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—— Abstract

We propose an approach to summarize large semantics graphs using namespaces. Semantic graphs

based on the Resource Description Framework (RDF) use namespaces on their serializations.
Although these namespaces are not part of RDF semantics, they have intrinsic meaning. Based on
this insight, we use namespaces to create summary graphs of reduced size, more amenable to be
visualized. In the summarization, object literals are also reduced to their data type and the blank
nodes to a group of their own. The visualization created for the summary graph aims to give insight
of the original large graph. This paper describes the proposed approach and reports on the results
obtained with representative large semantic graphs.
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1 Introduction

Semantic graphs based on the Resource Description Framework (RDF) are frequently massive,
with more than a billion triples. This order of magnitude raises several problems when
processing these RDF graphs: they are difficult to load into memory; querying them is
time-consuming, and visualization tools are virtually useless.

Graph summaries are an approach to deal with this issue. Summaries may be a smaller
sub-graph retaining only some nodes and edges; or a document in another format which
summarizes the graphs content, such as statistics on the number of nodes and edges, or its
structural features.

A common approach in graph summarization is to group nodes and edges of similar kind.
The challenge is to identify a reduced number of groups of nodes and edges in an RDF graph
so that the graph summary is both meaningful and understandable. On the one hand, the
groups of nodes and edges must retain part of the meaning of their elements. On the other
hand, the reduced graph must be small enough to be easily understood.
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Most nodes and edges in RDF have an associated Internationalized Resource Identifier
(IRI), typically an Uniform Resource Locator (URL). RDF serialization formats, such as
RDF-XML and Turtle, shorten these IRIs using namespaces. Although namespaces exist
only in serializations and are not part of the semantics of RDF, they have intrinsic meaning.

Namespaces reflect a common purpose or a common origin of IRIs. They are more than
just alias to prefixes shared by a large set of IRIs used in a semantic graph. Similar resources
described in a semantic graph typically share a common namespace. For instance, book
resources in DBpedia have a common namespace’. Also, each vocabulary used in semantic
graphs has its particular namespace, as is the case of Dublin Core or Friend-of-a-friend.

The semantics of an RDF graph has two equivalents representations: either as a set of
triples whose elements are IRIs or strings; or as a labeled multi-graph whose labels are IRIs
or strings. In a strict sense, namespaces are not part of RDF semantics. However this does
not entail that they are devoid of meaning. Namespaces reflect a commonality of resource
identifiers and vocabularies and are assigned by semantic graphs authors, not automatically
generated by an algorithm.

Based on this insight, this work explores the use of namespaces and their intrinsic meaning
to summarize RDF graphs. Certainly, we must also consider literals and blank nodes since
IRIs are not the only kind of element in RDF triples. Thus, the proposed approach maps
IRIs, literals, and blank nodes to a reduced set of identifiers to produce summary graphs
retaining part of the semantics of the original graph.

Our goal is to generate meaningful summaries from semantic graphs with hundreds of
millions of triples and produce them in a few hours. We want to understand the information
stored in the graph that otherwise we would not be able to given the volume of the data
and to visualize it in an easy way. We applied the proposed summarization method to two
large graphs, with more than a million triples: the KBpedia knowledge graph and the Linked
Movie Database. The first has over one million triples and the second over three million
triples. We were able to produce a summary graph, from which we were able to extract
visualizations and statistics.

The remainder of this paper is organized as follows. Section 2 provides background on
semantic graphs and RDF. Section 3 surveys related work on semantic graph summariz-
ation. Section 4 details the proposed approach to using namespaces for semantic graph
summarization. Section 5 reports on the use of this approach to summarize two RDF graphs:
KBpedia and LinkedMDB (Linked Movie Database). Finally, Section 6 identifies the main
contributions of this research and opportunities for future work.

2 Background

Semantic graphs store information about concepts in the nodes and the semantic relations
between them in the edges. They are associated with ontologies, formal and explicit
specifications of shared formalizations characterized by high semantic expressiveness required
for increased complexity [11].

These type of graphs are expressed in RDF where the knowledge about a given domain
is represented by triples [subject, predicate, object]. Each triple states that the subject is
connected to the object through a relation described by the predicate [7]. RDF itself contains
properties for relating subjects to objects, such as the rdf:type property, and it is also possible
to create other specific properties for the domain in question. RDF graph nodes can be an
Internationalized Resource Identifier (IRI), a literal or a blank node (an anonymous resource

! nttp://purl.org/NET/book/vocab#
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for which an IRI or literal is not given). The literals can only appear in the object position
of the triples and have associated a datatype that indicates what is the type of the content
of that literal. It can be, for example, strings, integers or dates [16]. Blank nodes can only
be used in the subject or object positions.

