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Preface

Language allows humans to interact versatile and complexly, consolidating bonds that underlie
solid social structures. With language, we think collectively and act more effectively. Also, it
is through human language that precious knowledge is stored and disseminated throughout
communities and along with history. It firmly bases our collective identity, our culture. Some
anthropologist suggests that human communication patterns appeared around 50 000 years
ago, but this origin is lost to the ages. One thing is sure: language equipped humans with
an advantageous framework that allowed them to reach this complex and technological era
we live in. Thus, at the origin, we have Human to Human Languages (HHL).

With the development of the computer, from the middle of the 20th century, it became
necessary to think of languages that would allow humans to communicate with machines at a
level of abstraction above the underlying electronic processes and, therefore, more efficiently
and conveniently to the human being. These are the kind of Human to Computer Languages
(HCL), including the wide range of programming languages that have been developed and
are still being researched.

More recently, with the advent of networks, we found a way to make computers communic-
ate between themselves. Therefore, languages that allow machines to exchange information
efficiently and effectively are also being investigated. These are the kind of Computer-to-
Computer Languages (CCL), e.g., representation and transformation languages like XML.

These different forms of communication use different languages, but they still share many
similarities and joint issues and challenges. In SLATE, we are interested in discussing these
three kinds of languages and eventually spark some interesting synergies that might emerge
from them. Therefore, SLATE is organized into three different tracks. It is a forum where
researchers, developers, and educators exchange ideas and information involving natural
language processing (HHL Track), the latest academic or industrial work on language design,
processing, assessment, and applications (HCL Track), and markup and transformation
languages (CCL Track).

This book of proceedings compiles the accepted papers for the Eleventh edition of
the Symposium on Languages, Applications and Technologies, SLATE’2022, held at the
University of Beira Interior, Portugal, on the 14th and 15th of July, 2022. In this edition,
a total twenty two papers were submitted by a total of forty one authors. The Scientific
Committee executed a thorough revision of each paper and nineteen papers were selected to
publication and oral presentation in Symposium. We end up with five papers in the HCL
track, seven papers in the HHL track, and seven papers in the CCL track.

Our gratitude goes to the many people without whom this event would never have been
possible: all the Members of the Scientific Program Committee for their valuable effort
reviewing the submissions, contributing with corrections and new ideas, and helping on
deciding the final list of accepted papers; the members of the Organizing Committee, for
the help on dealing with the bureaucratic issues; the invited Speakers (Ricardo Campos and
Simão Melo de Sousa) for accepting our invitation to share their knowledge; and finally,
we thank all the Authors for their contributions to SLATE with their current projects and
research problems.

João Cordeiro
Main Chair
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Abstract
The aim of this paper is to propose a new coefficient of integrity Inew for improving NP lus measure
which is an improvement of the TNgom measure. In NP lus measure, the coefficient of integrity used
(I) decreases and tends to 0 fastly when we just add some concepts for extendind set of resemblance
of ontologies. To fix this problem, we introduce R, the coefficient of representativeness of concepts
added in the ontology for its extension. Inew decreases slowly compared to I and depends to the
cardinality of the ontology extended and the number of concepts added to it too.
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1 Introduction

Ontologies allow to formalize knowledge related to the description of the world by making
them accessible and shareable across the Web. They introduce the semantic layer into the
architecture of the on based-systems [1]. When several ontologies are used for an application,
it is necessary that these ontologies present some similarity. The assessing of similarity
between ontologies may be very interesting. Indeed, it can make easy the choice of ontologies
in the case of elaboration of a system, which uses them. In addition, it can help to evaluate
the ontology evolution by comparing its different versions. In [6], we have proposed an
approach for assessing similarity between two ontolgies O1 and O2. This approach has given
good results but doesn’t take into account some properties (relations, axioms) for extending
the formed sets (set of resemblance and set of differences) and improving the proposed
measure. In [5], a new measure NP lus is proposed in the goal to imrove the TNgom measure
proposed in [6]. NP lus measure improves TNgom in the fact of it takes into account “is-a”
relation to enlarge the formed set of resemblance by extending ontologies. In the formula
of the NP lus measure, a coefficient of integrity I is defined. The integrity coefficient of an
ontology Oj named Ii is a value which is related to the number of concepts of Oj (nj) that
we have to add to another ontology Oi in goal to extend it (i, j ∈ N). The larger is nj , the
smaller is Ii. The major problem of I is that it decreases fastly and tends fastly to 0 when
we just add some concepts. To fix this problem, we propose in this paper a new coefficient
of integrity Inew which will decrease slowly in related to the added concepts for extending
ontologies and the size (cardinality) of ontologies.
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1:2 Similarity Between Two Ontologies

This paper continues by presenting our research context. Section 2 presents the related
work. Then, we present the new coeficient of integrity Inew in section 3 before making its
experimentation in section 4. We end with conclusion and perspectives of this work.

2 Related Works

There are several works, which are dedicated to the evaluation of similarity between two
concepts in an ontology. However, there are not many works which deal with evaluation of
similarity between ontologies. The following are some works about similarity between two
ontologies.

Maedche and Staab [3] propose a method for comparing two ontologies. This method
is based on two levels:

the Lexical level which consists of investigation on how terms are used to convey
meanings ;
the Conceptual level which is the investigation of what conceptual relations exist
between terms.

The Lexical comparison allows to find concepts by assessing syntaxic similarity between
concepts. It is based on Levenshtein [2] edit distance (ed) formula which allows to measure
the minimum number of change required to transform one string into another, by using a
dynamic programming algorithm. The Conceptual Comparison Level allows to compare the
semantic of structures of two ontologies. Authors use Upwards Cotopy (UC) to compare
the Concept Match (CM). Then, they use the CM to determine the Relation Overlap (RO).
Finally they assess the average of RO.
This approach allows to assess similarity between two ontologies by using the Lexical and
Conceptual Comparison Level. However, if we reverse the position of some concepts in the
hierarchy, we can get the same results because the method only considers the presence of the
concept in the hierarchy.

In [6], we propose an approch which assesses similaty between two ontologies. The ap-
proach is based on set theory, edges based [4] and feature-based similarity based [7]. It
is composed of three steps. The first step consists to determine the different sets : set of
concepts shared by the two ontologies and sets of concepts specific to each ontology. In the
second step, we have assessed the average similarity values between concepts for each sets
thanks to semantic similarity measures. Finally, in the last step, we have assessed similarity
between ontologies by redefining Tversky’s measure relying to the two first steps. Figure 1
represents ontologies O1 and O2.
In figure 1, we distinguish three parts :

(O1\O2) = {A, C, E} : set of concepts present in O1 and not in O2 ;
(O2\O1) = {R, S, T, W, X, Y } : set of concepts present in O2 and not in O1 ;
(O1 ∧ O2) = {B, D, F, G} : set of concepts present in O1 and O2.

The three steps can be summarized in below :
The Step 1 consists to determine the sets (O1\O2), (O2\O1) and (O1 ∧ O2).
Once the sets are determined, we assess the average of the semantic similarity values
between concepts of each set in the step 2.
Finally, in the step 3, we assess similarity between ontologies by using the results of the
step 2 in our measure which is a redefinition of the Tversky measure.
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Figure 1 Representation of ontologies O1 and O2 with Tversky’s feature model.

To assess similarity between two ontologies, we have defined a measure which readjust the
Tversky measure. This measure takes into acount shared features and differences of ontologies.
Applying the Tversky measure, the similarity between O1 and O2 is given by the formula 1.

Tvr(O1,O2) = f(O1∩O2)
f(O1∩O2)+α.f(O1\O2)+β.f(O2\O1) (1)

Instead of the function f, we use Wu and Palmer [8] semantic similarity measure. for every
determined set, we have computed the average of the similarity values between concepts.
Using Wu and Palmer similarity measure, the similarity between two concepts c1 and c2 is
given by the formula 2.

Sim(c1, c2) = 2 × depth(c3)
depth(c1) + depth(c2) (2)

The concept c3 represents the Least Common Subsumer (LCS) of concepts c1 and c2. By
replacing the terms of the Tversky measure with the average of the similarity values between
concepts of the determined sets, formula 1 becomes formula 3.

TNgom(O1, O2) = θ.xO1 +ω.xO2
θ.xO1 +ω.xO2 +α.y(O1\O2)+β.z(O2\O1)

(3)

with :
θ = cardinality(O1 ∩ O2)

cardinality(O1) ;

ω = cardinality(O1 ∩ O2)
cardinality(O2) ;

α = cardinality(O1\O2)
cardinality(O1) ;

and β = cardinality(O2\O1)
cardinality(O2) ;

cardinality(O) is the number of elements (concepts) of the set (ontology) O ;
and where :

xO1 (respectively xO2) is the average value of similarity between concepts (xi, xj) in
ontology O1 (respectively (xi, xj) in ontology O2). i, j ∈ N and i ̸= j.
y(O1\O2) (respectively z(O2\O1)) is the average value of similarity between concepts (yi, yj)
(respectively (zi, zj)) present in ontology O1 but not in O2 (respectively present in ontology
O2 but not in O1). i, j ∈ N and i ̸= j.
the coefficients θ, ω, α and β allow to take into account the similarity values in relation
to the number of concepts of the sets and number of concepts of ontologies.
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The measure presented by formula 3 respects this properties :
the measure is symetric : TNgom(O1, O2) = TNgom(O2, O1) ;
the measure is bounded between 0 and 1 ;
if TNgom(O1, O2) = 1 then O1 = O2.

The method we have proposed in [6] gives satisfactory results. Indeed, it allows to assess
similarity between two ontologies while taking into account the semantic links that exist
between the concepts in ontologies. However, it doesn’t take into account properties of
concepts for extending the formed sets (set of resemblance and set of difference).

For taking into account properties of concepts for extending the formed sets (set of re-
semblance and set of difference), we have improved the TNgom measure [6] by proposing in [5]
an approach which assesses similarity between ontologies by extending set of resemblance
thanks to the is-a relation of ontologies. The improved approach can be summarized in five
steps :

Step 1 consists to determine the sets (O1\O2), (O2\O1) and (O1 ∧ O2).
Once the sets are determined, we assess the average of the semantic similarity values
between concepts of each set in step 2.
In step 3, we extend ontologies O1 and O2 by using the set (O1 ∧ O2). In this step, for
each concept c of (O1 ∧ O2), we search there sons xi (i ∈ N) in O1 (respetively O2) and
we add them as sons of c in O2 (respetively O1) if they don’t exist in this ontology. At
the end of this step, we obtain two ontologies : O′

1 (respectively O′
2) which extends O1

(respectively O2) with concepts of O2 (respectively O1). Thus, extension of ontologies
allows us to determine the set of concepts (O′

1 ∧ O′
2) shared by the two ontologies.

In Step 4, we determine (O′
1 ∧ O′

2) which is the set of shared concepts by ontologies O′
1

and O′
2.

Finally, in the step 5, we assess similarity between ontologies by using the results of the
step 2 and 4 in our measure which is a redefinition of the TNgom measure [6].

In summary, for assessing similarity between ontologies, we use sets (O1\O2), (O2\O1) and
(O′

1 ∧ O′
2); i.e we consider the difference between O1 and O2 by using sets (O1\O2) and

(O2\O1), and the resemblance between the two ontologies by using set (O′
1 ∧ O′

2). Figure 2
represents the differents that we use for assessing similarity beetween ontologies O1 and O2.

Figure 2 Representation of extensions of ontologies O′
1 and O′

2 with Tversky’s feature model.

In Figure 2, we distinguish three parts :
(O1\O2) = {A, C, E} : set of concepts present in O1 and not in O2 ;
(O2\O1) = {R, S, T, W, X, Y } : set of concepts present in O2 and not in O1 ;
(O′

1 ∧ O′
2) = {B, C, D, E, F, G} : set of concepts present in O′

1 and O′
2.
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The measure is given by the formula 4 :

NP lus(O1, O2) =
(θ.xO′

1
+I2)+(ω.xO′

2
+I1)

(θ.xO′
1

+I2)+(ω.xO′
2

+I1)+α.y(O1\O2)+β.z(O2\O1)
(4)

with :
θ = cardinality(O′

1 ∩ O′
2)

cardinality(O1) + n1 + n2
;

ω = cardinality(O′
1 ∩ O′

2)
cardinality(O2) + n1 + n2

;

α = cardinality(O1\O2)
cardinality(O1) ;

β = cardinality(O2\O1)
cardinality(O2) ;

I1 = 1
1 + n2

;
I2 = 1

1 + n1
;

xO′
1

(respectively xO′
2
) is the average value of similarity between concepts (xi, xj) in

ontology O′
1 (respectively (xi, xj) in ontology O′

2). i, j ∈ N and i ̸= j.
y(O1\O2) (respectively z(O2\O1)) is the average value of similarity between concepts (yi, yj)
(respectively (zi, zj)) present in ontology O1 but not in O2 (respectively present in ontology
O2 but not in O1). i, j ∈ N and i ̸= j.
cardinality(O) is the number of elements (concepts) of the set (ontology) O ;
Ii : Integrity coefficient of Ontology Oi (i ∈ N);
ni : number of concepts of Oi added for extending Oj (i, j ∈ N);
As in [6], θ, ω, α and β are parameters which allow to take into account the similarity
values in relation to the number of concepts of the sets and number of concepts of
ontologies.

The integrity coefficient of Ontology (Ii) is a value which is related to the number of concepts
of ontology Oj (nj) that we have to add to Oi in goal to extend it (i, j ∈ N). The larger is
nj , the smaller is Ii. We have the expression 5:{

limn→∞ I = limn→∞
1

1 + n = 0;
limn→0 I = limn→0

1
1 + n = 1;

(5)

with (n ∈ N).

We note that measure presented by formula 4 like formula 3 respects this properties :
the measure is symetric : NP lus(O1, O2) = NP lus(O2, O1) ;
the measure is bounded between 0 and 1 ;
if NP lus(O1, O2) = 1 then O1 = O2.

The NP lus measure presented in [5] improves TNgom measure of [6] because it takes into
account is-a relation of ontologies to extend set of resemblance of ontologies by adding
concepts. The limits of this measure is in the integrity coefficient of ontologies (I). I

decreases fastly if we add just a few of concepts. Figure 3 shows the evolution of Ii when we
add concepts for extending set of resemblance.

In Figure 3, we remark that I decreases very fastly. When we add concepts in an ontology
for extending the resemblance set, we note that variation of I = 1

1 + n :
I = 1 if n = 0 ;
I = 0, 5 if n = 1 ;
I = 0, 33 if n = 2 ;
...
I = 0, 1 if n = 9.
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Figure 3 Variation of the integrity coefficient of ontologies I.

The integrity coefficient is equal to 0,5 when we just add one concept. It means that with
one concept added, we lose 50% of the integrity of the ontology. We need to find a good
coefficient formula for improving NP lus.

3 New definition of integrity coefficient of ontology (Inew)

In section 2, we presented NP lus measure of [5] which improves TNgom measure of [6] by
extending set of resemblance of ontologies. In definition of NP lus formula, we introduced I

which represents the integrity coefficient. The integrity coefficient (I) is a value introduced
to express how an ontology looses its integrity when concepts are added in the goal to extend
set of resemblance shared with another ontology. This value is between 0 and 1. Initially,
when there is no concept added to the ontology, the value of I is 1. This value decreases as
we add concept to the ontology. Figure 3 shows that I decreases fastly to 0 when we add
just a lot of concepts. To fix this problem, we propose to redefine I. We introduce R for
expressing coefficient of representativeness of concepts added in the ontology for its extension.
R is expressed by the formula 6 :

R = n
cardinality(O) + n (6)

with :
n is the number of concepts added to the ontolgy O for his extension (n ∈ N) ;
cardinality(O) represents the number of concepts of the ontology O ;

We redefine I with Inew in terms of R according to the formula 6 and we obtain the formula 7:

Inew = 1 − R

Inew = 1 − n
cardinality(O) + n

Inew = cardinality(O)
cardinality(O) + n

(7)

The new coefficient of integrity Inew represented by formula 7 is between 0 and 1 as shown
in below :

limn→∞ Inew = limn→∞
cardinality(O)

cardinality(O) + n
= 0;

limn→0 Inew = limn→0
cardinality(O)

cardinality(O) + n
= 1;

(8)

with (n ∈ N).
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For studying the evolution of Inew, we use 4 functions I1, I2, I3 and I4, and we draw there
evolutions curves. Functions are defined in below :

I1 = 1
1 + n : The same formula of I in [5];

I2 = 100
100 + n : cardinality(O) = 100

I3 = 500
500 + n : cardinality(O) = 500

I4 = 1000
1000 + n : cardinality(O) = 1000

Figure 4 represents the evolutions of differents curves of functions I1, I2, I3 and I4.

Figure 4 Variations of the integrities coefficients of ontologies I and Inew with differents number
of concepts of ontologies.

In Figure 4, we remark that I represented by I1 decreases fastly than I2, I3 and I4. We
note that, the new coefficient of integrity Inew improves I and its evolution relies to the
cardinality of ontology extended and the number of concepts added to it.

4 Simulations

In this section, we experiment our methodology. We compare TNgom and NP lus measures
using coefficient of integrity I proposed in [5] and the new coefficient of integrity Inew

proposed in this paper. We assess similarity of ontologies by using ontologies extracted from
Wordnet1. Figure 5 to 12 represent ontologies that we use to simulate the measures.

Ontologies are explained as following:
ontologies O3 and O5 are fragments of Wordnet ;
ontology O4 is obtained by adding 3 concepts to O3 (gun, boat and table_knife) ;
O6 is a sub-ontology of O4 with concepts : instrumentality, [conveyance, transport],
vehicle, wheeled_vehicle, motor, [bike, bicycle], [car, auto], truck, gun, boat ;
O7 is a sub-ontology of O4 with concepts : article, ware, [cutlery, eating_utensil], fork,
table_knife ;
ontology O8 is obtained by adding concept plate to O7 ;
ontology O9 is obtained by adding concepts bowl to O8 ;
finally, ontology O10 is obtained by adding concepts spoon and glass to O9.

1 http://wordnet.princeton.edu
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Figure 5 Ontology O3. Figure 6 Ontology O4.

Figure 7 Ontology O5.
Figure 8 Ontology O6.

Figure 9 Ontology O7. Figure 10 Ontology O8.

Table 1 gives results of comparisons between ontologies using TNgom, NP lus and NP lusInew.
NP lusInew represents NP lus with the new coefficient of integrity Inew. Note that similarities
between ontologies O3 and O4, and between O3 and O5 are assessed in [5].

In table 1 we note that NP lus improves TNgom by considering “is-a” relations to extends
ontologies. In the same way, NP lusInew improves NP lus thanks to the improvement of the
coefficient of integrity. Similarity of ontologies is better with NP lusInew. Values of similarities
between ontologies are improved. The correlation coefficient between these three measures
presented in table 2 is very good and very close to 1 (correlation(NP lus, NP lusInew) =
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Table 1 Results of comparisons of ontologies with measures TNgom, NP lus and NP lusInew.

TNgom Hierarchies added to ontologies for extensions NP lus NP lusInew

(O3, O4) 0.95 in O3: h1(instrumentality,
gun), h2(vehicle, boat),

h3([cutlery, eating_utensil],
table_knife)

in O4: none 0.98 0.98

(O3, O5) 0.57 in O3: h1(conveyance,
mail), h2(conveyance,

public_transport),
h3(conveyance, hosebox),

h4(wheeled_vehicle,
rolling_stock)

in O5:
h1(wheeled_vehicle,

motor)

0.74 0.82

(O3, O6) 0.76 in O3: h1(instrumentality,
gun), h2(vehicle, boat)

in O6: none 0.88 0.9

(O3, O7) 0.6 in O3: h1([cutlery,
eating_utensil],

table_knife)

in O7: none 0.83 0.86

(O3, O8) 0.49 in O3: h1([cutlery,
eating_utensil],

table_knife), h2(([cutlery,
eating_utensil], plate)

in O8: none 0.74 0.8

(O3, O9) 0.47 in O3: h1([cutlery,
eating_utensil],

table_knife), h2([cutlery,
eating_utensil], late),

h3([cutlery, eating_utensil],
bowl)

in O9: none 0.74 0.78

(O3, O10) 0.43 in O3: h1([cutlery,
eating_utensil],

table_knife), h2([cutlery,
eating_utensil], late),

h3([cutlery, eating_utensil],
bowl), h4([cutlery,

eating_utensil], spoon),
h5([cutlery, eating_utensil],

glass)

in O10: none 0.71 0.76

(O7, O9) 0.85 in O7: h1(([cutlery,
eating_utensil], plate),

h2(([cutlery, eating_utensil],
bowl)

in O9: none 0.93 0.94

(O7, O10) 0.76 in O7: h1([cutlery,
eating_utensil], plate),

h2([cutlery, eating_utensil],
bowl), h3([cutlery,

eating_utensil], spoon),
h4([cutlery, eating_utensil],

glass)

in O10: none 0.89 0.9
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Figure 11 Ontology O9. Figure 12 Ontology O10.

Table 2 Coefficient correlation between measures TNgom, NP lus and NP lusInew.

Measures Correlation
NP lus - NP lusInew 0.99

NP lus - TNgom 0.98
TNgom - NP lusInew 0.99

0.99, correlation(NP lus, TNgom) = 0.98 and correlation(TNgom, NP lusInew) = 0.99. With
NP lusInew measure, the correlation is better with NP lus and TNgom measures. We can say
that NP lusInew is central with respect to the two measures TNgom and NP lus.

5 Conclusion

In this paper, we have proposed a new coefficient of integrity Inew for the improvement
of NP lus measure proposed in [5]. In [5], the coefficient of integrity I introduced in NP lus

measure decreases and tends to 0 fastly. When we add just some concepts, the integrity
becomes very poor. To fix this problem, we introduced R, the coefficient of representativeness
of concepts added in the ontology for its extension. Inew decreases slowly compared to I and
depends to the cardinality of the ontology extended and the number of concepts added to it
too. Figure 4 shows how Inew decreases slowly relative to I. For simulations, we used wordnet
and compared NP lus, TNgom and NP lusInew. NP lusInew is the measure which uses Inew and
NP lus uses I. The results of simulations show that NP lusInew improves NP lus thanks to
Inew. The assessing of the coefficient of correlation between the three measures gives as
results, good correlation between measures. According to the coefficient of correlation,we
remark that NP lusInew is central with respect to the two measures TNgom and NP lus. In
our future works, we will propose a methology for extracting the smaller sub ontology of
an ontology which represents a large domain. This sub ontology will be used for assessing
similarity between ontologies because with a large ontology, the set of concepts not shared
by ontologies will be very large and the similarity will be very poor.
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Abstract
In this paper, natural language processing (NLP) and machine learning methods and tools are
applied to the task of topic (thematic or semantic) classification of Portuguese proverbs. This is
a difficult task since proverbs are usually very short sentences. Such classification should allow
an easier selection of the most relevant proverbs for a given situation, considering their context in
discourse or within a text. For that, we used, on the one hand, a collection of +32,000 proverbial
expressions organized “thematically” into a large set of previously attributed topics (+2,200) and,
on the other hand, the Orange data mining toolkit, along with the NLP and machine learning
tools it provides. Since the classification provided in the collection of proverbs is, for the most part,
based only on a keyword in the body of the proverbs, 2 experiments were set up, to determine the
feasibility of the task with a modicum of effort and the most promising configurations applicable.
Different sample sizes, 100 and 50 proverbs randomly selected per topic, corresponding to Scenario 1
and 2, respectively, were contrasted; several preprocessing strategies were explored, and different
data representation methods tested against several learning algorithms. Results show that Neural
Networks is the best performing model, achieving the best classification accuracy of 70% and 61%,
in the two different experimental scenarios, Scenario 1 and 2, respectively. Some of the inaccurate
classification cases seem to indicate that the machine learning approach can sometimes do a better
job than a human classifier, especially considering the manual attribution of the topics by the
collection’s author, the sheer number of topics involved, and the very unbalanced distribution of
proverbs per topic. Based on the results achieved, the paper presents some proposals for future work
to cope with such difficulties.
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1 Introduction

This paper aims at the automatic topic/thematic classification of (European) Portuguese
proverbs. The semantic (or thematic) classification of proverbs is not, a priori, a trivial task,
not only for the very nature of proverbs as short sentences, relatively insulated from the
surrounding text; but especially because of the idiomatic (figurative) character of many of
these expressions; this difficulty is also due to the fact that, for a given theme, the meaning
of the words forming the proverb is not necessarily related to the expression by which we
might designate that same theme. For example, in [5], we find Água mole em pedra dura,
tanto dá até que fura lit.: “water soft on stone hard, so much it hits until it bores the stone”
“Water dropping day by day wears the hardest rock away” 1 under the topic perseverança

1 Equivalent suggested by: https://www.sk.com.br/sk-proverbios-portugues-ingles.html
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“perseverance”. Arguably, even if no clue is given in its wording, it may be easier to asign
this topic to this very well known proverb, than to the following one: A pouco e pouco
fia a velha a touca “Little by little the old woman spins the cap” which the author also
classes under the same topic, but, as it is much less known and used, where the lexical clues
may hint at several other potential meanings (persistence, carefulness/wisdom, progressive,
wealth accumulation, etc.). Compare how much easier it is to classify under that same
topic a proverb that explicitly has that word as its subject, and whose meaning is clearly
denoted by its elements: A perseverança sempre/tudo alcança/vence “Perseverance always
pays off/wins out everything” (Lexical or punctuation variants of the same paremiological
unit are represented in a compact way using “/”. On the definition of this concept, see [10].)
Added to these difficulties is the fact that, on the one hand, some proverbs can be used in
different situations, with subtle variations in meaning.

Identifying the theme of a proverb can be useful in several situations. According to [8],
“the task for the automatic classification of proverbs which can assist users in selecting a
suitable proverb according to a given context prove[s] to be important and interesting but
challenging.” Thus, when serving as a motto to a text, either in the title or in the lead
of a newspaper article, or even in the conclusion of the text, the proverb anticipates (or
ends the text with) a judgment of value that the author avoids making in the first person,
taking refuge in the so-called “popular wisdom”. This may be viewed as the underlying
rationale behind the work of [6], who assessed different methods of associating proverbs to
news headlines, exploring different semantic similarity metrics.

In this paper we address the practical problem of automatic topic classification of
Portuguese proverbs and try to provide answers to the following research questions:
1. How are proverbs classified by topic/theme in the relevant literature? How good is the

adequacy, the consistency or even the usefulness of extant classifications in the available
collections of Portuguese proverbs?

2. To what extent can the available classification of Portuguese proverbs be captured by
NLP and ML tools and techniques, using only the words in the proverbs? Is the size of
each class relevant for this task, considering that proverb classifications in the literature
are very fragmentary (a large number of topics, with a small number of proverbs each),
in spite of the large collections of proverbs available?

This paper is organized as follows: Next, Section 2 presents the most similar works found
in the literature on machine learning strategies to proverb classification. Section 3 presents
a critical assessment of the collection of proverbs used here as corpus, its structure and
composition. Then, Section 4, explains the sampling method used to select the expressions
here used and outlines the two experiments conducted using the Orange [2] data mining
toolkit 2, along with the results obtained. In Section 5, a short discussion ensues, Finally,
Section 6 concludes the paper and presents prospects for future work.

2 Related work

There seems to be very little related work dealing with the automatic, machine-learning
based, classification of proverbs. These are presented in this Section.

Noah and Ismail (2008) [8] is the first work, to the best of our knowledge, to address this
challenge in a similar way, aiming at helping an end-user to better select the most appropriate
proverb for a given context. The authors comment on the non-trivial nature of the task,

2 https://orangedatamining.com/

https://orangedatamining.com/
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since proverbs are very concise structures, thus limiting the type and number of features that
can be extracted from them and the classification techniques that can be applied. The paper
draws on a relatively small corpus of 1,000 Malayan proverbs, split into two partitions 50%
for training and 50% for testing. The data was divided into equal-sized 5 classes, according
to the respective topics (family, life, destiny, social and knowledge). These topics
are generic in nature, and encompass proverbs that pertain to many situations and contexts.
Three classification scenarios were considered: (i) the proverbs, alone; (ii) the proverbs
along with an explanation of their meaning; and (iii) the proverbs, their explanation and an
example of a sentence containing those proverbs. The data was preprocessed, removing the
stopwords from the proverbs, to achieve a reduction of the number of extracted features, as
well as obtaining better performing ones. No other preprocessing step was indicated. Two
Naïve Bayes models (multinomial and Bernouilli’s multivariate) were tested. In the training
stage, a classification accuracy (CA) of 99% is reported. In the testing step, the best reported
result was the third scenario (proverb+explanation+example), with a CA=72.2% for the
multinomial model and 68.2% for the multivariate. The authors also report an increase in
the performance depending on the size of the vocabulary, from a CA of 36% for a minimal
vocabulary of 632 words, to the reported value of 72.2% with a 3,203 words’ vocabulary.

For this paper, only the first scenario can be reproduced. Firstly, no collection of
Portuguese proverbs was found with their respective explanation. Secondly, while some
experiments have been made to determine the distribution of proverbs from the Portuguese
paremiological minimum [10] in 3 large corpora [11], in most cases, the proverb forms by
itself an isolated sentence, with very little formal relation with the surrounding text, working
as a textual “island”, as it has been already remarked in the literature [3, p.37; 221-222].
This offers little to no help in the classification of proverbs by topic.

Next, Mendes & Oliveira (2020) [6] assessed different similarity metrics in order to
associate proverbs with news headlines. This is basically an automatic recommendation
task, similar to the one outlined by [8]. The corpus of news headlines was obtained using a
news API from online Portuguese newspapers, involving some keywords (clima “climate”,
ambiente “environment” and aquecimento global “global warming”), retrieved during
the 3 months prior to February 2020 (the precise number of news headlines was not provided).
The corpus of proverbs consisted of a list of approximately 1,600 expressions, drawn from
the project Natura (U. Minho) [1] 3 (The selection criteria of these proverbs, from the
source database, which contains 2,293 proverbs, was not given). Both corpora were processed
(tokenized, part-of-speech tagged and lemmatized, and stopwords removed). To estimate
semantic similarity between the news headlines and the proverbs, several basic techniques
were used (Jaccard coefficient, word count and TF-IDF vectorization), as well as static
word embeddings (Glove and FastText) and BERT (references within the paper). To assess
the results, the authors used a questionnaire, which revealed that most of the time people
could establish a relation between the automatically selected proverb and the news headline.
This was more obvious when there were common lexical elements between them, thus
recommending the use of simpler computational methods, like the Jaccard coefficient. Deeper
semantic representations, such as word embeddings (BERT), produced poorer results, which
is explained by the authors by the figurative nature typical of these proverbial expressions.

3 https://natura.di.uminho.pt/~jj/pln/proverbio.dic
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Though this paper does not frame the proverbs’ classification within an extrinsical eval-
uation, that is, in an applicational context, as a recommendation task; it does compare
bag-of-words with word embeddings data representation methods, as well as different types of
learning models for the classification. A previously classified list of proverbs were used, select-
ing the most frequently occurring topics within a very large collection (+32,000 expressions),
and using same-sized classes.

3 Corpus

For this work, we used a relatively large collection [5] of over 32,000 proverbs, organized by
what the author called an “interpretative classification essay” (p.12). This is a task that
has raised doubts for the author himself, who even mentions that some proverbs included
in the collection “do not contain any “far-reaching principle” nor contain a moral maxim
confirmed by the course of generations”, while some cases can be deemed as just “non-sense”.
The author also added a list of 167 proverbs “without classification”: “[...] some dozens of
sayings, of difficult interpretation because its meaning is multiple or diffuse, or eventually
so personalized that only a deep investigation could, in some cases, determine it (p.14, our
translation)”. The extensive list of proverbs from this collection had already been digitized
and integrated into the database that was the main source of [9]’s work.

Going through the collection, it turns out that the “organization” of the proverbs collected
there is essentially based on the fact that most proverbs under a given “topic” present that
same word or cognate forms of the word designating the “topic” itself. While this may very
well be adequate for the topic brigas “fights” and proverbs like Brigam dois se um quer “Two
fight if one will”, it is much less obvious when the proverb’s interpretation is predominantly
idiomatic, like the inclusion under the topic brilho “shine” of the proverb O brilho abre o
trilho (lit.:“The shine/glow opens the trail/way”) “Someone’s success/fame makes it easier
for something to happen or for someone to do something”. In other cases, cognate words
are split into distinct topics: perda (noun) “loss”, perder (verb) “loose” and perder-se
(pronominal verb) “loose oneself/get lost”, without a consistent distribution of the proverbs
within each group, namely, proverbs with the verb but noun in the group headed by the
noun, and vice-versa. It is unlikely that joining some topics designated by cognate words
from different parts-of-speech would reduce this fragmentary classification, since this seldom
happens in this collection.

This also leads to a fragmentary nature of the “classes” construed by the author. There
are cases where a given “theme/topic” presents only one, two or very few proverbs, or even
different variants of the same proverb, sometimes even with the same keyword, e.g. alquimia
“alchemy”: Alquimia e/está provada :/, ter renda e não pagar/gastar nada “Alchemy is
proven :/, to have income and don’t spend/pay anything”. In other cases, a synonym of the
keyword is used instead: (almofariz “mortar”: Nem corte sem chocarreiro, nem gral sem
malhadeiro (gral = almofariz “mortar”) “Neither a court without a court jester, nor a mortar
without a pestle”.

In the other extreme situation, some “topics” are so broad, e.g. agricultura “agri-
culture”, that the proverbs there included address the most disparate situations: from the
quality of the soil to produce: Terra negra dá bom pão “Black soil makes good bread”; to the
relationship between weather and crops: Ano de rosas, ano de pão “Year of roses, year of
bread”; or the need to care for the crops: Vinha sem guarda, vindima feita “Unguarded vine,
harvest done”. In other cases (e.g. alimento “food”), different food products (e.g. carne
“meat” and peixe “fish”; fruta “fruit” and legumes “vegetables”; leite “milk”, pão “bread” and
mel “honey”) give title to the different “subclasses”.
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Finally, several proverbs occur more than once in the collection, but they are not classified
consistently, e.g. the proverb Se queres mel, suporta a abelha “If you want honey, support
the bee” appears both under the “topic” mel “honey” and as a subtype of alimento “food”
(but not under abelha “bee”), thus confirming the difficulty in identifying (and naming) the
proper topic of a given proverbial expression.

Despite all the reservations that this so-called “classification” may rise, there are few
works, especially recent ones, that present this kind of topic/thematic organization (we know
of [12], for instance). Other collections present only alphabetically ordered listings of the
words appearing in the proverbs [4], eventually accompanied by a remissive index of the
vocabulary [7]. For lack of a better resource, this collection [5] was used to this paper, not
least because its size, but also because it had already been digitized into the database that
was used for [9], and it only required that topics be associated to the proverbs.

4 Methods

In total, [5] collects 32,067 proverbs, distributed over 2,227 different “topics” (an average of
approximately 14,4 proverbs per topic). There is a long tail of topics with only one proverb
(482), 112 topics with 50 or more proverbs each (14,078 proverbs), and only 43 topics with
100 (9,537 proverbs) or more.

A subcorpus with the largest classes, that is, the topics with the largest set of proverbs,
were selected. Two classifications scenarios were considered in these experiments:

Scenario 1: only the 43 most frequent topics, with +100 proverbs each, were selected;
Scenario 2: the 112 topics with 50+ proverbs were considered.

A random sample of 100 and 50 proverbs per topic and for each scenario, respectively, was
retrieved from the subcorpus 4. Each topic has exactly the same number of proverbs in both
scenarios. The proverbs in Scenario 2 are included in Scenario 1. Using the Orange [2]
machine-learning toolkit, the workflow presented in Figure 1 was set up.

Figure 1 Orange workflow configuration.

4 Available at: http://dx.doi.org/10.13140/RG.2.2.22354.02242
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Each scenario was tested consecutively. The datasets for the two scenarios consist of
samples of 4,300 and 5,600 proverbs each. As shown in Fig. 1, a DataSampler widget was
used to split the data into fixed-sized, training/testing partitions, with replicable, stratified
sampling options selected, 4,000/300 in Scenario 1 and 5,000/600 in Scenario 2, respectively.
Preprocessing consisted of text transformation (conversion to lowercase), tokenization (keeping
words and punctuation) and part-of-speech tagging (averaged perceptron tagger), using the
default configurations of the system. Two data representation options were compared: Bag-
of-Words (BoW) and DocumentEmbeddings. After preliminary experiments, it was
clear that the Document Embeddings data representation method consistently produced
very poor results (Classification Accuracy (CA): 0.030) against the bag-of-words (CA: 0.415),
so it was discarded. Several models were evaluated, using the Test&Score widget in a
10-fold cross-validation setting: Neural Networks (NN), Nearest Neighbour (kNN), Naive
Bayes (NB), Logistic Regression (LR), a forward pruning decision tree algorithm (Tree), and
Support Vector Machines (SVM). Table 1 shows the performance of each model, estimated
by the Test&Score tool in Scenario 1, and Table 2 in Scenario 2. Evaluation of the best
performing model (Neural Networks) with the testing corpus yielded the results shown in
Table 3.

Table 1 Test&Score: Evaluation of different models in Scenario 1: 43 most frequent topics and
100 randomly selected proverbs per topic. Metrics: AUC: area under the ROC curve, CA: classification
accuracy, F1: harmonic mean (of Precision and Recall).

Model AUC CA F1 Precision Recall
SVM 0.69522 0.01375 0.01066 0.05234 0.01375
kNN 0.78336 0.36150 0.36166 0.43864 0.36150
Tree 0.76424 0.44850 0.45341 0.47162 0.44850
Naive Bayes 0.93931 0.59500 0.58550 0.60109 0.59500
Logistic Regression 0.95132 0.66150 0.66299 0.66799 0.66150
Neural Network 0.95068 0.68825 0.68531 0.68640 0.68825

Table 2 Test&Score: Evaluation of different models in Scenario 2: 112 most frequent topics
and 50 randomly selected proverbs per topic.

Model AUC CA F1 Precision Recall
SVM 0.67129 0.00220 0.00310 0.01805 0.00220
Tree 0.60671 0.12900 0.13154 0.17824 0.12900
kNN 0.74069 0.24480 0.25509 0.37730 0.24480
Naive Bayes 0.91620 0.48580 0.48219 0.52645 0.48580
Logistic Regression 0.92985 0.57740 0.57985 0.59201 0.57740
Neural Network 0.93662 0.60480 0.60425 0.61241 0.60480

Table 3 Results from best performing model, Neural Networks (NN), in both Scenario 1 (train:
4,000 proverbs / test: 300 proverbs) and Scenario 2 (train: 5,000/test: 600).

Scenario Model AUC CA F1 Precision Recall
Scenario 1 NN 0.95900 0.70300 0.69900 0.71800 0.70300
Scenario 2 NN 0.94300 0.61200 0.61000 0.64600 0.61200
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5 Discussion

From the Test&Score widget (Tables 1 and 2), the best performing model in both scenarios
is the Neural Networks (CA: 0.688 and 0.605, respectively), with Logistic Regression following
close behind (CA: 0.662 and 0.577, respectively). The relative performance of the tested
models is similar and consistent across the two scenarios, with only kNN and Tree changing
ranks. Overall, the reduction of the number of proverbs by topic degraded the models’
predicted performance. The testing step (Table 3), however, produced slightly better results,
while keeping the same difference. The best performance was achieved in Scenario 1 (CA:
0.703).

The experimental designs presented in related work (Section 2) do not allow for a
straightforward comparison of results. Even so, we notice that the best performing models
in the experiments on Malayan proverbs, while including in the training dataset not only the
proverb itself, but also both a definition and an example of the proverb in its context of use,
only achieved a 72.2% accuracy.

Looking deeper into the classification errors in Scenario 2, we find that in 77 out 233
errors the proverb contains the predicted keyword, and in most cases, instead of the target
keyword, a cognate word, from a different part-of-speech appears: Proverb: Prometer e não
dar é dever e não pagar “To promise and not give is to owe and not pay”; Actual: promessas
“promises” (noun-pl.); Predicted: dever “to owe” (verb)/“duty” noun.

Some of these results are very interesting, for even if the topic classification is inaccurate,
some clear relation can be established between the predicted tag and the respective proverb.
In some cases, one can even say that the machine learning model produced a better result
than the human annotator: Proverb: Onde entra o ar e o sol, não entra o doutor “Where
the air and the sun enter, the doctor does not enter”; Actual: sol “sun”; Predicted: saúde
“health”; Proverb: Mal vai ao passarinho na mão do menino “Badly goes the little bird in
the little boy’s hand”; Actual: aves “birds”; Predicted: criança “child”.

6 Conclusion and future work

This study aimed at an automatic topic (semantic) classification of Portuguese proverbs.
The Orange data mining toolkit was used to produce models that could appropriately
assign a topic/theme to Portuguese proverbs. Different models were trained and tested in
2 experimental Scenarios, varying the number of proverbs (100 and 50) per topic. These
were drawn from a large collection [5] of Portuguese proverbs (over 32,000 expressions),
already classified according to a large set of topics (over 2,200). The data sampling, the
preprocessing configuration and the data representation methods were presented and discussed.
In these experiments, the best performing model was Neural Networks, achieving a best
classification accuracy of 70% in Scenario 1 (100 proverbs per topic) and 61% in Scenario 2
(50 proverbs per topic). Results are encouraging and in line with previous related work [8].
However, there is still much room for improvement. Going through the cases of inaccurate
automatic classification, it seems that sometimes the model does a better job in predicting
the appropriate class than the human classification.

Some of the problems observed derive from the topic classification itself as it was
presented in the proverb collection, since this seems to have been less than rigorous and
often inconsistent, perhaps as a consequence of the large set of proverbs here collected and
the (apparently) manual procedure in the classification (no explicit criteria nor method of
classification was provided). Furthermore, the high number of classes and the non-uniform
distribution of proverbs across these classes do not allow for a straightforward application of
the machine-learning methods here used to the entire collection.
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In the future, we would like to be able to automatically classify the entire database of
proverbs (+114,000) used by [9], which contains those proverbs of the collection here used [5],
but also encompasses 3 other collections. For this, there is still a long way to go. First, we
believe that the set of topics must be substantially reduced, as the machine-learning methods
available in the Orange toolkit degrades when over 100 classes are used. Secondly, the
classification, in our view, should be more semantic in nature, and not so much based on the
presence of a given keyword, as it seems to be the case in [5]. It is likely that, in spite of the
caveat from [6], different word embeddings (other than from those distributed with Orange),
purposefully built for Portuguese (e.g. BERTimbau, [14]; LX-DSemVectors [13]) could
improve the results. Eventually, vocabulary filtering or other machine-learning techniques
such as clustering algorithms could be used to this end, and help determine the most adequate
set of topics. Finally, semantic similarity metrics could be used to rank/associate same-topic
proverbs and then to confront those data-driven classifications with human assessment, or,
alternatively, with instances of proverbs in context [11].
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Abstract
Working with large amounts of text data has become hectic and time-consuming. In order to reduce
human effort, costs, and make the process more efficient, companies and organizations resort to
intelligent algorithms to automate and assist the manual work. This problem is also present in
the field of toxicological analysis of chemical substances, where information needs to be searched
from multiple documents. That said, we propose an approach that relies on Question Answering
for acquiring information from unstructured data, in our case, English PDF documents containing
information about physicochemical and toxicological properties of chemical substances. Experimental
results confirm that our approach achieves promising results which can be applicable in the business
scenario, especially if further revised by humans.
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1 Introduction

With the increasing volume of available data, companies need to develop processes for mining
information that may be essential for their business. Unfortunately, much of this information
is not present in structured databases, but rather in unstructured or semi-structured texts.
In many cases, humans are capable of doing this process, however, it can take a long time to
complete. Information Extraction (IE) emerges as a solution to deal with this problem [4].

In real business scenarios, document processing typically focuses on narrow and specific
topics rather than general and wide domains. In such scenarios, annotated data, categorized
and labeled for Artificial Intelligence (AI) applications, and thus ready for supervised learning
approaches, is very limited, and the annotation process is still a challenging task, due to the
required time and logistics.
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In our case study, the problem in question emerged from the necessity of optimising the
time it takes to elaborate the toxicological profile of a chemical substance. Currently, the
process consists of a human searching for information about the chemical substance and
preparing a report with all the relevant information, i.e., physicochemical and toxicological
properties. The research resorts to different types of databases, including some where data is
structured (e.g., websites) and where data is unstructured (e.g., PDFs, specific papers).

Reviews and reports on toxicological profiles, available in PDF, contain much information
written by human experts in an unstructured format, i.e. natural language (English). This
includes relevant information, such as physicochemical and toxicological information about
substances, which currently needs to be manually extracted for further comparison with the
other sources, e.g., for cross validation. This is typically a time-consuming and labor-intensive
process.

We address the problem of extracting toxicological information from those PDFs by using
state-of-the-art Transformer models fine-tuned for Extractive Question Answering (QA).
The key of our approach is to ask useful questions in order to extract relevant information
about toxicological properties given paragraphs from the PDFs.

We next review related work, and describe the task and data preparation. We introduce
and elaborate our approach in Section 3, report on some experiments, including preliminary
results, in Section 4 and we finally draw conclusions in Section 5.

2 Related Work

Information Extraction from text is an important task of Natural Language Processing (NLP),
that converts unstructured documents to structured data. There are two main methods
for this: rule-based and supervised machine learning. Rule-based methods typically rely on
handcrafted textual and linguistic patterns that commonly transmit the entities and relations
to extract. In contrast, supervised machine learning exploits features to train a classifier that
can distinguish extracted information, either for labelling the sequence of words [13] or for
generating entities and relations from it [3].

As supervised machine learning techniques require manually labeled training data, which
is one of the major drawbacks of these techniques, unsupervised IE techniques emerged.
These techniques extract entity mentions from the text, clusters the similar entities and
identify relations [6]. Researchers have introduced Open Information Extraction (OpenIE),
an unsupervised machine learning technique, which is a relation-independent paradigm that
extracts a large set of relational tuples in an open-domain paradigm [1]. However, given that
is an unsupervised method, OpenIE has no idea about the types of entities and relations
extracted, so the usage of other knowledge bases from external sources is necessary in order
to learn the relations in a corpus [1], a drawback of OpenIE.

Great advances taken in the state of the art in 2017 with the introduction of the Trans-
former neural networks [14] and the consequent emergence of neural language models (LMs),
like BERT [5], RoBERTa [9], ELECTRA [2], which can be fine-tuned for a broad range of
NLP tasks.

An alternative to the previous approaches for IE, especially when lacking training data,
is to formulate IE as a Question Answering problem, using transformer models fine-tuned for
this task. In order to do so, other researchers [11, 10, 7] acquired a pre-defined list of required
information and represented it as key phrases, e.g., “Name of institution” or “Deadline for
bidding” [10]. Using the pre-defined key phrases, they can be considered as a question, or
part of one, the input document can be treated as the context and the extracted information
from a document can be considered as an answer.
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3 Our Approach

Within the broad space of business documents, as mentioned in Section 1, we were faced
with the challenge of accelerating the process of filling toxicological reports, so we focused on
one specific type of documents: studies of individual chemical substances. Our objective is
to extract specific properties (information) from those studies (input documents).

However, given an input document, there are multiple pages, multiple paragraphs and
multiple phrases that contain information, regarding physicochemical and toxicological
properties of chemical substances. Simply providing the complete document to the LMs
is a problem because the LMs used are limited in the size of the context. To tackle that
problem we decided to do divide the documents into sections, where each section contains
the information regarding a specific property of the chemical substance.

Based in our objective and restriction our approach follows two main steps:
1. Identify the section of the document about a specific property.
2. Get the information for that property by asking a question to the model, using the

previously identified section as context.

3.1 Information Pre-processing
The pre-processing process consists of dividing the input document into sections, where each
section contains the information regarding a specific property of the chemical substance.
That way, we minimize the context given to the LMs, eliminating noise, i.e. parts of the
document not relevant for each property.

As a visual example, in Figure 1 we have the properties A and B where the property A
has information in section Blue and Red and property B has information in section Yellow.
It is not necessary to search for information regarding property B in all the three sections,
only in section Yellow.

Figure 1 Graphical example of the pre-processing process.

In our approach, the division of the document in sections is based on the Table of Contents
(TOC) that the document has. This process is similar to that of a human when navigating
and searching the document using the Index/TOC. It is possible to use the TOC as the
reference point for the division of the document into sections because one is commonly
present in the reports of toxicological profiles we have been using.

The input PDF documents were converted to text with the pdfplumber1 parser, and,
combined with Regular Expressions, we could obtain the TOC of the document. The usage
of the TOC allows us to find the start and the end of each section, i.e., by considering the

1 https://github.com/jsvine/pdfplumber
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number and title of the sections, where the start corresponds to the section title obtained in
the obtained TOC and the end of the section is the starting of the next section with the
same hierarchical level. Figure 2 represents the pre-processing process, where the information
obtained from the TOC (Figure 2a) help us divide the document into sections (Figure 2b).

(a) Table of contents of document with sections
visually indicated.

(b) Page of document with sections visually divided.

Figure 2 Example of the pre-processing process in a document.

Being able to divide the input document into sections allows us to increase the performance
and reduces the noise because, by limiting the context that we provide to the LMs, we can
guarantee that the answers obtained are connected to the substance’s property information.

3.2 QA for IE
Having the context defined, we can use the QA models for extracting information. In
order to do so, we need to identify and set questions related to the context and to the
information that we want to obtain. For this task, we can explore available Transformer
models fine-tuned in the The Stanford Question Answering Dataset [12] (SQuAD), which
includes paragraphs (contexts), questions about them, and extracted answers. SQuAD has
two versions, 1.1 and 2.0. The main difference between them is that version 1.1 contains
100,000+ question-answer pairs on 500+ contexts, while version 2.0 combines the 100,000
questions in SQuAD 1.1 with over 50,000 unanswerable questions written adversarially by
crowdworkers to look similar to answerable ones. This means that models trained with
SQuAD 2.0 not only answer questions when possible, but can also determine when no answer
is possible from the given paragraph and abstain from answering [12].



B. C. L. Ferreira, H. Gonçalo Oliveira, H. Amaro, Â. Laranjeiro, and C. Silva 3:5

As SQuAD uses the Six W’s (Who, What, When, Where, Why and How) in the formulation
of the questions, we also need to create questions of this kind, regarding each information that
we want to extract. For example, in the sentence present in one of the PDF documents used,
“Eye irritation potential of shampoo in rabbit eyes was not increased by the incorporation of
ZPT” we want to obtain the species that the test applies to, so we can formulate a question
as “What is the species?”. Given the sentence (as the context) and the question, we hope to
obtain from the QA models the right answer, in this case, “rabbit”.

After the pre-processing step, we can give to the QA models each section of the document
that corresponds to a specific property of a substance as context. In order to optimize our
approach, we need to create the right set of questions per section.

4 Experiments

We focus our experiments in one source of studies of individual chemical substances: Scientific
Committee on Consumer Safety (SCCS) Opinions2. For experimentation purposes, we focus on
a subset of 60 documents, issued by the Committee3, dated from April 2016 to December 2021.
Our objective is to extract relevant information about certain toxicological properties of
substances. Table 1 shows a sample of relevant information about the target toxicological
properties for this case study.

Table 1 Substances properties information.

Substance Property Information to Extract
Repeated Dose Toxicity NOAEL4 value
Acute Toxicity Species used in study; OECD5 Guideline used; Exposure route
Irritation Species used in study; OECD Guideline used; Exposure route
Mutagenicity OECD Guideline used; Classification
Skin Sensitization OECD Guideline used; Classification; Concentration used in study
Carcinogenicity Species used in study; OECD Guideline used; Classification
Photo-induced Toxicity OECD Guideline used; Classification
Reproductive Toxicity Species used in study; OECD Guideline used; Classification

4.1 Setup
The source documents were pre-processed (see Section 3.1) and a set of questions was
formulated for each information to extract (see Table 2). In this case study, all the questions
start with “what” because, by trial and error, we noticed that relevant information was
frequently obtained with questions like “what is the [specific information to extract] ?”.

In our experiments we tested the set of questions in three different QA models, all
available from the Huggingface Transformers hub, and usable from the transformers library6:
BERT-base-cased-squad2 7, RoBERTa-base-squad2 8 and BioBERT-v1.1-pubmed-squad-v2 9.

2 https://ec.europa.eu/health/scientific-committees/scientific-committee-consumer-safety-
sccs/sccs-opinions_en

3 https://ec.europa.eu/health/scientific-committees/former-scientific-committees/
scientific-committee-consumer-safety-2016-2021/sccs-opinions-2016-2021_en

4 No Observed Adverse Effect Level
5 Organisation for Economic Co-operation and Development
6 https://huggingface.co/
7 https://huggingface.co/deepset/bert-base-cased-squad2
8 https://huggingface.co/deepset/roberta-base-squad2
9 https://huggingface.co/ktrapeznikov/biobert_v1.1_pubmed_squad_v2
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Table 2 Example of set of questions per property tested.

Substance Property Questions
Repeated Dose Toxicity What is the NOAEL value?
Acute Toxicity What is the guideline?;What is the species?
Irritation What is the guideline?;What is the species?
Mutagenicity What is the Guideline?;What is the conclusion?
Skin Sensitization What is the Guideline?;What is the conclusion?;What is the concentration?
Carcinogenicity What is the species?;What is the Guideline?;What is the conclusion?
Photo-induced Toxicity What is the Guideline?;What is the conclusion?
Reproductive Toxicity What is the Guideline?;What is the species?;What is the conclusion?

