
Synthetic Data Generation from JSON Schemas
Hugo André Coelho Cardoso #

University of Minho, Braga, Portugal

José Carlos Ramalho #

Department of Informatics, University of Minho, Braga, Portugal

Abstract
This document describes the steps taken in the development of DataGen From Schemas. This new
version of DataGen is an application that makes it possible to automatically generate representative
synthetic datasets from JSON and XML schemas, in order to facilitate tasks such as the thorough
testing of software applications and scientific endeavors in relevant areas, namely Data Science. This
paper focuses solely on the JSON Schema component of the application.

DataGen’s prior version is an online open-source application that allows the quick prototyping of
datasets through its own Domain Specific Language (DSL) of specification of data models. DataGen
is able to parse these models and generate synthetic datasets according to the structural and semantic
restrictions stipulated, automating the whole process of data generation with spontaneous values
created in runtime and/or from a library of support datasets.

The objective of this new product, DataGen From Schemas, is to expand DataGen’s use cases
and raise the datasets specification’s abstraction level, making it possible to generate synthetic
datasets directly from schemas. This new platform builds upon its prior version and acts as its
complement, operating jointly and sharing the same data layer, in order to assure the compatibility
of both platforms and the portability of the created DSL models between them. Its purpose is
to parse schema files and generate corresponding DSL models, effectively translating the JSON
specification to a DataGen model, then using the original application as a middleware to generate
the final datasets.

2012 ACM Subject Classification Software and its engineering → Domain specific languages; Theory
of computation → Grammars and context-free languages; Information systems → Open source
software

Keywords and phrases Schemas, JSON, Data Generation, Synthetic Data, DataGen, DSL, Dataset,
Grammar, Randomization, Open Source, Data Science, REST API, PEG.js

Digital Object Identifier 10.4230/OASIcs.SLATE.2022.5

1 Introduction

The current landscape of the techonological and software development market is being
increasingly occupied with scientific areas that operate with large amounts of data. A prime
example is that of Data Science, which aims to apply methods of scientific analysis and
algorithms to bulky datasets, in order to try to extract knowledge and conclusions from the
available information, which may then be used for several other means. Another case is that
of Machine Learning, which looks to use this method to equip informatic systems with the
capacity of self-learning, accessing data and learning from its analysis, as to become more
efficient in their function.

However, in a world where the need for bulky and representative datasets increases by
each passing day, data privacy policies and other concerns related to the privacy and safety
of users [5] present themselves as difficult obstacles to the growth of these sciences and to
the progression of many projects in the development [4] and testing phases.

In this context, the generation of synthetic data arises as a possible solution for these
problems, under the premise of being able to create realistic, large datasets artificially, from
the given structural specifications. This approach was originally proposed by Rubin in

© Hugo André Coelho Cardoso and José Carlos Ramalho;
licensed under Creative Commons License CC-BY 4.0

11th Symposium on Languages, Applications and Technologies (SLATE 2022).
Editors: João Cordeiro, Maria João Pereira, Nuno F. Rodrigues, and Sebastião Pais; Article No. 5; pp. 5:1–5:16

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:a85006@alunos.uminho.pt
mailto:jcr@di.uminho.pt
https://orcid.org/0000-0002-8574-1574
https://doi.org/10.4230/OASIcs.SLATE.2022.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

5:2 Synthetic Data Generation from JSON Schemas

1993 [6], as an alternative that made it possible to use and share data without disrespecting
the present rigorous regulations regarding the handling of sensitive data (such as the European
Union’s GDPR [10]), since the data in question, altough very similar to corporate datasets
concerning real users, would not be obtained by direct measurement. Since then, this method
has been further explored and refined, being applied in the most diverse areas such as Smart
Homes [2], spacial microsimulation models [8], Internet of Things (IoT) [1], Deep Learning [3]
and automotive applications [9].

This paper intends to expose and document the processes of ideation and development of
the application DataGen From Schemas, specifically its JSON Schema component, whose
objective is to generate synthetic datasets directly from JSON schemas. This application
must fulfill two requisites: on the one hand, it must be able to generate datasets of ample
size and with realistic information; on the other hand, it must also be able to parse the users’
schemas and obey their specifications, so that the created data is formally and structurally
compliant. In order to satisfy these conditions, the platform will be built upon another
existing application, DataGen, that will be contextualized in the following section.

2 DataGen

DataGen is a versatile tool that allows the quick prototyping of datasets and testing of
software applications. Currently, this solution is one of the few available that offers both the
complexity and the scalability necessary to generate datasets adequate for demanding tasks,
such as the performance review of data APIs or complex applications, making it possible to
gauge their ability to handle an appropriate volume of heterogeneous data.

The core of DataGen is its own Domain Specific Language (DSL), which was created for
the purpose of specifying datasets, both at a structural level (field nesting, data structures)
and a semantic level (values’ data types, relations between fields). This DSL is endowed
with a wide range of functionalities that allow the user to specify different types of data,
local relations between fields, the usage of data from support datasets depicting different
categories, the structural hierarchy of the dataset and many other relevant properties, as well
as powerful mechanisms of repetition, fuzzy generation, etc. This allows for the generation of
very miscellaneous and representative datasets in either JSON or XML, while dealing with
intricate and demanding requirements.