In some serialization formats the IRIs that identify nodes and edges can be associated
with a namespace. Common prefixes of IRIs are given smaller names to identify them,
allowing not to use the full IRI when referring to a node or edge. For example, in the RDF
Turtle serialization format, a prefix definition would be:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
With this declaration, instead of using the RDF property type with the full IRI?, it can be
shortened to rdf:type.

These alias definitions are internal to each serialized document and have no impact on the
semantics of the graph. Nevertheless, common namespaces (from widely used vocabularies
or ontologies) are usually shortened to the same prefixes. The prefiz.cc website® contains a
crowd-sourced mapping of namespaces and prefixes [9], and it includes a namespace lookup.

Often in RDF there is the need to make statements about other statements. RDF*,
an extension to RDF is being developed to address this issue, but it is currently only a
draft [1]. RDF Reification is another approach which provides the ability to make RDF
statements to express something in a language using the language, so it becomes treatable
by the language [4]. In practice, it allows building a triple in which the subject is another
triple. As an example, if we want to represent information about the source of the triple
[ex:Gardener ex:hasKilled ex:butler], we need to construct a RDF statement about it, as in
Figure 1. This way, the reified triple can be referenced by others triples.

ex:statementExample rdf:type rdf:Statement
ex:statementExample rdf:subject ex:Gardener .
ex:statementExample rdf:predicate ex:hasKilled .
ex:statementExample rdf:object ex:Butler .
ex:statementExample ex:saidBy ex:Nurse

Figure 1 Reification example.

KBpedia is a medium-sized open-source knowledge graph that combines leading public
knowledge bases (Wikipedia, Wikidata, schema.org, DBpedia, GeoNames, OpenCyc, and the
UNSPSC products and services) into an integrated and computable structure [3]. LinkedMDB
is a RDF graph that contains linked-data-collection of movies, actors, directors and the
relationships between them [10].

SPARQL Protocol and RDF Query Language (SPARQL) is a language for querying
RDF graphs. Through this language, it is possible, for example, to return the properties
associated with a certain class, query the instances that are part of a certain class and count
the numbers of triples [15].

Graphs can be described using the DOT language. DOT is a text based graph represent-
ation which can be transformed into a diagram using tools like Graphviz [8]. Graphviz is an
open source graph visualization software that allows to create nodes and edges with different
sizes and colors, for example. It provides eight layout engines to draw the graph [2].

2 http://www.w3.org/1999/02/22-rdf -syntax-ns#type
3 http://prefix.cc
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A trie or prefix tree is a tree data structure that stores strings. It allows to retrieve a
string from a set in an efficient way. It supports operations of insertion and lookup. For this
work, we adapted the definition of trie given in [12].

3 Related Work

Liu et al. [14] present several kinds of graph summarization methods. They distinguish
between methods for static graphs that do not consider additional information to their
structure and those for static graphs that contain attributes in nodes and arcs.

Static graphs with attributes can use the following summarization kinds of methods:
aggregation-based, bit-compression-based, and influence-based. Aggregation methods group
several nodes that share properties into a supernode, making the summary graph contain
specific properties. Others apply clustering to map each densely connected cluster into a
supernode. Bit-compression-based methods decrease the number of bits needed to store
a graph. Influence-based methods discover the description of the spread of influence by
formulating the summarization problem as an optimization process in which some information
about the influence is kept [14].

Static graphs without attributes can also use methods based on simplification or sparsi-
fication. These methods remove less important nodes or arcs, resulting in a sparsified
graph [14].

Bonifati et al. [5] present statistical and goal-oriented method types. The former is based
on quantitative measurements and the occurrence count. The latter optimizes the memory
footprint by producing a concise representation that fits in memory.

Specifically for semantic graphs, many of the available summarization methods are either
structural or statistical. Structural methods consider structural features such as paths, graph
patterns, or frequent nodes. Some of these approaches extract the most frequent graph
patterns, sub-graphs that share common types and properties. Statistical methods rely on
graph statistics, such as node type frequencies. We can combine these method types to
obtain better results [7].

A particular type of semantic graph summarization is schema extraction. If the graph
itself does not have an associated ontology, it is possible to extract a schema that acts as a
summary of the graph [7]. The extracted schema provides information on the content of the
graph, that is, what types and properties exist, and helps with its exploration [13].

Kellou-Menouer and Kedad [13] propose a schema with types and edge definitions based
on a density clustering algorithm. This approach generates types through grouping and the
description of each one of them, where each property will have an associated probability. It
then generates the edges between types by analyzing the type descriptions. The resulting
summary is a small graph showing the relationships between the different types of the original
one. The first phase of this approach is to generate the types and their description, called
type profiles, with each property having an associated probability. The following step is
to generate semantic and hierarchical edges between types by analyzing type profiles. In
the first phase, a density-based clustering algorithm is applied to group similar entities and
create a profile for each class. These profiles are used to find semantic and hierarchical edges
between types and to generate overlapping types. Type profiles are vectors of properties,
where each property has an associated probability that indicates its relative importance.

