iteration, n− i + 1 objective
functions are bounded by the i-th maximum. This is achieved with the constraint in line 4
that limits the number of relaxation variables that can be assigned to true. The minimisation
of vi subject to C is done through an ILP solver call in line 5. At the end of iteration i, a
constraint is added that fixes the value of the i-th maximum to the optimum found by the
ILP call (line 6).



M. Cabral, M. Janota, and V. Manquinho 29:5

3 Algorithms for Leximax Optimisation

In the following sections, we present the new SAT-based leximax optimisation algorithms.
The algorithms are constructed by adapting the ILP Algorithm 1 to the Boolean domain, by
using several techniques available in the MaxSAT solving literature. In Section 3.1, we show
how the ILP-based algorithm can be adapted to the Pseudo-Boolean domain by replacing each
ILP solver call by an iterative search on the value of the objective function, using linear search
SAT-UNSAT, UNSAT-SAT and binary search [45, 44, 3, 29]. In Section 3.2, we describe the
SAT-based algorithms that result from the encoding of the Pseudo-Boolean constraints to
CNF [27, 42, 37, 11, 1]. We focus on the translation through sorting networks [27]. Finally,
in Sections 3.3 and 3.4, we present the algorithms based on an UNSAT-SAT search using
unsatisfiable cores, also a technique already studied in the context of MaxSAT [51, 4, 23].
We refer to the literature on MaxSAT solving for more details on these algorithms [58, 8].

3.1 Iterative Pseudo-Boolean Algorithm
The ILP-based approach for leximax optimisation presented in Algorithm 1 can be adapted
to only use Boolean variables. In particular, one can replace each ILP solver call with an
iterative PB solving procedure that refines lower bounds and/or upper bounds on the i-th
maximum, i = 1, . . . , n. In this case, the constraints fj ≤ vi + ri

jM (line 3) are changed
to fj ≤ k + ri

jM , j = 1, . . . , n, where k ∈ N. Then, instead of calling an ILP solver and
minimising vi, we repeatedly solve a PB satisfiability instance until the minimum value
of k is found. For instance, one can use a linear search SAT-UNSAT procedure where, in
each iteration i, a sequence of satisfiable PB instances are solved. Whenever a new feasible
solution is found, a tighter upper bound UB on the value of the i-th maximum is determined.
In the next PB instance, this value is decreased, by setting k to UB− 1, and adding the PB
constraints fj ≤ k + ri

jM , j = 1, . . . , n. When the optimal value of the i-th maximum is
found, we fix it by adding fj ≤ k + ri

jM , j = 1, . . . , n to the set of hard constraints, where k

equals the optimal value of the i-th maximum. Note that this linear search SAT-UNSAT
can also be replaced with a linear search UNSAT-SAT or a binary search procedure. With
linear search UNSAT-SAT, we start with k = 0 and increase its value until the PB instance
becomes satisfiable.

▶ Example 12. Consider a MOBO instance with the following hard constraints H

H = x1 + x2 ≥ 1 ∧ x4 + x5 ≥ 1 ∧ x3 + x6 ≥ 1.

Suppose we have the following two objective functions to minimise:

f1 = x1 + x2 + x3; f2 = x4 + x5 + x6.

In this example, we show the execution of the PB-based linear search SAT-UNSAT algorithm
on this instance using the leximax criterion. We begin by minimising max(f1, f2). First, we
call the PB solver on the hard constraintsH. Any feasible solution α provides us with an upper
bound on the value of max(f1, f2). In this case, our upper bound is UB = max(f1(α), f2(α)).
Next, we check if there exists another feasible solution such that max(f1, f2) < UB. Suppose
we have a satisfiable assignment α where all variables are assigned value 1 and the objective
vector of α is (3, 3). Hence, UB = 3. We solve the PB instance with the following constraints:

H ∧ x1 + x2 + x3 ≤ 2 ∧ x4 + x5 + x6 ≤ 2.

SAT 2022



29:6 SAT-Based Leximax Optimisation Algorithms

The instance is satisfiable and suppose we have a new solution α′ where x2 and x4 are
assigned to 0, while the other variables are assigned value 1. In this case, the objective vector
is (2, 2). Then, we update the upper bound of max(f1, f2) to UB = 2. Once more, we check
if there is a feasible solution such that max(f1, f2) < UB, by solving the PB instance with
constraints:

H ∧ x1 + x2 + x3 ≤ 1 ∧ x4 + x5 + x6 ≤ 1.

The formula is unsatisfiable. We conclude that the current value of the upper bound, 2, is
the minimum value of max(f1, f2). Next, we run the second iteration, where we minimise
the second maximum. First, we fix the value of max(f1, f2) to the optimum, 2, by adding to
H the PB constraints:

x1 + x2 + x3 ≤ 2 ∧ x4 + x5 + x6 ≤ 2.

From the previous objective vector (2, 2) we obtain an upper bound on the second maximum
of (f1, f2) of UB = 2. We define two new Boolean variables, r1 and r2, such that, the PB
constraint fj ≤ UB − 1 is enforced if and only if rj is false, j = 1, 2. Hence, a new call is
made with additional PB constraints:

H ∧ x1 + x2 + x3 ≤ 1 + Mr1 ∧ x4 + x5 + x6 ≤ 1 + Mr2 ∧ r1 + r2 ≤ 1, (1)

where M is a large constant. The value of M must be large enough so that when rj is true
the constraints fj ≤ UB − 1 + Mrj do not restrict more than the remaining constraints,
j = 1, 2. For example, M can be 2, since fj ≤ 2, for j = 1, 2, because we have fixed the value
of the first maximum.

The formula (1) is satisfiable. Let α′′ be a satisfiable assignment to (1) with variables
x1, x3, x4, r1 assigned value 1 and the remaining variables assigned value 0. In this case we
have the objective vector (2, 1) and the new upper bound for the second maximum is 1.
Finally, a new call is made on the following formula:

H ∧ x1 + x2 + x3 ≤ 0 + Mr1 ∧ x4 + x5 + x6 ≤ 0 + Mr2 ∧ r1 + r2 ≤ 1.

Since this formula is unsatisfiable, then α′′ is a leximax-optimal solution. Note that having
x1, x4, x6 assigned value 1 is also a leximax-optimal solution with the objective vector (1, 2).

3.2 Iterative SAT-based Algorithm using Sorting Networks
The algorithm described in the previous section uses a PB solver. However, one can replace
the PB solver with a SAT solver. For that, all constraints of the MOBO instance must be
translated to CNF using one of the many available encodings [9, 66, 6, 62, 37, 12, 10, 27, 2].

Besides the original PB constraints, one also needs to encode into CNF the additional
constraints added during the search procedure. First, note that a cardinality constraint is
added on the relaxation variables (see line 4 in Algorithm 1). These cardinality constraints
are usually small, since the size is bounded by the number of objective functions.

Finally, one also needs to deal with the constraints that bound the value of the objective
functions. For that, we use an encoding based on sorting networks [43, 27]. In the following,
we assume the objective functions to be cardinality expressions for ease of explanation. In
case we have a PB expression, a unary encoding from PB to CNF could be used.

