
27th International Conference on
Types for Proofs and Programs

TYPES 2021, June 14–18, 2021, Leiden, The Netherlands
(Virtual Conference)

Edited by

Henning Basold
Jesper Cockx
Silvia Ghilezan

LIPIcs – Vo l . 239 – TYPES 2021 www.dagstuh l .de/ l ip i c s

Editors

Henning Basold
LIACS, Leiden University, The Netherlands
h.basold@liacs.leidenuniv.nl

Jesper Cockx
TU Delft, The Netherlands
J.G.H.Cockx@tudelft.nl

Silvia Ghilezan
University of Novi Sad, Serbia
Mathematical Institute SASA, Belgrade, Serbia
gsilvia@uns.ac.rs

ACM Classification 2012
Theory of computation → Type theory; Theory of computation → Type structures; Computing methodo-
logies → Representation of mathematical objects; Theory of computation → Interactive proof systems;
Theory of computation → Logic; Theory of computation → Logic and verification; Theory of computa-
tion → Proof theory; Theory of computation → Constructive mathematics; Theory of computation →
Linear logic; Theory of computation → Process calculi; Software and its engineering → Formal software
verification; Security and privacy → Systems security

ISBN 978-3-95977-254-9

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-254-9.

Publication date
August, 2022

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.TYPES.2021.0
ISBN 978-3-95977-254-9 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0000-0001-7610-8331
mailto:h.basold@liacs.leidenuniv.nl
https://orcid.org/0000-0003-3862-4073
mailto:J.G.H.Cockx@tudelft.nl
https://orcid.org/0000-0003-2253-8285
mailto:gsilvia@uns.ac.rs
https://www.dagstuhl.de/dagpub/978-3-95977-254-9
https://www.dagstuhl.de/dagpub/978-3-95977-254-9
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.TYPES.2021.0
https://www.dagstuhl.de/dagpub/978-3-95977-254-9
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Reykjavik University, IS and Gran Sasso Science Institute, IT)
Christel Baier (TU Dresden, DE)
Mikolaj Bojanczyk (University of Warsaw, PL)
Roberto Di Cosmo (Inria and Université de Paris, FR)
Faith Ellen (University of Toronto, CA)
Javier Esparza (TU München, DE)
Daniel Král’ (Masaryk University - Brno, CZ)
Meena Mahajan (Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)
Chih-Hao Luke Ong (University of Oxford, GB)
Phillip Rogaway (University of California, Davis, US)
Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Wadern, DE)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

TYPES 2021

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Henning Basold, Jesper Cockx, and Silvia Ghilezan . 0:vii

Papers

Verification of Bitcoin Script in Agda Using Weakest Preconditions for Access
Control

Fahad F. Alhabardi, Arnold Beckmann, Bogdan Lazar, and Anton Setzer 1:1–1:25

Formalisation of Dependent Type Theory: The Example of CaTT
Thibaut Benjamin . 2:1–2:21

Strictification of Weakly Stable Type-Theoretic Structures Using Generic Contexts
Rafaël Bocquet . 3:1–3:23

A Machine-Checked Proof of Birkhoff’s Variety Theorem in Martin-Löf Type
Theory

William DeMeo and Jacques Carette . 4:1–4:21

Principal Types as Lambda Nets
Pietro Di Gianantonio and Marina Lenisa . 5:1–5:23

Internal Strict Propositions Using Point-Free Equations
István Donkó and Ambrus Kaposi . 6:1–6:21

Constructive Cut Elimination in Geometric Logic
Giulio Fellin, Sara Negri, and Eugenio Orlandelli . 7:1–7:16

A Succinct Formalization of the Completeness of First-Order Logic
Asta Halkjær From . 8:1–8:24

Simulating Large Eliminations in Cedille
Christa Jenkins, Andrew Marmaduke, and Aaron Stump . 9:1–9:22

Quantitative Polynomial Functors
Georgi Nakov and Fredrik Nordvall Forsberg . 10:1–10:22

Types and Terms Translated: Unrestricted Resources in Encoding Functions as
Processes

Joseph W. N. Paulus, Daniele Nantes-Sobrinho, and Jorge A. Pérez 11:1–11:24

Size-Based Termination for Non-Positive Types in Simply Typed
Lambda-Calculus

Yuta Takahashi . 12:1–12:23

27th International Conference on Types for Proofs and Programs (TYPES 2021).
Editors: Henning Basold, Jesper Cockx, and Silvia Ghilezan

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Preface

This volume constitutes the post-proceedings of the 27th International Conference on Types
for Proofs and Programs, TYPES 2021, that was held virtually from 14 to 18 June 2021
with organisation based in Leiden. The TYPES meetings are a forum to present new and
on-going work in all aspects of type theory and its applications, especially in formalised and
computer assisted reasoning and computer programming. The meetings from 1990 to 2008
were annual workshops of a sequence of five EU-funded networking projects. Since 2009,
TYPES has been run as an independent conference series. Previous TYPES meetings were
held in Antibes (1990), Edinburgh (1991), Båstad (1992), Nijmegen (1993), Båstad (1994),
Torino (1995), Aussois (1996), Kloster Irsee (1998), Lökeberg (1999), Durham (2000), Berg
en Dal near Nijmegen (2002), Torino (2003), Jouy-en-Josas near Paris (2004), Nottingham
(2006), Cividale del Friuli (2007), Torino (2008), Aussois (2009), Warsaw (2010), Bergen
(2011), Toulouse (2013), Paris (2014), Tallinn (2015), Novi Sad (2016), Budapest (2017),
Braga (2018), Oslo (2019) and Turin (2020). The TYPES areas of interest include, but
are not limited to: Foundations of type theory and constructive mathematics; Homotopy
type theory; Applications of type theory; Dependently typed programming; Industrial uses
of type theory technology; Meta-theoretic studies of type systems; Proof assistants and
proof technology; Automation in computer-assisted reasoning; Links between type theory
and functional programming; Formalizing mathematics using type theory; Type theory
in linguistics. The TYPES conferences are of open and informal character. Selection of
contributed talks is based on short abstracts; reporting work in progress and work presented
or published elsewhere is welcome. A formal post-proceedings volume is prepared after
the conference; papers submitted to that volume must represent unpublished work and are
subjected to a full peer-review process.

Already in 2020, TYPES could not take place due to the situation surrounding SARS-
CoV-2 and this very same situation forced us to make TYPES 2021 a virtual event. Given
these circumstances and the general impact of measures taken in reaction to SARS-CoV-2, the
conference and this volume can be considered a relative success. The conference programme
consisted of four invited talks by Ulrik Buchholtz, Stephanie Balzer, Sara Negri and Pierre-
Marie Pédrot. For a virtual event, the participation in the conference was high with 44
contributed talks, and 160 registered and about 70 active participants. The abstracts can be
found online: https://types21.liacs.nl/download/types-2021-book-of-abstracts/

Even though the circumstances were not ideal, we were able to strengthen the link between
the conference and these post-proceedings by giving more room for discussion during the
conference of work that the authors intended to submit to the post-proceedings. Indeed,
initially 23 papers were submitted to the post-proceedings, out of which 8 were retracted.
However, we are happy to ultimately have post-proceedings consisting of 12 high-quality
papers on formalised mathematics and semantics, foundations of type theory, geometric and
linear logic, categorical methods in type theory, and types for processes. We thank all the
authors and reviewers for their hard work to make this possible! Finally, we would like to
thank the Leiden Institute of Advanced Computer Science for kindly covering the costs of the
conference and the post-proceedings. This simplified participation given the virtual setup
greatly! For the future, we hope that TYPES is not forced to be held again virtually, even
though virtual attendance to talks is an interesting option to have, and the most important
elements of TYPES can be brought back: discussion and spontaneous interaction!

Henning Basold, Jesper Cockx and Silvia Ghilezan, June 2022
27th International Conference on Types for Proofs and Programs (TYPES 2021).
Editors: Henning Basold, Jesper Cockx, and Silvia Ghilezan

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://types21.liacs.nl/download/types-2021-book-of-abstracts/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Verification of Bitcoin Script in Agda Using
Weakest Preconditions for Access Control
Fahad F. Alhabardi #

Dept. of Computer Science, Swansea University, UK

Arnold Beckmann # Ñ

Dept. of Computer Science, Swansea University, UK

Bogdan Lazar #

University of Bath, UK

Anton Setzer # Ñ

Dept. of Computer Science, Swansea University, UK

Abstract
This paper contributes to the verification of programs written in Bitcoin’s smart contract language
script in the interactive theorem prover Agda. It focuses on the security property of access control
for script programs that govern the distribution of Bitcoins. It advocates that weakest preconditions
in the context of Hoare triples are the appropriate notion for verifying access control. It aims at
obtaining human-readable descriptions of weakest preconditions in order to close the validation gap
between user requirements and formal specification of smart contracts.

As examples for the proposed approach, the paper focuses on two standard script programs
that govern the distribution of Bitcoins, Pay to Public Key Hash (P2PKH) and Pay to Multisig
(P2MS). The paper introduces an operational semantics of the script commands used in P2PKH
and P2MS, which is formalised in the Agda proof assistant and reasoned about using Hoare triples.
Two methodologies for obtaining human-readable descriptions of weakest preconditions are discussed:
(1) a step-by-step approach, which works backwards instruction by instruction through a script,
sometimes grouping several instructions together; (2) symbolic execution of the code and translation
into a nested case distinction, which allows to read off weakest preconditions as the disjunction of
conjunctions of conditions along accepting paths. A syntax for equational reasoning with Hoare
Triples is defined in order to formalise those approaches in Agda.

2012 ACM Subject Classification Theory of computation Ñ Hoare logic; Theory of computation
Ñ Type theory; Theory of computation Ñ Programming logic; Theory of computation Ñ Inter-
active proof systems; Theory of computation Ñ Operational semantics; Theory of computation Ñ

Denotational semantics; Security and privacy Ñ Access control; Security and privacy Ñ Logic and
verification; Applied computing Ñ Digital cash

Keywords and phrases Blockchain, Cryptocurrency, Bitcoin, Agda, Verification, Hoare logic, Bitcoin
Script, P2PKH, P2MS, Access control, Weakest precondition, Predicate transformer semantics,
Provable correctness, Symbolic execution, Smart contracts

Digital Object Identifier 10.4230/LIPIcs.TYPES.2021.1

Related Version Full Version: https://arxiv.org/abs/2203.03054

Supplementary Material Software (Agde Source Code):
https://github.com/fahad1985lab/Smart––Contracts––Verification––With––Agda

archived at swh:1:dir:f552dd7468ce4fa08c193e2016b6c0e7580f1791

Funding Fahad F. Alhabardi: Supported by Saudi Arabia Cultural Bureau in London.
Anton Setzer : Supported by COST actions CA20111 EuroProofNet and CA15123 EU Types.

Acknowledgements We would like to thank the anonymous referees for valuable comments and
suggestions.

© Fahad F. Alhabardi, Arnold Beckmann, Bogdan Lazar, and Anton Setzer;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Types for Proofs and Programs (TYPES 2021).
Editors: Henning Basold, Jesper Cockx, and Silvia Ghilezan; Article No. 1; pp. 1:1–1:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fahadalhabardi@gmail.com
https://orcid.org/0000-0003-0992-2709
mailto:a.beckmann@swansea.ac.uk
https://www.beckmann.pro/
https://orcid.org/0000-0001-7958-5790
mailto:lazarbogdan90@yahoo.com
mailto:a.g.setzer@swansea.ac.uk
http://www.cs.swan.ac.uk/~csetzer/
https://orcid.org/0000-0001-5322-6060
https://doi.org/10.4230/LIPIcs.TYPES.2021.1
https://arxiv.org/abs/2203.03054
https://github.com/fahad1985lab/Smart--Contracts--Verification--With--Agda
https://github.com/fahad1985lab/Smart--Contracts--Verification--With--Agda
https://archive.softwareheritage.org/swh:1:dir:f552dd7468ce4fa08c193e2016b6c0e7580f1791;origin=https://github.com/fahad1985lab/Smart--Contracts--Verification--With--Agda;visit=swh:1:snp:596990c35e86a9a027d891abe73d99848eaf3514;anchor=swh:1:rev:4a8fc06620487694f230764290be5c60ad627dc9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 Verification of Bitcoin Script in Agda

1 Introduction

Bitcoin, the first cryptocurrency, was introduced in 2008 by Satoshi Nakamoto [38] to provide
a public payment mechanism, the blockchain, using pseudonymous keys in a peer-to-peer
network with distributed control. Many other cryptocurrencies have been introduced since.

Bitcoin’s blockchain provides a scripting system for transactions called script. Lists
of instructions in script are denoted Bitcoin scripts or simply scripts. The invention of
Ethereum [13] strengthened Bitcoin by adding full (Turing complete) smart contracts to
blockchains. In this context, smart contracts can be seen as programs that automatically
execute when transactions are performed on a blockchain. Though not Turing complete as
Ethereum [13], Bitcoin scripts can be viewed as a weak form of smart contracts, that provide
important functionality, e.g. by governing the distribution of the Bitcoin cryptocurrency.

As smart contracts, including Bitcoin scripts, can control real world values and are
immutable once deployed on the blockchain network, a method to demonstrate their security
and correctness is needed [31, 50]. According to [4, 37, 19], there are two ways to verify
their correctness: (1) by using mathematical methods like formal verification, which utilise
theorem proving, model checking, and similar techniques, and (2) by employing testing.
Theorem proving provides an extremely flexible verification method that can be applied to
various types of systems including smart contracts. It can be done in interactive, automated,
or hybrid mode.

In our approach, we use the interactive theorem prover Agda [2] for the verification of
Bitcoin scripts. Agda is designed to be both an interactive theorem prover and a dependently
typed programming language [40], therefore Agda allows us to define programs and reason
about them in the same system. This reduces the danger of producing errors when translating
programs from a programming language to a theorem prover, and allows to execute smart
contracts in Agda directly. Another advantage of Agda is to have proofs that are checkable by
hand. Other frameworks, such as Coq [43], use automatic proof search tools which usually do
not provide proof certificates that could in principle be checked by hand. Human checkable
proof certificates reduce the need to rely on a theorem prover being correct. The latter is
desirable because of potential attacks that exploit errors in theorem provers, e.g. by creating
a smart contract that contains a deliberate error together with a correctness proof that
exploits the error in the theorem prover.1 As a final point, there are some key distinctions
between Agda and other theorem provers like Coq that suggest a different applicability of
Agda. For example, Agda supports inductive-recursive types, while Coq does not [12]. Agda
also has a more flexible pattern matching system than Coq, including support for copattern
matching [12].

Main contributions. Our main contributions in this paper are:
We argue that weakest preconditions are the appropriate notion to verify access control
for Bitcoin scripts.
We propose to aim for human-readable descriptions of weakest preconditions to support
judging whether the security property of access control is satisfied.
We describe two methods for achieving human-readable descriptions of weakest precondi-
tions: a step-by-step approach, and a symbolic-execution-and-translation approach.
We apply our proposed methodology to two standard Bitcoin scripts, providing fully
formalised arguments in Agda.

1 See the forum discussion on [48] for a well documented list of incorrect protocols with false correctness
proofs. To hide backdoors using deliberately false correctness proofs is certainly conceivable.

F. F. Alhabardi, A. Beckmann, B. Lazar, and A. Setzer 1:3

In the following we explain our contributions in more detail. The paper introduces an
operational semantics of the script commands used in Pay to Public Key Hash (P2PKH)
and Pay to Multisig (P2MS), two standard scripts that govern the distribution of Bitcoins.
We define the operational semantics as stack operations and reason about the correctness of
such operations using Hoare triples utilising pre- and postconditions.

Weakest precondition for access control. Our verification focuses on the security property
of access control. Access control is the restriction to access for a resource, which in our use
case is access to cryptocurrencies like Bitcoin. We advocate that, in the context of Hoare
triples, weakest preconditions are the appropriate notion to model access control: A (general)
precondition expresses that when it is satisfied, access is granted, but there may be other
ways to gain access without satisfying the precondition. The weakest precondition expresses
that access is granted if and only if the condition is satisfied.

Human-readable descriptions. The weakest precondition can always be described in a
direct way, for example as the set of states that after execution of the smart contract end
in a state satisfying the given postcondition. However, such a description is meaningless to
humans who want to convince themselves that the smart contract is secure, in the sense that
they do not provide any further insights beyond the original smart contract.

It is known in software engineering, that failures of safety-critical systems are often due
to incomplete requirements or specifications rather than coding errors.2 The same applies
to security related software.3 It is not sufficient to have a proof of security of a protocol, if
the statement does not express what is required. That the specification (here the formal
statement of secure access control) guarantees that the requirements are fulfilled (namely
that it is impossible for a hacker to access the resource, here the Bitcoin), needs to be checked
by a human being, who needs to be able to read the specification and determine whether
it really is what is expressed by the requirements. Thus, the challenge is to obtain simple,
human-readable descriptions of the weakest precondition of a smart contract. This would
allow to close the validation gap between user requirements and formal specification of smart
contracts.