It is strongly encouraged to check the published paper on DataGen’s development and
functionality [7] first, in order to be better contextualized in the capacities of this product
and have a greater understanding of what will serve as the foundation for the new software
described. For the sake of brevity, DataGen’s DSL mechanisms will not be explained in this
document and it will be assumed that the reader is familiar with them, going forward.

In the current scheme of software development, any enterprise that operates with JSON
or XML data must have well-defined and thorough formal specifications to control and
monitor the data flow in their applications, in order to assure that incoming information
is well-structured and compliant with the software’s requirements and outgoing data is
presented as intended and does not produce unexpected behaviour. As such, it is essential to
formulate schemas for semantic and structural validation, by modeling data either internally
or via third parties with tools oriented to this goal, in order to restrict and enforce the
content intended for each solution.

Considering the present necessity for these schemas in enterprises’ business models and its
recurring usage, it stands to reason that a program capable of producing large and accurate
datasets from JSON/XML schemas is an incredibly valuable asset, as it provides the capacity

H. A. C. Cardoso and J. C. Ramalho 5:3

to quickly and effortlessly create representative datasets to test and debug platforms in
development, as well as evaluate their performance under heavy stress, without having to
manually concoct the information or wait for third parties to provide such resources.

As such, DataGen From Schemas emerges as a complement and an extension to its prior
version, looking to generate datasets directly from JSON schemas. By doing this, the user is
given the option to specify the structure of the intended dataset in JSON Schema. This arises
as an alternative to the definition of the operational rules of the dataset in DataGen’s native
DSL, for which the user must first learn how to use it, through the lengthy documentation
available. With this, the formulation of the DSL model becomes an intermediate step
executed in the background and the user only has to interact with the JSON schema and the
resulting dataset. However, the generated DSL model will also be made available, to enable
further customizability in DataGen.

As such, this new product aims to offer a solution for a present and generalized need in
the software development process and increase DataGen’s use cases significantly, making the
dataset generation process simpler and more acessible to any user. This new component
acts as an abstraction layer over the existing application, ignoring the necessity to learn
how to use the DSL from its documentation and greatly expediting the process of structural
specification of the dataset. The intended workflow for this JSON Schema component is
depicted in the following image:

Figure 1 Intended workflow for the JSON Schema component.

The program will accept the user’s input in the form of a JSON schema, which will then
be parsed by a PEG.js grammar-based compiler. The parser will generate an intermediate
data structure with the relevant information and a converter program will then translate it
to a DSL model. Afterwards, DataGen will take care of the remaining workload, parsing
the model and generating a dataset, finally converting it to either JSON or XML format,
according to the user’s preference.

DataGen’s prior version was created by the same authors of this new tool, so there is
access to the original application. The goal is to place the new compilers and translators
in DataGen’s own backend, in order to centralize the functionalities, avoiding additional
requests between servers and possible downtime, as would be the case if DataGen From
Schemas was deployed in an entirely separate web application and had to communicate with
DataGen’s API routes via HTTP requests to generate datasets from its models.

SLATE 2022

5:4 Synthetic Data Generation from JSON Schemas

3 JSON Format

This section aims to give a bit of contextualization about the format JSON, in order to have
a better grasp of what DataGen From Schemas must be able to analyse and parse, what data
is revelant to be extracted, and also to understand the limits and potential of this simple,
yet versatile format and why it was chosen for this application, instead of another of many
popular data formats nowadays, i.e. its relevance and adequacy to this particular project.
As mentioned in section 2, DataGen already has the ability of generating JSON and XML
instances from DSL models, so this new product’s focus is uniquely translating the data in a
JSON schema to a DSL model, basically the opposite procedure.

What will be exposed about JSON also applies to JSON Schema, as the latter is a JSON
vocabulary, which is to say, it is written in JSON and operates under a strict set of rules,
where specific keys have precise meanings and can be used to annotate or validate JSON
documents. This common syntax makes it easy to interpret the schema and validate the
instance.

JavaScript Object Notation (JSON) is a lightweight data exchange format derived from the
programming language Javascript, whose simplicity and readability contributed to its current
vast popularity. It has ample and growing support in countless programming languages
(C++, Java, JavaScript, Python, etc), which make it a strong candidate for fast and compact
exchange of information between applications.

This format is utilized to represent structured information, i.e. data with rigid and well-
defined configurations, where no divergencies are allowed from the structures established in
the schema, namely a different data type for a certain field. This reflects in the JSON syntax,
where there are only four different primitive types for values - string, number, boolean or null
- and the instances are built upon solely two different data structures: objects (non-ordered
collections of key-value pairs) and arrays (ordered lists of values).

Figure 2 Structures of a JSON object and array.

DataGen’s own DSL is built upon the JSON format, so there is very high compatibility
with JSON Schema and a guarantee that all kinds of data specified in the schema can be
represented in the model. In addition, DataGen also has a tool named interpolation functions,
which makes it possible to randomize the value of a certain field, given its type and some
other restrictions. With this, it is possible to convert a JSON schema into a corresponding
non-deterministic DSL model, where the final values are not hard-coded, but decided in
runtime, which may result in endless different valid datasets from a single schema.

