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Abstract
We introduce Bule, a modeling language for problems from the complexity class PSPACE via quantified
Boolean formulas (QBF) – that is, propositional formulas in which the variables are existentially or
universally quantified. Bule allows the user to write a high-level representation of the problem in a
natural, rule-based language, that is inspired by stratified Datalog. We implemented a tool of the
same name that converts the high-level representation into DIMACS format and thus provides an
interface to aribtrary QBF solvers, so that the modeled problems can also be solved. We analyze the
complexity-theoretic properties of our modeling language, provide a library for common modeling
patterns, and evaluate our language and tool on several examples.
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1 Introduction

Quantified Boolean formulas (QBF) extend propositional formulas with explicit quantification
(∃, ∀) over propositional variables. QBF are universal for the complexity class PSPACE in the
sense that every problem in PSPACE can be efficiently reduced to the validity problem for
QBF. That is, QBF and their validity play the same central role for PSPACE that propositional
formulas and their satisfiability play for NP. Since PSPACE contains many reasoning problems
(beyond NP) of practical interest from diverse areas, such as logic, games, verification, and
planning, it is well possible that QBF is the next killer-app of the SAT community [28]. In
the past years, the community has made tremendous progress in automatically solving QBF,
as evident in the yearly QBF competition [21]. However, to date, there is no established
high-level language for elegantly modeling such PSPACE problems in terms of QBF. We
attempt to fill this gap by proposing the tool Bule (homophone with “booleh”), which
provides exactly this functionality: it gets as input a concise mathematical description of a
QBF and converts it to DIMACS1 format, which can be fed to standard QBF solvers. We
envision Bule to be used for rapid prototyping of different QBF encodings which can then be
evaluated in terms of their performance in solving.

1 http://www.qbflib.org/qdimacs
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31:2 QBF Programming with Bule

Conceptually, we model problems using Bule as follows. We represent inputs to the
problem as sets of facts. This is very general, since every problem can be modeled in this
way: graphs are represented by the set of their edges, circuits by their netlist, and so on.
Then a Bule program Π for problem P transforms an arbitrary input D of the problem at
hand into a quantified Boolean formula φΠ,D such that

D is a “yes”-instance of problem P iff φΠ,D is valid. (∗)

The following picture describes the overall architecture of Bule.

Thus, we follow the common practice of separating the model Π from the data D. The
design of Bule is driven by the observation that the process of modeling a problem in terms
of QBF usually involves applying clause templates to groups of domain individuals. This
is reflected in the fact that the Bule program Π is partitioned into an extensional part
Πext and an intensional part Πint. The extensional part can be thought of as a powerful
preprocessing step that identifies relevant groups of domain individuals. It is formulated in a
variant of Datalog with stratified negation, which supports order, integer arithmetic, and
uninterpreted function symbols, sufficiently restricted so that the evaluation of Πext on D is
finite and uniquely determined. The intensional rules in Πint can be thought of as templates
for the quantifier prefix and the clauses in φΠ,D. Clause generation is done via grounding
the templates to the groups of domain elements identified in the first phase and results in
the target QBF φΠ,D. On the pure clause level, a similar approach has been taken in [19].

Let us consider as an example the following two-player game. Given a set of k-bit numbers
W , two players E and A determine in k rounds a k-bit number N by alternatingly picking
the bits of N , say, in order of increasing significance. Player E starts the game and wins if
N ∈ W ; otherwise, A wins. We are interested in the existence of a winning strategy for E –
that is, a strategy for how to react to all possible moves of A and win in all cases. Although
the existence of a winning strategy in these games can be decided in PTime, central aspects
of modeling with Bule can be illustrated in this example, and in fact, many other games,
such as Geography and Tic Tac Toe, can be modeled in a similar fashion [24].

