ScraPE — An Automated Tool for Programming
Exercises Scraping

Ricardo Queirés &
CRACS — INESC-Porto LA, Portugal
uniMAD, ESMAD/P.PORTO, Portugal

—— Abstract

Learning programming boils down to the practice of solving exercises. However, although there are
good and diversified exercises, these are held in proprietary systems hindering their interoperability.
This article presents a simple scraping tool, called ScraPE, which through a navigation, interaction
and data extraction script, materialized in a domain-specific language, allows extracting the data
necessary from Web pages — typically online judges — to compose programming exercises in a standard
language. The tool is validated by extracting exercises from a specific online judge. This tool is part
of a larger project where the main objective is to provide programming exercises through a simple
GraphQL APIL.

2012 ACM Subject Classification Applied computing — Computer-managed instruction; Applied
computing — Interactive learning environments; Applied computing — E-learning

Keywords and phrases Web scrapping, crawling, programming exercises, online judges, DOM

Digital Object Identifier 10.4230/OASIcs.SLATE.2022.18

1 Introduction

Programming courses are part of the curriculum of many engineering and science programs.
These courses rely on programming exercises to foster practice, consolidate knowledge and
evaluate students. The enrolment in these courses is usually very high, resulting in a great
workload for the faculty and teaching assistants. In this context the availability of many and
diversified programming exercises from different sources is of great importance [4]. Unfortu-
nately, there are only a few sources to get, in an automatic way, programming exercises. Some
notable examples are the online judges, which can be defined as repositories of programming
exercises with automatic evaluation capabilities. These systems are often used by students
around the world to train for programming contests such as the International Olympiad
in Informatics (IOI)!, for secondary school students; the ACM International Collegiate
Programming Contests (ICPC)?2, for university students; and the IEEExtreme?, for IEEE
student members. Despite their usefulness, these systems do not have a simple mechanism
to obtain programming exercises (e.g. an API). In fact, only a few offer interoperability
features such as standard formats for their exercises and APIs to foster their reuse in an
automated fashion. In this field, the most notable APIs for computer programming exercises
consumption are CodeHarbor?, FGPE AuthorKit®, and Sphere Engine®. Still, they are not
simple to use and expose a small number of exercises.

https://ioinformatics.org/
https://icpc.global/

https://ieeextreme.org/
https://github.com/openHPI/codeharbor
https://github.com/FGPE-Erasmus/authorkit-api
https://sphere-engine.com/

© Ricardo Queirés;
37 licensed under Creative Commons License CC-BY 4.0

11th Symposium on Languages, Applications and Technologies (SLATE 2022).
Editors: Joao Cordeiro, Maria Joao Pereira, Nuno F. Rodrigues, and Sebastido Pais; Article No. 18; pp. 18:1-18:7

[BV Vo

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:ricardoqueiros@esmad.ipp.pt
https://orcid.org/0000-0002-1985-6285
https://doi.org/10.4230/OASIcs.SLATE.2022.18
https://ioinformatics.org/
https://icpc.global/
https://ieeextreme.org/
https://github.com/openHPI/codeharbor
https://github.com/FGPE-Erasmus/authorkit-api
https://sphere-engine.com/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

18:2

ScraPE — An Automated Tool for Programming Exercises Scraping

This poses a big problem for teachers who, due to lack of time, often resort to exercises
from previous years. This recurrence hinders diversification and innovation in the practical
part of programming courses, which is crucial for their evolution in this area.

This article presents a tool called ScraPE that allows, through a script formalized by a
very simple domain-specific language (DSL), to extract data from Web pages (mostly online
judges). The script defines a set of steps to navigate, interact and extract data to compose a
programming exercise and its direct serialization to a standard language (YAPeXIL [3]). The
tool will be used to mitigate the cold-start problem [5] in a larger project where the objective
is to provide a simple and flexible GraphQL API for accessing programming exercises that
can be consumed by several learning systems.

The remainder of this paper is organized as follows. Section 2 analyzes several of existing
online judges to select the most suitable to feed a repository of programming exercises.
Section 3 presents an automatic scraping tool to extract programming exercises. Then, in
order to evaluate the effectiveness and efficiency of this approach, in Section 4, a report on
the use of ScraPE in the TIMUS online judge is presented. The final section summarizes the
main contributions of this research and plans future developments of this tool.