Instead of encoding to CNF constraints of the form fj ≤ k + Mri
j , where fj is the

objective function and ri
j is the relaxation variable, we encode to CNF constraints of the

form fj ≤ k. As a result, the relaxation of these constraints is dealt with in a different way,
without requiring a large constant M .



M. Cabral, M. Janota, and V. Manquinho 29:7

x1
x2
x3

o1
o2
o3SO

RT

x4
x5
x6

o4
o5
o6SO

RT
x7
x8
x9

o7
o8
o9SO

RT

∨ y1

∨ y2

∨ y3

min : y1 + y2 + y3

Figure 1 Schematic depiction of the encoding of the 1st iteration of the SAT-based algorithm.

Figure 1 illustrates our encoding for finding the first maximum for three objective functions.
The encoding starts by adding to the set of hard of constraints, H, a sorting network encoding
the expression for each objective function. Therefore, for each objective function fj , we get
fresh Boolean variables o1,j , . . . , omj ,j , corresponding to the output of the sorting network
of fj , j = 1, . . . , n, where mj is the value of fj when all its variables are true. Hence,
fj =

∑mj

i=1 oi,j , and o1,j , . . . , omj ,j is sorted in increasing order. Effectively, we obtain unary
representations of the value of the objective functions. If a given variable ov,j is true, this
means that the value of objective function fj is at least mj − v + 1. Otherwise, if ov,j is false,
then the value of objective function fj is smaller than mj − v + 1.

An important property of the sorting network encoding is that the componentwise
disjunction between the outputs of the sorting networks gives us max(f1, . . . , fn). For
example, the componentwise disjunction between the sorted vectors (0, 1, 1) and (0, 0, 1)
is (0 ∨ 0, 1 ∨ 0, 1 ∨ 1) = (0, 1, 1), which corresponds to the vector with the largest number
of ones. Then, we add fresh Boolean variables y1, . . . , ym such that (y1, . . . , ym) is the
sorted vector of the componentwise disjunction, where m = max(m1, . . . , mn). The PB
constraints enforcing that the i-th maximum is upper bounded by k are replaced by the
unit clause ¬ym−k, if k < m. In the case of Figure 1, we have three objective functions
f1 = x1 + x2 + x3, f2 = x4 + x5 + x6, f3 = x7 + x8 + x9.

In the iterations where i > 1, it is necessary to consider that some objective functions are
relaxed. Hence, for each objective function fj , we add fresh Boolean variables si

1,j , . . . , si
mj ,j ,

j = 1, . . . , n. In addition, we add to H clauses enforcing that if ri
j is false (i.e. objective

function fj is not relaxed when finding the i-th maximum), then (si
1,j , . . . , si

mj ,j) is equal to
(o1,j , . . . , omj ,j), for j = 1, . . . , n. Finally, instead of doing the componentwise disjunction
between the outputs of the sorting networks, we do it between the new vectors (si

1,j , . . . , si
mj ,j),

j = 1, . . . , n. Note that the relaxation variables allows some of these vectors to assume
arbitrary values. However, since we are minimising, those vectors can safely be assigned to
false and will not affect the componentwise disjunction. As a result, the vector resulting from
the componentwise disjunction, (yi

1, . . . , yi
m), will correspond to the maximum of n− i + 1

objective functions. Figure 2 illustrates the encoding used for the second iteration. The
next iterations follow the same schema. Observe that the sorting networks do not have to
be rebuilt between iterations. The encoding of the objective function expressions using the
sorting networks is done only once.

SAT 2022



29:8 SAT-Based Leximax Optimisation Algorithms

x1
x2
x3

o1
o2
o3SO

RT

x4
x5
x6

o4
o5
o6SO

RT

x7
x8
x9

o7
o8
o9SO

RT

s2
1

s2
2

s2
3

r2
1

s2
4

s2
5

s2
6

r2
2

s2
7

s2
8

s2
9

r2
3

∑3
j=1 r2

j ≤ 1
∨ y2

1

∨ y2
2

∨ y2
3

min : y2
1 + y2

2 + y2
3

Figure 2 Schematic depiction of the encoding of the 2nd iteration of the SAT-based algorithm.

Algorithm 2 Core-guided leximax optimisation algorithm.

Input: A set of hard constraints H and objective functions f1, . . . , fn.
Output: A leximax-optimal solution α.

1 X ←
⋃n

j=1{¬x : x ∈ fj}
2 for i← 1 to n do
3 H ← H∪

{∑n
j=1 ri

j ≤ i− 1
}

4 LB← 0
5 repeat
6 (st, α, C)← SAT(H ∪

{(
EncodeCNF(fj ≤ LB) ∨ ri

j

)
: j = 1, . . . , n

}
∪ X )

7 if st = False then
8 if C ∩ X = ∅ then LB← LB + 1
9 else X ← X \ C

10 until st

11 H ← H∪ {
(
EncodeCNF(fj ≤ LB) ∨ ri

j

)
: j = 1, . . . , n}

12 return α

3.3 Core-guided Algorithm
In this section, we present the structure of our core-guided algorithm for leximax Boolean
optimisation. The main goal of the core-guided algorithm is to only consider a subset of the
variables in each objective function, thus improving the performance of each call.

Given a CNF formula φ, we assume that a call to a SAT solver to check the satisfiability
of φ returns a triple (st, α, C), where st is a Boolean that is true if and only if φ is satisfiable.
If φ is satisfiable, then α contains a satisfying assignment. Otherwise, if φ is unsatisfiable,
then C contains an unsatisfiable subformula (also known as an unsatisfiable core) of φ.

Algorithm 2 shows the pseudocode of the core-guided algorithm. First, we define a set X
with unit clauses that are the negation of the variables in all objective functions f1, . . . , fn.
As in Algorithm 1, we iterate over the number of objective functions and in each iteration we
find the smallest i-th maximum considering n− i + 1 objective functions. The main difference
between Algorithm 1 and Algorithm 2 is that, in each iteration, we perform an UNSAT-SAT
search procedure on the value of the i-th maximum initially assuming all variables in the
objective functions are false, i.e. initially all are set to the optimum value. For finding the
minimum i-th maximum, we start with a lower bound LB of 0 (line 4). Then, a SAT call



M. Cabral, M. Janota, and V. Manquinho 29:9

bounds the value of the non-relaxed objective functions to LB. If the formula in line 6 is
unsatisfiable and it does not depend on the assumed values in X , then we can safely increase
the lower bound (line 8). Otherwise, we remove from X the unit clauses that appear in the
unsatisfiable core C (line 9). At the end of iteration i, the variable LB contains the smallest
possible value for the i-maximum of the objective functions. Hence, we can fix this value
(line 11).

3.4 SAT-based Core-guided Algorithm with Sorting Networks
Algorithm 2 can be implemented using different CNF encodings for bounding the objective
functions (lines 6 and 11). In this section, we detail Algorithm 2 using the sorting networks
representation proposed in Section 3.2.