The input D consists of facts number[n,pos,bit] with the intended meaning that n is a
number in W that has value bit in position pos in its binary representation. The existence
of a winning strategy for E is modeled with the Bule program depicted in Listing 1. Lines 2–4
form the extensional part of the program; the remaining lines constitute the intensional
part, responsible for the generation of φΠ,D. Lines 2–3 declare that player E (modeled by
the constant e) is responsible for the even positions, while A (constant a) is responsible for
the odd positions. Line 4 expresses that every input number is winning. Lines 7–9 declare
variables via grounding as follows: Line 7 says that for each turn, say i, of player E, there is
an existentially quantified variable set_bit(i) in level i of the quantifier prefix of φΠ,D; that
is, ground facts act as the propositional variables of the QBF formula. Line 8 is analogous
for player A. Line 9 declares variables chosen(n) for every winning number n. The missing
level in the quantifier prefix indicates that this variable is existentially quantified in the
innermost level. Finally, Lines 12–14 generate the clauses in φΠ,D. Line 12 expresses that
one of the winning numbers has to be chosen, and Lines 13–14 express that the bits set so
far are compatible with the chosen number (∼ and | refer to negation and disjunction).
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Listing 1 Modeling the Number Game in Bule.
1 % extensional program
2 number [_,P,_], P #mod 2 = 0 :: # ground turn[e,P].
3 number [_,P,_], P #mod 2 = 1 :: # ground turn[a,P].
4 number [N,_,_] :: # ground winning [N].
5

6 % variable declaration
7 turn[e,P] :: # exists [P] set_bit (P).
8 turn[a,P] :: # forall [P] set_bit (P).
9 winning [N] :: # exists chosen (N).

10

11 % clause generation
12 :: winning [N] : chosen (N).
13 number [N,B ,1] :: ~ chosen (N) | set_bit (B).
14 number [N,B ,0] :: ~ chosen (N) | ~ set_bit (B).

Summarizing again, the extensional part of Π computes relevant groups of such domain
elements (see winning in the example above) and the intensional phase grounds the respective
clauses. The ultimate goal is that only one line per clause template is required in the Bule
model (see Lines 12–14 in Listing 1). To support modeling in Bule, we deliver a standard
library, which is itself written in Bule and which provides commonly used modeling patterns,
such as cardinality constraints and reachability encodings. We envision that, in the future,
more patterns will be included so that QBF programming with Bule will be further facilitated.

The paper is organized as follows. In Section 2, we define syntax and semantics of Bule
and conduct a complexity analysis. In Section 3, we describe the standard library, give more
examples of Bule programs, and provide an evaluation. We conclude in Section 4.

Related Work. The current standard input language for QBF, QDIMACS, is propositional
and thus not appropriate for high-level modeling of problems. As a modeling language,
Bule draws inspiration from languages that have been proposed for describing propositional
formulas in conjunctive normal form (CNF) [19, 25, 26], from logic programming [10, 14], and
from answer set programming (ASP) [16,18]. Bule’s approach to solving the model given some
input data is also not new: in many of the mentioned works, solving is done by grounding
the specified model with the relevant individuals from the input data [16,18,19,25,26]. As
a difference (besides the possible arbitrary quantification using ∃, ∀), we stress that Bule’s
grounding semantics does not resort to well-founded models (which is standard in ASP). A
grounding approach to modeling and solving is also proposed in [9,31] in which the model
is given in first-order logic, possibly with inductive definitions, and is grounded to CNF
clauses. In the imperative programming paradigm, the standard modeling tool is probably
PySAT [22], a Python framework that allows for the convenient creation and solution of
SAT instances. Finally, a language that allows for both high-level modeling and arbitrary
quantification has recently been introduced in quantified ASP [15]. Quantified ASP relates
to QBF in the same way that ASP relates to SAT.

2 The Bule Language: Syntax, Semantics, and Complexity

We assume familiarity with quantified Boolean formulas. In a nutshell, a quantified Boolean
formula (QBF) is of shape ∃x⃗1∀y⃗1 . . . ∃x⃗n∀y⃗n.φ, with φ being a propositional formula and a
quantifier prefix ∃x⃗1∀y⃗1 . . . ∃x⃗n∀y⃗n which mentions all propositional variables in φ. Validity
of a QBF is the prototypical PSPACE-complete problem and is defined as usual [4].

SAT 2022
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2.1 Syntax and Semantics
We formally introduce the language Bule, starting with its syntax. For the sake of conforming
to standard notions, we slightly deviate in the representation of the language from what Bule
programs look like. In Section 2.3 below, we discuss these differences and give more details
on the system actually implemented.