Although all the models are Transformers, they also have their differences, at the
architecture level or at the pre-train level, that have impact in the results. BERT is the basic
model fine-tuned for QA. When released, it achieved state-of-the-art performance in many
NLP tasks, including QA [10]. RoBERTa builds on BERT and modifies key hyperparameters,
removing the next-sentence pre-training objective and training with much larger mini-
batches and learning rates10. BioBERT is a domain-specific language representation model,
pre-trained on large-scale biomedical corpora that, while having the same architecture,
outperforms BERT in a variety of biomedical text mining tasks [8].

We provided the QA models with:
1. The sections of the document that contain information about each specific substance

property as context.
2. The set of questions that we defined specifically for each substance property.

As a result, we expected to extract relevant information about each substance property.

4.2 Evaluation metrics

In order to achieve a quantitative evaluation of our experiments, a confusion matrix was
built with the number of True Positives (TP), False Positives (FP), False Negatives (FN)
and True Negatives (TN). In the context of this work, those are defined as:

TP: There is information in the document to be extracted and the information extracted
is correct;
FP: There is no information in the document to be extracted but there is some information
extracted or there is information in the document to be extracted but the information
extracted is not correct;
FN: There is information in the document to be extracted but there is no information
extracted;
TN: There is no information in the document to be extracted and there is no information
extracted;

The extracted outputs were matched to ground-truth data, i.e. the extracted information
was manually compared with the information present in each document tested. Using
the outcomes, we calculated the precision, recall, and F1 score in order to evaluate the
performance of our experiments.

10 https://huggingface.co/docs/transformers/model_doc/roberta (March 2022)

https://huggingface.co/docs/transformers/model_doc/roberta
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4.3 Combination Process
We can use the models individually or, to take full advantage of them, we can aggregate
the answers obtained from each. The combination process consists of using an answer, i.e.
information extracted, if the same or similar answer was given as an output from at least
two of three models, as shown in the example of Table 3. At the point of this evaluation
the combination process was done manually despite the development of the process having
already started using text similarity measures.

Table 3 Visual example of combination process.

Original text excerpt
Guideline: OECD TG 429 Skin Sensitization: Local Lymph Node Assay 24 th April 2002
Species/strain: female CBA/J mice
Group size: 4 mice per group, 20 animals per experiment, 2 independent experiments
Batch: R0060245B 002 L 002
Concentration: 0.1, 1 and 10 %
Study period: 13 June – 12 September 2008
The test item was not soluble in any of the recommended vehicles. However, a homogeneous suspension was
obtained at the maximum tested concentrations of 10% and 15%, with propylene glycol, after sonication for
10 minutes. Therefore propylene glycol was selected as vehicle. On days 1, 2 and 3 of each experiment, a
dose-volume of 25 µL of the control or dosage form preparations was applied to the dorsal surface of both ears.
On day 6 of each experiment, all animals of all groups received a single intravenous injection of 20 µCi of 3H-TdR.
SCCS comment
Based on this LLNA study in which a maximum concentration of 15% was used, A164 is considered not to
have skin sensitising potential.

What is the Guideline? What is the conclusion? What is the concentration?
BERT OECD TG 429 0. 1, 1 and 10 %

BioBERT

Skin Sensitization : Local Lymph
Node Assay

Skin Sensitization : Local Lymph
Node Assay

0. 1, 1 and 10 %

not to have skin sensitising poten-
tial

25 µL

RoBERTa

OECD TG 429 The test item was not soluble in
any of the recommended vehicles
A164 is considered not to have
skin sensitising potential

Combo OECD TG 429 A164 is considered not to have
skin sensitising potential

0. 1, 1 and 10 %

4.4 Results and Discussion
From the 60 documents gathered, 10 were randomly selected for testing our approach. The
pre-processing process worked as planned and we were able to find each section regarding
each property in the documents without faults in the process. From the 10 documents, the
average section size was 899 tokens, the minimum size was 27 and the maximum of 4860
tokens.

We report the performance of each QA model in Table 4, individually, and in Table 5, after
the combination process. Both tables also include the micro average, where all the outcomes
are taken into account, in order to deliver a fair general evaluation of model performances.
For this evaluation the information extracted was not verified by the expert that currently
gathers the information manually despite direct contact throughout the development.

By first analysing each QA model individually (Table 4) we were able to understand that
some optimizations can be developed even though some strong results were obtained. In
some cases the precision and the recall were perfect, which can be due to the disposition of
the information in the document, i.e., better results can be achieved if the information is
present in bullet points than if it is in the middle of the sentences. In terms of optimisation,
we used the same set of questions for each model and there are some performance gains if we
use each model in its strong points. For example, BioBERT, pre-trained in biomedical data,
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Table 4 Individual evaluation of QA models on SCCS documents.

BERT BioBERT RoBERTa
F1 P R F1 P R F1 P R

Acute Toxicity Information 0.77 0.87 0.70 0.74 0.59 1.00 1.00 1.00 1.00
Irritation Information 0.68 0.76 0.61 0.76 0.61 1.00 0.85 0.85 0.85
Skin Sensitisation Information 0.86 0.82 0.92 0.72 0.56 1.00 0.85 0.84 0.87
Mutagenicity Information 0.67 0.53 0.92 0.57 0.40 1.00 0.71 0.55 1.00
Carcinogenicity Information 0.84 0.78 0.91 0.66 0.50 1.00 0.58 0.43 0.90
Photo-induced Toxicity Information 0.44 0.40 0.50 0.58 0.41 1.00 0.54 0.37 1.00
Reproductive Toxicity Information 0.80 0.66 1.00 0.70 0.54 1.00 0.73 0.57 1.00
Repeated Dose Toxicity Information 1.00 1.00 1.00 0.80 0.66 1.00 1.00 1.00 1.00
Micro Average 0.76 0.68 0.85 0.64 0.48 1.00 0.76 0.65 0.94

Table 5 Approach evaluation on SCCS documents.

BERT + BioBERT + RoBERTa
F1 Precision Recall

Acute Toxicity Information 1.00 1.00 1.00
Irritation Information 0.89 0.96 0.83
Skin Sensitisation Information 0.96 0.96 0.96
Mutagenicity Information 0.78 0.65 0.96
Carcinogenicity Information 0.84 0.80 0.88
Photo-induced Toxicity Information 0.75 0.60 1.00
Reproductive Toxicity Information 0.85 0.74 1.00
Repeated Dose Toxicity Information 1.00 1.00 1.00
Micro Average 0.87 0.82 0.93

was the best model for acquiring the names of species, but the worst for identifying guidelines.
Even in terms of time, there are gains if we just use the BioBERT for identification of the
species and nothing else.

Also regarding evaluation, the definition of each outcome, i.e. TP or FP, is subjective for
some information Some can be a quantitative value (e.g.,“357 mg/kg bw/day”) or a species
name (e.g., “Rat / F344 / DuCrlCrlj”), where it is easy to define if the extracted value is a
TP or a FP, but sometimes, the extracted information is a short sentence (e.g., “There was
no evidence of carcinogenic activity”), which is subject to human interpretation.

By analysing Table 5, we confirm that there are gains when the models are combined,
both in terms of precision and recall, when compared with the individual models results. In
general, and despite the limited set of questions, we can affirm our approach obtained solid
results. Still, in the future, we can experiment with more and different questions, in order to
achieve better performances.

Overall, we would characterize our approach and experiments as an important step into
extracting information from unstructured documents. In our point of view, this means
that, although the human cannot be replaced, our approach can supply them with a set of
extracted information that the they can: (i) accept as is, (ii) change or complement minimally
or (iii) use as the starting point of a more thorough search.
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5 Conclusions

In this paper we treat Information Extraction as a Question Answering problem and propose
an approach that, with limited data, can be a solution for the former. To do that, we
take advantage of state-of-the-art extractive QA models. We conducted experiments and
analysis on one source of studies of individual chemical substances, and the results obtained
are promising, although performance gains can be achieved with some optimizations, in
particular, achieving the right set of questions to use with each QA model.

In the future, we will work on generalizing this approach for documents where the TOC is
not available, which will enable its application to different sources of information on chemical
substances (other than SCCS); on automating the combination and evaluation processes,
where text similarity measures like ROUGE can be considered; and involve the expert in the
final evaluation of the results. We plan to make this approach available through a REST
API, which will provide an easier integration with applications like cosmetics regulatory
software, and also consider the application of this approach to other domains.

References
1 Sally Ali, Hamdy Mousa, and M Hussien. A review of open information extraction techniques.

IJCI. International Journal of Computers and Information, 6(1):20–28, 2019.
2 Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. ELECTRA:

Pre-training text encoders as discriminators rather than generators. arXiv preprint, 2020.
arXiv:2003.10555.

3 Lei Cui, Furu Wei, and Ming Zhou. Neural Open Information Extraction. In Proceedings of
the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short
Papers), pages 407–413, 2018.

4 A. Cvitaš. Information extraction in business intelligence systems. In The 33rd International
Convention MIPRO, pages 1278–1282, 2010.

5 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding. In Proceedings of 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Vol 1 (Long and Short Papers), pages 4171–4186. ACL, 2019.

6 Anthony Fader, Stephen Soderland, and Oren Etzioni. Identifying relations for open information
extraction. In Proceedings of the 2011 conference on empirical methods in natural language
processing, pages 1535–1545, 2011.

7 Lin Gui, Jiannan Hu, Yulan He, Ruifeng Xu, Qin Lu, and Jiachen Du. A question answering
approach to emotion cause extraction. arXiv preprint, 2017. arXiv:1708.05482.

8 Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho So, and
Jaewoo Kang. Biobert: a pre-trained biomedical language representation model for biomedical
text mining. Bioinformatics, 36(4):1234–1240, 2020.

9 Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A robustly optimized BERT
pretraining approach. arXiv preprint, 2019. arXiv:1907.11692.

10 Minh-Tien Nguyen, Dung Tien Le, and Linh Le. Transformers-based information extraction
with limited data for domain-specific business documents. Engineering Applications of Artificial
Intelligence, 97:104100, 2021.

11 Minh-Tien Nguyen, Dung Tien Le, Nguyen Hong Son, Bui Cong Minh, Akira Shojiguchi,
et al. Information extraction of domain-specific business documents with limited data. In
2021 International Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2021.

12 Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswer-
able questions for SQuAD. In Proceedings of 56th Annual Meeting of the Association for
Computational Linguistics (Vol 2: Short Papers), pages 784–789. ACL, 2018.

SLATE 2022

http://arxiv.org/abs/2003.10555
http://arxiv.org/abs/1708.05482
http://arxiv.org/abs/1907.11692


3:10 Question Answering For Toxicological Information Extraction

13 Gabriel Stanovsky, Julian Michael, Luke Zettlemoyer, and Ido Dagan. Supervised Open
Information Extraction. In Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, Volume 1
(Long Papers), pages 885–895, 2018.

14 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.



Generation of Document Type Exercises for
Automated Assessment
José Paulo Leal # Ñ

CRACS – INESC-TEC, Porto, Portugal
Department of Computer Science, Faculty of Science, University of Porto, Portugal

Ricardo Queirós #

CRACS – INESC-TEC, Porto, Portugal
uniMAD, ESMAD/P.PORTO, Portugal

Marco Primo #

Faculty of Sciences, University of Porto, Portugal

Abstract
This paper describes ongoing research to develop a system to automatically generate exercises on
document type validation. It aims to support multiple text-based document formalisms, currently
including JSON and XML. Validation of JSON documents uses JSON Schema and validation of XML
uses both XML Schema and DTD. The exercise generator receives as input a document type and
produces two sets of documents: valid and invalid instances. Document types written by students
must validate the former and invalidate the latter. Exercises produced by this generator can be
automatically accessed in a state-of-the-art assessment system. This paper details the proposed
approach and describes the design of the system currently being implemented.
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1 Introduction

The motivation for this research comes from the JuezLTI, a project that aims at the integration
of automated assessment in Learning Management Systems (LMS) using the Learning Tool
Interoperability (LTI) specification. Different assessment domains are in development as part
of this project, ranging from programming languages to database query languages, including
languages for serialization formalisms such as XML and JSON. This paper focuses on the
automated assessment of document type definitions using languages such as JSON Schema,
XML Schema, and Document Type Definition (DTD).

To support a wide range of domains JuezLTI follows a simple but effective assessment
strategy. Exercises are assessed using a set of test cases, each including an input and an
expected output. In the case of document type definitions, the inputs are instance documents,
each with an expected validation result (“output”), either valid or invalid.

One of the drawbacks of this assessment strategy is the toil of producing good exercises.
Each exercise should have a solution and a comprehensive set of tests covering all corner
cases. Small and incomplete test sets may accept wrong solutions and preclude the use
of automated feedback. The proposed approach is to generate test sets from solutions -
document type definitions in this case. For example, from a JSON schema definitions two sets
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are generated: one with instances, valid JSON documents according to the definition; and
another with non-instances, invalid JSON documents according to the definition. Although
instance generators are available for document type definition languages, the authors are
not aware of non-instance generators. Moreover, both instances and non-instances must be
generated for the purpose of automated assessment: with documents as small as possible,
covering all corner cases, and providing explanations for what is being tested to be used in
automated feedback.

The following sections provide background on this research. Section 2 introduces serializ-
ation formalisms, document type definitions, and validation exercises. Section 3 reviews the
concepts of automated assessment. Section 4 describes the proposed approach. Section 5
summarizes the current results and describes future work.

2 Serialization formalisms

Text-based document formalisms such as XML and JSON play an important role in software
development. They are both human and machine-readable and thus are widely used in tasks
that require data serialization. These formalisms prescribe a set of well-formedness rules that
documents must follow. For example, in XML documents close tags must end the previous
open tag, and attribute values must be delimited by either single or double quotes; in JSON
documents property name-value pairs must be separated using commas, and property names
must be delimited with double-quotes. This kind of basic rule allows the creation of a wide
range of documents for different domains. Nevertheless, on a certain domain, or on specific
software, only very specific types of documents are allowed.

{
"name": "Jill Doe",
"height": 173,
"hobbies": [

"skating",
"reading"

]
}

(a) Instance describing a person.

{
"type": "object",
"properties": {

"name": { "type": "string" },
"height": { "type": "number" },
"hobbies": {

"type": "array",
"items": { "type": "string" }

}
}

}

(b) Schema to validate persons.

Figure 1 Valid JSON instance according to JSON Schema.

Document type definitions describe documents beyond well-formedness rules. The most
popular document type definition languages, such as JSON Schema and XML Schema,
describe the structure of documents. Documents can be seen as trees and document types
in these languages specify the relationships among neighbouring nodes (parent-children
and siblings nodes), and the basic types of leaf nodes. For example, Figure 1a presents a
JSON document with information on a person, her name, height, and a list of hobbies; and
Figure 1b presents a JSON Schema document that accepts an object with properties “name”
(a string), “height” (a number) and “hobbies” (an array of strings).
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Document types are instrumental to validate document instances. A validator is a
program that verifies if a given document is valid according to a given document type. They
are typically used when documents are generated or before processing them, to check if they
are according to the specification. Validators can also be used to access document types
produced as exercises.

To solve an exercise on document types a student must produce a schema in a certain
language such as JSON Schema. The exercise statement describes the kind of document
and may give examples of a valid document, such as that on the Figure 1a. The schema
produced by the student must be equivalent to a reference solution. This assessment can be
easily automated using two sets of instances: one with valid documents and another with
invalid ones. Using a validator and the schema produced by the student, the documents in
the first set must be all valid and those on the second set must be all invalid.

This approach to schemata assessment is comparable to what the traditional black-box
model used on programming exercises assessment. In this model, the student’s program is
executed with a set of test cases. Each test provides an input file that is fed to the program
and the obtained output is compared with the test’s output file. If they all coincide then the
program is considered correct. Due to the complexity of programming languages, test cases
can be produced automatically from the solution just for simple cases, using programming
properties [2]. But this strategy can be systematically used for document schemata. This
paper presents an approach to generate both instances and non-instances of a given schema.
Two formalisms are supported - JSON and XML. For the former is used JSON Schema, and
for the latter, both XML Schema and DTD are used.

3 Automated assessment

Automated assessment is a widely used approach in many domains, particularly in computer
programming [4]. In this context, special tools called automatic judge systems are responsible
for grading programming assignments, by comparing the obtained output with the expected
output [3]. Most of these tools grade a submission according to a set of rules, following a
black-box approach and produce an evaluation report. The validation process has two phases:
static analysis, which tests the consistency of the source code; and dynamic analysis, which
includes running the program with each test case loaded with the problem and comparing
its output to the expected output.

In order to automate the assessment process, programming exercises are assembled in
packages with their resources described specialized metadata [5]. Most of the existent
metadata formats support only assessment of blank-sheet coding questions. However, the
different phases of a student’s learning path may demand distinct types of exercises (e.g.,
bug fix and block sorting) to foster new competencies such as debugging programs and
understanding unknown source code or, otherwise, to break the routine and keep engagement.
YAPExIL [5] is format to describe programming exercises supporting different types of
activities.

Property-based testing can also be used for assessment [2]. Instead of fixed test cases,
test data are generated randomly from properties of a functions by a test script. There are
several advantages in this approach: 1) it is easier to conduct more tests covering the scope
of all possible inputs (thus find more mistakes), 2) in case of failure, shrinking heuristics can
be used to automatically simplify failing cases.

A domain closer to this research is web services assessment. Petrova-Anonova [6] proposed
an automatic generator of test data for XML Schema-based testing of Web Services. The
tool automatically extracts an XML Schema from WSDL or WS-BPEL documents and
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generates both correct and incorrect XML instances needed for web service interactions.
This way, the tool can be used both for testing web services at the functional and robustness
levels. Other contributions were made to generate XML documents with data both valid
and invalid depending on the type of testing performed. Other works [7, 1] focus on the
generation of random values for the invocation parameters providing automatic derivation of
data instances from WSDL descriptions.

4 Test case generation

The cornerstone of the proposed approach is the generation of instances and non-instances
of a given schema. These documents, the given schema and an exercise statement are then
assembled in a programming exercise in the YAPExIL format. Although this strategy is used
both for JSON and XML, (non)-instance generation is based on JSON and JSON Schema.
XML type definition languages are converted to JSON Schema for (non)-instance generation,
and the generated JSON documents are then converted to XML.

<<component>>

JsonSchemaGenerator

<<component>>

XMLSchemaGenerator

<<component>>

DTDGenerator

<<component>>

XMLinJSON

Figure 2 System architecture.

Figure 2 depicts a UML component diagram of the generator’s architecture. It has four
main components, three of which are generators for document type definition languages.
These components have similar interfaces, with methods for generating both instances and
non-instances, and validating instances against definitions. The core component is the
JsonShemaGenerator. The XML type definition languages generators, namely for DTD and
XMLSchema, use the previous generator and convert documents between XML into JSON
using the XMLinJSON component.

The following subsections detail the generation of JSON documents from JSON schema,
performed by the JsonSchemaGenerator, and conversion between XML and JSON, performed
by the XMLinJSON component.

4.1 Document generation from JSON Schema
The JsonSchemaGenerator component was designed having in mind the creation of test sets
for exercises on document type definitions. It generates both instances and non-instances -
documents that are invalid according to a given type definition. These two sets of documents
are generated having in mind they will be used for automated assessment and feedback.
Hence, it produces instances of different sizes, covering different kinds of possible mistakes,
and also short hints that can be used as feedback.
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To ensure the creation of sets of instances as large as needed, the instance generator
produces either an infinite cyclical sequence of instances or an empty set. For example, a
schema that validates booleans produces the infinite sequence alternating true and false;
and a schema that validates no instance (such as the schema false) produces the empty set.
With this approach, the generation can be tailored to test sets of any size. Instances are
generated with increasing size, starting with the smallest possible instances. For example,
in a schema of an array, the first generated instance has the smallest size allowed, zero if
a minimum size is not defined. This approach improves the quality of the feedback when
instances are presented to students to explain the error since smaller examples are easier to
understand.

An important feature of the instance generator is the ability to generate non-instances.
Two kinds of non-instances are generated: with a different type and of the same type but
with invalid constraints. For example, in the case of a schema for an even number, a non-
instance is either be a non-number (an instance generated by any type different from the
type number) or an odd number (a number with an invalid constraint). The sequence of
generated non-instances is varied, as well as incremental in size. In the same example, the
first generated non-instance is an odd number (1) - followed by an empty list, an empty
object, an empty string, a boolean, etc. The subsequent instances include larger numbers,
longer strings, lists with more elements, and objects with more properties.

4.2 Conversion between JSON and XML
The JsonSchemaGenerator described in the previous subsection is the core of the document
type generator. To handle XML document types these need to be converted into JSON
Schema, and JSON (non-)instances converted to back XML. For that purpose, a representation
of XML in JSON - or XIJ - was developed, implemented by the XMLinJSON component.

The goal of XIJ is to support all XML features in JSON, rather than to produce concise
documents. It supports mixed content, i.e. text mixed with annotations, namespaces, and all
types of XML nodes, such as comments and processing instructions. The module developed
for XIJ includes a parser and a serializer. The overall strategy to convert generate XML
instances and non-instances for definitions is as follows. Document type definitions in DTD
or XML Schema are converted in JSON Schema definitions. This JSON Schema validates a
document in XIJ equivalent to an XML document in the original definition. Then, the JSON
Schema generator described in the previous section is used to create sets of (non)-instances,
and these are finally converted to XML. However, the creation of a JSON Schema equivalent
to a DTD or an XML Schema posed a few challenges.

The features of type definition languages are not equivalent. The most obvious difference
relates to basic types: DTDs have only text (#PCDATA or CDATA), XML Schema has a
comprehensive library, and JSON schema has JSON basic types plus integer. A not-so-
obvious difference is how repetitions are handled: XML Schema provides fine-grain control
over repetitions, DTDs control with regular expression operations, and JSON Schema cannot
control repetitions. In fact, JSON Schema uses regular expressions but only for strings, either
as values or as property names.

JSON schema had to be extended to make it compatible with DTD and XML Schema.
Fortunately, the required extensions are within the scope of JSON Schema itself [8]. The
creation of a library of basic types compatible with that XML Schema is straightforward
by referencing an external schema document containing those definitions. The support for
repetition control was obtained by introducing the minOccurs and maxOccurs properties in
schema definitions, with a syntax and semantics equivalent to the attributes with the same
name in XML Schema; these new properties are only effective when schemata are used to
validate array items.
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5 Current status and future work

The goal of project JuezLTI is to integrate several assessment domains in Learning Manage-
ment Systems (LMS). One of these assessment domains supports the automated assessment of
exercises on type definitions to validate JSON and XML documents. The research presented
in this paper proposes an approach to automatically generate exercises from solutions; that
is, from type definitions in JSON Schema, for JSON documents, or DTD and XML Schema
for XML documents.

The distinctive feature of this approach is the generation of both valid and invalid
instances to check students attempts. The core of the system is a document generator for
JSON Schema definitions. To handle XML documents, DTDs and XSDs are converted to
JSON Schema that validates documents in XIJ, a representation of XML in JSON. The
generated documents in this representation are then serialized to XML.

The advantage of the proposed approach is twofold. Firstly, it saves time since it generates
test cases directly from solutions. Secondly, the generated tests thoroughly cover all corner
cases, unlike those produced manually, resulting in a more effective assessment.

The proposed approach is a work in progress. The core JSON generator is already
developed and tested, as well as the representation of XML in JSON. The DTD converter is
almost completed and the XML Schema converter is still in the design stage. In the next
stage, the set of instances will be packaged as exercises using the YAPeXIL format and
stored in a learning object repository.

The results obtained so far with the JSON version are very promising. The generator
produces a large number of varied instances of incremental sizes, adapted to the intended
use. To validate the proposed system, students will solve generated exercises as part of a
Learning Management System activity.
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Abstract
This document describes the steps taken in the development of DataGen From Schemas. This new
version of DataGen is an application that makes it possible to automatically generate representative
synthetic datasets from JSON and XML schemas, in order to facilitate tasks such as the thorough
testing of software applications and scientific endeavors in relevant areas, namely Data Science. This
paper focuses solely on the JSON Schema component of the application.

DataGen’s prior version is an online open-source application that allows the quick prototyping of
datasets through its own Domain Specific Language (DSL) of specification of data models. DataGen
is able to parse these models and generate synthetic datasets according to the structural and semantic
restrictions stipulated, automating the whole process of data generation with spontaneous values
created in runtime and/or from a library of support datasets.

The objective of this new product, DataGen From Schemas, is to expand DataGen’s use cases
and raise the datasets specification’s abstraction level, making it possible to generate synthetic
datasets directly from schemas. This new platform builds upon its prior version and acts as its
complement, operating jointly and sharing the same data layer, in order to assure the compatibility
of both platforms and the portability of the created DSL models between them. Its purpose is
to parse schema files and generate corresponding DSL models, effectively translating the JSON
specification to a DataGen model, then using the original application as a middleware to generate
the final datasets.

2012 ACM Subject Classification Software and its engineering → Domain specific languages; Theory
of computation → Grammars and context-free languages; Information systems → Open source
software

Keywords and phrases Schemas, JSON, Data Generation, Synthetic Data, DataGen, DSL, Dataset,
Grammar, Randomization, Open Source, Data Science, REST API, PEG.js
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1 Introduction

The current landscape of the techonological and software development market is being
increasingly occupied with scientific areas that operate with large amounts of data. A prime
example is that of Data Science, which aims to apply methods of scientific analysis and
algorithms to bulky datasets, in order to try to extract knowledge and conclusions from the
available information, which may then be used for several other means. Another case is that
of Machine Learning, which looks to use this method to equip informatic systems with the
capacity of self-learning, accessing data and learning from its analysis, as to become more
efficient in their function.

However, in a world where the need for bulky and representative datasets increases by
each passing day, data privacy policies and other concerns related to the privacy and safety
of users [5] present themselves as difficult obstacles to the growth of these sciences and to
the progression of many projects in the development [4] and testing phases.

In this context, the generation of synthetic data arises as a possible solution for these
problems, under the premise of being able to create realistic, large datasets artificially, from
the given structural specifications. This approach was originally proposed by Rubin in
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1993 [6], as an alternative that made it possible to use and share data without disrespecting
the present rigorous regulations regarding the handling of sensitive data (such as the European
Union’s GDPR [10]), since the data in question, altough very similar to corporate datasets
concerning real users, would not be obtained by direct measurement. Since then, this method
has been further explored and refined, being applied in the most diverse areas such as Smart
Homes [2], spacial microsimulation models [8], Internet of Things (IoT) [1], Deep Learning [3]
and automotive applications [9].

This paper intends to expose and document the processes of ideation and development of
the application DataGen From Schemas, specifically its JSON Schema component, whose
objective is to generate synthetic datasets directly from JSON schemas. This application
must fulfill two requisites: on the one hand, it must be able to generate datasets of ample
size and with realistic information; on the other hand, it must also be able to parse the users’
schemas and obey their specifications, so that the created data is formally and structurally
compliant. In order to satisfy these conditions, the platform will be built upon another
existing application, DataGen, that will be contextualized in the following section.

2 DataGen

DataGen is a versatile tool that allows the quick prototyping of datasets and testing of
software applications. Currently, this solution is one of the few available that offers both the
complexity and the scalability necessary to generate datasets adequate for demanding tasks,
such as the performance review of data APIs or complex applications, making it possible to
gauge their ability to handle an appropriate volume of heterogeneous data.

The core of DataGen is its own Domain Specific Language (DSL), which was created for
the purpose of specifying datasets, both at a structural level (field nesting, data structures)
and a semantic level (values’ data types, relations between fields). This DSL is endowed
with a wide range of functionalities that allow the user to specify different types of data,
local relations between fields, the usage of data from support datasets depicting different
categories, the structural hierarchy of the dataset and many other relevant properties, as well
as powerful mechanisms of repetition, fuzzy generation, etc. This allows for the generation of
very miscellaneous and representative datasets in either JSON or XML, while dealing with
intricate and demanding requirements.

It is strongly encouraged to check the published paper on DataGen’s development and
functionality [7] first, in order to be better contextualized in the capacities of this product
and have a greater understanding of what will serve as the foundation for the new software
described. For the sake of brevity, DataGen’s DSL mechanisms will not be explained in this
document and it will be assumed that the reader is familiar with them, going forward.

In the current scheme of software development, any enterprise that operates with JSON
or XML data must have well-defined and thorough formal specifications to control and
monitor the data flow in their applications, in order to assure that incoming information
is well-structured and compliant with the software’s requirements and outgoing data is
presented as intended and does not produce unexpected behaviour. As such, it is essential to
formulate schemas for semantic and structural validation, by modeling data either internally
or via third parties with tools oriented to this goal, in order to restrict and enforce the
content intended for each solution.

Considering the present necessity for these schemas in enterprises’ business models and its
recurring usage, it stands to reason that a program capable of producing large and accurate
datasets from JSON/XML schemas is an incredibly valuable asset, as it provides the capacity
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to quickly and effortlessly create representative datasets to test and debug platforms in
development, as well as evaluate their performance under heavy stress, without having to
manually concoct the information or wait for third parties to provide such resources.

As such, DataGen From Schemas emerges as a complement and an extension to its prior
version, looking to generate datasets directly from JSON schemas. By doing this, the user is
given the option to specify the structure of the intended dataset in JSON Schema. This arises
as an alternative to the definition of the operational rules of the dataset in DataGen’s native
DSL, for which the user must first learn how to use it, through the lengthy documentation
available. With this, the formulation of the DSL model becomes an intermediate step
executed in the background and the user only has to interact with the JSON schema and the
resulting dataset. However, the generated DSL model will also be made available, to enable
further customizability in DataGen.

As such, this new product aims to offer a solution for a present and generalized need in
the software development process and increase DataGen’s use cases significantly, making the
dataset generation process simpler and more acessible to any user. This new component
acts as an abstraction layer over the existing application, ignoring the necessity to learn
how to use the DSL from its documentation and greatly expediting the process of structural
specification of the dataset. The intended workflow for this JSON Schema component is
depicted in the following image:

Figure 1 Intended workflow for the JSON Schema component.

The program will accept the user’s input in the form of a JSON schema, which will then
be parsed by a PEG.js grammar-based compiler. The parser will generate an intermediate
data structure with the relevant information and a converter program will then translate it
to a DSL model. Afterwards, DataGen will take care of the remaining workload, parsing
the model and generating a dataset, finally converting it to either JSON or XML format,
according to the user’s preference.

DataGen’s prior version was created by the same authors of this new tool, so there is
access to the original application. The goal is to place the new compilers and translators
in DataGen’s own backend, in order to centralize the functionalities, avoiding additional
requests between servers and possible downtime, as would be the case if DataGen From
Schemas was deployed in an entirely separate web application and had to communicate with
DataGen’s API routes via HTTP requests to generate datasets from its models.
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3 JSON Format

This section aims to give a bit of contextualization about the format JSON, in order to have
a better grasp of what DataGen From Schemas must be able to analyse and parse, what data
is revelant to be extracted, and also to understand the limits and potential of this simple,
yet versatile format and why it was chosen for this application, instead of another of many
popular data formats nowadays, i.e. its relevance and adequacy to this particular project.
As mentioned in section 2, DataGen already has the ability of generating JSON and XML
instances from DSL models, so this new product’s focus is uniquely translating the data in a
JSON schema to a DSL model, basically the opposite procedure.

What will be exposed about JSON also applies to JSON Schema, as the latter is a JSON
vocabulary, which is to say, it is written in JSON and operates under a strict set of rules,
where specific keys have precise meanings and can be used to annotate or validate JSON
documents. This common syntax makes it easy to interpret the schema and validate the
instance.

JavaScript Object Notation (JSON) is a lightweight data exchange format derived from the
programming language Javascript, whose simplicity and readability contributed to its current
vast popularity. It has ample and growing support in countless programming languages
(C++, Java, JavaScript, Python, etc), which make it a strong candidate for fast and compact
exchange of information between applications.

This format is utilized to represent structured information, i.e. data with rigid and well-
defined configurations, where no divergencies are allowed from the structures established in
the schema, namely a different data type for a certain field. This reflects in the JSON syntax,
where there are only four different primitive types for values - string, number, boolean or null
- and the instances are built upon solely two different data structures: objects (non-ordered
collections of key-value pairs) and arrays (ordered lists of values).

Figure 2 Structures of a JSON object and array.

DataGen’s own DSL is built upon the JSON format, so there is very high compatibility
with JSON Schema and a guarantee that all kinds of data specified in the schema can be
represented in the model. In addition, DataGen also has a tool named interpolation functions,
which makes it possible to randomize the value of a certain field, given its type and some
other restrictions. With this, it is possible to convert a JSON schema into a corresponding
non-deterministic DSL model, where the final values are not hard-coded, but decided in
runtime, which may result in endless different valid datasets from a single schema.

4 Development

In order to generate DSL models from JSON schemas, DataGen From Schemas will need two
different components: firstly, a grammar-based parser to analyze the schema and extract all
useful information. For this, PEG.js was the technology of choice, as it was already used in
DataGen and proved adequate and capable of parsing JSON-like structures. Lastly, a program
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capable of translating the intermediate structure into a DSL model, for which JavaScript
was used, for direct compatibility with PEG.js (that also incorporates this programming
language) and JSON.

The user may input one or more schemas into the program, which is necessary to allow
cross-schema referencing. In this case, the user must indicate which is the primary schema
from which the dataset is to be generated. The parser then analyzes all schemas sequentially,
building an intermediate structure for each of them, a procedure that will be explained in
detail in this section.

4.1 Grammar
The grammar was built with a JSON grammar available in the PEG.js Github as its
foundation, given that JSON Schema uses the same syntax. JSON Schema’s specification
is made available by drafts, which represent versions. Each time the vocabulary is majorly
updated, a new draft is released, where new features can be found and existing ones altered.
These drafts are not backward compatible, for example there are cases in which a certain key
has entirely different semantics depending on the draft considered. As such, it seemed only
logical to adapt the most recent draft to the application, which is, at the time of writing this
document, JSON Schema 2020-12.

As such, the aforementioned JSON grammar was modified into a dialect (a specific version
of JSON Schema) grammar for this particular draft: the set of keywords and semantics that
can be used to evaluate a schema was restricted to those made available in the draft and
custom vocabularies defined by the user are not accepted. With this, it was possible to
implement other important features in this grammar, namely:

restriction of each keyword’s value to its rigid lexical space – for example, the
keyword uniqueItems’s value must be a boolean and nothing else, while the value of the
keyword additionalProperties may be any subschema;
rigorous semantic validation of the schema – in JSON Schema, it is possible to
create invalid and contradictory schemas. This may range from something as simple as
a number with a maximum of 20 and minimum of 50, to more contrived cases such as
establishing that a schema must be both of type boolean and string, with the keyword
allOf. As such, a semantic validation procedure was created for this grammar, that checks
for erroneous combinations of values or other incongruities in the schema’s logic. This
validation only does not work with references, since these are only resolved posteriorly;
error reports – following the previous points, whenever the parser finds an error, be it
a syntatic or semantic error, it halts the execution of the pipeline and reports it to the
users, for them to correct and try again.

The other central point of the grammar is building the intermediate data structure,
to where it extracts the relevant information. Before addressing this topic, it is best to
categorize and explain the different kinds of JSON Schema keywords. It is encouraged to
follow this section of the paper along with the official JSON Schema documentation, as it
has all the keywords listed and sorted in a relevant taxonomy. For this solution, the following
categorization was used:

type-specific keywords – these are keywords that apply only to the data type in
question. For example, numeric types have a way of specifying a numeric range, that
would not be applicable to other types;
generic keywords – const, enum, and type. The latter defines the type(s) that the
schema validates, the others may be or contain values of any of those types;
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schema composition keywords – the purpose of these is to combine together schemas,
and they correspond to well-known algebra concepts like AND, OR, XOR, and NOT;
keywords to apply subschemas conditionally – based on logical conditions or the
presence of certain properties in the final object;
structural keywords – $id, $anchor, $ref, and $defs. These keywords do not reflect
values of the schema explicitly, but are used to structure complex schemas, allowing the
user to break them down into simpler, reusable subschemas, and to reference these from
anywhere, to avoid duplication and write schemas that are easier to read and maintain;
ignored keywords – comments and annotation/media keywords (string-encoding non-
JSON data). The parser recognizes these keywords but willingly ignores them, since they
have little to no use in a dataset generation context.

After thorough reflection, it was concluded that the best approach would be a type-
oriented structure, where the keywords and respective values would be stored under the type
of data they produce. There are multiple points in favor of this line of reasoning:

each data type has a specific set of keywords that applies to them and only them (the
aforementioned type-oriented keywords), so it is easy to separate most keywords by type;
a single JSON schema may validate against multiple data types - the same schema can
have keywords respective to arrays, numbers, and strings, for example. As such, it is
useful to know, at all times, exactly what data types are produceable from the schema;
following the previous point, a certain type may be established and then “disallowed“
further into the schema, with a keyword of schema composition. As such, it would
simply be removed from the intermediate structure, preventing its generation or further
unnecessary parsing;
this kind of organization makes it easy to update the structure for each new keyword
parsed and facilitates the translation exercise executed later on. With this, the translation
program will need only to choose a random type and parse the keywords associated with
that type, ignoring all others. It is efficient and compact.

However, not all keywords are related strictly to a single type. Generic and schema
composition keywords, as defined previously, plus if/then/else (that apply subschemas
conditionally), may take values or subschemas of multiple types. In these cases, the grammar
follows the ensuing method: firstly, it makes sure each of the keyword’s values has a single
type. For generic keywords, this is already the case, as its values are already the final
product. However, the values of the other keywords mentioned are subschemas, which may
be multi-type: if so, the grammar breaks down the subschema into smaller subschemas, one
per each of its types. Then, it separates the keyword’s values by type and introduces one
instance of said keyword in each of its generateable data types, in the intermediate structure,
along with that type’s respective values. An example of this is shown below:

Figure 3 Example of parsing done on a schema composition keyword.

With this algorithm, the program is able to classify these keywords and, by extension, all
JSON Schema keywords by type, which makes it possible to use the described data structure
to store all relevant data, in a way designed to facilitate and make more efficient the following
translator program’s routine.
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In conclusion, the main objective of the grammar, and consequent parser, was to reproduce
the JSON Schema syntax meticulously and collect data from any given schema to a well
thought-out and efficient data structure, to set up the next phase of the process - the
construction of the DSL model. Furthermore, it was also to make the solution as sturdy and
fault-tolerant as possible, preventing it from trying to parse impossible schemas and crashing
or producing unexpected behaviour, which in turn helps the user understand their schema
better and detect unwilling errors.

4.2 Referencing
JSON Schema references can vary a lot: there are absolute and relative references, depending
on if they include the schema’s base URI. It is not mandatory for a schema to have an id,
which is its URI-reference, but without one, it is unable to be referenced by other schemas,
although it can still have local references. Furthermore, a subschema may be referenced either
by JSON pointer, which describes a slash-separated path to traverse the keys of the objects
in the document, or by anchor, using the keyword $anchor to create a named anchor in the
subschema to be referenced. The reader is invited to check out the official documentation on
schema structuring, in order to gain a more in-depth understanding of schema identification
and referencing, which is crucial for this component of the solution.

DataGen From Schemas supports all types of referencing defined in JSON Schema
2020-12 and standardizes that any schema’s base URI must begin with https://
datagen.di.uminho.pt/json-schemas/ and be followed by the schema’s name.

Besides the configuration exposed in the previous subsection, the intermediate data
structure has two additional sections: one for storing the object pointers to all references
found in the schema, and another for separately storing all subschemas with their own
declared identifier. This division is useful to resolve all references later on, after the parser
has finished analyzing every schema submitted by the user. The program is unable to resolve
references as it is reading the schemas, since they might be pointing to schemas or subschemas
that have yet to be reached. For the sake of consistency and efficiency, instead of checking if
that is the case whenever a new reference is found, the parser simply caches the references
and subschemas, in a way that it is ultimately able to quickly find each referenced subschema
and substitute its content in the main body.

Thereby, it becomes possible to generate datasets from schemas with local and/or external
references, as well as more intricate mechanisms, such as recursion and bundling.

4.3 Creating the DSL model
Once the intermediate structure of the main schema is finalized and all references resolved,
it is then sent to the translator program to begin creating the correspondent DSL model.
This component interprets the keywords present on the structure and generates an according
DSL string, taking into account how they influence each other. For the sake of brevity, the
keywords will not be explained minutely in this paper, so it is strongly recommended to
follow along this subsection with the official JSON Schema documentation, as it thoroughly
details the function of every keyword, illustrated with meaningful and intuitive examples.

The intermediate structure is type-oriented, meaning that each value of the schema
is described by a JavaScript object that maps each of its createable data types to their
respective keywords, and values are organized in a hierarquical structure. To produce the
model for the whole schema, the program recursively iterates this intermediate structure,
generating its values’ DSL strings from the leaves to the root and joining them together.
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The types present in the structure of each value already reflect the whole logic of its
schema, since the parser relates the keywords and determines the generateable data types
common to all of them, as described in subsection 4.1. Take the following example, illustrated
below: even though the keyword type defines that the instance may be either a string or a
number, the keyword allOf implies that only a number is valid, since all its subschemas are
only of that type. As such, the section of the intermediate data structure that describes this
value will not have the string type:

Figure 4 Example of parsing done on a apparent multi-type schema.

The program then randomly selects one of the generateable types and moves on to
translating its keywords. The first step is to resolve any keywords of schema composition or
conditional application of subschemas that there may be - these keywords are not directly
translated to the DSL string, but rather parsed and its contents added to the structure.

In JSON Schema, the aforementioned keywords are not used to extend or merge schemas,
in the sense of object-oriented inheritance. Instead, instances must independently validate
against each of the keywords. This is understandable when validating instances against
schemas, which is the purpose of JSON Schema. However, DataGen From Schemas reverses
this workflow and looks to create instances from schemas, so the same logic does not apply.
It is not possible to generate a different value for each of these keywords and ultimately
merge the values together. This method would result in values valid against individual parts
of the schema, but possibly not the whole of it.

As such, in the context of data generation, it is necessary to parse these “compound“
keywords beforehand and extend the base schema with their content, obtaining a cohesive
and coherent final schema, with only type-specific keywords, that incorporates the restraints
specified in these keywords. Since these “compound“ keywords’ values are or contain schemas,
which may, in turn, have nested such keywords, the program recursively checks all subschemas
for these keywords and resolves them, before using these subschemas in the extension process,
so that ultimately the base schema is extended only with type-specific keywords.

4.3.1 Schema composition keywords
There are four keywords belonging to this category: allOf, anyOf, and oneOf allow the user
to define an array of subschemas, against all, one or more, or exclusively one of which the
data must be valid, respectively; not declares that an instance must not be valid against the
given subschema.

For the first three, a subset of their values’ schemas is chosen: with allOf, all of its
schemas are considered; for anyOf and oneOf, either an arbitrary number of its schemas or
only one of them, respectively, are randomly selected. The base schema is then extended
with these, sequentially, and the original keywords are erased from the structure.

As for not, the program must first “invert“ this keyword’s schema, in order to obtain a
complementary/opposite schema, which ensures that no value that is valid against it, also
validates against the original schema. Then, the base schema is extended with this inverted
schema and the keyword not is removed from the structure.
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For this purpose, a schema inverter capable of generating complementary schemas was
developed, which takes into account the meaning of each JSON Schema type-specific keyword.
There is never a need to invert any other kind of keyword, since those are parsed recursively
before the actual schema to which they belong (as was described in subsection 4.3), which
guarantees that the schema to be inverted will only have type-specific keywords.

On the same note, the solution also incorporates a schema extender program to manually
and sequentially extend a base schema with each type-specific keyword of others. For each
data type, the new keyword is compared to the already existing ones and incorporated in a
reasonable way - the result may be different depending on whether the base schema already
has the same keyword or not, for example. This solution must handle each individual JSON
Schema keyword differently, as they all have different meanings.

Due to its complexity, the functionality of these two components will not be addressed in
detail in this document. The reader can find their explanation in another more substantial
and exhaustive academic paper on the entirety of DataGen From Schemas that will be
published in the near future.

4.3.2 Keywords that apply subschemas conditionally
These keywords are the reason for JSON Schema’s dynamic semantics, i.e. their meaning
can only be uncovered after the context has actually been instantiated, since these keywords
establish conditions based on actual values of the instance. Take the following example:

Figure 5 Example of a schema with dynamic semantics.

In this case, the schema will only know what schema to validate the property ’postal_code’
with after checking the actual instance for the value of the property ’country’, and never
before. While with other keywords, the schema can determine a priori the structure of the
instance, with these it is not possible to do so.

Once again, this approach is not reasonable for a solution such as DataGen From Schemas,
since it is not viable to generate an intermediate value from the rest of the schema and only
then exert these keywords, which may imply large changes to the remaining schema - at
least with if, then, and else. Since the keywords dependentRequired and dependentSchemas
are specific to the object data type, it is possible to incorporate them into the translation
procedure of object schemas, as will be detailed ahead in subsection 4.4.3.

The solution found for the keywords if, then, and else was to determine their outcome
probabilistically - unless the if schema is explicitly true or false, in which case it is deterministic
whether the instance should be validated with either then or else, respectively. Otherwise,
the program determines the veracity of the condition based on a probability, customizable
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by the user (by default, a 50/50% chance) - if true, the base schema is extended with the if
and then schemas, otherwise it is extended with a complementary schema of if (produced
with the aforementioned schema inverter) and the schema of else. This way, it is possible to
produce a coherent, simpler schema that incorporates the logic of these conditional keywords
and to generate the final instance in a single iteration.

4.4 Translating the intermediate structure

Finally, once the intermediate structure of the selected data type is finalized and possesses
only type-oriented keywords and/or const and enum, the program is able to generate a DSL
string that translates the logic of the original schema. In this subsection, it will be carefully
detailed the method behind translating each type of value.

The first step is to check if the intended value must belong to a fixed set of values, i.e. the
usage of any of the keywords const or enum, which, at this point, already reflect the absence
of any values unallowed with not. If any of these are present, the remaining keywords are
ignored and the DSL string is generated from these alone. In case of both keywords, const
takes precedence over enum, as it defines that the value is constant and imutable. The output
DSL string produced from these keywords is a random choice from all of their respective
values (typically, const will map to a single value, but if the user composes multiple instances
of this keyword in the same schema, it will be treated as an alternative between several).

If no fixed set of values is defined, the solution goes on to actually translate the type’s-
oriented keywords. Data types null and boolean are basic, since they possess no specific
keywords. These and the previously addressed keywords are translated as follows:

Figure 6 Translation of the keywords enum and const.

4.4.1 String type

The string type only has four different keywords: pattern, format, and minLength/maxLength.
Only in this case, it was decided that there would be an order of precedence to these keywords
since, realistically speaking, they would very rarely be used together (except for both length
keywords): for example, it does not make much sense to define a string value according to a
regular expression or format and then further constrain its length, as the former keywords
already establish a very rigid template.

As such, if the schema has the keyword pattern, that will be the one to be translated,
followed by format and, finally, the length keywords. While pattern and length keywords
translate directly to one of DataGen’s interpolation functions, format is more contrived, since
there is a need to program a different DSL string for each format, to generate an according
value, some of which map directly to existing interpolation functions and others that do not.
Below are presented some examples of the models generated from this data type’s keywords:
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Figure 7 Translation of string type schemas.

4.4.2 Numeric types
As for numeric types, there are five applicable keywords: multipleOf, minimum, exclusiveMin-
imum, maximum, and exclusiveMaximum. The constraints on numeric types can get a lot
more complicated if the user specifies, via schema composition keywords, that the value must
be a multiple of several numbers simultaneously and/or not a multiple of one or more values.
Let’s first consider simpler cases where the not keyword is not used.

If the instance must be a multiple of one or more values, the program starts by calculating
the least common multiple (LCM) of all these numbers. This way, it is possible to consider
a single value for the multiplicity of the instance, since the LCM and its multiples are the
easiest way to obtain any number simultaneously multiple of the original values. If the type
in question is an integer, this is also taken into account before determining the LCM, by
considering that the instance must also be a multiple of 1.

Next, the range keywords are evaluated, if present. The program determines the biggest
and smallest integers that it is possible to multiply by the LCM (or 1, if no multipleOf
constraint exists), in order to obtain values that belong to the intended range. This is doable
by rounding down the result of the division of the upper bound by the LCM and rounding
up the result of the division of the lower bound by the LCM, respectively. If the schema only
has either an upper or lower range boundary, the other one is offset by 100 units to provide
confortable margin for generateable values. At this point, there are three different possible
outcomes, detailed next and further illustrated in the image below:

if only the type is specified and nothing else, the program simply generates a DSL string
for a random integer or float, accordingly;
if no range keys are used (the only type-specific is multipleOf ), the DSL’s interpolation
function with the same name is used to generate a multiple of the LCM;
if both range and multiplicity constraints are present, the value is calculated by randomly
choosing an integer between the predetermined bounds and multiplying it by the LCM.

Figure 8 Translation of numeric type schemas.
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However, the negation of the keyword multipleOf makes these use cases a lot more
contrived, since there is the necessity to further restrict the set of produceable values. As
such, the DSL string produced in such occasion is different for all the alternatives above.
Only one variant will be explained, since the same logic applies across all others:

Figure 9 Translation of a complex numeric type schema.

As seen in the preceding image, the schema has impositions on the range of the value,
as well as what it must and must not be a multiple of. This translates to the DSL via
a JavaScript anonym function, where DataGen first calculates all valid multiples in the
designated range and stores them in an array, then removing all elements that are multiples
of unallowed numbers. The final value is selected randomly from the alternatives with the
interpolation function random, however the program firstly does a safety check to ensure that
the final array is not empty: if that is not the case, then its impossible to produce a value
that obeys all restrictions specified in the schema, so it simply selects a regular multiple in
the range from the first array.

4.4.3 Object type

The set of type-specific keywords for objects is properties and patternProperties, to specify
property schemas according to their key, additionalProperties and unevaluatedProperties, for
unspecified properties, required, to make properties mandatory, propertyNames, to validate
the properties’ keys, and finally size keywords (minProperties and maxProperties).

DataGen From Schemas also treats dependentRequired (used to require properties based
on the presence of others) and dependentSchemas (to apply subschemas if certain properties
exist) as object-specific keywords - for every new property selected for the final instance, the
solution also checks these keywords for dependencies. In case of the former, if any properties
are dependent on the newest property, these are also translated and added to the object.
As for the latter, if there is a subschema dependent on the latest property, it is parsed and
used to extend the current object schema. This verification is executed for every property
produced along the pipeline, required or not.

For this type, the instance’s model is firstly delineated in an intermediate object, mapping
each key to the DSL string of their respective value, in order to manage more easily all the
different properties that may be produced. Only after determining all properties does the
program produce a DSL string for the whole object, from this second intermediate structure.

The first operation executed by the program is determining a random size for the final
object, taking into account all relevant factors such as minProperties and maxProperties,
required properties and the permission or not of unspecified properties (additionalProperties,
unevaluatedProperties). The calculated size will always necessarily allow room for at least
the required properties, and if only the object type is specified and no other keywords are
used, the program will generate an object with between 0 and 3 properties, where both the
key and value are random.
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Then, DataGen From Schemas iterates the required properties and generates an according
DSL string for each of their value’s schema, storing the pair in the intermediate object
structure. Once the required properties have been produced, the solution executes the
following pipeline sequentially, until it reaches the designated size for the final instance:

iterates the non-required properties sequentially, producing the DSL strings of their
respective values and storing the pairs in the intermediate object;
iterates the value of the keyword patternProperties - for each pair, there is a probability
(customizable by the user) to produce, at most, one according instance property, where
the name of the property is obtained through a regular expression value generator;
if additional properties are not allowed or not explicitly mentioned in the schema, the
intermediate structure is considered finalized with the properties it currently has. Do
note the mention of explicitly allowing additional properties - if neither of the keywords
additionalProperties and unevaluatedProperties are specified, then the user most likely
wants an instance with only the properties covered by the keywords properties and
patternProperties - as such, it would not make much sense to generate other random
properties, just because it is not explicitly disallowed;
if the schema specifies additional properties, additionalProperties has precedence over
unevaluatedProperties, so if both keywords are specified, additionalProperties’s schema
prevails, else it is the only used keyword’s. The program translates this schema into a
DSL string and generates random names for the properties keys, either according to the
propertyNames schema, if present, or by generating small chunks of lorem ipsum.

Having finalized the intermediate object with each property’s DSL string, these properties
are all joined in a string encased by curly braces, in the syntax of a regular JavaScript object
that DataGen is able to parse and then generate the according dataset.

Figure 10 Translation of an object type schema.

4.4.4 Array type
There are several keywords for this data type: items and prefixItems, the main way to
evaluate items, additionalItems and unevaluatedItems, for others that do not validate against
former keywords, contains, minContains, and maxContains, for inclusion of items with certain
schemas, and finally length keywords (minItems, maxItems) and uniqueItems, to determine
the uniqueness of items in the instance.

For this data type, the program creates an intermediate array structure firstly, in order
to maleably plot the intended array, and only at the end converts it to a DSL string. The
solution keeps track, at all times, of the allowed number of items, which can be established
with minItems and maxItems. If the maximum amount of items is ever reached (and also
never before the minimum is attained), the program stops the execution of the pipeline that
will be described ahead and produces the DSL string from the intermediate array as is.