2 Online Judges

An Online Judge (OJ) is a system with a set of programming exercises that can be used by
anyone to practice for programming contests. These systems can compile and execute your
code, and test your code with predefined data. The code being submitted may run with
restrictions, including time and memory limit, and other security restrictions. The output of
the executed code will be compared with the standard output. The system will then return
the result. When the comparison fails, the submission is considered unsuccessful and you
need to correct any errors in the code, and resubmit for re-judgement.

Although there are several online judges, they do not provide any kind of API hindering
its automatic consumption. In addition, those who provide these API return exercises in
disparate formats, which leads to the need to use converters to harmonize formats. With this
scarcity of exercises and given the difficulty of creating promptly good exercises, teachers
often reuse exercises from previous years, which limits creativity [1].

In this section we survey online judges that present programming exercises. Since there
are a large number of online judges, a set of criteria was applied to filter the set and thus
obtain those that will be the most suitable to be used as a data source for the system to be
implemented.

In a first phase we select 72 online judges. Then, in order to narrow the dataset we
applied sequentially a set of criteria:

1. Statements in English language;

2. Statements in HTML format;

3. Public problem set (without the need to register/login in the OJ)
4. Minimum number of exercises (nEx >= 1000)

Based on these filter criteria, only 17 OJs were selected. Then, all OJs were analyzed and
validated according to their coverage in the YAPeXIL format [3]. The YAPEXxil format is
currently the most expressive format to represent a programming exercise [2]. It is formalized
by a YAPEXIL JSON Schema (Figure 1) which can be divided into four separate facets:

Metadata — which contains simple properties providing information about the exercise

(i-e., a description, the name of the author of the exercise, a set of keywords relating to

the exercise, the level of difficulty, the current status, and the timestamps of creation and

last modification;

R. Queirds

Presentation — which relates to what is presented to the student (i.e. the statement — a
formatted text file with a complete description of the problem to solve — embeddables —
an image, video, or another resource file that can be referenced in the statement —, and
skeleton — a code file containing part of a solution that is provided to the students;
Assessment — which encompass what is used in the evaluation phase (i.e. solution —
a code file with the solution of the exercise provided by the author(s), test — a single
public/private test with input/output text files, a weight in the overall evaluation, and a
number of arguments —, and test_set — a public/private set of tests);

Tools — which includes any additional tools that the author may use in the exercise (i.e.
generate the feedback to give to the student about her attempt to achieve a solution and
the test cases to validate a solution).

Presentation

0-* FormattedText
Instruction
Metadata \ pathmame : string
1-* format : string
- Statement natlLang : string
Exercise
id : string o-*
title : string Embeddable
module : string - —
author : string Skeleton
type : string I | pathnans : sering
difficulty : string T Do
status : string 0-% ¥ g
keywords : string|
event : string Tools
platform : string
created_at : date | |
updated at : date > T rator Executable
. {3 pathnans : string
o commandLins: String
d ator
Evaluation
oo

Libraries

o= Code
StaticCorrector
T lang : string

Test

TestSet

description: string 1-* | imput i string

weight : double output i string

wisibility : boolean args : stringl]
weight : double

visibility: boolean

)

Figure 1 YAPEXIL data model.

Each Online Judge was analyzed and its coverage in the 4 facets was verified. Table 1
presents the results of this study.

Based on these results, we can state that LeetCode, CodeChef, TIMUS, URI and Kattis
are the OJs with higher YAPEXIL coverage values, thus offering a higher guarantee that the
exercises provided by the future API are more complete in terms of information for the end
user.

3 ScraPE

ScraPE is a basic tool for scraping online judges on data related with programming exercises.
The ultimate goal of this tool is to be used as a cold-start facilitator in a bigger system
currently being developed which aims to provide a GraphQL API to anyone that want to
get free programming exercises. This system will be based on a GraphQL server (Apollo)

18:3

SLATE 2022

18:4 ScraPE — An Automated Tool for Programming Exercises Scraping

Table 1 Online judges comparison based on YAPEXIL covereness.