Note that in the core-guided algorithm proposed in Algorithm 2, the CNF encoding of
PB constraints that bound the objective functions is simplified due to the unit clauses in the
set X that fix the values of some variables. In developing this algorithm, the same technique
using sorting networks from Section 3.2 can be used to encode the objective functions, and
use the set X to unit propagate the fixed values from the input of the sorting networks to the
output. However, we propose to improve on this. Instead of representing the entire objective
functions in the beginning of the algorithm, we propose to construct sorting networks only
for the objective variables that are not negated in X . As a result, the sorting networks are
built dynamically and incrementally. At first, the sorting networks are empty and grow as
more variables from the objective functions are removed from X due to the unsatisfiable
cores found during the SAT calls.

Using dynamic sorting networks raises some challenges. There are two main options for
growing the sorting networks: (1) build a new sorting network from scratch or (2) grow the
previous sorting network incrementally. However, the first case of rebuilding the sorting
network might result in losing incremental SAT solving between iterations. An alternative
would be to add a new blocking variable to the entire encoding of a sorting network and
control if a given sorting network is active or not using the blocking variable and SAT
solver assumptions. Nevertheless, this last alternative still implies rebuilding the sorting
networks and the size of the SAT formula might become too large to handle efficiently.
Due to these drawbacks, we propose to reuse the sorting network and make it grow in an
incremental fashion. The incremental encoding to CNF has been the subject of previous
research work [27, 53] but it is new in the context of leximax optimisation.

Consider there is a sorting network that encodes some objective function and a new
set of variables is to be added. In that case, we can build a sorting network for the new
variables and apply a merge encoding between both sorting networks. Figure 3 illustrates
the proposed schema for growing a sorting network where the Batcher’s odd-even merge
construction [13, 43] can be used.

A sorting network with k inputs with Batcher’s odd-even merge sorting network uses
Θ(k(log(k))2) comparators. There are no known constructions that produce sorting networks
with smaller size complexity that can be used in practice. Thus, a sorting network with k

inputs is encoded with Ω(k(log(k))2) clauses.
There are situations where the proposed sort-and-merge approach may lead to a larger

growth of the number of comparators (and thus the number of clauses) than expected. The
issue is that if, each time we obtain a new unsatisfiable core, we remove the variables from
X and add them straight away to the sorting networks, the number of comparators may
grow with k2, instead of k(log(k))2. The odd-even merge construction produces Θ(k log(k))
comparators when merging two sequences of size k, and produces Θ(k) comparators when

SAT 2022



29:10 SAT-Based Leximax Optimisation Algorithms

SO
RT...

...
...

SO
RT...

...
...

MERGE

new
variables

previous
sorting
network

new
sorting
network

Figure 3 General schema of growing a sorting network using sort and merge.

merging two sequences with size k and 1. Therefore, the odd-even merge sorting network,
which works by recursively sorting two subsequences and then merging them, only produces
Θ(k(log(k))2) comparators when, in each recursive step, the sequence is cut in half. However,
if we have the scenario of merging a sequence of k − 1 elements and a sequence of 1 element,
the final sorting network will contain Θ(k2) comparators. In the core-guided algorithm
proposed in Algorithm 2, in the worst case, the unsatisfiable cores contain exactly one of the
clauses in X . As a result, it is possible to end up with sorting networks with k inputs having
Θ(k2) comparators.

In order to try to limit the worst-case scenario where the encoding of the objective
functions becomes quadratic, we propose to delay the merge process between the previous
sorting network and the new variables to be added. Hence, when an unsatisfiable core is
identified in the SAT call (line 6 of Algorithm 2), we remove from X the clauses in the core,
but the respective variables are not immediately added to the sorting networks. Instead,
the variables from the clauses in the unsatisfiable core are added to a set S. Next, the SAT
solver is repeatedly called with a smaller set X of unit clauses. For each new unsatisfiable
core C, clauses from C ∩ X are removed from X and their respective variables are added to
S. When the SAT call becomes satisfiable, then we add the variables in S to the sorting
networks and the set S is emptied.

This procedure consists in finding as many cores as possible of a formula that are disjoint
with regard to X . From now on, we refer to this strategy as the disjoint cores strategy. The
use of disjoint cores is another idea borrowed from the MaxSAT solving literature [22, 14].
Note that this option may reduce the number of times the sorting networks are extended
during the algorithm’s execution. When extending the sorting networks by sort-and-merge,
the disjoint cores strategy can prevent the worst case quadratic growth of the number of
comparators.

▶ Example 13. This example focuses solely on the delay of including literals from unsatisfiable
cores into the sorting network representation of the objective functions.

Consider a MOBO instance with hard clauses H and two objective functions:

f1 = x1 + x2 + x3 + x4; f2 = x5 + x6 + x7 + x8.

Assume at some point in the execution of the core-guided algorithm with dynamic sorting
networks {x1, x2} and {x5, x6} are in the sorting networks and X = {¬x3,¬x4,¬x7,¬x8}.
Suppose we are minimising max(f1, f2) and the lower bound is currently 1. The next call to
the SAT solver is testing if there exists a feasible solution for the following formula:

H ∧
∧
l∈X

l ∧ x1 + x2 ≤ 1 ∧ x5 + x6 ≤ 1. (2)



M. Cabral, M. Janota, and V. Manquinho 29:11

Assume the formula is unsatisfiable and the core C is such that C ∩ X = {¬x3}. In this case,
X is updated to {¬x4,¬x7,¬x8}. There are two options. The first option is to add x3 to
the sorting network of f1 and continue with the algorithm by calling the SAT solver on the
formula

H ∧
∧
l∈X

l ∧ x1 + x2 + x3 ≤ 1 ∧ x5 + x6 ≤ 1. (3)

However, as previously explained, this option may lead to an undesirable growth of the
number of clauses in the objective function CNF representation. Hence, using the disjoint
cores strategy, x3 is not added to the sorting network right away. Instead we store x3 in a
set S, but we still remove ¬x3 from X . Then, we test once again if (2) is true, but now x3
can be true because it is no longer in X .

Assume the formula is still unsatisfiable and the new unsatisfiable core C is such that
C ∩ X = {¬x7}. We remove ¬x7 from X and add x7 to S, so now S = {x3, x7} and
X = {¬x4,¬x8}. We check again the formula (2) where x7 can now be true. Assume the
formula is still unsatisfiable and the new core C is such that C ∩ X = {¬x4}. Then, ¬x4 is
removed from X and x4 is added to S. Assume that (2) becomes satisfiable. Notice that
this does not mean the optimal solution has been found, as max(f1, f2) may not be 1 for the
feasible solution. We need to add the variables in S to the sorting networks and then check
if there exists a feasible solution such that

H ∧
∧
l∈X

l ∧ x1 + x2 + x3 + x4 ≤ 1 ∧ x5 + x6 + x7 ≤ 1, (4)

with X = {¬x8}. If the formula (4) is unsatisfiable, we repeat the previous steps of removing
literals from X (in this case only ¬x8 is left) until the formula becomes satisfiable.