The first step of the algorithm is to check for prefixed items in the schema: if any were
specified, the program sequentially generates their respective values’ DSL strings and pushes
these to the intermediate array, in order.
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Then, DataGen From Schemas parses the inclusion keywords. In the workflow of this
solution, these keywords efectively have a dynamic semantic, since it is impossible to validate
the array for the inclusion of elements with the specified schema before generating it, even
in the DSL model. As such, a compromise was needed to adapt these keywords: after
parsing the prefixed items, if more items are allowed in the array, then the solution with
push the necessary amount of new elements with the structure of the contains schema (one
if minContains and maxContains are not used, otherwise a random number in the indicated
range). Note that if the intent of the user is for the values validated against the inclusion
keys to be some of the prefixed items, then the program cannot guarantee this.

Once all the “hard-coded“ elements are in the intermediate array, the program then
checks for other items. The keyword additionalItems has precedence over unevaluatedItems,
so if additional items are allowed and both keywords are specified, additionalItems’s schema
is considered, otherwise it is the only specified keyword’s. If the user also disallowed any
instance of the keyword contains, their schemas are inverted (using the schema inverter
mentioned in 4.3.1) and used to extend the schema for additional items, in order to guarantee
that all additional items wholly conform to the user’s configuration. This final schema is
used to sequentially generate a random amount of additional items’ DSL strings, within the
intended range for the array, which are appended to the intermediate structure.

Finally, DataGen From Schemas checks if all these items must be unique or not
(uniqueItems). This keyword, as is the case with the inclusion keys, demands a compromise
and an inteligent workaround, since it is impossible to check for the items’ uniqueness before
generating them, and is the reason that warrants the usage of an intermeadiate array to store
the DSL strings of each element, instead of simply building a single string and appending
each item to it. As such, depending on the value of this keyword, two different types of DSL
strings for the final array may be created:

not unique items – if either the keyword is not specified or its value is false, then the
procedure is to simply create a string of an array, where its elements are the DSL strings
stored in the intermediate array structure maintained along this pipeline. DataGen can
interpret this syntax and generate all elements according to their respective model;

Figure 11 Translation of an array type schema with non-unique items.

unique items – in this case, a DataGen anonym function is used to implement an
algorithm that attempts to generate an array where all elements are different. As can be
observed below, the procedure is the following: whenever DataGen creates the next item,
it checks if the array already contains the new value. If not, it pushes the element to the
array and moves on to the next one. Else, it generates the same item again (which can
produce a different result, since the DSL strings accomodate margin for randomness), for
a maximum of 10 tries per item. In case none of them produces a new value, the value of
the latest try is pushed to the array anyway, to prevent crashing the program, and the
resulting array ends up not obbeying the uniqueItems restriction.
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Figure 12 Translation of an array type schema with unique items.

As a by-product of this algorithm, another compromise arises: DataGen From Schemas
can only attempt to generate arrays with unique items if all items are elementary, i.e. neither
objects nor arrays. This is the case because DSL strings for complex values are bigger, more
convoluted and impossible to incorporate in a DataGen function syntax, in the same way a
basic interpolation or anonym function can. To summarize, DataGen From Schemas is not
the best tool to adapt the keyword uniqueItems in specific, due to its ill-suitability to the
workflow and DataGen’s DSL, however it is still possible to satisfy some use cases.

5 Conclusion

The main contributions of this paper are the design of a synthetic data generator from JSON
schemas and its implementation, which culminate in DataGen From Schemas - a quick and
sturdy solution built upon DataGen that effectively greatly expands the base apllication’s
functionality and makes it more accessible to any user, by allowing their input to be in
a vastly popular and utilized vocabulary, JSON Schema, and automating the creation of
DataGen’s DSL model.

With this software, it becomes possible to very quickly specify a dataset and generate
several different instances of it, given that the program randomizes its values with each
attempt, as well as further customizing its requirements directly in DataGen, via the provided
intermediate DSL model, with support from custom datasets and other tools provided by
the base application, which is not possible to do in JSON Schema’s syntax.

DataGen From Schemas has been experimented with real-life cases and convoluted
schemas that use mechanisms such as bundling or recursion, and proves to be an adequate
solution, capable of interpreting the schemas it is given and generating representative datasets
accordingly. The product will soon be put in a production environment and made available
for the general public, as a free and open-source application, after an arduous yet successful
development phase.
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Abstract
Many high-level programming languages have emerged in recent years. Julia is one of these languages,
claiming to offer the speed of C, the macro capabilities of Lisp, and the user-friendliness of Python.
Julia’s syntax is one of its major strengths, making it ideal for scientific and numerical computing.
Furthermore, Julia’s high-performance on modern hardware makes it an appealing alternative to
Python. However, Python has a considerable advantage over Julia: its extensive library set.
There have been efforts to make Python libraries available to Julia either through Foreign Function
Interfaces (FFI’s), or through manual translation, but both have their tradeoffs: FFI’s do not take
advantage of Julia’s performance, as they call Python’s Virtual Machine, and manual translation is
demanding and time-consuming.
To address these issues and bridge the gap between the two languages, we propose PyJL, a
transpilation tool that converts Python source-code to human-readable Julia source-code. Although
the development of PyJL is still at an early stage, our preliminary results reveal that the generated
code follows the pragmatics of Julia and is capable of high performance.
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1 Introduction

Transpilation and compilation share identical mechanisms for processing source code, but
they have two distinct goals: compilers convert an input language to a lower-level language,
such as machine code, while transpilers translate it to another language with a similar level
of abstraction.

Transpilers were initially developed to convert lower-level source code. The first transpiler,
CONV86 [6], was developed in 1978 by Intel to translate assembly source code from the
8080/8085 to the 8086 processor, providing compatibility between an 8-bit and a 16-bit
processor. Nowadays, as most modern programming languages are high-level languages,
it makes sense to develop transpilers that operate at this level. As an example, consider
Babel.js [1], a transpiler that converts newer versions of ECMAScript, such as ES6, to ES5.

Modern programming languages became more dependent on the quality and quantity of
available libraries, which highly influence its adoption. One solution to this problem is to
translate libraries from more established languages to newer and/or less popular ones [15].
However, manual translation requires an extensive amount of time and resources. On the
other hand, using a transpiler to automate this process can significantly speed up the
translation of libraries between languages.
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Automatic translation is challenging, as different languages offer distinct syntactic and
semantic constructs. Additionally, if transpilers work with static source code information,
dynamic languages become considerably difficult to translate. All of these challenges influence
the translation’s quality.

There have been previous efforts regarding the transpilation of Python source code to Julia.
For instance, Py2JL[13] aims at translating Python source code to human-readable Julia
source code. Similarly to the work presented in this paper, it uses rule-based transpilation
to generate Julia source code. However, it can only translate simple Python code excerpts.
Thus, having a tool that can operate on larger code samples could benefit the community.

This paper extends our previous work on translating Python libraries to Julia [17]. PyJL
is a rule-based transpilation tool that translates Python source code into human-readable
Julia source code. Our previous evaluation of PyJL concluded that it is possible to translate
Python source code to Julia with minimal programmer intervention. Still, the transpiler
required more improvements regarding the generation of pragmatic code. Furthermore, with
improved translation coverage of Python’s standard library, we can now perform a more
in-depth analysis of the transpilers abilities.

2 Related Work

With the rise of many new high-level programming languages, translating between them
has become an increasingly important topic. Some programming languages are inclusively
using transpilers to maximize compatibility with existing languages. This is the case of
TypeScript [11], which transpiles to JavaScript and offers an improved syntax and additional
functionalities.

The topic of library translation was also discussed when developing LinJ [15], which
transpiles Common Lisp source code to Java. This work describes how the syntactic and
semantic incompatibilities of these two languages make in very hard to automatically translate
between them. This becomes increasingly more difficult if we want to preserve the pragmatics
of the target language.

Regarding the transpilers that use Python as a source language, PyRS is a transpiler that
translates Python to Rust and is also part of Py2Many [21]. It currently requires manual
intervention in some cases to generate running Rust source code. The Fortran-Python
transpiler [4] uses Python’s type hints to translate Legacy Fortran to Python and vice versa,
while producing human-readable code. It does not intend to entirely automate the translation
process, instead requiring manual intervention in certain cases. There are also transpilers,
such as Prometeo [23], which transpile Python source code to high-performance C source
code. However, the generated code is not human-readable, an important aspect of this work.

Transpilers that translate from Julia are less common, as the language is also very recent.
We previously mentioned Py2JL[13], which also transpiles Python to human-readable Julia
source code. Other transpilation approaches are not concerned with human-readability.

More generic tools include TXL [5], which was designed to restructure and modify source
code. Other notable tools include DMS [2], which targets automatic management and
improvement of source code in large software solutions.

3 Automatic Translation

Automatically generating code that preserves the pragmatics of the target language is
challenging, requiring the transpiler to at least use proper language constructs and suitable
code formatting with appropriate use of indentation rules. In practice, the translation process
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requires a careful analysis of syntactic and semantic incompatibilities that can be difficult to
overcome. For instance, in the case of Python and Julia, the semantics of language constructs
often require specific mappings. Python’s operators must be carefully mapped to Julia, as
they use overloading and apply different operations depending on their operator types.

Additionally, there is the problem of memory management, in which a transpiler must
account for memory allocations and remove unused objects in memory, which may require
the use of a garbage collection mechanism. This is important for transpilers such as ts2c
[18], which convert JavaScript and TypeScript to human-readable C source code.

Lastly, one should also consider the difference between dynamically and statically typed
languages. In a statically typed language, such as Java, all types have to be defined at compile
time, while in a dynamically typed language, types are determined at runtime. Translating a
dynamically typed language to a statically typed one requires a type inference mechanism.
However, the reliability of static type-inference mechanisms largely depends on the type
information available at compile time. Therefore, a transpiler might require restrictions
regarding which types must be available at compile time. Moreover, some languages, such as
Julia, also benefit from type annotations to provide better performance. That is the case of
Julia’s Arrays [3], where memory allocation can largely be improved if type annotations are
used, allowing for contiguous element allocations and less boxing/unboxing operations.

4 Translating Python to Julia

In the previous section, we highlighted several aspects of automatic translation that make the
conversion of syntax, semantics, and generation of pragmatic code more difficult. However,
Python and Julia have similar levels of abstraction, which might indicate that the translation
of Python libraries to Julia can occur with minimal programmer intervention. In this section,
we will briefly introduce both languages.

Python was introduced in 1991, and has gained popularity in recent years due to its
extensive library set and its use in Data Science. It is worth noting that there are several
implementations of Python. Its reference implementation is CPython, which was created by
Guido van Rossum in 1989 and is written in the C programming language. Two common
alternatives to CPython are Jython [9] and IronPython [10], both developed by Jim Hugunin.
The first compiles the input Python source code to JVM bytecode for the Java platform, and
the latter compiles it to IL bytecode for the .NET platform. However, these implementations
currently lack support for Python’s latest version.1 Furthermore, there is also PyPy [20], an
implementation of Python using a Just-In-Time compiler written in RPython.

For the purpose of this research, we will use CPython, as it is the reference implementation.
However, CPython suffers from slow performance due to Python’s implicit dynamism. A
common problem of CPython is known as the two language problem, which occurs when
the prototype language differs from the main implementation language. Programmers who
require high-performance typically convert the kernel parts of their programs to C, using
Python only as a prototyping language.

On the other hand, Julia promises to solve the two language problem and is proving to
be a high performance alternative to Python. It is one of the few languages that belongs to
the Petaflop club, along with C, C# and Fortran. However, its library set is still reduced,
particularly when compared to more established languages, such as Python. We plan to
address this issue by speeding up the library development in Julia.

1 As of April 2022, IronPython supports version 2.7.11 (version 3.4 is still an Alpha release) and Jython
supports version 2.7.2

SLATE 2022



6:4 Extending PyJL – Transpiling Python Libraries to Julia

Figure 1 PyJL Architecture.

5 PyJL

PyJL2 is part of the Py2Many [21] transpiler, which is a rule-based transpilation tool that
offers a generic framework to transpile Python to many C-like programming languages, such
as Rust, Go, and C++. PyJL builds upon that framework to translate Python source code
to Julia. Figure 1 shows the architecture of the PyJL transpiler. The changed and added
phases show up with different colours for distinction.

The transpiler first parses the input Python source code using Python’s ast module,3
which generates an Abstract Syntax Tree (AST). It then uses several intermediate transform-
ation phases to generate the equivalent Julia source code. A brief description of each phase
follows:
1. Configuration Rewriters support configuration files in JSON and YAML format that

specify AST modifications.
2. Rewriters can be both language-specific or -independent. A rewriter changes the structure

of nodes in the AST to match equivalent nodes in the target language.
3. Core Transformers are language-independent transformers that add relevant information

to nodes in the AST. An example is to add scope context to the AST’s nodes, allowing
for node searches.

4. Transformers are language-specific and add information to nodes in the form of attributes.
An example would be to add type annotations for type inference.

5. Post-Rewriters are rewriters that have dependencies on some previous phase. Their
functionality is identical to the Rewriters phase.

6. Optimization Rewriters are rewriters that optimize a small set of the generated source
code. This is similar to peephole optimization, commonly used in compilers.

7. Transpiler translates language syntax and semantics, and converts the AST to a string
representation in the target language.

Notice from figure 1 that the Core Transformers phase executes at two stages. The first
makes core information available to the Transformers, Post-Rewriters and Optimization-
Rewriters stages. The second ensures that core Py2Many transformations are not overwritten,
making them available in the Transpiler phase.

2 PyJL Development Repository: https://github.com/MiguelMarcelino/py2many Retrieved April 24th,
2022

3 Abstract Syntax Tree – Python 3.10: https://docs.python.org/3/library/ast.html (Retrieved on
January 27th, 2022)

https://github.com/MiguelMarcelino/py2many
https://docs.python.org/3/library/ast.html
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Figure 2 Annotation pipeline. Figure 3 Annotation Example.

There are scenarios where the transpiler provides more than one translation method.
In these scenarios, the programmer can decide which alternative to use by using one of
three methods: (1) manually annotating the Python source code, (2) using JSON or YAML
annotation files, supported by the Configuration Rewriters phase, or (3) using flags to make
global changes to source code generation. These approaches provide the flexibility to cover
a broader range of translation scenarios, allowing the programmers to selectively apply
annotations if necessary.

To demonstrate the use of the annotation mechanism, we show the processing pipeline in
more detail in figure 2. It parses the provided YAML/JSON files and adds the information
to the AST. The current supported features are adding type hints or decorators to function
definitions. An example of code annotations can be seen in figure 3. In this example, we
can use the annotations provided from the YAML file and merge them with the repeat_str
function. This is equivalent to manually annotating the code.

We will now describe the changes to the transpiler. Section 5 describes the most notable
improvements. In section 6, we compare the performance of several translation scenarios and
provide an optimization use-case, where we analyse the steps required by the programmer to
improve the performance of the generated code. Lastly, section 7 describes some limitations
of the transpiler and translation methodology applied.

5.1 Scoping Rules
The first mismatch between Python and Julia is related to the scoping rules, which define the
behaviour of assigning names to values and solve possible conflict scenarios. Both Python
and Julia use lexical scoping, which determines, at compile-time, the section in the source
code where a name is bound to a value. This section analyses the different scoping rules and
how they affect the translation process.

In Python, scopes are defined according to the LEGB rule [16, Ch. 16], which stands for
Local, Enclosing, Global, and Built-in scopes. Local scopes define the scope of a Python
function or lambda expression. Enclosing scopes define the outer scope of a nested scope.
The Global scope is the top scope of a Python module. Lastly, the Built-in scope contains
automatically loaded special keywords, such as built-in functions, exceptions, etc. In Python,
this rule is used when searching for an unqualified name. The search for a name reference
starts on the Local scope, following the LEGB order, and stops at the first encounter of that
name.

On the other hand, in Julia, scopes can either be global or local. Furthermore, Julia’s
local scopes are divided into hard and soft scopes [14, Ch. 10]. To explain this concept, let
us consider that a variable named a is defined in the global scope: if the enclosing scope
is a hard scope and if there is an assignment to a new local variable a, then a new local
variable will be created and will shadow the global variable; if all the enclosing scopes are soft
scopes, the behaviour changes when used in non-interactive or interactive (REPL) contexts.

SLATE 2022



6:6 Extending PyJL – Transpiling Python Libraries to Julia

Listing 1 Python Mandelbrot.

1 def mandelbrot(limit, c) -> int:
2 z = 0 + 0j
3 for i in range(limit + 1):
4 if abs(z) > 2:
5 return i
6 z = z * z + c
7 return i + 1

Listing 2 Julia Mandelbrot.

1 function mandelbrot(limit, c)::Int
2 z = 0 + 0im
3 i = 0
4 for _i = 0:limit
5 i = _i
6 if abs(z) > 2
7 return i
8 end
9 z = z * z + c

10 end
11 return i + 1
12 end

In non-interactive contexts, if an assignment to a new local variable a occurs, it will shadow
the global variable similarly to the hard scope, the only difference is that it emits a warning
when shadowing occurs. In interactive contexts, the global variable is always assigned. If
there is no global variable with the same name, then a new local variable will be created
both in hard and soft scopes.

Global scopes include modules and baremodules. Local soft scopes include structs,
for, while and try, while local hard scopes include macros, functions, do blocks, let
blocks, comprehensions, and generators. Furthermore, Julia’s constructs are only allowed
in certain scopes. These scoping rules impose some limitations in the translation process.

For instance, one of Julia’s scoping restrictions is that structs can only be defined in the
global scope. As an example, the transpiler generates structs to translate Python classes.
However, classes in Python can be defined in local scopes. Automatically changing the scope
of classes could potentially result in name clashes. In addition, this might not match the
programmer’s intent of the code. Therefore, we include a remove_nested Python decorator
that the programmer can use to annotate the classes that should be moved to the global
scope.

This problem also affects the resumable macro, which is used by the transpiler to
simulate Python’s generators in Julia. This macro defines a Finite State Machine to simulate
Python’s generator functions. To save the machine’s state, it creates a struct, restricting
its use to the global scope. To account for these cases, we have added an optional argument
field remove_nested to the resumable decorator, which has a similar functionality as the
previously defined decorator.

Another mismatch occurs with control flow operators. Despite their syntactic similarities
in Python and Julia, they have considerable differences in their scoping rules. As an example,
translating Python’s loops to Julia could potentially result in errors if loop target variables
are used outside its body. To detect these cases, the transpiler analyses the enclosing scope
to find any assignments that have the same variable name as any of the loop target variables.
This enforces the concept of for-loop scopes during transpilation and can then be used in
two different ways:
1. Have the transpiler emit a warning message when loop target variables are used outside

the loop’s scope.
2. Create a new variable in the enclosing scope and update it in every iteration of the loop.

To demonstrate a use-case where this occurs, consider the mandelbrot function shown in
listing 1 that tests if a complex number c belongs to the Mandelbrot set by computing the
number of iterations required (up to a given limit) to get a value greater than 2.
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Listing 3 Python Augmented Assignments.

1 x = [1,2]
2 y = x
3 x += [3,4]
4 x[1:2] *= 2
5 y[1:2] += [1]

Listing 4 Augmented Assignment Expansion.

x += [3, 4]
↓

x = x + [3, 4]
↓

x = append!(x, [3, 4])

Notice how the loop variable i is used outside the scope of the loop. This is valid in
Python, as the loop does not define its own scope, but cannot be translated directly to Julia.
By using code analysis and applying the second translation method, the transpiler generates
the code shown in listing 2, which now works in Julia with the intended result.

5.2 Augmented Assignments
Augmented assignments combine binary operations with assignment statements. These

are supported by both Python and Julia, but given Python’s use of operator overloading,
not all augmented assignments can be translated directly to Julia.

As an example, consider the code excerpt in listing 3. The first two assignments are
equivalent in both languages. However, executing the third statement in Julia does not yield
the same results, as it performs an element-wise addition instead of the concatenation that
is done in Python. To solve this problem, the transpiler expands augmented assignments
into assignments and binary operations and then transpiles the result.

The conversion of this statement can be seen in listing 4. Notice how the function append!
was used, which performs an in-place concatenation of elements to the list x, matching the
behaviour of Python’s augmented assignments [22, Ch. 7].

Another mismatch occurs when translating slices from Python to Julia. Lines 4 and 5 of
listing 3 represent that scenario. To translate these augmented assignments into Julia, one
can use the splice! function, which replaces or inserts new elements in a given list. The
translated Julia source code for the previous example is the following:

splice!(x, 2:2, repeat(x[2:2], 2))
splice!(y, 3:2, [1])

Notice that the second call to splice! uses the form n:n-1 for the second argument,
which inserts a new element in the list [14, Ch. 42].

5.3 Subscripts
In Python, a subscript is used to represent indexing and slicing on sequences and key lookups
on mapping types. Translating subscripts to Julia becomes a challenge when trying to
generate pragmatic code. Furthermore, there are several cases that require special handling,
which will be discussed in this section.

Indexing is used to look up a particular position in a sequence, i.e., tuples, lists, strings,
etc. The main difference between indexing in Python and Julia, is that Python uses 0-based
indexing while Julia uses 1-based indexing. Indexing can be performed using integer literals
or generic expressions. Integer literals can be incremented to match Julia’s 1-based indexing,
but non-literal expressions require adding the literal 1, which can reduce the readability of
the code. However, because most indexing is performed in loops, we can optimize the entire
scenario instead.
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Listing 5 Julia Combination Sort.

1 def comb_sort(
2 seq: List[int]) -> List[int]:
3 gap = len(seq)
4 swap = True
5 while gap > 1 or swap:
6 gap = max(1, floor(gap / 1.25))
7 swap = False
8 for i in range(len(seq) - gap):
9 if seq[i] > seq[i + gap]:

10 seq[i], seq[i + gap] = \
11 seq[i + gap], seq[i]
12 swap = True
13 return seq

Listing 6 Julia Combination Sort.

1 function comb_sort(
2 seq::Vector{Int})::Vector{Int}
3 gap = length(seq)
4 swap = true
5 while gap > 1 || swap
6 gap = max(1, floor(Int, gap / 1.25))
7 swap = false
8 for i = 0:length(seq) - gap - 1
9 if seq[i + 1] > seq[i + gap + 1]

10 seq[i + 1], seq[i + gap + 1] =
11 (seq[i + gap + 1], seq[i + 1])
12 swap = true
13 end
14 end
15 end
16 return seq
17 end

For instance, consider the implementation of the combination sort algorithm in listing 5.
The simplest translation, as shown in listing 6, is to preserve the ranges and adjust the
indexing operation. As an alternative, we provide two additional optimization methods that
the programmer can use:
1. Determine if operations in loops are only performed on sequences, and increment loop

ranges.
2. Use the OffsetArrays package [12] to define custom index ranges for sequences.

The first approach requires analysing the source code to verify if the loop ranges can
be optimized. The transpiler validates the applicability of this optimization by analysing if
all nodes in the loop’s body using its target variables are Subscript nodes. To demonstrate
this translation method, we used the transpiler to translate the Python combination sort
implementation by changing the loop ranges instead of the indexes. The transpilation result,
shown in listing 7, respects the pragmatics of Julia, being much closer to what a Julia
programmer would write.

The second translation method, which uses OffsetArrays, allows defining arrays with the
same index ranges as Python. The code generated by the transpiler is available in listing 8.
The call to OffsetArray creates a wrapper around the array seq and decreases its indexing
value by 1, which is equivalent to performing 0-based indexing. In this case, the transpiler
used a let-block, to restrict the wrapping of the input vector seq to the block’s scope.

Both alternatives have tradeoffs. The first is arguably more pragmatic in this particular
example, but changes the algorithm’s implementation to use 1-based indexing, which might
not be desired for all scenarios. The second preserves the program’s original indexing, but
can be a less pragmatical solution in some cases. The programmer can select his preferred
method, as demonstrated in the beginning of section 5.

Another scenario is the use of subscripts with slices. In Julia, slices are called UnitRanges
and are very similar to those of Python. One notable exception is that in Python, slices
have an inclusive beginning and exclusive end, whereas in Julia, both are inclusive, requiring
the transpiler to adjust the ranges. Furthermore, Python allows slices that do not explicitly
define a beginning or end index, whereas Julia’s UnitRanges require all values to be specified.
An example of this can be found below, where the Python code excerpt on the left can be
translated to the corresponding Julia code on the right:
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Listing 7 Julia Optimized Indexing.

1 function comb_sort(
2 seq::Vector{Int})::Vector{Int}
3 gap = length(seq)
4 swap = true
5 while gap > 1 || swap
6 gap = max(1, floor(Int, gap / 1.25))
7 swap = false
8 for i = 1:length(seq) - gap
9 if seq[i] > seq[i + gap]

10 seq[i], seq[i + gap] =
11 (seq[i + gap], seq[i])
12 swap = true
13 end
14 end
15 end
16 return seq
17 end

Listing 8 Julia Offset Arrays.

1 function comb_sort(
2 seq::Vector{Int64})::Vector{Int64}
3 let seq = OffsetArray(seq, -1)
4 gap = length(seq)
5 swap = true
6 while gap > 1 || swap
7 gap = max(1,floor(Int, gap / 1.25)

)
8 swap = false
9 for i = 0:length(seq) - gap - 1

10 if seq[i] > seq[i + gap]
11 seq[i], seq[i + gap] =
12 (seq[i + gap], seq[i])
13 swap = true
14 end
15 end
16 end
17 end
18 return seq
19 end

l = [1,2,3,4]
a = l[1:]
b = l[:-1]

l = [1,2,3,4]
a = l[2:end]
b = l[begin:end-1]

Notice that the last line covers the translation of negative indexing. Currently, PyJL only
supports negative indexing if the index is a literal.

Lastly, subscripts can be used for key lookups, where a common scenario is a dictionary
lookup. In practice, distinguishing subscripts that use indexing from ones that use keys
depends on the container’s type. The transpiler currently relies on the type-inference
mechanism to infer the container types and transpile the corresponding subscripts to Julia.
The inference mechanism is described in section 5.5.

5.4 Functions
Both in Python and Julia, functions are first-class values. Most notably, they can be returned,
passed as arguments, and assigned to variables. Some functions defined in Python can be
mapped to equivalent functions in Julia. However, even if their behaviour is equivalent, they
may differ in terms of the argument order or even argument count. For instance, consider
the Python code excerpt on the left and its corresponding translation to Julia found on the
right:

write = sys.stdout.buffer.write
write(b"test")

write = x -> Base.write(stdout, x)
write(b"test")

If no argument is provided, the Python built-in function write will output the content to
stdout. However, in Julia, the equivalent function requires an explicit parameter indicating
where to write the contents to. The transpiler translates such cases using lambda expressions
to automatically input the default parameters.

Notice how in the translated code above, the assignment to variable write overwrites any
future calls to Julia’s built-in write function within the scope where it is defined. To prevent
this issue, every time an assignment name clashes with one of Julia’s built-in functions,
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we translate function references using Julia’s module.name notation. This can be seen in
the example above, where sys.stdout.buffer.write is translated to Base.write in Julia,
mitigating the name clashes.

5.5 Type Inference
Having a type-inference mechanism is crucial to transpile Python source code to Julia, as
the translation outcome might depend on the type information available. Py2Many already
offers a type-inference mechanism, which we extended with new inference rules. This section
briefly describes the current inference mechanism.

The inference mechanism in Py2Many is implemented using a define-use set. This
mechanism recursively walks the AST and aggregates type information from node assignments
for each scope. The defined scopes are more extensive than Python’s scopes, to cover the
scoping rules of all supported languages. The current scopes include modules, functions,
classes, for and while loops, if-statements, and with-statements.

We extended the current inference mechanism with a more extensive rule-set. The changes
include adding more information to binary operations, as their translation to Julia is largely
dependent on the types of their operands. This involves adding type annotations to the left
and right operands, to support more complex operations.

Similarly to MyPy, PyJL also requires programmers to annotate function definitions.
PyJL uses these definitions to mitigate type instability and to translate operations that
depend on the operand types.

Lastly, PyJL strictly enforces static typing using Python’s type hints. Therefore, any
user-annotated variables are only allowed to have one type within their scope. As an example,
consider the following assignment operations in Python:

l: List[str] = ["a", "c", "g", "t"]
...
l = "acgt"

In this case, the transpiler will reject the second assignment to variable l, as the type
of its value does not match the previous type annotation. Alternatively, if the value of the
second assignment is another variable, the transpiler will search for the variable’s type. If the
type was provided by a type hint and does not match the previous annotation, the transpiler
will reject the assignment.

6 Performance

To evaluate the performance of the generated code, we chose three benchmarks: (1) the
binary trees benchmark, which tests the garbage collection mechanisms of each language
by allocating short-lived trees and traversing them, (2) the sieve of Eratosthenes, which
evaluates the performance of Julia’s iterators and compares the performance of the generated
code to a high performance NumPy implementation, and (3) the fasta benchmark, which
generates random DNA sequences using a Linear Congruential Generator (LCG), testing the
performance of IO operations and generator functions.

For all benchmarks, we have chosen a reference version, representing the best-case single-
threaded implementation. Julia’s reference version for the fasta benchmark was simplified by
removing the use of threads. We measured the results using the bencher benchmarking tool
[8]. The results were measured on a machine with an Intel(R) Core(TM) i7 4790K @4.4GHz
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with 16GB of RAM under Linux. We used an input of 21 for the binary trees benchmark,
and 100,000,000 for the sieve benchmark. The fasta benchmark was tested with varying
input sizes. The results of the translation are publicly available.4

From figure 4, we observe that translating Python’s implementation of the binary trees
benchmark to Julia yields a 9× faster execution time. Both the Python reference version
and the generated Julia code use a similar amount of memory, as can be observed in figure 5,
measured at 275MB and 240MB respectively. The reference Julia version manages a 1.64×
faster execution time compared to the translated version, although it also uses 1.66× more
memory.

Regarding the sieve benchmark, figure 6 shows the obtained results, where the generated
Julia source code is 13.5× faster than the Python implementation. We also translated this
implementation using OffsetArrays, mentioned in section 5.3, where the results only differ by
6% from the translated code. Nonetheless, Python also allows programmers to use NumPy
[19], a scientific computing library implemented in C, to speedup code execution. The NumPy
implementation is 1.46× faster than the generated code. Julia’s reference implementation
still manages a faster execution time, but it uses sophisticated techniques, such as loop
unrolling, and exploits cache allocation.

Lastly, the results of the fasta benchmark can be seen in figure 7. As the Python
implementation uses generator functions, we have chosen to translate this benchmark using
the Resumables package, which simulates the use of Python’s generator functions in Julia.
Similarly to Python, it uses a finite state machine to save the generator’s state. However,
despite its similarities, the translated version is slightly slower across all input ranges. This
is especially noticeable with smaller inputs from 104 to 106. We now describe possible steps
a programmer can follow to improve the performance of the translated code.

4 PyJL Benchmarks Repository: https://github.com/MiguelMarcelino/pyjl_benchmarks (Retrieved
June 6th, 2022)
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To discover what is causing the slowdown, the first step is to look for unannotated code.
After a closer inspection of the fasta benchmark, we determined that there was one instance
where this occurred. The translated Julia function can be found below, for which we added
the type annotations manually:

1 function makeCumulative(table)
2 P::Vector{Float64} = []
3 C::Vector{String} = []
4 prob = 0.0
5 for (char, p) in table
6 prob += p
7 P = append!(P, [prob])
8 C = append!(C, [char])
9 end

10 return (P, C)
11 end

This function calculates cumulative probabilities from the predicted probabilities of
choosing each nucleotide in a DNA sequence, represented by the table argument. A list P is
used to store the cumulative probabilities, and a list C is used to store the nucleotides. Both
lists are translated into generic arrays, which have large overheads in Julia, resulting in less
efficient code due to excessive boxing and unboxing. The annotations on lines 2 and 3 solve
this problem. As seen in figure 7, the changes are more noticeable with larger inputs of 107,
where the execution time is 1.3× faster than Python.

Next, we measured the overhead of using resumables. In this case, as it is only required
to save a seed value, we can use a memory reference holding that value, similar to what
the Julia reference version does. Removing the use of resumables resulted in much faster
execution times across all input ranges. This lead us to conclude that the slowdown observed
with the smaller inputs was likely caused by the initial operations required to setup the finite
state machine.

Another aspect that can be improved is IO performance, as the fasta benchmark outputs
large nucleotide sequences to the standard output. Python’s print function was translated
by the transpiler to Julia’s equivalent println function, which has notable overheads when
called repeatedly, as it does not buffer the data, issuing more calls to operating system
functions that require expensive context-switching operations. This can be improved by
using Julia’s write function, which, similarly to Python’s println function, buffers the data
and reduces the number of operating system calls. This improvement is more noticeable with
the larger input size of 107, resulting in a 1.06× faster execution time. Despite being a small
improvement, this becomes more noticeable with input values larger than 107.

Finally, we can use Julia’s more efficient data types and convert Python’s strings into
vectors holding UInt8 values. This not only makes the implementation more efficient, but
also reduces the amount of memory required to allocate the nucleotide sequences. These
changes are more noticeable with input sizes of 106 and 107, resulting in a further 1.36× and
1.91× improvement, respectively.

Julia’s reference implementation is still faster than our optimized fasta implementation,
as it stores and retrieves the random nucleotide sequences in a more efficient way. Instead of
the makeCumulative function used by Python, Julia builds a lookup table that holds all the
nucleotides in their respective positions, given the calculated cumulative probabilities. It then
relies on indexing to retrieve the nucleotides. In contrast, Python uses the bisect_right
function to locate the appropriate nucleotides, which has more overheads and results in
slower execution times when translated to Julia.
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7 Future Work

The changes made to PyJL bring it closer to our goal of automatically translating Python
libraries to Julia. However, there are still limitations, which we discuss in this section.

The transpiler currently analyses modules independently, without considering module-
level dependencies. Py2Many already uses a topological sort algorithm to sort all modules
according to their import dependencies, but still requires a more sophisticated mechanism to
analyse the program’s context as a whole.

Another aspect that has to be addressed is the handling of exceptions. As an example,
consider Python’s ValueError exception, which is raised when an argument has the correct
type but an incorrect value. Two Python calls that throw this exception are math.sqrt(-1)
and float("-"). In Julia, the first call throws a DomainError exception, but the second
call throws an ArgumentError exception. Therefore, an exception in Python does not have
a deterministic corresponding exception in Julia. Furthermore, some Python exceptions,
such as the ZeroDivisionError that is raised in Python when the quotient of a division
operation is zero, are not considered as exceptions in Julia. Julia instead returns Inf, which
represents infinity. Given that the transpiler performs static analysis, it will not be possible
to detect such situations in advance, and it is not pragmatic to generate code that does that
at runtime. Such cases remain a topic for future work.

Regarding Py2Many’s type-inference mechanism, it is currently rather conservative
when annotating generic containers, which largely impact the performance of the generated
Julia source code. This is due to its limitations regarding intra-procedural analysis, which
considers the whole program’s context. An external type inference mechanism supporting
intra-procedural analysis, such as pytype [7], could potentially increase the available type
information at transpilation time.

Lastly, the readability of the generated code is an aspect that requires a more extensive
evaluation. We are currently in the process of preparing user tests, but these still require a
thorough analysis and remain a topic for future studying.

8 Conclusions

This work aims to automate the translation of Python libraries to Julia to increase Ju-
lia’s library set. The generated code should conform to Julia’s pragmatics, allowing Julia
programmers to further maintain it.

In this paper, we presented recent additions to our previous work on translating Python
libraries to human-readable and modifiable Julia source code. In particular, we further
automated the translation of source code by covering a more extensive subset of Python.
The readability and pragmatics of the generated code were also improved using code analysis,
making it harder to distinguish from human-written code.

Automatically converting Python source code is challenging due to the semantic differences
between Python and Julia. Python’s dynamic typing further makes this a difficult process,
as types are not available at compile time. The improved inference mechanism now covers
a broader range of scenarios, but this is still a limitation when automatically converting
Python source code. Requiring type-hints in function definitions mitigates most of these
limitations.

As demonstrated by our performance results, the PyJL transpiler requires little pro-
grammer intervention to generate high-performance Julia source code. Furthermore, as the
generated source code is human-readable, programmers can further optimize and maintain it.

SLATE 2022
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Abstract
This paper describes a project which goal is to analyze and model a complete Virtual stack Machine
(VM) environment and build a Web application with a graphical interface to deploy an environment
to compile and execute VM programs. The new tool offers two main features: assembles and reports
errors in programs written in the assembly language of the Virtual Machine; and animates the
execution of the compiled code, displaying the internal state of the VM and providing an interface
to control the execution step-by-step. In the paper, after discussing related concepts and works, a
proposal to build such a tool, so far called EWVM, will be presented along the architecture drawn.
A prototype will be shown, and its impact as an educational tool is argued.
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1 Introduction

A Virtual Machine (VM) is a software layer over the actual machine. A VM creates a
virtualized environment that mimics a computer system. It behaves like a completely
separate computer, running independently from the actual computer (host) and other virtual
machines (guests). Each VM runs its own operating system and functions, also having virtual
hardware. Allowing multiple operative systems to run in a single physical computer is a very
relevant feature of a virtual machine [10].

Many virtualization solutions have been implemented for various intents. In cloud
environments, VMs are fundamental since they provide virtual application resources to
multiple users at once. Virtual Machines are also demanded for security purposes, since they
allow the user to take risks that could otherwise harm the computer, making them great
for things like malware analysis [12]. The most obvious use for VMs is to run incompatible
software or to test new operating systems. Some VMs, like Java Virtual Machine [16],
were created to guarantee software compatibility, allowing different equipment or operating
systems to have the same compiler. That feature is responsible for the well-known portability
of Java applications, and it is also present in other popular languages as Perl or Python that
use their own virtual machines, Parrot [7] and Python Virtual Machine [13].
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A growing use for Virtual Machines is in the field of education, since these allow for a
more specialized environment. There has been a focus on virtual machines being used with
pedagogical purpose [2], such as teaching in different domains, namely cybersecurity [3],
system software development [6] and others [9].

At the moment, a Virtual Machine, named VM, developed by Jean-Christophe Filliatre at
LRI/Université de Paris Saclay for his Compiler courses [5], is being used at our University
in the context of Language Processing courses to teach students about compilers and code
generation. As a Learning Resource, VM is valuable due to its logic and clear working principle
and to the simplicity of its reduced instruction set. However VM runtime environment, that
interpreters the Assembly programs and allows their execution step-by-step for debugging
purposes, is a stand alone application that is not easy to install and work with. This fact
complicates its usage during the Compiler course and motivates us to start a new project
aimed at developing a new, more user-friendly resource. As such, VM is the foundation of
the new Web-based Virtual Machine that is introduced and explained along this paper.

This paper is organized in five sections. This section presents the project context,
motivation and paper focus. Section 2 introduces the two main types of virtual machines
and discusses their features. Moreover, in Section 2 there is also a description of the basic
ideas underlying the VM in use at moment. Section 3 presents the proposed architecture
to develop the new system, EWVM, that extends VM and makes it available in a Web
browser. Section 4 defines the Assembly language recognized by EWVM and presents the
prototype already available for tests and improvements. Section 5 closes the paper with some
conclusions and future work.

2 Virtual Machines and related work

Virtual Machines bring tremendous progress and practicability to the everyday life of
programmers. Whereas in previous times, one would have multiple physical machines for
different requirements and needs, in these days, one can implement all those distinct machines
with different features in a single computer.

The current technologies are constructed by one of the two prevalent architectures
up-to-date. Effectively, present-day Virtual Machines are either register based or stack based.

A Stack Virtual Machine uses a stack data structure as memory. It works by pushing
and popping values to or from the top of the stack. To execute these movements, the machine
relies on the stack pointer (SP), which points to the top of the stack at all times. Any
instruction that requires operand values to be performed pops them from the top of the
working stack. Then the operation is executed outside of the stack and its result is pushed
back to the stack [15].

A Register Virtual Machine stores its data in registers of the CPU. The instructions
must indicate the registers used to store the operands required in each case. It works faster
than a stack based virtual machine within the instruction dispatch loop in the sense that it
avoids the overhead of all the popping and pushing that would be otherwise necessary [15].
However that more efficient approach requires from the compiler an extra task that is complex:
the registers management.

Which type of Virtual Machine is better seems to be a debatable subject. Interestingly,
there is a research paper where the authors rewrite the Java Virtual Machine as a register
based Virtual Machine [14] and accomplish a superior performance.

However, Stack Virtual Machines are more attractive as a Learning Resource considering
that the operands location is implicit in the stack pointer, unlike register based machines
where it needs to be specified [4]. Consequently, stack based machines also tend to run a
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simpler and easier to comprehend instruction set, a valuable feature in terms of execution
and application [11], though it must be noted that this feature often results in more extensive
programs.

Although Register Virtual Machines seem to be able to attain a higher performance, this
does not seem to be easily achievable. Their more complex and extended instructions require
a broader instruction set, raising the interpretation difficulty. For a further discussion about
how to deal with register based instructions, see the Dragon book [1].

2.1 Current Virtual Machine
As stated, a Virtual Machine is currently being used in the Language Processing Course at
our university to teach students about compilers and code generation. The so-called VM is a
Stack-Machine implemented in C that runs programs in VM-Assembly language.

In addition to the Virtual Machine not being easily accessible, there are also some
difficulties in executing it to its full capacity and features, notably the fact that not all
computers are compatible with all needed software.

2.1.1 Architecture
VM is composed of several structures that allow it to function correctly and in an organized
manner, storing information in a systematically arranged configuration. As one can see in
Figure 1, there are three main memory blocks, two of them being stacks, and two additional
heaps in the machine. The two essential constituents that are needed to run the most basic
programs are the Operand Stack and the Code Zone.

The Code Zone is, as implied by the name, the memory block that holds the instructions
uploaded by the programmer.

The Operand Stack is a pile that contains numbers (integers or reals) and addresses. It
is where the instructions operate, therefore it is used to store all the operands needed o be
processed by the program operators.

In order to be able to manipulate more complex data than numbers, there are two heaps,
Strings Heap and Structs Heap, to which the addresses in the Operand Stack may point
to. VM is also equipped with four registers, aimed at the management of the memory
components and responsible for the proper functioning of the machine.

Program Counter (PC): points to the current instruction in the code zone, i.e., the
next to be fetched and executed.
Stack Pointer (SP): points to the top of the operand stack, i.e., the first free cell.
Frame Pointer (FP): points to the local variables base in the operand stack.
Global Variables Pointer (GP): holds the global variables base address.

And finally, a more complex program with functions and local variables, justifies the need
for the other main component of this machine, the Call Stack. This pile contains pairs of
pointers (i, j) that save present execution context (PC and FP) before a JUMP is executed
to run the code of the called function. As such, every time a RETURN occurs, meaning
that the function code has finished executing, the machine can recover the previous context
and resume the normal execution. In the cell, the Pointer i holds the PC address and the
Pointer f holds the FP address.

SLATE 2022
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Figure 1 VM’s Architecture.

2.1.2 Functioning Principle
The Virtual Machine stores in its Code Zone memory the sequence of instructions that
compose the program (machine code) provided by the programmer. Consequently, it works
by accessing that block of memory and going through it. Looking at each memory cell
pointed by the PC register, the VM checks for an operator, iterates through its operands,
if there are any, and executes the instruction. This process repeats until the end of the
instruction sequence that might be identified by a specific operation, STOP, completing the
program execution.

2.1.3 Instruction Set
Each machine instruction, which may be preceded by a tag (label) followed by a colon, is a a
machine operation that may accept up to two parameters. The arguments can be integers,
real numbers, chains of characters delimited by quotation marks (strings) or symbolic tags
(labels) assigned to a code zone.

2.2 Related Work
In University of Beira Interior, Nuno Gaspar and Simão Melo de Sousa [8] had stumbled
upon the same problem, the need of a web-based tool to easily teach about compilers. As
such, they created a web application in which the user could choose one of the implemented
Virtual Machines, upload the code he wishes to run and either visualize the result or a step
by step visualization of the machine’s state evolution. Moreover, they provide the option
to increment the number of virtual machines available, making the system more versatile
although more complex.

In conclusion, the concept is the same: to facilitate the learning process by providing
a step by step visualization of the machine’s state. However, EWVM focuses only on a
low-level language and tries to maximize user experience in a simpler non intimidating way.

3 EWVM, proposal and architecture

The goal for creating this Educational Web Virtual Machine, EWVM, is to replicate the
current Virtual Machine’s behaviour with a superior graphical user interface along with easy
accessibility. To this end, the new Virtual Machine will be developed as a Web Application
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and will embody the same architecture and behaviour of the current one. As such, the
new VM will contain the same memory components, Code Zone, Call Stack, Operand
Stack, String and Structured Blocks Heaps, and its four registers, Program Counter
(PC), Stack Pointer (SP), Frame Pointer (FP) and Global Variables Pointer (GP).
Evidently, the instruction set and instructions format will remain the same, apart from some
additional features implemented to facilitate some basic operations that are missing in the
present instruction set, such as the boolean operators AND and OR.

The Virtual Machine will be embedded in the back-end server of the Web Application, as
depicted in Figure 2. The interface, in front-end, will take the programmer’s code, send it to
the server and wait for the results. In the server, the Program Code will pass through an
Assembler which will turn it into Machine Code and send it into the Run Engine, where
the Virtual Machine will be. The VM will then execute the code as explained and send back
the result.

Figure 2 EWVM Architecture.

The interface will be composed of three main areas, aiming to offer more powerful features
while remaining user friendly (see the final result in Figure 3). Each sector will have various
features implemented for user interaction, as described below,

Code Sector: contains a text area where the user can write the program and the
following buttons:

Upload File: reads the selected file and uploads its content (an Assembly program),
displaying it in the text area of this sector;
Save to File: downloads into an external file the code (Assembly program) in the
text area;
Run: sends the assembly code in the text area to the Back-End to be assemblied and
executed;

Animation Sector: holds a container in which the user can visualize the virtual
machine’s internal state in each step of the code execution. It also contains the following
features:

Numbering: each display is numbered and sorted by execution order
Navigate: by clicking on arrows, the user can move forward or backwards through
the displays; it is also possible to move directly to the first or last display

Interaction Sector: composed of two windows, one where the machine writes its outputs
and the other from where it reads the user’s inputs
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4 EWVM, the tool

The Web Application is written in JavaScript. It is being developed in Node.js2, a back-end
event-driven JavaScript runtime environment that executes JavaScript code outside the web
browser. It is designed to build scalable network applications and supports the Express3

framework, which offers a set of features for web applications.
Accordingly, since the program is written in JavaScript, the Assembler has been

developed in peggy4, a JavaScript API. It is a parser generator that integrates both lexical
and syntactical analysis and is based on a context free grammar formalism. The input
grammar is written in Extended BNF (Backus Naur Form). Each grammar rule can be
associated to a semantic action that is a fragment of javascript code written between curly
brackets. Peggy processes a grammar and generates a fast and powerful compiler which
receives an input text and returns either the results or a thorough and clear error report.

The grammar written to generate the Assembler is presented in Listing 1. It was created
to analyse the assembly code written by the user and check if it is lexically and syntactically
correct according to the Instruction Set rules. The grammar also semantically analyses the
input and either detects an error or translates the received instructions to Machine Code.

Listing 1 Grammar.
Code = Line* _

Line = (_ Instruction ) ([ \t\r]* Comment )*
/ Comment

Instruction = Label ’:’
/ Inst_Atom
/ Inst_Int _ Integer
/ "pushf" _ Float
/ "pushs" _ String
/ "err" _ String
/ "check" _ ( Integer _ "," _ Integer )
/ "jump" _ Label
/ "jz" _ Label
/ "pusha" _ Label

Inst_Atom = "stop" / "start" / "add" / "sub" / "mul" / "div" / "mod"
/ "not" / "infeq" / "inf" / "supeq" / "sup" / "fadd"
/ "fsub" / "fmul" / "fdiv" / "fcos" / "fsin" / " finfeq "
/ "finf" / " fsupeq " / "fsup" / " concat " / "equal" / "nop"
/ "atoi" / "atof" / "itof" / "ftoi" / "stri" / "strf"
/ " pushsp " / " pushfp " / " pushgp " / "loadn" / " storen "
/ "swap" / " writei " / " writef " / " writes " / "read" / "call"
/ " return " / " allocn " / "free" / "dupn" / "popn" / "padd"
/ " writeln " / "and" / "or"

Inst_Int = "pushi" / "pushn" / "pushg" / "pushl" / "load" / "dup"
/ "pop" / " storel " / " storeg " / "store" / "alloc"

2 https://nodejs.org/en/
3 https://expressjs.com/
4 https://peggyjs.org/
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To transform the given Program Code into Machine Code, the generated compiler parses
the Program Code and replaces the instruction mnemonics with their respective internal
codes while managing the labels.

The Machine Code is in the form of an array and in each index every instruction code
is saved along with its operands. To enable future connection between the code area and
the animation, the Machine Code also saves the line number in which the instruction was
written on. At the end, the grammar replaces the label addresses in the array with their
respective array index.

Machine Code:
[ Instruction Code 1, Instruction Code 2, ...]

Instruction Code:
[ line number , instruction internal code , operands ]

In our tool, the Assembler generated by peggy is called each time the user clicks in the
Run button, receiving as an input the text from the Code Sector and sending its result to
the Virtual Machine.

Multiple features were implemented in the various sectors in order to improve this machine
as an educational tool. We call machine state to the set of values stored in the data memory
blocks (the two stacks and the two heaps) together with the values contained in the four
registers after the execution of one specific instruction of the program stored in the code
memory. Each sector enables the user to choose a machine state he wants to visit. After
the choice of a state in one sector, the values displayed in the other sectors also change
accordingly.

Code Sector:
Clickable Instructions: by clicking on a code instruction (operator mnemonic), a
text box appears with the operation description.
State Choice: after a complete run of the input program, the user can, by clicking
on an instruction line number, select the state corresponding to that instruction; if
the instruction has been executed more than once, additional clicking should iterate
through the respective states.
Connection: the code sector highlights the instruction line number corresponding to
the displayed state

Animation Sector:
State Choice: this sector contains a group of four navigation buttons that allow the
user to visualize the various machine states
Connection: illustrates the selected machine state

Interaction Sector:
State Choice: by clicking on the text visible on the output window, it is possible to
select the state in which that text was printed
Connection: points out which text has already been printed (or is being printed)
according to the machine state

The interface of the Web application that implements the desired educational version of
the virtual machine VM, EWVM, can be observed in Figure 3. As planned, the user can
analyse the state of the machine in each step of the code execution, enabling the student to
get a clear understanding of the actual effect of each instruction over the components of the
machine (this is the so-called operational semantics of his input program). For that purpose,
the student can observe the values of registers and memory blocks using the information
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Figure 3 EWVM

displayed in the Animation Sector, while the corresponding instruction is highlighted in the
Code Sector. In the Interaction Sector, the text printed is differentiated by colour. In this
manner, the user can have a better understanding of the machine’s behaviour.

As it is essential to the learning experience, a Manual is included containing the code’s
Documentation, where instructions are listed and explained. In order to give users a little
more guidance and help, the website offers Program Examples categorized in terms of
topic and difficulty. These are easily accessed and ran, providing the user the opportunity to
explore these programs and learn from them.

5 Conclusion

When this work was initiated the aim was to deploy an environment to compile and execute
VM programs with all the features described along the paper. We consider that we have
attained this goal and that we went a little further. The created environment will be a
valuable tool to teach students and lower their learning curve, as it will allow them to learn
faster most of the key concepts in code generation. This tool allows teachers to create
scenarios and test those scenarios before taking them to the classroom.

EWVM is available in a public URL: https://ewvm.epl.di.uminho.pt/.
Although we still do not have sufficient data to sustain these claims, EWVM is now being

used in the Language Processing Course with more than 160 students and is receiving very
positive feedback. At the end of the next year we will have more data to demonstrate our
beliefs.

Concerning future work, one other side goal was to have a tool easy to install. Since
EWVM is a web application, once installed all users can access it with a simple browser.
However, someone has to install it and to ease that job we will dockerize the application
reducing its installation to a command line execution. We also intend to tune the VM
language and now we have a platform that will help us doing that. For instance, the VM
instruction set has some graphical instructions that, due to many difficulties in the graphical
output, have been little explored in the actual tool. As future work we intend to give space
to these instructions adding a panel to the interface with an HTML canvas or having the
VM compiler produce SVG or other format that browsers can display and animate.

https://ewvm.epl.di.uminho.pt/
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Abstract
In recent years ontologies have become an integral part of storing information in a structured and
formal manner and a way of sharing said information. With this rise in usage, it was only a matter
of time before different people wrote distinct ontologies to represent the same knowledge domain.
The area of Ontology Matching was created with the purpose of finding correspondences between
different ontologies that represented information in the same domain area. This paper starts with a
study of already existing ontology matching methods in order to understand the existing techniques,
focusing on the advantages and disadvantages of each one. Then, we propose an approach and an
architecture to develop a new web-based tool using the knowledge acquired during the bibliographic
research. The paper also includes the presentation of a prototype of the proposed tool, called OMT.
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1 Introduction

In computer science, the concept of an ontology was firstly introduced in [7] as being a model
to store data within a domain that allows the representation and definition of concepts, often
referred to as classes, their properties and the existing relations between them. An ontology
knowledge base is the result of populating an ontology with data that matches the concepts
and properties that have been formally defined.