4 Development

In order to generate DSL models from JSON schemas, DataGen From Schemas will need two
different components: firstly, a grammar-based parser to analyze the schema and extract all
useful information. For this, PEG.js was the technology of choice, as it was already used in
DataGen and proved adequate and capable of parsing JSON-like structures. Lastly, a program

H. A. C. Cardoso and J. C. Ramalho 5:5

capable of translating the intermediate structure into a DSL model, for which JavaScript
was used, for direct compatibility with PEG.js (that also incorporates this programming
language) and JSON.

The user may input one or more schemas into the program, which is necessary to allow
cross-schema referencing. In this case, the user must indicate which is the primary schema
from which the dataset is to be generated. The parser then analyzes all schemas sequentially,
building an intermediate structure for each of them, a procedure that will be explained in
detail in this section.

4.1 Grammar
The grammar was built with a JSON grammar available in the PEG.js Github as its
foundation, given that JSON Schema uses the same syntax. JSON Schema’s specification
is made available by drafts, which represent versions. Each time the vocabulary is majorly
updated, a new draft is released, where new features can be found and existing ones altered.
These drafts are not backward compatible, for example there are cases in which a certain key
has entirely different semantics depending on the draft considered. As such, it seemed only
logical to adapt the most recent draft to the application, which is, at the time of writing this
document, JSON Schema 2020-12.

As such, the aforementioned JSON grammar was modified into a dialect (a specific version
of JSON Schema) grammar for this particular draft: the set of keywords and semantics that
can be used to evaluate a schema was restricted to those made available in the draft and
custom vocabularies defined by the user are not accepted. With this, it was possible to
implement other important features in this grammar, namely:

restriction of each keyword’s value to its rigid lexical space – for example, the
keyword uniqueItems’s value must be a boolean and nothing else, while the value of the
keyword additionalProperties may be any subschema;
rigorous semantic validation of the schema – in JSON Schema, it is possible to
create invalid and contradictory schemas. This may range from something as simple as
a number with a maximum of 20 and minimum of 50, to more contrived cases such as
establishing that a schema must be both of type boolean and string, with the keyword
allOf. As such, a semantic validation procedure was created for this grammar, that checks
for erroneous combinations of values or other incongruities in the schema’s logic. This
validation only does not work with references, since these are only resolved posteriorly;
error reports – following the previous points, whenever the parser finds an error, be it
a syntatic or semantic error, it halts the execution of the pipeline and reports it to the
users, for them to correct and try again.

The other central point of the grammar is building the intermediate data structure,
to where it extracts the relevant information. Before addressing this topic, it is best to
categorize and explain the different kinds of JSON Schema keywords. It is encouraged to
follow this section of the paper along with the official JSON Schema documentation, as it
has all the keywords listed and sorted in a relevant taxonomy. For this solution, the following
categorization was used:

type-specific keywords – these are keywords that apply only to the data type in
question. For example, numeric types have a way of specifying a numeric range, that
would not be applicable to other types;
generic keywords – const, enum, and type. The latter defines the type(s) that the
schema validates, the others may be or contain values of any of those types;

SLATE 2022

https://github.com/pegjs/pegjs
https://json-schema.org/draft/2020-12/release-notes.html
https://json-schema.org/understanding-json-schema/index.html

5:6 Synthetic Data Generation from JSON Schemas

schema composition keywords – the purpose of these is to combine together schemas,
and they correspond to well-known algebra concepts like AND, OR, XOR, and NOT;
keywords to apply subschemas conditionally – based on logical conditions or the
presence of certain properties in the final object;
structural keywords – $id, $anchor, $ref, and $defs. These keywords do not reflect
values of the schema explicitly, but are used to structure complex schemas, allowing the
user to break them down into simpler, reusable subschemas, and to reference these from
anywhere, to avoid duplication and write schemas that are easier to read and maintain;
ignored keywords – comments and annotation/media keywords (string-encoding non-
JSON data). The parser recognizes these keywords but willingly ignores them, since they
have little to no use in a dataset generation context.

After thorough reflection, it was concluded that the best approach would be a type-
oriented structure, where the keywords and respective values would be stored under the type
of data they produce. There are multiple points in favor of this line of reasoning:

each data type has a specific set of keywords that applies to them and only them (the
aforementioned type-oriented keywords), so it is easy to separate most keywords by type;
a single JSON schema may validate against multiple data types - the same schema can
have keywords respective to arrays, numbers, and strings, for example. As such, it is
useful to know, at all times, exactly what data types are produceable from the schema;
following the previous point, a certain type may be established and then “disallowed“
further into the schema, with a keyword of schema composition. As such, it would
simply be removed from the intermediate structure, preventing its generation or further
unnecessary parsing;
this kind of organization makes it easy to update the structure for each new keyword
parsed and facilitates the translation exercise executed later on. With this, the translation
program will need only to choose a random type and parse the keywords associated with
that type, ignoring all others. It is efficient and compact.