Two methods for obtaining human-readable weakest preconditions. We discuss two
methods for obtaining readable weakest preconditions: The first, step-by-step approach, is
obtained by working through the program backwards instruction by instruction. In some
cases it is easier to group several instructions together and deal with them differently, as
we will demonstrate with an example in Sect. 6.3. The second method, symbolic-execution-
and-translation, evaluates the program in a symbolic way, and translates it into a nested
case distinction. The case distinctions are made on variables (of type nat or stack) or on
expressions formed from variables by applying basic functions to them such as hashing or
checking for signature. From the resulting decision tree, the weakest precondition can be
read off as the disjunction of the conjunctions of the conditions that occur along branches
that lead to a successful outcome.

2 For instance, [32] writes: “Almost all accidents with serious consequences in which software was involved
can be traced to requirements failures, and particularly to incomplete requirements.”

3 The long list of protocols which were proven to be secure but had wrong proofs [20] demonstrates that
a proof of correctness is not sufficient. We assume that most of the examples had correct proofs, but
the statement shown was not sufficient to guarantee security.

TYPES 2021

1:4 Verification of Bitcoin Script in Agda

For both methods, it is necessary to prove that the established weakest precondition
is indeed the weakest precondition for the program under consideration. For the first
method, this follows by stepwise operation. The second uses a proof that the original
program is equivalent to the transformed program from which the weakest precondition has
been established, or a direct proof which follows the case distinctions used in the symbolic
evaluation.

Application of our proposed methodology. We demonstrate the feasibility of our approaches
by carrying them out in Agda for concrete smart contracts, including P2PKH and P2MS.

Our approach also provides opportunities for further applications: The usage of the
weakest precondition with explicit proofs can be seen as a method of building verified smart
contracts that are correct by construction. Instead of constructing a program and then
evaluating it, one can start with the intended weakest precondition and postcondition, add
some intermediate conditions, and then develop the program between those conditions. Such
an approach would extend the SPARK Ada framework [1] to use Hoare logic (without the
weakest precondition) to check programs.

The remainder of this paper is organised as follows. In Sect. 2, we introduce related
work on verification of smart contracts. Sect. 3 introduces Bitcoin script and defines its
operational semantics. In Sect. 4, we specify the security of Bitcoin script using Hoare logic
and weakest preconditions. We formalise these notions in Agda and introduce equational
reasoning for Hoare triples to streamline our correctness proofs. Sect. 5 introduces our
first, step-by-step method of developing human-readable weakest preconditions and proving
correctness of P2PKH. In Sect. 6, we introduce our second method based on symbolic
execution and apply it to various examples. In Sect. 7, we explain how to practically use
Agda to determine and prove weakest preconditions using our library [47]. We conclude in
Sect. 8.

Notations and git repository. The formulas can be presented as full Agda code, but often
the formulas can also be presented in mathematical style. In order to switch between Agda
code and mathematical code easy, we use the functional style for application (i.e. writing
f a b c instead of fpa, b, cq) and x : A instead of x P A. s :: l denotes prepending an element
onto a list. The original Agda definitions are also available [47]. Most display style Agda
code presented in this paper has been automatically extracted from the Agda code, in some
cases it was formatted by hand based on LATEX code generated by Agda to improve the
presentation.

2 Related Work

In this section, we describe research relevant to our approach. We start by discussing two
papers introducing Hoare logic, predicate transformer semantics and weakest preconditions.
We then review papers that address verification of smart contracts, and Bitcoin scripts. We
present a number of approaches to use model-checking for the verification of smart contracts,
and finish with work with employs Agda in the verification of smart contracts.

Hoare Logic, Predicate Transformer Semantics and Weakest Preconditions. Hoare [26]
defines a formal system using logical rules for reasoning about the correctness of computer
programs. It uses so-called Hoare triples which combine two predicates, a pre- and a
postcondition, with a program to express that if the precondition holds for a state and

F. F. Alhabardi, A. Beckmann, B. Lazar, and A. Setzer 1:5

the program executes successfully, then the postcondition holds for the resulting state.
Djikstra [22] introduces predicate transformer semantics that assigns to each statement in an
imperative programming paradigm a corresponding total function between two predicates on
the state space of the statement. The predicate transformer defined by Djikstra applied to a
postcondition returns the weakest precondition.

Verification of Smart Contracts. A number of authors have addressed the verification of
smart contracts in Ethereum and similar platforms. Hirai [25] used Isabelle/HOL theorem
prover to validate Ethereum Virtual Machine (EVM) bytecode by developing a formal model
for EVM using the Lem language [36]. They use this model to prove invariants and safety
properties of Ethereum smart contracts. Amani et al. [5] extended Hirai’s EVM formalisation
in Isabelle/HOL by a sound program logic at bytecode level. To this end, they stored
bytecode sequences into blocks of straight-line code, creating a program logic that could
reason about these sequences. Ribeiro et al. [45] developed an imperative language for a
relevant subset of Solidity in the context of Ethereum, using a big-step semantics system.
Additionally, they formalised smart contracts in Isabelle/HOL, extending the existing work.
Their formalisation of semantics is based on Hoare logic and the weakest precondition
calculus. Their main contributions are proofs of soundness and relative completeness, as
well as applications of their machinery to verify some smart contracts including modelling of
smart contract vulnerabilities. Bernardo et al. [9] present Mi-Cho-Coq, a Coq framework
which has been used to formalise Tezos smart contracts written in the stack-based language
Michelson. The framework is composed of a Michelson interpreter implemented in Coq, and
the weakest precondition calculus to verify Michelson smart contracts’ functional correctness.
O’Connor [41] introduces Simplicity, a low-level, typed functional language, which is Turing
incomplete. The goal of Simplicity is to improve on existing blockchain-based languages,
like Ethereum’s EVM and Bitcoin script, while avoiding some of their issues. Simplicity
is based on formal semantics and is specified in the Coq proof assistant. Bhargavan et
al. [10] provided formalisations of EVM bytecode in F*, a functional programming language
designed for program verification. They defined a smart contract verification architecture
that can compile Solidity contracts, and decompile EVM bytecode into F* using their shallow
embedding, in order to express and analyse smart contracts.

Verification of Bitcoin Scripts. Klomp et al. [30] proposed a symbolic verification theory,
and a tool to analyse and validate Bitcoin scripts, with a particular focus on characterising
the conditions under which an output script, which controls the successful transfer of Bitcoins,
will succeed. Bartoletti et al. [8] presented BitML, a high-level domain-specific language for
designing smart contracts in Bitcoin. They provided a compiler to convert smart contracts
into Bitcoin transactions, and proved the correctness of their compiler w.r.t. a symbolic
model for BitML and a computational model, which has been defined as well in [7] for Bitcoin.
Setzer [46] developed models of the Bitcoin blockchain in the interactive theorem prover
Agda. This work focuses on the formalisation of basic primitives in Agda as a basis for future
work on verifying the protocols of cryptocurrencies and developing verified smart contracts.

Verification of Smart Contracts using Model Checking. A number of papers discuss tools
for analysing and verifying smart contracts that utilise model checking. Kalra et al. [28]
developed a framework called ZEUS whose aim is to support automatic formal verification of
smart contracts using abstract interpretation and symbolic model checking. ZEUS starts from
a high-level smart contract, and employs user assistance for capturing correctness and fairness

TYPES 2021

1:6 Verification of Bitcoin Script in Agda

requirements. The contract and policy specification are then transformed into an intermediate
language with well defined execution semantics. ZEUS then performs static analysis on
the intermediate level and uses external SMT solvers to evaluate any verification properties
discovered. A main focus of the work is on reducing efficiently the state explosion problem
inherent in any model checking approach. Park et al. [42] proposed a formal verification
tool for EVM bytecode based on KEVM, a complete formal semantics of EVM bytecode
developed in the K-framework. To address performance challenges, they define EVM-specific
abstractions and lemmas, which they then utilise to verify a number of concrete smart
contracts. Mavridou et al. [33] introduce the VeriSolid framework to support the verification
of Ethereum smart contracts. VeriSolid is based on earlier work (FSolidM) which allows to
graphically specify Ethereum smart contracts as transitions systems, and to generate Solidity
code from those specification. It uses model checking to verify smart contract models. Luu
et al. [31] provided operational semantics of a subset of Ethereum bytecode called EtherLite,
which forms the bases of their symbolic execution tool Oyente for analysing Ethereum smart
contracts. Based on their tool they discovered a number of weaknesses in deployed smart
contracts, including the DAO bug [23]. Filliâtre et al. [24] introduced the Why3 system,
which allows writing imperative programs in WhyML, an ML dialect used for programming
and specification. The system can add pre-, post- and intermediate conditions to it but does
not make use of weakest precondition. Why3 can generate verification conditions for Hoare
triple, which are checked using variously automated and interactive theorem provers. Why3
is used in SPARK Ada to verify its verification conditions.

Agda in the Verification of Blockchains. Finally, Agda features in several papers discussing
verification of blockchains. Chakravarty et al. [16] introduce Extended UTXO (EUTXO),
which extends Bitcoin’s UTXO model to enable more expressive forms of validation scripts.
These scripts can express general state machines and reason about transaction chains: The
authors introduce a new class of state machines based on Mealy machines which they call
Constraint Emitting Machines (CEM). In addition to formalising CEMs using Agda proof
assistant, they demonstrate its conversion to EUTXO, and give a weak bisimulation between
both systems. In [14] Chakravarty et al. introduce a generalisation of the EUTXO ledger
model using native tokens which they denote EUTXOma for EUTXO with multi-assets.
They provide a formalisation of the multi-asset EUTXO model in Agda. Chakravarty et
al. [15] introduce a version of EUTXOma aligned to Bitcoin’s UTXO model, hence denoted
UTXOma. They present a formal specification of the UTXOma ledger rules and formalise
their model in Agda. Chapman et al. [17] formalise System Fωµ, which is polymorphic λ-
calculus with higher-kinded and arbitrary recursive types, in Agda. System Fωµ corresponds
to Plutus Core, which is the core of the smart contract language Plutus that features in
the Cardano blockchain. Melkonian [34] introduces a formal Bitcoin transaction model to
simulate transactions in the Bitcoin environment and to study their safety and correctness.
The paper presents a formalisation of a process calculus for Bitcoin smart contracts, denoted
BitML. The calculus can accept different types such as basic types, contracts, or small step
semantics to outline a “certified compiler” [35].

3 Operational Semantics for Bitcoin Script

We give a brief introduction of Bitcoin script in Subsec. 3.1, before defining its operational
semantics in Subsec. 3.2.

F. F. Alhabardi, A. Beckmann, B. Lazar, and A. Setzer 1:7

3.1 Introduction to Bitcoin Script
The scripting language for Bitcoin is stack-based, inspired by the programming language
Forth [44], with the stack being the only memory available. Elements on the stack are byte
vectors, which we represent as natural numbers. Values on the stack are also interpreted as
truth values, any value ą0 will be interpreted as true, and any other value as false. script
has its own set of commands called opcodes, which manipulate the stack. They are similar
to machine instructions, although some instructions have a more complex behaviour. The
instructions of script are executed in sequence. In case of conditionals (which are not
part of this paper) the execution of instructions might be ignored until the end of an if- or
else-case has been reached, otherwise the script is executed from left to right. Execution of
instructions might fail, in which case the execution of the script is aborted. A full list of
instructions with their meaning can be found in [11], which is the defacto specification of
script.

The operational semantics of the opcodes can be found in the source code [47]. We
introduce here a number of opcodes that are relevant to this paper. Execution of all opcodes
fails, if there are not sufficiently many elements on the stack to perform the operation in
question.

OP_DUP duplicates the top element of the stack.
OP_HASH takes the top item of the stack and replaces it with its hash.
OP_EQUAL pops the top two elements in the stack and checks whether they are equal or
not, pushing the Boolean result on the stack.
OP_VERIFY invalidates the transaction if the top stack value is false. The top item on the
stack will be removed.
OP_CHECKSIG pops two elements from the stack and checks whether they form a correct
pair of a signature and a public key signing a serialised message obtained from the selected
input and all outputs of the transaction, and pushes the Boolean result on the stack.
OP_CHECKLOCKTIMEVERIFY fails if the time on the stack is greater than the current time.
OP_MULTISIG is the multisig instruction, which will be discussed in detail in Sect. 6.2.
There are a number of opcodes for pushing byte vectors of different lengths onto the
stack. We write <number> for the opcode together with arguments pushing number onto
the stack. In Agda we will have one instruction opPush n which pushes the number n on
the stack.

Scripts can also contains control flow statements such as OP_IF. The verification of scripts
involving control statements is more involved and will be considered in a follow-up paper.

In Bitcoin we consider the interplay between a locking script scriptPubKey and an
unlocking script scriptSig.4 The locking script is provided by the sender of a transaction
to lock the transaction, and the unlocking script is provided by the recipient to unlock it.
The unlocking script pushes the data required to unlock the transaction on the stack, and
the locking script then checks whether the stack contains the required data. Therefore, the
unlocking script is executed first, followed by the locking script.5

4 We are using the terminology locking script and unlocking script from [6, Chapt 5].
5 In the original version of Bitcoin both scripts were concatenated and executed. However, because Bitcoin

script has non-local instructions (e.g. the conditionals OP_IF, OP_ELSE, OP_ENDIF), when concatenating
the two scripts any non-local opcode occurring in the locking script (for instance as part of data) could
be interpreted when running as the counterpart of a non-local opcode in the locking script and therefore
result in an unintended execution of the unlocking script. As a bug fix, in a later version of Bitcoin
this was modified by having a break point in between the two, where only the stack is passed on. See

TYPES 2021

1:8 Verification of Bitcoin Script in Agda

The main example in this paper is the pay-to-public-key-hash (P2PKH) script consisting
of the following locking and unlocking scripts:

scriptPubKey: OP_DUP OP_HASH160 <pubKeyHash> OP_EQUAL OP_VERIFY OP_CHECKSIG
scriptSig: <sig> <pubKey>

The standard unlocking script scriptSig pushes a signature sig and a public key pubKey
onto the stack. The locking script scriptPubKey checks whether pubKey provided by the
unlocking script hashes to the provided pubKeyHash, and whether the signature is a signature
for the message signed by the public key. Full details will be discussed in Sect. 5.

3.2 Operational Semantics
Opcodes like OP_DUP operate on the stack defined in Agda as a list of natural numbers Stack.
Opcodes like OP_CHECKSIG check for signatures for the part of the transaction which is to be
signed – what is to be signed is hard coded in Bitcoin. In order to abstract away from the
precise format and the encoding, we define a message type Msg in Agda, which allows to
represent messages such as those for the transaction to be signed, and is to be instantiated
with the concrete message to be signed. Other opcodes like OP_CHECKLOCKTIMEVERIFY refer
to the current time, for which we define a type Time in Agda. Therefore, the operational
semantics of opcodes depends on Time ˆ Msg ˆ Stack which we define in Agda as the record
type StackState.6 Note that Time and Msg don’t change during the execution of a script.

The type of all opcodes is given as InstructionBasic.7 Opcodes can also fail, for instance
if there are not enough elements on the stack as required by the operation. Hence, the
operational semantics of an instruction op : InstructionBasic is given as
J op Ks : StackState → Maybe StackState.8

The message and time never change, so J p Ks s will, if executed successfully, only change
the stack part of s. As an example, we can define the semantics of the instruction opEqual.
We first define a simpler function J_Ks

s, which abstracts away the non-changing components
Time and Msg:

J_Ks
s : InstructionBasic → Time → Msg → Stack → Maybe Stack

J opEqual Ks
s time1 msg = executeStackEquality

The function executeStackEquality : Stack → Maybe Stack fails and returns nothing if the
stack has height ď1, and otherwise compares the two top numbers on the stack, replacing
them by 1 for true in case they are equal, and by 0 for false otherwise.

Chapter 6, “Separate execution of unlocking and locking scripts” in [6, p. 136]. In this paper this
problem doesn’t occur because we don’t consider non-local instructions.

6 The idea of packaging all components of the state into one product type, which is then expanded into
a more expanded state as more language constructs are added to the language, is inspired by Peter
Mosses’ Modular SOS approach [21]. This approach was successful in creating a library of reusable
components funcons for defining an executable operational semantics of language constructs, which
require different sets of states. One outcome was a “component-based semantics for CAML LIGHT”
[18].

7 We are using in this paper a sublanguage BitcoinScriptBasic of Bitcoin, which doesn’t contain conditionals,
because they require a more complex operational semantics and state (see the discussion in the conclusion).
We make the distinction between the basic and full language in order to be compatible with the planned
follow up papers based on code under development, which will extend the basic language. We sometimes
use notations such as b to differentiate between functions referring to the basic and full language.

8 For the reader not familiar with the Maybe type, a set theoretic notation can be given as Maybe X :“
tnothingu Y tjust x | x : Xu. Here, nothing denotes undefined, and just x denotes the defined element x.
Maybe forms a monad, with return :“ just : A → Maybe A and the bind operation pp ąą“ q : Maybe Bq

for p : Maybe A and q : A → Maybe B defined by pnothing ąą“ qq “ nothing and pjust a ąą“ qq “ q a.