Ontology Matching methods were created with the purpose of relating information
coming from multiple heterogeneous ontology sources into a common ontology model that
encapsulates the entire knowledge base from all the sources [11]. On a simpler level, these
methods have the task of finding correspondences between ontologies. The same concept or
property can be defined using different terminologies on different ontologies.

There has already been a lot of research and work done in the field of Ontology Matching,
and currently there are many approaches available that automatically generate matches
between Ontologies. However, these techniques are still far from being perfect due to the fact
that human input is still needed when the use case requires an accurate matching, making
these methods impractical when dealing with big and complex ontologies [6].

This paper will focus, firstly, on the study of the already existing techniques, analysing
the advantages and disadvantages of each one, and, secondly, on the presentation of a new
web-based approach to create a tool that relies as less as possible on human input.
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To accomplish that twofold objective, the paper is structured in five sections. After the
Introduction and before the Conclusion (Section 5), Section 2 defines the problem, Ontology
Matching, presents the state-of-the-art in this area, and discusses related work found in the
literature review. Then Section 3 proposes a solution to develop OMT, our web-based tool
to match ontologies. The architecture of the proposed system is depict and its modules
explained. In Section 4, OMT prototype developed is presented.

2 Ontology Matching, related work

Ontology matching is the process of relating information from heterogeneous sources into a
common model that can be queried and reasoned upon. On an abstract level, ontology match-
ing is the task of finding correspondences between ontologies identifying a similar concept,
property or relationship defined in both ontologies however using different terminologies.

Despite the efforts that have already been made in creating approaches to match ontologies,
there is still a lot of room to grow regarding their ability to work in an autonomous
way. Usually, these approaches evaluate ontologies given as input and come out with a
group of possible correspondences. These correspondences have then to be examined by a
person to determine which ones are correct, remove the false positives and create additional
correspondences that were missed [6], making this whole process impractical when dealing
with big and complex ontologies.

2.1 Matching Techniques
The approaches developed to solve the matching problem all make use of different techniques
that each, in its own way, aims to exploit the information present in the ontology.

There are multiple criteria of classification that one can use to group up these ap-
proaches [11].

One simple way to divide these approaches is based on whether they analyze the informa-
tion orthographically (string similarity) or semantically.

On the one hand, analysing information orthographically means that only the strings are
important and taken into account. Many string techniques are available for that approach.
On the other hand, analysing information semantically means that the meaning and context
of the words are also taken into account. Obviously these approaches are not mutually
exclusive and are used together in many different tools to achieve better results.

The following subsections take a closer look at some techniques used in these approaches.

2.1.1 String Based Techniques
In this category all the techniques analyse the information orthographically. They all measure
the similarity of the Strings used to represent the concepts, properties, labels, comments and
relationships of the ontology.

Distance functions map a pair of strings (x, y) to a real number r, where the smaller the
value of r, the greater the similarity between the string pair [3]. There are many different
implementations of these functions. One of the most important ones is the group of edit
distance functions which measure the distance between two strings by calculating the most
efficient sequence of pre-established operations that convert one string into the other. These
pre-established operations are usually character insertion, deletion and substitution.
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Another type of distance functions are the ones based on tokenization which is convert
every string into a set composed of all its words (tokens). Afterwards, the similarity of the
two strings is calculated by comparing the set of tokens that corresponds to each one. A
simple metric is the Jaccard Index. Being (S,T ) the respective sets of tokens of the string
pair (s,t), the Jaccard Index is obtained by the following formula:

Jac(s, t) = |S ∩ T |
|S ∪ T |

The Jaccard Index calculates the similarity of a pair of strings taking into account the
relation between the number of common tokens in regards with the whole set of tokens.

One last type of distance functions are the called Hybrid functions which make use of
different techniques. For example, the Monge-Elkan Similarity Function proposes a
recursive approach to this problem, that is best used when comparing two long strings.
This technique splits both strings into a set composed of all their sub-strings. It then
compares every sub-string of one set with every sub-string of the other set, only saving the
maximum value calculated through every iteration. It then computes the average of every
maximum value as the value for the distance of two strings. Given a string pair (s,t), let K

and L the amount of sub-strings respectively, and sim a generic function to calculate the
similarity between two strings, the Monge-Elkan Similarity Function is given by the following
expression:

ME(s, t) = 1
K

K∑
i=1

maxL
j=1sim(S_i, T _j)

The Jac and ME are some of the many functions and approaches possible based on
strings. This type of techniques is usually the first one to be used in a system in order to
find the matching concepts, properties and relationships that are syntactically defined in a
similar way.

2.1.2 Language Based Techniques
While, in the previous category, the techniques analyse the information of the ontologies
syntatically, the techniques in the language based category analyse the information semantic-
ally. This means that the concepts, properties, labels, comments and relationships are not
analysed as mere strings but are analysed as words that have a meaning in some language.
Therefore, a lot of the techniques used rely on Nature Language Processing (NLP) and on
the use of external sources such as dictionaries, lexicons and databases [11].

This approach makes use of different techniques such as tokenization, which, as has
been explained previously, is the act of decomposing a String into smaller parts that compose
it. In the specific case of language based techniques, tokenization is used to identify the
words (tokens) that exist in the input string in order to better understand and exploit the
possible meaning a word can have in the domain it is being expressed in.

Lemmatisation is another technique that is used. It is the process of finding the lemma
that corresponds to the word that is being analysed. By definition, a lemma is the canonical
form of a word and is considered the base form of a whole set of words that derive from it.
For example, considering the set of words walk, walking, walked, walkabout all derive from
the word walk and therefore walk is lemma of this set of words. One of the most common
ways to find the lemma of a word is by looking it up in a dictionary.

SLATE 2022



8:4 OMT, for Ontology Matching

Another technique also used is often referred to as stop-word elimination. This process
is not as well defined as the other previous two and it depends on who is using it and in
what context. It consists on creating a list composed of words that are considered not useful
in the context of the problem and are therefore filtered out on the pre-processing stage of
the string analysis phase.

These techniques are used to prepare the information being analysed. After they are
applied, the resulting terms (tokens, lemmas) are then compared to check for their similarity.
If they are not similar, then dictionaries and thesaurus are used to check if the terms have
the same meaning, i.e if they are synonyms.

Language based techniques are some of the most important because they can find matches
that, for example, the string based techniques do not. When dealing with ontologies written in
different languages, these are the techniques that are mostly used, making use of dictionaries
for example. Given that most matches in an ontology matching problem are not going to be
orthographically equivalent, these techniques are in great use and hence is why tokenisation
and lemmatisation are still being worked on and perfected nowadays.

2.1.3 Constraint and Instance Based Techniques
Constraint based techniques try to exploit the information of the contraints that can be
placed on the properties and relationships of an ontology, such as the Type of data properties
or the Domain and Co-Domain of relationships. This approach is based on the idea that, if
properties and relationships on different ontologies match on the level of the constraints,
then they are a potential match that needs to be studied. This technique is harder to be
used alone and is mostly used in combination with other techniques to generate potential
matches or analyse already generated matches.

Instance based techniques are considered an extension of all the techniques already
presented, because they make use of the individuals when dealing with populated ontologies.
Despite having the drawback of a much bigger quantity of information to analyze and
consequently making the whole process take more time and use more resources, these type of
techniques are great at both confirming already potential matches and generating new possible
matches. When generating new matches, the general strategy is that if two individuals are
alike, then the concepts they belong to are probably alike as well. When confirming potential
matches, the general strategy is that if two concepts are alike and to be matched, then their
individuals should also be alike [11].

2.2 Existing Ontology Matching Tools
In the following subsections, some of the many already existing ontology matching tools are
presented focusing on the techniques each one uses as well as some of the restrictions the
tools may have.

2.2.1 AROMA
AROMA (Association Rule Ontology Matching Approach) [5], is a tool for matching web
directories, catalogs and ontologies designed in the OWL language.

The main technique used to find and reason matches is the Association Rule Paradigm.
This paradigm focuses on the creation of implications/rules of the type x —> y that should
be interpreted as: “if a term x is found on a given schema of an ontology, then that ontology
may be associated with the concept y”.
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Having this rule paradigm in mind, the first step in AROMA’s algorithm is the extraction
and selection of relevant terms associated to each concept. Then the process of creating and
associating different rules to form matches in the different schemas is done. This is a simple
overview of the methodology used when dealing with web directories or catalogs.

When the input schemas are those of an OWL ontology, the first step of the process had
to be adapted. Rather than only using information contained in the schema of the ontology,
the individuals data is also considered.

Although they do not go much in detail on the specific techniques used in each step of
the algorithm, it is possible to deduce that language based techniques were probably used,
especially tokenization to perform the extraction of the relevant terms.

This tool is not adequate to use in a general problem as it was developed with a specific
target in mind, only allowing ontologies written in OWL to be used as input.

For a more in depth explanation of the methodology used in the AROMA tool, refer
to [5].

2.2.2 AUTOMS

AUTOMS is a tool designed for the automatic matching of domain OWL ontologies [10]. As
a tool, it integrates multiples methods that must be run in a particular sequence in order for
the matching to be sucessful.

Firstly, a string based method is applied. It uses information concerning names, labels
and comments of the ontologies concepts and properties and computes their similarity. The
similarity between two terms is computed by making use of methods that compare the
typographic similarities of Strings, sub Strings, sequences of ASCII characters and calculates
how similar they are. It then proceeds to create pairs of possible matchings.

Secondly, WordNet is used to acess if any of the pairs created are synonyms.
Following these first two methods, the string based and language based methods are

combined into a single structure to determine their similarities in regards to concepts and
properties. The individuals of the ontology are then considered to help find matchings for
concepts that have not been determined to be similar in the input ontologies.

This tool is a perfect example how some of the techniques explained in the previous
sections can be used in combination to each other in order to create an algorithm that yields
good results. It uses syntactic and semantic based techniques, followed by instance based
techniques to generate and confirm possible matches.

For a more in depth explanation of the entire methodology or for any individual methods
used, refer to [10].

2.2.3 Hertuda

Hertuda is an ontology matching tool [9] designed to only accept as input ontologies compatible
with the Lite or DL versions of the OWL language. It was developed to be a very simple
matcher that takes advantages of tokenization and string measure to obtain alignments. It
handles concepts, relations and properties independently, which results in three different sets
of results, one for which.

For each concept, all its labels, comments and URIs are extracted, forming a set. To
then compare concepts, its respective sets are compared, resulting in a similitary measure
value. Before this comparison takes place, all the terms in all the sets are subjected to a
pre-processing step, where tokenization occurs.
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This is a much simpler tool compared to the others already studied. Its purpose was to
push to its limits the string based techniques and the String similarity functions in order to
obtain matches. It can be used for comparison and analysis but it will fail in cases where the
terminology used in the matching ontologies is very different.

2.2.4 AgreementMaker

AgreementMaker [4] is one of the most developed and matured tools in this area as since its
initial publication, it has been enhanced and improved upon multiples times, having been
written follow up articles every single time.

One of its advantages is the amount of customization is offers the users in terms of its
matching methods used, conceptual or structural methods, the amount of user interaction
they require and if only the schema should be considered or the individuals as well. It also
has built in metrics such as precision and runtime to present to the user.

The first group of matching algorithms include string-based and language based methods
that compare labels, comments, annotations and instances. The second group of algorithms
try to exploit the information present in the structure of the ontologies, such as the concepts,
properties and the relations that exist amongst them. The final group combines all the
results obtained in the first two groups with the goal of obtaining a unique final matching.

After the process of matching is done, Agreement Maker also offers automatic methods
of evaluating the final matches. It considers the most effect evaluation technique to be the
comparison of the matching found by the tool against a gold standard of the domain the
ontologies are included in, preferably built by domain experts.

In the Figure 1 can be seen the interface of this tool.

Figure 1 AgreementMaker Tool.

For further detail on this tool, refer to its original publishing article [4] and its source
code is publicly available in its github repository.

https://github.com/agreementmaker/agreementmaker
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2.2.5 MEDLEY
MEDLEY [8] is an OWL ontology matching system that takes a different approach from
the tools that have been covered. It transforms every ontology triple into a graph structure,
with the nodes being the ontology’s concepts, properties and individuals and links being the
relations that links them.

The techniques used are mostly based on string based techniques and language based
techniques, such as the similarity between strings, tokenization and stemmatisation while
also making use of dictionaries to find equivalences.

The base logic of this method is that, if a given entity is alike an entity that is already in
the graph structure, then the neighbours of that entity must also be neighbours of the given
entity, generating possible matches.

For more details on this system, refer to [8].

2.2.6 Summary
In this subsection, already existing ontology matching tools are presented. A summary of
the analysis made can be seen in Table 1. A last column was added to compare our tool,
explained in the next section, with existing ones.

Table 1 Ontology Matching Tools – Comparison.

Ontology Matching Tools
AROMA AUTOMS Hertuda AM MEDLEY OMT

multiple input formats x x x
syntactic techniques x x x x x
semantic techniques x x x x x

association rules techniques x x
graphs structure x

evaluation methods x x

3 OMT, proposal and architecture

This section provides an initial architectural design of the ontology matching tool we propose
as well as a more detailed explanation of the different components that make it up.

Figure 2 represents the architecture of the web-based ontology matching tool desired.

Figure 2 General overview of the system architecture.
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The two most important components of the matching tool are the initial converter (Step 2)
and the Merger/Matcher (Step 3), as they are the ones that convert the initial ontologies
into an homogeneous format to be analysed in order to find matches.

In the following sections, it will be given a more in depth look at each module of the
process.

3.1 Ontology Matching tool inputs
The inputs of an ontology matching tool are a critical part of it, as they determine what and
who can use that tool. The majority of the tools already created for this purpose restrict
the format of the input ontologies, limiting the group of potential users of the tool. One of
the goals for this tool is to be adaptable and easily accessible. Adaptable in the sense that
the tool applies different techniques depending on the contents of the ontologies and easily
acessible since it will be a web-based tool, making it available to anyone that wishes to use it.
With that mind, we intend for the tool not to restrict the format of the input ontologies to a
specific language and instead accept different formats such as the OWL language family [1]
and Turtle [2]. The input ontologies can also be written in two different natural languages:
english or portuguese.

3.2 Converter/Recognizer
The Converter/Recognizer is the first module of the process this tool is going to use. As
mentioned before, the two input ontologies may be written in different ontology or natural
languages. Therefore, this step is crucial in homogenizing the information present in the
ontologies into an internal structure (an intermediate neutral ontology representation) that
will hold the information relevant of each input ontology. If the ontology content is written
in portuguese, an extra step is necessary to translate the respective information to english
before starting the next step.

3.3 Matcher and Merger
The Matcher and Merger is the most important block. It is where the matching techniques
are chosen and applied in order to find alignments in the two input ontologies.

This component can be broken into two smaller parts, the Matcher and the Merger. The
Matcher finds the correspondences between the two input ontologies. The Merger takes all
the concepts and relations from the given ontologies that match (i.e., all the elemenst that
are discovered as common or belonging to both inputs) and joins them with all the elements
that have not match, i.e., that belong to one of the input ontologies but do not belong to the
other. This way it is possible to create in the internal structure a new ontology that is the
merge of the given ontologies. This can be better understood in Figure 3.

3.4 Converter to an Ontology
The Converter to an ontology is the last block of the proposed architecture that implements
the last task. It receives as input the internal structure generated by the Matcher/Merger
component and converts the information on that structure into an ontology language. This
process is the inverse of the process executed by the converter/recognizer. As it was said
regarding that component, one of the goals is to allow diversity of ontology formats, so the
objective concerning this module is to allow the output ontology to be written in different
possible languages and it is up to the user to decide in what language he would like their
matched ontology to be written. As is the case with the input ontologies, we are aiming to
at least allow the output ontology to be written in OWL language family and Turtle.
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Figure 3 Detailed Matcher/Merger component.

4 OMT, the tool

This section presents a prototype of the proposed tool, OMT. The example shown corresponds
to the analysis of two ontologies extracted from the Ontology Alignment Evaluation Initiative
(OAEI) site2, the first one describing the parts of the Human Body, and the second one
describing the parts of the Mouse Body. Figure 4 shows how the users choose and upload the
input ontologies to be matched, human and mouse ontologies as examples. After uploading an
ontology, OMT identifies the natural language used to write its elements (concepts, properties
and relations), and computes the size of concepts, properties and relations subsets, counting
the number of elements in each subset. Figure 5 shows the information computed for both
ontologies presenting it in a table to the user before starting the matching process. As it was
mentioned in Section 3.2, if the input ontologies are written in portuguese, an additional
step of translating the information to english is required. Figure 6 shows an example of
said translation. Last but not least, Figure 7 shows the results of comparing the concepts
of the two input ontologies. The process of comparing concepts makes use of techniques
introduced in Section 2.1, such as stop-word elimination and tokenization to prepare
the information and then distance functions such as the Jaccard Index to compare the
similarity. The matching value column in Figure 7 represents how similar the 2 concepts
are. The user has the option of clicking the Details link, that presents him with a new page
(on the right, in Figure 6) showing the concepts and corresponding descriptions defined in
the ontologies.

Figure 4 Input Form to submit the ontologies to be matched.

These are the functionalities that have been implemented so far. After improving the
Matcher module, the Merger module will be worked out, as well as the Web application that
will host the OMT tool will be implemented.

2 OAEI is acessible at http://oaei.ontologymatching.org/, and contains a large amount of different
ontologies to be used as benchmarks to test Ontology Matching Tools.
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Figure 5 Input ontologies data.

Figure 6 Translation of the elements of a PT ontology to an EN counterpart.

5 Conclusion

Ontology matching is an important functionality in many applications for relating information,
e.g., from heterogeneous sources into a common model that can be queried and reasoned upon.
The work in progress we present in this paper contributes to the ontology matching research
issue proposing a new adaptable and easily accessible system called OMT. We summarize the
study based on the extensive literature review done on already existing ontology matching
methods. This study gave rise to new ideas we integrate in our system. An overview of
the architecture of the system is then presented in the paper. The Matching and Merge
component of the system integrates techniques coming from String, Language and Contraint
and Instance based techniques.

The prototype, so far implemented as a proof of concept of our proposal, is also introduced.
As explained, that prototype allows for the choice of the two ontologies to be merged. Before
the matching process, if one of the input ontologies is written in portuguese, it is automatically
converted to an english version. After converting the input ontologies into the same internal
format, OMT tool outputs a results table with the concepts matching. This table exhibits the
concepts identified as similar after analysing the two given ontologies, being also displayed
the matching percentage evaluated for each pair.
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Figure 7 Matching the Concepts of two input ontologies.

As future work, we will formalise the algorithms involved in the system components,
giving a special focus on the Matching and Merge algorithm. The system will then be fully
implemented and tested with several heterogenous data. Finally, an evaluation of the system
will be conducted, comparing it with other existing tools.
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Abstract
Complaint management is a problem faced by many organizations that is both vital to customer
image and highly dependent on human resources. This work attempts to tackle a part of the problem,
by classifying summaries of complaints using machine learning models in order to better redirect
these to the appropriate responders. The main challenges of this task is that training datasets
are often small and highly imbalanced. This can can have a big impact on the performance of
classification models. The dataset analyzed in this work suffers from both of these problems, being
relatively small and having labels in different proportions. In this work, two different techniques
are analyzed: combining classes together to increase the number of elements of the new class;
and, providing new artificial examples for some classes via translation into other languages. The
classification models explored were the following: k-NN, SVM, Naïve Bayes, boosting, and Deep
Learning approaches, including transformers. The paper concludes that although, as expected, the
classes with little representation are hard to classify, the techniques explored helped to boost the
performance, especially in the classes with a low number of elements. SVM and BERT-based models
outperformed their peers.

2012 ACM Subject Classification Information systems → Clustering and classification

Keywords and phrases Text Classification, Natural Language Processing, Deep Learning, BERT

Digital Object Identifier 10.4230/OASIcs.SLATE.2022.9

Funding This work was partly funded through national funds by FCT - Fundação para a Ciência e
Tecnologia, I.P. under project UIDB/04466/2020 (ISTAR).

1 Introduction

The process of manual classification of user generated data can be regarded as a tedious and
error prone task. In the attempt to render this process more efficiently, this paper explores
the use of Machine Learning and Natural Language Processing tools and models for this
task.

This work will focus on the classification of summarized complaints received by a Por-
tuguese public institute. After being received, the complaints are read and manually processed
by a worker from the public institute. Then, after being correctly classified, the complaint is
forwarded to the respective department for additional processing, accompanied by a textual
summary. We concentrate on the classification of summaries for redirection to the appropriate
responders. The final goal is to render assistance in the whole process. Due to privacy
questions, the dataset is not available.

The related work is presented in Section 2. Data is explored in Section 3, along with the
techniques used for processing, providing some insights on the structure and contents of the
dataset. The implementation is described in Section 4. In Section 5 the achieved results are
presented. Finally, the document closes with the conclusions and some possible future work
in Section 6.
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2 Related Work

Complaint data can be viewed and analyzed as a “form of user generated data” and thus
the current state of the art for processing user commentaries of social media content can be
deemed useful for the task analyzed in this work.

A similar problem to ours was also tackled by Lopes-Cardoso et al. [5]. This work focus on
the classification of complaint data from another Portuguese public institute in three different
dimensions: economic activity prediction, infraction severity prediction, and competence
prediction. The authors reported SVM with a linear kernel was the best performing model
with around 79% accuracy on the competence prediction task, which is the one most similar
to ours. In a comparable stream of work [7, 8, 2], the focus was also the classification of data
from a multitude of Portuguese public services while also dealing with noisy and imbalanced
data. The best results were achieved by SVM and BERT-based approaches. Oliveira et
al. [4] used a set of frequently asked questions from a Portuguese public institute for a
classification task. To create additional data the authors used Google API to translate back
and forth to Portuguese and English to develop new data. They also used native speakers to
create and improve the alternative constructions of the questions. In their results, the best
performing model was SVM with a better training time/performance ratio when compared
to other models. In the end they also noted that using a fine tuned BERT model improved
the results at cost of higher train time. For benchmark they used the set of the generated
question to match the original ones and a classification based of the area of business of each
question. In [3] the authors performed an analysis of user commentaries from a Portuguese
telecommunication company for a sentiment analysis task. They noted that in stemming in
Portuguese is not very useful and resorted to custom built list of rules to work along side the
stemming to reduce edge cases. In [6], the authors compared SVM with Universal Language
Model Fine-tuning (ULMFiT), for classification of official Brazilian Government data. The
concluded that, even though ULMFiT is a state-of-the-art technique for classification, it
only corresponded to a small increase in classification accuracy when compared to the SVM
model.

Wang et al. [13] explore “Label-Embedding Attentive Model” (LEAM) by proposing a
word embedding approach in which both words and labels are joined in the same latent space
in order to measure the compatibility of word-label used as document representations. While
in some cases the LEAM model was unable to out perform other models the authors stated
the algorithm is much less demanding in comparison to other state-of-the-art algorithms.
Tang et al. [12] also worked in classification of complaints and proposed a combination of
BERT and word2vec models to try and improve the overall accuracy. To tackle imbalanced
data they experimented with translations of the text to expand the training data.

Further expanding on deep learning strategies, a specific BERT model was trained
on Brazilian Portuguese data, the model was named BERTimbau [11]. When comparing
BERTimbau performance against BERT for Named Entity Recognition tasks and Sentence
Textual Similarity the first would outperform the latter with the authors stating “large
pre-trained learning models can be valuable assets especially for languages that have few
annotated resources but abundant unlabeled data, such as Portuguese” [11].

Also worth considering a portuguese wordnet, semantically structured lexical database,
expansion done in [10]. The word database is useful for extracting synonyms to create more
artificial entries in the data set.

For this work, the techniques used to enhance are tested in combination with the
Portuguese text processing strategies in order to tackle the classification task. With the
main goal of understanding the benefit of these techinques.
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3 Data

The complaints dataset features 4459 complaints gathered from 2020 to 2021 and spread
over 17 different labels. Each category directly references to an entity governed by the por-
tuguese Ministry of Justice and are listeed here https://igsj.justica.gov.pt/Servicos/
Apresentar-queixa. Not all entities are featured in the dataset since not all receive
complaints. The complaints were subject to an initial processing from the institute that
summarized the content of the complaint into a short text, leaving mostly the relevant words
in the text. The dataset featured two main columns used for the classification task, the
complaint and the assigned department.

The summarized complaints have an average of 16 words per complaint with the shortest
having only 2 words and longest featuring 38 words, all of them written in Portuguese. The
smallest summaries(of only two words) was repeated 2 times and the text can be seen as
"process delays" and the summaries of with 3 and 4 words were similar with the added words
giving more detail regarding the actual complaint. Of the 4459 summarized complaints it
was extracted a corpus of 3705 different tokens, the full distribution can be seen in Figure 1,
with 1805 tokens only appearing once and two appearing almost all summaries.

Figure 1 Word frequecy distribution.

The dataset presents high variability in what regards label cardinality: the category with
more complaints covers almost 60% of the dataset while the second and third classes only
account for 35%. Six labels also contained ten or less complaints with a single class only
containing one complaint.

One single complaint was assigned two different classes and was re-assigned to the class
that presented the lowest number of complaints.

Since the text data was preprocessed by a worker of the public institute, the text data
features little spelling errors unlike some other user generated data like social media content.
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Figure 2 Label distribution of the data explored, more than 90% of the data was labeled to the
top 3 labels.

4 Experiments

In this section the text processing tasks and the techniques used to handle the data imbalance
are detailed.

Considering the properties of the dataset, both traditional classification and deep learning
approaches are compared. We aim to better understand the performance of the experimented
models with the techniques used for dealing with imbalanced data.

4.1 Data Preparation

Handling data imbalance was achieved with two different strategies, translating the texts of
the complaints and creating additional labels to group classes with lower cardinality.

To increase the number of class representatives, the documents of the classes that had
between 10 and 30 elements were translated into several languages (English, Spanish, Italian,
Polish, and German) and back to Portuguese. This strategy increased the number of
representatives by sixfold (Table 1). The artificially produced complaints were only used for
model training to ensure the validation was performed with real world data.

For the classification experiments both datasets needed to undergo a battery of processing
steps in order to be used as input for the models:

lower casing all characters;
removing numerical data;
removing special characters;
removing diacritics.
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As noted in [3] stemming is not very useful for the portuguese language was not considered
for this task.

The texts also featured some acronyms that could be more insightfully expanded. For
example, “cc” was replaced to match “cartao do cidadao” (identity card) and “ep” was
replaced by “estabelecimento prisional” (prison establishment).

The documents were then regrouped into different labels. Firstly, the complaints were
separated into the top 3 classes and the remaining classes. For the final split, the top 4 to
the top 8 classes were given the respective label and labels that had less than 10 example
were combined into a single class. Figure 3 illustrates this process. From this point on wards,
the first stage classification will refer the classification of the top 3 classes along with the
“Others” (new label for the remaining classes) and the second stage classification will refer to
classification of the others to the remaining considered classes. The full data classification
will refer to the top 8 classes only along with the remaining grouped into the class “Others”.
For all the experiments, the classes with a cardinality lower than 15 were not considered as a
full class: they were assigned the label of “Others”.

The groups were assembled based on the labels distribution in Figure 2 with the first
stage containing only the more frequent labels and for the second stage the split were the
categories with more than 15 examples, the size of the classes can be seen in Table 2, the
complete dataset without any segmentation was used to compared the performance of the
multistage classification.

Figure 3 To handle the label imbalance issue a multistage classification method was analyzed,
the top 3 classes were initially classified and the remaining top 5 classes were also considered, class
with lower representation were not considered for the task.

The translation technique was particularly useful. When translating back to Portuguese
some synonyms appeared adding more words to the corpus and complementing the short-
comings of the less populated labels. After increasing the number of examples, the dataset
featured 5000 complaints, almost an increase of 500 new complaints and an extra 300 new
tokens.

SLATE 2022
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Table 1 Distribution of complaints per label, the first 3 labels contain almost 80% of the data
set. Using the translation technique made the classes more equal in regards to their size.

Class Class with translations
IRN 2748 2748
Alheio 765 765
DGRSP 732 732
Courts 109 109
DGAJ 22 132
IGFEJ 21 123
CAAJ 19 114
INMLCF 17 102
PJ 10 60
INPI 5 30
CPVC 5 30
DGPJ 3 18
SGMJ 2 12
CEJ 1 6

4.2 Experimental Setup
The complaints were processed using the standard tokenization pipelines (special characters
were removed). All characters were lowercased and the TF-IDF model was used to get the
feature vectors for each complaint. For the BERT-based approach, instead of TD-IDF the
tokens were preprocessed using the model encodings. For additional testing and comparison
the words that only appeared once were removed as well as the top 3 words.

The experimented models were evaluated using the standard metrics with the goal to
compare performance gain by using the techniques referred to handle the highlighted issues:
low cardinality of the dataset and the class imbalance that was previously mentioned.

From here the experiments were separated into two distinct experiences, having the
translations in the training and the original complaints in order to evaluate the performance
gain by using the fabricated examples.

The dataset was split into two groups 30% for testing, 70% was used for training and
from the training set 15% was used for validation. For the deep learning models, the training
set was split into an additional validation set for training purposes. For comparison, the
training set for the original dataset had 520 examples for the first stage while the expanded
training set featured 1713. This difference is even noticeable in the second stage training
from 56 to 169 examples for the training, refer to Table 2.

Table 2 Number of inputs for the different tasks for each model.

Classification Original Augmented

Training
Full 84 627
First Stage 520 1713
Second Stage 56 169

Validation
Full 15 111
First Stage 92 303
Second Stage 10 74

Testing 1338
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4.3 Methods
As previously mentioned, given the properties of the dataset, we experimented several
classification models, ranging from more traditional approaches like Naïves Bayes, k-NN, and
SVM models to deep learning-based approaches as Multilingual-BERT and XGBoosting.

To validate and optimize the hyper parameters of the models it was used cross-validation,
splitting the data into multiple smaller subsets with equal class cardinality to validate the
classifier while also avoiding to overfit the experimented models.

Several classification pipelines were also tested, classifying the full data set, only the first
stage classification, and performing a multistage classification as illustrated in Figure 3.

5 Results and Discussion

The results for the classification and using the original dataset can be viewed in the Tables 3,
4, and 5.

Table 3 Results for the first stage using the original dataset, SVM outperform all the other
models for this task but Naïve Bayes presented a marginally higher f-score.

Model Processing Accuracy Precision Recall F-score

Naive Bayes No special processing 0.894619 0.921471 0.894619 0.903991
Removing stopwords, low
frequency words

0.902093 0.930147 0.902093 0.911670

SVM No special processing 0.899851 0.929783 0.899851 0.910339
Removing stopwords, low
frequency words

0.894619 0.934678 0.894619 0.908281

k-NN No special processing 0.853513 0.887257 0.853513 0.867000
Removing stopwords, low
frequency words

0.855007 0.895267 0.855007 0.870560

XGBoost No special processing 0.826607 0.883714 0.826607 0.848738
Removing stopwords, low
frequency words

0.828102 0.903759 0.828102 0.856595

Multilingual-Bert No special processing 0.869207 0.91050 0.86920 0.883518
Removing stopwords, low
frequency words

0.857249 0.9442 0.857249 0.88504

Considering the first stage classification for the original dataset, the deep learning models
and the more traditional models yielded similar results to SVM, proving to be the model
with best performance in this experiment.

For the second stage classification, the results were the worst from all the experiments.
While presenting around 70% precision, the accuracy and f-score values were extremely low.
Due to low number of class representatives, the BERT model was unable to be fine tuned.
The training and validation data would be very short for the complexity of a neural network.

For the full classification when using the original dataset, k-NN and SVM presented good
results with an 80% accuracy and 92% precision, respectively. When comparing the results
for each class in Table 6 it becomes apparent the good results are heavily weighted by the
distribution of the testing set. The classes with more representatives have more weight and
yield better performance.

The deep learning models had an accuracy value of 58% when compared to k-NN with
80% accuracy.

SLATE 2022
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Table 4 Results for the second stage classification using the original dataset, low performance
across all models. BERT model was unable to trained for this stage.

Model Processing Accuracy Precision Recall F-score

SVM No special processing 0.312977 0.672483 0.312977 0.246029
Removing stopwords, low
frequency words

0.293333 0.700265 0.293333 0.242265

Naive Bayes No special processing 0.259843 0.577479 0.259843 0.181176
Removing stopwords, low
frequency words

0.271318 0.753100 0.271318 0.188976

XGBoost No special processing 0.166667 0.606909 0.166667 0.184742
Removing stopwords, low
frequency words

0.304569 0.791608 0.304569 0.370414

k-NN No special processing 0.230769 0.738754 0.230769 0.194529
Removing stopwords, low
frequency words

0.312500 0.809010 0.312500 0.311697

Considering only the first stage classification task and not using, the results were much
better results with 89% accuracy using SVM, although only for a limited number of classes.
The full classification, while also presenting good results, was skewed from the imbalance of
the testing set, most of the accuracy was attributed to three labels.

The results for the classification using the expanded dataset can be viewed in Tables 7, 8,
and 9. The expanded dataset yielded considerably better results for all the tasks examined
in this work.

The first stage classification had an increase of almost 6% from the original data set with
SVM outperfoming the others. Surprisingly the second stage classification almost doubling
the performance achieved with the original dataset. Accuracy improved to 58% from 29%
and f-score increased to 52% from 24%, when using an SVM. With the augmented dataset it
was possible to fine-tune BERT for the second classification and it proved to be the best
performing model for this task.

For the full classification using SVM, the accuracy reported was of 89% with 90% f-score,
an increase of 10p.p. from the dataset. Using BERT for this task returned similar results to
the SVM noting the aproximated 20p.p. increase in accuracy from the original dataset, from
58% to 76%. Having a bigger training pool was essential in improving the BERT model.

6 Conclusion and Future Work

Similar to the results achieved by Silva et al. [9], the concise versions of the complaints proved
to be enough for a reasonable and usable classification result, in the data explored removing
stopwords and frequent words had low gains. In this case, since the tokens were already part
of a short corpus, the additional processing (removing stopwords, the most highest and low
frequency words) showed only marginal improvements. The classes with more representatives
were the ones that achieved a higher score in precision, as the complaints were more similar
and mostly relating to a more frequent issue. The categories with lower representatives were
generally harder to classify as the texts and issues featured little ressemblance.

Due to the low number of complaints for some classes, the more traditional models had
a better performance than the deep learning models, especially when using the original
dataset. When using the expanded dataset, deep learning models yielded similar results to
more traditional models. For the second stage classification BERT was able to outperform
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Table 5 Results for the full classification using the original dataset, k-NN and SVM have similar
scores and present decent performance although SVM has a higher precision and f-score.

Model Processing Accuracy Precision Recall F-score

Naive Bayes No special processing 0.750374 0.907025 0.750374 0.810925
Removing stopwords, low
frequency words

0.770553 0.92491 0.770553 0.832805

SVM No special processing 0.786996 0.913812 0.786996 0.837782
Removing stopwords, low
frequency words

0.793722 0.924617 0.793722 0.845285

KNN No special processing 0.796712 0.887542 0.796712 0.833793
Removing stopwords, low
frequency words

0.803438 0.883222 0.803438 0.837429

XGBoost No special processing 0.601644 0.842656 0.601644 0.685857
Removing stopwords, low
frequency words

0.633782 0.894219 0.633782 0.730709

Multilingual-Bert No special processing 0.58071 0.82905 0.58071 0.67277
Removing stopwords, low
frequency words

0.550822 0.84441 0.550822 0.65165

Table 6 Metrics by class for SVM using the original dataset.

Precision Recall F-Score Support
Alheio 0.88 0.64 0.74 247
CAAJ 0.14 0.83 0.24 6
DGAJ 0.05 0.43 0.10 7
DGRSP 0.97 0.90 0.94 228
IGFEJ 0.11 0.75 0.19 8
INMLCF 0.13 0.83 0.22 6
IRN 0.98 0.82 0.89 802
Others 0.11 0.57 0.18 7
Courts 0.27 0.52 0.35 27

all of the others. The expanded dataset led to considerably better results when compared
to the original data set, especially for the second stage classification task and for the full
classification. Boosting the number of representatives for each class, especially the least
represented ones, greatly improved the performance of the models. The new sentences and
the tokens introduced were essential to improve the BERT performance. Even though further
testing is needed to confirm this, these experiments seem to indicate that balancing the
data played a crucial role in the performance gains and could be considered as technique for
improving datasets with lower cardinality.

For future work, the fine tuning of a multistage classification method should be explored
while also considering more classification stages and using binary classification [1]. More
techniques for expanding the corpus and classes examples could also be explored, as an
example wordnets could be used to further diversify the dataset. Producing hand made
examples for a class could also provide better representatives for each class as the machine
made translations that can only reach a certain limit. It should also be noted that combining
different models for the various stages of the classification could provide additional insights.

SLATE 2022
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Table 7 Results for the first stage classification using the augmented dataset, SVM outperform
all the other models for this task.

Model Processing Accuracy Precision Recall F-score

Naive Bayes No special processing 0.930493 0.932668 0.930493 0.931215
Removing stopwords, low
frequency words

0.933483 0.937128 0.933483 0.934630

SVM No special processing 0.934230 0.941662 0.934230 0.937099
Removing stopwords, low
frequency words

0.940957 0.945378 0.940957 0.942697

k-NN No special processing 0.911809 0.914773 0.911809 0.911943
Removing stopwords, low
frequency words

0.904335 0.908641 0.904335 0.905653

XGBoost No special processing 0.904335 0.918122 0.904335 0.909718
Removing stopwords, low
frequency words

0.912556 0.924713 0.912556 0.917385

Multilingual-Bert No special processing 0.93 0.93025 0.93 0.92831
Removing stopwords, low
frequency words

0.936472 0.93789 0.936472 0.93710

Table 8 Results for the second stage classification using the expanded dataset, BERT outperform
all the other models for this task.

Model Processing Accuracy Precision Recall F-score

SVM Removing stopwords, low
frequency words

0.578947 0.767832 0.578947 0.525620

No special processing 0.488095 0.772963 0.488095 0.405475

Naive Bayes Removing stopwords, low
frequency words

0.447368 0.480623 0.447368 0.335068

No special processing 0.472222 0.432330 0.472222 0.370383

XGBoost Removing stopwords, low
frequency words

0.534884 0.716058 0.534884 0.535191

No special processing 0.455556 0.718620 0.455556 0.447290

k-NN Removing stopwords, low
frequency words

0.487500 0.751803 0.487500 0.405868

No special processing 0.432432 0.775594 0.432432 0.330564

Multilingual-Bert No special processing 0.65217 0.64684 0.65217 0.59163
Removing stopwords, low
frequency words

0.55384 0.7719 0.55384 0.483812
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Table 9 Results for the full classification using the expanded dataset, SVM outperform all the
other models for this task.

Model Processing Accuracy Precision Recall F-score

Naive Bayes No special processing 0.870703 0.931320 0.870703 0.891887
Removing stopwords, low
frequency words

0.878924 0.931459 0.878924 0.896761

SVM No special processing 0.884155 0.921298 0.884155 0.897685
Removing stopwords, low
frequency words

0.890882 0.924622 0.890882 0.902759

k-NN No special processing 0.835575 0.908580 0.835575 0.860282
Removing stopwords, low
frequency words

0.837818 0.909102 0.837818 0.863215

XGBoost No special processing 0.774290 0.877428 0.774290 0.814150
Removing stopwords, low
frequency words

0.791480 0.881701 0.791480 0.825520

Multilingual-Bert No special processing 0.76233 0.9231 0.76233 0.819744
Removing stopwords, low
frequency words

0.84679 0.93258 0.84679 0.88095
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1 Introduction

Social media environments are fertile to the dissemination of aggressive and harmful con-
tent [12, 18]. Some factors that contribute to this dissemination are the platforms’ easy
access, the users’ potential anonymity, and the increased willingness of people to express their
opinions online [8, 12]. The development of methods and tools for automatically detecting
offensive and abusive language and hate speech (HS) has recently gained traction in the Nat-
ural Language Processing (NLP) and Artificial Intelligence (AI) research communities [8, 21].
The non-existence of a unique and consensual definition of HS [8] makes it difficult to clearly
distinguish HS from other related phenomena, such as offensive speech, either for humans or
algorithms [14]. For the purpose of this work, HS is defined according through the following
coexisting conditions [4]:

HS has a specific target that can be mentioned explicitly or implicitly, which corresponds
to vulnerable or historically marginalized groups or individuals targeted for belonging to
those groups;
HS typically spreads or supports hatred, or incites violence against the targets, by
disparaging, humiliating, discriminating, or even threatening them based on specific
identity factors (e.g., religion, ethnicity, nationality, race, color, descent, gender, sexual
orientation);
HS can be expressed both explicitly (or overtly) and implicitly (or covertly).

The major difficulty of this task is related to the fact that most of hateful comments
in social media are covert or implicit, and their interpretation requires information on the
sociopolitical and pragmatic context [3]. Moreover, demographic features such as the first
language, age, education, and social identity can result in subjective and biased annotations
in the corpora used to both train and test OHS detection systems [1].

Recently, the Commissioner for Human Rights, in a memorandum related to Portugal,
has noted that, despite the information being provided by civil society organisations indicates
low rates of reporting of HS, there is a rise in the number of racially motivated hate crimes
and HS [19]. This highlights the need of monitoring the spread of OHS, which is only possible
at a large scale by the use of computational methods.

Despite the great popularity of OHS detection, few studies have specifically dedicated
to the analysis and detection of European Portuguese OHS. In fact, there is a lack of
resources (particularly annotated corpora) specifically designed to support OHS detection in
Portuguese [8, 9].

This work uses the recently created CO-HATE (Counter, Offensive and HS) Corpus [4],
which is composed by comments on YouTube videos that tackle topics that could potentially
generate hatred content. In particular, this corpus focus on the expression of afrophobia,
romaphobia, and LGBTQIphobia by the Portuguese online community, since the Afro-
descendant, Roma, and LGBTQI communities are among the most commonly reported
targets of both offline and online HS in Portugal [11]. The corpus was labeled by five
annotators, who followed detailed guidelines developed for this purpose. As expected,
the Inter-Annotator Agreement (IAA) among the annotators is relatively low, achieving a
Krippendorff’s alpha value of 0.478, which reflects the plurality of subjective views on the
HS concept. This motivated us to investigate how does the selection of different perspectives
for training affects the results of HS detection.

Recent work on OHS detection relies mostly on the use of Deep Learning (DL) methods for
both feature extraction and training of classifiers [2, 10, 13, 20]. As reported in literature [17],
the use of models such as Convolutional Neural Networks (CNN) and Long Short-Term
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Memory Networks (LSTM), among others, suffers from the lack of labelled data. Transfer
learning approaches can overcome this issue since they do not require large amounts of labelled
data to train models. Furthermore, they are not so time-consuming, and can outperform all
the remaining approaches [17, 22, 25]. In this work, we focus on different transfer learning
approaches based on an existing pre-trained model called BERT (Bidirectional Encoder
Representations from Transformers) [6]. In particular, we compare the results of three
different models – BERT-LinearLayer, BERT-CNN, and GAN-BERT – on the automated
detection of HS in Portuguese YouTube comments, based on the CO-HATE corpus. We
study the impact of using data annotated by different sets of annotators on the performance
of the models and also performed some experiments related to the impact of preprocessing.
We also study the differences in detecting Covert and Overt HS.

This document is organised as follows: Section 2 presents an overview of the most relevant
related literature; Section 3 describes the dataset used; Section 4 describes the different
models; Section 5 presents the experimental setup; Section 6 presents the results; finally,
Section 7 presents the major conclusions and pinpoints future directions.

2 Related Work

Recently, HS detection has gained particular relevance in areas such as NLP and AI, and
different approaches, mostly relying on deep learning methods, have been proposed in the
literature.

Kamble et al. [13] explored HS detection in Hindi-English code-mixed tweets. They
developed domain specific word embeddings from 255,309 Hindi-English tweets conveying
HS and non-hate. They used the Word2Vec algorithm [16] to train the word embeddings
model. Using those embeddings as features, they conducted classification experiments with
Deep Learning algorithms such as one-dimensional CNN (CNN-1D), LSTM, and BiLSTM.
According to the results reported by the authors, CNN-1D resulted in the highest precision,
F1-score, and accuracy, while BiLSTM achieved the best recall. Their models were able to
better capture the semantics of HS along with their context which resulted in an improvement
of about 12% in F1-score over a past work that used statistical classifiers. For offensive
language detection, Ong [20] experimented CNN, LSTM, BiLSTM, GRU, BiGRU, and
combinations based on these models. The author used GloVe word vectors, some pre-trained
using Twitter with 100 and 200 dimensions and others pre-trained with Common Crawl with
300 dimensions. The author concluded that the architecture that had the highest macro
average F1-Score was BiLSTM-CNN.

New architectures, namely the BERT-based ones, seem to outperform all the remaining
approaches. Ranasinghe et al. [22] presented a multilingual Deep Learning model to identify
HS and offensive language in social media, in their submission to the sub-task A of the
HASOC 2019 shared task. To make the system portable to all the languages in the dataset,
they used only minimal preprocessing methods, such as removing usernames, removing urls,
and, depending on the architecture, converting all tokens into lowercase. They experimented
multiple DNNs architectures: pooled GRU, LSTM+GRU+attention, two-dimensional CNN
(CNN-2D)+Pooling, GRU+capsule, and LSTM+capsule+attention, using FastText as word
embeddings. Furthermore, they also experimented with fine-tuned BERT, which outperformed
every above mentioned DNN for German, English, and Hindi. Mozafari et al. [17] used
two Twitter datasets that were annotated for racism, sexism, hate, and offensive content.
They experimented different combinations of BERT with other models, such as CNN and
LSTM. The evaluation results indicated that BERT-CNN outperformed previous works by
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profiting from the syntactical and contextual information embedded in different transformer
encoder layers of the BERT using a CNN-based fine-tuning strategy. In OffensEval 2019, a
shared task that focus on the detection of offensive language, Zampieri et al. [25] mentioned
that among the top-10 teams, seven used BERT with variations in the parameters and
in the preprocessing steps. The top-performing team [15] achieved a macro average F1-
Score of 0.829, using pre-trained BERT with fine-tuning on the OLID dataset, and hashtag
segmentation and emoji substitution as preprocessing.

An improvement to these BERT-based models was proposed by Croce et al. [5]. The
authors implemented GAN-BERT using Generative Adversarial Learning. In this model,
the generator is trained to produce a sample, and the discriminator to distinguish between
generated samples or samples belonging to the training data. BERT is used to encode
the input and as the discriminator. The model was tested with a variety of datasets for
multiple tasks (topic classification, question classification, and sentiment analysis) obtaining
an increase in performance for all of them when compared to BERT.

With these successful approaches in mind, we will use similar models for the classification
of HS in social media text, in particular we will fine-tune BERT, and test combinations of
BERT with CNN and GAN.

3 Data

The dataset used in our experiments, the CO-HATE Corpus [4], is composed by the comments
retrieved from 39 YouTube videos: 20,590 written comments (795,111 tokens), posted by
8,485 different online users. The corpus was annotated by five recruited annotators, who are
currently enrolled in a bachelor’s or a master’s degree in Communication or in Political and
Social Sciences. The average age of the annotators is 23 (ranging from 21 to 27 years old) and
the annotation team is composed by both individuals belonging to the communities monitored
in this study, and by annotators that do not belong to any potentially marginalized group.
More specifically, the annotation team includes Portuguese individuals as follows: a female of
African descent, a White male who identifies himself as part of the LGBTQ+ community, a
female of Roma descent, a White cisgender hetero male, and a White cisgender hetero female.
The corpus is subdivided into five parts, each containing approximately 4,000 messages, on
average. Each part was randomly assigned to a different annotator. Additionally, all the
annotators were assigned to a common part comprehending 534 messages, which was used to
measure the agreement between the annotators, and assess the reliability of the annotations
assigned to the entire corpus.

These 534 messages are also used as the test set. Given the task subjectivity, and assuming
that the profile of human annotators may influence the data annotation, all the messages
labeled as conveying HS by at least two annotators will be considered as hatred content.
With this voting type the test set is composed of 50% HS messages. We did not consider the
messages containing at least one vote in order to discard unintentional errors introduced by
the annotator; the possibility of two annotators making a mistake would be a more unlikely
scenario. Table 1 presents the distribution of hatred messages used in training, considering
both the annotations performed by each annotator and the ones performed by different
groups of annotators that were selected following the criteria defined in Section 5.

4 Model Description

In this section, we describe the models we use for detecting OHS, based on the data previously
described. We decided to test such models because they have already shown good performance
in similar tasks [5, 17, 23].
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Table 1 Class distribution for the training data.

Set of annotators Number of messages HS (%)
A+B+C+D+E 20,056 35

A+B+D+E 16,039 37
A+B+C 12,036 30

D+E 8,020 43
A 4,008 25
B 4,011 36
C 4,017 29
D 4,014 39
E 4,006 48

4.1 BERT-LinearLayer
BERT [6] is a multi-layer bidirectional transformer encoder. In our experiments, we used
BERT base, which contains an encoder with 12 layers (transformer blocks), 12 self-attention
heads, and 110 million parameters. As the BERT model is pre-trained on general corpora,
we had to fine-tune BERT using our annotated dataset. BERT-LinearLayer is inspired in
[23] and [17]. In this architecture, the [CLS] token output of the 12th transformer encoder, a
vector of size 768, is given as input to a fully connected network W/o hidden layer. Then, the
Sigmoid activation function is applied to the hidden layer in order to make the prediction.

4.2 BERT-CNN
This model is inspired in [23] and consists of two main components. The first one is the BERT
model, in which the text is passed through 12 layers of self-attention to obtain contextualized
vector representations. The other one is a CNN, which is used as a classifier.

First, the text is given as input to BERT, then the output of the last four hidden layers of
the pre-trained BERT are concatenated to get vector representations. Next, these embeddings
are passed in parallel into 160 convolutional filters of five different sizes (768x1, 768x2, 768x3,
768x4, and 768x5), 32 filters for each size. Each kernel takes the output of the last four
hidden layers of BERT as 4 different channels and applies the convolution operation on
it. After that, the output is passed through the ReLU Activation function and a Global
Max-Pooling operation. Finally, the output of the pooling operation is concatenated and
flattened to be later on passed through a dense layer and a Sigmoid function to get the final
binary label.

4.3 GAN-BERT
The GAN-BERT approach is based on GAN-BERT [5]. The input is encoded by a BERT
model. The GAN is composed by a generator, trained to produce a sample, and a discrimin-
ator to distinguish between generated samples or samples belonging to the training data.
The generator is a multi-layer perceptron (MLP) that transforms an input into a vector
representation being the [CLS] token used as a sentence embedding. The discriminator is
another MLP with a last layer with SoftMax as an activation function to classify the received
embedding. The training process consists of optimizing both generator and discriminator
losses. The generator loss considers the error induced by the generated examples correctly
identified by the discriminator. The discriminator loss considers the error induced by wrongly
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classifying the labeled data and by not being able to recognize generated samples. The BERT
weights will be updated when updating the discriminator. After training, the generator is
discarded.

5 Experimental setup

The maximum sequence length of each text sample was set to 350 tokens to avoid overloading
the GPU. A substantial amount of messages does not exceed that length and it does not
degrade performance. All the models were trained for 15 epochs and the model with the best
positive class F1-Score on the development set was saved. The training data was split into
80% and 20% for training and development sets, respectively, preserving the same proportions
of examples in each class.

The first experiment was done using the entire training data, i.e., the 20,056 messages
annotated by annotators A, B, C, D, and E. Considering the subjectivity of this topic, we
have also experimented using the corpus annotated by each user independently (A, B, C,
D, and E). Since annotator C was the one having the worse IAA, when compared to the
remaining annotators (0.23 on average, while the others have at least 0.531), we tested
the combination A+B+D+E. Also, the annotators D and E were the ones that achieved
better results independently and the highest agreement rate between them, so we also have
tested the combination D+E. Since annotators D and E do not belong to any potential
historically marginalized group, we decided to test also the combination A+B+C, composed
by annotators that belong to the target communities. This may help us to understand how
the annotators’ social identity may affect the performance of OHS detection.

For all models, we used two different pre-trained BERT models, namely Multilingual
BERT (mBERT),1 and BERTimbau (brBERT) [24]. When using the entire corpus,
BERTimbau had an overall performance better than mBERT, so for all the other experiments
we only tested with BERTimbau and we only report the results obtained using it.

We report both macro and positive class F1-scores, but when assessing the models
performance we give particular importance to the positive class F1-score, since it evaluates
the models performance on the class that we want to detect.

6 Results and Analysis

The results of all models for the different sets of training data are represented in Table 2.
In these experiments, the text was not pre-processed and in the test set we considered a
minimum of two votes to decide if a comment contains or not HS. We present the results of
our baseline, a dummy classifier that classifies all instances as HS. Considering the positive
class F1-score as the benchmark metric, we can see that using the data of A, B, C, and
A+B+C always obtains worse results than the baseline model. Also, when using the data of
all annotators, A+B+C+D+E, the best result (Positive Class F1-Score of 0.667) was not
able to outperform the baseline model. On the other hand, when using the data of D, E,
D+E, and A+B+D+E, the results outperformed the baseline.

Comparing the different model architectures, the results suggest that BERT-LinearLayer
and BERT-CNN can attain better results than GAN-BERT. In particular, the best result
was obtained using the data of D+E and the BERT-CNN model with an F1-score of 0.721.