4 Evaluation

This section evaluates the proposed SAT-based algorithms for leximax optimisation. Besides
comparing the different strategies of our algorithms, we compare against the state of the
art ILP-based approach. The algorithms based on Constraint Programming [18] are not
included since we were unable to find a publicly available implementation.

4.1 Use Case: Package Upgradeability
The Package Upgradeability problem is an NP-complete problem [26] that arises when a user
of a software system (e.g. Linux distributions) wants to install, remove or upgrade software
packages. In the final installation, for each package pi that is installed, all its dependencies
must be satisfied and there cannot be any other installed package pj such that pi and pj are
conflicting. In addition, the user can define several objective functions to be minimised, such
as the number of newly installed packages, the number of removed packages, or the number
of not up-to-date packages. Therefore, the Package Upgradeability problem can be modelled
as a MOBO formula. Furthermore, it is often the case that the user is unable to define a
proper order of preferences among the several objectives. Hence, our evaluation is focused
on finding a leximax-optimal solution for the Package Upgradeability problem.

There are several Package Upgradeability solvers that rely on encodings to Answer Set
Programming [31], Maximum Satisfiability [41, 38], Pseudo-Boolean Optimisation [5] and
ILP [57, 35]. However, most tools only compute lexicographically optimal solutions of the
problem. Only mccs [56, 57] (version 1.1) is able to compute leximax-optimal solutions, using

SAT 2022



29:12 SAT-Based Leximax Optimisation Algorithms

the ILP-based algorithm described in Algorithm 1. mccs can be used with different ILP
solvers. Hence, we configured and tested mccs with the following ILP solvers: CPLEX [21]
(version 12.10.0), Gurobi [34] (version 9.0.3), SCIP [30, 65] (version 7.0.1), Cbc [20] (version
devel, build Jan 14 2021), GLPK [32] (version 4.65) and lpsolve [47] (version 5.5.2.5).

4.2 Implementation and Benchmarks
The new SAT-based algorithms and the existing ILP-based algorithm were implemented
in a tool for leximax optimisation that is publicly available [17]. In the implementation of
the SAT-based algorithms, the Batcher’s odd–even merge procedure [13, 43] was used for
constructing and merging sorting networks. The sorting network encoding of MiniSat+ [27]
was used without coefficient decomposition and interconnected sorting networks since we
focus on solving unweighted instances (e.g. Package Upgradeability). To evaluate the SAT-
based algorithms on the Package Upgradeability domain, the packup [41, 38, 64] Package
Upgradeability solver was linked with our tool. The algorithms were evaluated using the
incremental SAT solving library of CaDiCaL [15] (version 1.3.1).

The Package Upgradeability solvers, packup and mccs, were executed on a set of 142
Package Upgradeability benchmarks [48] from the Mancoosi International Solver Compet-
ition [49]. The objective functions defined in the Mancoosi competition are the following:
removed, notuptodate, changed, unsat_recommends and new. For each of the 142 benchmarks
we generated instances considering all 26 combinations of two, three, four and five objective
functions, resulting in 3692 instances. Of the 3692 instances, 122 instances correspond to
unsatisfiable instances or instances that are reduced to the single-objective case. As a result,
the final benchmark set contains 3570 instances to find a leximax-optimal solution.

In order to broaden the experimental evaluation, we adapted a subset of benchmark
instances from the MaxSAT Evaluation 2021 [55] to the multi-objective domain. From
the 561 benchmarks of the unweighted track of the MaxSAT Evaluation 2021, we selected
100 instances that encode problems from different domains, such that the MaxSAT solver
Open-WBO [54, 63] outperforms Gurobi within a 10 s timeout. For each of those benchmarks,
a MOBO instance was generated by keeping the same set of constraints and by randomly
partitioning the original set of soft clauses into multiple sets of soft clauses. We considered
partitions into two, three and four objective functions, resulting in a set of 300 instances [59].

All algorithms were executed on a single thread, with 180 seconds CPU time limit for the
Package Upgradeability instances and 3600 seconds CPU time limit in the case of MaxSAT-
based instances. The experiments were run on Intel(R) Xeon(R) E5-2630 v2 CPU 2.60GHz
machines with Debian Linux operating system with 4 GB memory limit for each instance.

4.3 Evaluation of the SAT-based Algorithms
This section analyses the performance of the different versions of the proposed SAT-based
algorithms on the set of Package Upgradeability benchmarks.

First we describe the abbreviations used when presenting the results for these versions.
There are three versions of Algorithm 1 using the SAT encoding as described in Section 3.2,
each corresponding to different types of search for the i-th maximum: the linear search
SAT-UNSAT algorithm is linear-su, linear search UNSAT-SAT is linear-us and binary
search is binary. There are several versions of the core-guided algorithm proposed in
Section 3.4. The version where the sorting networks are rebuilt with non-incremental SAT
solving is named core-rebuild. If the sorting networks are rebuilt, but using incremental
SAT solving then we use core-rebuild-incr. If the objective functions are statically built



M. Cabral, M. Janota, and V. Manquinho 29:13

1000 1250 1500 1750 2000 2250
Instances

0
20
40
60
80

100
120
140
160
180

Ti
m

e 
in

 s
ec

on
ds

Packup - SAT-based algorithms
core-merge-dc
core-merge
core-rebuild-dc
core-rebuild-incr-dc
binary
linear-us
core-static
linear-su
core-rebuild
core-rebuild-incr

Figure 4 Run times of SAT-based algorithms on Package Upgradeability instances (180 seconds).

0 1000 2000 3000
Instances

0

2500

5000

7500

10000
Total number of wires

0 1000 2000 3000
Instances

0
0.5 × 106

1 × 106
1.5 × 106

2 × 106
2.5 × 106

3 × 106 Number of clauses core-merge
core-merge-dc
core-static
core-rebuild
core-rebuild-incr
core-rebuild-dc
core-rebuild-incr-dc

Figure 5 Cactus plots of the sum of the number of wires of the sorting networks (on the left)
and the number of clauses (on the right) at the time of the last SAT call.

at the beginning of the algorithm we use core-static. The version with dynamic sorting
networks that extends the objective functions by sorting the new variables and merging with
the previous sorting network is core-merge. If the additional disjoint cores strategy is used,
then the algorithms’ names are appended with ‘-dc’.

Figure 4 shows a cactus plot with the run times of solved Package Upgradeability instances
by SAT-based algorithms. Among the different versions of the iterative SAT-based algorithm,
the best performing was the binary search. Nevertheless, despite being able to solve more
instances within the time limit of 180 seconds, it is usually slower than the UNSAT-SAT
search when this approach is able to solve the instance. For example, the plot clearly shows
that the number of instances solved by the binary search within 20 seconds is much smaller.

The results from Figure 4 also show that the core-guided approach using the proposed
incremental merge of sorting networks is the best performing algorithm. Moreover, delaying
the merge operation by using the disjoint cores strategy results in a significant performance
boost. Observe that the disjoint cores strategy also greatly improves the algorithms that
rebuild the sorting networks (both the incremental and non-incremental versions).