We assume (countably) infinite sets of variables X, function symbols f (each having
a fixed arity), and predicate symbols p (also with an arity); function symbols of arity 0
are called constants. Terms are defined as usual based on variables and function symbols.
Atoms are of the form p(t1, . . . , tn) for a predicate symbol p of arity n and terms t1, . . . , tn.
Literals are atoms p(t1, . . . , tn) and negated atoms ¬p(t1, . . . , tn). We distinguish two kinds
of predicate symbols: extensional predicate symbols and intensional predicate symbols.

A Bule program is a pair Π = (Πext, Πint) of an extensional program Πest and an intensional
program Πint. Recall that a Bule program Π provides a template for generating, from a given
instance D, a QBF φΠ,D such that Condition (∗), from the introduction, is satisfied. We
start with the description of the extensional program.

The extensional program Πext consists of rules in the form

L1, . . . , Lk :: H (1)

where L1, . . . , Lk are extensional literals and H is an extensional atom. As usual, we call
L1, . . . , Lk the body and H the head of the rule. We make several standard assumptions
regarding Πext to ensure that Πext is well-behaved. More specifically, we require that Πext is
range-restricted (every variable that occurs in the head or a negative body atom, occurs in a
positive body atom), argument-restricted [23], and stratified (no recursion over negations) [1].
Formally, the semantics of an extensional program Πext is defined via minimal models as
follows. A term or an atom is ground if it does not contain a variable; ground atoms are also
called facts. A substitution is a map θ from variables into ground terms. We denote with Aθ

the application of the substitution θ to atom A – that is, the replacement of every variable X

with θ(X). A substitution θ is a match for literals L1, . . . , Lk in a set of facts D if Aθ ∈ D
for every positive literal A in L1, . . . , Lk and Aθ /∈ D for every literal ¬A in the L1, . . . , Lk.

Let D be a set of facts. A set of facts M is a model of Πext and D if D ⊆ M and, for
every rule L1, . . . , Lk :: H ∈ Πext and every match θ of its body in M, we have Hθ ∈ M.
A model M is minimal if there is no M′ ⊊ M that is a model of Πext and D. It is known
that if Πext is range restricted, argument restricted, and stratified, then for every finite set
of facts D, there is a unique and finite minimal model Πext(D) of Πext and D [23].

The intensional part Πint of a Bule program consists of rules of the form

L1, . . . , Lk :: Q[T ] H (2)
L1, . . . , Lk :: C1, . . . , Cn (3)

where L1, . . . , Lk are extensional literals as before, H is an intensional atom, Q ∈ {∃, ∀},
and T is a non-negative integer. Moreover, C1, . . . , Cn are conditional literals of the form
M1, . . . , Mm : B where M1, . . . , Mm are extensional literals and B is an intensional literal.
We allow m = 0 in which case the conditional literal is just a single intensional literal. Rules
of the form (2) are templates for variable declarations and rules of the form (3) are templates
for clause generators. Intuitively, the Li and the Mj act as guards in that they specify
conditions under which variables / clauses are generated.

We are now in a position to provide the semantics for Bule programs Π = (Πext, Πint).
Let D be a set of facts. The QBF φΠ,D = ∃x⃗1∀y1 . . . ∃x⃗n∀yn.φ that we are going to construct
uses propositional variables of the form xA, for ground intensional atoms A. Given a ground
literal A, we define the corresponding propositional literal lit(A) as expected:
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Table 1 Complexity of Bule evaluation. All results are completeness results.

complexity measure combined complexity program complexity
arbitrary quantification Yes No Yes No

Bule EXPSPACE NEXPTIME PSPACE NP
Horn Bule EXPTIME EXPTIME P P

lit(A) =
{

xA if A is an atom,
¬xA′ if A = ¬A′ is a negated atom.

Now, φΠ,D is defined as the result of two steps. Step 1 defines the quantifier prefix and
Step 2 defines the clauses. We recommend to read Steps 1 and 2 with Listing 1 in mind.
1. For every rule L1, . . . , Lk :: Q[T ] H ∈ Πint and every match match θ of its body in

Πext(D), variable xHθ is among x⃗T in the prefix if Q = ∃ and among y⃗T if Q = ∀.
2. For every rule L1, . . . , Lk :: C1, . . . , Cn ∈ Πint and every match θ of its body in Πext(D),

φ contains the clause∨
ℓ∈Ĉ1

ℓ ∨ . . . ∨
∨

ℓ∈Ĉn
ℓ

where Ĉi is a set of propositional literals defined as follows. Let θ0 be the restriction of
θ to variables that occur in L1, . . . , Lk. If Ci is M1, . . . , Mm : B, then Ĉi contains the
literal lit(Bθ0θ1), for every match θ1 of M1θ0, . . . , Mmθ0 in Πext(D).