1 https://github.com/google-research/bert/blob/master/multilingual.md

https://github.com/google-research/bert/blob/master/multilingual.md
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Table 2 Performance of all models with different data used for train.

Training Data Model Positive Class Macro Avg
Prec Rec F1 Prec Rec F1

Baseline 0.500 1 0.667 0.250 0.500 0.333

A
BERT-LinearLayer 0.604 0.629 0.617 0.609 0.609 0.608

BERT-CNN 0.601 0.648 0.623 0.609 0.609 0.608
GAN-BERT 0.578 0.390 0.465 0.559 0.552 0.540

B
BERT-LinearLayer 0.721 0.532 0.612 0.675 0.663 0.657

BERT-CNN 0.695 0.581 0.633 0.667 0.663 0.661
GAN-BERT 0.625 0.468 0.535 0.600 0.594 0.587

C
BERT-LinearLayer 0.611 0.629 0.620 0.614 0.614 0.614

BERT-CNN 0.649 0.547 0.593 0.629 0.625 0.623
GAN-BERT 0.615 0.562 0.587 0.606 0.605 0.604

D
BERT-LinearLayer 0.603 0.809 0.691 0.657 0.639 0.628

BERT-CNN 0.589 0.790 0.675 0.636 0.620 0.608
GAN-BERT 0.623 0.682 0.651 0.636 0.635 0.634

E
BERT-LinearLayer 0.665 0.663 0.664 0.665 0.665 0.665

BERT-CNN 0.702 0.697 0.699 0.700 0.700 0.700
GAN-BERT 0.631 0.633 0.632 0.631 0.631 0.631

D+E
BERT-LinearLayer 0.645 0.768 0.701 0.679 0.672 0.669

BERT-CNN 0.625 0.850 0.721 0.696 0.670 0.659
GAN-BERT 0.630 0.682 0.655 0.641 0.640 0.640

A+B+C
BERT-LinearLayer 0.649 0.610 0.629 0.641 0.640 0.640

BERT-CNN 0.683 0.614 0.647 0.666 0.665 0.664
GAN-BERT 0.618 0.442 0.515 0.592 0.584 0.576

A+B+D+E
BERT-LinearLayer 0.712 0.622 0.664 0.688 0.685 0.684

BERT-CNN 0.679 0.697 0.688 0.684 0.684 0.683
GAN-BERT 0.656 0.622 0.638 0.648 0.648 0.648

A+B+C+D+E
BERT-LinearLayer 0.636 0.700 0.667 0.651 0.650 0.649

BERT-CNN 0.688 0.618 0.651 0.670 0.669 0.668
GAN-BERT 0.648 0.509 0.570 0.622 0.616 0.612

Intuitively, it was expected that BERT-CNN would yield better results, since it uses
information that contains both syntactical and contextual features from the last four layers
of BERT, which encode more information than the output of the top layer [6], while BERT-
LinearLayer and GAN-BERT models only use the [CLS] token of the last transformer encoder.
We also believe that the convolutions of the CNN architecture highlighted features related
to different writing patterns, which may occur in HS samples, and therefore provide better
detection for the aforementioned category.

The low IAA obtained between all the annotators, a Krippendorff’s alpha of 0.478,
suggested the difficulty of this task even for humans. Nevertheless, reasonable results were
obtained when considering the multiplicity of perspectives given by all the annotators: a
Positive Class F1-Score of 0.667 (and a macro averaged F1-score of 0.649, considerably
better than the one achieved by the baseline). The annotators belonging to the communities
targeted in this study (A, B, and C) tended to disagree more with each other than the
annotators not belonging to these communities (D and E) [4]. This aspect is also reflected in
the models trained with the information provided by such annotators. Every single Positive
Class F1-Score obtained by D+E is greater than the Positive Class F1-Scores obtained by
A+B+C.
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actual
values

Non-HS 131 136
HS 40 227

Non-HS HS
predicted values

Figure 1 Confusion matrix of the best performing model: BERT-CNN with D+E training data.

We also find important to put into perspective the results we had with the results
reported by other researchers on the same task. We did not find any works using Portuguese
pre-trained BERT models, so we had to compare our results with works focusing on other
languages. Safaya et. al [23] achieved, on average, a macro average F1-score of 0.851 with
their BERT-CNN model, using language-specific pre-trained models for Arabic, Greek, and
Turkish languages. Although we did not test all the architectures they have tested, just
like them, in our work, BERT-CNN yielded better results than using BERT-LinearLayer.
Dowlagar et. al [7] achieved a macro average F1-score of 0.883 by fine-tuning an English-
specific pre-trained BERT model, the biggest macro F1-score when compared to other
machine learning approaches. To the best of our knowledge, no experiences were performed
in the supervised case using GAN-BERT. The best macro average F1-score we had was
0.7, which is not in line with the values that we have now reported. Several factors may
help understanding this difference. For example, most corpora used by researchers are
often created through the use of generic lexical-based approaches, used to retrieve content
containing words or expressions with negative polarity. This selection method leaves out an
immense set of potentially relevant hatred content, including covert (indirect or implicit) HS,
often resorting to rhetorical figures, and apparently neutral words and constructions used to
attack or humiliate the HS targets. CO-HATE data was selected using a different approach,
allowing the inclusion of messages conveying either overt or covert HS. In fact, covert HS
surpasses the frequency of overt HS in this corpus. Given covert HS is much harder to detect
than overt HS, we believe that this may rend the task more difficult to the classifiers.

The use of BERTimbau, a Brazilian Portuguese model trained on the BrWaC (Brazilian
Web as Corpus), with European Portuguese text extracted from the YouTube platform
may also influence the results, since there are lexical differences between these variants of
Portuguese that are not covered by BERTimbau Tokenizer. More general aspects such as
hyper-parameter optimization can also impact the performance. For instance, varying values
of batch size, learning rate, dropout rate (when applicable) and different max length values
for text sequences are all variables that may affect the results.

6.1 Error Analysis
This section discusses the major classification errors derived from our best model, BERT-
CNN, trained with the data from annotators D and E. In Figure 1, we present the confusion
matrix of our best model in order to better visualize the classification errors. As we had
already shown in the Table 2, we have interesting results in terms of recall, but the precision
is not at the same level. We have inspected the 136 messages that were incorrectly classified
as HS and found that a high proportion contain counter-speech. Hence, this suggest that
future experiments should include other related HS categories, such as ’Counter-speech’,
instead of considering only a dichotomous classification. Also, some of these messages include
words and expressions that are also highly frequently used in messages classified as conveying
hate speech (e.g., Rendimento Social de Inserção (RSI), abonos, and subsidiodependência;
“Social Integration Income”, “subsidies”, and “subsidy dependence”), which may influence
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the classifier in the training phase. We have also manually inspected the 40 messages that
were incorrectly classified as Non-HS. This analysis suggest that most errors are associated
with messages that, out-of-context, are difficult to interpret, as illustrated in Examples 1-4.

(1) Adoro Portugual
I love Portugal

(2) Sim :)
Yes :)

(3) Correto !
Correct !

(4) @João Francisco ----

6.2 Detecting Overt and Covert HS
We conducted additional experiments on the identification of Overt HS and Covert HS.
This is particularly relevant because Covert HS is quite frequent in our data, even more
frequent than Overt HS. In fact, our training data contains about 16% of Overt HS and 19%
of Covert HS, while the test set contains about 22% of Overt HS and 34% of Covert HS.
All the experiments were conducted using BERT-CNN, the model that achieved the best
performance in the binary classification of HS, and all the training data were used for trained.
The results are presented in Tables 3 and 4, where the baseline consists of classifying all
instances as the positive class. When considering the positive class F1-Score, the detection
of Overt HS (0.495) was more successful than the detection of Covert HS (0.488). This
is an expected result, since covert HS usually tends to use linguistic phenomena, such as
sarcasm or irony, much more difficult to detect with an automatic approach. In fact, the
lower frequency of Overt HS in the data makes the detection of Overt HS more challenging
due to the unbalanced data, but our model was able to still attain a good performance,
specially considering the baseline. The detection of Covert HS proved to be difficult to
perform using the proposed model.

Table 3 Classification of Overt Hate Speech, using the BERT-CNN model trained with all data.

Model Overt HS Macro Avg
Prec Rec F1 Prec Rec F1

Baseline 0.221 1 0.362 0.110 0.500 0.181
BERT-CNN 0.580 0.432 0.495 0.715 0.672 0.687

Table 4 Classification of Covert Hate Speech, using the BERT-CNN model trained with all data.

Model Covert HS Macro Avg
Prec Rec F1 Prec Rec F1

Baseline 0.335 1 0.502 0.168 0.500 0.251
BERT-CNN 0.648 0.391 0.488 0.696 0.642 0.650

6.3 Pre-processing Impact
We tested the impact of applying pre-processing, which consisted of removing processing
errors generated in the data retrieval; anonymizing users’ mentions by replacing a user
tag with “@UserID” to represent a username with a single word and keep the context and
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removing repetitions of three or more punctuation signals and emojis. We compiled in Table 5
the best result of each model for each case. We were expecting that linguistic clues just like
the repetitions of punctuation signals and emojis could aid the models in capturing HS but
their removal accompanied by some other pre-processing techniques led to better results
for BERT-LinearLayer and BERT-CNN models, even though they are minor improvements
(+0.003 for BERT-LinearLayer and +0.005 for BERT-CNN). On the other hand, the results
of GAN-BERT met our expectations and got worsen (-0.008), but again the differences were
not significant.

Table 5 Positive Class F1-Scores of the best models on the test data with and without pre-
processing.

Model W/o preproc W/ preproc
BERT-LinearLayer 0.701 0.704

BERT-CNN 0.721 0.726
GAN-BERT 0.655 0.647

7 Conclusion

In this paper, we compared three different models based on BERT on the task of identifying
HS in Portuguese YouTube comments: BERT-LinearLayer, BERT-CNN, and GAN-BERT.
BERT-CNN achieved the highest Positive Class F1-Score, taking advantage of both the
syntactical and contextual information embedded in the last four transformer encoder layers
of the BERT model and the convolutions of the CNN architecture. We have shown how
the data chosen to train the models might affect the results. Our best model, BERT-CNN,
achieves a Positive Class F1-Score of 0.72, surpassing the baseline in almost 6 p.p. The best
result was obtained by combining the data of the annotations from the annotators with the
best IAA, which suggests that if we intent to have a good performance using data annotated
by different annotators, we should consider the aggregation of annotations from annotators
sharing similar perceptions.Although our best macro average F1-score was reasonable, it
was not at the same level of other HS detection works that involve other languages. Factors
such as the high frequency of Covert HS in our dataset, the use of BERTimbau with
European Portuguese, and hyper-parameter optimization may explain these differences in
the performance. We performed an Error Analysis of the results provided by our best model
and found that some of the messages misclassified as Non-HS do not provide the necessary
context for a good classification. Also, a high proportion of messages misclassified as HS
correspond, in fact, to counter-speech, and contain words that are frequently used in hatred
content. We conducted some experiments for the binary classification of Overt HS and the
binary classification of Covert HS in order to investigate if the HS type could affect the
performance of our approaches. As expected, the detection of Covert HS proved to be slightly
harder than the detection of Overt HS. We also tested the impact of pre-processing the text,
and the results show that pre-processing does not seem to have a significant impact on the
performance of this specific task.
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With the increasing spread of hate speech (HS) on social media, it becomes urgent to develop models
that can help detecting it automatically. Typically, such models require large-scale annotated corpora,
which are still scarce in languages such as Portuguese. However, creating manually annotated corpora
is a very expensive and time-consuming task. To address this problem, we propose an ensemble
of two semi-supervised models that can be used to automatically create a corpus representative of
online hate speech in Portuguese. The first model combines Generative Adversarial Networks and a
BERT-based model. The second model is based on label propagation, and consists of propagating
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experiments with active learning. Furthermore, this work explores back translation as a mean to
automatically generate additional hate speech samples. The best results were achieved by combining
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1 Introduction

A growing number of people have reported that have already been exposed to hate speech
on social media [29]. Due to the anonymity allowed on the Internet, people feel more ease at
expressing themselves and engaging in hostile behaviors [12]. Therefore, it urges to develop
models able to detect online hate speech automatically.

The non-existence of a unique and consensual definition of hate speech [12] makes its
detection more difficult, either for humans or algorithms. For the purpose of this work, hate
speech is defined according to the following coexisting conditions [6]:

Hate speech has a specific target that can be mentioned explicitly or implicitly, which
corresponds to vulnerable or historically marginalized groups or individuals targeted for
belonging to those groups;
Hate speech typically spreads or supports hatred, or incites violence against the targets,
by disparaging, humiliating, discriminating, or even threatening them based on specific
identity factors (e.g., religion, ethnicity, nationality, race, color, descent, gender, sexual
orientation);
Hate speech can be expressed both explicitly (or overtly) and implicitly (or covertly).

Most hateful comments are implicit in text, making use of several rhetorical strategies,
such as irony and rhetorical questions [33], turning them even harder to identify. Furthermore,
hate speech is often context-dependent, meaning that specific words or expressions may have
different interpretations, depending on the linguistic and pragmatic context where they are
used [16]. Moreover, the personal experiences, knowledge, and beliefs of the ones studying it,
as well as demographic features such as the first language, age, education, and social identity,
can also introduce personal bias into the classification process [1, 32].

Robust models typically rely on large-scale annotated language resources, which have been
created following different annotation guidelines. However, the existing resources – mostly
for English – cannot be easily transferred to other languages due the linguistic disparities
even within the same language, and the multiplicity of hate speech targets being considered
in those studies [27]. Even within the same language, models tend to have generalization
problems, dropping in performance when applied to a distinct dataset [34]. Besides, with
few exceptions, existing corpora do not usually cover implicit hate speech [3, 15, 17]. In fact,
the data comprising Hate Speech (HS) corpora is often retrieved by using negative polarity
words and expressions, which are not usually found in implicit hate speech. In addition, most
corpora available are imbalanced, and the majority class often correspond to neutral speech,
i.e., not offensive nor hateful speech. This asymmetry may deteriorate the performance of
the classification models.

Being aware that creating manually annotated corpora is a very time-consuming and
expensive task, requiring linguistic and pragmatic knowledge, we propose an ensemble of two
semi-supervised models to create annotated corpora representative of the hate speech present
on social media platforms in Portugal. The first model combines Generative Adversarial
Networks and a BERT-based model. The second one is based on label propagation, assigning
labels to the unlabeled data based on their similarity with the annotated corpus. Both
models are combined in a semi-supervised self-training approach to obtain an automatically
annotated corpus.

The rest of this document is organized as follows. Section 2 presents the related work,
focusing particularly on the hate speech datasets available for Portuguese and the most
relevant semi-supervised learning models for this task. Section 3 describes the datasets used
in the experiments performed, and Section 4 describes our model and the pre-processing
applied to the corpora. Section 5 presents the results, and, finally, Section 6 highlights the
main conclusions.
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2 Related Work

Hate Speech in social media is a recent research topic that has been evolving with the
increased use of these platforms. To the best of our knowledge, there are only two datasets
covering Portuguese hate speech publicly available.1

Leite et al. [18] developed ToLR-BR, a corpus composed of 21,000 tweets, retrieved
by applying a list of offensive keywords and considering keywords related to influential
Brazilian users that could be targets of hate speech or abuse. The messages were classified
as Homophobia, Obscene, Insult, Racism, Misogyny, and Xenophobia by three annotators.
Around 44% of the messages were classified as offensive by at least one annotator, 21% by
two, and 7% by the three annotators.

Fortuna et al. [13] presented a Hierarchically-Labeled Portuguese Hate Speech Dataset
(HPHS) of 5,670 Brazilian Portuguese tweets from 115 users. The messages were retrieved
using a list of offensive keywords and by considering users that typically post hateful comments.
The tweets were manually classified by three annotators in a binary scheme (hate speech
or not). The hatred messages were then classified according to their target, following a
hierarchical scheme including 81 hate speech categories. Around 22% of the tweets correspond
to hate speech.

Given this lack of resources, semi-supervised learning surges as a solution for hate speech
classification. This approach considers a small amount of labeled data and makes use of a
large amount of unlabeled data.

Alsafari and Sadaouia [2] use semi-supervised self-training to classify Arabic tweets in
Clean or Offensive/Hate. This approach consists of re-applying the classifier to its most
confident predictions [31]. To ensure a good learning ability and good performance, it is
required a sufficiently large initial training dataset [2] considering that the performance
depends on the accuracy of the pseudo-labels [19]. The tweets are represented with Word2Vec
SkipGram embeddings to capture their semantic and syntactic information. The model
consists of one classifier based on N-Grams and two deep neural network classifiers. The
authors performed multiple experiments with Support Vector Machines (SVM), Convolutional
Neural Networks (CNN), AraBERT, and DistilBERT. The classifiers were evaluated according
to their accuracy, model size, and inference speed, being the best results achieved by the CNN
approach. This model was then used to perform fifteen iterations reusing the predictions
with higher confidence. AraBERT and DistilBERT were not used due to their complexity.
With the increase in the number of iterations, the model started to associate a hashtag
with the tag Offensive/Hate so hashtags were ignored. However, the models still perform
poorly when classifying implicit hate and in the presence of rare terms. Besides, tweets with
counterspeech and abusive words are wrongly classified as Offensive/Hate. As expected,
the authors also show that increasing the size of the labeled dataset led to a performance
increase.

Croce et al. [8] propose GAN-BERT. In Generative Adversarial Learning (GAN), the
generator is trained to produce a sample and the discriminator to distinguish between gener-
ated samples or samples belonging to the training data. With Semi-Supervised Generative
Adversarial Networks (SS-GAN), the discriminator will also classify the sample. BERT is
used to encode the input and as the discriminator. The generator is a multi-layer perceptron
that transforms an input into a vector representation being the [CLS] token used as a sen-
tence embedding. The discriminator is another multi-layer perceptron with a last layer with

1 https://hatespeechdata.com/
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SoftMax as an activation function to classify the received embedding. The training process
consists of optimizing both generator and discriminator losses. The generator loss considers
the error induced by the generated examples correctly identified by the discriminator. The
discriminator loss considers the error induced by wrongly classifying the labeled data and by
not being able to recognize generated samples. The BERT weights will be updated when
updating the discriminator. After training, the generator is discarded. The model was tested
with a variety of datasets for multiple tasks obtaining an increase in performance for all
of them when compared to BERT. Furthermore, the authors have proved that less than
200 annotated examples obtain similar results to the supervised approach. More recently,
Breazzano et al. [5] extended this model to multi-task learning and applied it to hate speech
classification with similar performance.

D’Sa et al. [10] represent tweets as a pre-trained sentence embedding, using the Universal
Sentence Encoder (USE). The authors use a Multilayer Perceptron (MLP) to transform this
generic representation into a task-specific representation using a small amount of labeled data.
After training with the labeled data, the MLP classifier receives as input the pre-trained
representations of a labeled sample and an unlabeled sample. The outputs of the activation
function of the two hidden layers correspond to two different task-specific representations.
Then, label propagation is performed to obtain the labels for the unlabeled sample. Label
propagation is a graph-based semi-supervised technique where the data is represented as a
graph. The vertices correspond to the data points and the edges represent the similarity
between two nodes. The data points close to each other tend to have a similar label so, the
labels are propagated from the labeled points to the unlabeled ones [10, 21]. Finally, the
pre-trained embeddings and the labels are used to train the MLP classifier. Comparatively to
the MLP classifier trained only with the labeled set and without label propagation, training
using label propagation on pre-trained representations performs worse. However, the two
representations from the hidden layers capture class information and have better results.
In some cases, the label propagation using the representation after the first hidden layer
performed better so fully fine-tuned representation may not always be the best approach.

Considering that most of the interactions present in social media do not correspond to
hate speech, and given the difficulty to extract them, the percentage of hate speech present
in hate speech corpora is low (around 8%). Data augmentation allows to expand an existing
training dataset by implementing transformations to the already labeled data or by creating
synthetic examples from this data [19, 22]. This can reduce the data scarcity by generating
new instances for the minority classes [1], balancing the dataset labels, and reducing the
overfit [28]. It can also help the model to better generalize to unseen data, increasing its
overall performance [19]. However, data augmentation in NLP tasks is limited since most
operations can distort the meaning of the sentence and the number of synonyms of a word
is not very high. Considering these limitations, we opted to use back translation since the
paraphrases generated by this approach tend to preserve the semantics of the message [4].

This work will follow a self-training approach with an ensemble of two models to reduce
the bias of each one. Considering the good results of the previous two models, our proposal
will consist of an adaptation of both.

3 Data

We use CO-HATE [6] and FIGHT [7], two corpora recently created from Portuguese online
data containing potential hate speech. CO-HATE is composed of comments retrieved from
YouTube, and has been manually annotated. FIGHT is composed of tweets, lacks from
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annotations, and our goal is to provide such annotations. Two additional datasets, focusing
on Brazilian Portuguese, were also considered as additional labeled sources, as described in
Section 3.3.

3.1 CO-HATE Corpus
The CO-HATE (Counter, Offensive and Hate speech) corpus [6] is composed of 20,590
written messages, posted by 8,485 different online users on 39 YouTube videos covering topics
and events targeting, directly or indirectly, three specific focus groups: African descent,
Roma, and the LGBTQ+ communities. The first two communities correspond to the most
representative minorities in Portugal. The LGBTQI community was reported as the most
targeted group in terms of online hate speech [11, 23, 25]. The CO-HATE corpus was
manually annotated by five annotators, each being responsible for annotating approximately
4,000 messages. Additionally, all annotators were assigned to a common part consisting
of 534 messages to assess the inter-annotator agreement (IAA) and the reliability of the
annotations.

The annotators are currently enrolled in a bachelor’s or a master’s degree in Communica-
tion or in Political and Social Sciences. The average age of the annotators is 23 (ranging from
21 to 27 years old), and three annotators are female. The annotators A, B and C belong to
the communities monitored in this study. More specifically, the annotation team includes
Portuguese individuals as follows: a female of African descent, a White male who identifies
himself as part of the LGBTQ+ community, a female of Roma descent, a White cisgender
hetero male, and a White cisgender hetero female [6].

The final labels for the messages are obtained considering the majority of the annotations.
The IAA (using Krippendorff’s alpha) between all the annotators was considerably low
(0.478), despite providing the annotators with detailed guidelines. This demonstrates the
subjectivity (and difficulty) of this task, even for humans [6]. Table 1 shows the percentage
of messages classified as conveying hate speech by each annotator individually, and the group
of annotators (ABCDE).

Table 1 Proportion of messages containing hate speech in CO-HATE corpus, by annotator.

Annotators Number of messages HS (%)
A 4,008 25
B 4,011 36
C 4,017 29
D 4,014 39
E 4,006 48

Total 20,590 35

3.2 FIGHT Corpus
The FIGHT (FIndinG Hate Speech in Twitter) corpus [7] is composed of 56,546 geolocated
tweets in the Portuguese territory. This corpus was obtained with two retrieval methods:
selecting tweets that include non-ambiguous words that may be used to mention one of the
aforementioned target groups (54,352 tweets); and selecting tweets containing a potential
mention to the target group, and at least one offensive or insulting word or expression (9,796
tweets). The second approach prevents from retrieving a multiplicity of hate speech forms,
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including implicit or covert hate speech, but allows retrieving potential offensive or hatred
content [7]. In order to evaluate the performance of our models, we have manually annotated
a sample of 300 tweets, which is used as our test set.

3.3 Additional Datasets

Since the previously mentioned corpora are focused only on three specific hate speech targets,
we decided to consider two additional hate speech Brazilian Portuguese datasets, ToLR-BR
and HPHS, covering other HS targets. Taking into account the subjectivity of this task
and the personal bias that can be introduced in the annotation process, only the messages
labeled as hate speech by the majority of the annotators will be considered as such in order
to select only clear cases of hate speech and considering that it is the standard approach in
the literature. Regarding ToLR-BR corpus [18], we assumed as hate speech all tweets with
one of the labels Homophobia, Racism, Misogyny, and Xenophobia given by the majority of
the annotators. Of the 21,000 tweets, 403 were classified as hate speech. From these, 192
correspond to Homophobia, 96 correspond to Racism, 158 to Misogyny and 60 to Xenophobia.
For the HPHS dataset [13], we considered as hate speech the tweets classified as Hate Speech
by at least two out of the three annotators. From the 5,670 tweets, 1,788 correspond to hate
speech.

4 Modeling Approaches

The goal of this work is to present a model capable of automatically classifying hate speech,
aiming at contributing to solve the scarcity of annotated hate speech corpora in Portuguese.
The model should be able to transfer knowledge from the CO-Hate corpus in order to annotate
the FIGHT corpus. This is a particularly complex task considering the different nature of
the two corpora. While CO-Hate is composed by YouTube comments contextualized by
the videos, FIGHT is composed by individual tweets that are published without a context.
Besides, YouTube comments can have an arbitrary size while tweets are limited to 280
characters.

The proposed model corresponds to an ensemble of two semi-supervised models, to reduce
the bias of each model. The first model combines Generative Adversarial Networks and
a BERT-based model, based on GAN-BERT [8]. The goal is to find the distribution of
classes for the labeled data and update it with the unlabeled data. The second model,
label propagation, uses the similarities between the instances (points) of the datasets to
propagate the existing labels to the unlabeled data. The label of a given point is determined
by the labels of the closest points (the implementation used the scikit-learn library [24]).
Both models have been recently tested for the hate speech domain, obtaining performance
improvements when compared to other previously developed models [5, 10].

Both classifiers are trained with a sample of labeled data. Then, at each iteration, both
classifiers classify a subset of unlabeled data. The most confident predictions are added to
the labeled set and the models are fine-tuned with them. The maximum sequence length
of each message was defined as 350 tokens to ensure the efficiency of the model without
loosing too much information. The GAN-BERT model was trained for 15 epochs with 5
patience, considering the model with the best F1-score for the positive class. The training
data was randomly split into 80% for the train set and 20% for the development set. The
label propagation model used the k-nearest neighbors algorithm with a maximum of 100
iterations and neighbors between 3 and 50.
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Considering the GAN-BERT model, we fine-tuned two different pre-trained BERT-based
models: Multilingual BERT2 and BERTimbau [30] to find which performed better.
Similarly, for the label propagation model, we tested representing the sentences with Doc2Vec
and Universal Sentence Encoder (USE).3

5 Results

This section describes three different types of experiments. Section 5.1 starts by exploring dif-
ferent embeddings for each model, and assessing the impact of different types of pre-processing.
Section 5.2 presents experiments performed by each model individually, considering several
subsets of training data. Lastly, Section 5.3 presents the results of the ensemble model, and
reveals the impact of using additional labeled datasets and back translation.

5.1 Different Embeddings and Pre-processing Experiments
The experiments here described use CO-HATE as training data, and a sample of 300 tweets
from FIGHT corpus that were manually annotated for this purpose, as testing data.

We have started by combining our modeling approaches with different embeddings. The
results achieved are summarized in Table 2, where the baseline consists of a dummy classifier
that classifies all examples as Hate Speech. Results show that BERTimbau achieves an overall
better performance when combined with GAN-BERT. This was expected considering that
BERTimbau was trained using web corpora that are more likely to include toxicity than the
Google Books corpus used for Multilingual BERT. For the label propagation model, we have
adopted USE, considering that it has a higher recall and F1-score for the positive class, two
relevant metrics when detecting hate speech.

Table 2 Performance of different embeddings for each model.

Acc HS Class Macro Average
Prec Rec F1 Prec Rec F1

Dummy Classifier (all HS) 0.177 0.177 1.000 0.300 0.088 0.500 0.150

GAN-BERT Multilingual 0.633 0.315 0.133 0.187 0.450 0.430 0.458
BERTimbau 0.647 0.188 0.302 0.232 0.508 0.511 0.501

Label Propagation Doc2Vec 0.707 0.260 0.358 0.302 0.555 0.569 0.557
USE 0.653 0.248 0.472 0.325 0.553 0.582 0.546

In order to understand the impact of pre-processing, for each model, we have also
performed experiments without any pre-processing, and with two levels of pre-processing.
The partial pre-processing is composed of the following steps:

Noise removal: remove processing errors in the data retrieval;
Removal of repetitions of three or more punctuation signals and emojis. This step may
remove some noise and shorten the message to fit the maximum sequence length. However,
it may lose some of the meaning of the sentence;
Anonymization of users’ mentions: replace a user tag with “@UserID” to represent a
username with a single word.

2 https://github.com/google-research/bert/blob/master/multilingual.md
3 https://tfhub.dev/google/universal-sentence-encoder-multilingual/3
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The full pre-processing approach is composed of the previous steps plus:
Removal of user’s mentions;
Removal of links.

As presented in Table 3, the best results for GAN-BERT were obtained with the full
pre-processing, contrarily to what we expected. This pre-processing puts the emphasis on
the message. However, some of the meaning of the messages can be lost by removing the
repetitions of punctuation signals and emojis, and some context can be removed by deleting
the user’s mentions and links. For the label propagation model, the best results were obtained
without any pre-processing, potentially because the pre-processing removes too much context
from the messages. The following section use GAN-BERT with the pre-processed training
set, and the label propagation model with the original data, which are the most promising
combinations. Our goal is to obtain the most promising model, so, for each experiment, we
will select the options that result in the best performance.

Table 3 Impact of pre-processing.

Pre-processing Acc HS Class Macro Average
Prec Rec F1 Prec Rec F1

GAN-BERT
Without 0.647 0.188 0.302 0.232 0.508 0.511 0.501
Partial 0.680 0.228 0.340 0.273 0.535 0.546 0.534

Full 0.707 0.294 0.472 0.362 0.580 0.546 0.586

Label Propagation
Without 0.653 0.248 0.472 0.325 0.553 0.582 0.546
Partial 0.633 0.234 0.472 0.313 0.544 0.570 0.531

Full 0.623 0.222 0.453 0.298 0.536 0.556 0.520

5.2 Considering Different subsets, from Different Annotators
As previously mentioned, the CO-HATE corpus annotation process involved five annotators,
with the achieved low values of IAA evincing the difficulty and subjectiveness of the task.
Therefore, in order to assess the perspective of each annotator in the hate speech classification,
we have tested several combinations of data subsets. We have used the corpus annotated
by each user independently, the corpus composed of messages labeled by all the annotators,
and multiple combinations taking into consideration the annotators that have shown best
inter-annotator agreement results. Table 4 presents the results for GAN-BERT, using subsets
annotated by each annotator and by combined datasets of the most relevant associations.
The following experiments were carried out with the two samples that achieved better results,
namely the combination of data annotated by annotators B, C, and D, and the data annotated
by all the annotators. The results for the label propagation models are shown in Table 5.
For this second model, we opted to use the data annotated by annotators A, B, and C, and
by all the annotators.

As mentioned by Carvalho et al. [6], annotators A, B, and C belong to the target groups
considered in the corpus. Comparing the IAA between this group and the one composed by
annotators D and E, who do not belong to any potential marginalized group, we observe that
hate speech is perceived differently by individuals from both groups. In fact, the agreement
rate was lower among the individuals of the target groups for almost all dimensions considered
in the guidelines. Considering the classification of hate speech, the annotators A, B, and C
had an IAA of 0.360, while the annotators D and E had an IAA of 0.735. This corroborates
the idea that hate speech identification is a very subjective task, and that the annotators’
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Table 4 Impact of the perspective of annotators in the performance of GAN-BERT model.

Acc HS Class Macro Average
Prec Rec F1 Prec Rec F1

A 0.667 0.169 0.226 0.194 0.495 0.494 0.492
B 0.530 0.225 0.679 0.338 0.552 0.589 0.487
C 0.477 0.201 0.660 0.308 0.529 0.529 0.444
D 0.687 0.275 0.472 0.347 0.570 0.602 0.571
E 0.463 0.190 0.623 0.291 0.515 0.526 0.430

BD 0.597 0.254 0.660 0.366 0.571 0.622 0.535
DE 0.677 0.266 0.472 0.340 0.565 0.596 0.563

ABC 0.667 0.169 0.226 0.194 0.495 0.494 0.492
BCD 0.700 0.287 0.472 0.357 0.578 0.610 0.581

ABDE 0.620 0.161 0.280 0.282 0.492 0.493 0.484
ABCDE 0.707 0.294 0.472 0.362 0.580 0.610 0.586

Table 5 Performance of the label propagation model based on the perspective of annotators.

Acc HS Class Macro Average
Prec Rec F1 Prec Rec F1

A 0.730 0.259 0.283 0.270 0.551 0.554 0.552
B 0.637 0.225 0.434 0.297 0.537 0.557 0.526
C 0.707 0.267 0.358 0.302 0.555 0.570 0.558
D 0.537 0.179 0.453 0.257 0.502 0.504 0.460
E 0.463 0.186 0.604 0.284 0.511 0.518 0.428
AC 0.697 0.250 0.358 0.295 0.549 0.564 0.551
DE 0.583 0.223 0.547 0.317 0.541 0.569 0.509

ABC 0.693 0.259 0.396 0.313 0.557 0.577 0.558
BCE 0.563 0.213 0.547 0.307 0.533 0.557 0.494

ABCD 0.677 0.250 0.415 0.312 0.552 0.574 0.550
ABCDE 0.643 0.240 0.472 0.318 0.549 0.576 0.538

social identity may influence the perception of HS. Taking this into account, we tried to
investigate the impact of each group on the performance of the models and assess whether
higher IAA lead to better performance. For GAN-BERT, from Table 4, it is clear that the
sample composed by annotators D and E obtained globally better results. For the label
propagation model, from Table 5, although using the data from annotators A, B and C led
to higher accuracy and precision, the F1-score for the positive class is slightly higher for D
and E.

In order to understand the potential of GAN-BERT using the FIGHT corpus, similarly
to what was done by Croce et al. [8], each message was labeled as Unknown and added to
the CO-HATE corpus. The final label given to each point was the one with the highest
confidence between Hate Speech and Non Hate Speech. This increased the accuracy of the
model, but reduced the remaining metrics so the idea was discarded.

SLATE 2022
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5.3 Ensemble Model with Additional Labeled Resources
After assessing the potential of both models individually, they were combined in order to
produce the labels for the FIGHT corpus. Each individual model used the best training set,
i.e., the pre-processed CO-HATE corpus for GAN-BERT and the original one for the label
propagation model. Table 6 shows the corresponding results for six different experiments, all
of them considering an iterative training over five epochs.

Experiment 1 consisted in adding the most confident predictions (above 0.9) given
simultaneously by both models to the training set of the following epoch. Considering that
the majority of the labels were Non Hate Speech (non-HS), we observed that the training
set was getting too unbalanced (only around 20% Hate Speech) and the performance of
the models was decreasing. To overcome this issue, Experiment 2 consisted of adding only
the Hate Speech labels, thus obtaining around 42% of hate speech. Experiment 3 consisted
of adding all the most confident predictions, including the ones given by only one model.
Although the recall increased due to the higher number of hate speech instances, the accuracy
and precision decreased, which is possibly explained by the lower confidence associated with
these labels.

In order to increase the amount of hate speech present in the training set, we have also
added ToLR-BR and HPHS. This solution significantly increased the performance of the
model, as reported in Experiments 4 and 5. However, similarly to the previous Experiments 1
and 2, adding only the positive examples turned out to be a better approach (Experiment 5).
Additionally, Experiment 6 used back translation to generate more annotated examples from
the additional datasets. For this, the hate speech sentences were translated from Portuguese
into English and then, back to Portuguese, using the Google translate API – Googletrans.4
The results reveal a significantly lower performance, possibly due to loss of context during
the translation process.

Table 6 Impact of data additions to the training set in label propagation model.

Setup Acc HS Class Macro Average
Prec Rec F1 Prec Rec F1

Baseline 0.650 0.245 0.472 0.323 0.552 0.580 0.543
1) labels in common, HS+non-HS 0.672 0.602 0.583 0.592 0.643 0.667 0.659
2) labels in common, HS 0.693 0.618 0.647 0.632 0.655 0.692 0.684
3) all labels, HS 0.669 0.568 0.789 0.660 0.665 0.669 0.668
4) additional datasets, HS+non-HS 0.713 0.676 0.573 0.620 0.693 0.602 0.695
5) additional datasets, HS 0.708 0.629 0.693 0.659 0.687 0.723 0.702
6) additional datasets, HS, back translation 0.644 0.579 0.472 0.520 0.628 0.618 0.619

Considering all the experiments performed, the final results were obtained using as initial
training set the CO-HATE corpus with the data classified by the corresponding annotators
and the instances corresponding to hate speech of the two additional datasets. Table 7
reports the results of these experiments after five iterations, revealing that GAN-BERT
requires more data in order to obtain better results. Using the data from the annotators
B, C, and D, the majority of the metrics decreased when adding the additional dataset,
especially precision. This corroborates the theory that GAN-BERT is more susceptible to
noise, as seen when assessing the impact of pre-processing. However, with the entire corpus,
we can obtain better results than the previous baseline. For the label propagation model,

4 https://py-googletrans.readthedocs.io/en/latest/

https://py-googletrans.readthedocs.io/en/latest/
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using the corpus correspondent to the annotators A, B, and C led to an increase in precision
but a decrease in the remaining metrics. Considering the entire dataset, there is a clear
increase in terms of recall and F1-score.

Table 7 Models’ performance after 5 iterations.

Acc HS Class Macro Average
Prec Rec F1 Prec Rec F1

GAN-BERT
Baseline 0.707 0.294 0.472 0.362 0.580 0.546 0.586
BCD 0.317 0.194 0.906 0.319 0.549 0.548 0.317
ABCDE 0.693 0.600 0.743 0.664 0.691 0.683 0.673

Label Propagation
Baseline 0.708 0.629 0.693 0.659 0.687 0.723 0.702
ABC 0.672 0.657 0.413 0.507 0.667 0.632 0.631
ABCDE 0.692 0.601 0.743 0.664 0.667 0.748 0.690

5.4 Final Considerations
In an attempt to compare our results with other work reported literature, we considered the
work of Breazzano et al. [5] and D’Sa et al. [10] involving Italian and English, respectively,
and a similar task, since we did not find any other previous similar work for Portuguese.
However, it is important to stress that results can not be directly compared, not only because
of the different languages and cultural aspects, but mostly because the testing datasets are
different. Breazzano et al. [5] applied GAN-BERT to several Italian hate speech. Both the
HaSpeeDe5 and the DANKMEMES [20] datasets were used in a binary classification task,
with the best model achieving a macro average F1-score of 0.633 and 0.584 and an accuracy
of 0.693 and 0.562, respectively. D’Sa et al. [10] applied a label propagation model to two
English datasets from Founta et al. [14] and Davidson et al. [9] to distinguish hate speech
from offensive and normal speech, obtaining a macro average F1-score around 0.670 and 0.710,
respectively. Considering that our task corresponds to a cross-domain scenario, we excepted
this would negatively impact the results. Additionally, since BERTimbau was trained with
Brazilian Portuguese, the GAN-BERT model can have been impacted by vocabulary used
only in European Portuguese. Besides that, for the label propagation model, the comparison
is done with English datasets, so we expected lower results due to the existence of more
morphological variations in Portuguese [26]. However, with GAN-BERT we obtained a macro
average F1-score of 0.673, and 0.702 for the label propagation model, which are in line with
the above mentioned results, reinforcing the potential of this approach.

6 Conclusions and Future Directions

In the literature, several semi-supervised learning methods have been applied in the field
of text classification and adapted to hate speech detection. However, this task is extremely
complex and subjective, and its success often depends on the creation of robust and large-
coverage language resources, which are still scarce for Portuguese. To address this gap, we
have implemented an ensemble of two semi-supervised models. The first one employs a GAN
in combination with a BERT-based model. The second model is based on label propagation,

5 https://github.com/msang/haspeede/
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which propagates labels based on similarities. The two models were combined to extract the
most confident predictions, which were added to the training data of the next iteration, in
an active-learning fashion.

We have explored the annotations of three existing corpora (CO-HATE, ToLR-BR,
and HPHS) in order to automatically annotate FIGHT, a corpus composed of geolocated
tweets produced in the Portuguese territory. Several pre-processing strategies were tested,
demonstrating good results, particularly for the GAN-BERT model. Back translation was
also tested in an attempt to generate more hate speech examples, but no performance increase
was obtained. The best results were obtained using all the corpora. Specifically, we obtained
an F1-score of 0.664 for the Hate Speech class for both models. The label propagation
approach proved to be more stable and less susceptible to noise, with similar performance to
the existing models, besides being a less complex model, and hence faster to train with larger
amounts of data. However, both models obtained good performance, especially considering
the different nature of the corpora.

In terms of future directions, we plan to manually annotate the entire FIGHT corpus, in
an semi-automatic way, and to perform further extensive cross-domain experiments involving
CO-HATE and FIGHT, using the proposed models.
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Abstract
We propose an approach to summarize large semantics graphs using namespaces. Semantic graphs
based on the Resource Description Framework (RDF) use namespaces on their serializations.
Although these namespaces are not part of RDF semantics, they have intrinsic meaning. Based on
this insight, we use namespaces to create summary graphs of reduced size, more amenable to be
visualized. In the summarization, object literals are also reduced to their data type and the blank
nodes to a group of their own. The visualization created for the summary graph aims to give insight
of the original large graph. This paper describes the proposed approach and reports on the results
obtained with representative large semantic graphs.
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1 Introduction

Semantic graphs based on the Resource Description Framework (RDF) are frequently massive,
with more than a billion triples. This order of magnitude raises several problems when
processing these RDF graphs: they are difficult to load into memory; querying them is
time-consuming, and visualization tools are virtually useless.

Graph summaries are an approach to deal with this issue. Summaries may be a smaller
sub-graph retaining only some nodes and edges; or a document in another format which
summarizes the graphs content, such as statistics on the number of nodes and edges, or its
structural features.

A common approach in graph summarization is to group nodes and edges of similar kind.
The challenge is to identify a reduced number of groups of nodes and edges in an RDF graph
so that the graph summary is both meaningful and understandable. On the one hand, the
groups of nodes and edges must retain part of the meaning of their elements. On the other
hand, the reduced graph must be small enough to be easily understood.
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Most nodes and edges in RDF have an associated Internationalized Resource Identifier
(IRI), typically an Uniform Resource Locator (URL). RDF serialization formats, such as
RDF-XML and Turtle, shorten these IRIs using namespaces. Although namespaces exist
only in serializations and are not part of the semantics of RDF, they have intrinsic meaning.

Namespaces reflect a common purpose or a common origin of IRIs. They are more than
just alias to prefixes shared by a large set of IRIs used in a semantic graph. Similar resources
described in a semantic graph typically share a common namespace. For instance, book
resources in DBpedia have a common namespace1. Also, each vocabulary used in semantic
graphs has its particular namespace, as is the case of Dublin Core or Friend-of-a-friend.

The semantics of an RDF graph has two equivalents representations: either as a set of
triples whose elements are IRIs or strings; or as a labeled multi-graph whose labels are IRIs
or strings. In a strict sense, namespaces are not part of RDF semantics. However this does
not entail that they are devoid of meaning. Namespaces reflect a commonality of resource
identifiers and vocabularies and are assigned by semantic graphs authors, not automatically
generated by an algorithm.

Based on this insight, this work explores the use of namespaces and their intrinsic meaning
to summarize RDF graphs. Certainly, we must also consider literals and blank nodes since
IRIs are not the only kind of element in RDF triples. Thus, the proposed approach maps
IRIs, literals, and blank nodes to a reduced set of identifiers to produce summary graphs
retaining part of the semantics of the original graph.

Our goal is to generate meaningful summaries from semantic graphs with hundreds of
millions of triples and produce them in a few hours. We want to understand the information
stored in the graph that otherwise we would not be able to given the volume of the data
and to visualize it in an easy way. We applied the proposed summarization method to two
large graphs, with more than a million triples: the KBpedia knowledge graph and the Linked
Movie Database. The first has over one million triples and the second over three million
triples. We were able to produce a summary graph, from which we were able to extract
visualizations and statistics.

The remainder of this paper is organized as follows. Section 2 provides background on
semantic graphs and RDF. Section 3 surveys related work on semantic graph summariz-
ation. Section 4 details the proposed approach to using namespaces for semantic graph
summarization. Section 5 reports on the use of this approach to summarize two RDF graphs:
KBpedia and LinkedMDB (Linked Movie Database). Finally, Section 6 identifies the main
contributions of this research and opportunities for future work.

2 Background

Semantic graphs store information about concepts in the nodes and the semantic relations
between them in the edges. They are associated with ontologies, formal and explicit
specifications of shared formalizations characterized by high semantic expressiveness required
for increased complexity [11].

These type of graphs are expressed in RDF where the knowledge about a given domain
is represented by triples [subject, predicate, object]. Each triple states that the subject is
connected to the object through a relation described by the predicate [7]. RDF itself contains
properties for relating subjects to objects, such as the rdf:type property, and it is also possible
to create other specific properties for the domain in question. RDF graph nodes can be an
Internationalized Resource Identifier (IRI), a literal or a blank node (an anonymous resource

1 http://purl.org/NET/book/vocab#

http://purl.org/NET/book/vocab#
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for which an IRI or literal is not given). The literals can only appear in the object position
of the triples and have associated a datatype that indicates what is the type of the content
of that literal. It can be, for example, strings, integers or dates [16]. Blank nodes can only
be used in the subject or object positions.

In some serialization formats the IRIs that identify nodes and edges can be associated
with a namespace. Common prefixes of IRIs are given smaller names to identify them,
allowing not to use the full IRI when referring to a node or edge. For example, in the RDF
Turtle serialization format, a prefix definition would be:
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
With this declaration, instead of using the RDF property type with the full IRI2, it can be
shortened to rdf:type.

These alias definitions are internal to each serialized document and have no impact on the
semantics of the graph. Nevertheless, common namespaces (from widely used vocabularies
or ontologies) are usually shortened to the same prefixes. The prefix.cc website3 contains a
crowd-sourced mapping of namespaces and prefixes [9], and it includes a namespace lookup.

Often in RDF there is the need to make statements about other statements. RDF*,
an extension to RDF is being developed to address this issue, but it is currently only a
draft [1]. RDF Reification is another approach which provides the ability to make RDF
statements to express something in a language using the language, so it becomes treatable
by the language [4]. In practice, it allows building a triple in which the subject is another
triple. As an example, if we want to represent information about the source of the triple
[ex:Gardener ex:hasKilled ex:butler], we need to construct a RDF statement about it, as in
Figure 1. This way, the reified triple can be referenced by others triples.

ex:statementExample rdf:type rdf:Statement .
ex:statementExample rdf:subject ex:Gardener .
ex:statementExample rdf:predicate ex:hasKilled .
ex:statementExample rdf:object ex:Butler .
ex:statementExample ex:saidBy ex:Nurse

Figure 1 Reification example.

KBpedia is a medium-sized open-source knowledge graph that combines leading public
knowledge bases (Wikipedia, Wikidata, schema.org, DBpedia, GeoNames, OpenCyc, and the
UNSPSC products and services) into an integrated and computable structure [3]. LinkedMDB
is a RDF graph that contains linked-data-collection of movies, actors, directors and the
relationships between them [10].

SPARQL Protocol and RDF Query Language (SPARQL) is a language for querying
RDF graphs. Through this language, it is possible, for example, to return the properties
associated with a certain class, query the instances that are part of a certain class and count
the numbers of triples [15].

Graphs can be described using the DOT language. DOT is a text based graph represent-
ation which can be transformed into a diagram using tools like Graphviz [8]. Graphviz is an
open source graph visualization software that allows to create nodes and edges with different
sizes and colors, for example. It provides eight layout engines to draw the graph [2].

2 http://www.w3.org/1999/02/22-rdf-syntax-ns#type
3 http://prefix.cc
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A trie or prefix tree is a tree data structure that stores strings. It allows to retrieve a
string from a set in an efficient way. It supports operations of insertion and lookup. For this
work, we adapted the definition of trie given in [12].

3 Related Work

Liu et al. [14] present several kinds of graph summarization methods. They distinguish
between methods for static graphs that do not consider additional information to their
structure and those for static graphs that contain attributes in nodes and arcs.

Static graphs with attributes can use the following summarization kinds of methods:
aggregation-based, bit-compression-based, and influence-based. Aggregation methods group
several nodes that share properties into a supernode, making the summary graph contain
specific properties. Others apply clustering to map each densely connected cluster into a
supernode. Bit-compression-based methods decrease the number of bits needed to store
a graph. Influence-based methods discover the description of the spread of influence by
formulating the summarization problem as an optimization process in which some information
about the influence is kept [14].

Static graphs without attributes can also use methods based on simplification or sparsi-
fication. These methods remove less important nodes or arcs, resulting in a sparsified
graph [14].

Bonifati et al. [5] present statistical and goal-oriented method types. The former is based
on quantitative measurements and the occurrence count. The latter optimizes the memory
footprint by producing a concise representation that fits in memory.

Specifically for semantic graphs, many of the available summarization methods are either
structural or statistical. Structural methods consider structural features such as paths, graph
patterns, or frequent nodes. Some of these approaches extract the most frequent graph
patterns, sub-graphs that share common types and properties. Statistical methods rely on
graph statistics, such as node type frequencies. We can combine these method types to
obtain better results [7].

A particular type of semantic graph summarization is schema extraction. If the graph
itself does not have an associated ontology, it is possible to extract a schema that acts as a
summary of the graph [7]. The extracted schema provides information on the content of the
graph, that is, what types and properties exist, and helps with its exploration [13].

Kellou-Menouer and Kedad [13] propose a schema with types and edge definitions based
on a density clustering algorithm. This approach generates types through grouping and the
description of each one of them, where each property will have an associated probability. It
then generates the edges between types by analyzing the type descriptions. The resulting
summary is a small graph showing the relationships between the different types of the original
one. The first phase of this approach is to generate the types and their description, called
type profiles, with each property having an associated probability. The following step is
to generate semantic and hierarchical edges between types by analyzing type profiles. In
the first phase, a density-based clustering algorithm is applied to group similar entities and
create a profile for each class. These profiles are used to find semantic and hierarchical edges
between types and to generate overlapping types. Type profiles are vectors of properties,
where each property has an associated probability that indicates its relative importance.

Bouhamoum et al. [6] adapt the previous approach to massive graphs. They transform
the graph into a concise representation that contains all the patterns of combined properties.
These patterns are collections of properties that appear together on one or more nodes. The
scheme results from a clustering algorithm applied to these patterns. The result is the same
if the algorithm is applied to the original graph, but is faster if applied to patterns.
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4 Approach

The UML diagram in Figure 2 depicts the three main activities in summarization process.
We start by mapping the RDF elements of each triple into groups, producing reduced triples.
Then, we count repeated reduced triples and produce a summary graph. We finish with a
creation of a visualization of the summary graph.

Figure 2 UML activity diagram.

The following subsections detail the graph summarization workflow. Subsection 4.1
describes how RDF triple components are reduced to group identifiers. Subsection 4.2
explains how a summary graph is produced from triples with a reduced number of identifiers.
Finally, Subsection 4.3 describes how the graph is visualized.

4.1 Mapping RDF elements into groups
An arc linking two nodes in a semantic graph corresponds to a triple. The subject and object
are the source and target nodes and the predicate is the arc. The elements of RDF triples
can be IRIs, literals, or blank nodes. We deal with each of these differently:

IRIs: are reduced to their namespace;
Literals: are reduced to their datatype;
Blank nodes: are reduced to a particular group.

Literals occur only as objects in triples and represent unstructured data; for instance,
a date or a number. This kind of element is reduced to the literal datatype. Blank nodes
occur either as subjects or objects in a triple and correspond to unidentified resources that
cannot be referenced from another graph. This kind of element tends to be less frequent and
is reduced to a particular group. The most frequent kind of element in a triple is the IRI
and reducing them is the core of the proposed approach.

Figure 3 shows a triple from a large graph and how its IRIs are shortened using namespaces.
The central column presents the original IRIs with the namespace prefix underlined. The
right column presents the short version of the same IRI with the prefix replaced by an alias.
The alias is also underlined and separated from the suffix by a colon.

Triple Original IRI Short IRI
Subject http://kbpedia.org/kko/rc/Abbey kko:Abbey
Predicate http://www.w3.org/2000/01/rdf-schema#subClassOf rdfs:subCLassOf
Object http://dbpedia.org/ontology/Abbey dbo:Abbey

Figure 3 Example of a triple and its corresponding triple with namespaces.

IRIs are mapped to their namespaces. This is done by
1. checking explicit prefix declarations in the RDF file;
2. checking the Prefix.cc prefix database;
3. pattern matching.

SLATE 2022
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If the RDF file being processed has any prefix declarations, these are used as the preferred
method for finding prefixes: any IRIs matching these prefix declarations are reduced to the
corresponding alias defined in the file. IRIs not reduced by the previous step are looked up
on a database of prefixes downloaded from the Prefix.cc website4, which contains a mapping
between prefixes and their common alias for almost 3000 prefixes. These prefixes are inserted
into a trie where they can be efficiently searched. For all the remaining IRIs we attempt to
find namespace prefixes by deleting trailing chunks of the IRIs and searching for common
patterns. Namespace prefixes usually end in either ‘#’ or ‘/’, so we repeatedly delete the
portion of the IRI after the last trailing ‘#’ or ‘/’, and add to the prefix list any truncated
IRI appearing multiple times.