F. F. Alhabardi, A. Beckmann, B. Lazar, and A. Setzer 1:9

J_Ks
s is then lifted to the semantics of the instructions J_Ks using a generic function

liftStackFun2StackState:

J_Ks : InstructionBasic → StackState → Maybe StackState
J op Ks = liftStackFun2StackState J op Ks

s

As prerequisites for Sect 6.1, we define functions that define the operational semantics
of further Bitcoin instructions used in this paper: executeStackDup : Stack → Maybe Stack
fails and returns nothing if the stack is empty; otherwise, a duplicate of the top element
will be added onto the stack. The function executeOpHash : Stack → Maybe Stack fails
and returns nothing if the stack is empty; otherwise, the top element is replaced by its
hash. executeStackVerify : Stack → Maybe Stack fails and returns nothing if the stack is
empty or the top element is 0; otherwise, it will remove the top element of the stack.
executeStackCheckSig : Stack → Maybe Stack fails and returns nothing if the height of the
stack ď1. Otherwise it pops the two top elements from the stack, and considers them as a
signature and public key. It decides whether the message given by the argument msg : Msg
is correctly signed by these data, and pushes the Boolean result on the stack.

script has instructions with more complex behaviour, an example is the instruction
OP_MULTISIG which will be introduced in Sect. 6.2. Some instructions depend on crypto-
graphic functions for hashing and checking signatures. We abstract away from their concrete
definition and take them as parameters of the modules of the Agda code. This is not a
problem in this paper, since the weakest preconditions only depend on the results returned
by these functions, such as a check whether the part of the transaction to be signed is signed
by a signature corresponding to a given public key.

General scripts are formalised in Agda as lists of instructions, BitcoinScriptBasic. Let p be
a script. We define J p K : StackState → Maybe StackState by monadic composition, that is

J [] K :“ just,
for an instruction op, script q and s : StackState define J op :: q K s :“ J op Ks s ąą“ J q K.

It follows that @s : StackState.J p `̀ q K s ” J p K s ąą“ J q K.
We lift as well J p K to s : Maybe StackState by defining J p K` s :“ s ąą“ J p K.
Let
StackStatePred = StackState → Set,
StackPredicate = Time → Msg → Stack → Set, and
stackPred2SPred : StackPredicate → StackStatePred be the obvious lifting.

4 Specifying Security of Bitcoin Scripts

In this section, we argue that weakest precondition in the context of Hoare logic are the
appropriate notion to express security properties in Subsect. 4.1. We provide a formalisation
of weakest preconditions in Agda in Subsect. 4.2, and discuss how weakest preconditions can
be generated automatically in Subsect. 4.3, leading to the claim that we need human-readable
descriptions of weakest preconditions. To support our verification, we develop a library for
equational reasoning with Hoare triples in Subsect. 4.4.

4.1 Weakest Precondition for Security
One widely used way to specify the correctness of imperative programs axiomatically is
Hoare logic [26]. Hoare logic is based on pre- and postconditions. It works well for safety
critical systems, where the set of inputs is controlled, and the aim is to guarantee a safe
result. An example of a commercial system for writing safety critical systems using Hoare
logic is SPARK 2014 [1].

TYPES 2021

1:10 Verification of Bitcoin Script in Agda

However, when dealing with security aspects, in particular access control, Hoare logic
in general is not sufficient. The issue is that for security it is necessary to guard against
malicious entries to a program. We argue that weakest preconditions in the context of
Hoare logic is an appropriate notion to specify security properties. A weakest precondition
expresses that it is not only sufficient, but as well necessary for the postcondition to hold
after executing the program.

To explain our point, we specify the intended correctness of the locking script scriptPubKey
from Sect. 3. The intention, usually given by the user requirement, is that in order for a
locking script to run successfully, we need to provide a public key pbk and a signature sig
such that pbk hashes to the value <pubKeyHash> stored in the locking script, and that sig
validates the signed message using pbk. The values pbk and sig need to be the top elements
on the stack. If we also fix their order and allow the stack to have arbitrary values otherwise,9
then we can express this condition as follows:

The two top elements of the stack are pbk and sig, pbk hashes to <pubKeyHsh>,
and sig is a valid signature of the signed message w.r.t. pbk. (CondPBKH)

We can define the specification of the locking script scriptPubKey as the property that
(CondPBKH) is the weakest precondition for the accepting postcondition. We will show
in Sect. 5 that (CondPBKH) is indeed the weakest precondition of scriptPubKey, which
verifies that scriptPubKey fulfils the specification.

Let us now consider a faulty locking script instead of scriptPubKey:

scriptPubKeyFaulty: OP_DUP OP_HASH160 <pubKeyHash> OP_EQUAL

To see that it does not fulfil the specification given above, consider the weakest precondition
for scriptPubKeyFaulty for the accepting postcondition, which can be described by the
following condition:

The top element of the stack is pbk, and pbk hashes to <pubKeyHsh>. (CondPBKHfaulty)

By inspection we see that (CondPBKHfaulty) is not equivalent to (CondPBKH), and
therefore scriptPubKeyFaulty doesn’t fulfil the specification. In fact we can identify states
which satisfy (CondPBKHfaulty) but not (CondPBKH), e.g. a malicious attacker could just
copy the public key of the sender onto the stack, which violates the user requirements of a
locking script.

We observe that this example also demonstrates the inadequacy of general Hoare logic
for the verification the security property of access control: Using standard Hoare logic, we
can prove that (CondPBKH) is a precondition for the accepting postcondition for both
scriptPubKey and scriptPubKeyFaulty.

As with all formal verification approaches, there remains a gap between the user’s intention
expressed as requirements, and what is expressed as a formal specification. This gap cannot
be filled in a provably correct way, since requirements are a mental intention expressed in
natural language. However, the gap can be narrowed by expressing the specification in a
human-readable format so that the validation is as easy and clear as possible. Here, validation
means showing that the specification guarantees the requirements, and is carried out by a
human reader.

9 Bitcoin scripts do not put any requirements on the stack below the data required by the scripts.

F. F. Alhabardi, A. Beckmann, B. Lazar, and A. Setzer 1:11

4.2 Formalising Weakest Preconditions in Agda
We now describe how weakest preconditions can be defined in Agda. Let a precondition
φ and postcondition ψ be given, both of type StackStatePred. In order to accommodate
Maybe, we define a postfix operator _`, to lift ψ to pψ `q : Maybe StackState → Set, defining
pψ `q nothing “ K and pψ `q ˝ just “ ψ.

A Hoare triple, consisting of a precondition, a program, and a postcondition, expresses
that if the precondition is satisfied before execution of the program, then the postcondition
holds after executing it. We formalise Hoare triples as follows:

< φ > p < ψ > := @s P StackState.φpsq → pψ `q pJ p K sq
Weakest preconditions express that the precondition not only is sufficient, but as well

necessary for the postcondition to hold after executing the program:
< φ >if f p < ψ > := @s P StackState.φpsq Ø pψ `q pJ p K sq

Thus, for security the backwards direction of the equivalence in the previous formula is
the important direction.

In Bitcoin we consider a locking script scriptPubKey and an unlocking script scriptSig,
see Section 3.1. Let us fix an unlocking script unlock and a locking script lock. Let init be
the initial state consisting of an empty stack, and let acceptState be the accepting condition
expressing that the stack is non empty with top element being not false, i.e. ą0. The
combination of unlock and lock is accepted iff running unlock on init succeeds and running
lock on the resulting stack results in a state that satisfies the accepting condition, i.e. iff
pacceptState `q pJ lock K` pJ unlock K initqq. Note that Bitcoin does not run the
concatenation of the two scripts, as it did in its first version, but runs first the unlocking
scripts, and if it succeeds runs the locking script on the resulting stack. Let φ be the weakest
precondition of lock, i.e. < φ >if f lock < acceptState >. Then the acceptance condition
is equivalent to pφ`q pJ unlock K initq. Thus, unlock succeeds iff running the unlocking
script unlock on the initial state init produces a state fulfilling φ. Hence, by determining the
weakest precondition for the locking script w.r.t. the accepting condition we have obtained a
characterisation of the set of unlocking scripts which unlock the locking script. Note that
we do not define inductively all successful unlocking scripts, since they could be arbitrary
complex programs, but instead characterise them by the output they produce.

4.3 Automatically Generated Weakest Preconditions
We start by giving a direct method for defining the weakest precondition for any Bitcoin
script by describing the set of states that lead to a given final state. We then apply this
general method to a toy example to demonstrate that the description obtained in this way is
usually not helpful for a human to judge whether the script has the right properties, thus
making the case that the task must be to find (equivalent) human-readable descriptions.

Weakest preconditions can be defined by the simple definition

weakestPreConds : BitcoinScriptBasic → StackStatePred → StackStatePred
weakestPreConds p ϕ s = (ϕ `) (J p K s)

Consider a simple toy program which removes the top element from the stack three times:
testprog = opDrop :: opDrop :: [opDrop]
Its weakest precondition can be computed as
weakestPreCondTestProg = weakestPreConds testprog acceptState
We obtain the following code (we slightly reformatted it to improve readability):

TYPES 2021

1:12 Verification of Bitcoin Script in Agda

weakestPreCondTestProgNormalised s =
(stackPred2SPred acceptStates `)

(stackState2WithMaybe 〈 currentTime s , msg s , executeStackDrop (stack s) 〉
ąą“ (λ s1 → stackState2WithMaybe 〈 currentTime s1 , msg s1 , executeStackDrop (stack s1) 〉

ąą“ liftStackFun2StackState (λ time1 msg1 → executeStackDrop)))

This condition is difficult to understand. The reason is that each instruction may cause
the program to abort in case the stack is empty. The condition expresses: if the stack is
empty then the condition is false. Otherwise, if after dropping the top element the stack is
empty the condition is false. Otherwise, if after dropping again the top element the stack
is empty the condition is false. Otherwise the condition is true if after dropping again the
top element the stack is non empty and the top element is not false. The readable condition
would express that the height of the stack is ě 4 and the fourth element from the top is ą 0.
In this simple example simplifying the condition would be easy, but when using different
instructions the situation becomes more complicated.

What we did using our methods to avoid this problem was to create the weakest precondi-
tion by starting from the end and improving it in each step, or by replacing the program by
an easier program (which in case of this example would return nothing if the stack has height
ď 2 and otherwise returns the result of dropping the first three elements off the stack). An
interesting project for future work would be to automate the steps we carried out manually,
and obtain readable weakest preconditions automatically.

4.4 Equational Reasoning with Hoare Triples
To support the verification of Bitcoin scripts with Hoare triples and weakest preconditions
in Agda, we have developed a library in Agda for equational reasoning with Hoare triples.
The library is inspired by what is described in Wadler et al. [49]. Let p, q be scripts and
ϕ, ϕ1, ψ, ψ1 : Predicate. If we define φ <=>p ψ :“ @s : StackState.φpsq Ø ψpsq, we can easily
show

< φ >if f p < ψ > ^ < ψ >if f q < ρ > → < φ >if f p `̀ q < ρ >
< φ >if f p < ψ > ^ ψ <=>p ψ1 → < φ >if f p < ψ1 >
φ1 <=>p φ ^ < φ >if f p < ψ > → < φ1 >if f p < ψ >

We demonstrate our syntax by an example, assuming (using Agda postulate) programs
prog1, prog2, prog3, and proofs

proof1 : < precondition >if f prog1 < intermediateCond1 >
proof2 : < intermediateCond1 >if f prog2 < intermediateCond2 >
proof3 : intermediateCond2 <=>p intermediateCond3
proof4 : < intermediateCond3 >if f prog3 < postcondition >

Then the proof for the Hoare triple for prog1 `̀ pprog2 `̀ prog3q is given in Agda as
follows:10

theorem : < precondition >if f prog1 `̀ (prog2 `̀ prog3) < postcondition >
theorem = precondition <><>〈 prog1 〉〈 proof1 〉

10 In the last step we use 〉e instead of 〉. This avoids concatenating the program with []. If we used 〉, the
theorem would prove the condition for program prog1`̀ (prog2`̀ (prog3`̀ [])), which is provably but
not definitionally equal to the original program, requiring an additional proof step.

F. F. Alhabardi, A. Beckmann, B. Lazar, and A. Setzer 1:13

intermediateCond1 <><>〈 prog2 〉〈 proof2 〉
intermediateCond2 <=>〈 proof3 〉
intermediateCond3 <><>〈 prog3 〉〈 proof4 〉e postcondition ‚p

5 Proof of Correctness of the P2PKH script using the Step-by-Step
Approach

This section explains the usage of our approach by providing an example of how to prove
the correctness of the P2PKH using step-by-step to obtain the weakest precondition. The
P2PKH is the most used script in Bitcoin transactions. The locking script, which depends
on a public key hash, is defined as follows:

scriptP2PKHb : (pbkh : N) → BitcoinScriptBasic
scriptP2PKHb pbkh = opDup :: opHash :: (opPush pbkh) :: opEqual :: opVerify :: [opCheckSig]

In this section, we develop a readable weakest precondition of the P2PKH script and
prove its correctness by working backwards instruction by instruction.

Let acceptState be the accepting state where the stack is non-empty with top element
ą0. We define intermediate conditions accept1, accept2, etc, the weakest precondition
wPreCondP2PKH, and proofs correct-opCheckSig, correct-opVerify etc of corresponding Hoare
triples w.r.t. the instructions of the Bitcoin script, working backwards starting from the last
instruction opCheckSig:
correct-opCheckSig : < accept1 >if f ([opCheckSig]) < acceptState >
correct-opVerify : < accept2 >if f ([opVerify]) < accept1 >
correct-opEqual : < accept3 >if f ([opEqual]) < accept2 >
correct-opPush : (pbkh : N) → < accept4 pbkh >if f ([opPush pbkh]) < accept3 >
correct-opHash : (pbkh : N) → < accept5 pbkh >if f ([opHash]) < accept4 pbkh >
correct-opDup : (pbkh : N) → < wPreCondP2PKH pbkh >if f ([opDup]) < accept5 pbkh >

The intermediate conditions can be read off from the operations. We present them in
mathematical notation below, using the following conventions and abbreviations: t : N
denotes time, m : Msg, st, st1 : Stack, x : N; for brevity we omit types after D quantifiers. We
use here and in the remaining paper s for operations where the StackState argument has
been unfolded into its components.
acceptStates t m st ô D x, st1. st ” x :: st1 ^ x ą 0
accepts

1 t m st ô D pbk, sig, st1. st ” pbk :: sig :: st1
^ IsSigned m sig pbk

accepts
2 t m st ô D x, pbk, sig, st1. st ” x :: pbk :: sig :: st1

^ x ą 0 ^ IsSigned m sig pbk

accepts
3 t m st ô D pbkh2, pbkh1, pbk, sig, st

1.st ” pbkh2 :: pbkh1 :: pbk :: sig :: st1
^ pbkh2 ” pbkh1 ^ IsSigned m sig pbk

accepts
4 pbkh1 t m stô D pbkh2, pbk, sig, st

1. st ” pbkh2 :: pbk :: sig :: st1
^ pbkh2 ” pbkh1 ^ IsSigned m sig pbk

accepts
5 pbkh1 t m stô D pbk1, pbk, sig, st

1. st ” pbk1 :: pbk :: sig :: st1
^ hashFun pbk1 ” pbkh1 ^ IsSigned m sig pbk

wPreCondP2PKHs pbkh1 t m stô D pbk, sig, st1. st ” pbk :: sig :: st1
^ hashFun pbk ” pbkh1 ^ IsSigned m sig pbk

TYPES 2021

1:14 Verification of Bitcoin Script in Agda

In Agda, these formulas are defined by case distinction on the stack. As examples, the
code for the accept condition (acceptState) and the weakest precondition (wPreCondP2PKHs)
is as follows:

acceptStates : StackPredicate
acceptStates time msg1 [] = K

acceptStates time msg1 (x :: stack1) = NotFalse x

wPreCondP2PKHs : (pbkh : N) → StackPredicate
wPreCondP2PKHs pbkh time m [] = K

wPreCondP2PKHs pbkh time m (x :: []) = K

wPreCondP2PKHs pbkh time m (pbk :: sig :: st) =
(hashFun pbk ” pbkh) ^ IsSigned m sig pbk

Using our syntax for equational reasoning, we can prove the weakest precondition for the
P2PKH script as follows:

theoremP2PKH : (pbkh : N) → < wPreCondP2PKH pbkh >if f scriptP2PKHb pbkh < acceptState >
theoremP2PKH pbkh = wPreCondP2PKH pbkh <><>〈 [opDup] 〉〈 correct-opDup pbkh 〉

accept5 pbkh <><>〈 [opHash] 〉〈 correct-opHash pbkh 〉
accept4 pbkh <><>〈 [opPush pbkh] 〉〈 correct-opPush pbkh 〉
accept3 <><>〈 [opEqual] 〉〈 correct-opEqual 〉
accept2 <><>〈 [opVerify] 〉〈 correct-opVerify 〉
accept1 <><>〈 [opCheckSig] 〉〈 correct-opCheckSig 〉e

acceptState ‚p

The locking script will be accepted if, after executing the code starting with the stack
returned by the unlocking script, the accept condition acceptState is fulfilled. The verification
conditions and proofs were developed by working backwards starting from the last instruction
and determining the weakest preconditions “accepti” w.r.t. the end piece of the script starting
with that instruction and the accept condition as post-condition. The preconditions were
obtained manually – one could automate this by determining for each instruction depending
on the post-condition a corresponding pre-condition, where the challenge would be to simplify
the resulting pre-conditions in order to avoid a blowup in size. We continued in this way until
we reached the first instruction and obtained the weakest precondition for the locking script.
theoremP2PKH is using single instructions in order to prove the correctness of P2PKH. The
proofs correct-opCheckSig, correct-opVerify, etc are done by following the case distinctions
made in the corresponding verification conditions. The harder direction is to prove that they
are actually weakest preconditions: Proving that the precondition implies the postcondition
after running the program, is easier since we are used to mentally executing programs in
forward direction. Proving the opposite direction requires showing that the only way, after
running the program, to obtain the postcondition is to have the precondition fulfilled, which
requires mentally reversing the execution of programs.