To better understand the difference in the performance of the algorithms, we analyse the
number of wires of the sorting networks and the number of clauses of the formula. Figure 5
contains two cactus plots. Both plots correspond to the Package Upgradeability benchmarks.
The plot on the left shows the total number of wires of the last sorting networks produced
by each algorithm. The plot on the right shows the number of clauses of the last call to the
SAT solver. As expected, using dynamic sorting networks allows to significantly reduce the

SAT 2022



29:14 SAT-Based Leximax Optimisation Algorithms

0 1000 2000 3000
Instances

0
20
40
60
80

100
120
140
160
180

Ti
m

e 
in

 s
ec

on
ds

Package Upgradeability

50 100 150 200
Instances

0
600

1200
1800
2400
3000
3600

Ti
m

e 
in

 s
ec

on
ds

MaxSAT Evaluation Gurobi
CPLEX
core-merge-dc
Cbc
SCIP
GLPK
lpsolve

Figure 6 Run times of solved instances on Package Upgradeability benchmarks (left) and
generated multi-objective instances based on the MaxSAT Evaluation 2021 (right).

number of wires of the sorting networks when compared with the static representation of the
objective functions. This occurs because not all variables are represented in the objective
functions. The goal is that the reduction in the number of wires allows a reduction in the
number of comparators and ultimately in the number of clauses. Indeed, we observe a
significant reduction in the number of clauses with dynamic sorting networks, except for
core-rebuild-incr, because it does not delete the previous sorting network encodings, and
core-merge, because of the growth of the number of comparators when merging. Since there
are many small unsatisfiable cores, the growth in core-merge tends to approximate the
worst case scenario explained in Section 3.4. Due to this growth on the size of the formula,
core-rebuild-incr and core-merge exceeded the 4 GB memory limit in around 30% and
4% of the instances, respectively. The right plot of Figure 5 clearly shows the impact of using
the disjoint cores strategy, resulting in a significant reduction in the size of the final sorting
networks. Note that core-merge-dc and core-rebuild-incr-dc both use incremental SAT
solving, and produce a similar number of clauses. However, the sort-and-merge approach
proved to be more effective than the rebuild approach, as core-merge-dc solved more
instances with overall faster run times than core-rebuild-incr-dc.

4.4 Comparison with ILP solvers
This section provides a comparison between the best performing core-guided SAT approach
core-merge-dc and the iterative ILP algorithm when using different ILP solvers.

Figure 6 shows the cactus plots of the run times of solved instances, for each solver. On
the left we the results for the Package Upgradeability benchmarks and on the right the
results on the instances generated from the MaxSAT Evaluation 2021.

In the case of Package Upgradeability, the overall results show that when using commercial
solvers Gurobi and CPLEX, the iterative ILP approach solves more instances. However, the
plot also shows that our approach can outperform the iterative ILP algorithm when using
non-commercial solvers in both the number of instances and run-times. We note that in
many real-world cases, such as the Package Upgradeability problem in open-source Linux
distributions, the usage of commercial solvers is not feasible.

On the MaxSAT Evaluation 2021 instances, we tested the ILP approach using commercial
solvers Gurobi and CPLEX. These results suggest that our proposed algorithm can potentially
outperform the ILP commercial solvers in other application domains, e.g. the Placement
Fixer problem, which is not well-suited for ILP, because of the type of constraints [61].



M. Cabral, M. Janota, and V. Manquinho 29:15

0 500 1000 1500
Instances

0
20
40
60
80

100
120
140
160
180

Ti
m

e 
in

 s
ec

on
ds

0 max 99

0 500 1000 1500
Instances

0
20
40
60
80

100
120
140
160
180

Ti
m

e 
in

 s
ec

on
ds

max 100
Gurobi
CPLEX
SCIP
Cbc
core-merge-dc
GLPK
lpsolve

Figure 7 Run times of core-merge-dc and the ILP solvers on Package Upgradeability benchmarks,
with an optimal maximum of the objective vector ≤ 99 on the left and ≥ 100 on the right.

Figure 7 shows two cactus plots that provide an analysis on the algorithms’ performance
depending on the values in the leximax-optimal objective vector in the Package Upgradeability
instances. The plot on the left shows the run times for instances where the largest value in
the leximax-optimal solution is smaller than 100. On the other hand, the plot on the right
shows the run times for instances where the largest value is larger than or equal to 100.

Observe that when the largest value is smaller than 100, core-merge-dc has a similar
performance to the iterative ILP algorithm when using commercial solvers CPLEX or Gurobi
and clearly outperforms non-commercial solvers. On the other hand, the iterative ILP
algorithm has a stronger performance for larger values in the leximax-optimal solution.
This occurs since our core-guided approach is slower to converge in these situations [25].
Nevertheless, in the context of package upgradeability, it is often the case that real-world users
perform incremental adjustments to a current installation. Hence, in these situations, optimal
solutions tend to have a small cardinality and our proposed core-merge-dc algorithm excels
in those scenarios.

5 Conclusions

This paper introduces the first SAT-based leximax optimisation algorithms. Besides iterative
SAT-based algorithms, we also propose a new core-guided algorithm for leximax optimisation.
The algorithms are built upon the effective encoding of PB constraints to CNF and a CNF
encoding to determine the maximum value among several objective functions. Moreover,
we explore the translation of PB constraints to CNF using sorting networks. We use a
merging technique that allows to dynamically and incrementally extend the representation
of objective functions. Additionally, a strategy based on the identification of disjoint cores
in the core-guided algorithm allows to delay the merging process, thus resulting in a more
effective encoding of the objective functions.

An experimental evaluation is carried out on the Multi-Objective Package Upgradeability
Optimisation problem and on generated MOBO instances based on the MaxSAT Evaluation
benchmarks. The core-guided algorithm outperforms the iterative ILP algorithm when using
non-commercial solvers on the Package Upgradeability benchmarks. The results on the
MaxSAT Evaluation instances suggest that our SAT-based algorithms may be competitive
with the ILP algorithm with commercial solvers on other application domains.

As a future direction of research, we highlight the integration of our leximax optimisation
algorithms with incomplete algorithms, such as Polosat [60], in the same way they are
currently integrated to MaxSAT solvers. Another interesting direction of research is the
development of hybrid approaches using SAT and ILP solvers for leximax optimisation, e.g.
by adapting the approach of the MaxSAT solver MaxHS [22].

SAT 2022



29:16 SAT-Based Leximax Optimisation Algorithms

References
1 Ignasi Abío, Valentin Mayer-Eichberger, and Peter J. Stuckey. Encoding linear constraints

into SAT. CoRR, 2020. arXiv:2005.02073.
2 Ignasi Abío, Robert Nieuwenhuis, Albert Oliveras, Enric Rodríguez-Carbonell, and Valentin

Mayer-Eichberger. A New Look at BDDs for Pseudo-Boolean Constraints. Journal Artificial
Intelligence Research, 45:443–480, 2012.

3 Fadi A Aloul, Arathi Ramani, Igor Markov, and Karem Sakallah. PBS: a backtrack-search
pseudo-boolean solver and optimizer. In Proceedings of the 5th International Symposium on
Theory and Applications of Satisfiability, pages 346–353, 2002.