However, not all keywords are related strictly to a single type. Generic and schema
composition keywords, as defined previously, plus if/then/else (that apply subschemas
conditionally), may take values or subschemas of multiple types. In these cases, the grammar
follows the ensuing method: firstly, it makes sure each of the keyword’s values has a single
type. For generic keywords, this is already the case, as its values are already the final
product. However, the values of the other keywords mentioned are subschemas, which may
be multi-type: if so, the grammar breaks down the subschema into smaller subschemas, one
per each of its types. Then, it separates the keyword’s values by type and introduces one
instance of said keyword in each of its generateable data types, in the intermediate structure,
along with that type’s respective values. An example of this is shown below:

Figure 3 Example of parsing done on a schema composition keyword.

With this algorithm, the program is able to classify these keywords and, by extension, all
JSON Schema keywords by type, which makes it possible to use the described data structure
to store all relevant data, in a way designed to facilitate and make more efficient the following
translator program’s routine.

H. A. C. Cardoso and J. C. Ramalho 5:7

In conclusion, the main objective of the grammar, and consequent parser, was to reproduce
the JSON Schema syntax meticulously and collect data from any given schema to a well
thought-out and efficient data structure, to set up the next phase of the process - the
construction of the DSL model. Furthermore, it was also to make the solution as sturdy and
fault-tolerant as possible, preventing it from trying to parse impossible schemas and crashing
or producing unexpected behaviour, which in turn helps the user understand their schema
better and detect unwilling errors.

4.2 Referencing
JSON Schema references can vary a lot: there are absolute and relative references, depending
on if they include the schema’s base URI. It is not mandatory for a schema to have an id,
which is its URI-reference, but without one, it is unable to be referenced by other schemas,
although it can still have local references. Furthermore, a subschema may be referenced either
by JSON pointer, which describes a slash-separated path to traverse the keys of the objects
in the document, or by anchor, using the keyword $anchor to create a named anchor in the
subschema to be referenced. The reader is invited to check out the official documentation on
schema structuring, in order to gain a more in-depth understanding of schema identification
and referencing, which is crucial for this component of the solution.

DataGen From Schemas supports all types of referencing defined in JSON Schema
2020-12 and standardizes that any schema’s base URI must begin with https://
datagen.di.uminho.pt/json-schemas/ and be followed by the schema’s name.

Besides the configuration exposed in the previous subsection, the intermediate data
structure has two additional sections: one for storing the object pointers to all references
found in the schema, and another for separately storing all subschemas with their own
declared identifier. This division is useful to resolve all references later on, after the parser
has finished analyzing every schema submitted by the user. The program is unable to resolve
references as it is reading the schemas, since they might be pointing to schemas or subschemas
that have yet to be reached. For the sake of consistency and efficiency, instead of checking if
that is the case whenever a new reference is found, the parser simply caches the references
and subschemas, in a way that it is ultimately able to quickly find each referenced subschema
and substitute its content in the main body.

Thereby, it becomes possible to generate datasets from schemas with local and/or external
references, as well as more intricate mechanisms, such as recursion and bundling.

4.3 Creating the DSL model
Once the intermediate structure of the main schema is finalized and all references resolved,
it is then sent to the translator program to begin creating the correspondent DSL model.
This component interprets the keywords present on the structure and generates an according
DSL string, taking into account how they influence each other. For the sake of brevity, the
keywords will not be explained minutely in this paper, so it is strongly recommended to
follow along this subsection with the official JSON Schema documentation, as it thoroughly
details the function of every keyword, illustrated with meaningful and intuitive examples.

The intermediate structure is type-oriented, meaning that each value of the schema
is described by a JavaScript object that maps each of its createable data types to their
respective keywords, and values are organized in a hierarquical structure. To produce the
model for the whole schema, the program recursively iterates this intermediate structure,
generating its values’ DSL strings from the leaves to the root and joining them together.

SLATE 2022

https://json-schema.org/understanding-json-schema/structuring.html
https://json-schema.org/understanding-json-schema/structuring.html
https://datagen.di.uminho.pt/json-schemas/
https://datagen.di.uminho.pt/json-schemas/
https://json-schema.org/understanding-json-schema/index.html

5:8 Synthetic Data Generation from JSON Schemas

The types present in the structure of each value already reflect the whole logic of its
schema, since the parser relates the keywords and determines the generateable data types
common to all of them, as described in subsection 4.1. Take the following example, illustrated
below: even though the keyword type defines that the instance may be either a string or a
number, the keyword allOf implies that only a number is valid, since all its subschemas are
only of that type. As such, the section of the intermediate data structure that describes this
value will not have the string type:

Figure 4 Example of parsing done on a apparent multi-type schema.

The program then randomly selects one of the generateable types and moves on to
translating its keywords. The first step is to resolve any keywords of schema composition or
conditional application of subschemas that there may be - these keywords are not directly
translated to the DSL string, but rather parsed and its contents added to the structure.

In JSON Schema, the aforementioned keywords are not used to extend or merge schemas,
in the sense of object-oriented inheritance. Instead, instances must independently validate
against each of the keywords. This is understandable when validating instances against
schemas, which is the purpose of JSON Schema. However, DataGen From Schemas reverses
this workflow and looks to create instances from schemas, so the same logic does not apply.
It is not possible to generate a different value for each of these keywords and ultimately
merge the values together. This method would result in values valid against individual parts
of the schema, but possibly not the whole of it.