For instance, Line 9 of Listing 1 declares a variable chosen(N) for every match of winning[N]
in Πext(D), that is, for every number N in the dataset D. Further, winning[N]:chosen[N]
in Line 12 is a conditional literal that creates a disjunction containing one literal chosen(N)
for every N in the input D.

2.2 Complexity

Bule programs provide a succinct way of specifying QBF. We here investigate the complexity
of Bule as a modeling language; that is, we study the following problem Bule evaluation:

Input: Bule program Π, set of facts D
Question: Is φΠ,D valid?

Throughout the section, we assume that there are no function symbols of arity > 0, but
we conjecture that our results also hold in general. We consider two forms of complexity:
combined complexity and program complexity. In the former, we consider both Π and D as
input, whereas in the latter Π is assumed to be fixed. We consider two further dimensions.
First, we study the influence of the presence of universally quantified variables, and second,
we investigate Horn Bule programs. As expected, a Bule program is Horn if in rules of
type (3), each generated clause contains at most one positive literal. The proof of the
following is relatively standard and provided in the appendix.

▶ Theorem 1. For Bule evaluation, the complexity results in Table 1 hold.

SAT 2022
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Listing 2 Bule program for vertex cover.
1 vertex [X] :: # exists var(X). % one prop. variable per vertex
2 vertex [X] :: # ground cardinality_var [X]. % register counter
3 size[K] :: # ground cardinality_constraint [leq ,K, counter ]. % at most K
4 edge[X,Y] :: var(X) | var(Y). % covering condition

2.3 Bule System
We provide a prototype which can read Bule programs and solve them using the specified
QBF solver. Since Bule grounds its input to DIMACS, in principle, any QBF solver that
supports DIMACS as input language can be used. The system is implemented in OCaml and
available for download at github.com/vale1410/bule with binaries for Linux and MacOS.
This paper refers to release tag 4.0.1. The input language of the Bule system slightly deviates
from the language given above. There are two extensions that facilitate modeling.

Integer variables and arithmetic. We allow for the use of integer variables X, Y , standard
integer arithmetic as in X + Y , X ÷ Y , XY , X mod Y , . . ., and comparisons such as X < Y .
Correspondingly, we allow integers in D and Π. Formally, an integer n is represented as
the n-fold application of a function symbol s to a constant 0, that is, sn(0), and integer
arithmetic is encoded in Πext. We also allow integer variables as level indicator T in variable
delarations of shape (2), as in Lines 7–8 from Listing 1.

Order predicate. Besides the mentioned comparisons between integer variables, we allow
for a binary order predicate <tot that can be used on arbitrary terms. This predicate is
interpreted as a total order over the Herbrand base of Πext ∪ D (recall: this is the set of all
ground terms that can be formed using the function symbols in Πext ∪D), but it is not defined
as to which one. The Bule user may assume, however, that the interpretation is compatible
with the order < over the integers, which justifies that we write < in place of <tot.

Apart from these extensions, we use a slightly different syntax in Bule programs as input
for our tool; most of them are already visible in Listing 1.

We mark extensional rules of shape (1) by adding the prefix #ground to the head.
We mark extensional atoms by writing p[t1, . . . , tn] instead of p(t1, . . . , tn).
We write #exists and #forall instead of ∃ and ∀ in variable declarations of type (2).
Conditional literals C1, . . . , Cn in rules of type (3) are separated with “|” instead of “,”.
Clauses can equivalently be written as implications using the symbol “→” where the left
side is a conjunction using “&” and the right side is a disjunction.

3 Modeling in Bule

In this section, we showcase modeling in Bule by means of several examples, focusing on
the library support. Providing libraries is motivated by the fact that certain patterns recur
during modeling. In the current version, Bule provides libraries for cardinality constraints
and for reachability.