6 Proof of Correctness using Symbolic Execution

In this section, we will introduce a second method for obtaining readable representations of
weakest preconditions of Bitcoin scripts. This method is based on symbolic execution [29]
of the Bitcoin script, and investigating the sequence of case distinctions carried out during

F. F. Alhabardi, A. Beckmann, B. Lazar, and A. Setzer 1:15

the execution. We will consider three examples: The first will be the P2PKH script which
we analysed already. We use it to explain the method and provide a second approach to
determine and verify the already obtained weakest precondition. The second example will
consider the multisig script which is a direct application of the OP_MULTISIG instruction.
The third example will see an application of a combination of both methods.

6.1 Example: P2PKH Script
When applying the symbolic evaluation method to the P2PKH script and analysing the
sequence of case distinctions carried out, we will see that there will be exactly one path through
the tree of case distinctions which results in an accepting condition. The conjunction of the
cases that determine this path will form the weakest precondition. In examples with more
than one accepting path we would take the disjunction of the conditions for each accepting
path.11 We will prove that the precondition is indeed the weakest by developing an equivalent
program p2pkhFunctionDecoded and showing that it fulfils the weakest precondition.

We start by declaring (using Agda’s postulate) symbolic values pbkh, msg1, stack1, x1, etc
for the parameters (postulates are typeset in blue). This allows us to evaluate expressions
up to executeStackVerify symbolically by using the normalisation procedure of Agda and
to determine the function p2pkhFunctionDecoded. (In Sect. 7 we will elaborate how to do
this practically in Agda). Afterwards, we stop using those postulates (they were defined as
private) and prove that the result of evaluating the P2PKH script for arbitrary parameters is
equivalent to p2pkhFunctionDecoded.

When evaluating J scriptP2PKHb pbkh Ks time1 msg1 stack1 we obtain

executeStackDup stack1 ąą“

λ stack2 → executeOpHash stack2 ąą“

λ stack3 → executeStackEquality (pbkh :: stack3) ąą“

λ stack4 → executeStackVerify stack4 ąą“

λ stack5 → executeStackCheckSig msg1 stack5

We can write it equivalently using the do notation12

do stack2 ← executeStackDup stack1

stack3 ← executeOpHash stack2

stack4 ← executeStackEquality (pbkh :: stack3)
stack5 ← executeStackVerify stack4

executeStackCheckSig msg1 stack5

At this point further reduction is blocked by the first line of the previous expression,
because executeStackDup stack1 makes a case distinction on stack1. Therefore, we introduce
a symbolic case distinction on stack1:

11 In our examples we got only a few accepting paths, since concrete scripts in use are designed to deal
with a small number of different scenarios for unlocking them, so the majority of paths in the program
are unsuccessful paths. It could happen however that with more advanced examples nested conditions
result in an exponential blowup of the number of cases – if that occurs one would need to take an
approach where the nested case distinctions are preserved at least partly and the resulting extracted
formulas reflect those nested case distinctions rather than flattening them out. This would avoid the
blowup in the size of the resulting weakest precondition.

12 The do notation is a widely used Haskell notation adapted to Agda, which provides an alternative syntax
for the same expression making it appear as an imperative program if one reads ← as assignments. It
demonstrates that we are consecutively executing the instructions, with the possibility of aborting in
each step.

TYPES 2021

1:16 Verification of Bitcoin Script in Agda

J scriptP2PKHb pbkh Ks time1 msg1 [] evaluates to nothing.
J scriptP2PKHb pbkh Ks time1 msg1 (pbk :: stack1) evaluates to what in do notation can
be written as

do stack5 ← executeStackVerify (compareNaturals pbkh (hashFun pbk) :: pbk :: stack1)
executeStackCheckSig msg1 stack5

Evaluation of the latter expression is blocked by the function executeStackVerify which makes
a case distinction on the expression compareNaturals pbkh (hashFun pbk). We define

abstrFun : (stack1 : Stack)(cmp : N) → Maybe Stack
abstrFun stack1 cmp = do stack5 ← executeStackVerify (cmp :: pbk :: stack1)

executeStackCheckSig msg1 stack5

hence J scriptP2PKHb pbkh Ks time1 msg1 (pbk :: stack1) evaluates to
abstrFun stack1 (compareNaturals pbkh (hashFun pbk)).

Next we carry out a symbolic case distinction on the argument cmp of abstrFun:
abstrFun stack1 0 evaluates to nothing.
abstrFun stack1 (suc x1) evaluates to executeStackCheckSig msg1 (pbk :: stack1).

In order to normalise further, executeStackCheckSig needs to make a case distinction on
stack1, so we carry out a symbolic case distinction on that argument:

abstrFun [] (suc x1) evaluates to nothing.
abstrFun (sig1 :: stack1) (suc x1) evaluates to
just (boolToNat (isSigned msg1 sig1 pbk) :: stack1)

We can now read off the weakest precondition. The only path which ends up in a just
result is when the stack is non empty of the form pbk :: stack1, and
compareNaturals pbkh (hashFun pbk) evaluates to suc x1, i.e. it must be ą0. Furthermore, in
this case stack1 needs to be itself non empty. For stack1 “ sig1 :: stack2, the result returned
is just (boolToNat (isSigned msg1 sig1 pbk) :: stack1), which fulfils the accept condition if
boolToNat (isSigned msg1 sig1 pbk) ą 0. The latter is the case if isSigned msg1 sig1 pbk is
true.

Furthermore, compareNaturals n m returns 1 if n, m are equal otherwise 0, so it is ą0
if n “ m. Therefore the P2PKH locking script succeeds with an output stack fulfilling
the acceptance condition, if and only if the input stack has height at least two, and if it is
pbk :: sig1 :: stack2, then pbkh is equal to hashFun pbk, and isSigned msg1 sig1 pbk is true.
That is the same as the weakest precondition that we determined using the first approach.

In order to prove correctness, we first determine a more Agda style formulation of the
result of evaluation of the P2PKH script, which we derive from the previous symbolic
evaluation:

p2pkhFunctionDecoded : (pbkh : N)(msg1 : Msg)(stack1 : Stack) → Maybe Stack
p2pkhFunctionDecoded pbkh msg1 [] = nothing
p2pkhFunctionDecoded pbkh msg1 (pbk :: stack1) = p2pkhFunctionDecodedAux1 pbk msg1 stack1

(compareNaturals pbkh (hashFun pbk))

p2pkhFunctionDecodedAux1 : (pbk : N)(msg1 : Msg)(stack1 : Stack)(cpRes : N) → Maybe Stack
p2pkhFunctionDecodedAux1 pbk msg1 [] cpRes = nothing
p2pkhFunctionDecodedAux1 pbk msg1 (sig1 :: stack1) zero = nothing
p2pkhFunctionDecodedAux1 pbk msg1 (sig1 :: stack1) (suc cpRes) =

just (boolToNat (isSigned msg1 sig1 pbk) :: stack1)

F. F. Alhabardi, A. Beckmann, B. Lazar, and A. Setzer 1:17

We prove that this function is equivalent to the result of evaluating the P2PKH script.
The proof is a simple case distinction following the cases defining p2pkhFunctionDecoded:

p2pkhFunctionDecodedcor : (time1 : N) (pbkh : N)(msg1 : Msg)(stack1 : Stack)
→ J scriptP2PKHb pbkh Ks time1 msg1 stack1 ” p2pkhFunctionDecoded pbkh msg1 stack1

We show that the extracted weakest precondition is a correct for the extracted program:13

lemmaPTKHcoraux : (pbkh : N) → < weakestPreConditionP2PKHs pbkh >gs

(λ time msg1 s → p2pkhFunctionDecoded pbkh msg1 s)
< acceptStates >

Afterwards, this is transferred into a proof of the weakest precondition for the P2PKH
script, using the equality proof from before:

theoPTPKHcor : (pbkh : N) → < wPreCondP2PKH pbkh >if f scriptP2PKHb pbkh < acceptState >

Carrying out the symbolic execution was relatively easy, because Agda supports evaluation
of terms very well. It only becomes relatively long in the Agda code [47] when documenting
all the steps, which we did in order to explain how this is done in detail. What matters is
the resulting program and a prove that it is equivalent, which was relatively short and easy.
Maybe Agda’s reflection mechanism [3], once it is more fully developed, could be of help
to find the successful branches of the program more easily. To obtain a readable program
rather than a machine generated program, and therefore readable verification conditions,
would however require a lot of work, and probably require delegating some programming
tasks from Agda (in which tactics need to be written) to its foreign language interface.

6.2 Example: MultiSig Script (P2MS)
The OP_MULTISIG instruction is an instruction which has a more complex behaviour: It
assumes that the top elements of the stack are as follows:

n :: pbkn :: ¨ ¨ ¨ :: pbk2 :: pbk1 :: m :: sigm :: ¨ ¨ ¨ :: sig2 :: sig1 :: dummy

OP_MULTISIG checks whether the m signatures are signatures corresponding to m of the
n public keys for the msg to be signed, where the matching public keys are in the same order
as the signatures. Observe that when pushed from a script, the public keys and signatures
appear in reverse order on the stack, as pbk1 is pushed first onto the stack, etc. The dummy
element occurs due to a mistake in the Bitcoin protocol, which has not been corrected as it
would require a hard fork [6, p. 151-152].

The operational semantics is given by a function executeMultiSig, which fetches the data
from the stack as described before. It fails if there are not enough elements on the stack
and otherwise returns just (boolToNat (cmpMultiSigs msg sigs pbks) :: restStack), where
sigs and pbks are the signatures and public keys fetched from the stack in reverse order,
and restStack is the remainder of the stack. The function cmpMultiSigs compares whether
signatures correspond to public keys and is defined as follows:

13 <_>g_<_> is the generalisation of <_>if f_<_> where Bitcoin scripts are replaced by Agda functions
StackState → Maybe StackState; <_>gs_<_> is the version, where the StackState is unfolded into its
components.

TYPES 2021

1:18 Verification of Bitcoin Script in Agda

cmpMultiSigs : (msg : Msg)(sigs pbks : List N) → Bool
cmpMultiSigs msg [] pubkeys = true
cmpMultiSigs msg (sig :: sigs) [] = false
cmpMultiSigs msg (sig :: sigs) (pbk :: pbks) = cmpMultiSigsAux msg sigs pbks sig (isSigned msg sig pbk)

cmpMultiSigsAux : (msg : Msg)(sigs pbks : List N)(sig : N)(testRes : Bool) → Bool
cmpMultiSigsAux msg sigs pbks sig false = cmpMultiSigs msg (sig :: sigs) pbks
cmpMultiSigsAux msg sigs pbks sig true = cmpMultiSigs msg sigs pbks

We define now a generic multisig function. First we define opPushList, which pushes a
list of public keys on the stack:

opPushList : (pbkList : List N) → BitcoinScriptBasic
opPushList [] = []
opPushList (pbk1 :: pbkList) = opPush pbk1 :: opPushList pbkList

The m out of n multi-signature script P2MS (n “ length pbkList) is defined as follows:

multiSigScriptm-nb : (m : N)(pbkList : List N)(m<n : m < length pbkList)
→ BitcoinScriptBasic

multiSigScriptm-nb m pbkList m<n =
opPush m :: (opPushList pbkList `̀ (opPush (length pbkList) :: [opMultiSig]))

The locking script MultiSig script P2MS applies OP_MULTISIG to m signatures and n

public keys. It pushes the number m of required signatures, then n public keys, and then
the number n as the number of public keys, onto the stack, and executes OP_MULTISIG. If
OP_MULTISIG finds that the m signatures are valid signature for the message to be signed for
m out of the n public keys in the same order as they appear in the list of public keys, then
the script will be unlocked. As unlocking script one can use opPushList applied to a list of m
appropriate signatures. In order to verify the script we will consider the concrete example of
the 2-out-of-4 P2MS, for which we obtain a very readable verification condition (the generic
one becomes difficult to read).

We will use the second approach of determining a readable form of the weakest precondition
and proving correctness by symbolic evaluation for the 2 out of 4 multiSigScript2-4b. The
first approach is difficult to carry out since the instruction opMultiSig has a very complex
precondition that is difficult to handle – it requires that the stack contains the number
of public keys, then the public keys themselves, then the number of signatures and the
signatures, and a dummy element, where the number of public keys and number of signatures
can be arbitrary. It is much easier to handle the full multiSigScript2-4b script, since, after the
data has been inputted, the number of required signatures is known, and the public keys are
already provided by the script.

In order to demonstrate the first approach we will instead, in Subsect. 6.3, apply the
step-by-step approach to a combined script, of which multiSigScript2-4b is one part. This way
we obtain a readable form of the weakest precondition and can then prove its correctness.
This will demonstrate that in some cases it is beneficial to interleave the two processes, and
apply the second method to sequences of instructions while applying the first approach to
the resulting sequences of instructions instead of single instructions.
We start the symbolic evaluation by computing the normal form of

J multiSigScript2-4b pbk1 pbk2 pbk3 pbk4 Ks time1 msg1 stack1
and obtain

executeMultiSig3 msg1 (pbk1 :: pbk2 :: pbk3 :: [pbk4]) 2 stack1 []
Here, executeMultiSig3 is one of the auxiliary functions in the definition of executeMultiSig.

F. F. Alhabardi, A. Beckmann, B. Lazar, and A. Setzer 1:19

That expression makes a case distinctions on stack1 and returns:
nothing when the stack has height at most 2 (obtained by evaluating it symbolically for
stacks of height 0, 1, 2).
Otherwise, the stack has height ě 3, and, if it is of the form sig2 :: sig1 :: dummy :: stack1,
it reduces to

just (boolToNat (cmpMultiSigsAux msg1 [sig2] (pbk2 :: pbk3 :: [pbk4]) sig1

(isSigned msg1 sig1 pbk1)) :: stack1)

The script has terminated, because we obtain just as a result of the evaluation. We now need
to check whether the result fulfils the accept condition. For this the top element of the stack
needs to be ą0, which is the case if
cmpMultiSigsAux msg1 [sig2] (pbk2 :: pbk3 :: [pbk4]) sig1(isSigned msg1 sig1 pbk1)
returns true. Therefore, we perform symbolic case distinctions in the following way:

In case isSigned msg1 sig1 pbk1 evaluates to true, i.e. if we replace that expression by
true, the reduction continues to
cmpMultiSigsAux msg1 [] (pbk3 :: [pbk4]) sig2 (isSigned msg1 sig2 pbk2),
which makes a case distinction on isSigned msg1 sig2 pbk2.

If that expression returns again true, we obtain true.
If it returns false, we obtain
cmpMultiSigsAux msg1 [] [pbk4] sig2 (isSigned msg1 sig2 pbk3)
which makes a case distinction on isSigned msg1 sig2 pbk3
∗ In case of true, we obtain true.
∗ Otherwise the case distinctions continue, see the git repository [47] for full details.

In total we see that we obtain true iff one of the following cases holds:
(isSigned msg1 sig1 pbk1) ^ (isSigned msg1 sig2 pbk2)
(isSigned msg1 sig1 pbk1) ^ ¬ (isSigned msg1 sig2 pbk2) ^ (isSigned msg1 sig2 pbk3)
(isSigned msg1 sig1 pbk1) ^ ¬ (isSigned msg1 sig2 pbk2) ^
¬ (isSigned msg1 sig2 pbk3) ^ (isSigned msg1 sig2 pbk4)
. . . more cases.

These cases can be simplified to an equivalent disjunction of the following cases:
(isSigned msg1 sig1 pbk1) ^ (isSigned msg1 sig2 pbk2)
(isSigned msg1 sig1 pbk1) ^ (isSigned msg1 sig2 pbk3)
(isSigned msg1 sig1 pbk1) ^ (isSigned msg1 sig2 pbk4)
. . . more cases.

We obtain the following weakest precondition as a stack predicate:

weakestPreCondMultiSig-2-4s : (pbk1 pbk2 pbk3 pbk4 : N) → StackPredicate
weakestPreCondMultiSig-2-4s pbk1 pbk2 pbk3 pbk4 time msg1 [] = K

weakestPreCondMultiSig-2-4s pbk1 pbk2 pbk3 pbk4 time msg1 (x :: []) = K

weakestPreCondMultiSig-2-4s pbk1 pbk2 pbk3 pbk4 time msg1 (x :: y :: []) = K

weakestPreCondMultiSig-2-4s pbk1 pbk2 pbk3 pbk4 time msg1 (sig2 :: sig1 :: dummy :: stack1) =
((IsSigned msg1 sig1 pbk1 ^ IsSigned msg1 sig2 pbk2) Z

(IsSigned msg1 sig1 pbk1 ^ IsSigned msg1 sig2 pbk3) Z

(IsSigned msg1 sig1 pbk1 ^ IsSigned msg1 sig2 pbk4) Z

(IsSigned msg1 sig1 pbk2 ^ IsSigned msg1 sig2 pbk3) Z

(IsSigned msg1 sig1 pbk2 ^ IsSigned msg1 sig2 pbk4) Z

(IsSigned msg1 sig1 pbk3 ^ IsSigned msg1 sig2 pbk4))

TYPES 2021

1:20 Verification of Bitcoin Script in Agda

It expresses that the stack must have height at least 3, and if it is of the form sig2 :: sig1
:: dummy :: stack1 then the signatures need to correspond to 2 out of the 4 public keys in
the same order as the public keys. Using the same case distinctions as they occurred in the
symbolic evaluation above we can now prove:

theoremCorrectnessMultiSig-2-4 : (pbk1 pbk2 pbk3 pbk4 : N)
→ < stackPred2SPred (weakestPreCondMultiSig-2-4s pbk1 pbk2 pbk3 pbk4) >if f

multiSigScript2-4b pbk1 pbk2 pbk3 pbk4
< stackPred2SPred acceptStates >

From the theorem above, we have obtained a readable weakest precondition by symbolic
execution, which will be used as a starting template for developing a generic verification.
The next step would be to generalise the verification conditions and theorems to the generic
case, however that would go beyond the scope of the current paper.