As such, in the context of data generation, it is necessary to parse these “compound“
keywords beforehand and extend the base schema with their content, obtaining a cohesive
and coherent final schema, with only type-specific keywords, that incorporates the restraints
specified in these keywords. Since these “compound“ keywords’ values are or contain schemas,
which may, in turn, have nested such keywords, the program recursively checks all subschemas
for these keywords and resolves them, before using these subschemas in the extension process,
so that ultimately the base schema is extended only with type-specific keywords.

4.3.1 Schema composition keywords
There are four keywords belonging to this category: allOf, anyOf, and oneOf allow the user
to define an array of subschemas, against all, one or more, or exclusively one of which the
data must be valid, respectively; not declares that an instance must not be valid against the
given subschema.

For the first three, a subset of their values’ schemas is chosen: with allOf, all of its
schemas are considered; for anyOf and oneOf, either an arbitrary number of its schemas or
only one of them, respectively, are randomly selected. The base schema is then extended
with these, sequentially, and the original keywords are erased from the structure.

As for not, the program must first “invert“ this keyword’s schema, in order to obtain a
complementary/opposite schema, which ensures that no value that is valid against it, also
validates against the original schema. Then, the base schema is extended with this inverted
schema and the keyword not is removed from the structure.

H. A. C. Cardoso and J. C. Ramalho 5:9

For this purpose, a schema inverter capable of generating complementary schemas was
developed, which takes into account the meaning of each JSON Schema type-specific keyword.
There is never a need to invert any other kind of keyword, since those are parsed recursively
before the actual schema to which they belong (as was described in subsection 4.3), which
guarantees that the schema to be inverted will only have type-specific keywords.

On the same note, the solution also incorporates a schema extender program to manually
and sequentially extend a base schema with each type-specific keyword of others. For each
data type, the new keyword is compared to the already existing ones and incorporated in a
reasonable way - the result may be different depending on whether the base schema already
has the same keyword or not, for example. This solution must handle each individual JSON
Schema keyword differently, as they all have different meanings.

Due to its complexity, the functionality of these two components will not be addressed in
detail in this document. The reader can find their explanation in another more substantial
and exhaustive academic paper on the entirety of DataGen From Schemas that will be
published in the near future.

4.3.2 Keywords that apply subschemas conditionally
These keywords are the reason for JSON Schema’s dynamic semantics, i.e. their meaning
can only be uncovered after the context has actually been instantiated, since these keywords
establish conditions based on actual values of the instance. Take the following example:

Figure 5 Example of a schema with dynamic semantics.

In this case, the schema will only know what schema to validate the property ’postal_code’
with after checking the actual instance for the value of the property ’country’, and never
before. While with other keywords, the schema can determine a priori the structure of the
instance, with these it is not possible to do so.

Once again, this approach is not reasonable for a solution such as DataGen From Schemas,
since it is not viable to generate an intermediate value from the rest of the schema and only
then exert these keywords, which may imply large changes to the remaining schema - at
least with if, then, and else. Since the keywords dependentRequired and dependentSchemas
are specific to the object data type, it is possible to incorporate them into the translation
procedure of object schemas, as will be detailed ahead in subsection 4.4.3.

The solution found for the keywords if, then, and else was to determine their outcome
probabilistically - unless the if schema is explicitly true or false, in which case it is deterministic
whether the instance should be validated with either then or else, respectively. Otherwise,
the program determines the veracity of the condition based on a probability, customizable

SLATE 2022

5:10 Synthetic Data Generation from JSON Schemas

by the user (by default, a 50/50% chance) - if true, the base schema is extended with the if
and then schemas, otherwise it is extended with a complementary schema of if (produced
with the aforementioned schema inverter) and the schema of else. This way, it is possible to
produce a coherent, simpler schema that incorporates the logic of these conditional keywords
and to generate the final instance in a single iteration.

4.4 Translating the intermediate structure

Finally, once the intermediate structure of the selected data type is finalized and possesses
only type-oriented keywords and/or const and enum, the program is able to generate a DSL
string that translates the logic of the original schema. In this subsection, it will be carefully
detailed the method behind translating each type of value.

The first step is to check if the intended value must belong to a fixed set of values, i.e. the
usage of any of the keywords const or enum, which, at this point, already reflect the absence
of any values unallowed with not. If any of these are present, the remaining keywords are
ignored and the DSL string is generated from these alone. In case of both keywords, const
takes precedence over enum, as it defines that the value is constant and imutable. The output
DSL string produced from these keywords is a random choice from all of their respective
values (typically, const will map to a single value, but if the user composes multiple instances
of this keyword in the same schema, it will be treated as an alternative between several).

If no fixed set of values is defined, the solution goes on to actually translate the type’s-
oriented keywords. Data types null and boolean are basic, since they possess no specific
keywords. These and the previously addressed keywords are translated as follows:

Figure 6 Translation of the keywords enum and const.

4.4.1 String type

The string type only has four different keywords: pattern, format, and minLength/maxLength.
Only in this case, it was decided that there would be an order of precedence to these keywords
since, realistically speaking, they would very rarely be used together (except for both length
keywords): for example, it does not make much sense to define a string value according to a
regular expression or format and then further constrain its length, as the former keywords
already establish a very rigid template.