Cardinality. Cardinality constraints, that is, constraints that specify that among a set of
propositional variables at least / at most k have to be true, are ubiquitous in modeling. For
instance, consider the vertex cover problem: given a graph and a number k, decide whether

github.com/vale1410/bule
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Listing 3 STRIPS planning in Bule.
1 maxtime [T] :: # ground time [0..T].
2 time[T], time[T+1] :: # ground succ[T,T+1].
3

4 time[T], fluent [F] :: # exists [0] true(T,F).
5 time[T], action [A] :: # exists [0] do(T,A).
6

7 fluent [F], init[F] :: true (0,F).
8 fluent [F], ~init[F] :: ~true (0,F).
9 maxtime [T], goal[F] :: true(T,F).

10

11 time[T] :: action [A] : do(T,A).
12 time[T], action [A1], action [A2], A1 < A2 :: ~do(T,A1) | ~do(T,A2).
13

14 time[T], pre[A,F] :: do(T,A) -> true(T,F).
15 succ[T,U], neg[A,F] :: do(T,A) -> ~true(U,F).
16 succ[T,U], pos[A,F] :: do(T,A) -> true(U,F).
17 succ[T,U], action [A], fluent [F], ~neg[A,F], ~pos[A,F] ::
18 do(T,A) & true(T,F) -> true(U,F).
19 succ[T,U], action [A], fluent [F], ~neg[A,F], ~pos[A,F] ::
20 do(T,A) & ~true(T,F) -> ~true(U,F).

there is a subset of k vertices that cover all edges. Listing 2 illustrates the use of cardinality
constraints by providing a Bule program. A great deal of research has been invested to find
good CNF encodings for cardinality constraints. Currently, the user can choose between the
encodings from [3,29,30] via the last parameter of cardinality_constraint, see Line 3.

Reachability. In many PSPACE problems, one needs to model graph reachability. From a
complexity theoretical point of view, the interesting (that is, hard) case is when the graph
is implicitly represented. We illustrate this using the example of STRIPS planning [17].
Recall that a STRIPS instance consists of an initial state, goal states, and set of actions
with pre- and postconditions. A STRIPS instance can easily be cast as a set of facts using
function symbols, e.g., via #ground init[on(a,b)] one can specify that initially object a
is located on b and via pos[act,clear(t)] that a positive consequence of executing act
is that clear(t) becomes true. A full encoding of a STRIPS instance is given in Listing 4
in the appendix. A STRIPS instance implicitly represents an (exponentially large) graph:
the nodes are the possible states of the world and the edges are the possible actions. The
STRIPS planning problem is to decide given a STRIPS instance whether there is a path
from the initial state to a goal state in that graph. STRIPS planning is PSPACE-complete [7].

Bule currently supports two ways of encoding reachability:
direct: This encoding uses propositional variables pos(i,a), for every i ≤ ℓ, ℓ the
maximal length of the sought path, and every node a in the graph, which intuitively state
that the i-th node on the path is a. The clauses enforce that there for every i only one
node is chosen, and that consecutive nodes are connected.
binary search [8]: This encoding uses a standard technique that is underlying, e.g., the
proof of Savitch’s Theorem: there is a path of length 2ℓ between a and b iff there is some
c such that there are paths of length 2ℓ−1 from a to c and from c to b, respectively.

We show, in Listing 3, a Bule program that models STRIPS planning via the direct
encoding. Indeed, after the generation of all relevant time points in Lines 1–2, the variables
true(t,p) and do(t,a) declared in Lines 3–4 correspond directly to the variables mentioned

SAT 2022
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Table 2 Overview of evaluation. Timeout (TO) was set to 1000000ms.

family #instances ∅var ∅clauses ∅ground. time (ms) ∅solv. time (ms)
gttt 180 468 1690 19 13145

gttt-iterative 27 400 1587 23 14701
hex-hein 34 1552 17687 42757 22613

strips-direct 325 1291 103172 751 242
strips-binary 668 648 41638 336 103671 + 30 TO

argumentation 240 5160 14744 3853 1474 + 90 TO

in the description of the direct encoding. Lines 7–9 describe the initial and goal states.
Lines 10–11 express that at every time point exactly one action has to be executed. Finally,
Lines 14-20 describe the update of states and the applicability of the chosen action.