6.3 Example: Combining the two Methods
In this subsection, we show how to verify a combined script which consists of a simple script
checking a certain amount of time has passed and the multisig script from the previous
subsection. To determine a readable form of the weakest precondition and proving correctness
we will combine both of our techniques: The weakest precondition for the multisig script has
been determined by symbolic evaluation in the previous subsection. The weakest precondition
for the simple time checking script will be obtained directly, as it is very simple. When we
consider the combined scripts we will use the first method of moving backwards step-by-step.
However, instead of using single instructions in each step, we now use several instructions as
a single step.

We define the checktime script as follows:

checkTimeScriptb : (time1 : Time) → BitcoinScriptBasic
checkTimeScriptb time1 = (opPush time1) :: opCHECKLOCKTIMEVERIFY :: [opDrop]

If we define

timeCheckPreCond : (time1 : Time) → StackPredicate
timeCheckPreCond time1 time2 msg stack1 = time1 ď time2

we can define its weakest precondition relative to a post condition ϕ only affecting the
stack as in the following theorem:

theoremCorrectnessTimeCheck : (ϕ : StackPredicate)(time1 : Time)
→ < stackPred2SPred (timeCheckPreCond time1 ^sp ϕ) >if f checkTimeScriptb time1

< stackPred2SPred ϕ >

Now we can determine the weakest precondition for the combined script and prove its
correctness as follows:

theoremCorrectnessCombinedMultiSigTimeCheck : (time1 : Time) (pbk1 pbk2 pbk3 pbk4 : N)
→ < stackPred2SPred (timeCheckPreCond time1 ^sp

weakestPreCondMultiSig-2-4s pbk1 pbk2 pbk3 pbk4) >if f

checkTimeScriptb time1 `̀ multiSigScript2-4b pbk1 pbk2 pbk3 pbk4
< acceptState >

F. F. Alhabardi, A. Beckmann, B. Lazar, and A. Setzer 1:21

theoremCorrectnessCombinedMultiSigTimeCheck time1 pbk1 pbk2 pbk3 pbk4 =
stackPred2SPred (timeCheckPreCond time1 ^sp

weakestPreCondMultiSig-2-4s pbk1 pbk2 pbk3 pbk4)
<><>〈 checkTimeScriptb time1 〉〈 theoremCorrectnessTimeCheck

(weakestPreCondMultiSig-2-4s pbk1 pbk2 pbk3 pbk4) time1 〉
stackPred2SPred (weakestPreCondMultiSig-2-4s pbk1 pbk2 pbk3 pbk4)

<><>〈 multiSigScript2-4b pbk1 pbk2 pbk3 pbk4
〉〈 theoremCorrectnessMultiSig-2-4 pbk1 pbk2 pbk3 pbk4 〉e

stackPred2SPred acceptStates
‚p

The weakest precondition states that the state time is ě time1, and that the weakest
precondition for the multisig script is fulfilled (^sp forms the conjunction of the two condi-
tions). For proving it we used a combination of both methods, the second method was used
to determine preconditions for the two parts of the scripts, and the first method, where we
used whole scripts instead of basic instructions, was used to determine the combined weakest
precondition.

7 Using Agda to Determine Readable Weakest Preconditions

Our library provides the operational semantics for (a subset of) Bitcoin script, and a
framework for specifying and reasoning about weakest preconditions. The Agda user has to
specify the script to be verified, and then consider suitable pieces of the specified script and
provide weakest preconditions. Agda will then create goals, which are unimplemented holes
in the code. Agda will display the type of goals and list of assumptions available for solving
them, and provide considerable additional support for resolving those goals. For instance, it
allows to refine partial solutions provided by the user by applying it to sufficiently many new
goals. Agda will as well automatically create case distinctions (such as whether an element
of type Maybe is just or nothing). Agda can solve goals if the solution is unique and can
be found in a direct way. Agda’s automated theorem proving support for finding solutions
which are not unique is not very strong due to the high complexity of the language.

Agda Reflection [3] is an ongoing project which already now provides a considerable
library for inspecting code inside a goal and computing solutions as Agda code. The aim
is to provide something similar to Coq’s tactic language. In our code we frequently had to
consider a nested case distinction for proving a goal, where most cases were solved because
at one point one of the arguments became an element of the empty type. Automating this
using Agda Reflection would make it much easier to use our library.

Finding a description of the weakest precondition has to be done manually at the moment.
We plan to create a library which computes such descriptions for instructions or small pieces
of instructions. Sometimes it is easier to provide weakest precondition for small pieces of code,
for instance in case of the multisig instruction the weakest precondition for the instruction
itself is very complex, whereas the weakest precondition for the P2MS script is much easier to
display. Defining and simplifying the weakest preconditions in the intermediate steps has to
be been done manually at the moment. Proofs have to be done manually in Agda, but they
are relatively easy because of Agda’s support for developing proofs. It would be desirable
to have a more automated support, where the user only needs to specify the verification
conditions, but proofs are carried out automatically. In general our impression is that for
writing programs and specifying verification conditions Agda is very suitable: one obtains
code which is very readable and close to standard mathematical notations. Where Agda is
lacking is in providing support for machine assisted proofs of the resulting conditions.

TYPES 2021

1:22 Verification of Bitcoin Script in Agda

Regarding the question, which of the two approaches to use (working backwards step-by-
step or using symbolic evaluation), we have only some heuristics at the moment. A good
approach is that for pieces of code, where one has an intuition what the underlying program
written in Agda could be, the symbolic evaluation is more suitable. For longer code, a good
strategy is to cut the code into suitable pieces, for which one can find a symbolic program
and weakest preconditions, and then work oneself backwards using the first approach starting
from the acceptance condition. Note that symbolic execution can be done very fast: The
user postulates variables for the arguments, applies the functions to be evaluated to those
postulated arguments and then executes Agda’s normalisation mechanism. Then the user
needs to manually inspect the result to see which sub expression trigger the case distinction.
It would be nice project to develop a procedure which automates that process of symbolic
execution – this could be applicable to verification of other kinds of programs as well.

8 Conclusion

In this paper, we have implemented and tested two methods for developing human-readable
weakest preconditions and proving their correctness. These methods can help smart contract
developers to fill the validation gap between user requirements and formal specification. We
have argued that weakest preconditions in Hoare logic is the correct notion for specifying
the security property of access control. We have applied our approaches to P2PKH, P2MS,
and a combination of P2MS with a time lock. The whole approach has been formalised in
Agda [47].

In future work, we will treat non-local instructions such as OP_IF, OP_ELSE, and OP_ENDIF,
and will formalise key instructions to extend our approach to the whole of Bitcoin script. The
difficulty is nesting of conditionals, and that Bitcoin scripts are not structured, and therefore
some additional work needs to be done to find the matching of if-then-else instructions.
In our approach, we will use an expanded state space for dealing with those conditionals.
Moreover, we plan to expand our library to support finding weakest preconditions for scripts
having conditionals in a modular way. Furthermore, we plan the make the process of script
verification more user-friendly by using a text parser that can record the instructions used
for verification.

In addition, we aim to generalise the verification of P2MS to arbitrary m out of n
multiscripts, where the challenge is finding a suitable generic human-readable weakest
precondition.

Another route for future research is to develop our approach into a framework for
developing smart contracts that are correct by construction. One way to build such smart
contracts is to use Hoare Type Theory [27, 39].

References
1 Adacore. SPARK 2014, retrieved 9 november 2021. URL: https://www.adacore.com/

about-spark.
2 Agda Team. Agda documentation, retrieved 21 april 2022. URL: https://agda.readthedocs.

io/en/latest/index.html.
3 Agda Team. Agda Reflection, retrieved 21 april 2022. URL: https://agda.readthedocs.io/

en/latest/language/reflection.html.
4 Mouhamad Almakhour, Layth Sliman, Abed Ellatif Samhat, and Abdelhamid Mellouk.

Verification of smart contracts: A survey. Pervasive and Mobile Computing, 67:1–19, 2020.
doi:10.1016/j.pmcj.2020.101227.

https://www.adacore.com/about-spark
https://www.adacore.com/about-spark
https://agda.readthedocs.io/en/latest/index.html
https://agda.readthedocs.io/en/latest/index.html
https://agda.readthedocs.io/en/latest/language/reflection.html
https://agda.readthedocs.io/en/latest/language/reflection.html
https://doi.org/10.1016/j.pmcj.2020.101227

F. F. Alhabardi, A. Beckmann, B. Lazar, and A. Setzer 1:23

5 Sidney Amani, Myriam Bégel, Maksym Bortin, and Mark Staples. Towards Verifying Ethereum
Smart Contract Bytecode in Isabelle/HOL. In Proceedings of the 7th ACM SIGPLAN
International Conference on Certified Programs and Proofs, CPP 2018, pages 66–77, New
York, NY, USA, 2018. Association for Computing Machinery. doi:10.1145/3167084.

6 Andreas M Antonopoulos. Mastering Bitcoin: Programming the open blockchain (Second ed.).
O’Reilly Media, Inc., 2017.

7 Nicola Atzei, Massimo Bartoletti, Stefano Lande, and Roberto Zunino. A formal model of
bitcoin transactions. In Financial Cryptography and Data Security, pages 541–560, Berlin,
Heidelberg, 2018. Springer Berlin Heidelberg. doi:10.1007/978-3-662-58387-6_29.

8 Massimo Bartoletti and Roberto Zunino. BitML: A Calculus for Bitcoin Smart Contracts. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
CCS ’18, pages 83–100, New York, NY, USA, 2018. Association for Computing Machinery.
doi:10.1145/3243734.3243795.

9 Bruno Bernardo, Raphaël Cauderlier, Zhenlei Hu, Basile Pesin, and Julien Tesson. Mi-Cho-
Coq, a Framework for Certifying Tezos Smart Contracts. In Formal Methods. FM 2019
International Workshops, pages 368–379, Cham, 2020. Springer International Publishing.
doi:10.1007/978-3-030-54994-7_28.

10 Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha Gollamudi, Georges
Gonthier, Nadim Kobeissi, Natalia Kulatova, Aseem Rastogi, Thomas Sibut-Pinote, Nikhil
Swamy, and Santiago Zanella-Béguelin. Formal Verification of Smart Contracts: Short Paper.
In Proceedings of the 2016 ACM Workshop on Programming Languages and Analysis for
Security, PLAS ’16, pages 91–96, New York, NY, USA, 2016. Association for Computing
Machinery. doi:10.1145/2993600.2993611.

11 Bitcoin Community. Welcome to the Bitcoin Wiki. Availabe from https://en.bitcoin.it/
wiki/Script, 2010.

12 Ana Bove, Peter Dybjer, and Ulf Norell. A Brief Overview of Agda – A Functional Language
with Dependent Types. In Theorem Proving in Higher Order Logics, pages 73–7, Berlin,
Heidelberg, 2009. Springer Berlin Heidelberg. doi:10.1007/978-3-642-03359-9_6.

13 Vitalik Buterin. Ethereum: A next-generation smart contract and decentralized application
platform, 2014. URL: https://ethereum.org/en/whitepaper.

14 Manuel M. T. Chakravarty, James Chapman, Kenneth MacKenzie, Orestis Melkonian, Jann
Müller, Michael Peyton Jones, Polina Vinogradova, and Philip Wadler. Native Custom Tokens
in the Extended UTXO Model. In Leveraging Applications of Formal Methods, Verification
and Validation: Applications, pages 89–111, Cham, 2020. Springer International Publishing.
doi:10.1007/978-3-030-61467-6_7.

15 Manuel M. T. Chakravarty, James Chapman, Kenneth MacKenzie, Orestis Melkonian, Jann
Müller, Michael Peyton Jones, Polina Vinogradova, Philip Wadler, and Joachim Zahnentferner.
UTXOma: UTXO with Multi-asset Support. In Leveraging Applications of Formal Methods,
Verification and Validation: Applications, pages 112–130, Cham, 2020. Springer International
Publishing. doi:10.1007/978-3-030-61467-6_8.

16 Manuel M. T. Chakravarty, James Chapman, Kenneth MacKenzie, Orestis Melkonian, Michael
Peyton Jones, and Philip Wadler. The Extended UTXO Model. In Financial Cryptography
and Data Security, pages 525–539, Cham, 2020. Springer International Publishing.

17 James Chapman, Roman Kireev, Chad Nester, and Philip Wadler. System F in Agda, for Fun
and Profit. In Mathematics of Program Construction, pages 255–297, Cham, 2019. Springer
International Publishing. doi:10.1007/978-3-030-33636-3_10.

18 Martin Churchill, Peter D. Mosses, Neil Sculthorpe, and Paolo Torrini. Reusable components
of semantic specifications. In Shigeru Chiba, Éric Tanter, Erik Ernst, and Robert Hirschfeld,
editors, Transactions on Aspect-Oriented Software Development XII, pages 132–179, Berlin,
Heidelberg, 2015. Springer Berlin Heidelberg. doi:10.1007/978-3-662-46734-3_4.

19 Edmund M. Clarke and Jeannette M. Wing. Formal methods: State of the art and future
directions. ACM Comput. Surv., 28(4):626–643, December 1996. doi:10.1145/242223.242257.

TYPES 2021

https://doi.org/10.1145/3167084
https://doi.org/10.1007/978-3-662-58387-6_29
https://doi.org/10.1145/3243734.3243795
https://doi.org/10.1007/978-3-030-54994-7_28
https://doi.org/10.1145/2993600.2993611
https://en.bitcoin.it/wiki/Script
https://en.bitcoin.it/wiki/Script
https://doi.org/10.1007/978-3-642-03359-9_6
https://ethereum.org/en/whitepaper
https://doi.org/10.1007/978-3-030-61467-6_7
https://doi.org/10.1007/978-3-030-61467-6_8
https://doi.org/10.1007/978-3-030-33636-3_10
https://doi.org/10.1007/978-3-662-46734-3_4
https://doi.org/10.1145/242223.242257

1:24 Verification of Bitcoin Script in Agda

20 crypto.stackexchange. Is there any famous protocol that were proven secure but whose
proof was wrong and lead to real world attacks?, retrieved 22 april 2022. URL:
https://crypto.stackexchange.com/questions/98829/is-there-any-famous-protocol-
that-were-proven-secure-but-whose-proof-was-wrong-a.

21 Peter D and Mosses. Modular structural operational semantics. Journal of Logic and Algebraic
Programming, 60-61(0):195–228, 2004. doi:10.1016/j.jlap.2004.03.008.

22 Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs.
Commun. ACM, 18(8):453–457, August 1975. doi:10.1145/360933.360975.

23 Etherscan. TheDAO smart contract 2016, retrieved 27 march 2022. Availabe from http:
//etherscan.io/address/0xbb9bc244d798123fde783fcc1c72d3bb8c189413#code.

24 Jean-Christophe Filliâtre and Andrei Paskevich. Why3 — Where Programs Meet Provers.
In Programming Languages and Systems, pages 125–128, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg. doi:10.1007/978-3-642-37036-6_8.

25 Yoichi Hirai. Defining the Ethereum Virtual Machine for Interactive Theorem Provers. In
Financial Cryptography and Data Security, pages 520–535, Cham, 2017. Springer International
Publishing. doi:10.1007/978-3-319-70278-0_33.

26 C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the ACM,
12(10):576–585, October 1969. doi:10.1145/363235.363259.

27 IMDEA Software Institute. HTT: Hoare Type Theory, 10 march 2015. Available from
https://software.imdea.org/~aleks/htt/.

28 Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. ZEUS: Analyzing Safety of
Smart Contracts. In 25th Annual Network and Distributed System Security Symposium, NDSS
2018, San Diego, California, USA, February 18-21, 2018, pages 1–15. The Internet Society,
2018. doi:10.14722/ndss.2018.23082.

29 James C. King. Symbolic execution and program testing. Commun. ACM, 19(7):385–394,
July 1976. doi:10.1145/360248.360252.

30 Rick Klomp and Andrea Bracciali. On Symbolic Verification of Bitcoin’s script Language. In
Data Privacy Management, Cryptocurrencies and Blockchain Technology, pages 38–56, Cham,
2018. Springer International Publishing. doi:10.1007/978-3-030-00305-0_3.

31 Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. Making Smart
Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’16, pages 254–269, New York, NY, USA, 2016. Association
for Computing Machinery. doi:10.1145/2976749.2978309.