As such, if the schema has the keyword pattern, that will be the one to be translated,
followed by format and, finally, the length keywords. While pattern and length keywords
translate directly to one of DataGen’s interpolation functions, format is more contrived, since
there is a need to program a different DSL string for each format, to generate an according
value, some of which map directly to existing interpolation functions and others that do not.
Below are presented some examples of the models generated from this data type’s keywords:

H. A. C. Cardoso and J. C. Ramalho 5:11

Figure 7 Translation of string type schemas.

4.4.2 Numeric types
As for numeric types, there are five applicable keywords: multipleOf, minimum, exclusiveMin-
imum, maximum, and exclusiveMaximum. The constraints on numeric types can get a lot
more complicated if the user specifies, via schema composition keywords, that the value must
be a multiple of several numbers simultaneously and/or not a multiple of one or more values.
Let’s first consider simpler cases where the not keyword is not used.

If the instance must be a multiple of one or more values, the program starts by calculating
the least common multiple (LCM) of all these numbers. This way, it is possible to consider
a single value for the multiplicity of the instance, since the LCM and its multiples are the
easiest way to obtain any number simultaneously multiple of the original values. If the type
in question is an integer, this is also taken into account before determining the LCM, by
considering that the instance must also be a multiple of 1.

Next, the range keywords are evaluated, if present. The program determines the biggest
and smallest integers that it is possible to multiply by the LCM (or 1, if no multipleOf
constraint exists), in order to obtain values that belong to the intended range. This is doable
by rounding down the result of the division of the upper bound by the LCM and rounding
up the result of the division of the lower bound by the LCM, respectively. If the schema only
has either an upper or lower range boundary, the other one is offset by 100 units to provide
confortable margin for generateable values. At this point, there are three different possible
outcomes, detailed next and further illustrated in the image below:

if only the type is specified and nothing else, the program simply generates a DSL string
for a random integer or float, accordingly;
if no range keys are used (the only type-specific is multipleOf), the DSL’s interpolation
function with the same name is used to generate a multiple of the LCM;
if both range and multiplicity constraints are present, the value is calculated by randomly
choosing an integer between the predetermined bounds and multiplying it by the LCM.

Figure 8 Translation of numeric type schemas.

SLATE 2022

5:12 Synthetic Data Generation from JSON Schemas

However, the negation of the keyword multipleOf makes these use cases a lot more
contrived, since there is the necessity to further restrict the set of produceable values. As
such, the DSL string produced in such occasion is different for all the alternatives above.
Only one variant will be explained, since the same logic applies across all others:

Figure 9 Translation of a complex numeric type schema.

As seen in the preceding image, the schema has impositions on the range of the value,
as well as what it must and must not be a multiple of. This translates to the DSL via
a JavaScript anonym function, where DataGen first calculates all valid multiples in the
designated range and stores them in an array, then removing all elements that are multiples
of unallowed numbers. The final value is selected randomly from the alternatives with the
interpolation function random, however the program firstly does a safety check to ensure that
the final array is not empty: if that is not the case, then its impossible to produce a value
that obeys all restrictions specified in the schema, so it simply selects a regular multiple in
the range from the first array.

4.4.3 Object type

The set of type-specific keywords for objects is properties and patternProperties, to specify
property schemas according to their key, additionalProperties and unevaluatedProperties, for
unspecified properties, required, to make properties mandatory, propertyNames, to validate
the properties’ keys, and finally size keywords (minProperties and maxProperties).

DataGen From Schemas also treats dependentRequired (used to require properties based
on the presence of others) and dependentSchemas (to apply subschemas if certain properties
exist) as object-specific keywords - for every new property selected for the final instance, the
solution also checks these keywords for dependencies. In case of the former, if any properties
are dependent on the newest property, these are also translated and added to the object.
As for the latter, if there is a subschema dependent on the latest property, it is parsed and
used to extend the current object schema. This verification is executed for every property
produced along the pipeline, required or not.

For this type, the instance’s model is firstly delineated in an intermediate object, mapping
each key to the DSL string of their respective value, in order to manage more easily all the
different properties that may be produced. Only after determining all properties does the
program produce a DSL string for the whole object, from this second intermediate structure.

The first operation executed by the program is determining a random size for the final
object, taking into account all relevant factors such as minProperties and maxProperties,
required properties and the permission or not of unspecified properties (additionalProperties,
unevaluatedProperties). The calculated size will always necessarily allow room for at least
the required properties, and if only the object type is specified and no other keywords are
used, the program will generate an object with between 0 and 3 properties, where both the
key and value are random.

H. A. C. Cardoso and J. C. Ramalho 5:13

Then, DataGen From Schemas iterates the required properties and generates an according
DSL string for each of their value’s schema, storing the pair in the intermediate object
structure. Once the required properties have been produced, the solution executes the
following pipeline sequentially, until it reaches the designated size for the final instance:

iterates the non-required properties sequentially, producing the DSL strings of their
respective values and storing the pairs in the intermediate object;
iterates the value of the keyword patternProperties - for each pair, there is a probability
(customizable by the user) to produce, at most, one according instance property, where
the name of the property is obtained through a regular expression value generator;
if additional properties are not allowed or not explicitly mentioned in the schema, the
intermediate structure is considered finalized with the properties it currently has. Do
note the mention of explicitly allowing additional properties - if neither of the keywords
additionalProperties and unevaluatedProperties are specified, then the user most likely
wants an instance with only the properties covered by the keywords properties and
patternProperties - as such, it would not make much sense to generate other random
properties, just because it is not explicitly disallowed;
if the schema specifies additional properties, additionalProperties has precedence over
unevaluatedProperties, so if both keywords are specified, additionalProperties’s schema
prevails, else it is the only used keyword’s. The program translates this schema into a
DSL string and generates random names for the properties keys, either according to the
propertyNames schema, if present, or by generating small chunks of lorem ipsum.