The implementation of the binary search encoding of STRIPS planning is much more
tedious and error-prone. Bule provides an interface that allows the user to specify where the
encoding is needed and automatically generates the relevant clauses. Thus, the binary search
encoding can be used in the same way as the direct encoding, see Listing 5 in the appendix.

Evaluation. To evaluate our language and tool, we created Bule programs for problems
from three different domains: positional games, STRIPS planning, and argumentation. All
programs and instances are available from https://github.com/vale1410/bule.

Positional games are two-player games played on a board; the players alternatingly occupy
a field of their choosing, and the player who can first occupy one of their winning regions wins.
Examples of positional games are (generalized) Tic Tac Toe and Hex. We used programs
from [24] that were already written in Bule and evaluated three sets of benchmarks, which
can be found in Lines 1–3 of Table 2.

For STRIPS planning, we used the two programs provided in Listing 3 and Listing 5; that
is, one based on the direct encoding of reachability and one based on the binary encoding.
We used instances from the IPC BlocksWorld benchmark set [2].

Finally, we considered an inference problem over abstract argumentation frameworks
(AAF), a central and popular knowledge representation formalism [12]. There are several
different semantics for these AAF, which can, in principle, all be easily modeled in Bule. We
chose sceptical inference over preferred semantics (see appendix for details on the semantics
and the Bule program), which is a Πp

2-complete problem [13]. The benchmark set is taken
from the 2019 edition of the argumentation competition [5].

The results displayed in Table 2 demonstrate that the current implementation grounds
small- to medium-sized instances within reasonable time. We solved the instances with
different solvers and report the results of the best solver. It can be seen that the solving
time mostly dominates the grounding time, and it is of the same order of magnitude in
the remaining cases. From a usability perspective, it is important to stress that the Bule
program for the argumentation problem was developed within a very short time; it can easily
be adapted to other semantics, resulting in a prototype for solving argumentation problems.

4 Conclusion and Future Work

We have presented the language Bule for conveniently modeling problems in PSPACE as
QBF problems and a prototype implementation. In the future, we want to extend the
library with more functionality, e.g., Pseudo-Boolean Constraints or alternative encodings

https://github.com/vale1410/bule
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of reachability [27]. We also want to improve our prototype in terms of grounding speed,
using experiences from the ASP community [20]. Finally, it will be interesting to investigate
high-level tasks such as pre-processing at the level of the modeling language (in contrast
to inference on the level of the induced QBF), debugging, and the creation of (possibly
high-level) validity certificates in case the formula is valid.
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A Proof of Theorem 1

▶ Theorem 1. For Bule evaluation, the complexity results in Table 1 hold.

Proof. The upper bounds are a consequence of the well-known fact that, given a range-
restricted and stratified program Πext without function symbols, we can compute Πext(D) in
time polynomial in ma, where m denotes the size of (a representation of) D and a denotes
the maximal arity of a predicate symbol in Πext [11]. It follows that the generated quantified
propositional formula φΠ,D can be computed in time polynomial in ma as well. Note that in
data complexity a is constant, so φΠ,D can be computed in time polynomial in m in this
case. The upper bounds now follow from known results for QBF, SAT, and Horn QBF [6],
and Horn SAT.

The lower bounds follow from the fact that appropriate Turing machines can be simulated.
For example, it is well-known that we can simulate exponentially time bounded deterministic
Turing machines in Datalog [11]. Since Datalog is a fragment already of the extensional part
of Bule programs and the mentioned simulation relies on predicate symbols of arbitrary arity,
this yields EXPTIME-hardness in combined complexity without universal quantification. The
other entries without universal quantification are similar. ◀

B Background on Abstract Argumentation

An abstract argumentation framework (AAF) is a directed graph A = (Arg, Att), where Arg
is a set of arguments and Att ⊆ Arg × Arg is the attack relation. The semantics of AAF is
based on the notion of extension. Intuitively, an extension is a set of arguments (that is,
a subset of the vertices) which is defended against arguments not in the set and possibly
satisfies some more properties depending on the use case. Each variant of extension gives
rise to a different semantics. We use here the notion of a preferred extension. A preferred
extension of A is a set E ⊆ Arg such that:

E is conflict-free, that is, there is no (e, f) ∈ Att with e, f ∈ E;
E is admissible, that is, for every e ∈ E, and every (f, e) ∈ Att, there is an g ∈ E with
(g, f) ∈ Att;
E is maximal (w.r.t. ⊆) with the first two properties.