4 Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. Solving (weighted) partial maxsat
through satisfiability testing. In Oliver Kullmann, editor, Theory and Applications of Satisfiab-
ility Testing - SAT 2009, 12th International Conference, SAT 2009, Swansea, UK, June 30 -
July 3, 2009. Proceedings, volume 5584 of Lecture Notes in Computer Science, pages 427–440.
Springer, 2009. doi:10.1007/978-3-642-02777-2_39.

5 Josep Argelich, Daniel Le Berre, Inês Lynce, João P. Marques Silva, and Pascal Rapicault.
Solving linux upgradeability problems using boolean optimization. In Inês Lynce and Ralf
Treinen, editors, Proceedings First International Workshop on Logics for Component Config-
uration, LoCoCo 2010, Edinburgh, UK, 10th July 2010, volume 29 of EPTCS, pages 11–22,
2010. doi:10.4204/EPTCS.29.2.

6 Roberto Asín, Robert Nieuwenhuis, Albert Oliveras, and Enric Rodríguez-Carbonell. Cardin-
ality Networks: a theoretical and empirical study. Constraints, 16(2):195–221, 2011.

7 asprin webpage. https://potassco.org/asprin/.
8 Fahiem Bacchus, Matti Järvisalo, and Ruben Martins. Maximum satisfiability. In Armin

Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, pages 929–991. IOS PRESS, Netherlands,
2 edition, 2021. doi:10.3233/FAIA201008.

9 Olivier Bailleux and Yacine Boufkhad. Efficient CNF Encoding of Boolean Cardinality
Constraints. In Principles and Practice of Constraint Programming, volume 2833 of LNCS,
pages 108–122. Springer, 2003.

10 Olivier Bailleux, Yacine Boufkhad, and Olivier Roussel. A Translation of Pseudo Boolean
Constraints to SAT. Journal on Satisfiability, Boolean Modeling and Computation, 2(1-4):191–
200, 2006.

11 Olivier Bailleux, Yacine Boufkhad, and Olivier Roussel. New encodings of pseudo-boolean
constraints into cnf. In International Conference on Theory and Applications of Satisfiability
Testing, pages 181–194. Springer, 2009.

12 Olivier Bailleux, Yacine Boufkhad, and Olivier Roussel. New Encodings of Pseudo-Boolean
Constraints into CNF. In International Conference on Theory and Applications of Satisfiability
Testing, volume 5584 of LNCS, pages 181–194. Springer, 2009.

13 K.E. Batcher. Sorting networks and their applications. Proceedings of AFIPS Spring Joint
Computer Conference, 32:307–314, 1968.

14 Jeremias Berg and Matti Järvisalo. Weight-Aware Core Extraction in SAT-Based MaxSAT
Solving. In J. Christopher Beck, editor, Principles and Practice of Constraint Programming -
23rd International Conference, CP 2017, Melbourne, VIC, Australia, August 28 - September
1, 2017, Proceedings, volume 10416 of Lecture Notes in Computer Science, pages 652–670.
Springer, 2017. doi:10.1007/978-3-319-66158-2_42.

15 Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian Heisinger. CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition 2020, 2020.

16 Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of
Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications. IOS Press,
2009.

17 Boolean Leximax Optimisation solver based on iterative SAT solving, source code. https:
//github.com/miguelcabral/leximaxIST.

http://arxiv.org/abs/2005.02073
https://doi.org/10.1007/978-3-642-02777-2_39
https://doi.org/10.4204/EPTCS.29.2
https://potassco.org/asprin/
https://doi.org/10.3233/FAIA201008
https://doi.org/10.1007/978-3-319-66158-2_42
https://github.com/miguelcabral/leximaxIST
https://github.com/miguelcabral/leximaxIST


M. Cabral, M. Janota, and V. Manquinho 29:17

18 Sylvain Bouveret and Michel Lemaître. Computing leximin-optimal solutions in constraint
networks. Artificial Intelligence, 173(2):343–364, 2009.

19 Gerhard Brewka, James Delgrande, Javier Romero, and Torsten Schaub. asprin: Customizing
answer set preferences without a headache. AAAI, 2015.

20 Cbc solver webpage. https://github.com/coin-or/Cbc.
21 CPLEX Optimizer, IBM webpage. https://www.ibm.com/analytics/cplex-optimizer.
22 Jessica Davies and Fahiem Bacchus. Solving MAXSAT by solving a sequence of simpler SAT

instances. In Jimmy Ho-Man Lee, editor, Principles and Practice of Constraint Programming
- CP 2011 - 17th International Conference, CP 2011, Perugia, Italy, September 12-16, 2011.
Proceedings, volume 6876 of Lecture Notes in Computer Science, pages 225–239. Springer,
2011. doi:10.1007/978-3-642-23786-7_19.

23 Jessica Davies and Fahiem Bacchus. Exploiting the power of mip solvers in maxsat. In
Matti Järvisalo and Allen Van Gelder, editors, Theory and Applications of Satisfiability
Testing - SAT 2013 - 16th International Conference, Helsinki, Finland, July 8-12, 2013.
Proceedings, volume 7962 of Lecture Notes in Computer Science, pages 166–181. Springer,
2013. doi:10.1007/978-3-642-39071-5_13.

24 K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A Fast Elitist Non-dominated Sorting
Genetic Algorithm for Multi-objective Optimisation: NSGA-II. In International Conference
on Parallel Problem Solving from Nature, pages 849–858. Springer, 2000.

25 Detailed experimental results of the experimental evaluation on the package upgradeability
problem. https://sat.inesc-id.pt/~mcabral/tables/detailed/.

26 Roberto Di Cosmo, Berke Durak, Xavier Leroy, Fabio Mancinelli, and Jérôme Vouillon.
Maintaining large software distributions: new challenges from the FOSS era. In Proceedings
of the FRCSS 2006 workshop, 2006. EASST Newsletter.

27 Niklas Eén and Niklas Sörensson. Translating pseudo-boolean constraints into SAT. J. Satisf.
Boolean Model. Comput., 2(1-4):1–26, 2006. doi:10.3233/sat190014.

28 Matthias Ehrgott. Multicriteria Optimization. Springer-Verlag, Berlin, Heidelberg, 2005.
29 Zhaohui Fu and Sharad Malik. On solving the partial MAX-SAT problem. In Armin Biere

and Carla P. Gomes, editors, Theory and Applications of Satisfiability Testing - SAT 2006, 9th
International Conference, Seattle, WA, USA, August 12-15, 2006, Proceedings, volume 4121 of
Lecture Notes in Computer Science, pages 252–265. Springer, 2006. doi:10.1007/11814948_25.

30 Gerald Gamrath, Daniel Anderson, Ksenia Bestuzheva, Wei-Kun Chen, Leon Eifler, Maxime
Gasse, Patrick Gemander, Ambros Gleixner, Leona Gottwald, Katrin Halbig, Gregor Hendel,
Christopher Hojny, Thorsten Koch, Pierre Le Bodic, Stephen J. Maher, Frederic Matter,
Matthias Miltenberger, Erik Mühmer, Benjamin Müller, Marc E. Pfetsch, Franziska Schlösser,
Felipe Serrano, Yuji Shinano, Christine Tawfik, Stefan Vigerske, Fabian Wegscheider, Dieter
Weninger, and Jakob Witzig. The SCIP Optimization Suite 7.0. Technical report, Optimization
Online, March 2020. URL: http://www.optimization-online.org/DB_HTML/2020/03/7705.
html.