. . YAPEXIL facets

Online Judges | Fexercises Metadata | Presentation | Assessment | Tools TOTAL
UVA 4300 20% 0% 0% 0% 5,00%

TIMUS 1157 95% 50% 0% 0% 36,25%
URI 2296 95% 50% 0% 0% 36,25%
Peking 3054 90% 45% 0% 0% 33,75%
Zhejiang 3179 5% 35% 0% 0% 27,50%
Kattis 3380 95% 50% 0% 0% 36,25%
LeetCode 2262 95% 50% 25% 0% 42.50%
CodeForces 78013 80% 25% 0% 0% 26,25%
DMOJ 4233 75% 25% 0% 0% 25,00%
Dunjudge 1707 80% 25% 0% 0% 26,25%
TopCoder 2122 65% 25% 0% 0% 22,50%
CodeChef 5001 95% 50% 25% 0% 42.50%
E-olymp 8325 85% 25% 0% 0% 27,50%
Toph 1548 90% 25% 0% 0% 28,75%
Hackerearth 1612 5% 25% 0% 0% 25,00%
LightOJ 1025 80% 25% 0% 0% 26,25%
Aizu 3023 85% 25% 0% 0% 27,50%

composed by a GraphQL schema, a resolver, a noSQL database where the exercises will be
stored in YAPEXIL format and a HTTP client to expose the APIL. Learning systems and/or
individuals will use this API to feed their courses.

3.1 The schema

ScraPE uses a DSL to represent a script which is responsible by all the actions made on
web pages from navigating to extracting data. The DSL is formalized as a JSON Schema.
Listing 1 presents the action sub-schema, as will be explained below.

Listing 1 Action schema.

{
"$schema": "http://json-schema.org/draft-04/schema#",
"description": "A schema to formalize an Action",
"type": "object",
"properties": {
"page": { "type": "string" },
"query": { "type": "string" 1},
"type": { "type": "string" },
"output": { "type": "string" },
"actions": { "type":"array", "items": {"$ref": "#/defs/Action" }}
},
"required": ["type", "query", "output']
}

The Action sub-schema is composed by five properties. The page property is the web page
where the scraper will start extracting data. The query property represents a CSS selector
that will be used to find the desired DOM nodes. The type property is a enumeration of all
the action types that can be made in the selected element:

R. Queirds

GET — get DOM element(s) or attribute(s) based on a query;
FILL — inject text in a selected text box or select an item in a selected combo box;
CLICK — click in a selected button, radio button or checkbox.

The output property is a string which defines the name of the property to be created in
the output file.

The execution of a query can result in multiple nodes. In this case, it is necessary
to iterate over all of them and perform certain actions. This is the case, for example, of
primary-secondary pages where a Web page has multiple links and where we need to enter
and perform a set of actions on each of them. For this particular scenario we could have an
actions array inside an action property.

4 Use Case: Timus Online Judge

Based on the results of Section 2, the effectiveness and efficiency of ScraPE was validated
using one of the top-3 online judges as data source. The chosen one was the TIMUS Online
Judge.

The first step was the construction of the JSON instance representing the script to be
used in the scraping process. Since this process is (still) manual we use the Inspector tab of
the browser Developer Tools to get all the desired CSS selectors.

The next step was to refine the script with the action types and the output names for
the output files being generated. It should be noted that the script generates an output file
in an internal ScraPE format. Afterwards the file will be transformed into the target format
(ideally YAPEXIL) using eXtensible Stylesheet Language (XSL) files. This way, it will be
easier to scale ScraPE to other desired formats. The final script is presented in Listing 2

Listing 2 Final script.