Bouhamoum et al. [6] adapt the previous approach to massive graphs. They transform
the graph into a concise representation that contains all the patterns of combined properties.
These patterns are collections of properties that appear together on one or more nodes. The
scheme results from a clustering algorithm applied to these patterns. The result is the same
if the algorithm is applied to the original graph, but is faster if applied to patterns.
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4 Approach

The UML diagram in Figure 2 depicts the three main activities in summarization process.
We start by mapping the RDF elements of each triple into groups, producing reduced triples.
Then, we count repeated reduced triples and produce a summary graph. We finish with a
creation of a visualization of the summary graph.

Mapping RDF elements Triple frequency Graph visualization

Figure 2 UML activity diagram.

The following subsections detail the graph summarization workflow. Subsection 4.1
describes how RDF triple components are reduced to group identifiers. Subsection 4.2
explains how a summary graph is produced from triples with a reduced number of identifiers.
Finally, Subsection 4.3 describes how the graph is visualized.

4.1 Mapping RDF elements into groups

An arc linking two nodes in a semantic graph corresponds to a triple. The subject and object
are the source and target nodes and the predicate is the arc. The elements of RDF triples
can be IRIs, literals, or blank nodes. We deal with each of these differently:

IRIs: are reduced to their namespace;
Literals: are reduced to their datatype;
Blank nodes: are reduced to a particular group.

Literals occur only as objects in triples and represent unstructured data; for instance,
a date or a number. This kind of element is reduced to the literal datatype. Blank nodes
occur either as subjects or objects in a triple and correspond to unidentified resources that
cannot be referenced from another graph. This kind of element tends to be less frequent and
is reduced to a particular group. The most frequent kind of element in a triple is the IRI
and reducing them is the core of the proposed approach.

Figure 3 shows a triple from a large graph and how its IRIs are shortened using namespaces.
The central column presents the original IRIs with the namespace prefix underlined. The
right column presents the short version of the same IRI with the prefix replaced by an alias.
The alias is also underlined and separated from the suffix by a colon.

Triple Original TRI Short IRI
Subject http://kbpedia.org/kko/rc/Abbey kko:Abbey
Predicate | http://www.w3.0rg/2000/01/rdf-schema#subClass0f | rdfs:subCLass0f
Object http://dbpedia.org/ontology/Abbey dbo: Abbey

Figure 3 Example of a triple and its corresponding triple with namespaces.

IRIs are mapped to their namespaces. This is done by
1. checking explicit prefix declarations in the RDF file;
2. checking the Prefix.cc prefix database;
3. pattern matching.

12:5
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If the RDF file being processed has any prefix declarations, these are used as the preferred
method for finding prefixes: any IRIs matching these prefix declarations are reduced to the
corresponding alias defined in the file. IRIs not reduced by the previous step are looked up
on a database of prefixes downloaded from the Prefix.cc website*, which contains a mapping
between prefixes and their common alias for almost 3000 prefixes. These prefixes are inserted
into a trie where they can be efficiently searched. For all the remaining IRIs we attempt to
find namespace prefixes by deleting trailing chunks of the IRIs and searching for common
patterns. Namespace prefixes usually end in either ‘#’ or ¢/, so we repeatedly delete the
portion of the IRI after the last trailing ‘#’ or ‘/’, and add to the prefix list any truncated
IRI appearing multiple times.

4.2 Graph summary creation

Triples in the original graph are converted into reduced triples, with each of its elements
(subject, predicate, object) reduced to a group identifier, as detailed in the previous subsection.
Then, the reduced triples are condensed into a summary graph.

The summary is itself an RDF graph and each statement corresponds to a reduced triple.
These triples are reified RDF statements: each is attributed its own identifier, allowing
assertions about it to be made. All resources in the summary graph are identified with IRIs
on the ngs namespace®. These include triples identifications and references to groups. The
namespace is also used for a predicate that states the number of occurrences of reduced
triples, counted during triple conversion.

O@prefix ngs: <https://www.dcc.fc.up.pt/~up201605706/ngs#> .
ngs:tl rdf:type rdf:statement

ngs:tl rdf:subject ngs:kko

ngs:tl rdf:predicate ngs:rdfs

ngs:tl rdf:object ngs:dbo

ngs:tl ngs:num_occurrences 530

Figure 4 Example of reduced triples represented in the summary graph.

Listing 4 shows the set of triples in the summary that represent a set of reduced triples.
It corresponds to 530 triples in the original graph that are mapped to the single triple [kko
rdfs dbo/. That is, those 530 original triples had subjects that were reduced to kko, predicates
reduced to rdfs and objects reduced to dbo.