31 Martin Gebser, Roland Kaminski, and Torsten Schaub. aspcud: A linux package configuration
tool based on answer set programming. Electronic Proceedings in Theoretical Computer Science,
65, September 2011. doi:10.4204/EPTCS.65.2.

32 GLPK (GNU Linear Programming Kit) webpage. https://www.gnu.org/software/glpk/.
33 Andreia P. Guerreiro, Vasco M. Manquinho, and José Rui Figueira. Exact hypervolume

subset selection through incremental computations. Comput. Oper. Res., 136:105471, 2021.
doi:10.1016/j.cor.2021.105471.

34 Gurobi webpage. https://www.gurobi.com/.
35 Gustavo Guttierez, Mikoláš Janota, Inês Lynce, Olivier Lhomme, Vasco Manquinho, João

Marques-Silva, and Claude Michel. Mancoosi deliverable 4.3: Final version of the optimization
algorithms and tools. Technical report, Mancoosi, 2011. URL: https://www.mancoosi.org/
reports/d4.3.pdf.

SAT 2022

https://github.com/coin-or/Cbc
https://www.ibm.com/analytics/cplex-optimizer
https://doi.org/10.1007/978-3-642-23786-7_19
https://doi.org/10.1007/978-3-642-39071-5_13
https://sat.inesc-id.pt/~mcabral/tables/detailed/
https://doi.org/10.3233/sat190014
https://doi.org/10.1007/11814948_25
http://www.optimization-online.org/DB_HTML/2020/03/7705.html
http://www.optimization-online.org/DB_HTML/2020/03/7705.html
https://doi.org/10.4204/EPTCS.65.2
https://www.gnu.org/software/glpk/
https://doi.org/10.1016/j.cor.2021.105471
https://www.gurobi.com/
https://www.mancoosi.org/reports/d4.3.pdf
https://www.mancoosi.org/reports/d4.3.pdf


29:18 SAT-Based Leximax Optimisation Algorithms

36 C. Henard, M. Papadakis, M. Harman, and Y. Le Traon. Combining Multi-Objective Search
and Constraint Solving for Configuring Large Software Product Lines. In International
Conference on Software Engineering, pages 517–528, 2015.

37 Steffen Hölldobler, Norbert Manthey, and Peter Steinke. A compact encoding of pseudo-
boolean constraints into SAT. In KI 2012: Advances in Artificial Intelligence, volume 7526 of
LNCS, pages 107–118. Springer, 2012.

38 Alexey Ignatiev, Mikolás Janota, and João Marques-Silva. Towards efficient optimization in
package management systems. In Pankaj Jalote, Lionel C. Briand, and André van der Hoek,
editors, 36th International Conference on Software Engineering, ICSE ’14, Hyderabad, India -
May 31 - June 07, 2014, pages 745–755. ACM, 2014. doi:10.1145/2568225.2568306.

39 Mikolás Janota, Inês Lynce, Vasco M. Manquinho, and João Marques-Silva. Packup: Tools
for package upgradability solving. J. Satisf. Boolean Model. Comput., 8(1/2):89–94, 2012.
doi:10.3233/sat190090.

40 Mikolás Janota, António Morgado, José Fragoso Santos, and Vasco M. Manquinho. The
seesaw algorithm: Function optimization using implicit hitting sets. In Laurent D. Michel,
editor, 27th International Conference on Principles and Practice of Constraint Programming,
CP 2021, Montpellier, France (Virtual Conference), October 25-29, 2021, volume 210 of
LIPIcs, pages 31:1–31:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:
10.4230/LIPIcs.CP.2021.31.

41 Mikoláš Janota, Inês Lynce, Vasco Manquinho, and Joao Marques-Silva. PackUp: Tools
for Package Upgradability Solving: System description. Journal on Satisfiability, Boolean
Modeling and Computation, 8, January 2012. doi:10.3233/SAT190090.

42 Saurabh Joshi, Ruben Martins, and Vasco M. Manquinho. Generalized totalizer encoding for
pseudo-boolean constraints. In Gilles Pesant, editor, Principles and Practice of Constraint
Programming - 21st International Conference, CP 2015, Cork, Ireland, August 31 - September
4, 2015, Proceedings, volume 9255 of Lecture Notes in Computer Science, pages 200–209.
Springer, 2015. doi:10.1007/978-3-319-23219-5_15.

43 D.E. Knuth. The Art of Computer Programming: Fundamental algorithms. Number vol. 1 in
Addison-Wesley series in computer science and information processing. Addison-Wesley, 1997.

44 Miyuki Koshimura, Tong Zhang, Hiroshi Fujita, and Ryuzo Hasegawa. Qmaxsat: A partial max-
sat solver system description. Journal on Satisfiability, Boolean Modeling and Computation, 8,
2012. doi:10.3233/SAT190091.

45 Daniel Le Berre and Anne Parrain. The sat4j library, release 2.2. Journal on Satisfiability
Boolean Modeling and Computation, 7:59–64, July 2010. doi:10.3233/SAT190075.

46 Rui Li, Qinghua Zheng, Xiuqi Li, and Zheng Yan. Multi-objective optimization for rebalancing
virtual machine placement. Future Gener. Comput. Syst., 105:824–842, 2020. doi:10.1016/j.
future.2017.08.027.

47 lpsolve webpage. https://sourceforge.net/projects/lpsolve/.
48 Benchmarks from the Mancoosi International Solver Competition 2011. http://data.

mancoosi.org/misc2011/problems/.
49 Mancoosi international solver competition 2011. https://www.mancoosi.org/misc-2011/

index.html.
50 Rafael Marques, Luís M. S. Russo, and Nuno Roma. Flying tourist problem: Flight time

and cost minimization in complex routes. Expert Syst. Appl., 130:172–187, 2019. doi:
10.1016/j.eswa.2019.04.024.

51 João Marques-Silva and Jordi Planes. On using unsatisfiability for solving maximum satisfiab-
ility. CoRR, abs/0712.1097, 2007. arXiv:0712.1097.