There might be multiple preferred extensions and we consider sceptical inference which is
the following problem:

input: AAF A = (Arg, Att) and a ∈ Arg
question: Is a ∈ E for all preferred extensions E of A?

Listing 6 displays a rather direct Bule model for (the complement of) sceptical inference.

C Listings

The following pages contain the missing listings.
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Listing 4 STRIPS instance as Bule input. The comments display the corresponding Planning
Domain Description Language code (PDDL).

1 %% STRIPS instance
2 %% ( define ( problem blocks -ab -from -table1 -to -stacked -ab - table3 )
3 %% (: domain blocksworld )
4 %% (: objects a - block b - block t1 - table t2 - table t3 - table)
5 %% (: init (on a b) (on b t1) (clear a) (clear t2) (clear t3))
6 %% (: goal (and (on a b) (on b t3))))
7

8 # ground objects [a,block], objects [b,block], objects [t1 ,table], objects [t2
,table], objects [t3 ,table ].

9 # ground init[on(a,b)], init[on(b,t1)], init[clear(a)], init[clear(t2)],
init[clear(t3)].

10 # ground goal[on(a,b)], goal[on(b,t3)].
11

12 # ground maxtime [4].
13

14 %% STRIPS instance
15 %% ( define ( domain blocksworld )
16 %% (: requirements : strips : typing )
17 %%
18 %% (: types block - object table - object )
19 %%
20 %% (: predicates (on ?x - block ?y - object ) (clear ?x - object ))
21 %%
22 %% (: action move
23 %% : parameters (?b - block ?x - table ?y - table)
24 %% : precondition (and (on ?b ?x) (clear ?b) (clear ?y))
25 %% : effect (and (not (on ?b ?x)) (not (clear ?y))
26 %% (on ?b ?y) (clear ?x)))
27 %% (: action stack
28 %% : parameters (?a - block ?x - object ?b - block)
29 %% : precondition (and (on ?a ?x) (clear ?a) (clear ?b))
30 %% : effect (and (not (on ?a ?x)) (not (clear ?b))
31 %% (on ?a ?b) (clear ?x)))
32 %% (: action unstack
33 %% : parameters (?a - block ?b - block ?y - object )
34 %% : precondition (and (on ?a ?b) (clear ?a) (clear ?y))
35 %% : effect (and (not (on ?a ?b)) (not (clear ?y))
36 %% (on ?a ?y) (clear ?b) (clear ?a))))
37

38 # ground type[block , object ], type[table , object ].
39

40 objects [X,block], objects [Y, object ] :: # ground fluent [on(X,Y)].
41 objects [X, object ] :: # ground fluent [clear(X)].
42

43 objects [B,block], objects [X,table], objects [Y,table] :: # ground action [
move(B,X,Y)],

44 pre[move(B,X,Y), on(B,X)], pre[move(B,X,Y), clear(Y)], pre[move(B,X,Y),
clear(B)],

45 neg[move(B,X,Y), on(B,X)], neg[move(B,X,Y), clear(Y)],
46 pos[move(B,X,Y), on(B,Y)], pos[move(B,X,Y), clear(X)].
47

48 objects [A,block], objects [X, object ], objects [B,block] :: # ground action [
stack(A,X,B)],

49 pre[stack(A,X,B), on(A,X)], pre[stack(A,X,B), clear(B)], pre[stack(A,X,
B), clear(A)],

50 neg[stack(A,X,B), on(A,X)], neg[stack(A,X,B), clear(B)],
51 pos[stack(A,X,B), on(A,B)], pos[stack(A,X,B), clear(X)].
52

53 objects [A,block], objects [B,block], objects [Y, object ] :: # ground action [
unstack (A,B,Y)],

54 pre[ unstack (A,B,Y), on(A,B)], pre[ unstack (A,B,Y), clear(Y)], pre[
unstack (A,B,Y), clear(A)],

55 neg[ unstack (A,B,Y), on(A,B)], neg[ unstack (A,B,Y), clear(Y)],
56 pos[ unstack (A,B,Y), on(A,Y)], pos[ unstack (A,B,Y), clear(B)].
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Listing 5 STRIPS planning via Bule reachability library. In Line 3, the user can specify the
chosen encoding: direct or binary search. Bule will then generate the corresponding clauses from it.