4.2 Graph summary creation
Triples in the original graph are converted into reduced triples, with each of its elements
(subject, predicate, object) reduced to a group identifier, as detailed in the previous subsection.
Then, the reduced triples are condensed into a summary graph.

The summary is itself an RDF graph and each statement corresponds to a reduced triple.
These triples are reified RDF statements: each is attributed its own identifier, allowing
assertions about it to be made. All resources in the summary graph are identified with IRIs
on the ngs namespace5. These include triples identifications and references to groups. The
namespace is also used for a predicate that states the number of occurrences of reduced
triples, counted during triple conversion.

@prefix ngs: <https://www.dcc.fc.up.pt/~up201605706/ngs#> .
ngs:t1 rdf:type rdf:statement
ngs:t1 rdf:subject ngs:kko
ngs:t1 rdf:predicate ngs:rdfs
ngs:t1 rdf:object ngs:dbo
ngs:t1 ngs:num_occurrences 530

Figure 4 Example of reduced triples represented in the summary graph.

Listing 4 shows the set of triples in the summary that represent a set of reduced triples.
It corresponds to 530 triples in the original graph that are mapped to the single triple [kko
rdfs dbo]. That is, those 530 original triples had subjects that were reduced to kko, predicates
reduced to rdfs and objects reduced to dbo.

4.3 Graph visualization
The graph summary is then processed to be visualized. This requires the conversion of
the graph to a DOT file, using the following visual features to represent nodes and edges
characteristics:
1. node size: nodes appearing more frequently in the graph summary are represented in a

larger size;
2. node color: groups corresponding to literal data types are represented in a different

color;

4 http://prefix.cc
5 Corresponding to the prefix https://www.dcc.fc.up.pt/~up201605706/ngs#.

http://prefix.cc
https://www.dcc.fc.up.pt/~up201605706/ngs#
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3. edge thickness: triples with a higher number of occurrences in the graph summary are
represented with thicker edges;

4. edge color: edges are drawn with different colors, each corresponding to a different
group.

These visual features highlight the relative frequency of namespaces used in nodes and
edges and the connections between them. Additionally, it makes it easy to detect other graph
features such as strongly connected components, or disconnected graphs.

5 Validation

To validate the proposed semantic graph summarizing technique we applied it to KBpedia
knowledge graph.We ran the program in two ways: converting the object literals to their
data types (option 1 in the table of results) and not converting them (option 2).

Table 1 shows the number of triples that the produced smaller graph has, the approximated
time that the program took to finish to produce a graph and to write the RDF statements,
the percentage of reduction that was obtained like this: #triples−#reduced_triples

#triples ∗ 100 and
the number of triples that are processed per second: #triples

time .

Table 1 Table of results.

Graph #Triples Option # Reduced
triples

% Triple
reduction Time #Triples/s

KBpedia 1 175 147 1 159 99.99 0h07 2 798
2 442 290 62.36 01h10 280

Figure 5 shows a visual representation of the KBpedia’s summary graph. From this
summary we are able to discover several Kbpedia features.

KBpedia’s namespace for individuals, http://kbpedia.org/kko/rc/), represented in
the figure by the kko node, is both the most central node (most of the other nodes are
connected to it) and the most frequently mentioned.
The second largest node (#1) corresponds to the http://kbpedia.org/ontologies/kko#
namespace, used in KBpedia to specify ontology elements.
KBpedia uses the IRI http://kbpedia.org/kbpedia/rc# to identify the graph itself. It
is the only resource in its namespace (#2), and it connects to kko and three literal groups,
rdf:langString, xsd:dataTime and xsd:string.
Most of the predicates in KBpedia come from three different groups. The most frequently
used are rdfs and KBpedia’s kbpedia.org_ontologies_kk (corresponding to the
http://kbpedia.org/ontologies/kko# namespace, followed by owl.
The namespace http://kbpedia.org/kbpedia/rc/ (ending in ‘#’ instead of ‘/’, cor-
responding to group #7 in the figure) defines a set of classes connected only to the frbr
group (which corresponds to the http://purl.org/vocab/frbr/core# namespace).
Triples of these groups are disconnected from the core of KBpedia. This is a interesting
and unexpected insight provided by the summary.

6 Conclusion and future work

Massive semantic graphs are increasingly hard to understand and visualize. A remedy is
to summarize them into smaller graph. In most graph summarizing techniques nodes are
grouped into supernodes, and edges between them are grouped in superedges, thus reducing

SLATE 2022
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Figure 5 Visualization of KBpedia graph summary.

graph sizes. Our ongoing research explores the use of namespaces to obtain these supernodes
and edges for RDF graphs. The work presented in this paper contributes with a summarizing
technique for RDF graphs and a Python package implementing it.

In the proposed approach, RDF triple elements are mapped into groups according to
their kind: IRIs are mapped into their namespaces, literals into their data types, and blank
nodes into a particular group. The result is a collection of triples of the mapped elements,
where most triples are repeated several times. The summary graph is also an RDF graph,
where reduced triples are reified, and the nodes representing each triple record the number
of repetitions. Finally, the summary graph is converted into the DOT graph description
language for visualization.

The proposed approach was applied to large RDF graphs, one with over 1 million triples
and another with over 3 million triples. For the smaller one, the resulting summary graphs
were produced in a short time and provided meaningful information. For larger graphs,
such as LinkedMDB, results could not be obtained in a timely manner. Hence, the current
implementation must be optimized to handle larger semantic graphs.

The work presented in this paper is still in progress, and we have planned several
improvements. We will explore this approach with even larger graphs to improve the
algorithm efficiency. We will formalize graph summaries using RDF Schema, defining the
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reification of mapped triples. Finally, we will contribute a package for summarizing RDF
graphs to PyPI, the repository of software for the Python programming language, which will
be available at https://pypi.org/project/rdf-summarizer/.
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1 Introduction

Traditionally, there has been a separation between programmers and language designers.
Programmers treat languages as black boxes with their own rules, as established by the
language designers. In this model, the semantics of a language is seen as unchangeable, thus
imposing limits to its expressiveness.

Metaobject Protocols (MOPs) come to blur the distinction between programmers and
language designers, by providing programmers with an interface to modify the language. By
treating the language itself as a mutable object-oriented program, one can alter the semantics
and introduce new behaviours to the language through the abstractions made available by
the OOP paradigm. We provide two examples as motivation for the use of MOPs:

As shown in [8], a programmer might be discontent with the performance of the im-
plementation of slot accessing for objects of class A, but an implementation satisfying
performance requirements for class A could damage performance for slot accessing for
objects of class B. This, in turn, demonstrates the impossibility of the creation of an
implementation satisfying every programmer’s needs. With the use of MOPs, one can
define a specific implementation for only one class and leave the default implementation
for the remaining classes.
With MOPs, it becomes fairly straightforward to add new behaviour to existing code
without directly modifying it. Suppose that it becomes a requirement to serialize objects,
i.e., save their data to disk, each time they’re modified. One can leverage the interfaces
provided by MOPs to intercept each time object’s slots are changed and thus serialize the
object’s state as desired. One could accomplish this task with plain OOP strategies but it
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would require the creation of frontends for slot modification to be able to track changes.
This would, in turn, result in the mixture of code relevant to the object’s nature and
code responsible for serialization, two very distinct concerns. With MOPs, the handling
of these concerns would trivially be separated.

A prime example on the implementation of MOPs is the one present in the Common Lisp
Object System (CLOS).

1.1 The Julia Programming Language

One of the main problems faced in the implementation of the CLOS metaobject protocol
was guaranteeing good performance alongside the flexibility of the MOP [9]. This is a
recurring problem in the implementation of higher-level languages, known as the Paradox
of High-Level Languages [9]. The main premise of high-level languages is that they allow
programmers to better formulate what their programs do through more expressive methodo-
logies. Consequently, compilers for these languages should be able to exploit this knowledge
and output faster programs than their low-level counterparts. But reality lies on the opposite
side, meaning that there are concepts which are, in fact, not being expressed more clearly,
instead requiring programmers to provide sufficient detail to enable efficient execution. We
can further divide languages in two categories: static and dynamic languages. Dynamic
languages are seen as higher level than static languages, as they allow us to express ideas
harder to write in static languages. In the most recent years we’ve seen a fast growth in
popularity of languages featuring object-oriented and dynamic properties [11, 5]. This is due
to the increased productivity felt by developers. Python, one of these languages, is used
extensively in the fields of numerical and scientific computing, which often require large-scale
computations to be executed. One of the major complaints regarding Python is that it is
slow [12], so, to resolve that problem, a few strategies are applied:

Create libraries relying on faster languages to process more intensive operations (e.g.
Numpy, a numerical computing library for python which relies on calling C code);
Optimize the underlying compiler/interpreter (e.g. Pypy, an alternative python imple-
mentation featuring Just-in-Time (JIT) compilation);
Prototyping in this high-level language and then translating the code to a more performant
and often lower level language like C, C++, or Fortran. This last route is the one yielding
the best results performance-wise, but it falls short for relying on a dichotomy of languages,
requiring more knowledge and work from the programmer.

The Julia programming language [2], a dynamic language with a focus on performance, tries
to solve this problem. By employing strategies like JIT compilation and code specialization
on run-time types, it achieves outstanding results compared to other dynamic languages like
Python, while being close to very performant languages like C++ [1].

Multiple dispatch is used extensively in Julia. It is the dynamic dispatch of methods based
on the run-time information of all the arguments. Multiple dispatch is applied when calling
generic functions to choose which method to dispatch. “A generic function is a function
whose behavior depends on the classes or identities of the arguments supplied to it. The
methods define the class-specific behavior and operations of the generic function”[3]. This
allows for extension of the language by creating more methods for a generic function.

Julia features a very basic object system. Subtyping can only be accomplished from
abstract types, the equivalent of abstract classes in Java. So, inheritance must be planned
ahead, if one were intending to inheriting behaviour from a struct (concrete class).
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1.2 Objectives
Throughout computer language history we have seen a demand for the development of
Object Systems atop existing languages. The Lisp community saw the development of
CommonLoops [4], which joined Lisp’s procedure-oriented paradigm with object-oriented
programming. The same evolutionary strategy was applied to Objective-C, which stemmed
from the C language and became a prime example of an OOP language by just adding a small
number of syntactic features taken from the Smalltalk language while keeping compatibility
with the remaining aspects of C [7].

In this work, we focus on the Julia Programming Language. Currently, the Julia
community uses composition as a mechanism to express the sharing of functionality between
concrete types. We will design and implement, in Julia, a performant MOP alongside a more
expressive Object System.

2 Related Work

The Common Lisp Object System is an object-oriented extension to the Common Lisp[13]
language.

CLOS decouples methods from objects through the usage of generic functions. Generic
functions are functions whose behaviour depends on the types of the arguments supplied to
them. A method defines the behaviour of a generic function for a set of arguments. This
object system allows the extension of methods through the definition of method combinations.
A method combination results in the application of auxiliary methods triggered by the calling
of primary methods, the methods to which auxiliary methods connect to.

CLOS also allows the implementation of mixins, which, like inheritance, allow the sharing
of functionality, but without the relationship of subclass. This pattern avoids ambiguity
issues related to multiple-inheritance.

CLOS provides a way of changing objects structure through the redefinition of classes
at run-time. When a class is redefined, changes are propagated to all instances and the
instances of its subclasses[3].

2.1 Metaobject Protocol Implementations
Although many languages leverage MOPs to extend their functionality, we will only focus on
the most expressive one, the CLOS MOP, and another one which stands out for its different
implementation.

2.1.1 CLOS
The motivation for the development of the CLOS MOP came from the need to give developers
the ability to modify the language from a high-level perspective, i.e., without low-level
knowledge of the inner workings of the language. The CLOS language provides ways to
incrementally change the behaviour of fundamental language constructs. This is possible
through the reification of elements such as class, generic-function, and method. These
elements are said to be metaobjects and their exposure and consequent modification is what
allows for the manifestation of changes to the language semantics. As is often the case,
applying global changes to an already existing system without proper testing can lead to
unforeseen results. Furthermore, a programmer’s intent might be to just change a portion
of the language for a specific section of the program and not its entirety. This problem is
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solved by CLOS by exposing metaobjects as part of an object-oriented hierarchy capable of
being extended. As such, one can look at the semantics of the language as an object-oriented
program as well.

In a traditional class-based object-oriented language, objects, e.g, a car, and classes, e.g.,
Car and Vehicle, are related through the instance-of and subclass-of relations, as follows:

my_car Car Vehicle
instance of subclass of

The implementation of a MOP integrates metaobjects in the system through the reification
of classes. Classes are now themselves objects, instances of another class:

my_car Car Vehicle

standard-class

instance of subclass of
insta

nce
of instance of

The class standard-class is said to be a class metaobject class, or a metaclass. It defines
the behaviour of its instances, class metaobjects (Car and Vehicle in this example), which
in turn define the behaviour of regular objects (my_car in this example). We can define
a subclass of standard-class to specify new semantics for the classes Car and Vehicle,
rendering the relationship between the objects as such:

my_car Car Vehicle

special-class

standard-class

instance of subclass of
insta

nce
of instance of

subcla
ss

of

Because standard-class still exists and is left unmodified, all other class metaobjects will
exhibit the same behaviour as before the creation of special-class. Furthermore, only
classes explicitly told to have special-class as a class metaobject class will follow its defined
rules. This MOP allows one to only change a subset of class behaviour, as the remaining
functionality will be provided by parent metaclasses, i.e., standard-class will be responsible
for handling functionality not overridden by special-class, as is usual in the inheritance
relation of object systems. The selective nature of metaclass specialization is what allows for
the incremental extension of programming languages.

Listing 1 presents a concrete CLOS example of metaclass specialization from [9]: We
explain how the MOP was used to achieve a modification on the semantics of object
instantiation:

We begin by creating a new metaclass counted-class whose main goal is to give classes
the ability to track how many times they have been instantiatied. It is a subclass of
standard-class, the default metaclass. We give it a slot, counter initialized to zero to
track this number, which will be present in all classes that are instances of counted-class.
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Listing 1 CLOS Metaclass Example.
* ( defclass counted -class (standard -class)

(( counter : initform 0)))

* ( defclass counted - rectangle () ()
(: metaclass counted -class ))

* ( defmethod make - instance :after
(( class counted -class) &key)
(incf (slot -value class ’counter )))

* (slot -value (find -class ’counted - rectangle ) ’counter )
0
* (make - instance ’counted - rectangle )
#<COUNTED - RECTANGLE {10042 DAC03}>
* (slot -value (find -class ’counted - rectangle ) ’counter )
1

Then, we define a class, counted-rectangle. This macro also defines it as a metaobject
and sets counted-class as its metaobject class. The relationship between the classes is
as follows:

counted-rectangle counted-class standard-class
instance of subclass of

We define a method combination for the make-instance generic function. Method
combinations are a mechanism through which one appends functionality to existing
generic functions. In this case, we are adding instructions to be executed after the default
implementation runs. This version of make-instance is specialized for arguments which
are instances of counted-class. This method specifies what happens when a new instance
is created. In this example, we are incrementing the counter slot. This step illustrates
the essence of incremental modification - create methods that specialize for the desired
metaclasses.
The remaining instructions demonstrate how the counter from the counted-rectangle
class has been updated after creating an instance of counted-rectangle.

The CLOS MOP exposes a reflection interface that enables the program to understand
itself while it is running. In the example above, we used find-class to retrieve a class
metaobject from its name. This mechanism is essential to achieve the reification of language
constructs, which is needed for the modification of the language. Besides instantiation, the
protocol allows for the inspection and control of the following concepts:

Class precedence lists - the modification of these structures permits the reordering of
the priority of superclasses. Given that some languages possessing multiple-inheritance
exhibit different ordering schemes, this allows, for example, to port libraries from languages
similar to CLOS while maintaining inheritance priority compatibility.
Slot Access - this defines what actions are taken when attempting to access an object’s
slots.
Instance Allocation - how instances are allocated. The motivation example given in
Section 1 would have to resort to this interface in order to accomplish its goal.
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Listing 2 Julia Generic Functions and Methods.
f(x:: Integer ) = x + 1
f(x:: Real) = x + 2

The reference [9] provides an extensive list of capabilities and methods of the CLOS
MOP.

2.1.2 OpenC++

One of the main problems of the CLOS MOP is the performance hit taken. The cause for
this problem is the existence of metaobjects at run-time, which are needed to change the
semantics of the language. Although this allows for greater flexibility, it increases the level
of additional run-time logic.

OpenC++[6] is a metaobject protocol extension to C++[14] similar to CLOS but with a
very different approach. It moves all the logic of the MOP to compile time. The purpose of
this move is to incur zero run-time speed or space overhead, while still allowing the compiler
to perform optimizations. The basic system architecture is as follows: The OpenC++

OpenC++
Source

OpenC++
Compiler

C++
Source

C++
Compiler

compiler generates the metaobjects responsible for executing the protocol when compiling
OpenC++ to C++. These metaobjects intercept the parsing of regular C++ entities (e.g.,
class definitions, member access, object creation, virtual function invocation) and take control
of their compilation. In essence, these metaobjects modify the program’s semantics through
the manipulation of parse trees. The resulting modifications are then passed as a regular C++
source to a C++ compiler which doesn’t have knowledge of the MOP. With this strategy, no
metaobjects exist at run-time, thus saving time and memory. One big disadvantage of this
approach is the fact that since the protocol only acts at compile time, it becomes impossible
to apply the same changes at run-time. Another minor problem is the increase of time and
complexity of compilation.

This solution, which tries to solve the performance issues from metaobject protocols,
seems to hint the existence of a tradeoff between execution speed and flexibility, similar to
the aforementioned Paradox of High-Level Languages.

2.2 Julia
In this section, we present features of Julia that we consider relevant for our proposal. These
include patterns which allow us to build an object system and performance optimizations
capable of minimizing the overhead of our implementation.

Julia provides the concepts of generic functions and methods just like in CLOS[3]. Generic
functions are implicitly declared through the definition of methods.

We now concern ourselves with method specialization. It is an aggressive mechanism
employed by the Julia run-time which, combined with JIT compilation, generates compiled
code and caches functions based on their arguments. In Listing 2, we create a generic function
f with two method implementations: one for Real and its subtypes and another for Integer
and its subtypes. In Listing 3 we perform the respective method calls.
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Listing 3 REPL evaluation of generic function f.
julia > f(1)
2
julia > f(1.0)
3.0

Listing 4 Inspection of methods’ IR.
julia > @code_llvm f(1)
define i64 @julia_f_163 (i64 signext %0) {

%1 = add i64 %0, 1
ret i64 %1

}

julia > @code_llvm f(1.0)
define double @julia_f_182 ( double %0) {

%1 = fadd double %0, 2.000000 e+00
ret double %1

}

The Julia programming environment allows us to inspect the Intermediate Representation
(IR) of language constructs. IR is a higher level representation of assembly used by LLVM[10],
the section of Julia’s implementation responsible for generating architecture-specific machine
code and applying lower level optimizations. Listing 4 shows that although methods have
the same name, they exist in different sections of memory and possess distinct behaviour, as
one can see through the IR output by the @code_llvm macro.

As a dynamically typed language, Julia allows the programmer to omit types of parameters
in function definitions. We can take the example in Listing 4 and generalize it in Listing 5.
Intuitively, this method would result in the generation of generic code capable of receiving
arguments of any type. By handling a broader set of types, we lose the opportunity to exploit
type-specific information that would allow the compiler to optimize this method. Luckily,
the approach taken by the developers of the language is far different from this.

We can observe in Listing 6 that each method call executes different code. What this
shows is that Julia implicitly employs a JIT strategy to compile at run-time type specific
versions of a method according to its arguments. Consequently, exploiting type information
becomes possible.

2.2.1 Method redefinition

Immutability, of which Julia takes advantage of, comes as a decisive factor when it comes to
compiler optimization. The more structures that are guaranteed to stay constant, the more

Listing 5 Dynamic Typing.
g(x) = x + 1

g(1) # 2
g(1.0) # 2.0
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Listing 6 Specialization of generic function.
julia > @code_llvm g(1)
define i64 @julia_g_167 (i64 signext %0) {

%1 = add i64 %0, 1
ret i64 %1

}

julia > @code_llvm g(1.0)
define double @julia_g_186 ( double %0) {

%1 = fadd double %0, 1.000000 e+00
ret double %1

}

optimizations the compiler can perform. A function accessing variables from the outside will
have completely different assemblies depending on the mutability of those variables. If we
can assert the immutability of our system, the faster it will run. However, given the nature
of run-time metaobject systems, the opposite happens. The ability of changing program
structure at run-time is one of the main benefits of using MOPs. Luckily, we can exploit
another feature of Julia: function redefinition.

The redefinition of a method changes its behaviour and triggers the recompilation of
methods which depend on it. Redefinition allows for behaviour changes without relying
on data structures to hold mutable data. This also provides fast access to data without
compromising flexibility.

Julia is thus inserted in the group of languages allowing the modification of a program
with zero downtime, which opposes the traditional model of shutting down, recompiling, and
rerunning programs.

2.3 Problem
This section has shown two Metaobject Protocol systems and exposed a dilemma between
them: either opt for a flexible system or a performant one. The nature of these two
implementations focuses on the time-frame in which metaobjects exist: run-time or compile-
time. Our goal is to bridge the gap between these two architectures and create a performant
run-time metaobject protocol on top of the Julia language and its optimizations.

3 Solution

In this section we will describe our implementation proposal for multiple-inheritance method
dispatch and method combination mechanisms with zero run-time overhead for the Julia
language, without changing its implementation or semantics.

3.1 Class Definition
We begin by describing our class definition mechanism. One can define a new class by calling
the @defclass macro. It takes the name of the class to be defined and a list of superclasses
from which it inherits behaviour. In Listing 7, we define four classes: A, which has no
superclasses, B and C which both inherit from A, and D which inherits from B and C. This
macro is responsible for ensuring the following:



M. Santos and A. M. Leitão 13:9

Listing 7 Class definition.
@defclass A ()
@defclass B (A,)
@defclass C (A,)
@defclass D (B, C)

Listing 8 Defining and calling methods (following Listing 7).
> @defmethod bar(a::A) = 0
> bar(D())
0
> @defmethod bar(b::B) = 1
> @defmethod bar(c::C) = 2
> bar(D())
1

Create a Julia structure with the name of the class. This structure has no supertypes,
even if it is defined with superclasses.
Define the method superclasses which takes the Julia type for the class and returns the
types corresponding to the superclasses. If the class is defined without superclasses, its
only superclass is Any, the type in Julia of which every type is a subtype of.
Define the method preclist which takes the Julia type for the class and returns the
precedence list for the class. A precedence list is an ordered list of classes which determines
which are more specific than the others. This is necessary to determine from what classes
objects inherit behaviour. By default this order is determined by applying a topological
sort to the class hierarchy, similar to CLOS.
Define the method classof, which when receiving an instance of the class, returns the
class itself. This method is analogous to Julia’s typeof.

These mechanisms for retrieving class information rely on methods and not mutable data
structures or constants because:

Although constants allow for the optimization of generated code, they forbid future
changes, which goes against the purpose of metaobject protocols.
Even though mutable data structures would allow for changes in the class system, they
prevent the same optimizations done to constants.

Methods whose only purpose is to return data give us the best of both worlds: mutability
and optimizations. The only cost for mutability is recompilation time.

3.2 Method Dispatch
We now describe how we use Julia’s language feature to build a multiple-inheritance method
dispatch mechanism. We provide the @defmethod macro, that, just like regular Julia
method definitions, takes a method name, the list of arguments and optionally their types,
and the method body, as we can see in Listing 8.

This macro is responsible for:
Store an anonymous function taking generic arguments with the same method body as
the one passed to @defmethod macro. This is stored in a key-value manner, in which
the key is the list of the types of the parameters and the value is the anonymous function.
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Listing 9 Method combination.
> @defmethod foo(d::D) = println (" Primary method ")
> foo(D())
Primary method
> @defmethod foo :: before (d::D) = println (" Calling before ")
> @defmethod foo :: after(d::D) = println (" Calling after ")
> foo(D())
Calling before
Primary method
Calling after

Create a julia method, the method computer, taking generic arguments with the same
number of arguments as the one specified with @defmethod whose purpose is to select
the appropriate method to apply given the types of the arguments. If the method
computer already exists, it is redefined to include the update of the available anonymous
functions.

3.2.1 The Method Computer
The method computer is where most of the dispatch work takes place. It executes the
following steps:

Gather a list of the types of the arguments supplied to the method.
Get the list of methods whose parameters are compatible with the arguments.
Sort this list of methods in order to obtain the most specific method.
Call the most specific method by passing it the arguments received and return its return
value.

We say that a list of parameters P is compatible with a list of arguments A if:
The length of P is equal to the length of A.
For each pair (Pk, Ak) where Pk is the kth parameter and Ak is the kth argument, Pk is
in the precedence list of Ak.

A method M is more specific than some method N , with respect to a list of arguments A

if M has the smallest k for which MPk
comes before NPk

in the precedence list of Ak, where
MPk

is the kth element of the parameters of M , NPk
is the kth element of the parameters of

N , and Ak is the kth argument.

3.3 Method Combination
Currently we support the same method combination implemented by the CLOS Standard
Method Combination: before, after and around methods. See Listing 9 for an example.

Besides selecting the most specific method, the Method Computer must also take into
account method combination. To do so, it must:

Separate the method lists into four groups: before, after, around and primary. Primary
methods are those defined without any method combination specifier.
Apply the same filtering and ordering from the arguments for each group.
Generate and call an effective method, which comes from applying all valid methods from
the combination.
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Listing 10 Joining anonymous functions with join_lambdas.
function join_lambdas ( around :: Tuple , b:: Tuple , p:: Tuple , a:: Tuple)

(x...) -> begin
next = join_lambdas ( around [2: end], b, p, a)
callnextmethod () = next(x...)
callnextmethod (y...) = next(y...)
hasnextmethod () = true
around [1](x..., callnextmethod , hasnextmethod )

end
end

3.3.1 Computing the Effective Method
The effective method is an anonymous function returned by the recursive method
join_lambdas. join_lambdas receives four arguments, one for each method group.
Each call to join_lambdas attaches one method from one group, while processing one
group at a time. The order for processing groups is the same as the one specified by CLOS’
method combination semantics: around, before, primary, and after.

The method join_lambdas has a different way of joining methods depending on which
group it is currently processing:

While processing a method from the around group, return an anonymous function which
calls the method being processed. Besides receiving the arguments passed to the effective
method, the method being processed also receives two functions as arguments: next-
method and hasnextmethod. nextmethod is the next recursive call to join_lambdas.
hasnextmethod returns true if there are more methods following in the combination
and false otherwise. The join_lambdas method for processing the around group is
shown in Listing 10.
Processing the before group is much simpler. The only concern of the returned anonymous
function is calling the current method and recurring into the join_lambdas call.
Handling the primary group is very similar to the around group, given that it must allow
calling hasnextmethod and nextmethod. The biggest difference from the around
group processing is storing the return value from the call and returning it only after the
after group.
Processing the after group is identical to what is done to the before group.

We follow these steps instead of an iterative method calling approach because the JIT
can better optimize method call chains. The resulting effective method of foo in Listing 9
can be seen in Listing 11.

3.4 Integrating Julia Types
Since the classes created by our system are Julia types, the preexisting Julia types are
automatically partially supported. To fully integrate them, we need to define for the regular
types the same methods we define for classes and their instances:

superclasses is equivalent to calling the built-in function supertype and returning a
single element list;
preclist, the precedence list of a type, is equivalent to returning a list of every supertype
until the Any type is reached;
classof is the same as calling the built-in typeof.

With all of these equivalences in place, we can create methods through our @defmethod
macro with regular Julia types.
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Listing 11 Resulting effective method of foo from Listing 9 (simplified).
(x1 ...) -> begin

((d) -> println (" Calling before "))( x1 ...)

((x2 ...) -> begin
res = ((d) -> println (" Primary method "))( x2 ...)

((x3 ...) -> begin
((d) -> println (" Calling after "))( x3 ...)

end )(x2 ...)

return res
end )(x1 ...)

end

Listing 12 IR code from calling bar(D()).
define i64 @julia_foo_1266 () #0 {
top:

ret i64 1
}

4 Evaluation

We now proceed to analyse the performance of our solution. We will take two approaches.
First, to look at the LLVM Intermediate Representation (IR) language, a higher-level assembly,
generated by the JIT. Second, to compare execution times with CLOS. The following tests
were executed on an Intel Core i5-8250U 3.4GHz PC with 16GiB of RAM running the Linux
operating system.

4.1 Generated IR

We can analyse the performance of our method dispatch mechanism by taking the code from
Listing 8 and reading its IR in Listing 12. As we can see, no computation from method
dispatch is present in the end result. Only the relevant method body remains. We can
thus conclude that our multiple-inheritance method dispatch is just as performant as Julia’s
single-inheritance method dispatch.

The overhead resulting from computing the effective method in Listing 9 can be seen
in Listing 13. Just like in the previous example, no overhead is present. Not only that,
but there are also no intermediate method calls being made from the chain produced by
join_lambdas. The bodies from each method were joined into a single body. Only the code
relevant for printing is displayed. This makes the use of our method combination mechanism
equivalent to creating a regular Julia method with a body as the concatenation of the bodies
of the methods defined for the combination. This regular Julia method, defined in Listing 14
yields the same IR as the method combination in Listing 9, shown in Listing 13, thus having
the same execution times.
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Listing 13 IR code from calling the method combination of foo(D()) (simplified).
define void @julia_foo_1172 () #0 {
top:

%0 = alloca {}*, align 8

store {}* inttoptr (i64 139884251139280 to {}*) , {}** %0, align 8
%1 = call nonnull {}* @j1_println_1178 (...)

store {}* inttoptr (i64 139884243053904 to {}*) , {}** %0, align 8
%2 = call nonnull {}* @j1_println_1179 (...)

store {}* inttoptr (i64 139884260369712 to {}*) , {}** %0, align 8
%3 = call nonnull {}* @j1_println_1180 (...)

ret void
}

Listing 14 Regular Julia method equivalent to method combination in Listing 9.
function foo_effective (d::D)

println (" Calling before ")
println (" Primary method ")
println (" Calling after ")

end

4.2 Execution time against CLOS
The Steel Bank Common Lisp (SBCL) is a high-performance Common Lisp implementation.
In this section we will compare an ad-doc example of method dispatch between the SBCL
CLOS and our Julia solution. For this example, we iterate a list of objects to force method
dispatch. We have the Julia version in Listing 15 and the SBCL CLOS in Listing 16. Both
versions assume a class hierarchy like the one specified in Listing 7. Each iteration example
was ran once. The results for calling foo with arr as an argument yields times of 0.409013
seconds for Julia and 0.229447 seconds for CLOS, which means SBCL is more optimized.
However, Julia only exhibits a worse time because it cannot infer the types of the elements
of arr. If we specify arr as being an array of D, then we get a much better result: 0.000012
seconds.

Listing 15 Julia example.
@defmethod baz(b::B, n) = n+1
@defmethod baz(c::C, n) = n*2
arr = []
for i in 1:10000000 push !(arr , D()) end
foo(a) =

let y = 0
for e in a

y += baz(e, 10)
end
y

end
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Listing 16 CLOS example.
( defmethod baz ((b B) n) (+ n 1))
( defmethod baz ((c C) n) (* n 2))
( defparameter arr (make -list 10000000

:initial - element (make - instance ’D)))
(defun foo (a)

(let ((y 0))
(loop for e across a do

(incf y (baz e 10)))
y))

5 Future Work

The work presented in this paper is an element of a metaobject protocol being implemented
in Julia. Our future work is to continue adding features to our implementation in order to
get closer to levels of expressiveness of CLOS.

6 Conclusion

In this paper, we discussed metaobject protocols. We analysed two different implementations
choosing different trade-offs in terms of performance and expressiveness. Through the
described optimizations of the Julia language, we proposed a zero run-time overhead solution
to two main pieces of metaobjects protocols: multiple-inheritance method dispatch and
method combinations.
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Abstract
This paper presents the outcomes of a research project focused on the training of Computational
Thinking, resorting to a block-based visual programming language created to program an Arduino
Uno based robot. To support the design and implementation of the visual programming environment
Robi, we start discussing the relevance of Educational Robotics to motivate and engage children in
programming activities. Students usually face great difficulties to learn computer programming and
it is nowadays accepted that young people shall be trained in Computational Thinking to acquire
the skills necessary to easily solve problems within and beyond the realm of Computer Science and
Engineering. The resolution of obstacles imposed by the costs and reduced availability of typical
Educational Robotics kits, in combination with the benefits of existing block-based programming
languages, like simplicity and intuitiveness, motivated the project here reported and analyzed. We
aim at showing that Robi, a visual block-based programming language and robot programming
environment, provides an easy, accessible and intuitive platform to learn how to solve problems
programming a computer and support the training of Computational Thinking.
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1 Introduction

Computational Thinking was presented by Wing in 2006, stating that it is a method for solving
problems, or designing systems and understanding human behavior, based on the fundamental
concepts of Computer Science [25]. According to Wing, training in Computational Thinking
is not just for Computer Scientists but for all people, and should be applied from an early
age. Computational Thinking promotes the development of problem solving strategies,
logical reasoning, problem decomposition, knowledge relationship, abstract thinking, among
others [25]. It is believed that if children develop these skills from an early age, they will be
able to solve problems more easily, whether in mathematics, physical chemistry, computer
science or even in their daily lives.
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One way to develop Computational Thinking skills is to solve problems using block-
based programming environments. By using these environments, in addition to solving
problems, children also acquire Computer Programming abilities. Block-based programming
environments leverage a programming primitive-as-puzzle-piece metaphor that provides visual
cues to the user on how and where commands can be used as their means of constraining
program composition. This type of visual programming consists of dragging blocks into a
scripting area, and fitting them together to form scripts [24]. Some examples of block-based
programming environments platforms used to introduce programming are: Scratch1, mBlock2,
VEXcode VR3, Alice4. They provide a fun and engaging introduction to programming concepts
without the need to deal with complex syntactic constructs, commonly considered obstacles to
students that recently started learning text-based programming [14]. The Scratch and mBlock
Programming environments allow integration with robot kits, such as LEGO Mindstorms
and mBot - Makeblock, respectively.

The integration with robot kits provides more motivation and greater student engagement.
However, despite the benefits of block-based programming environments, their integration
with robot kits is absent or too expensive and complex for younger children.

Motivated by the benefits that robotics tools bring, which lead students to acquire not
only Computational Thinking skills but also other necessary skills such as collaboration,
cognitive capabilities, self-confidence, spatial perception and understanding [18], among
others, we decided to develop a new block-based programming language integrated with an
Arduino Uno5.

Arduino Uno is an open source micro-controller that can be easily programmed and
reprogrammed at any time. The Arduino platform was launched in 2005 for hobbyists,
students or professionals to create devices that interact with their environments using sensors
and actuators in a simple and low-cost way [19]. One of the reasons why the Arduino platform
is a low-cost product is due to the independence of the suppliers of parts and components.
This is in contrast to robot kits like LEGO, Makeblock and other manufacturers, which
have their own standard components, making them more expensive [17]. The programming
language created aims to be simple, intuitive and as iconic as possible.

This article has six sections. In Section 2, Computational Thinking and Educational
Robotics are presented. An overview of Robi Environment is provided in Section 3. Section 4
presents the visual programming language of Robi Environment. Section 5 discusses how to
use robot Robi and make it to work controlled by our programming environment. Section 6
presents the system assessment. Finally, in Section 7, conclusions and future work are
discussed.

2 Computational Thinking and Educational Robotics

Advances in technology made computing devices present in almost every aspect of daily
lives. Essential to this development, Computer Programming presents itself both as a
main topic and as one in which students face several difficulties to properly learn. By
leveraging Computational Thinking (CT) it is possible to better prepare younger students
and consequently improve their academic success later in life [22]. Being an important subject

1 Accessible at: https://scratch.mit.edu/
2 Accessible at: https://mblock.makeblock.com/en-us/
3 Accessible at: https://vr.vex.com/
4 Accessible at: https://www.alice.org/
5 Accessible at: https://store.arduino.cc/

https://scratch.mit.edu/
https://mblock.makeblock.com/en-us/
https://vr.vex.com/
https: //www.alice.org/
https://store.arduino.cc/
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of national education programs in many countries, to the extent of receiving classifications
as national objectives [16], CT is recognized as a fundamental competency for success in the
fields of Science, Technology, Engineering and Mathematics (STEM).

The International Society for Technology in Education & Computer Science Teachers
Association [10], define Computational Thinking as a process of problem solving that includes
the following characteristics: (1) formulate problems in a way that allows us to use a computer
or similar to help solve them; (2) logically organize and analyze the data; (3) represent the
data through abstractions such as models and simulations; (4) automate solutions through
algorithmic thinking; (5) identify, analyze and implement possible solutions more effective;
and (6) generalize and transfer this process to a wide variety of problems.

Teaching CT from an early age benefits students not only to overcome difficulties in
programming courses, but also to improve skills that can be crucial in other areas, such as
the development of critical thinking, abstract thinking, logical reasoning, problem solving
strategies and persistence [15, 1]. To this intent, block-based programming environments
are commonly used to keep children both interested and motivated when learning computer
programming. As an example, the Hour of Code campaign, which provides online introductory
programming activities, reaches millions of students through the use of several tools, including
visual block-based programming environments such as Scratch [8].

A resource that has stood out to train students in Computational Thinking is Educational
Robotics. Educational Robotics is a powerful and flexible teaching and learning tool,
encouraging students to build and control robots using specific programming languages.
The robot is a tangible object that students can interact with [9]. Recent reviews of the
literature on Educational Robotics in the mandatory stages distinguish its potential for
training CT and understanding concepts related to STEM areas [7, 12, 6, 2, 3, 4]. The use of
robots in the classroom, in addition to being motivating, allows the design of activities that
promote both CT and skills related to scientific and mathematical skills. In addition, it also
enhances the development of skills: cognitive, digital, social, collaborative and teamwork,
creativity [13, 5, 3, 4].

3 Robi, the Environment

Robi environment is composed of two web applications: one in the cloud, and one local
to the user’s computer6. The cloud-based web application is responsible for providing the
visual programming environment to the user and for providing downloads to the local web
application. The local web application contains a compiler service, that translates the
intermediary code developed translated by the cloud-based web application to an Arduino
compatible binary using the AVRDUDE tool, the same used by the official Arduino IDE.
Figure 1 shows the system architecture as explained above.

3.1 System Requirements and Implementation Details

Some requirements were identified for the proper design of the visual programming language,
as well as to develop the system architecture, both cloud-based and local. These included: an
IDE for programming Robi using the block-based language, the hardware upload mechanism
to send the downloaded script to an Arduino Uno based robot, and the definition of both
the block-based language and its intermediary textual representation.

6 The official Robi website may be found at the following address: https://robi.di.uminho.pt/
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Figure 1 System architecture of the Robi platform.

Among the many languages, packages and tools that could be used to develop this project,
given the authors’ experiences in similar projects, the following were chosen:

Angular for the development of the front-end;
Java, Gradle and Spring boot for the development of the back-end;
JUnit, WireMock and RestAssured for testing purposes;
Spring Rest Docs and Asciidoctor for documentation;
AVRDUDE for the final compilation and upload to the robot’s hardware.

4 Robi, the Visual Programming Language

Robi programming language was designed with the purpose of programming an Arduino-based
robot using only blocks that represent desired robot actions. For this reason, this language is
mainly composed of robot movement and sensor blocks. Besides these robot-oriented blocks,
Robi also contains classic programming-oriented blocks, such as repetition and conditional
structures, math operators, variable declaration and assignment, and a delay operation. The
intent was to represent the robot behavior programming in a high level language, directly
mapping the actions that users would expect to be executed by the robot itself.

While there would be advantages in adopting a known visual language, such as Blockly7, it
was decided that Robi should have a visual identification specifically designed to its purposes.
This decision was made based on the fact that Robi’s language is directly aimed at controlling
the robot and trying to reduce a general purpose language to fit its specifications could lead
to a series of adaptation problems.

7 Accessible at: https://developers.google.com/blockly/

https://developers.google.com/blockly/
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Listing 1 Formal definition of the Robi Programming Language.
Program : Variables INIT Block
Variables : & | Variables VARIABLE
Block : Instruction | Block Instruction
Instruction : Condition | Assignment | Loop | MoveOp Expression
Conditional : IF Condition THEN "[" Block "]"

| IF Condition THEN "[" Block "]" ELSE "[" Block "]"
MoveOp : FORWARD | BACKWARDS | TURN_LEFT | TURN_RIGHT
Loop : DO Expression TIMES "[" Block "]"

| DO WHILE Condition "[" Block "]"
Assignment : UPDATE VARIABLE TO Expression
Condition : Expression RelationalOp Expression

| Condition LogicOp Condition
LogicOp : AND | OR
RelationalOp : GREATER_THAN | LESS_THAN | EQUALS
Expression : NUMBER | VARIABLE | SENSOR

| Expression MathOp Expression
MathOp : PLUS | MINUS | TIMES | DIVISION

4.1 Formal Definition
Being an actual programming language (albeit a domain-specific one), the Robi programming
language was formally defined using a list of terminal symbols and a Backus-Naur Form
(BNF) description of its grammar. The terminal symbols mainly represent the blocks available
to the user: INIT, VARIABLE, IF, THEN, ELSE, FORWARD, BACKWARDS, TURN_LEFT, TURN_RIGHT,
DO, TIMES, WHILE, UPDATE, TO, AND, OR, GREATER_THAN, LESS_THAN, EQUALS, NUMBER, SENSOR,
PLUS, MINUS, TIMES and DIVISION.

A program is formally defined by the first rule (for symbol ’Program’) in Listing 1. The
INIT symbol corresponds to the Init block, always present in the visual code. The other
lines, after the first one referred, describe the rest of the grammar rules that define Robi
Language (see Listing 1). The symbols, both terminal and non-terminal, are self-explanatory
as to their uses. The rules form a lambda complete language that allows for the construction
of entire programs that correctly control the robot with known statements, such as variable
declaration, conditional and repetition structures and mathematical and logical operators.

Listing 2 presents an example of a program formally derived from the formal grammar to
move the robot in a specific pattern: move forward until an obstacle is detected, then turn
right; repeat three times. Listing 2 resembles an ordinary source code written in a high level
programming language, with the use of variables, execution flow statements and expressions.
While it wasn’t the purpose to have users to program directly using the formal definition of
Robi’s language, it was important to construct this definition in order to formally validate
the structure of the visual language, which follows the same rules. The visual programming
interface for the Robi environment and the block-based programming language equivalent of
the example described in Listing 2 are shown in Figure 2. The interface itself and the graphic
symbols (blocks) used to represent the language statements make heavy use of iconography,
in order to facilitate the understanding and use of Robi by younger children.

The blocks are divided into five categories. The visual programming interface aims to
facilitate its use by grouping blocks through similar colors (which may be seen on the left side
of Figure 2). This technique provides visual cues to children as to what the block represents
in a general sense. The five categories for the blocks are:

SLATE 2022



14:6 Robi, Visual Programming Environment for Educational Robotics

Listing 2 Example of a concrete program formally written in Robi’s formal language.
VARIABLE distance
INIT
UPDATE distance TO 20
DO 3 TIMES [

DO WHILE SENSOR GREATER_THAN distance [
FORWARD 250

]
TURN_RIGHT 1200

]
TURN_LEFT 1200

Figure 2 Program created in the Robi visual programming interface, equivalent to Listing 2.
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Movement contains blocks for controlling the movement of the robot, such as moving
forward or turning right (blue boxes with wheels in Figure 2);

Sensor the only block present in this category reads data from the ultrasonic sensor (yellow
pill shaped block in Figure 2);

Flow controls program execution flow with encompassing blocks, such as the pink and dark
rose containers in Figure 2;

Operators contains blocks for common mathematical, relational and logical operators, such
as the dark blue pill shaped block in Figure 2;

Variables deal with declaration and assignment of variables, which may be named with a
limit of twelve letter or digits (red blocks in Figure 2).

The interface works via drag and drop operations to add blocks to the programming
are, while connections are made between blocks by snapping actions whenever they are
in the proximity. In order to remove a block, a simple drag and drop operation from the
programming area back to the list of blocks is necessary.

5 Robi, the Robot

The intention behind building a robot and connecting it to the programming interface is to
provide children with a physical representation of the outputs that their programs actually
produce. This tactile, real-world feedback is crucial in the learning process for younger
children and greatly improves understanding for older students, specially when mediated by
an instructor or teacher [20, 23].

5.1 Components and the Platform
As said above, the robot was built with on an Arduino Uno platform, which not only
has extensive on-line documentation, but also enables the easier creation of electronic and
interactive objects. The Arduino ecosystem also contains a high amount of modules and
sensors that can be easily integrated. The components used to build the robot are available
in the official Robi website.

The set of electronic and mechanic components was purchased as a low-cost kit in a
wholesale website both for economic and logistic reasons. By basing the robot around a
readily available kit instead of building a custom platform, the whole project becomes more
affordable and easier to complete, since it may be bought worldwide. Any compatible kit
would also be suitable to use, even a custom built, as long as the same connections and
configurations are made to the individual components or the low-level definitions are adapted
to the new platform.

Figure 3, copied from [21], corresponds to the circuit diagram used as basis to create
the robot electronics and hardware. The robot uses two different batteries: one set of four
1.5V batteries for the motors and a 9V battery for the Arduino Uno. The platform is robust,
easy to build, and works almost immediately. One caveat of its current construction is the
precision loss of simple DC motors, which could be improved using stepper or servo motors.
This choice was made to simplify construction and lower the total cost of the robot, since
more precise motors would probably be the most expensive part of the build.

The main component of the robot system is the Arduino Uno which receives the program
from the computer and controls the rest of the circuit. The DC motor driver board is
connected to both motors and the Arduino Uno (GPIO pins 2, 3, 4 and 5) and allows the
rotation of each motor in both directions independently. The ultrasonic sensor is connected
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Figure 3 Electronic connections diagram for the Robi robot.

directly to the Arduino Uno through ports A1 and A2. These components and ports
definitions are important for the configuration code that is used by the Robi environment to
program the robot behavior.

5.2 Code Setup
There is a predefined configuration code for the robot to work as planned. In that code, some
basic system initialization is done (Arduino ports are defined to connect the motors and the
ultrasonic sensor, libraries are imported, and the ultrasonic sensor is calibrated) and some
support functions are defined. Listing 3 presents the code that Robi adds to any program to
bootstrap the Arduino system initialization and avoid having users worried about this part
of the process.

In order to aid the translation process from the block-based programming language to
standard Arduino source code, eight support functions are also predefined:

readPing returns a ping from the ultrasonic sensor measured in centimeters;
moveStop stops any movement;
moveForward moves forward indefinitely;
moveBackwards moves backwards indefinitely;
moveForwardCustom moves forward for a specific interval measured in milliseconds;
moveBackwardsCustom moves backwards for a specific interval measured in milliseconds;
turnLeft turns left for a specific interval measured in milliseconds;
turnRight turns right for a specific interval measured in milliseconds.

These functions assume a similar role to an instruction set of a classic target architecture
in a compilation process. They are used in the translation service as basis for the intermediary
textual representation of the block-based code. When compiled, some visual language blocks
are translated to calls to these functions inside the main loop function of the Arduino
platform, while others are translated to actual Processing directives, such as conditional and
repetition statements.

5.3 Translation and Upload
The translation from the block-based code composed in the visual programming interface to
the final binary instructions that can be uploaded to the the robot follows three steps:
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Listing 3 Basic Arduino configuration code.
# include <Servo.h>
# include <NewPing .h>

const int LeftMotorForward = 5;
const int LeftMotorBackward = 4;
const int RightMotorForward = 3;
const int RightMotorBackward = 2;

# define trig_pin A1
# define echo_pin A2
# define maximum_distance 200

boolean goesForward = false;
int distance_from_ultrasonic_sensor = 100;

NewPing sonar(trig_pin , echo_pin , maximum_distance );
Servo servo_motor ;

void setup () {
pinMode ( LeftMotorForward , OUTPUT );
pinMode ( LeftMotorBackward , OUTPUT );
pinMode ( RightMotorForward , OUTPUT );
pinMode ( RightMotorBackward , OUTPUT );

servo_motor . attach (11);
servo_motor .write (90);
delay (2000);
distance_from_ultrasonic_sensor = readPing ();
delay (100);
distance_from_ultrasonic_sensor = readPing ();
delay (100);
distance_from_ultrasonic_sensor = readPing ();
delay (100);
distance_from_ultrasonic_sensor = readPing ();
delay (100);

}

1. The block-based visual code is evaluated in the cloud-based web application and translated
into a JSON object – the equivalent of an intermediary representation in classic compilation
terms – which is then sent to the local web application;

2. The local web application receives the JSON object (see Listing 4 for an example) and
translates it into Arduino compatible source code by mapping the action nodes to either
equivalent statements or predefined support functions. It then aggregates it to the
configuration source code shown in Subsection 5.2 for final processing;

3. The local web application calls its compiler service to compile the Arduino compatible
source code from the previous step into bytecode using the AVRDUDE tools. The
compiler service then uploads the bytecode to the robot’s Arduino Uno via USB.

With regards to the JSON object, every block represents an action. That action is the
identifier that the compiler service uses to identify the original visual block and then map it
to the correct code translation. If the action corresponds to one of the predefined support
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Listing 4 JSON object for the example in Figure 2.
" blocks ": {

"0": {
" action ": " set_variable ",
" operatorExpression ": undefined ,
"value ": 20,
" variableName ": " distance "

},
"1" : {

" action ": " repeat ",
" blocksInside ": {
"0": {

" action ": "while",
" blocksInside ": {
"0": {

" action ": " move_forward ",
" operatorExpression ": undefined ,
"value ": 250

},
" operatorExpression ": "(( readPing ()) >( distance ))",
"value ": "0"
}

},
"1": {

" action ": " turn_right ",
" operatorExpression ": undefined ,
"value ": 1200

}
}

},
"2" : {

" action ": " turn_left ",
" operatorExpression ": undefined ,
"value ": 1200

}
},
" portCOM ": "4",
" variablesInScript ": [" variavel "]

functions listed in Subsection 5.2 the resulting mapping is just a call to that function. If,
otherwise, the block represents another kind of statement (flow control structures, variable
declaration etc.) than an appropriate snippet of code is mapped, taking into account necessary
grammatical analysis of expressions. The last two lines of the JSON object represent the
communication port used to upload the bytecode to the Arduino Uno and the list of variables
used in the program.

6 Robi, Assessment

Robi’s platform was tested by four children: two 7 years old, one 9 years old, and one 12
years old. Three exercises were proposed to be implemented by them in the Robi platform:
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(a) First exercise solution. (b) Second exercise solution.
(c) Third exercise solution.

Figure 4 Expected solutions for the three assessment exercises.

1. An introductory and tutorial exercise. The students should program the robot to move
forward, turn approximately 90 degrees, and then move forward again. The purpose of
this exercise was to introduce the basic concepts of block-based programming and the
Robi visual programming interface. The expected solution for this exercise is presented
in Figure 4a;

2. An intermediate exercise. The students should build upon the previous solution and
order the robot to repeat the first exercise movement ten times. It was intended to teach
students the importance of constructive and progressive learning, while introducing the
concept of loops. The expected solution for the second exercise is shown in Figure 4b;

3. A final and more advanced exercise. It was requested from the students to teach the robot
to draw a rectangle (or square). While it seems very similar to the previous exercise,
considering only its solution, this exercise was described in a way to force the children to
reason about the real world problem (moving the robot to draw something specific) and
think about strategies to transform their solutions into software. The expected solution
for the final exercise is presented in Figure 4c.

All four children were able to find a solution for the first exercise. One of the children (7
years old) took more time than the others, since he did not have practice using a computer.
This fact reinforces the need for taking students background into account when teaching any
kind of subject [11]. The other three children were able to solve the exercise without major
difficulties.

Although the second exercise was solved by all children without any difficulties, none of
them tried to search for a block that could simplify the script that they did not use in the
first exercise. After explaining how loop works and showing that among the available blocks
in the platform there were a few that could repeat a portion of code, they found and used the
Repeat block. The 7 years old child that did not have practice with computer took a little
more than the others at trying to connect the Movement blocks inside the Repeat blocks,
meaning that the use of a computer graphical interface may pose a substantial obstacles to
children that are not used to computers.

The last exercise was proposed in a way that the children had the possibility to come up
with different solutions. A 7 years old child, different from the one without computer practice,
asked about a way to simplify the act of writing the same values on all the blocks he added.
The concept of variables was explained to him and he came up with the solution presented in
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Figure 5 Third exercise alternative solution.

Figure 5. The 9 years old child also solved this exercise without the use of the Repeat block,
and the 12 years old child did use the Repeat block implying that more complex subjects
such as repetition structures may pose a heavier cognitive burden on younger children. Every
child had his or her own solution and none of them delayed solving this exercise neither had
major difficulties finding a solution.

Based on the solutions and feedback given by the children, the Robi environment seemed
to be intuitive and simple to use. The children were able to learn the basics of educational
robotics and consequently the main programming concepts themselves, while having fun in
using and teaching a robot to drive around.
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7 Conclusion

A research work based on literature review evaluated if a new platform to support Educational
Robotics would contribute to the current state of the art. After analysing some platforms
in use throughout the world, it was noticed that simplicity, intuitiveness of use, and cost-
effectiveness could be improved. We then concluded that developing Robi’s language and
programming visual platform was worthwhile, both to increase the user-friendliness of the
platform and the ease of controlling a cheap but effective Arduino-based robot, as well as to
secure the flexibility to adapt or upgrade the system in any direction.