"actions": [{
"page": "problemset.aspx?space=1&page=all",
"query": "td.name a",
"type": "GET",
"output": "exercise",
"actions": [{
"type": "GET",
"query": "h2",
"output": "title"
o A
"type": "GET",
"query": "div.problem_par:nth-child(1)",
"output": "description"
o A
"type": "GET",
"query": ".problem_limits",
"output": "limits"
o
"type": "GET",
"query": ".sample td:nth-of-type(1l) pre",
"output": "input"
Fo A
"type": "GET",
"query": ".sample td:nth-of-type(2) pre",
"output": "output"
}
1
}

18:5

SLATE 2022

18:6

ScraPE — An Automated Tool for Programming Exercises Scraping

After the refinement phase, it is possible to run the ScraPE main script in the command
line. Figure 2 shows, in the left, the output of the script running in command line and, in
the right, one of the exercises extracted in a ScraPE internal format. Currently, exercises are
generated in the file system, but the plan is to automatically store them in a specific NoSQL
database.

TERMINAL

Simple Sum",

Y =1&page=all

i num=1808
num=1881
num=11
num=1863
num=1884
num=1885

Figure 2 ScraPE exercises generation.

5 Conclusion

This article introduces an automated scraping tool called ScraPE. The purpose of the tool is
not to compete with existing scaping tools, but to feed a database as a cold-start facilitator
for an ongoing project. This database will be used in conjunction with an API to serve, in a
flexible way, learning systems (or individuals) to get programming exercises in the YAPExIL
format.

Currently, the tool is an ongoing work. In fact several parts of the process are not yet
implemented such as: 1) the creation of a GUI editor to facilitate the script creation process;
2) the transformation of the ScraPE internal format to the YAPEXIL format and 3) the
storage of the exercises in a database.

After solving these three simple tasks the goal is to create the programming exercises API
and integrate the ScraPE tool in order to provide a simple and universal way to everyone get
programming exercises with specific filters (for instance, “give me an easy exercise in JAVA
with arrays”).

—— References

1 Jackie O’Kelly and J. Paul Gibson. Robocode & problem-based learning: A non-prescriptive
approach to teaching programming. SIGCSE Bull., 38(3):217-221, June 2006. doi:10.1145/
1140123.1140182.

2 José Carlos Paiva, Ricardo Queirds, and José Paulo Leal. Mooshak’s Diet Update: Introducing
YAPEXIL Format to Mooshak. In Ricardo Queirds, Mario Pinto, Alberto Simdes, Filipe
Portela, and Maria Jodo Pereira, editors, 10th Symposium on Languages, Applications and
Technologies (SLATE 2021), volume 94 of Open Access Series in Informatics (OASIcs),
pages 9:1-9:7, Dagstuhl, Germany, 2021. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik.
doi:10.4230/0ASIcs.SLATE.2021.9.

3 José Carlos Paiva, Ricardo Queirés, José Paulo Leal, and Jakub Swacha. Yet Another Pro-
gramming Exercises Interoperability Language (Short Paper). In Alberto Simdes, Pedro Ran-
gel Henriques, and Ricardo Queirés, editors, 9th Symposium on Languages, Applications
and Technologies (SLATE 2020), volume 83 of OpenAccess Series in Informatics (OASIcs),
pages 14:1-14:8, Dagstuhl, Germany, 2020. Schloss Dagstuhl-Leibniz-Zentrum fir Informatik.
doi:10.4230/0ASIcs.SLATE.2020.14.

https://doi.org/10.1145/1140123.1140182
https://doi.org/10.1145/1140123.1140182
https://doi.org/10.4230/OASIcs.SLATE.2021.9
https://doi.org/10.4230/OASIcs.SLATE.2020.14

R. Queirds 18:7

4 Anthony Robins, Janet Rountree, and Nathan Rountree. Learning and teaching programming:
A review and discussion. Computer Science Education, 13(2):137-172, 2003. doi:10.1076/
csed.13.2.137.14200.

5 Vidhi Singrodia, Anirban Mitra, and Subrata Paul. A review on web scrapping and its
applications. In 2019 International Conference on Computer Communication and Informatics
(ICCCI), pages 1-6, 2019. doi:10.1109/ICCCI.2019.8821809.

SLATE 2022

https://doi.org/10.1076/csed.13.2.137.14200
https://doi.org/10.1076/csed.13.2.137.14200
https://doi.org/10.1109/ICCCI.2019.8821809

	1 Introduction
	2 Online Judges
	3 ScraPE
	3.1 The schema

	4 Use Case: Timus Online Judge
	5 Conclusion