32 Luiz Eduardo G. Martins and Tony Gorschek. Requirements engineering for safety-critical
systems: Overview and challenges. IEEE Software, 34(4):49–57, 2017. doi:10.1109/MS.2017.
94.

33 Anastasia Mavridou, Aron Laszka, Emmanouela Stachtiari, and Abhishek Dubey. VeriSolid:
Correct-by-Design Smart Contracts for Ethereum. In Financial Cryptography and Data
Security, pages 446–465, Cham, 2019. Springer International Publishing.

34 Orestis Melkonian. Formalizing BitML Calculus in Agda, 2019. Student Research Competi-
tion, Poster Session, ICFP’19. URL: https://omelkonian.github.io/data/publications/
formal-bitml.pdf.

35 Orestis Melkonian. Formalizing Extended UTxO and BitML Calculus in Agda. Master’s thesis,
Utrecht University, Department of Information and Computing Sciences, July 2019. URL:
https://studenttheses.uu.nl/handle/20.500.12932/32981.

36 Dominic P. Mulligan, Scott Owens, Kathryn E. Gray, Tom Ridge, and Peter Sewell. Lem:
Reusable engineering of real-world semantics. ACM SIGPLAN Notices, 49(9):175–188, August
2014. doi:10.1145/2692915.2628143.

37 Yvonne Murray and David A. Anisi. Survey of Formal Verification Methods for Smart Contracts
on Blockchain. In 2019 10th IFIP International Conference on New Technologies, Mobility
and Security (NTMS), pages 1–6, 2019. doi:10.1109/NTMS.2019.8763832.

https://crypto.stackexchange.com/questions/98829/is-there-any-famous-protocol-that-were-proven-secure-but-whose-proof-was-wrong-a
https://crypto.stackexchange.com/questions/98829/is-there-any-famous-protocol-that-were-proven-secure-but-whose-proof-was-wrong-a
https://doi.org/10.1016/j.jlap.2004.03.008
https://doi.org/10.1145/360933.360975
http://etherscan.io/address/0xbb9bc244d798123fde783fcc1c72d3bb8c189413#code.
http://etherscan.io/address/0xbb9bc244d798123fde783fcc1c72d3bb8c189413#code.
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-319-70278-0_33
https://doi.org/10.1145/363235.363259
https://software.imdea.org/~aleks/htt/
https://doi.org/10.14722/ndss.2018.23082
https://doi.org/10.1145/360248.360252
https://doi.org/10.1007/978-3-030-00305-0_3
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1109/MS.2017.94
https://doi.org/10.1109/MS.2017.94
https://omelkonian.github.io/data/publications/formal-bitml.pdf
https://omelkonian.github.io/data/publications/formal-bitml.pdf
https://studenttheses.uu.nl/handle/20.500.12932/32981
https://doi.org/10.1145/2692915.2628143
https://doi.org/10.1109/NTMS.2019.8763832

F. F. Alhabardi, A. Beckmann, B. Lazar, and A. Setzer 1:25

38 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentralized Business
Review, 2008. URL: https://www.debr.io/article/21260.pdf.

39 Nanevski, Aleksandar and Vafeiadis, Viktor and Berdine, Josh. Structuring the Verification of
Heap-Manipulating Programs. SIGPLAN Not., 45(1):261–274, January 2010. doi:10.1145/
1707801.1706331.

40 Ulf Norell. Dependently typed programming in Agda. In Advanced Functional Pro-
gramming: 6th International School, AFP 2008, Heijen, The Netherlands, May 2008,
Revised Lectures, pages 230–266, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.
doi:10.1007/978-3-642-04652-0_5.

41 Russell O’Connor. Simplicity: A new language for blockchains. In Proceedings of the 2017
Workshop on Programming Languages and Analysis for Security, PLAS ’17, pages 107–120, New
York, NY, USA, 2017. Association for Computing Machinery. doi:10.1145/3139337.3139340.

42 Daejun Park, Yi Zhang, Manasvi Saxena, Philip Daian, and Grigore Roşu. A Formal
Verification Tool for Ethereum VM Bytecode. In Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2018, pages 912–915, New York, NY, USA, 2018. Association
for Computing Machinery. doi:10.1145/3236024.3264591.

43 Christine Paulin-Mohring. Introduction to the Coq Proof-Assistant for Practical Software
Verification, pages 45–95. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. doi:10.1007/
978-3-642-35746-6_3.

44 Elizabeth D. Rather, Donald R. Colburn, and Charles H. Moore. The Evolution of Forth,
pages 625–670. Association for Computing Machinery, New York, NY, USA, 1996. doi:
10.1145/234286.1057832.

45 Maria Ribeiro, Pedro Adão, and Paulo Mateus. Formal Verification of Ethereum Smart
Contracts Using Isabelle/HOL, pages 71–97. Springer International Publishing, Cham, 2020.
doi:10.1007/978-3-030-62077-6_7.

46 Anton Setzer. Modelling Bitcoin in Agda. CoRR, abs/1804.06398, 2018. arXiv:1804.06398.
47 Anton Setzer, Fahad Alhabardi, and Bogdan Lazar. Verification Of Smart Con-

tracts With Agda. Available from https://github.com/fahad1985lab/Smart––Contracts––
Verification––With––Agda, 2021.

48 Stack Exchange Inc. provable security - Is there any famous protocol that were proven secure but
whose proof was wrong and lead to real world attacks? , retrieved 22 april 2022. Availabe from
https://crypto.stackexchange.com/questions/98829/is-there-any-famous-protocol-
that-were-proven-secure-but-whose-proof-was-wrong-a.

49 Philip Wadler, Wen Kokke, and Jeremy G. Siek. Programming Language Foundations in Agda.
Online textbook, July 2020. URL: https://plfa.github.io/Equality/.

50 Maximilian Wohrer and Uwe Zdun. Smart Contracts: Security Patterns in the Ethereum
Ecosystem and Solidity. In 2018 International Workshop on Blockchain Oriented Software
Engineering (IWBOSE), pages 2–8, 2018. doi:10.1109/IWBOSE.2018.8327565.

TYPES 2021

https://www.debr.io/article/21260.pdf.
https://doi.org/10.1145/1707801.1706331
https://doi.org/10.1145/1707801.1706331
https://doi.org/10.1007/978-3-642-04652-0_5
https://doi.org/10.1145/3139337.3139340
https://doi.org/10.1145/3236024.3264591
https://doi.org/10.1007/978-3-642-35746-6_3
https://doi.org/10.1007/978-3-642-35746-6_3
https://doi.org/10.1145/234286.1057832
https://doi.org/10.1145/234286.1057832
https://doi.org/10.1007/978-3-030-62077-6_7
http://arxiv.org/abs/1804.06398
https://github.com/fahad1985lab/Smart--Contracts--Verification--With--Agda
https://github.com/fahad1985lab/Smart--Contracts--Verification--With--Agda
https://crypto.stackexchange.com/questions/98829/is-there-any-famous-protocol-that-were-proven-secure-but-whose-proof-was-wrong-a
https://crypto.stackexchange.com/questions/98829/is-there-any-famous-protocol-that-were-proven-secure-but-whose-proof-was-wrong-a
https://plfa.github.io/Equality/
https://doi.org/10.1109/IWBOSE.2018.8327565

Formalisation of Dependent Type Theory: The
Example of CaTT
Thibaut Benjamin # Ñ

Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France

Abstract
We present the type theory CaTT, originally introduced by Finster and Mimram to describe globular
weak ω-categories, formalise this theory in the language of homotopy type theory and discuss
connections with the open problem internalising higher structures. Most of the studies about this
type theory assume that it is well-formed and satisfy the usual syntactic properties that dependent
type theories enjoy, without being completely clear and thorough about what these properties are
exactly. We use our formalisation to list and formally prove all of these meta-properties, thus filling
a gap in the foundational aspect. We discuss the aspects of the formalisation inherent to CaTT. We
present the formalisation in a way that not only handles the type theory CaTT but also related type
theories that share the same structure, and in particular we show that this formalisation provides
a proper ground to the study of the theory MCaTT which describes the globular monoidal weak
ω-categories. The article is accompanied by a development in the proof assistant Agda to check the
formalisation that we present.

2012 ACM Subject Classification Theory of computation → Type theory; Theory of computation
→ Categorical semantics

Keywords and phrases Dependent type theory, homotopy type theory, higher categories, formalisa-
tion, Agda, proof assistant

Digital Object Identifier 10.4230/LIPIcs.TYPES.2021.2

Related Version arXiv Version: https://arxiv.org/abs/2111.14736

Supplementary Material Software (Agda Source Code): https://github.com/thibautbenjamin/
catt-formalization; archived at swh:1:dir:db3f3e900b7541e07a7f19b1d895daa7fedbadd5

Acknowledgements I want to thank Samuel Mimram and Eric Finster for their guidance in this
project and the anonymous reviewers for their helpful comments.

1 Introduction

This article presents and formalises the foundations of the type theory CaTT introduced by
Finster and Mimram [13], and similar type theories. CaTT is designed to encode a flavour of
higher categorical structures called weak ω-categories, and its semantics has been proved [9]
equivalent to a definition of weak ω-categories due to Maltsiniotis [22] based on an approach
by Grothendieck [14]. Another example that fits in our framework is the theory MCaTT [8],
which models monoidal weak ω-categories. We have formalised the work we present the
proof-assistant Agda1 in a fully proof-relevant way, without using Axiom K. we rely strongly
on insights and ideas that emerged with Homotopy Type Theory (HoTT), and follow the
homotopical interpretation of identity types. So we call this setting HoTT as well.

Although a few of the aforementioned articles primarily focus on CaTT, none of them give
a complete foundation for it. Instead they simply assume that some syntactic meta-properties
are satisfied. Far from being a shortcoming of those articles, this is common practice in the

1 https://github.com/thibautbenjamin/catt-formalization/tree/TYPES2021

© Thibaut Benjamin;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Types for Proofs and Programs (TYPES 2021).
Editors: Henning Basold, Jesper Cockx, and Silvia Ghilezan; Article No. 2; pp. 2:1–2:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:thibaut.benjamin@cea.fr
http://thibautbenjamin.github.io
https://orcid.org/0000-0002-9481-1896
https://doi.org/10.4230/LIPIcs.TYPES.2021.2
https://arxiv.org/abs/2111.14736
https://github.com/thibautbenjamin/catt-formalization
https://github.com/thibautbenjamin/catt-formalization
https://archive.softwareheritage.org/swh:1:dir:db3f3e900b7541e07a7f19b1d895daa7fedbadd5;origin=https://github.com/thibautbenjamin/catt-formalization;visit=swh:1:snp:ac0cbe301e45cac31272aea7e554a8d92c4704c2;anchor=swh:1:rev:ed45935b38d6a86fa662f561866140122ee3dcef
https://github.com/thibautbenjamin/catt-formalization/tree/TYPES2021
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Formalisation of Dependent Type Theory: The Example of CaTT

type theory community. Indeed low-level descriptions are lengthy and it is usually accepted
that a full description satisfying the usual meta-theoretic properties is possible. As a result
these articles rely on the reader’s ability to infer and accept these foundations.

Moreover, the goal of formalising dependent type theory within itself, has been a long
standing goal of dependent type theory [11], and is a hard and interesting problems. Important
developments, such as the MetaCoq project [25], a formalisation of Coq written in Coq are
being explored in this direction. More specifically in HoTT, it is a famous open problem
to give an definition of HoTT within itself [24], and it is known to be closely linked with
another open problem: The study of higher algebraic structures in HoTT.

We first present two main approaches to formalise dependent type theories and explore
some connections with the definition of higher algebraic structures. We elaborate on the
approach we chose and how it avoids the difficulty by restricting our focus to a purely
syntactic definition. We then give a quick informal presentation of the theory CaTT and of
a simpler type theory called GSeTT. Next, we discuss the formalisation of GSeTT, along
with its meta-theoretic properties. Finally, we introduce our formalism of globular type
theory, that models type theories similar to GSeTT, and show the meta-theoretic properties
of interest. We show that CaTT and MCaTT are both instances of globular type theories and
thus we get those properties for free. We present our formalisation in Agda pseudo-code with
the convention that all the free variables are implicitly universally quantified, and provide
some explanation for the syntax to help the reader navigate the article and the formalisation.

2 Structural foundation of dependent type theory

In this section, we give informal presentation of the type theories that we consider, and
discuss the ways they can be formalised. The type theories we study are centred around four
kinds of object, that we introduce here along with corresponding notations

contexts: Γ, ∆, . . . terms: t, u, . . .

types: A, B, . . . substitutions: γ, δ, . . .

Each of these object is associated to a well-formedness judgement
Γ is a valid context: Γ ⊢ t is a term of type A in Γ: Γ ⊢ t : A

A is a valid type in Γ: Γ ⊢ A γ is a valid substitution from ∆ to Γ: ∆ ⊢ γ : Γ

There are lots of flavours of type theories: dependent, linear (in the sense of linear logic),
graded, or with refinement types. . . We consider are dependent type theories similar to
Martin-Löf type theory without computation rules, that all respect the following rules.

∅ ⊢
(ec)

Γ ⊢ A

Γ, x : A ⊢
(ce) Where x /∈ Var(Γ)

Γ ⊢ (x : A) ∈ Γ
Γ ⊢ x : A

(var)

∆ ⊢
∆ ⊢ ⟨⟩ : ∅

(es)
∆ ⊢ γ : Γ Γ, x : A ⊢ ∆ ⊢ t : A[γ]

∆ ⊢ ⟨γ, x 7→ t⟩ : (Γ, x : A)
(se)

Where t[γ] is the application of the substitution γ to the term t and Var(Γ) is the set of
variables in Γ. For the sake of conciseness, we implicitly assume all type theories to satisfy
those rules.

T. Benjamin 2:3

2.1 The typed syntax approach
An approach proposed by Dybjer [12] for internalising the semantics of dependent type
theory is to define a typed syntax by induction induction. In this approach, every syntactic
object must be well-formed by construction, it makes no sense to even consider an ill-formed
object. For this reason we also refer to this approach as the intrinsic type theory.

Structure of the typed syntax. The intrinsic formalisation of dependent type theory relies
on four inductive inductive types. They correspond to the four kinds of syntactic objects.
We only give their signature in Agda pseudo-code to discuss specific points here. We use the
keyword data to introduce mutually inductive types and the type Set is the type of types
without any truncation assumption, this conflicts with the HoTT terminology.

data Ctx : Set
data Ty : Ctx → Set

data Tm : ∀ Γ → Ty Γ → Set
data Sub : Ctx → Ctx → Set

In this framework the type Ctx is the type of well-formed contexts i.e., the type of all
derivation trees of judgements of the form Γ ⊢, and similarly for the three other types. The
type of types Ty depends on the type Ctx: It does not make sense to require a type to be
well-formed, without a reference to the context in which this well-formedness is satisfied.

The semantics of the theory. This approach was originally proposed by Dybjer [12], in
order to internalise a categorical device called category with families (CwF). It captures
the algebraic structure of dependent type theory, and allows for studying its semantics.
Defining the theory along its semantics is an important goal as it allows to study complex
meta-theoretic properties, such as the independence of certain axioms by forcing or the
initiality conjecture. This conjecture states that a theory should realise a CwF that is initial
among a class of CwF that support the constructions of the theory. The typed syntax
approach, provided that it can be developed completely, would provide a definition of a type
theory that by construction enjoys the structure of a CwF and comes with a suitable notion
of models by using the induction principle. Thus, it provides a unification between syntax
and semantics, and gives both completely.

The dependency issue. An intrinsic approach presents hard challenges. For instance, we
expect the action of substitutions on types and terms do be functorial:

A[γ][δ] = A[γ ◦ δ] t[γ][δ] = t[γ ◦ δ]

Within the typed syntax, the second of these equations is not even a valid statement. Indeed,
suppose given the term t : Tm Γ A and two substitutions γ : Sub ∆ Γ and δ : Sub Θ ∆

then the term t[γ ◦ δ] is of type Tm Θ A[γ ◦ δ], whereas the term t[γ][δ] is of type
Tm Θ A[γ][δ]. Although these two types are equal by application of the first equality, they
are not definitionally so. Thus even stating this equality, requires transporting one of the
terms along the equality between the types. Proving later properties then requires a proper
handling of these transports which becomes quickly prohibitive.

The coherence problem. On top the aforementioned technical issue, there is a more
fundamental obstruction called the coherence problem: All the equalities, like the ones
mentioned, have to be assumed as part of the structure in the form of term witnesses. But
this is not enough, as equalities between those witnesses also need to be specified, and then

TYPES 2021

2:4 Formalisation of Dependent Type Theory: The Example of CaTT

equalities between their witnesses, and so on. This leads to a seemingly infinite amount of
equations needed to present the theory. In such cases, it is sometimes possible to generate all
of them with a finite scheme, but it is an open question to determine whether it is possible in
this case. The same coherence issue also appears in a widely studied open problem consisting
in defining higher algebraic structures in HoTT. In HoTT, each type is naturally endowed
with a higher structure of groupoid, thanks to the identity types, and internalising a higher
algebraic structure requires an additional higher structure. The coherence problem amounts
to listing all the axioms of the latter in terms of the former, and ensuring that they play
nicely together. A particularly studied instance of this is the definition of semi-simplicial
types [16], which has been open since the birth of HoTT.