Since the aim of this project was to develop a new programming language, the design of
a grammar was necessary to formally guide the process. The creation of a grammar has the
purpose of supporting the development of the new programming language. The grammar
rules and symbols helped with the decision of blocks that Robi system would have and the
conditions that the system needed in order to connect the blocks.

We decided to integrate the Robi platform with the Arduino Uno and its chassis car
kit, because the Arduino Uno is a well-known open source microcontroller board and has a
great amount of documentation and forums easily found all over the internet. Besides the
documentation, the Arduino Uno and the electronic components that can be connected to it,
offer a cheap approach if the desire is to build a robot. Arduino Uno can be programmed
using the Arduino IDE, which uses the AVR-GCC compiler and the AVRDUDE tool. In order
to compile the code the user writes using the visual programming language, Robi translates
the visual script to adequate Processing source code and makes use of that AVR-GCC
compiler. After the compilation is done, the bytecode is uploaded through AVRDUDE. It
was decided early on that there would be no simulators for this project, because it would
largely increase the project’s scope and time requirements, and other similar systems already
provide simulation tools.

Robi’s interface was developed from scratch. All blocks were designed using the SVG
technology, with the support of the Angular framework, which helped with the maintainability,
readability and with the code reuse. The advantage of developing Robi from scratch is that
the chosen approach provides flexibility to add, change, update or remove anything as the
developer desires. Robi features require a flexible and powerful development, such as the
visual interface reflecting the robot, or the interface that shall be as simpler as possible.

Different from the LEGO programming environment, Robi provides a web application
solution, which opens opportunities to create, in the future, a class management system or
any other advantage that a cloud solution provides.

The assessment of the Robi platform was carried out with 4 children, two of them 7 years
old. The system showed to be intuitive and simple as expected. After the exercises done
in Robi environment, the children were asked to do the same in the Scratch environment.
Children said they found it more difficult to find out where to start the program in Scratch
and felt the system was less intuitive, due Scratch being less visual and iconic than Robi. At
the end of the platform assessment, the children confirmed that Robi was a very intuitive
and simple environment to work with.

As future work, we consider that it is necessary to design and to carry out an experiment
with a larger number of children and to create and apply questionnaires to evaluate the
experiment. Since the experiment carried out was focused on ease of programming, it is
important in the future to design formal usability tests. Another important aspect is to
integrate Bluetooth in the Robot to make it more convenient and practical to load the code
to the Robot (this avoids the cable connection). In addition, other sensors or modules must
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be integrated (example: color sensor, sound emitting module, display module, among others),
so that the Robot is more complete and has more potential. Currently, Robi only has got the
platform to program the Robot. We also consider relevant to develop in the future a support
system for managing students and the exercises they solved to monitor their progress and
identify their difficulties.
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Abstract
Nowadays, the most used approach to process an XML file is based on the processing of a DOM
structure and a set of operations that collects or edits information in the model using some kind of
selectors (usually CSS-like or XPath).

Nevertheless, the process of performing a depth-first walk through the DOM, and synthesizing
values, is a simple way to traverse and transform an entire XML document.

In this document we discuss the details on the implementation and usage of a Python package
for XML document processing based on this structure. Given the existence of similar tools for other
programming languages, we will mainly focus on the used approach, that takes advantage of the
Python style guides and development patterns.
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1 Introduction

The Down-Translation is the name used in other libraries, for Perl [1] and JavaScript [7], to
refer to the approach of processing an XML Document Object Model (DOM) tree doing a
depth-first traversal, and synthesizing values.

The idea is simple: define a mashup of a dispatch table and visitor patterns [3]. The
programmer can define a function to process each type of node in the XML file. This function
returns (or synthesizes) the value of processing its children. This returned value is used by
its parent, and the values are synthesized up to the root of the document object model tree.

While the approach is known, in this article we describe the implementation of such a
processor for the Python programming language. This implementation differs from the other
two mentioned above as it does not use an explicit dispatch table, but uses Python’s own
symbol table for that purpose. This makes it easy to define XML processors as simple classes,
that can even inherit from other XML processors, allowing more specific approaches to take
advantage of other, more general, processors.

The article is structured as follows: Section 2 motivates for the use of Down-Translation
approaches for XML Processing. Section 3 discusses the implementation decisions and
presents some details on how Python features were used to provide an interesting programming
interface. Section 4 shows some examples of DT Processors. The article concludes with an
analysis of the obtained tool and future steps.
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2 DOM vs DT processing

Currently, most libraries for processing XML documents focus on the construction of the
DOM and allowing the programmer to search in the tree for specific structures. These
structures are usually encoded using the Cascading Style Sheets (CSS) [4] syntax for element
selectors, or by using the XPath [6] language path specification.

The programmer instructs the XML library to find the set of elements in the desired
positions, and to extract the required information. Most of the time, these elements are not
processed directly, but the children are visited following some other path, in order to find the
relevant information. This process is repeated until all the desired information is obtained.

Whenever a selector or a XPath path is used, the complete DOM tree needs to be
processed. Thus, every time a new query is performed, the library requires to process the
tree and find the relevant elements.

With a Depth-First approach, the DOM tree is still required, but the goal it to traverse it
only once, from its leafs to its root. During this process the programmer is able to construct
whatever he needs as an answer. It can be the creation of other XML document, and
therefore, returning a string or XML objects in each visitor, or to return a specific data
structure that represents the desired information. As a third option, each visitor can store
the desired information in any data structure, as side effects.

3 Python Implementation

In this section we will describe the details on the XmlDt module implementation. First we
will describe how the dispatch table of visitors is implemented, as well as the visitors for
special elements, like comments or textual data. Then follows the list of special methods
that the programmer can use on each visitor. Finally, a discussion on the support of hooks
and the chaining of visitors.

3.1 XML Element Dispatch Table
The Perl and JavaScript versions of the Down-Translation approach are based on dispatch
tables. These are implemented using dictionaries (hash tables or objects, to use the ter-
minology for each language). The dictionaries store a relation between each XML element
names and an anonymous functions (or lambda expression) that is responsible for processing
those elements. While this is a compact method to define such processors in these two
languages, for Python it is not so clean, as Python lambda expressions is limited to a single
statement, as the typical way of using lambda expressions in Python that require more
than one statement is to implement a named function that is, then, called by the lambda
expression. This approach would require the programmer to implement a named function for
each element being processed.

Taking this into consideration, the module was implemented using Python’s reflection
capabilities. The XmlDt module offers a super-class that the user should derive to create each
processor. The methods on this subclass are automatically assigned for processing the XML
elements with the same name. This is performed during run-time, when XmlDt looks-up
each XML element name in the class symbol table.

The programmer’s work is just to define a subclass for XmlDt, and implement methods
for each XML element needs processing. These methods are visitors of the XML element
nodes. They receive the processor object (as they are methods) as well as the element they
are visiting.
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Listing 1 Simple XmlDt to replace <b> and <i> elements by <emph> elements.
class ReplaceBoldItalic (XmlDt ):

def i(self , element ):
element.tag = "emph"
return element.xml

def b(self , element ):
element.tag = "emph"
return element.xml

processor = ReplaceBoldItalic ()
print(processor(filename="something.xml"))

While interesting, this approach has two main drawbacks, that needed to be considered:
The super-class should not pollute the symbol table, as any name used for a method
might be used in an XML element. To minimize this problem, all methods inside the
XmlDt package are prefixed with an underscore. While those are valid names for elements
on XML files, they are not common.
Note that Python has two distinct use of the underscore in method named. When using
only one underscore in the beginning of the method name, it is used to denote that the
method is private (while this is not enforced, it is the common pythonic way of describing
that property). There is also the possibility of prefixing the methods with two underscores,
and add two underscores at the end of the method name. These methods are special
methods that Python defines, and allow the implementation of special functionalities,
like the definition of a constructor or an index-based accessing function.
XmlDt uses these two types of methods. The first for internal methods, that are not
expected to be sub-classed. The second, for internal methods that include basic imple-
mentation/behavior, but that can be extended by the programmer (thus, following the
same pythonic approach for other similar situations).
From the W3C standard, the valid characters for XML element names are all valid as
method names, except the period and the dash/hyphen. To address this problem, a
Python decorator1 was implemented. Python decorators are special methods invoked at
compile time. They decor or annotate methods, and allow to add extra information to
the method. This decorator allows the programmer to implement the visitor with any
valid name, and assign it to another tag name. It can be used for any tag, but it mostly
useful when tag names include any of these two characters.

A simple example of a XmlDt processor, that processes an XML document and replaces
all <b> and <i> element names into <emph> elements is presented in Listing 1

When requiring to process an element whose name is not a valid Python method name,
the decorator mentioned before should be used. The decorator is named dt_tag and must
precede a method. This decoration specifies the XML element name that will be processed
by the visitor described. Listing 2 shows a simple example of how this decoration can be
used, to process the <TEI.2> root element.

1 https://peps.python.org/pep-0318/
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Listing 2 Method decorated with the name of the XML element the visitor should process.
class processTEI (XmlDt ):

@XmlDt.dt_tag("TEI.2")
def process_tei_two(self , element ):

# do something
return element.xml

3.2 Special element handlers
There are some other handlers that are useful, but that are not related directly to XML
elements, like the processing of text content of elements, processing comments, or even, the
possibility to define a default visitor (that will be called whenever a visitor is not found for a
specific XML element).

These specific methods have default behaviors defined in the XmlDt module, just like
other double underscore methods that are available builtin in Python. That is the reason we
chose this syntax for visitors that have a default behavior, but that can be overridden by the
programmer.

PCData the XmlDt module implements the method __pcdata__ that processes text nodes
in the DOM tree. While there is a default visitor, that returns the text with no change,
the programmer can implement its own visitor. This visitor receives the processor object
and the text, as a string.

CData by default XmlDt does not distinguishes between PCData and CData elements.2
Nevertheless, it is possible to configure XmlDt to distinguish them. In this case, the
__cdata__ visitor is called whenever such an element is found.

Comments it is not common to process an XML document and take actions accordingly
with its comments, but given that the underlying library has access to them, XmlDt
allows the programmer to perform actions on such elements, overriding the __comment__
method. By default, this method has no action.

Default when processing large XML documents, it is common that a specific set of elements
have specific visitors that need to be hand tailored, but for the majority of the elements,
their visitors are always the same. With this in mind, the __default__ method can be
overridden to define the default behavior for elements that do not have a visitor.

As an example, consider a processing tool that processes an XML document replacing each
word by its stem3. Listing 3 shows how this can be performed Using the NLTK library [2] and
XmlDt using two special methods, one to process text contents, and the other to construct
back XML elements from each node in the original tree.

3.3 XmlDt methods
There are some specific functionalities that can be useful for the programmer. While one of
the goals was not to pollute the name space for the user module, we still decided to define
standard methods, making them start with the dt_ prefix. If by some reason these names are
required as element names, the user can still use the @dt_tag decorator referred previously.

2 In this sense, follows the same approach of the lxml (https://pypi.org/project/lxml/) library, that
is the module used by XmlDt to construct the DOM tree.

3 A stem is a kind of root for similar words [5].

https://pypi.org/project/lxml/
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Listing 3 Stemming the contents of an XML file.
from nltk.stem import PorterStemmer
from nltk.tokenize import word_tokenize
from xmldt import XmlDt

ps = PorterStemmer ()

class XmlStemmer (XmlDt ):
def __pcdata__(dt, txt):

words = word_tokenize(txt)
return "␣".join([ps.stem(w) for w in words])

def __default__(dt, el):
return el.xml

It might be important to stress here why we have two distinct naming conventions. These
are methods offered by the library, that are not supposed to be overridden by the programmer.
The double underscore methods are offered as default methods that can be overwritten.

The most relevant methods and getters are:
dt_in_context This method is used to check the current visitor’s path, allowing the user

to define custom behaviors accordingly with the element context. It receives one or
more element names and return a boolean value if the current node’s path include those
elements.

dt_parent This is an accessor to the current parent’s element, allowing the addition of
further information in that element. There is a similar method to access to grand-parent
element: dt_gparent.

dt_root Similar to the accessor shown above, this allows the direct access to the document
root element.

dt_path Returns the current path of elements (does not include the element itself). This is
not a list of element names, but a list of the elements themselves.

3.4 Hooks and Chaining

To allow sub-classes to expand the way methods are searched in the module symbol table,
XmlDt uses the concept of a hook list, where the programmer can include new code to decide
which method to call for processing a specific element. This is useful, for instance, in the
HtmlDt class (described in section 4.2), where this feature is used to allow the programmer
to define methods to handle specific element classes (the class attribute from HTML).

While this feature is quite useful, it raises a problem: what visitor to call when an
element has more than one class, or if there is a visitor function for the specific class and for
the element name itself. To allow multiple visitors to be called, there is a special method,
dt_chain(el), that, whenever is called with the current element, makes XmlDt to call the
next available visitor.

The order of processing elements is as follows: first all hook methods are checked. After
hooks, the main processor symbol table is searched. Finally, the default processor is used.
When more than one hook method is registered, the used order is relevant to understand
how processors are searched.
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Listing 4 Implementation of a XML grep command line tool.
from xmldt import XmlDt
import sys
import re

if len(sys.argv) != 3:
print("Usage:␣dtgrep␣pattern␣filename")
sys.exit (1)

_, pattern , filename = sys.argv

class Grep (XmlDt):
def __pcdata__(self , text):

if re.search(pattern , text):
xpath = "/".join([e.tag for e in self.dt_path]
print(f"{xpath }:␣{text}")

return text

grep = Grep()
grep(filename=filename)

4 Using XmlDt

In this section we present three different usages of XmlDt:
1. A simple grep command line tool, that searches for a pattern in elements contents, and

present the user with information about the hit;
2. A subclass of XmlDt, named HtmlDt, for processing HTML files, and using some func-

tionalities especially useful for this kind of documents;
3. A tool to help the process of creating a XmlDt processor based on sample XML files.

4.1 XML Grep
This is a straightforward and typical use of XmlDt. The user specified a pattern and a XML
file, and the elements which content match the supplied pattern are presented as output.

The program presented in Listing 4 includes the relevant parts of dealing with XmlDt.
The details on processing command line arguments were simplified: the first argument for
the command line tool (thus, argv[1], is the regular expression, and the second is the file to
process.

This solution uses the __pcdata__ handler to perform the search and, whenever a match
is found, to print the path to that element as well as the element contents.

4.2 Processing HTML
One of the benefits of implementing the tool as a class is the possibility to create sub-classes
that inherit the default behavior of the main tool and add new features.

This allowed the creation of the HtmlDt module, that inherits the default functionalities
of XmlDt and adds some specific tools to easy the parsing of HTML documents.
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The implementation of HtmlDt defines:
the constructor for the parser including the attribute required by lxml to process HTML
files;
a decorator, named html_class, that allows the programmer to specify a function that
will process HTML elements that belong to a specific HTML class;

While the first item has a very simple implementation, just overriding the default
constructors, the second requires some Python reflection, that is, the ability to query and
change details on the program while it is executing. In this case, a hook is added to XmlDt
that searches in the Python symbol table for methods decorated with the html_class
property. The hook runs before any other method from the dispatch table, and checks if the
class attribute is present in the element being currently processed. Whenever an element
with a known class is found that specific processor is called.

Listing 5 shows an example of using the html_class decorator, to specify that, whenever
an element is found with the bold class, the element should be changed to the <b> element.

Listing 5 Example of usage of the HtmlDt module.
class AddBold (HtmlDt ):

@HtmlDt.html_class("bold")
def set_bold(self , e):

e.tag = "b"
return e.xml

While the HtmlDt class has less than 40 lines of code, the details of handling the decorators
is not simple, and are outside of the scope of this article. The most interesting part if the hook
that processes classes, and is shown in Listing 6. This hook is registered in the constructor of
the HtmlDt module. The hook, itself, receives and element and looks for the class attribute.
Existing, its value is replaced by a list of all the used classes (splitting the class list by the
space character, as defined by the HTML standard). Then each class if visited, once at a
time, following the order of use. If there is a specific method for that class, then it is added to
a list, that is returned at the end of the hook. This list is, at last, the sequence of functions
to be called by the XmlDt class.

Listing 6 Handler for class-based hooks.
def _class_hook(self , element ):

handlers = []
if "class" in element:

element["class"] = re.split(r’\s+’, element["class"])
for c in element["class"]:

if c in self._classes:
handlers.append(self._classes[c])

return handlers

4.3 Base Processor Generator
The XmlDt package distribution includes a small utility that allows to create bare processors
based on specific XML instances. The tool receives a list of XML files, processes them, and
generates a Python script with the dispatch table for all the required visitors.
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The tool has a diverse set of options, that will not be discussed here. Nevertheless, its
basic structure is quite simple. Given the ability to describe processors based on generic
XML objects (namely the __default__ handler), it is possible to gather information about
every tag element present on the supplied XML files, as well as what attributes are used for
each of these elements. Listing 7 shows a simplified version of the default element handler.

Listing 7 Simplified __default__ handler for processor generation.
def __default__(self , element ):

# register tag
if element.tag not in self.data:

self.data[element.tag] = {":count": 0}

# count number of occurrences for this tag
self.data[element.tag][":count"] += 1

# save information about existing attributes
for key in element.attrs.keys ():

if key not in self.data[element.tag]:
self.data[element.tag][key] = 0

# count attribute usage
self.data[e.tag][key] += 1

After processing the set of sample files, and storing all the information in the data
property, the tool uses a text template to generate the processor. It also includes details
on the number of occurrences of each element and attribute in the XML files as Python
comments. This information can be useful for the programmer to structure the processor.

5 Conclusion

In this short paper we describe a specific Python tool for processing XML documents. It is
based on two distinct patterns from software development: the dispatch table and the visitor
patterns.

The usage of these patterns with the Down-Translation approach, and the power of
the Python language, namely in terms of reflection, allows the creation of elegant XML
processors.

The tool is available both at PyPi4 and is open source5.
While the current status of the tool makes it usable and useful, a set of improvements

are in place for development:
Add support to process URL directly;
Add support to handlers based on the element identifier and in the element language,
taking advantage of the @id and @xml:lang attributes;
Allow proper debug of the order handlers are called when more than one can be used for
a specific element (for instance, an element might be processed by a handler based on tag
name, or HTML class, or identifier, or language);
Add support for CSS selectors for handlers.

4 https://pypi.org/project/xmldt/
5 https://natura.di.uminho.pt/svn/main/python/XML-DT/

https://pypi.org/project/xmldt/
https://natura.di.uminho.pt/svn/main/python/XML-DT/
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Abstract
Tools for Programming Languages processing, like Static Analysers (for instance, a Static Application
Security Testing (SAST) tool), must be adapted to cope with a different input when the source
programming language changes. Complexity of the programming language is one of the key factors
that deeply impact the time of giving support to it.

This paper aims at proposing an approach for assessing language complexity, measuring, at a first
stage, the complexity of its underlying context-free grammar (CFG). From the analysis of concrete
case studies, factors have been identified that make the support process more time-consuming, in
particular in the stages of language recognition and in the transformation to an abstract syntax tree
(AST). In this sense, at a second stage, a set of language characteristics is analysed in order to take
into account the referred factors that also impact on the language processing.

The principal goal of the project here reported is to help development teams to improve the
estimation of time and effort needed to cope with a new programming language. In the paper a
tool is proposed, and its prototype is presented, that allows the evaluation of the complexity of
a language based on a set of metrics to classify the complexity of its grammar, along with a set
of properties. The tool compares the new language complexity so far determined with previously
supported languages, to predict the effort to process the new language.
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1 Introduction

A SAST tool analyses source code written in a programming language and finds its security
vulnerabilities. While this solution satisfies the need (detecting software vulnerabilities),
there are other factors that need special attention in this type of tool, one of which is the
maintenance required.
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Several new practices have emerged in recent years that can improve software maintenance.
The major consideration is how to balance the enormous complexity of software with its cost,
effort, and time required for maintenance. For that, it must be adapted to handle different
inputs when the source programming language varies.

To do this, one of the first steps towards supporting a new programming language in this
tool is to create a new parser to analyse the relevant language.

The complexity of the programming language is one of the key factors that affects the time
to provide support for it. This limitation raises the need to evaluate whether the complexity
of a programming language is related to the complexity of its context-free grammar.

Thus, given the difficulties associated with the SAST engine in analysing and supporting
a new programming language, it is motivating to create a tool that selects and implements a
set of metrics and analyses a set of properties that allow us to assess the complexity of a
language.

The primary purpose of the study described here is to assist language support teams
in better estimating the time and effort required to support a new programming language.
Along the paper, we propose and present a tool for evaluating the difficulty of supporting a
language based on a collection of metrics to classify the complexity of its grammar, as well as
a set of properties. To forecast the work required to process the new language, the program
compares the new language difficulty so far identified with previously supported languages.

This Section 1 discussed the significance of maintenance, what a SAST tool is and its
limits, how complexity is to be measured, and why the provided tool was developed. In
Section 2, it is intended to focus on the main points to characterize the concepts of software,
language, and grammar in determining the complexity of programming languages and their
impact on processing. After the concepts have been introduced, Section 3 follows, in which
the DSL created for this purpose is presented in order to represent the extra-grammatical
characteristics that have to be described by those who know the language. Introduced and
described the language intended for this particular problem domain, it is fundamental to
talk about the proposal to be developed, showing its architecture and the results already
obtained to produce a quantitative and qualitative report of the language, this information
is described in the Section 4. Finally, Section 5 is the summary of the document, some
conclusions and results achieved, and a description of future work.

2 Software, Grammar, Language Complexity and the impact on
processing

Section 2 begins by introducing the concept of software complexity and its impact on the
timing of support. After that, one of the tools that allows to evaluate the complexity of
a language and grammars, is presented, explaining its relation with languages and how
grammatical complexity is defined. Afterwards, the way to measure this grammatical
complexity, by metrics, is presented. Finally, the subject of this project, complexity of
programming languages, is introduced.

2.1 Software Complexity
Knowledge about the properties of entities is obtained through measurement. In order to
relate and compare properties between entities, rules are used. Nevertheless, measurement is
not something clear or easy to define, because it is always open to subjective interpretation.
Every time we effectively measure something that was not measurable at first glance, we
expand the power of software engineering, as is done in other disciplines in this area.
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There is no theory that shows whether a set of metrics is valid. We only know that there
is a structure based on objectives for software measurement, which can improve software
engineering practices.

This structure is based on three principles: categorizing the entities to be investigated,
determining relevant measuring targets, and determining the maturity level attained.

In recent years, software complexity has been the subject of much interest in order to
define measures for measuring it. Complexity is the characteristic associated with a system
or model whose state is composed of many parts and is difficult to understand or find an
answer for. Understanding and measuring the software complexity is not something simple
and obvious.

However, measuring the complexity of the problem associated with this software is useful,
as it may prevent the effort or resources needed for the project. By comparing the problems
and considering the solutions found for the problems already solved, it is possible to predict
the properties of the new solution to the latest problem, such as cost or time.

Size along with structure are the main internal properties in measuring software complexity,
according to Fenton and Pfleeger in 1998 [6].

Size Complexity – the traditional attribute to measure in software, because it is
advantageous, accessible to measure without having to run the system, and because
software development is a physical entity.
Structure Complexity – determines the level of project productivity, as it has been
proven that a larger module does not always take longer to specify, design, code, and test
than a small one. The structure of the product affects its maintenance and development
effort.

Therefore, complexity can be assessed by quantifying a subset of software metrics that
are based on static analysis. In this way, we can better understand the language in some
aspects, such as the size and structure.

2.2 Grammar Complexity
Since any grammar characterizes a language and gave a premise for determining elements
of that language, a grammar might be considered as both a program and a specification.
Grammars formally specify languages, so the complexity of languages depends on the
complexity of grammars, even if the complexity of grammars does not fully imply the
complexity of language analysis.

In this context, the use of grammars is proposed to define the languages and support their
recognition, which leads to a strong relationship between grammar and the language that is
defined by that grammar [7]. Therefore, grammar will be one tool to assess the complexity
of a language.

Considering what has been previously presented to show the relationship between gram-
mars and languages, supporting a new programming language in a static analysis tool is
faster and requires less effort, the less complex the grammar is.

The complexity of a grammar as a characterizer and producer of a language that directs
the recognition of sentences in that language concerns how the symbols depend on each other,
i.e., the number of symbols on the right-hand side of a production for a given symbol on the
left-hand side, or how many symbols that symbol intervenes in.

Considering this, the need to evaluate the complexity of a grammar arises, since it
will allow us to evaluate the complexity of the language defined by it. Thus, the use of
grammatical metrics is relevant to the study in question.
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2.2.1 Measuring Grammar Complexity
The metrics for evaluating the complexity of a well-formed context-free grammar are presented,
dividing them into the previously mentioned criteria:

Size metrics that measure the number of symbols (terminals or non-terminals) and
productions used to write the grammar. As the grammar is the basis to recognize the
sentences of the language defined by itself, it is reasonable to state that the size of the
grammar has a direct impact on the time and effort necessary to support that language
Size Metrics

Table 1 Metrics for evaluating the Size of Context-Free Grammars.

Metric Definition
#P Number of productions
#N Number of non-terminals
#T Number of terminals
#UP Number of unit productions
RHS-Max Maximum number of symbols on an RHS
RHS Average number of symbols in the RHS
ALT For the same left sides, average size of alternative productions
MCC McCabe cyclomatic complexity

Structure metrics that measure the dependency among the symbols of a grammar induced
by its productions. Once again, we can state that the more intricate are the interrelations
among the symbols, the harder it is to support the grammar and to recognize the sentences
of the generated language. To compute those metrics, a grammar is represented as a
graph.
Structure Metrics

Table 2 Metrics for evaluating the Structure of Context-Free Grammars.

Metric Definition
#R Number of recursive symbols
FanIn Average number of branches of the input nodes (non-terminals) of the DGS
FanOut Average number of branches of the output nodes of the DGS
TIMP Tree Impurity
CLEV Normalized Counts of Levels
NSLEV Number of Non-Singleton Levels
DEP Size of The Largest Level

2.3 Language Complexity
Software security is turning into an inexorably significant differentiator for IT organizations.
Therefore, methods for forestalling software vulnerabilities during software development are
turning out to have increasing significance. The longer it takes to find the vulnerabilities,
the more costly it will be to fix, and making an already difficult situation even worse.

In order to identify existing vulnerabilities, Static Application Security Testing, abbrevi-
ated as SAST and often alluded to as “White-Box Testing”, is used. The tool performs a
security test that examines the source code of applications.
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The idea behind this type of analysis is to identify in the code the use of language
constructions that are vulnerable and can facilitate external attacks on the SW system.
Static analysis examines the text of a program statically, without running it. In Figure 1,
a high-level description of the scanning pipeline that allows for the aforementioned static
analysis of the source code will be presented.

Figure 1 An abstract, high-level model of a SAST tool.

In a comprehensive way, a SAST tool basically comprises two processes.
1. Model Builder by ingesting the source code and transforming it into a normalized,

understandable model for the analyser to decipher. A typical model is the development
of an AST, a simplified representation of the structure of the source code, where each
node in the tree is associated with a constructor of the code. In this way, the syntax is
abstract since it does not represent every detail, as it appears in real syntax.

2. Analyser based on existing security knowledge, using a series of rules to figure
out what the tool should evaluate within the source code. It is critical to customize and
calibrate these rules to suit a specific application, as this allows for more reliable and
worthwhile results. The feasibility of these methods is the main inner component of a
SAST tool, from a customer’s point of view.

The analyser based on current security knowledge process is irrelevant to the goal project
since the challenge of supporting a new programming language resides in the model’s builder
process, because the language in which the source code is produced influences the static
analysis process.

Taking this into consideration, the complexity of a language is defined by the complexity
of the grammatical structure and the semantic properties, these two factors thus highlight
the time and effort needed for support.

In this sense, the complexity of supporting a new language in this case study is strongly
related to the AST generated [8]. For this reason, for the support to be more productive, at
the level of less time and effort, the programming language in which the code under analysis
is written, should generate an AST with the following characteristics:

Dense: No pointless nodes;
Convenient: Patterns in the tree are straightforward and quick to discern;
Significant: Emphasize operators, operands, and the connection between them.

The initial two focuses infer that it ought to be simple and quick to identify patterns in
the tree. In order to gather as much useful information as possible about each node, it is
usually necessary to make multiple passes over the tree.

The last point infers that the tree structure ought to be insensitive to changes in the
grammar.
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Besides this strong relationship, there is another aspect that the complexity of the
programming language influences, since when the tree is generated there are properties of
the nodes that have not been assessed so far and are necessary in order to detect as many
vulnerabilities as possible.

In general, it is intended that each node of the AST contains the following properties:
Name: Symbols are identifiers like x and y, yet they can be operators as well, as for
example, the symbol known as the addition operator (+);
Category: The thing like the symbol is. Is it a class, method, variable, name, etc. To
approve a method called x + y, for instance, we want to realize that + is a method to
add 2 or more values, not a variable or class.
Type: When the symbol is a variable, there is an interest in knowing what type it
concerns, in order to be able to subsequently approve certain operations. Normally, the
software engineer needs to explicitly distinguish between each type of symbol (in some
languages, the compiler assumes this).
Scope: The scope of a symbol restricting is the part of a program where the symbol is
valid, that is, the place where the symbol can be utilized to refer to the element.

The cost of supporting a programming language in a SAST tool is a function of many of
its properties. The following is one of the main characteristics1 present in a real programming
language that influences the complexity of support in this type of application.

Declaration in a programming language is a statement that determines the properties
of a symbol. A declaration introduces a program Entity identified by a unique name (an
identifier), its category (function, variable, constant, etc.), its type (in case it is a variable or
constant) or if it is a function what it accepts as input and output, it can also declare things
like the size of a type.

▶ Example 1. Consider for example the same code written in different programming languages,
Python, Java, JavaScript, respectively, to declare the same variables and the same function.

def main ():
x = 13
y = " Python !"

public class Main {
public static void main( String [] args) {

int x = 13;
String y = "Java!";

}
}

function main () {
let x = 13;
var y = " JavaScript !"

}

A declaration conveys the “meaning” of a symbol, which highlights that this property is
related to semantics and not syntax. However, there is interest in analysing this because of
the extra effort needed in the Builder process.

1 In order to make the document as compact as possible no further features will be described, but the
reader is warned that there are other relevant properties.
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The fact that a declaration is used to communicate the presence of an entity to the
compiler means that, in dynamically typed languages such as Python, it is unnecessary to
specify the variables; the runtime interpreter does the verification work. Considering the
present case study, as shown, a static analysis tool does not execute any code. For that
reason, in order to detect as many vulnerabilities as possible, it needs to do the work of the
compiler.

In comparison, for example, to the extreme that a language that is strictly typed like
Java, C# or C++ explicitly defines the data type when creating a symbol, which makes
vulnerability detection easier than most things will be known, allowing reasoning and analysis
with confidence.

There is also the case of the JavaScript language, where the variable declaration is
dynamic but allows you to write using explicit types, getting the advantages of a strongly
typed language. This makes the static analysis of vulnerabilities easier than dynamically
modifying them.

3 A DSL to describe the properties of a Programming Language

As mentioned and demonstrated, there are aspects of programming languages that grammar
metrics cannot measure or capture, but which have a huge impact on the support, particularly
when it comes to a static analysis tool.

In this sense, a domain-specific language (DSL) was created with the goal of describing the
features of a programming language that bring positive or negative impact to the moment of
support. The Properties Language is used in programming languages to define the substance
of linguistic features and paradigms.

This language was not created with the intention of acting as documentation for a specific
language, but it does include in its design various characteristics and notions that allow for
an assessment of its complexity.

The formal definition of the DSL to describe the Properties of a Language is shown in
Listing 1.

Listing 1 Formal Definition of the Properties Language.
language -> header properties
header -> name ( version )?
name -> ID
version -> VERSION
properties -> paradigms

( SEMICOLON propertyDeclaration )?
( SEMICOLON propertyIndentation )?
( SEMICOLON propertyMemory )?
( SEMICOLON propertySemiColon )?
( SEMICOLON feature ( SEMICOLON feature )*)?
DOT

paradigms -> PARADIGM COLON paradigm (COMMA paradigm )*
paradigm -> nameParadigm ( weight )?
weight -> DOLLAR NUM
propertyDeclaration -> DECLARATION COLON typeDeclaration ( weight )?
typeDeclaration -> STATIC | DYNAMIC | BOTH
propertyIndentation -> INDENTATION COLON useIndentation ( weight )?
useIndentation -> YES | NO
propertyMemory -> MEMORY COLON typeMemory ( weight )?
typeMemory -> MANUAL | AUTOMATIC
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propertySemiColon -> STRSEMICOLON COLON isMandatory ( weight )?
isMandatory -> YES | NO | OPTIONAL
feature -> featureName COLON LPAR observations RPAR ( weight )?
featureName -> STR
observations -> observation (COMMA observation )*
observation -> STR

NUM -> ’-’? [0 -9]+
STR -> ’"’ ( ~( ’" ’))* ’"’
VERSION -> [0 -9]+ ((’.’ [0 -9]+)+)?
ID -> [a-zA -Z]+

The language concepts presented are quite explicit, in that the terminology used literally
means that name. The phrases in this language are precisely the features of a programming
language. Briefly, a reference about the name of the paradigms in which it can be any within
a short list created and selected by the author.

Regarding the content of each list is one or more items within a paradigm, either a
predefined feature or a free one that the user wants to describe. For each of these items, an
associated weight (positive or negative) is optionally defined, thus translating the possibility
of translating the impact of this element on the processing complexity.

▶ Example 2. The following is an example of the description of the properties of the Python
programming language, according to the DSL presented above.

Python 3.10.4

PARADIGMS : object - oriented $3 , procedural , functional ,
structured , reflective ;

DECLARATION : dynamic ;

INDENTATION : yes $-1 ;

MEMORY : automatic $1 ;

SEMI -COLON : no ;

" Anonymous functions " : [
" Implemented using lambda expressions ;

however , there may be only one expression in each body"
];
" String interpolation ": [

"The process of evaluating a string literal containing 1..*
placeholders , yielding a result in which the placeholders are

replaced with their corresponding values ."
] $20;
"Triple - quoted ": [

" Beginning and ending with three single or double quote marks .",
"May span multiple lines and function like documents in shells "

]
.
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4 A Tool to determine Programming Language Complexity

Although there are some similar tools, such as the SynQ tool [9, 10], the SdfMetz, SdfCoverage
[1, 2] and the gMetrics tool [3, 4] or even the GQE tool [5], that provide information about
the complexity and quality of a grammar, this tool differs in its ultimate goal, to measure the
complexity of a language rather than the grammar. However, these tools already demonstrate
that grammar metrics are important for understanding the complexity of a grammar, therefore
their implementation. Furthermore, this tool brings innovation, as it allows for an evaluation
of linguistic properties through a new DSL.

Figure 2 Language Complexity Evaluator, architecture.

The diagram of the grammatical representation of the tool under development is depicted
in Figure 2. The tool, Language Complexity Evaluator (LCE), is an application that reads
any ANTLR grammar (that is, any grammar written in the ANTLR metalanguage) and
any text written in the metalanguage built by the author, generating values for each of the
metrics under consideration and extracting knowledge from the properties provided. The
user has the ability to analyse these values, as well as, observe a series of automatically
generated considerations from a series of predefined rules. In this way, the user can easily
predict whether the language is of low or high complexity.

Currently, the LCE tool is available as an open source project at https://lce.di.uminho.
pt/ and supports a variety of operations, the most notable of which are:

Recognize a grammar in the ANTLR format and the description of features in the
previously presented DSL format;
Compute the size and structure metrics previously presented;
Extract the knowledge from the features described using the DSL and their associated
weights;
Draw conclusions from the results obtained in the two previous phases.

4.1 Main Results
This subsection seeks to demonstrate the real application (using as a case study a well-known
programming language) of the Language Complexity Evaluator tool, described above, in its
present state publicly available.

The purpose is to demonstrate the advantages of utilizing this tool to estimate the time
and effort needed to handle a new programming language in an SAST tool.
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To do this, an actual grammar of a programming language will be utilized as a case study
to demonstrate the various outcomes offered by the tool.

Python will be the programming language utilized as a case study. This programming is a
general-purpose language, adaptable, and powerful. Because it is brief and easy to read, it is
a good first language. Python can accomplish just about everything, from web development
to machine learning.

The grammar that specifies the Python programming language, developed for ANTLR
v42, and the description of the same programming language’s features, shown in Example 2,
are then considered as input files.

The outcome of the LCE tool’s evaluation of the complexity of this language will be
reported in two stages: first by the results of the metrics acquired from the grammar, and
subsequently by knowledge extraction using the linguistic attributes supplied. Finally, some
conclusions obtained from these two phases will be provided.

This tool effectively completes and automates the entire procedure, it also includes visual
representations of the grammar structure and the Dependency Graph between symbols
(DGS), as can be seen in the Figures 3 and 4.

Metrics Results
Tables 3 and 4 show the calculated values for each previously established grammatical

metric in Tables 1 and 2.
Size Metrics

Table 3 Results of metrics for evaluating the Size of Context-Free Grammars.

Metric Result
#P 122
#N 86
#T 89
#UP 6
RHS-Max 7
RHS 3.877
ALT 1.419
MCC 2.721

Structure Metrics

Table 4 Results of metrics for evaluating the Structure of Context-Free Grammars.

Metric Result
#R 48
FanIn 5.5
FanOut 2.703
TIMP 43.917
CLEV 46.512
NSLEV 2
DEP 35

2 The lexer and parser grammar can be found in the grammars-v4 repository of ANTLR.

https://github.com/antlr/grammars-v4/tree/master/python/python3
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Knowledge

Example 2 offers a brief overview of some of Python’s linguistic features. The
knowledge extraction received from LCE may be used to confirm the main characteristics
of this language, such as:

It includes five programming paradigms, one of which, object-oriented, has a weight of
three units. The tool also creates the following assignments: the functional paradigm
received a value of three units, the procedural paradigm received a value of two, and
the others received a value of one (reflective and structured). This takes the overall
weight associated with the paradigms to 10 units.

As for the linguistic features themselves, seven were indicated, and four of them did
not have an associated weight. The tool assigned a support weight to these features
(declaration type, whether it enforces the use of semicolons, Triple-quoted feature, and
the anonymous functions feature). Regarding the declaration type of variables and the
use of semicolons, since both properties have a great impact on static vulnerability
analysis, a weight of 9 and 10 units respectively was assigned. As for the other
characteristics, a weight of 5 was assigned to each. This takes the overall weight
attributed to the features to 49 units.

Complexity Considerations

The considerations, derived automatically by the tool, are actually helpful to the
users. It gives complexity assumptions, letting the end user to reason about the language’s
support.

In terms of grammar, LCE tool produces the following complexity issues:

A high size of the largest level indicates an uneven distribution of the non-terminals
among grammatical levels;

The CFG is very large, in terms of productions and symbols, with many unitary
productions and a low percentage of non-terminal recursive symbols, which contributes
to its ease of understanding, manipulation, and maintenance.

In terms of features, LCE tool produces the following complexity issues:

In a language that does not require the use of semicolons, it makes the support process
in a static analysis tool extremely complex, because it involves additional effort to
figure out where an instruction begins and ends.

This language by allowing a type declaration as dynamic does not require explicitly
defining the data type when creating a symbol, making vulnerability detection more
complex, as it is necessary to perform the compiler’s work beforehand in order to know
the information inferred by it, thus requiring more support effort.

This programming language requires its scopes to be delimited by their indentation,
so the lexical analyser needs to do some work beforehand, since it needs to count the
indentation, detect whether the block opens or closes, or whether it is the same, thus
making the support process more time-consuming.

SLATE 2022
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Figure 3 Visual representation of the grammar.

Figure 4 Visual representation of the DGS.

4.2 Predicting the effort to process a Programming Language
automatically

In order to predict the effort to process a programming language automatically, MongoDB is
used to store the previous languages already analysed for long-term storage, the information
stored and used in the comparison are the metrics calculated, and the knowledge extracted.

MongoDB is a NoSQL document database that uses JSON-like documents to store data.
MongoDB is used to store all language information.
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This information comprises headers, paradigms, features, size metrics, and structure
metrics. From the paradigms of a given language, a similarity search is performed with the
languages already stored, and then the corresponding languages are presented with their
respective values.

Following the same format as the previous part, a new case study will be introduced and
analysed, this time to compare the complexity of programming languages.

▶ Example 3. The following is an example of the description of the properties of the
JavaScript programming language, according to the DSL presented above.

JavaScript

PARADIGMS : event -driven , functional , imperative ,
procedural , object - oriented ;

DECLARATION : dynamic $7 ;

INDENTATION : no ;

SEMI -COLON : optional $9 ;

" Scoping " : [
" Function scoping with ’var ’",
"Block scoping with the keywords ’let ’ and ’const ’"

] $13;

" Weakly typed" : [
"Means certain types are implicitly cast depending

on the operation used"
] ;

" Anonymous function " : [
"A function definition that is not bound to an identifier .",
" Anonymous functions are often arguments being passed to

higher -order functions or used for constructing the result of
a higher -order function that needs to return a function "

] ;
"Run -time environment " : [

" typically relies on a run -time environment (e.g., a web browser )
to provide objects and methods by which scripts can interact

with the environment (e.g., a web page DOM )."
] ;
"First -class functions " : [

" Function is considered to be an object ",
"A function may have properties and methods ",
" Created each time the outer function is invoked "

] ;

" Promises and Async/await" : [
" Supports promises and Async/await for

handling asynchronous operations ."
]
.
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The Example 3 shows a description of the properties of another programming language,
JavaScript, according to the DSL presented above. With its grammar available in the same
ANTLR grammars-v4 repository mentioned above, it is possible to make an automated and
readable comparison between the two languages presented through the tool.

Figure 5 Comparison of results between Python and JavaScript.

Figure 5 compares the metrics collected, and the various paradigms introduced, along
with their associated weights. Aside from this information, feature descriptions with weights
for each language may be found independently.

In summary, the grammar used to express JavaScript is far bigger than Python’s since it
contains more productions and terminals; nevertheless, at the structural level, the JavaScript
grammar is more like a graph in which the symbols are connected, whereas Python’s is more
like a tree. When it comes to attributes, the tool always depends on what the user describes,
but based on these two samples, we can deduce that Python total was 49 and JavaScript
total was 55. There are three common paradigms, and only the languages differ in the weight
they place on the Object-Oriented Paradigm.
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Therefore, the user may simply compare the material supplied by the LCE tool to the
languages already supported, allowing them to forecast the work required to support a new
programming language in its static analysis tool.

5 Conclusion

Along the paper, we examined ways to assist language support teams in improving their
assessment of the time and effort necessary to deal with a programming language that is not
yet supported in a Tool for Programming Languages processing, like Static Analysers.

The approach followed for assessing the language’s complexity starts by first evaluating
the difficulty of its underlying CFG. Factors causing the support process to take longer
were found through the investigation of real case studies, particularly during the phases of
language recognition and transformation to an AST. In this regard, in a second phase, a
collection of linguistic traits is assessed in order to account for the aforementioned elements
that also have an influence on language processing.

This research led to the development of a tool, available at https://lce.di.uminho.pt/,
that allows for the evaluation of a language’s difficulty based on a set of metrics to rate
the complexity of its grammar with a set of properties. Furthermore, the tool analyses the
difficulty of the new language as identified thus far with previously supported languages in
order to forecast the effort required to process the new language.

5.1 Future Work
An important task, to be done in future work, is to improve the grammar considerations and
the description of the provided features, using real grammars and linguistic properties of
programming languages.
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Abstract
Representing words with semantic distributions to create ML models is a widely used technique
to perform Natural Language processing tasks. In this paper, we trained word embedding models
with different types of Portuguese corpora, analyzing the influence of the models’ parameterization,
the corpora size, and domain. Then we validated each model with the classical evaluation methods
available: four words analogies and measurement of the similarity of pairs of words. In addition
to these methods, we proposed new alternative techniques to validate word embedding models,
presenting new resources for this purpose. Finally, we discussed the obtained results and argued
about some limitations of the word embedding models’ evaluation methods.
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1 Introduction

The use of word embedding models to create words’ numerical representations is a widely
used technique in natural language processing tasks. In this paper, an analysis of the word
embedding models’ training and validation was performed where we observed the influence of
training parameterization and the classical methods of evaluating these models and measuring
their quality.

In this paper, to train word embeddings, three corpora were used: a thematic corpus
with reviews from the Portuguese trip advisor; The AC/DC corpus from Linguateca that
contains cultural content, literature, news, etc. and corpora from Opus Projec; A corpus of
an encyclopedic nature extracted from the Portuguese Wikipedia.

Firstly, we created several models with the same corpora with different hyper-parameters
such as vector dimensions and epochs and even created models with different architectures:
Skip-gram and CBOW. Then, to make some assumptions about these models, we validated
them with the usual evaluation methods, four-word analogies, and measuring two-word
distance. Furthermore, during the validation process, we also observed the differences in
creating word embeddings with different types of corpora with different sizes, analyzing the
results of each model.
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In addition to these, we also propose new validation methods and resources to make better
judgments about the model’s behavior. The created resources are based on the minimum
distance classification to a set of class classifiers allowing us to calculate words’ polarity,
classes and similarities to multiple concepts. During the creation of these resources, we tried
to use a domain-specific language, so they were easy to use and adapt to new problems.

We also identified some problems that we faced during this work associated with the word
embeddings’ evaluation methods and the limitations of this word representation method.

2 Related Work

Recently, interest in word embedding models has been increasing since they have played
an essential role in improving the performance of several natural language processing tasks.
In English, there is already a wide variety of word embedding models trained in different
contexts, however, for Portuguese, it is not always easy to find pre-trained models that satisfy
our requirements.

In recent years, several papers were published where word embeddings created from
Portuguese corpora were trained and validated. In [15] they trained word embedding models
in Portuguese corpora with 536 805 758 tokens and validated them with a set of resources
generated in [9, 7, 8, 1] and [2], later translated into Portuguese in [13].

In [6] 31 word embedding models were trained on a Portuguese corpus with 1 395 926 282
tokens using four different techniques: FastText, GloVe, Wang2Vec and Word2Vec. In
this paper they evaluated the word embeddings using semantic analogies and task-specific
evaluations such as POS and other sentence semantic similarity tasks. Here they concluded
that word analogies were not appropriate for word embedding evaluation and that using
task-specific evaluations appeared to be a better option.

In [11] they created a new Portuguese test set for Portuguese word embeddings validation.
This validation method is focused on lexical-semantic relations and was compared to previous
word embeddings evaluation methods.

Other works have been done recently where pre-trained word embeddings have been
used to initialize task-specific models in order to transfer their vocabulary knowledge to
other classification tasks. An example of this is [3] where several ML models were initialized
with pre-trained Portuguese word embeddings and then trained to perform Named Entity
Recognition on Portuguese archival documents.

3 Models

In order to train our word embeddings, we used the Word2vec technique with two different
models, Continuous Bag-of-Words(CBOW) and Skig-Gram [9]. A CBOW model uses the
word’s context to predict the current word, i.e., using the N words after and before the token
to calculate its representation. Then the model uses a sliding window to go through all the
words of the training corpus. Skip-Gram models are similar to CBOW, however, instead of
using the word’s context to predict the hidden word, given a word, it predicts other words in
the sentence, its neighboring words. Training models with both methods allowed the creation
of a high dimensional semantic vector space where words with similar semantic meaning are
close in distribution.

To train word embedding models, we used the Gensim library [14] that allowed us to
fine-tune the model hyper-parameters. In this paper, we trained several different models with
different configurations of vector dimensions, epochs and architectures. To keep the models
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Table 1 Corpora used for the training of word embeddings.

Corpus Sentences Tokens Characters

Wikipedia-PT 13 551 925 298 505 778 1 905 522 756

TripAdvisor 98 778 1 040 654 6 486 772

LinguOpus 30 346 096 638 513 424 3 670 306 994

organized, we used a notation to name our models depending on the training hyper-parameters:
corpus-dimensions-epochs-architecture. For example the model wiki-300-20-cbow is a
CBOW model trained with 300 dimensions and 20 epochs.

4 Datasets

In this paper, we created several word embedding models using three different datasets
(Table 1): Natcorpus-TripAdvisor PT – TripAdvisor reviews, Portuguese Wikipedia and
LinguOpus corpus.

Wikipedia-pt

The Portuguese Wikipedia corpus was obtained from a Wikipedia dump made on 2022-04-01,
which contained approximately 152 million sentences made up of 903 million tokens. Despite
this, the raw format used by Wikipedia contains a lot of non-linguistic elements, so we had
to perform some data cleaning. The resultant dataset is constituted only by the textual
elements of the original wiki corpus.

Natcorpus-TripAdvisor PT

The Natcorpus-TripAdvisor PT is composed of 13 158 reviews of hotels, near 1 million words,
written in Portuguese, from TripAdvisor . These reviews also contain a assessment (1..5). It
includes Portuguese from Brazil, Portugal, Angola, Moçambique, Cabo Verde and Timor.
The reviews contain emojis abbreviations, errors.

LinguOpus

LinguOpus includes texts in European Portuguese obtained from two main sources: the
Linguateca1 corpus [16] and the Opus Project2 [17]. From the first, all corpora tagged as
European Portuguese were used. From the second, the Portuguese part of European parallel
corpora was used. In addition to these two main sources, it also includes some Portuguese
parts from the Per-Fide3 project corpora ([4]), namely Le Monde Diplomatique, The Vatican
Corpus and the European Central Bank corpus.

1 https://www.linguateca.pt/ACDC/
2 https://opus.nlpl.eu/
3 http://per-fide.di.uminho.pt/
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5 Evaluation Methods and Resources

The classic evaluation method of embeddings models consists of computing word analogies
such as vector("King") - vector("Man") + vector(”Woman”) expecting that the result-
ing vector is closest to the vector("Queen"). Another way to validate these models is to
calculate the proximity between pairs of words and compare the result with a value estimated
by humans, normally between 0 and 10.

5.1 Available Resources
In English, there are several resources that can be used for evaluation purposes, such as [9]
and [1]. Some of these resources were later translated to Portuguese, enabling to validate
models trained with Portuguese corpora. In this paper, we use the following test corpus to
validate our models: LX-4WAnalogies, LX-WordSim-353, LX-SimLex-999 and LX-Rare-Word
from [13] and NRC-EIL [10].

LX-SimLex-999 – Portuguese translation of [7]. In this dataset, the proximity between
pairs of words was calculated on a scale between 0 and 10. During the translation of this
dataset, the proximity value was recalculated to adjust to the Portuguese language. In
total, it contains 999 pairs of words: 666 pairs of noun-noun, 222 pairs of verb-verb and
111 pairs of adjective-adjective.
LX-Rare Word Similarity – Created from [8]. It contains about 1 017 pairs of words
extracted from Wikipedia and WordNet and the proximity score associated with each
pair. During the translation of this dataset, the proximity value was recalculated and
adjusted to the Portuguese language.
LX-WordSim-353 – Created from WordSim-353 [1] containing 353 pairs of words and
their proximity scores. All these pairs received a human judgment on a proximity scale
from 0 to 10. In this case, the proximity scores were preserved during translation.
LX-4WAnalogies – Created from the Portuguese translation of a test dataset used
in [9]. This dataset contains analogies represented by sets of four words, for example,
"Brussels Belgium Lisbon Portugal". In total, this dataset contains five sections
with 8 869 semantic analogies and nine sections with 10 675 syntactic analogies.
NRC-EIL (PT-BR) – The NRC Emotion Intensity Lexicon [10] contains a list of words
paired with eighth basic emotions (anger, anticipation, disgust, fear, joy, sadness, surprise,
and trust) and their proximity score. In this paper, we used the Portuguese version of
this resource that was translated automatically using Google Translate in 2018.
LX-Battig – Portuguese translation of an English dataset [2]. This resource contains
83 terms associated with ten different categories: mammals, birds, fish, vegetables, fruit,
trees, vehicles, clothes, tools and kitchenware.
TALES – Teste para Analogias Lexico-Semanticas (TALES) [11] is a Portuguese testset
focused on lexical-semantic relations, that uses the analogies method, however, accepting
more than one acceptable answer for each analogy.
The creation of this resource was inspired by [5] but created from scratch for the Portuguese
Language, containing relations such as Hypernymy, Meronymy, Synonymy and Antonymy.
It is a balanced testset with a total of 14 test files with 50 entries each.

5.2 Created Resources
In addition to using several already available resources to validate the quality of our word
embedding models, we decided to create our own resources and methods in order to have
more information about our models’ behavior. Thus, we present Class-Sim (Classifier by
Similarity) and Analogy-DD (Analogy Declarative Description).
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Listing 1 NAT-WordSim-1 dataset (YAML) used for Class-Sim method.
- section : polarity - section : class - animais

clas: clas:
- [bom] - [ave]
- [mau ,horrivel ,fujam] - [mamifero , cao , gato]

testes : - [peixe]
- [ acolhedor , 0 ] testes :
- [ adorei , 0 ] - [ melro , 0]
- [ ridiculo , 1 ] - [ aguia , 0]
- [ amavel , 0 ] - [ macaco , 1 ]
- [ ruidoso , 1 ] - [ elefante , 1 ]
- [ horror , 1 ] - [ tubarao , 2 ]

Classifier by Similarity
The first method that we created was a classifier by similarity (Class-Sim), which tests
whether the model is able to associate words with its corresponding class. For that, we
created a new YAML dataset NAT-WordSim-1 (Listing 1) that is divided into sections.
Each section contains multiple classes and a set of words associated with one of those classes.
The principle behind this method is for the model to measure the cosine similarity of each
word with all the classes of the section. Then it assigns each word to a class by choosing the
minimum distance value of the word to all the available classes. Note that each class can
be made up by more than one word. Then, we validate if the words get assigned with the
correct classes.