4.3 Graph visualization

The graph summary is then processed to be visualized. This requires the conversion of

the graph to a DOT file, using the following visual features to represent nodes and edges

characteristics:

1. node size: nodes appearing more frequently in the graph summary are represented in a
larger size;

2. node color: groups corresponding to literal data types are represented in a different
color;

4 nttp://prefix.cc
5 Corresponding to the prefix https://www.dcc.fc.up.pt/~up201605706/ngs#.
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3. edge thickness: triples with a higher number of occurrences in the graph summary are
represented with thicker edges;
4. edge color: edges are drawn with different colors, each corresponding to a different

group.

These visual features highlight the relative frequency of namespaces used in nodes and
edges and the connections between them. Additionally, it makes it easy to detect other graph
features such as strongly connected components, or disconnected graphs.

5 Validation

To validate the proposed semantic graph summarizing technique we applied it to KBpedia
knowledge graph.We ran the program in two ways: converting the object literals to their
data types (option 1 in the table of results) and not converting them (option 2).

Table 1 shows the number of triples that the produced smaller graph has, the approximated
time that the program took to finish to produce a graph and to write the RDF statements,

the percentage of reduction that was obtained like this: #iriples—sreduced triples , 1 apd

H#Htriples
#Htriples
time

the number of triples that are processed per second:

Table 1 Table of results.

. . # Reduced | % Triple . .
Graph #Triples | Option triples reduction Time | #Triples/s
1 1 . h 2
KBpedia | 1 175 147 59 99.99 0ho7 98
2 442 290 62.36 | 01h10 280

Figure 5 shows a visual representation of the KBpedia’s summary graph. From this
summary we are able to discover several Kbpedia features.

KBpedia’s namespace for individuals, http://kbpedia.org/kko/rc/), represented in
the figure by the kko node, is both the most central node (most of the other nodes are
connected to it) and the most frequently mentioned.

The second largest node (#1) corresponds to the http://kbpedia.org/ontologies/kko#
namespace, used in KBpedia to specify ontology elements.

KBpedia uses the IRI http://kbpedia.org/kbpedia/rc# to identify the graph itself. It
is the only resource in its namespace (#2), and it connects to kko and three literal groups,
rdf:langString, xsd:dataTime and xsd:string.

Most of the predicates in KBpedia come from three different groups. The most frequently
used are rdfs and KBpedia’s kbpedia.org_ ontologies_ kk (corresponding to the
http://kbpedia.org/ontologies/kko# namespace, followed by owl.

The namespace http://kbpedia.org/kbpedia/rc/ (ending in ‘#’ instead of ‘/’, cor-
responding to group #7 in the figure) defines a set of classes connected only to the frbr
group (which corresponds to the http://purl.org/vocab/frbr/core# namespace).
Triples of these groups are disconnected from the core of KBpedia. This is a interesting
and unexpected insight provided by the summary.

6 Conclusion and future work

Massive semantic graphs are increasingly hard to understand and visualize. A remedy is
to summarize them into smaller graph. In most graph summarizing techniques nodes are
grouped into supernodes, and edges between them are grouped in superedges, thus reducing

12:7

SLATE 2022



12:8

Large Semantic Graph Summarization Using Namespaces

e
| transit |
<

Predicate

rdfs

4 org j Resource
\\_ #1 kbpedia.org_ontologies_kko

#2 kbpedia.org_kbpedia_rc
#3 rdf:langString
#4 xsd:dateTime
#5 xsd:string
#6 wikipedia.org_wiki
#7 kbpedia_rc

Figure 5 Visualization of KBpedia graph summary.

graph sizes. Our ongoing research explores the use of namespaces to obtain these supernodes
and edges for RDF graphs. The work presented in this paper contributes with a summarizing
technique for RDF graphs and a Python package implementing it.

In the proposed approach, RDF triple elements are mapped into groups according to
their kind: IRIs are mapped into their namespaces, literals into their data types, and blank
nodes into a particular group. The result is a collection of triples of the mapped elements,
where most triples are repeated several times. The summary graph is also an RDF graph,
where reduced triples are reified, and the nodes representing each triple record the number
of repetitions. Finally, the summary graph is converted into the DOT graph description
language for visualization.

The proposed approach was applied to large RDF graphs, one with over 1 million triples
and another with over 3 million triples. For the smaller one, the resulting summary graphs
were produced in a short time and provided meaningful information. For larger graphs,
such as LinkedMDB, results could not be obtained in a timely manner. Hence, the current
implementation must be optimized to handle larger semantic graphs.

The work presented in this paper is still in progress, and we have planned several
improvements. We will explore this approach with even larger graphs to improve the
algorithm efficiency. We will formalize graph summaries using RDF Schema, defining the
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reification of mapped triples. Finally, we will contribute a package for summarizing RDF
graphs to PyPI, the repository of software for the Python programming language, which will
be available at https://pypi.org/project/rdf-summarizer/.
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