Workarounds for those problems. Several techniques to avoid the coherence problem while
formalising either higher algebraic structures or dependent type theories have been considered.
However, none of them solve the problem which is still open.

In his work (anterior to HoTT) to formalise dependent type theory within itself [11],
Chapman sidesteps the dependency by considering a heterogeneous equality predicate
and mostly ignores the coherence problem. More recently, Lafont adapted this idea 2

and could avoid the coherence problem by requiring uniqueness of identity proofs (UIP)
partially, which is not compatible with HoTT. This development is beyond the capabilities
of Agda, and requires using the option --no-termination-check which deactivates the
termination checker and is unsound in Agda.
A technique proposed by Altenkirch, Capriotti and Kraus [2] is to use a 2-level type theory,
where the equality is strict, but there exists a sub class of types called fibrant which
also have a weak equality. Then one can restrict the focus only on fibrant types in the
semantics to recover the desired behaviour. This lead to a lot of promising developments
both for studying higher structures and formalising HoTT [18], but it sidesteps the
coherence problem with a strict equality type, and thus is not internal to HoTT. This
approach was also considered by Lafont in the same project3.
Another approach developped by Altenkirch and Kaposi [3] for formalising a dependent
type theory consists in using quotient inductive inductive types (QIITs), a type theoretic
construction that allows for set-truncated higher inductive types. The semantical inter-
pretation of QIITs is very intricate, and from a practical perspective, it is really hard to
develop such a method: Higher inductive types are not natively supported in Agda, and
using them requires defining recursors manually and carefully avoiding Agda’s pattern
matching mechanism for those types, for which it is unsound.

Overall, the typed syntax approach presents an important challenge in the form of the
coherence problem, so it does not translate easily in HoTT. The works we have presented
provide workarounds by constraining the meta-theory further and adding some amount of
proof-irrelevance, but this prevents the internalisation of the semantics.

2.2 The raw syntax approach
In this article, we take an alternate route to formalising dependent type theory, based on the
separation of the syntax and the rules of the theory. To highlight the difference we call raw
syntax the syntactic elements that are not tied to a derivation tree. Contrary to the typed

2 https://github.com/amblafont/omegatt-agda/tree/master
3 https://github.com/amblafont/omegatt-agda/tree/2tt-fibrant

https://github.com/amblafont/omegatt-agda/tree/master
https://github.com/amblafont/omegatt-agda/tree/2tt-fibrant

T. Benjamin 2:5

syntax, raw syntax may contain ill-formed entities that do no correspond to any entity of the
theory. We delegate the computational duty to the raw syntax, which completely sidesteps
the coherence problem. We call this approach an extrinsic formalisation of a dependent
type theory since it requires combining two separate ingredients, the raw syntax and the
judgements. In this article we present a formalisation of the dependent type theory CaTT
in an extrinsic way. Similar formalisations are being developped developed, notably by
Finster4 and Rice5, but with the intent of formalising variations of CaTT with more intricate
type-theoretic constructions. Moreover Lafont, Hirshowitz and Tabareau have also developed
a formalisation of a type theory related to CaTT in a similar fashion in Coq6 [19] with the
goal of internalising that types are weak ω-groupoids [21, 27, 4].

Variables management. In order to compute operations on the raw syntax, we need the
variables to be identifiable. To avoid the need of quotients, we develop a foundation in which
the variables are natively normalised: Each variable name is uniquely determined. We use a
variation on De Bruijn levels: The type of variables is the type of natural numbers N and we
require contexts to enumerate their variables in increasing order. Since there is no variable
binder in the theory CaTT, this suffices to determine all the variables.

Structure of the raw syntax. We now present the foundational structure of the dependent
type theories that we are interested in. We first show the empty type theory: A theory with
all the required structure but no types. This theory is completely vacuous: Its only context
is empty, and no term or type is derivable in it. It is not part of our actual project and is
not of any interest in itself, but we present it here to emphasize the structure of our type
theories and factor out the common features of the theories we study. We first define the raw
syntax: Contexts and substitutions may be built out of variables types and terms, and any
variable is also a term. Type constructors and other term constructors may vary depending
on the theory, so we do not include them in the empty type theory.

▶ Definition 1. We define the raw syntax of the empty dependent type theory as a collection
of four non-dependent types defined by mutual induction, representing respectively the (raw)
contexts, substitutions, terms and types

data Pre-Ctx : Set where
∅ : Pre-Ctx
·#_ : Pre-Ctx → N → Pre-Ty → Pre-Ctx

data Pre-Sub : Set where
<> : Pre-Sub
<_,_7→_> : Pre-Sub → N → Pre-Tm → Pre-Sub

data Pre-Ty where
data Pre-Tm where

Var : N → Pre-Tm

The constructor Var produces an inhabitant of the type Pre-Tm from a variable (of type N),
and there is no constructor for the type Pre-Ty since there is no type. Those types do not
need to be mutually inductive here, but we define them as such by anticipation with later
theories. For all intents and purposes, we can think of contexts (resp. substitutions) as lists
of pairs of the form (x, A) where x is a variable and A is a type (resp. lists of pairs (x, t)
where x is a variable and t is a term, any variable is also a term). We denote ℓ Γ the length
of a context Γ .

4 https://github.com/ericfinster/catt.io/tree/master/agda
5 https://github.com/alexarice/catt-agda
6 https://github.com/amblafont/weak-cat-type/tree/untyped2tt

TYPES 2021

https://github.com/ericfinster/catt.io/tree/master/agda
https://github.com/alexarice/catt-agda
https://github.com/amblafont/weak-cat-type/tree/untyped2tt

2:6 Formalisation of Dependent Type Theory: The Example of CaTT

The action of substitutions. We define these operations on the raw syntax levels, and they
are the reason why we need to introduce variable names. Those are functions that compute
a new syntactic entity from a given one and a substitution to apply to it. These operations
compute to normal forms, so when two applications are equal, the results of the computations
are definitionnally so, thus we do not need equality witnesses and avoid the coherence problem
at this level. The composition is an action of substitutions on substitutions.

▶ Definition 2. We define the action of substitutions on types, terms and substitutions as
the following mutually inductive operations

[]T : Pre-Ty → Pre-Sub → Pre-Ty
[]t : Pre-Tm → Pre-Sub → Pre-Tm
◦ : Pre-Sub → Pre-Sub → Pre-Sub

() [γ]T

Var x [<>]t = Var x
Var x [< γ , v 7→ t >]t = if x ≡ v then t else ((Var x) [γ]t)

<> ◦ δ = <>
< γ , x 7→ t > ◦ δ = < γ ◦ δ , x 7→ t [δ]t >

Where ()[γ]T represents the empty case, since there are no constructors for the type
Pre-Ty. Again we use mutually inductive types for consistency with later developments.

Judgements and inference rules. We now select the well-formed syntactic entities from the
syntax by introducing the judgements together with their inference rules. We define those as
mutually inductive predicates over the raw syntax. We prove later (Theorems 17 and 25)
that those types are actually propositions, their signature is given by

data _⊢C : Pre-Ctx → Set
data _⊢T _ : Pre-Ctx → Pre-Ty → Set
data _⊢t_#_ : Pre-Ctx → Pre-Tm → Pre-Ty → Set
data _⊢S_>_ : Pre-Ctx → Pre-Sub → Pre-Ctx → Set

The type Γ ⊢C , for instance, is meant to represent the judgement Γ ⊢, an inhabitant of this
type is built out of the type constructors, corresponding to inference rules. Hence an element
of this type can be thought of as a derivation tree. Reasoning by induction on derivation
trees, a common technique to prove meta-theoretic properties of dependent type theory, just
translates to reasoning by induction on those four types. This discussion holds because there
is no computation rules (i.e., rules postulating definitional equalities) in our theories: In
the presence of such rules, one would need to consider higher inductive types, in order to
preserve the correspondence between terms and derivation trees. The computation rules
would then be higher order constructors.

▶ Definition 3. We define the following inference rules for constructing contexts, substitutions
and variable terms, which are the inference rules of the empty type theory (again, the type
_⊢T _ has no constructor, the theory is vacuous).

data _⊢C where
ec : ∅ ⊢C

cc : Γ ⊢C → Γ ⊢T A → x == ℓ Γ → (Γ · x # A) ⊢C

T. Benjamin 2:7

data _⊢T _ where
data _⊢t_#_ where

var : Γ ⊢C → x # A ∈ Γ → Γ ⊢t (Var x) # A
data _⊢S_>_ where

es : ∆ ⊢C → ∆ ⊢S <> > ∅
sc : ∆ ⊢S γ > Γ → (Γ · x # A) ⊢C → (∆ ⊢t t # (A [γ]T))

→ x == y → ∆ ⊢S < γ , y 7→ t > > Γ · x # A

A term constructor of one of these types corresponds to a rule in the theory, so we have given
the same name to the term constructors and the corresponding rules. In the rules cc and sc,
we consider an equality on variables as part of the required data for a rule. This might seem
odd at first, as we could instead inline this equality. However this lets us eliminate on the
equality only when needed, which is important to avoid the axiom K. In the rule cc, the
condition x == ℓ Γ enforces that contexts enumerate their variables in order.

Raw vs. typed syntax. Using a raw syntax approach has many advantages over a typed
syntax. First, it can be completely formalised in a proof-relevant way and does not require
any truncation. It also allows the use of the formalisation as a certified type checker, which
is important for practical purposes. However, it focuses more narrowly on the syntax of the
theory, and does not allow to internalise its algebraic properties (the CwF structure) nor its
semantics. The transition from typed syntax is reminiscent of a more general construction to
handle induction induction described by Kaposi, Kovács and Lafont [17].

Absence of semantics. This article focuses strongly on the syntax of the theory, and lacks
semantics: We do not provide a way to show that a type models a theory. We conjecture that
there should exist such a way, in the form of an internal notion of CwF, but that defining this
notion would amount to solving the coherence problem. We do not address this question in
this article. However we show that the syntax we provide realises an instance of this tentative
notion of internal CwF, in which a lot of required equalities hold on the nose. Of course since
this notion does not exist, this statement is imprecise, but we verify numerous properties that
are expected to be part of this structure, such as weakening admissibility, the functoriality of
the action of substitutions on types and terms. . . We also show the uniqueness of derivations,
which is an important part of this tentative structure, as well as the decidability of type
checking, which is relevant for practical applications and a result about a classifications of
the types and terms of our theories. A similar approach was developed by Abel, Öman and
Vezzosi [1], where they considered a more complex theory to prove weaker results, and give a
similar discussion about the typed syntax in conclusion. We consider a simpler theory (in
particular without computation rule), and are able to prove more results about it.

The duality theory/higher structure. We have discussed the coherence problem, and that
it is the meeting point between internalising type theory and higher structures. Our work on
CaTT illustrates the connection: The formalisation of CaTT can be seen as a formalisation of
the internal language of weak ω-categories, since those two are the same [9]. More generally,
we conjecture that the coherence problem appears in higher structures, like in type theory,
at the level of the models and that in many case it is possible to define the internal language
of a structure without running into it.

TYPES 2021

2:8 Formalisation of Dependent Type Theory: The Example of CaTT

3 Introduction to the theory CaTT

We present here the type theory CaTT, focusing mostly on the syntactic aspects. We still
provide some semantical intuition and we refer the reader to existing articles [13, 9] for more
in-depth discussions about the semantics. In this section, we provide an informal presentation
to serve as guideline for our foundations.

3.1 The theory GSeTT

We first introduce the theory GSeTT which is simpler than the theory CaTT and serves as a
basis on which this theory relies. In the theory GSeTT there are no term constructors, hence
the only terms are the variables. There are two type constructors, that we denote ⋆ and →
and which are subject to the following introduction rules

Γ ⊢
Γ ⊢ ⋆

(⋆-intro)
Γ ⊢ A Γ ⊢ t : A Γ ⊢ u : A

Γ ⊢ t →
A

u
(→-intro)

The contexts of the theory GSeTT can be represented by globular sets. Those are analogues
to graphs, except that they are allowed to have arrows in every dimension (often called cells).
A cell of dimension n + 1 has for source and target a pair of cells of dimension n which
are required to share the same source and target. In the type theory, this is imposed by
rule (→-intro) in which the terms t and u have to share the type A. We denote dim A the
dimension of the cell represented by A. It can be computed as the number of iterated →
needed to write it. We denote dim Γ the maximal dimension of the types that appear in Γ.

▶ Example 4. We illustrate the correspondence between contexts and finite globular sets
with a few examples, using a diagrammatic representation of globular sets where we give the
same name to variables and their corresponding cells.

Γc = (x : ⋆, y : ⋆, f : x →
⋆

y, z : ⋆, h : y →
⋆

z) x•
y
• z•f h

Γw = (x : ⋆, y : ⋆, f : x →
⋆

y, g : x →
⋆

y, α : f →
x→

⋆
y

g, z : ⋆, h : y →
⋆

z) x•
y
• z•

f

g

⇓α
h

Γ⟲ = (x : ⋆, f : x →
⋆

x) x• f

This correspondence is not an actual bijection: Several context may correspond to the same
globular set if they only differ by reordering of the variables. One can account for this by
considering the category of contexts with substitutions (called syntactic category). It is
equivalent to the opposite of the category of finite globular sets [9, Th. 16]. A judgement
Γ ⊢ x : A in the theory GSeTT corresponds to a well-defined cell x in the globular set
corresponding to Γ, and the type A provides all the iterated sources and targets of x.

3.2 Ps-contexts

In the type theory CaTT there is an additional judgement on contexts, that recognises a
special class of contexts called ps-contexts. We denote this judgement Γ ⊢ps, and we introduce
it with the help of an auxiliary judgement Γ ⊢ps x : A. These two judgements are subject to
the following derivation rules

T. Benjamin 2:9

x : ⋆ ⊢ps x : ⋆
(pss)

Γ ⊢ps x : A

Γ, y : A, f : x →
A

y ⊢ps f : x →
A

y
(pse)

Γ ⊢ps f : x →
A

y

Γ ⊢ps y : A
(psd)

Γ ⊢ps x : ⋆

Γ ⊢ps
(ps)

The semantical intuition is that ⊢ps characterises the contexts corresponding to pasting
schemes [5, 22]. Those are the finite globular sets defining an essentially unique composition
in weak ω-categories. Finster and Mimram have given an alternate characterisation of the
ps-contexts [13] using a relation on the variables of a context, denoted x ◁ y.

▶ Definition 5. The relation ◁ in a context Γ, as the transitive closure of generated by

x ◁ y ◁ z as soon as Γ ⊢ y : x → z is derivable

The authors have proved that a context is isomorphic to a ps-contexts if and only if this
relation is a linear order on its variables.

Additionally, a ps-context Γ defines two subsets of its variables ∂−(Γ) and ∂+(Γ) respect-
ively called the source and the target set, defined from a slightly more generic concept of
i-source and i-target.

▶ Definition 6. The i-source ∂−
i and the i-target ∂+

i of a ps-context are given by induction

∂−
i (x : ⋆) = (x : ⋆) ∂−

i (Γ, y : A, f : x → y) =
{

∂−
i (Γ) if dim A ≥ i

∂−
i (Γ), y : A, f : x → y otherwise

∂+
i (x : ⋆) = (x : ⋆) ∂+

i (Γ, y : A, f : x → y) =

∂+

i (Γ) if dim A > i

drop(∂+
i (Γ)), y : A if dim A = i

∂+
i (Γ), y : A, f : x → y otherwise

where drop is the list with its head removed. The source (resp. target) of a ps-context Γ is the
set of all variables in its (dim Γ)-source (resp. in its (dim Γ)-target), i.e., ∂±(Γ) = ∂±

(dim Γ)(Γ).

Semantically, those contain the variables in the source and target of the result of applying
the essentially unique composition given by the pasting scheme corresponding to Γ.

▶ Example 7. The contexts Γc and Γw defined in Example 4 are ps-contexts, while the
context Γ⟲ is not. We provide below the relation ◁, and the source and target set variables.

Γc : x ◁ f ◁ y ◁ h ◁ z ∂−(Γc) = {x} ∂+(Γc) = {z}
Γw : x ◁ f ◁ α ◁ g ◁ y ◁ h ◁ z ∂−(Γw) = {x, f, y, h, z} ∂+(Γw) = {x, g, y, h, z}
Γ⟲ : x f◁▷ ∂−(Γ⟲) and ∂+(Γ⟲) undefined

3.3 The type theory CaTT
The type theory CaTT is obtained from the type theory GSeTT by adding new term
constructors that witness the structure of weak omega-categories. There are two of these
constructors, op and coh, so a term is either a variable or of the form opΓ,A[γ] or cohΓ,A[γ],
where in both two last cases, Γ is a ps-context, A is a type and γ is a substitution. These
term constructors are subject to the following introduction rules.

TYPES 2021

2:10 Formalisation of Dependent Type Theory: The Example of CaTT

Γ ⊢ps Γ ⊢ t : A Γ ⊢ u : A ∆ ⊢ γ : Γ
∆ ⊢ opΓ,t→

A
u[γ] : t[γ] →

A[γ]
u[γ]

(op)
Γ ⊢ps Γ ⊢ A ∆ ⊢ γ : Γ

∆ ⊢ cohΓ,A[γ] : A[γ]
(coh)

Both these rules apply only under extra side-conditions. We denote (Cop) the side condition
of (op) and (Ccoh) the one of (coh). Those side conditions are the following (where Var(A)
denotes the set of variables needed to write the type A).