52 João Marques-Silva, Josep Argelich, Ana Graça, and Inês Lynce. Boolean lexicographic
optimization: Algorithms & applications. Ann. Math. Artif. Intell., 62:317–343, July 2011.
doi:10.1007/s10472-011-9233-2.

https://doi.org/10.1145/2568225.2568306
https://doi.org/10.3233/sat190090
https://doi.org/10.4230/LIPIcs.CP.2021.31
https://doi.org/10.4230/LIPIcs.CP.2021.31
https://doi.org/10.3233/SAT190090
https://doi.org/10.1007/978-3-319-23219-5_15
https://doi.org/10.3233/SAT190091
https://doi.org/10.3233/SAT190075
https://doi.org/10.1016/j.future.2017.08.027
https://doi.org/10.1016/j.future.2017.08.027
https://sourceforge.net/projects/lpsolve/
http://data.mancoosi.org/misc2011/problems/
http://data.mancoosi.org/misc2011/problems/
https://www.mancoosi.org/misc-2011/index.html
https://www.mancoosi.org/misc-2011/index.html
https://doi.org/10.1016/j.eswa.2019.04.024
https://doi.org/10.1016/j.eswa.2019.04.024
http://arxiv.org/abs/0712.1097
https://doi.org/10.1007/s10472-011-9233-2


M. Cabral, M. Janota, and V. Manquinho 29:19

53 Ruben Martins, Saurabh Joshi, Vasco M. Manquinho, and Inês Lynce. Incremental cardinality
constraints for maxsat. In Barry O’Sullivan, editor, Principles and Practice of Constraint
Programming - 20th International Conference, CP, volume 8656 of Lecture Notes in Computer
Science, pages 531–548. Springer, 2014. doi:10.1007/978-3-319-10428-7_39.

54 Ruben Martins, Vasco M. Manquinho, and Inês Lynce. Open-wbo: A modular maxsat solver,.
In Carsten Sinz and Uwe Egly, editors, Theory and Applications of Satisfiability Testing - SAT
2014 - 17th International Conference, Held as Part of the Vienna Summer of Logic, VSL 2014,
Vienna, Austria, July 14-17, 2014. Proceedings, volume 8561 of Lecture Notes in Computer
Science, pages 438–445. Springer, 2014. doi:10.1007/978-3-319-09284-3_33.

55 MaxSAT Evaluation 2021. https://maxsat-evaluations.github.io/2021/.
56 mccs package upgradeability solver webpage. https://www.i3s.unice.fr/~cpjm/misc/mccs.

html.
57 Claude Michel and Michel Rueher. Handling software upgradeability problems with MILP

solvers. In Inês Lynce and Ralf Treinen, editors, Proceedings First International Workshop on
Logics for Component Configuration, LoCoCo 2010, Edinburgh, UK, 10th July 2010, volume 29
of EPTCS, pages 1–10, 2010. doi:10.4204/EPTCS.29.1.

58 António Morgado, Federico Heras, Mark H. Liffiton, Jordi Planes, and João Marques-Silva.
Iterative and core-guided maxsat solving: A survey and assessment. Constraints An Int. J.,
18(4):478–534, 2013. doi:10.1007/s10601-013-9146-2.

59 Multi-Objective Boolean Optimisation benchmarks generated from the unweighted track of the
MaxSAT Evaluation 2021. https://sat.inesc-id.pt/~mcabral/benchmarks/mse21_pbmo.
zip.

60 Alexander Nadel. On optimizing a generic function in SAT. In 2020 Formal Methods in
Computer Aided Design, FMCAD 2020, Haifa, Israel, September 21-24, 2020, pages 205–213.
IEEE, 2020. doi:10.34727/2020/isbn.978-3-85448-042-6_28.

61 Alexander Nadel and Vadim Ryvchin. Bit-Vector Optimization. In Marsha Chechik and
Jean-François Raskin, editors, Tools and Algorithms for the Construction and Analysis of
Systems - 22nd International Conference, TACAS 2016, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS, volume 9636 of Lecture Notes in
Computer Science, pages 851–867. Springer, 2016. doi:10.1007/978-3-662-49674-9_53.

62 Toru Ogawa, YangYang Liu, Ryuzo Hasegawa, Miyuki Koshimura, and Hiroshi Fujita. Modulo
Based CNF Encoding of Cardinality Constraints and Its Application to MaxSAT Solvers. In
International Conference on Tools with Artificial Intelligence, pages 9–17. IEEE, 2013.

63 Open-WBO source code. https://github.com/sat-group/open-wbo.
64 packup package upgradeability solver webpage. http://sat.inesc-id.pt/~mikolas/sw/

packup/.
65 SCIP solver webpage. https://www.scipopt.org/.
66 Carsten Sinz. Towards an Optimal CNF Encoding of Boolean Cardinality Constraints. In

Principles and Practice of Constraint Programming, volume 3709 of LNCS, pages 827–831.
Springer, 2005.

67 T. Soh, M. Banbara, N. Tamura, and D. Le Berre. Solving Multiobjective Discrete Optimization
Problems with Propositional Minimal Model Generation. In International Conference on
Principles and Practice of Constraint Programming, pages 596–614. Springer, 2017.

68 Miguel Terra-Neves, Inês Lynce, and Vasco Manquinho. Introducing pareto minimal correction
subsets. Proceedings of the Twentieth International Conference Theory and Applications of
Satisfiability Testing, pages 195–211, 2017. doi:10.1007/978-3-319-66263-3_13.

69 Y. Xiang, Y. Zhou, Z. Zheng, and M. Li. Configuring Software Product Lines by Combining
Many-Objective Optimization and SAT Solvers. ACM Transactions on Software Engineering
and Methodology, 26(4):14:1–14:46, 2018.

70 Yuan Yuan and Wolfgang Banzhaf. ARJA: automated repair of java programs via multi-
objective genetic programming. IEEE Trans. Software Eng., 46(10):1040–1067, 2020. doi:
10.1109/TSE.2018.2874648.

71 Q. Zhang and H. Li. MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decom-
position. IEEE Transactions on Evolutionary Computation, 11(6):712–731, 2007.

SAT 2022

https://doi.org/10.1007/978-3-319-10428-7_39
https://doi.org/10.1007/978-3-319-09284-3_33
https://maxsat-evaluations.github.io/2021/
https://www.i3s.unice.fr/~cpjm/misc/mccs.html
https://www.i3s.unice.fr/~cpjm/misc/mccs.html
https://doi.org/10.4204/EPTCS.29.1
https://doi.org/10.1007/s10601-013-9146-2
https://sat.inesc-id.pt/~mcabral/benchmarks/mse21_pbmo.zip
https://sat.inesc-id.pt/~mcabral/benchmarks/mse21_pbmo.zip
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_28
https://doi.org/10.1007/978-3-662-49674-9_53
https://github.com/sat-group/open-wbo
http://sat.inesc-id.pt/~mikolas/sw/packup/
http://sat.inesc-id.pt/~mikolas/sw/packup/
https://www.scipopt.org/
https://doi.org/10.1007/978-3-319-66263-3_13
https://doi.org/10.1109/TSE.2018.2874648
https://doi.org/10.1109/TSE.2018.2874648

	1 Introduction
	2 Background
	3 Algorithms for Leximax Optimisation
	3.1 Iterative Pseudo-Boolean Algorithm
	3.2 Iterative SAT-based Algorithm using Sorting Networks
	3.3 Core-guided Algorithm
	3.4 SAT-based Core-guided Algorithm with Sorting Networks

	4 Evaluation
	4.1 Use Case: Package Upgradeability
	4.2 Implementation and Benchmarks
	4.3 Evaluation of the SAT-based Algorithms
	4.4 Comparison with ILP solvers

	5 Conclusions