1 fluent [F] :: # ground reach_fluent [g,F].
2 maxtime [T] :: # ground reach_length [id ,T].
3 # ground reach_choose [id , direct ]. % other option is " binary "
4

5 reach_init [ID ,_,T], fluent [F], init[F] ::
6 reach_test (ID ,init(T)) -> reach_state (ID ,T,F).
7 reach_init [ID ,_,T], fluent [F], ~init[F] ::
8 reach_test (ID ,init(T)) -> ~ reach_state (ID ,T,F).
9

10 reach_goal [ID ,_,T], goal[F] ::
11 reach_test (ID ,goal(T)) -> reach_state (ID ,T,F).
12

13 reach_succ [ID ,Q,T,U], action [A] :: # exists [Q] do(T,A).
14

15 reach_succ [ID ,_,T,U] :: action [A] : do(T,A).
16 reach_succ [ID ,_,T,U], action [A1], action [A2], A1 < A2 ::
17 ~do(T,A1) | ~do(T,A2).
18

19 reach_succ [ID ,_,T,U], pre[A,F] ::
20 reach_test (ID ,succ(T,U)) & do(T,A) -> reach_state (ID ,T,F).
21 reach_succ [ID ,_,T,U], neg[A,F] ::
22 reach_test (ID ,succ(T,U)) & do(T,A) -> ~ reach_state (ID ,U,F).
23 reach_succ [ID ,_,T,U], pos[A,F] ::
24 reach_test (ID ,succ(T,U)) & do(T,A) -> reach_state (ID ,U,F).
25 reach_succ [ID ,_,T,U], action [A], fluent [F], ~neg[A,F], ~pos[A,F] ::
26 reach_test (ID ,succ(T,U)) & do(T,A) & reach_state (ID ,T,F) ->
27 reach_state (ID ,U,F).
28 reach_succ [ID ,_,T,U], action [A], fluent [F], ~neg[A,F], ~pos[A,F] ::
29 reach_test (ID ,succ(T,U)) & do(T,A) & ~ reach_state (ID ,T,F) ->
30 ~ reach_state (ID ,U,F).
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Listing 6 Bule model for (the complement of) sceptical inference w.r.t. preferred semantics.
1

2 % Quantifier Declaration
3 arg[X] :: # exists [1] e(X).
4 arg[X] :: # exists [1] attacked (X).
5 arg[X] :: # forall [2] f(X).
6 arg[X] :: # exists [3] attackedF (X).
7 arg[X] :: # exists [3] cheatCF (X).
8 att[X,Y] :: # exists [3] cheatA (X,Y).
9 arg[X] :: # exists [3] cheatM (X).

10 :: # exists [3] cheat.
11

12 % Clauses
13 target [X] :: ~e(X).
14

15 att[X,Y] :: e(X) -> attacked (Y).
16 arg[Y] :: attacked (Y) -> att[X,Y] : e(X).
17

18 % conflict free
19 arg[X] :: e(X) -> ~ attacked (X).
20

21 % admissible
22 att[X,Y] :: e(Y) -> attacked (X).
23

24 % Now for f
25 att[X,Y] :: f(X) -> attackedF (Y).
26 arg[Y] :: attackedF (Y) -> att[X,Y] : f(X).
27

28 % conflict free
29 arg[X] :: cheatCF (X) -> f(X).
30 arg[X] :: cheatCF (X) -> attackedF (X).
31

32 % admissible
33 att[X,Y] :: cheatA (X,Y) -> f(Y).
34 att[X,Y] :: cheatA (X,Y) -> ~ attackedF (X).
35

36 % missing
37 arg[X] :: cheatM (X) -> e(X).
38 arg[X] :: cheatM (X) -> ~f(X).
39

40 cheat -> arg[X]: cheatCF (X) | arg[X]: cheatM (X) | att[X,Y]: cheatA (X,Y).
41 arg[X] :: ~ cheat & f(X) -> e(X).
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