The resources used to perform this evaluation method are publicly available 4 containing
a dataset with three classes: Geo (27 samples), class of Animals (22 samples) and Polarity
(86 samples) with a total of 135 word samples. The polarity samples were extracted from the
TripAdvisorPT corpus.

Finally, the corpus LX-Battig was also parsed into the YAML format present in Listing 1
to use it with the Class-Sim evaluation method.

Analogy-DD
Analogies are a very elegant way to show / see if a word-embedding captured a relation
(semantic, syntactic, ...) between terms.

The analogy tests, previously described, focus in a set of relations that related to encyclo-
pedic knowledge (country-capital, country-currency, city-in-state), grammatical relations,
and family relation.

With Analogy-DD initiative, we intend:
to discuss analogies, their underlying relations and properties;
to define a declarative notation to describe facts and analogy types;
to create a sets of facts based on relations;
to build a set of tools that generates analogies from the previous facts. The generated
analogies tests

The problem of analogies and relations is in fact complex. Relations have different
signatures and properties.

4 https://github.com/lfcc1/slate22-wemb
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Consider the following situations:
multiple answers. Example:

country-people: England : English :: Poland : x ∈ {polaco, polonês}
transitive relation. Example “is-a” (classification) is a transitive relation; cat is a feline,
but also a mammal and an animal:

is-a: ant : insect :: cat : x ∈ {feline, mammal, animal}
multi word elements. Example:

capital-country: Lisboa : Portugal :: Londres : x ∈ {Reino Unido, Inglaterra}

Consider the following extract from a Analogy-DD in Portuguese:

# Relações para uso na geração de Analogias (e outros)
# V0.3 2022-05-01

# $1(ferramenta) é_usado_para $2(actividade,V)

martelo :: pregar, martelar
verruma :: furar
chave de fendas :: aparafusar
berbequim :: furar
lixa :: lixar
serrote, serra :: serrar

Notes:
line 1,2 – metadata
line 3 – defines a schema of a new section:

$1(ferramenta) – a value selected from the the first column (this value is a ferramenta
(tool),
é_usado_para – (is used to) name or the relation,
$2(actividade,V) – value selected from second column (a activity, POS=verb)

line 4...9 – tuples. Example: lixa :: lixar can be read lixa é_usada para lixar.
An analogy is built by joining 2 different tuples. (Ex: serra : serrar :: verruma : ?furar).
Some assessment tools may need explicit constrains (no multi-word allowed on the
elements (like chave de fendas), or no variants allowed on the answer (like pregar or
martelar) – .

Analogy-DD may have:
several sections;
with several relation schema;
tuples may have 2 or more fields;
each field may have several values (separated by “,”).

The current version of the Portuguese Analogy-DD has 37 sections (near 37 relations),
410 tuples, and generates more then 5000 analogy lines5.

5 This number may change according to the selected options.
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6 Results

In this section, the results of the experiments made in this work are presented. Initially, we
trained several models with vectors of different dimensions in order to analyze the impact of
this hyper-parameter on the model’s performance and computational cost.

Figure 1 Comparison of vector dimension with accuracy and execution time on LX-4Analogies
task.

In Figure 1 we have a performance analysis of models trained on the Portuguese Wikipedia
corpus, where several models with different word embeddings dimensions were trained and
then validated with the LX-4Analogies dataset. As we can see in Figure 1 (Left), the model
trained with 50 dimensions obtained an accuracy of 25%. As we increased the dimensions of
the word embeddings, the model’s accuracy also increased, reaching values of approximately
50% with 300 dimensions vectors. However, models trained with dimensions number greater
than 300 were not able to obtain higher results. In fact we registered an accuracy decrease
in models trained with 700 and 800 vector dimensions.

On the other hand, in Figure 1 (Right), we performed an analysis at each model’s
validation execution time. This Figure shows that the execution time is proportional to the
number of dimensions used to train the models. Thus, since models trained with dimensions
greater than 300 did not obtain superior performances, we decided to use models with 300
dimensions to perform the tests in this paper. This dimensional value is consistent with most
of the related work done in this field where several researches [12],[9],[6] concluded that the
models achieved the best performance by using 300 dimensions.

Then we also analyzed the models’ behavior with different epoch values.

Figure 2 Comparison of models epochs with accuracy on LX-4Analogies task.
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Table 2 Models’ accuracy results with Class-Sim method and Analogies.

Model NAT-WordSim-1 LX-Battig Analogies-DD LX-4WAnalogies

TripAdvisorPT 95.06 oov 5.19 4.13

LinguOpus 79.55 41.77 21.04 29.86
wiki-300-70-sg 86.36 66.67 23.91 50.86

wiki-300-50-sg 86.36 62.82 24.29 50.76

wiki-300-20-sg 84.78 67.95 22.74 51.01

wiki-300-10-sg 84.85 66.67 22.57 49.77

wiki-300-70-cbow 75 38.46 21.26 35.65

wiki-300-50-cbow 71.21 38.46 21.43 35.70

wiki-300-20-cbow 74.24 39.74 21.65 35.91

wiki-300-10-cbow 75 34.62 20.35 31.08

In Figure 2 we can see the accuracy of the model trained with different epoch numbers,
validated on the LX-4Analogies dataset. Increasing the model epochs from 10 to 20, we see
that the models increased their performance, especially the CBOW model from 32% to 36%,
which is a considerable performance gain. However, going upwards with the epoch number,
the models’ performance remained stable in this concrete task.

6.1 Analogies and Class-Sim
Then we validated the models with our evaluation resources, starting with the Class-Sim and
analogies resources. In Table 2 we can observe the results of the Class-Sim and analogies
evaluations on eight models, six of them trained on the Portuguese Wikipedia corpus with
the Skip-gam (sg) and CBOW (cbow) architectures, vector dimensions of 300 trained with
10, 20, 50 and 70 epochs. Note that some models were not able to perform some validation
tests due to the excess of out of vocabulary words (oov).

Firstly we have the NAT-WordSim-1 test corpus evaluated with the Class-Sim method.
In this evaluation, we can see that the TripAdvisorPT was the model that obtained higher
results. In fact, this evaluation dataset contains a high number of polarity test samples
extracted from the TripAdvisor reviews. One could say that this model was the one to create
better polarity associations between the words used in this test resource. This is expected
since the TripAdvisorPT model was trained with the same data as this evaluation test.

We can also see that the models trained on the Wikipedia corpus with Skip-gram
architecture could obtain better results than those trained with CBOW.

Then we have another Class-Sim evaluation test with the LX-Battig. In this case, the
TripAdvisor model was not able to produce any results because it was trained in a very
specific domain (reviews from Trip Advisor). As such, it cannot recognize most of this
test resource vocabulary. The model that obtained higher results in this test case was the
wiki-300-20-sg.

Secondly, we have analogies evaluation resources. Again, the TripAdvisorPT model
obtained low results in these test cases due to its limited vocabulary. On the other hand,
some models were able to achieve results of 51.01% in the LX-4WAnalogies dataset and
24.29% on Analogies-DD. As stated in Section 5, the Analogies-DD resource was created in
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Table 3 LX-4WAnalogies accuracy results by section.

Section wiki-300-20-sg wiki-300-20-cbow TripAdvisorPT LinguOpus

capital-common-countries 83.55 47.4 oov 25.97

capital-world 67.65 30.48 oov 19.09

currency 28.92 6.59 oov 5.58

city-in-state 51.01 13.94 oov 4.29

family 59.29 57.62 13.33 48.57

gram1-adjective-to-adverb 9.85 13.05 0 10.47

gram2-opposite 23.19 24.82 3.57 19.38

gram3-comparative 56.67 63.33 16.67 43.33

gram4-superlative 8.18 14.55 3.57 9.52

gram5-present-participle 69.57 72.15 0 65.44

gram6-nationality-adjective 76.46 61.87 0 54.19

gram7-past-tense 58.11 59.32 1.39 45.31

gram8-plural 47.7 29.6 3.33 31.01

gram9-plural-verbs 39.15 46.3 4.17 50.49

Total accuracy 51.01 35.91 4.13 29.86

order to generate a higher variety of analogies. We consider that the generated analogies
are harder to predict since most of them would accept multiple words as a correct answer.
Considering this property, the models are expected to obtain lower validation values.

After this, we decided that it was crucial to create a view of these evaluations that was
able to show the analogies’ results by section. In Table 3, we can analyze the results of the
models’ validation on the LX-4WAnalogies resource, being possible to observe the model’s
accuracy associated with each domain section. A view that allows us to analyze the results
of each section instead of total accuracy gives us more accurate information about where our
model fails, allowing us to make better judgments about its behavior.

Analyzing the models trained on Wikipedia, the Skip-Gram model obtained better overall
results than the CBOW model, achieving an accuracy of 51.01% and 35.91%, respectively.
In fact, the Skip-Gram model managed to obtain results above 80% in the section of capitals
and common countries, 67.65% in the remaining capitals of the world, and 76.46% in the
nationality-adjective section. Since the Portuguese Wikipedia corpus is encyclopedic, it
contains information about all countries and the relationships of their corresponding capitals
and nationalities, making this type of evaluation strongly favorable to this model. However,
when we look at the grammatical sections, we see that this model obtains lower results,
reaching accuracy values of 9.85% and 8.18% in the gram1-adjective-to-adverb and gram4-
superlative sections. These results may occur because Wikipedia is not a grammatical corpus
and does not contain enough information about the words’ morphology.

To learn the word’s grammatical relations the model would need a larger variety of
morphological and grammatical samples. These are more frequent in literary and everyday
texts, and less frequent in encyclopedic corpora. For example, the adjectives’ superlatives
are rarely present in Wikipedia texts.

On the other hand, we verified that the model trained with the Portuguese TripAdvisor
corpus obtained lower results in this test, 4.13% of accuracy overall. Again, the reason for
this could be that this model was trained with fewer data in a specific context, limiting
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Table 4 Models’ word similarity validation results with Pearson/Spearman correlation coefficient.

Model LX-WordSim-353 LX-SimLex-999 LX-Rare Word NRC-PT

TripAdvisorPT 28.70 / 25.27 22.84 / 21.73 33.08/ 29.80 14.85 / 12.57

LinguOpus 42.49 / 41.69 25.65 / 22.74 49.67/ 48.34 22.93 / 21.97
wiki-300-70-sg 52.53 / 56.00 34.16 / 32.41 50.69 / 49.79 28.16 / 26.63

wiki-300-50-sg 52.53 / 56.00 34.16 / 32.41 50.76/ 49.75 28.16 / 26.63

wiki-300-20-sg 52.50 / 55.67 34.90 / 33.06 51.63 / 50.67 28.28 / 26.70

wiki-300-10-sg 51.97 / 55.15 35.63 / 33.96 51.89 / 50.70 28.77/ 27.39

wiki-300-70-cbow 41.26 / 41.57 26.74 / 24.29 48.16 / 46.46 26.08 / 24.42

wiki-300-50-cbow 41.63 / 42.42 26.86 / 24.45 48.02 / 46.28 26.15 / 24.57

wiki-300-20-cbow 41.77 / 42.50 27.91 / 25.54 47.65 / 45.65 25.81 / 24.38

wiki-300-10-cbow 41.73 / 42.56 26.02 / 23.80 44.63 /42.80 24.03 / 22.79

its acquired knowledge to the domain of its training data. We also verified that it did not
obtain a classification in some sections. This was because the model’s vocabulary is not
extensive enough to represent words of some domains, such as the countries, capitals, and
nationalities present in the LX-4WAnalogies dataset. In this way, we could not perform some
of the validation tests.

6.2 Word Similarity Results

With the Class-Sim and analogies tests validated, we proceeded with another evaluation
method, Word similarity.

In Table 4 we have the validation results of the models trained with different epochs. We
performed word similarity tests in this validation, measuring two different metrics to validate
the word embedding models, the Pearson and Spearman correlation coefficient. As can be
seen, contrary to tests with analogies, in the word similarity tests, CBOW models are able
to obtain results similar to Skip-gram models, sometimes even superior.

Looking at the results’ variation based on the number of epochs of the models, we can
say that this parameter did not have significant relevance to the results, mainly from 20
epochs upwards.

Again the TripAdvisorPT was the model that obtained the worst results for the same
reason we already discussed in the analogies validation. On the other hand, the Wikipedia
model was the one that obtained the higher correlation coefficients, followed by the LinguOpus
model.

Looking at the validation tests, we can see that the NRC-PT was the test where the
models produced the worst results. One possible reason could be that this dataset was
translated from English to Portuguese using Google Translate, keeping the word proximity
scores. However, the semantic similarity between pairs of words may change across different
languages due to linguistic and cultural differences, negatively affecting the models’ results.
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Table 5 TALES accuracy results by relation category.

Relations wiki-300-20-sg Correct Questions Total Questions

Synonym-of-N 12.01 3824 31852

Synonym-of-V 12.64 4337 34302

Synonym-of-ADJ 10.47 3079 29402

Antonym-of-ADJ 20.20 495 2450

Purpose-of-D 12.27 601 4900

Purpose-of-Inv 11.12 817 7350

Part-of-D 10.54 2583 24500

Part-of-Inv 9.90 2668 26950

Hypernym-of-abstract 11.07 1085 9800

Hypernym-of-concrete 12.20 1495 12250

Hypernym-of-ACCAO 12.69 1866 14700

Hypernym-of-ACCAO-Inv 13.09 2245 17150

Hypernym-of-Inv-abstract 12.03 2357 19600

Hypernym-of-Inv-concrete 11.53 2542 22050

Total accuracy 10.62 27326 257256

6.3 TALES
In order to use TALES resource we had to use the Vecto package6. Vecto was used with default
parameters i.e., accuracy for the performance measurement and vector offset (3CosAdd) [9]
for the analogy solving method. Only one model was used in the TALES validation method,
which was the wiki-300-20-sg model. In this validation test we can observe the performance
of our model in 14 different lexical-semantic relations subcategories, Table 5.

In this test we were able to achieve 10.62% of accuracy, with our best score being the
Antonym-of-ADJ relations with 20.20% and the Part-of-Inv relations being the validation
test with lower results, 9.9% accuracy. Comparing this results with the original TALES
paper, in [11], using the word2vec-SkipGram architecture they were able to achieve 10% of
accuracy which is almost the same value achieved by our model.

7 Problems during validation

During the word embeddings validation, we encountered some problems that could negatively
affect the models’ performance measurement.

Starting with the already available datasets used in this paper, in the case of the words
similarity evaluation, we have seen that some of these resources are translations from English
to Portuguese, preserving the similarity score between pairs of words. Despite some of
the translations being made carefully involving more than one human translator, keeping

6 https://github.com/vecto-ai
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the same similarity value can be problematic due to the cultural and semantic linguistics
differences between different languages. Sometimes it is impossible to map words between
different languages while keeping the exact same meaning.

For example, in the resource LX-WordSim-353 (English version) we have the following
pairs of words, "football" and "soccer" with a similarity score of 9.03, which makes sense
since football and soccer are both sports and can share much semantic meaning between
them. However, looking at the Portuguese version of this resource, this entry was translated
to futebol futebol 9.03. In Portugal, soccer is one of the most influential national sports,
and when the word football is mentioned, it usually refers to the English word soccer. In
this example, both "football" and "soccer" were translated to the same word, "futebol",
however, the similarity score remained the same. In this case, the model will measure the
distance between the same word vector, which will return a proximity score of 10 (maximum
proximity value), however, the validation expects it to return a proximity score of 9.03.

Another problem found in these resources during the translation process was that some
words were translated into multiple words. For example the the entry "gem jewel 8.96"
was translated to “pedra preciosa joia 8.96” where the word "gem" is translating to "pedra
preciosa". This evaluation entry could be invalid for evaluating word embedding models
that use vectors to represent single words.

Finally, when we validated our models with the LX-Battig resource with the Class-Sim
method, we encountered a limitation in the word embeddings mechanism. This evaluation
classified each sample class by minimizing the distance between the words and all the classes.
Using the Wikipedia model, we were able to achieve results of 67.95%. Then we decided to
analyze the samples that the model failed to classify to draw conclusions about the model’s
behavior. Some words the model was unable to classify included “cat”, “lion” and “tiger”,
which the model classified as fish instead of mammal. In this case, we found out that the
model considers the words cat, lion, and tiger closer to the class fish because it is association
these tokens with the cat fish, lion fish, and tiger fish which are all described in detail in the
Portuguese Wikipedia.

Other words the model failed to identify were “Pereira” and “Oliveira” (pear and olive
tree), which were identified as person names instead of tree names. In Portugal, due to
historical reasons, some tree names are common names of people, which confuses the model.
In this case, using only one vector to represent a word can cause ambiguity when a word can
be interpreted differently depending on its context domain.

8 Conclusions and future work

Some final claims:
Word embeddings’ results are very sensitive to changes on the configuration parameters
used in the creation.
The preprocess stage is very important.
The available public resources for testing have several important issues, and often are
concerned with irrelevant questions. Nevertheless, they are very useful for tuning and
improving models. In some of these evaluation tests, 50% of their entries test whether a
successful model can determine the capital of a country. We believe that this type of test
may not be an optimal indicator to generalize the performance of the model.
It is crucial to analyze specific examples of the discordant results in order to understand
what is being tested and is being learned (surprises are frequent).
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Designing new tests and new use cases proved to be challenging and rich. We end up
building a set of functions that will probably constitute a python toolkit in the near
future.

For future work, one experiment that would be interesting is to use all the corpora used
in this paper to train only one final model and re-evaluate it to understand how the merge of
data would affect its performance. Another experiment would be to create contextualized
word embeddings, generating multiple word vectors for the same word depending on its
context domain. This would allow overcoming some problems we observed in this paper,
where a word with different meanings could be hard to disambiguate.

As for our validations resources, we intend to increase the size of the Analogias-DD and
NAT-WordSim-1 datasets, adding more samples from a wider variety of domains. By doing
so, we would be improving the quality of this evaluation method.
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Abstract
Learning programming boils down to the practice of solving exercises. However, although there are
good and diversified exercises, these are held in proprietary systems hindering their interoperability.
This article presents a simple scraping tool, called ScraPE, which through a navigation, interaction
and data extraction script, materialized in a domain-specific language, allows extracting the data
necessary from Web pages – typically online judges – to compose programming exercises in a standard
language. The tool is validated by extracting exercises from a specific online judge. This tool is part
of a larger project where the main objective is to provide programming exercises through a simple
GraphQL API.

2012 ACM Subject Classification Applied computing → Computer-managed instruction; Applied
computing → Interactive learning environments; Applied computing → E-learning

Keywords and phrases Web scrapping, crawling, programming exercises, online judges, DOM

Digital Object Identifier 10.4230/OASIcs.SLATE.2022.18

1 Introduction

Programming courses are part of the curriculum of many engineering and science programs.
These courses rely on programming exercises to foster practice, consolidate knowledge and
evaluate students. The enrolment in these courses is usually very high, resulting in a great
workload for the faculty and teaching assistants. In this context the availability of many and
diversified programming exercises from different sources is of great importance [4]. Unfortu-
nately, there are only a few sources to get, in an automatic way, programming exercises. Some
notable examples are the online judges, which can be defined as repositories of programming
exercises with automatic evaluation capabilities. These systems are often used by students
around the world to train for programming contests such as the International Olympiad
in Informatics (IOI)1, for secondary school students; the ACM International Collegiate
Programming Contests (ICPC)2, for university students; and the IEEExtreme3, for IEEE
student members. Despite their usefulness, these systems do not have a simple mechanism
to obtain programming exercises (e.g. an API). In fact, only a few offer interoperability
features such as standard formats for their exercises and APIs to foster their reuse in an
automated fashion. In this field, the most notable APIs for computer programming exercises
consumption are CodeHarbor4, FGPE AuthorKit5, and Sphere Engine6. Still, they are not
simple to use and expose a small number of exercises.

1 https://ioinformatics.org/
2 https://icpc.global/
3 https://ieeextreme.org/
4 https://github.com/openHPI/codeharbor
5 https://github.com/FGPE-Erasmus/authorkit-api
6 https://sphere-engine.com/
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This poses a big problem for teachers who, due to lack of time, often resort to exercises
from previous years. This recurrence hinders diversification and innovation in the practical
part of programming courses, which is crucial for their evolution in this area.

This article presents a tool called ScraPE that allows, through a script formalized by a
very simple domain-specific language (DSL), to extract data from Web pages (mostly online
judges). The script defines a set of steps to navigate, interact and extract data to compose a
programming exercise and its direct serialization to a standard language (YAPeXIL [3]). The
tool will be used to mitigate the cold-start problem [5] in a larger project where the objective
is to provide a simple and flexible GraphQL API for accessing programming exercises that
can be consumed by several learning systems.

The remainder of this paper is organized as follows. Section 2 analyzes several of existing
online judges to select the most suitable to feed a repository of programming exercises.
Section 3 presents an automatic scraping tool to extract programming exercises. Then, in
order to evaluate the effectiveness and efficiency of this approach, in Section 4, a report on
the use of ScraPE in the TIMUS online judge is presented. The final section summarizes the
main contributions of this research and plans future developments of this tool.

2 Online Judges

An Online Judge (OJ) is a system with a set of programming exercises that can be used by
anyone to practice for programming contests. These systems can compile and execute your
code, and test your code with predefined data. The code being submitted may run with
restrictions, including time and memory limit, and other security restrictions. The output of
the executed code will be compared with the standard output. The system will then return
the result. When the comparison fails, the submission is considered unsuccessful and you
need to correct any errors in the code, and resubmit for re-judgement.

Although there are several online judges, they do not provide any kind of API hindering
its automatic consumption. In addition, those who provide these API return exercises in
disparate formats, which leads to the need to use converters to harmonize formats. With this
scarcity of exercises and given the difficulty of creating promptly good exercises, teachers
often reuse exercises from previous years, which limits creativity [1].

In this section we survey online judges that present programming exercises. Since there
are a large number of online judges, a set of criteria was applied to filter the set and thus
obtain those that will be the most suitable to be used as a data source for the system to be
implemented.

In a first phase we select 72 online judges. Then, in order to narrow the dataset we
applied sequentially a set of criteria:
1. Statements in English language;
2. Statements in HTML format;
3. Public problem set (without the need to register/login in the OJ)
4. Minimum number of exercises (nEx >= 1000)

Based on these filter criteria, only 17 OJs were selected. Then, all OJs were analyzed and
validated according to their coverage in the YAPeXIL format [3]. The YAPExil format is
currently the most expressive format to represent a programming exercise [2]. It is formalized
by a YAPExIL JSON Schema (Figure 1) which can be divided into four separate facets:

Metadata – which contains simple properties providing information about the exercise
(i.e., a description, the name of the author of the exercise, a set of keywords relating to
the exercise, the level of difficulty, the current status, and the timestamps of creation and
last modification;
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Presentation – which relates to what is presented to the student (i.e. the statement – a
formatted text file with a complete description of the problem to solve – embeddables –
an image, video, or another resource file that can be referenced in the statement –, and
skeleton – a code file containing part of a solution that is provided to the students;
Assessment – which encompass what is used in the evaluation phase (i.e. solution –
a code file with the solution of the exercise provided by the author(s), test – a single
public/private test with input/output text files, a weight in the overall evaluation, and a
number of arguments –, and test_set – a public/private set of tests);
Tools – which includes any additional tools that the author may use in the exercise (i.e.
generate the feedback to give to the student about her attempt to achieve a solution and
the test cases to validate a solution).

Figure 1 YAPExIL data model.

Each Online Judge was analyzed and its coverage in the 4 facets was verified. Table 1
presents the results of this study.

Based on these results, we can state that LeetCode, CodeChef, TIMUS, URI and Kattis
are the OJs with higher YAPExIL coverage values, thus offering a higher guarantee that the
exercises provided by the future API are more complete in terms of information for the end
user.

3 ScraPE

ScraPE is a basic tool for scraping online judges on data related with programming exercises.
The ultimate goal of this tool is to be used as a cold-start facilitator in a bigger system
currently being developed which aims to provide a GraphQL API to anyone that want to
get free programming exercises. This system will be based on a GraphQL server (Apollo)
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Table 1 Online judges comparison based on YAPExIL covereness.

YAPExIL facetsOnline Judges #exercises Metadata Presentation Assessment Tools TOTAL

UVA 4300 20% 0% 0% 0% 5,00%
TIMUS 1157 95% 50% 0% 0% 36,25%
URI 2296 95% 50% 0% 0% 36,25%
Peking 3054 90% 45% 0% 0% 33,75%
Zhejiang 3179 75% 35% 0% 0% 27,50%
Kattis 3380 95% 50% 0% 0% 36,25%
LeetCode 2262 95% 50% 25% 0% 42,50%
CodeForces 78013 80% 25% 0% 0% 26,25%
DMOJ 4233 75% 25% 0% 0% 25,00%
Dunjudge 1707 80% 25% 0% 0% 26,25%
TopCoder 2122 65% 25% 0% 0% 22,50%
CodeChef 5001 95% 50% 25% 0% 42,50%
E-olymp 8325 85% 25% 0% 0% 27,50%
Toph 1548 90% 25% 0% 0% 28,75%
Hackerearth 1612 75% 25% 0% 0% 25,00%
LightOJ 1025 80% 25% 0% 0% 26,25%
Aizu 3023 85% 25% 0% 0% 27,50%

composed by a GraphQL schema, a resolver, a noSQL database where the exercises will be
stored in YAPExIL format and a HTTP client to expose the API. Learning systems and/or
individuals will use this API to feed their courses.

3.1 The schema
ScraPE uses a DSL to represent a script which is responsible by all the actions made on
web pages from navigating to extracting data. The DSL is formalized as a JSON Schema.
Listing 1 presents the action sub-schema, as will be explained below.

Listing 1 Action schema.
{

" $schema ": "http :// json - schema .org/draft -04/ schema #",
" description ": "A schema to formalize an Action ",
"type ": " object ",
" properties ": {

"page ": { "type ": " string " },
"query ": { "type ": " string " },
"type ": { "type ": " string " },
" output ": { "type ": " string " },
" actions ": { "type ":" array", "items ": {" $ref ": "#/ defs/ Action " }}

},
" required ": [" type", "query", " output "]

}

The Action sub-schema is composed by five properties. The page property is the web page
where the scraper will start extracting data. The query property represents a CSS selector
that will be used to find the desired DOM nodes. The type property is a enumeration of all
the action types that can be made in the selected element:
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GET – get DOM element(s) or attribute(s) based on a query;
FILL – inject text in a selected text box or select an item in a selected combo box;
CLICK – click in a selected button, radio button or checkbox.

The output property is a string which defines the name of the property to be created in
the output file.

The execution of a query can result in multiple nodes. In this case, it is necessary
to iterate over all of them and perform certain actions. This is the case, for example, of
primary-secondary pages where a Web page has multiple links and where we need to enter
and perform a set of actions on each of them. For this particular scenario we could have an
actions array inside an action property.

4 Use Case: Timus Online Judge

Based on the results of Section 2, the effectiveness and efficiency of ScraPE was validated
using one of the top-3 online judges as data source. The chosen one was the TIMUS Online
Judge.

The first step was the construction of the JSON instance representing the script to be
used in the scraping process. Since this process is (still) manual we use the Inspector tab of
the browser Developer Tools to get all the desired CSS selectors.

The next step was to refine the script with the action types and the output names for
the output files being generated. It should be noted that the script generates an output file
in an internal ScraPE format. Afterwards the file will be transformed into the target format
(ideally YAPExIL) using eXtensible Stylesheet Language (XSL) files. This way, it will be
easier to scale ScraPE to other desired formats. The final script is presented in Listing 2

Listing 2 Final script.
" actions ": [{

"page ": " problemset .aspx?space =1& page=all",
"query ": "td.name a",
"type ": "GET",
" output ": " exercise ",
" actions ": [{

"type ": "GET",
"query ": "h2",
" output ": "title"

}, {
"type ": "GET",
"query ": "div. problem_par :nth -child (1)" ,
" output ": " description "

}, {
"type ": "GET",
"query ": ". problem_limits ",
" output ": " limits "

}, {
"type ": "GET",
"query ": ". sample td:nth -of -type (1) pre",
" output ": "input"

}, {
"type ": "GET",
"query ": ". sample td:nth -of -type (2) pre",
" output ": " output "

}
]

}]

SLATE 2022
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After the refinement phase, it is possible to run the ScraPE main script in the command
line. Figure 2 shows, in the left, the output of the script running in command line and, in
the right, one of the exercises extracted in a ScraPE internal format. Currently, exercises are
generated in the file system, but the plan is to automatically store them in a specific NoSQL
database.

Figure 2 ScraPE exercises generation.

5 Conclusion

This article introduces an automated scraping tool called ScraPE. The purpose of the tool is
not to compete with existing scaping tools, but to feed a database as a cold-start facilitator
for an ongoing project. This database will be used in conjunction with an API to serve, in a
flexible way, learning systems (or individuals) to get programming exercises in the YAPExIL
format.

Currently, the tool is an ongoing work. In fact several parts of the process are not yet
implemented such as: 1) the creation of a GUI editor to facilitate the script creation process;
2) the transformation of the ScraPE internal format to the YAPExIL format and 3) the
storage of the exercises in a database.

After solving these three simple tasks the goal is to create the programming exercises API
and integrate the ScraPE tool in order to provide a simple and universal way to everyone get
programming exercises with specific filters (for instance, “give me an easy exercise in JAVA
with arrays”).
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Abstract
Following the current interest in developing automatic question answering systems, we analyse
alternative approaches for finding suitable answers from a list of Frequently Asked Questions (FAQs),
in Portuguese. These rely on different technologies, some more established and others more recent,
and are all easily adaptable to new lists of FAQs, on new domains. We analyse the effort required
for their configuration, the accuracy of their answers, and the time they take to get such answers.
We conclude that traditional Information Retrieval (IR) can be a solution for smaller lists of FAQs,
but approaches based on deep neural networks for sentence encoding are at least as reliable and less
dependent on the number and complexity of the FAQs. We also contribute with a small dataset of
Portuguese FAQs on the domain of telecommunications, which was used in our experiments.
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1 Introduction

As a consequence to recent advances in Artificial Intelligence and, specifically, Natural
Language Processing (NLP), there has been more and more interest in the development of
systems that one may interact using natural language. These include artificial agents that
emulate human-to-human conversations, some capable of providing customer-support and
answering complex questions (QA).

When it comes to developing such systems, a popular option is to rely on so-called Natural
Language Understanding (NLU) platforms, like Google Dialogflow1 and Microsoft LUIS2,
which offer intuitive interfaces for designing dialogue flows, and managing intents, triggered
actions and answers to give. However, the configuration and the maintenance of a complete
working agent often comes with great manual effort, which tends to escalate with the size
and diversity of the target domain, and has to be repeated for every new agent. Moreover,

1 https://cloud.google.com/dialogflow
2 https://www.luis.ai/
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those platforms are generally limited to one or a small set of approaches for matching user
request and retrieving answers. In most cases, it will be difficult, if possible, to integrate and
test alternative approaches.

A cheaper option is to develop agents that get their answers from lists of Frequently
Asked Questions (FAQs), especially when such lists are available a priori, in websites or
other documentation. The problem is then the selection of a suitable approach for matching
user requests with the available FAQs. If such an approach is not dependent on the style, on
the domain and on the number of FAQs, creating a new agent becomes a mater of replacing
the list of FAQs with a new one.

In order to gather more information on available options for developing a system of
the previous kind for Portuguese, we explore and analyse different alternative approaches.
We tried to cover a range of approaches, available off-the-shelf, and adaptable to any
domain. Some are more traditional (e.g., Information Retrieval, IR), and others are based
on more recent transformer neural networks, for sentence encoding (USE [23], BERT [4]),
then used for computing semantic similarity, for extractive QA (BERT), and for text
generation (GPT2 [16]).

To analyse how the selected approaches adapt to different domains, they were tested
in two datasets of FAQs, i.e., question and answer pairs, in Portuguese. Following this
experiment, we provide details on the configuration effort required for each approach, on the
time required by each to get answers, and on their accuracy. The latter can be computed when
question variations, available for both datasets, are used for simulating user requests. One of
the datasets, AIA-BDE [7], has questions on a set of subdomains of public administration
and was already available for this kind of experiments. The other is on the domain of
telecommunications, was created in the scope of this work, and was made available for any
interested researcher.

The main conclusions were that a traditional IR approach may be enough for a smaller
list of FAQs. However, transformer models for sentence encoding adapt better to larger and
more complex lists. This is especially true to the model based on the Universal Sentence
Encoder (USE), developed specifically for answering FAQs. Based on all the analysed aspects,
results also suggest that a transformer fine-tuned for QA does not suit our goal; and that
generation is also not a good option, at least if it relies on fine-tuning the original GPT2,
pre-trained mostly on English text. We hope that these insights can guide those willing to
build a Portuguese QA agent in Portuguese on a specific domain.

In the remainder of this paper, we overview some related work on FAQ-oriented QA. We
then describe the experimentation setup, covering the approaches and the data used. Before
concluding, we present and discuss the results of our analysis.

2 Related Work

Automatic Question Answering (QA) is a NLP task with the goal of obtaining answers, often
out of collections of documents [22], for questions posed in natural language. Traditional
approaches were based on Information Retrieval (IR) [10], but more recent approaches rely
on fine-tuning transformer neural networks. For instance, when fine-tuned on datasets like
SQuAD [17], those models can extract answers from limited contexts [4]. When the answer
can be spread across several documents, traditional IR, namely, the BM25 ranking method,
can be used for reducing the search space [12].

The problem of getting answers from FAQs is not exactly the same, because the original
questions are already formulated, together with their answer. Nevertheless, IR still makes
sense in this context, namely for the computing the questions, out of those available, that
are most similar to user requests. Once these are identified, their answer can be given.
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Work on QA based on FAQs is not recent [2] and has been attempted for different
languages [9, 15, 3]. For computing the similarity between user requests and available
FAQs, traditional FAQ answering systems have exploited features such as word overlap [9],
synonyms [11, 15], or distributional semantic features [9, 6].

Recently, transformers were also adopted for this task. BERT has been fine-tuned for
computing the request-question [13] and the request-answer [19, 13] relevance. BM25 has
been used as a baseline, but may also be useful for reducing the search space, by making an
initial selection of potentially-related question-answer pairs.

For Portuguese, related work resulted in the development of Amaia [20], a FAQ-answering
agent that relies on a Semantic Textual Similarity model (STS) for Portuguese, trained in
the ASSIN collections [5, 18], which explores a broad range of lexical, syntactic and semantic
features. Amaia gets its answers from the AIA-BDE corpus [7], where several additional IR
approaches were tested, including BM25 (with the Whoosh library), and others based on
static word embeddings or encoding with a pre-trained BERT, multilingual and Portuguese.
Reported results show that the best model depends on the kind of variation, with interesting
results for BM25, word2vec embeddings, and the Portuguese BERT. More information on
AIA-BDE can be found in section 3.3.

More recently, transformer models for English and Portuguese (BERT, RoBERTa, Distill-
bert) were fine-tuned in the ASSIN 2 collection for encoding full sentences in Portuguese
and enabling to answer FAQs [3]. They were tested in a dataset of 72 FAQs, on employee
assistance in a telecommunications company, some paraphrased for testing purposes. To our
knowledge, this dataset is not provided. The best performance (95% accuracy) was achieved
by the models that had been pre-trained for Portuguese.

This work differs from the previous because: instead of single one, it experiments
with two public datasets of FAQs in Portuguese and in two different domains; it includes
some approaches that had not been tested before in this scenario; and it focuses on off-
the-shelf approaches, which require minimal configuration, i.e., no additional training or
complex fine-tuning.

3 Experimentation Setup

This work explores a set of approaches for Automatic Question Answering (QA) based in
Portuguese FAQs, in any given domain, reflected in a list of FAQs provided. This section
starts by introducing the models underlying the selected approaches, then detailing these
approaches and, finally, describing the data used for assessing them.

3.1 Explored Models

Explored approaches are based on different technologies, which we present here, before
explaining how they were applied for QA from FAQs.

Whoosh3 is a Python library for traditional IR which, by default, implements the BM25F
probabilistic ranking function. It can be used for indexing collections of documents, according
to a schema that sets available fields and their type, as well as required analysis (e.g., lower-
case conversion, stemming). Given an index and a search query, Whoosh will retrieve relevant
documents indexed.

3 https://whoosh.readthedocs.io/
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The Universal Sentence Encoder (USE) [23] is a model for encoding text in high-dimension
embeddings. It is currently based on a transformer and covers 16 different languages, including
Portuguese4. USE-QA uses these embeddings for the task of QA. It encodes pairs of sentences
and context and stores them in an index built with the simpleneighbors5 library. After
this, given a request, USE-QA encodes it and queries the index, which returns an ordered
list of approximate nearest neighbors in the semantic space.

BERT [4] is one of the most popular models based on transformers, which can be used
for obtaining contextualised word or sentence embeddings, and can be further fine-tuned
for different tasks like QA or natural language inference (NLI). BERTimbau [21] is a
BERT model pre-trained for Portuguese which can be used for embedding words and longer
sequences. This model has been fine-tuned for different tasks, including: NLI, on the
ASSIN collections (hereafter, BERT-NLI); and extractive QA, in a Portuguese translation
of the SQuAD 1.1 corpus (BERT-QA). The pre-trained version and the fine-tuned models
are available off-the-shelf from the HuggingFace hub6, respectively as: neuralmind/bert-
large-portuguese-cased, pierreguillou/bert-base-cased-squad-v1.1-portuguese, ricardo-filho/bert-
portuguese-cased-nli-assin-assin-2.

GPT2 [16] is another model based on the transformer architecture. However, in opposition
to the previous, which use encoder blocks, GPT2 uses only decoder blocks, and can be used
more like a traditional language model, i.e., it generates text from given prompts. It can be
fine-tuned with text of different styles and on different domains. Using the right prompts,
it has been shown to perform several tasks unsupervisedly, which is also why we decided
to explore it for our purpose. Its evolution, GPT3 [1] has ten times more parameters and
was pre-trained in more text, in more languages. It is known for performing well in few-shot
learning. However, access to GPT3 is controlled by an API7 and its free utilisation is limited.
So, it was not used in this work.

3.2 Approaches for QA from FAQs

Different approaches were tested for QA based on FAQs, having in mind that they could
be applied to any domain, regardless the availability of training data, and with the lowest
possible effort. At the same time, we tried to cover approaches relying on different techniques,
namely, those described in Section 3.1.

All approaches instantiate a “pipeline” that starts with a list of question-answer
pairs (FAQs) and goes through two main stages: adaptation, where approach-specific
preparations are performed (e.g., indexation or fine-tuning) once; and execution, where the
approach waits for user queries and, upon receiving one, tries to obtain an answer, either by
retrieving the most similar question or by generating the following text. We now describe
how the selected models instantiate these stages.

The adaptation of Whoosh involves the indexation of the question-answer pairs. Each
indexed document will have a field for the question and another for the answer. During
execution, a question can be made to the index, and Whoosh will use its terms for retrieving
the most similar question(s) and respective answer(s).

4 https://tfhub.dev/google/universal-sentence-encoder-multilingual-qa/3
5 https://pypi.org/project/simpleneighbors/
6 https://huggingface.co
7 https://openai.com/api/
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As it happens with Whoosh, in the adaptation stage of USE-QA, question-answer pairs
are indexed: questions are used as the sentences, and the full question-answer pair is used
as the context. During execution, given a user query, USE-QA retrieves the most similar
question indexed, together with its answer.

BERT models can be are used with the help of the HuggingFace transformers library8,
specifically with pipeline objects9. For instance, the feature-extraction pipeline extracts the
hidden states of transformer for a given text, which can be used as its embeddings. It is used
with the pre-trained version of BERTimbau (large), in order to get the [CLS] vector. From
here, we refer to this approach as BERT-FE.

BERT-NLI, on the other hand, is a sentence transformer, and thus more suitable for
encoding full sequences of text, besides having been trained for a task where representing
the meaning of sentences is important (i.e., NLI). Although it could be used with the simple
transformers library, the sentence-transformers10 library is more suitable for this model.
It is loaded via the SentenceTransformer object, where embeddings can be obtained through
the encode method.

In the adaptation stage of both BERT-FE and BERT-NLI, the models are loaded and
the questions in the list of FAQs are encoded. In the execution stage, given user queries
are encoded and the most similar questions, i.e., those maximising the cosine similarity, are
computed and retrieved.

BERT-QA is also used with a pipeline object, this time of the question-answering type.
This model expects a textual context where it will search for answers to given questions.
Ideally, for our use case, the full list of FAQs would be used. However, there are limitations
on the size of the context (i.e., maximum 512 tokens for BERT-base). So, to use it, the
list of FAQs has to be first split into smaller subsets. To do this, and to keep the approach
independent of the list of FAQs, its adaptation stage includes the additional step of clustering
the FAQs with k-means, hoping to discover groups of related FAQs, when represented by
BERT-FE embeddings. To select the number of clusters, we relied on the Elbow [8] method,
which returned the optimal number in the 1–100 interval.

For the adaptation of GPT2, the model is fine-tuned with the lists of original questions
and their answers. This was done with the gpt-2-simple library11. We used GPT2 medium,
which has 355M parameters, and set a temperature of 0.2, for avoiding highly random text.
For a model like GPT2, fine-tuning does not require the definition of a task. The only
requirement is to have data on the style of the text to generate, in this case, the list of FAQs
and their answers. Expectations were that, when prompted with a question, GPT2 would
generate a suitable answer from what it “had seen” during fine-tuning. Given the format
of the lists of FAQs (see Section 3.3), for generation, we used a prefix that started with P:,
followed by the user query and by R:. In addition, we define ‘\n\n’ as the truncation token
because, before fine-tuning, we force that every question-answer is followed by an empty line.

3.3 Data
Since we also wanted to confirm that the selected approaches would work in different domains,
we tested them in two different datasets with Portuguese FAQs and their variations, of
different sizes and on different domains.

8 https://huggingface.co/docs/transformers
9 https://huggingface.co/docs/transformers/main_classes/pipelines
10 https://huggingface.co/sentence-transformers
11 https://github.com/minimaxir/gpt-2-simple
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The AIA-BDE corpus [7] contains 855 question-answer pairs on topics related to public
administration. For each pair, variations were produced by different approaches and groups
of people. Variations simulate user requests by paraphrasing the original questions, using
different words, sometimes with missing information. QA approaches can be tested in the
task of retrieving the original question, and the associated answer, given its variations. In
AIA-BDE, questions are in lines starting with P:, their answers are in the following line that
starts with R:, and variations are between them, in lines starting with VX:, where X depends
on the kind of variation. See Figure 1 for an example of a question in AIA-BDE, followed by
manually-created variations and the answer.

P:Como pedir o Cartão Provisório de Identificação de Pessoa Coletiva?
VUC:Como posso obter o cartão provisório de identificação de pessoa coletiva?
VUC:Onde posso pedir o cartão provisório de pessoa coletiva?
VIN:Como posso pedir o Cartão provisório de identificação de pessoa coletiva?
VIN:Qual o procedimento para obter o Cartão Provisório de Identificação de
Pessoa Coletiva?
R:O Cartão Provisório de Identificação de Pessoa Coletiva deixou de ser emitido, (...)
Atualmente, existe apenas o Cartão da Empresa e o Cartão de Pessoa Coletiva, que são
emitidos para entidades definitivamente registadas ou inscritas.

Figure 1 Example of a FAQ in AIA-BDE, its variations and answer.

A second dataset (hereafter, Telecom) was produced specifically for this work. It is
on a different domain, but its creation followed a similar approach to the creation of
AIA-BDE. Telecom has 172 question-answer pairs gathered from various online sources,
covering instruction manuals of telecommunication equipment and services by the Portuguese
telecommunications operator MEO12. Besides being on a different domain, the style of
Telecom FAQs is significantly different than AIA-BDE. For instance, it includes several
questions that are, in fact, stating issues (see Figure 2 for examples). For its creation, and
similarly to AIA-BDE, at least two question variations were manually created, by two people,
for 103 of the FAQs in the dataset. In this case, they were included in a different file (see
Figure 3 for the variations of the questions in Figure 2).

P: Internet com quebras, com ligação por cabo
R: Desligue todos os equipamentos da linha telefónica ou da rede sem fios. Depois, ...

P: Sistema Operativo Mac OSX: Como ligar a uma rede sem fios
R: Procure as redes sem fios Clique no ícone de WiFi e procure as redes sem fios ...

P: Como definir um código pessoal de acesso ao Voice Mail?
R: Se aceder ao Voice Mail a partir do seu próprio telefone, não é necessário colocar o
código pessoal.

Figure 2 Example of FAQs in the Telecom dataset.

4 Analysis

The selected approaches were configured for answering questions based on the FAQs in the
Telecom and AIA-BDE datasets. This section analyses the configuration effort involved,
the accuracy of the given answers, and the time taken for answering. The former and
the latter are analysed subjectively, while the available question variations can be used for
quantifying accuracy.

12 https://www.meo.pt/ajuda-e-suporte/produtos-meo/internet/equipamentos

https://www.meo.pt/ajuda-e-suporte/produtos-meo/internet/equipamentos
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Ligação por cabo de internet com quebras
Internet com falhas com ligação por cabo

Como fazer ligação a uma rede sem fios num Mac OSX?
Como ligar a uma rede sem fios com o sistema operativo mac OSX?

Como posso definir um código de acesso ao voice mail?
Como defino um código de acesso ao Voice Mail?

Figure 3 Example of variations for the Telecom dataset.

4.1 Configuration Effort
Selected approaches are quite different and thus require a different configuration effort. This
is probably the most subjective aspect analysed but, for those that are not familiar with
any of the required technologies, it can be as important as the other two. Our analysis is
based on a brief description of the steps required for having each approach ready to work,
i.e., answering questions.

Thanks to the Huggingface transformers and sentence-transformers libraries, trans-
formers are nowadays straightforward to use. In just a few lines, we can start using BERT
and computing embeddings. After this, it is just a matter of computing cosines. Therefore,
we would say that the BERT-FE and the BERT-NLI approaches are those that require less
configuration effort. If it were not for the necessary clustering, BERT-QA would require a
similar effort. However, this step increases the complexity of the configuration.

The effort of using USE-QA is also low. Some time was required for better understanding
the input format for the list of FAQs. However, every step detailed in documentation13.

GPT2 could also be used with the transformers library, but the tested approach
requires fine-tuning, which is not as straightforward as using an available model. However,
in this case we used the gpt-2-simple library, which is also well-documented and makes it
straightforward to fine-tune the original GPT2 models and use the result.

Using Whoosh requires more steps than the previous models, namely for defining the index
schema, creating the index, searching and querying, but every step is also documented14. In
the end, we can say that the required effort is comparable to using GPT2.

4.2 Answering Accuracy
Since both datasets include question variations, which can simulate user requests, each
approach was assessed by the answers given for those variations. For this experiment,
Tables 1 and 2 report on different measures. Accuracy is the proportion of variations for
which the answer was the same as the one for the original question. This is computed for
only the variations (Acc-vars)15 and also when the original questions are included (Acc-all).
However, simply comparing the answers is unfair for GPT2, because it may generate answers
that are not exactly the same as those expected, even if they might transmit a close meaning.
Therefore, we include two additional metrics: BLEU [14], which measures the surface text
similarity, and BERTScore [25], which, in an attempt to consider the meaning of text, relies
on contextual embeddings, in this case, obtained from BERTimbau.

Figures show that overall accuracies are lower in the AIA-BDE corpus. This was expected
because AIA-BDE is larger, meaning that there are many more possibilities when searching for
similar questions. Another contribution to this may result from the variations of AIA-BDE,

13 https://www.tensorflow.org/hub/tutorials/retrieval_with_tf_hub_universal_encoder_qa
14 https://whoosh.readthedocs.io/en/latest/quickstart.html
15 For AIA-BDE, only the manually-produced variations were considered.
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Table 1 Performance in Telecom FAQs.

Approach Acc-all Acc-vars BLEU BERTScore
Whoosh 91.53% 88.35% 94.76 98.63

USE-QA 91.53% 88.29% 95.30 99.00
BERT-FE 66.40% 38.83% 79.58 97.38

BERT-NLI 74.60% 54.15% 84.16 97.58
BERT-QA 0.00% 0.00% 0.12 88.71

GPT2 0.00% 0.00% 22.11 90.12

Table 2 Performance in AIA-BDE FAQs.

Approach Acc-all Acc-vars BLEU BERTScore
Whoosh 70.22% 65.59% 70.45 94.34

USE-QA 84.37% 79.35% 88.63 97.85
BERT-FE 75.05% 68.42% 81.04 96.48

BERT-NLI 79.73% 71.35% 84.44 97.09
BERT-QA 0.00% 0.00% 1.00 74.19

which, at the surface level, can be more different from the original questions. Yet, regardless
of the dataset, top scores are always achieved by USE-QA, which seems to be the best option
for our purpose.

In the Telecom dataset, the performance of USE-QA is matched by the best configuration
of Whoosh. We only show the performance of this configuration, which is based on defaults
plus a Portuguese Analyzer. Other configurations were tested (e.g., 3 and 4-grams), but
differences were minimal. The performance of Whoosh suggests that, in some cases, traditional
IR can be enough. However, we also see that its performance drops for AIA-BDE, a larger
dataset and possibly more difficult.

BERT-NLI, fine-tuned for representing the meaning of sentences, performs better than
the pre-trained BERT, which was somehow expected. In opposition to the other approaches,
the performance of BERT-NLI increases in AIA-BDE, where it has the second best accuracy,
confirming that the model representations go beyond surface text, and thus handle well
variations using different words.

BERT-QA always extracts spans of text that have nothing to do with the question, which
results in 0 accuracy and leads to the conclusion that it is not an option for this task. This
is a consequence of both: (i) noise when selecting the cluster of FAQs to use as context; and,
especially, (b) the format of the datasets (question-answer), which ends up being different
from SQuAD (context-question-answer). While, in the future, we could experiment with a
different clustering algorithm, a different numbers of clusters, and a different representation
of FAQs, there is not much we can do about the latter, other than fine-tuning BERT on a
dataset with a closer style.

We also confirm that GPT2 cannot generate answers that completely match the original
ones16. Yet, even considering BLEU, it is way below the other approaches. GPT2 was
fine-tuned in Portuguese data, but its starting point was the original GPT2 (medium),
pre-trained mostly on English text, which might have had an impact here. In the future,
we should try fine-tuning a GPT2 pre-trained for Portuguese17, or move on to recent open
alternatives of GPT3 (e.g., Meta OPT [24]).

16 Due to lack of memory, it was not possible to compute the figures for GPT2 in AIA-BDE
17 https://huggingface.co/pierreguillou/gpt2-small-portuguese
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Apart from enabling a comparison with GPT2, BLEU and BERTScore do not add much
to our conclusions. BERTScore is always high, even for completely different texts, and should
only be considered relatively. It might also be positively biased towards BERT-FE, which
can be a consequence of using the same model for computing the scores.

4.3 Time
We analyse the time required for the adaptation and the execution stages. Our experiments
were run in Google Colab18 without hardware acceleration, and average times were measured
with the time library.

Adaptation, which only has to be done once for each run, includes embed-
ding (BERT, USE-QA) and indexing (Whoosh) the questions, clustering (BERT-QA), or
fine-tuning (GPT2). The latter is by far what takes more time in this stage, i.e., more
than 1 hour for fine-tuning GPT2 with the Telecom dataset. For all the others, adaptation
takes between 1 second (Whoosh) and 2 minutes (BERT-QA) in Telecom, and between 5
seconds (Whoosh) and 9 minutes (BERT-QA) in AIA-BDE.

Regarding the execution stage, we measure the average time taken between giving a
question as input and getting its answer. Here, most approaches take less than 1 second in
both datasets, with the exceptions being again GPT2 (40 seconds) and BERT-QA (30 to 90
seconds, depending on the number of clusters and size of the selected).

5 Conclusion

We have tested several approaches for automatic QA based in Portuguese FAQs, relying on
different techniques, but all easily adapted to any domain. Following the results obtained
in two datasets of FAQs and their variations, we can immediately discard two approaches,
due to issues on accuracy and configuration effort, namely BERT-QA and GPT2. As for the
others, USE-QA, based on the Universal Sentence Encoder, revealed to be the best option for
answering FAQs. We should nevertheless highlight the performance of the BM25F traditional
IR method, which performs well, especially in the smaller dataset. BERT-NLI is not a bad
option either, but BERT would probably benefit from fine-tuning on data in the target style
or domain. This was not considered for this work because we wanted to rely, as much as
possible, on what was available off-the-shelf. However, it is something to try in the future, as
well as further experiments with GPT2, GPT3 and comparable models.

Following the current interest in developing conversational agents and QA systems,
often in domains for which FAQs are already available, the reported experiments may help
those planning to develop or upgrade such a system. In the meantime, the code used for
our experimentation, as well as the new Telecom dataset, are publicly available from a
Github repository19.
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