Having finalized the intermediate object with each property’s DSL string, these properties
are all joined in a string encased by curly braces, in the syntax of a regular JavaScript object
that DataGen is able to parse and then generate the according dataset.

Figure 10 Translation of an object type schema.

4.4.4 Array type
There are several keywords for this data type: items and prefixItems, the main way to
evaluate items, additionalItems and unevaluatedItems, for others that do not validate against
former keywords, contains, minContains, and maxContains, for inclusion of items with certain
schemas, and finally length keywords (minItems, maxItems) and uniqueItems, to determine
the uniqueness of items in the instance.

For this data type, the program creates an intermediate array structure firstly, in order
to maleably plot the intended array, and only at the end converts it to a DSL string. The
solution keeps track, at all times, of the allowed number of items, which can be established
with minItems and maxItems. If the maximum amount of items is ever reached (and also
never before the minimum is attained), the program stops the execution of the pipeline that
will be described ahead and produces the DSL string from the intermediate array as is.

The first step of the algorithm is to check for prefixed items in the schema: if any were
specified, the program sequentially generates their respective values’ DSL strings and pushes
these to the intermediate array, in order.

SLATE 2022

5:14 Synthetic Data Generation from JSON Schemas

Then, DataGen From Schemas parses the inclusion keywords. In the workflow of this
solution, these keywords efectively have a dynamic semantic, since it is impossible to validate
the array for the inclusion of elements with the specified schema before generating it, even
in the DSL model. As such, a compromise was needed to adapt these keywords: after
parsing the prefixed items, if more items are allowed in the array, then the solution with
push the necessary amount of new elements with the structure of the contains schema (one
if minContains and maxContains are not used, otherwise a random number in the indicated
range). Note that if the intent of the user is for the values validated against the inclusion
keys to be some of the prefixed items, then the program cannot guarantee this.

Once all the “hard-coded“ elements are in the intermediate array, the program then
checks for other items. The keyword additionalItems has precedence over unevaluatedItems,
so if additional items are allowed and both keywords are specified, additionalItems’s schema
is considered, otherwise it is the only specified keyword’s. If the user also disallowed any
instance of the keyword contains, their schemas are inverted (using the schema inverter
mentioned in 4.3.1) and used to extend the schema for additional items, in order to guarantee
that all additional items wholly conform to the user’s configuration. This final schema is
used to sequentially generate a random amount of additional items’ DSL strings, within the
intended range for the array, which are appended to the intermediate structure.

Finally, DataGen From Schemas checks if all these items must be unique or not
(uniqueItems). This keyword, as is the case with the inclusion keys, demands a compromise
and an inteligent workaround, since it is impossible to check for the items’ uniqueness before
generating them, and is the reason that warrants the usage of an intermeadiate array to store
the DSL strings of each element, instead of simply building a single string and appending
each item to it. As such, depending on the value of this keyword, two different types of DSL
strings for the final array may be created:

not unique items – if either the keyword is not specified or its value is false, then the
procedure is to simply create a string of an array, where its elements are the DSL strings
stored in the intermediate array structure maintained along this pipeline. DataGen can
interpret this syntax and generate all elements according to their respective model;

Figure 11 Translation of an array type schema with non-unique items.

unique items – in this case, a DataGen anonym function is used to implement an
algorithm that attempts to generate an array where all elements are different. As can be
observed below, the procedure is the following: whenever DataGen creates the next item,
it checks if the array already contains the new value. If not, it pushes the element to the
array and moves on to the next one. Else, it generates the same item again (which can
produce a different result, since the DSL strings accomodate margin for randomness), for
a maximum of 10 tries per item. In case none of them produces a new value, the value of
the latest try is pushed to the array anyway, to prevent crashing the program, and the
resulting array ends up not obbeying the uniqueItems restriction.

H. A. C. Cardoso and J. C. Ramalho 5:15

Figure 12 Translation of an array type schema with unique items.

As a by-product of this algorithm, another compromise arises: DataGen From Schemas
can only attempt to generate arrays with unique items if all items are elementary, i.e. neither
objects nor arrays. This is the case because DSL strings for complex values are bigger, more
convoluted and impossible to incorporate in a DataGen function syntax, in the same way a
basic interpolation or anonym function can. To summarize, DataGen From Schemas is not
the best tool to adapt the keyword uniqueItems in specific, due to its ill-suitability to the
workflow and DataGen’s DSL, however it is still possible to satisfy some use cases.

5 Conclusion

The main contributions of this paper are the design of a synthetic data generator from JSON
schemas and its implementation, which culminate in DataGen From Schemas - a quick and
sturdy solution built upon DataGen that effectively greatly expands the base apllication’s
functionality and makes it more accessible to any user, by allowing their input to be in
a vastly popular and utilized vocabulary, JSON Schema, and automating the creation of
DataGen’s DSL model.

With this software, it becomes possible to very quickly specify a dataset and generate
several different instances of it, given that the program randomizes its values with each
attempt, as well as further customizing its requirements directly in DataGen, via the provided
intermediate DSL model, with support from custom datasets and other tools provided by
the base application, which is not possible to do in JSON Schema’s syntax.

DataGen From Schemas has been experimented with real-life cases and convoluted
schemas that use mechanisms such as bundling or recursion, and proves to be an adequate
solution, capable of interpreting the schemas it is given and generating representative datasets
accordingly. The product will soon be put in a production environment and made available
for the general public, as a free and open-source application, after an arduous yet successful
development phase.

References

1 Jason W. Anderson, K. E. Kennedy, Linh B. Ngo, Andre Luckow, and Amy W. Apon. Synthetic
data generation for the internet of things. In 2014 IEEE International Conference on Big
Data (Big Data), pages 171–176, 2014. doi:10.1109/BigData.2014.7004228.

2 Jessamyn Dahmen and Diane Cook. Synsys: A synthetic data generation system for healthcare
applications. Sensors, 19(5), 2019. doi:10.3390/s19051181.

3 Hadi Keivan Ekbatani, Oriol Pujol, and Santi Segui. Synthetic data generation for deep
learning in counting pedestrians. In ICPRAM, pages 318–323, 2017.

SLATE 2022

https://doi.org/10.1109/BigData.2014.7004228
https://doi.org/10.3390/s19051181

5:16 Synthetic Data Generation from JSON Schemas

4 GAO. Artificial intelligence in health care: Benefits and challenges of machine learning in drug
development (staa)-policy briefs & reports-epta network. In GAO Technology Assessment:
Artificial Intelligence in Health Care: Benefits and Challenges of Machine Learning in Drug
Development, 2020. Accessed: 2021-04-25. URL: https://eptanetwork.org/database/
policy-briefs-reports/1898-artificial-intelligence-in-health-care-benefits-
and-challenges-of-machine-learning-in-drug-development-staa.

5 Menno Mostert, Annelien Bredenoord, Monique Biesaart, and Johannes Delden. Big data in
medical research and eu data protection law: challenges to the consent or anonymise approach.
European Journal of Human Genetics, 24:1096–1096, July 2016. doi:10.1038/ejhg.2016.71.

6 Donald B. Rubin. Statistical disclosure limitation. In Journal of Official Statistics, pages
461–468, 1993.

7 Filipa Alves dos Santos, Hugo André Coelho Cardoso, João da Cunha e Costa, Válter Fer-
reira Picas Carvalho, and José Carlos Ramalho. DataGen: JSON/XML Dataset Generator. In
Ricardo Queirós, Mário Pinto, Alberto Simões, Filipe Portela, and Maria João Pereira, editors,
10th Symposium on Languages, Applications and Technologies (SLATE 2021), volume 94 of
Open Access Series in Informatics (OASIcs), Dagstuhl, Germany, 2021. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. doi:10.4230/OASIcs.SLATE.2021.6.

8 Dianna M Smith, Graham P Clarke, and Kirk Harland. Improving the synthetic data generation
process in spatial microsimulation models. Environment and Planning A: Economy and Space,
41(5):1251–1268, 2009. doi:10.1068/a4147.

9 Apostolia Tsirikoglou, Joel Kronander, Magnus Wrenninge, and Jonas Unger. Procedural mod-
eling and physically based rendering for synthetic data generation in automotive applications.
arXiv preprint, 2017. arXiv:1710.06270.

10 P. Voigt and A. von dem Bussche. The EU General Data Protection Regulation (GDPR): A
Practical Guide. Springer International Publishing, 2017. URL: https://books.google.pt/
books?id=cWAwDwAAQBAJ.

https://eptanetwork.org/database/policy-briefs-reports/1898-artificial-intelligence-in-health-care-benefits- and-challenges-of-machine-learning-in-drug-development-staa
https://eptanetwork.org/database/policy-briefs-reports/1898-artificial-intelligence-in-health-care-benefits- and-challenges-of-machine-learning-in-drug-development-staa
https://eptanetwork.org/database/policy-briefs-reports/1898-artificial-intelligence-in-health-care-benefits- and-challenges-of-machine-learning-in-drug-development-staa
https://doi.org/10.1038/ejhg.2016.71
https://doi.org/10.4230/OASIcs.SLATE.2021.6
https://doi.org/10.1068/a4147
http://arxiv.org/abs/1710.06270
https://books.google.pt/books?id=cWAwDwAAQBAJ
https://books.google.pt/books?id=cWAwDwAAQBAJ

	1 Introduction
	2 DataGen
	3 JSON Format
	4 Development
	4.1 Grammar
	4.2 Referencing
	4.3 Creating the DSL model
	4.3.1 Schema composition keywords
	4.3.2 Keywords that apply subschemas conditionally

	4.4 Translating the intermediate structure
	4.4.1 String type
	4.4.2 Numeric types
	4.4.3 Object type
	4.4.4 Array type

	5 Conclusion