(Cop) :
{

Var(t) ∪ Var(A)=∂−(Γ)
Var(u) ∪ Var(A)=∂+(Γ) (Ccoh) : Var(A) = Var(Γ)

Recall that a ps-context is meant to represent an essentially unique composition in a weak
ω-category. The rules (op) and (coh) enforce this condition, in a weak sense analogue to
requiring the type of composition to be contractible in HoTT. More specifically, the rule (op)
asserts that in a context ∆, for every situation described by a ps-context Γ (as witnessed by
γ), there exists a term witnessing the existence of the composition of this situation. The
rule (coh) imposes that any two such compositions are related by a higher cell. Indeed in
this rule the type A is necessarily of the form a → b, where a and b represent two ways of
composing the ps-context. The role of the side condition is to prevent the composition to
apply partially.

▶ Example 8. Consider the context Γc introduced in Example 4, we have established
in Example 7 that it is a ps-context, with ∂−(Γc) = {x} and ∂+(Γc) = {z}. The type
x →

⋆
z thus satisfies the condition (Cop). This shows that for every context ∆ with a

substitution ∆ ⊢ γ : Γc, we can define the term comp γ = opΓc,x→
⋆

z[γ], and we have a

derivation of ∆ ⊢ comp γ : x[γ] → z[γ]. The data of a substitution ∆ ⊢ γ : Γc is equivalent
to two composable arrows in ∆, and the semantics is that the term comp γ witnesses the
composition of those arrows. Additional examples are presented in [13].

4 Formalisation and properties of the theory GSeTT

From now on, we use the extrinsic formalisation of dependent type theory, and present our
type theories in a similar way to the empty type theory. We first define GSeTT by specifying
two constructors for the type Pre-Ty, corresponding to the two type constructors of GSeTT.
We then prove the inversion and weakening lemmas, and show that this theory has a structure
of a category with families, with particular contexts classifying its types and terms, that
type checking is decidable, and the derivation trees are necessarily unique.

4.1 Formal presentation of the theory GSeTT

Recall that the type theory GSeTT has only two type constructors ⋆ and →, so we introduce
two constructors to the type Pre-Ty. Note that this addition changes the entire raw syntax,
since the other types Pre-Ctx, Pre-Tm and Pre-Sub are all mutually inductively defined with
Pre-Ty. For simplicity purposes, we only present here the parts whose definition changes,
but these changes actually propagate to the entire raw syntax.

T. Benjamin 2:11

▶ Definition 9. The raw syntax of the type theory GSeTT is defined the same way as the
raw syntax of the empty type theory, replacing the type Pre-Ty with the type

-- Pre-Ctx, Pre-Sub and Pre-Tm defined like in the empty TT
data Pre-Ty where

∗ : Pre-Ty
⇒[]_ : Pre-Tm → Pre-Ty → Pre-Tm → Pre-Ty

Additionally, we introduce the action of substitution to be defined the same way on raw terms
and substitutions as in the empty type theory, and we define it on raw types by

-- _[_]t and _◦_ defined like in the empty TT
∗ [γ]T = ∗
(t ⇒[A] u)[γ]T = (t [γ]t) ⇒[A [γ]T] (u [γ]t)

We also specify the judgements of the theory, again those are defined in the same way for
the empty type theory, except for the type judgement _⊢T _. Since these judgements are
mutually inductive, a change here again propagates to all the judgements of the theory.
▶ Definition 10. The type theory GSeTT is obtained from its raw syntax by adding the
judgements defined in the same way as for the empty type theory, except for the following
-- _⊢C _⊢t_#_ and _⊢S_>_ defined like in the empty TT

data _⊢T _ where
ob : ∀ Γ → Γ ⊢C → Γ ⊢T ∗
ar : ∀ Γ A t u → Γ ⊢t t # A → Γ ⊢t u # A → Γ ⊢T t ⇒[A] u

We now present a lot of meta-properties that are required to study the semantics of the
theory GSeTT. All of these properties are proved by induction on the derivation trees. A
lot of these proofs are straightforward and we just give a discussion on the non-trivial proof
techniques that come up. We refer the reader to the Agda implementation provided as
supplementary material for the complete proofs of all of these properties.

4.2 Structure of the dependent type theory
First we show a few properties about the theory GSeTT, ensuring that the raw syntax
together with a typing rule describe a dependent type theory with all the expected structure.
Although these results are used a lot to study the semantics of the theory [13, 9], they are
generally admitted and proving them requires as much specificity on the foundational aspects
as we have provided here.

Weakening and judgement preservation. The following proposition states that GSeTT
supports the weakening for types, terms and substitutions, as well as inversion.
▶ Proposition 11. The theory GSeTT supports weakening for types, terms and substitutions.
wkT : Γ ⊢T A → Γ · y # B ⊢C → Γ · y # B ⊢T A
wkt : Γ ⊢t t # A → Γ · y # B ⊢C → Γ · y # B ⊢t t # A
wkS : ∆ ⊢S γ > Γ → ∆ · y # B ⊢C → ∆ · y # B ⊢S γ > Γ

Moreover, this theory staisfies inversion: Any sub-term of a derivable term is itself derivable.
More precisely, we have the following (c.f. admitted results [13, Lemma 6] and [9, Lemma 6])
Γ⊢A→Γ⊢ : Γ ⊢T A → Γ ⊢C

Γ⊢t:A→Γ⊢ : Γ ⊢t t # A → Γ ⊢C

∆⊢γ:Γ→Γ⊢ : ∆ ⊢S γ > Γ → Γ ⊢C

∆⊢γ:Γ→∆⊢ : ∆ ⊢S γ > Γ → ∆ ⊢C

Γ,x:A⊢→Γ⊢ : Γ · x # A ⊢C → Γ ⊢C

Γ⊢t:A→Γ⊢A : Γ ⊢t t # A → Γ ⊢T A
Γ⊢s : Γ ⊢T t ⇒[A] u → Γ ⊢t t # A
Γ⊢t : Γ ⊢T t ⇒[A] u → Γ ⊢t u # A

TYPES 2021

2:12 Formalisation of Dependent Type Theory: The Example of CaTT

Structure of category with families. The study of the semantics relies on the structure of
CwF of the theory. We can prove by induction on the derivation trees all the ingredients
to show that GSeTT defines a CwF (at least set-theoretically). We do not show the final
statement, as it requires developing a lot of category theory in Agda. The four following
propositions show the structure of CwF of the theory GSeTT. We present them in the order
in which we prove them, and they correspond to [9, Propositions 8, 9 and 10], where they are
used without proof. We expect these results to be also necessary for a hypothetical internal
notion of CwF.

▶ Proposition 12. The action of a derivable substitution on a derivable type (resp. term) is
again a derivable type (resp. term)

[]T : Γ ⊢T A → ∆ ⊢S γ > Γ → ∆ ⊢T (A [γ]T)
[]t : Γ ⊢t t # A → ∆ ⊢S γ > Γ → ∆ ⊢t (t [γ]t) # (A [γ]T)

▶ Proposition 13. In the theory GSeTT, there is an identity substitution defined by

Pre-id : ∀ (Γ : Pre-Ctx) → Pre-Sub
Pre-id ∅ = <>
Pre-id (Γ · x # A) = < Pre-id Γ , x 7→ Var x >

It acts trivially on types, terms and substitutions on a raw syntax level and it is derivable.

[id]T : (A [Pre-id Γ]T) == A
[id]t : (t [Pre-id Γ]t) == t

◦-right-unit : (γ ◦ Pre-id ∆) == γ

Γ⊢id:Γ : Γ ⊢C → Γ ⊢S Pre-id Γ > Γ

▶ Proposition 14. The action of substitution is compatible with the composition of substitution

[◦]T : Γ ⊢T A → ∆ ⊢S γ > Γ → Θ ⊢S δ > ∆

→ ((A [γ]T) [δ]T) == (A [γ ◦ δ]T)
[◦]t : Γ ⊢t t # A → ∆ ⊢S γ > Γ → Θ ⊢S δ > ∆

→ ((t [γ]t) [δ]t) == (t [γ ◦ δ]t)

▶ Proposition 15. The composition of substitutions preserves the derivability of substitutions.
Moreover, it is associative, and the identity is the left unit of the composition.

◦-adm : ∆ ⊢S γ > Γ → Θ ⊢S δ > ∆ → Θ ⊢S (γ ◦ δ) > Γ a : ∆ ⊢S γ > Γ

→ Θ ⊢S δ > ∆ → Ξ ⊢S θ > Θ → (γ ◦ δ) ◦ θ == γ ◦ (δ ◦ θ)
◦-left-unit : ∆ ⊢S γ > Γ → (Pre-id Γ ◦ γ) == γ

The result in Proposition 14 and 15 may not hold at the raw syntax level. For instance
id (∅ · 0 # ∗ · y # ∗) ◦ < x 7→ x > computes to < x 7→ x , y 7→ y>.

4.3 Proof-theoretic considerations
We also prove notions that are more proof-theoretic about the theory. We also expect the
uniqueness of derivation tree to be important for an hypothetical notion of internal CwF.

Decidability of type checking. In Martin-Löf type theory, we express that a type A is
decidable, by exhibiting an inhabitant of the type dec A = A + ¬ A.

▶ Theorem 16. Type checking in the theory GSeTT is a decidable problem

dec-⊢C : ∀ Γ → dec (Γ ⊢C)
dec-⊢T : ∀ Γ A → dec (Γ ⊢T A)

dec-⊢t : ∀ Γ A t → dec (Γ ⊢t t # A)
dec-⊢S : ∀ ∆ Γ γ → dec (∆ ⊢S γ > Γ)

T. Benjamin 2:13

We prove this theorem by mutual induction of the derivation tree, however the structure of
the induction is quite complicated and showing that it is well-founded is a hard problem.
This is where the use of a proof assistant like Agda becomes extremely useful, since its
termination checker is able to verify this automatically. Proving this theorem in Agda
amounts to implementing a certified type checker for the theory GSeTT.

Uniqueness of derivation trees. We express uniqueness in the language of HoTT, by
defining contractible types (i.e., types a unique inhabitant) and proposition types (i.e., types
that are either empty or contractible).

is-contr A = Σ A (λ x → ((y : A) → x == y))
is-prop A = ∀ (x y : A) → is-contr (x == y)

▶ Theorem 17. In the theory GSeTT, every derivable judgement has a unique derivation
(stated without proof [9, Lemma 7])

is-prop-⊢C : is-prop (Γ ⊢C)
is-prop-⊢T : is-prop (Γ ⊢T A)

is-prop-⊢t : is-prop (Γ ⊢t t # A)
is-prop-⊢S : is-prop (∆ ⊢S γ > Γ)

We again prove by mutual induction, and the proof is fairly straightforward. The absence
of computation rule is key for this proof to be simple. Computation rules, that could
be represented as type constructors performing homotopy coherent quotients would make
such a result much more technical to prove. We can recover the typed syntax from the
raw syntax and the judgements, by considering dependent pairs of an element of the raw
syntax together with its judgement as follows. For instance for contexts, we define the type
Ctx = Σ Pre-Ctx (λ Γ → Γ ⊢C), and similarly for types, terms and substitutions, we
define the types Ty Γ , Tm Γ A and Sub ∆ Γ .

4.4 Familial representability of types
We now define the disks and sphere contexts in GSeTT, which are families of contexts that
play an important in the understanding of the semantics of the theory [9].

▶ Definition 18. For every number n, we define a type ⇒u n (u stands for “universal”) and
two contexts Pre-S n and Pre-D n by mutual induction in the raw syntax as follows

⇒u O = ∗
⇒u (S n) = Var (2 n) ⇒[⇒u n] Var (2 n + 1)
Pre-S O = ∅
Pre-S (S n) = (Pre-D n) · ℓ (Pre-D n) # ⇒u n
Pre-D n = (Pre-S n) · ℓ (Pre-S n) # ⇒u n

▶ Proposition 19. The disk and sphere contexts are valid contexts in the theory GSeTT, and
the type ⇒u is derivable in the sphere context

S⊢ : Pre-S n ⊢C D⊢ : Pre-D n ⊢C S⊢⇒ : Pre-S n ⊢T ⇒u n

The sphere contexts play a particular role in the theory since they classify the types in a
context: types in a context are equivalent to substitution from that context to a disk context.
This is a result that we call familial representability of types [9], and that we formally prove
in our foundational framework, using the definition of equivalence is-equiv usual to HoTT.

TYPES 2021

2:14 Formalisation of Dependent Type Theory: The Example of CaTT

▶ Theorem 20. For every context Γ, and any derivable substitution from Γ to a sphere, we
define a derivable type in Γ by applying the substitution on the type ⇒u _. The resulting
map defines an equivalence

Ty-n : ∀ Γ → Σ N (λ n → Sub Γ (Pre-S n)) → Ty Γ

Ty-n Γ (n , (γ , Γ⊢γ:Sn)) = ((⇒u n)[γ]T) , ([]T (S⊢⇒ n) Γ⊢γ:Sn)

Ty-classifier : ∀ Γ → is-equiv (Ty-n Γ)

This result is substantially harder to prove formally than the previously mentioned ones, and
relies on the uniqueness of derivation trees.

5 Formalisation and properties of the theory CaTT

In this section, we introduce our notion of globular type theory, and formalise it. We show
that under suitable conditions, these theories satisfy the same good properties than GSeTT.
We then construct CaTT and MCaTT as particular examples.

5.1 Globular type theories
Globular type theories are dependent type theories that have the same type structure as the
theory GSeTT, but have term constructors. In order to describe not only the type theory
CaTT, but also other dependent type theories, we define these term constructors generically.
To this end, we assume a type I, which serves as an index to all the term constructors.

▶ Definition 21. The raw syntax of a globular type theory is defined by the four mutually
inductive types.

-- Pre-Ctx, Pre-Ty and Pre-Sub defined like in GSeTT
data Pre-Tm where

Var : N → Pre-Tm
Tm-c : ∀ (i : I) → Pre-Sub → Pre-Tm

▶ Definition 22. The action of substitution on the raw syntax is computed the same way as
the action of substitutions on the raw syntax of the theory GSeTT, except on terms where it
is defined by

-- _[_]T and _◦_ defined like in GSeTT
t [<>]t = t
Var x [< δ , v 7→ t >]t = if x ≡ v then t else ((Var x) [δ]t)
Tm-c i γ [δ]t = Tm-c i (γ ◦ δ)

Inference rules of globular type theories. We give a presentation of a generic form for
the introduction of the indexed term constructors in globular type theories. To achieve this,
we parameterise the rules, in such a way that every term constructor corresponds to its
own introduction rule. We allow to have term constructors in the pre-syntax that do not
correspond to any derivable term, if the rule is inapplicable. From now on, we assume that
the type I has decidable equality, that is, we have a term

eqdecI : ∀ (x y : I) → dec (x == y)

T. Benjamin 2:15

In order to parameterise the rules, we suppose that for every inhabitant i of the type I,
there exists a context Ci i in the raw syntax of GSeTT and a type Ti i in the raw syntax
of the globular type theory. Moreover, we assume that the context Ci i is derivable in the
theory GSeTT.

▶ Definition 23. A globular type theory is a theory obtained from its syntax by imposing
the same judgement rules as in the theory GSeTT for contexts, types and substitutions, and
imposing for terms

-- _⊢C, _⊢T _ and _⊢S_>_ same as GSeTT
data _⊢t_#_ where

var : Γ ⊢C → (x , A) ∈ Γ → Γ ⊢t (Var x) # A
tm : Ci i ⊢T Ti i → ∆ ⊢S γ > Ci i → ∆ ⊢t Tm-c i γ # (Ti i [γ]T)

Note that again, the judgements of the theory are defined mutually inductively, and this
change propagates to the other types. Here we use an explicit equality A == Ti i [γ]T
instead of inlining the equality so that we have fine control over when it is eliminated, this
allows us to stay compatible with avoiding the use of axiom K.

Properties of globular type theories. Most of the meta-theoretic properties extend from
the theory GSeTT to any globular type theory, but there can be some difficulties in doing so.

▶ Proposition 24. Every globular type theory satisfy all the results presented in Proposi-
tions 11, 12, 13, 14 and 15

In this case, these results are a bit more involved to prove, because of the added dependency
of terms on substitutions. Many results that could be proven separately in the case of GSeTT
now depend on each other and have to be proven by mutual induction. Again, termination
checking is not trivial, this is one instance where using Agda is a strong benefit.

▶ Theorem 25 (c.f. Theorem 17). In any globular type theory, every derivable judgement has
a single derivation tree.

Definition 18 of the disks and sphere contexts also makes sense in any globular type theory.
We also call those the disk and sphere contexts in the raw syntax of the globular theory.

▶ Theorem 26 (c.f. Proposition 19 and Theorem 20). The disk and sphere context define
valid contexts in any globular type theory, and the sphere contexts classify the types: There
is an equivalence between the derivable types in a context and the substitutions from that
context to a sphere context.

Decidability of type checking. The decidability of type checking is a result that does not
generalise as well to any globular type theory, because the generic form we have given for
the rules is too permissive. Trying to reproduce the proof of GSeTT yields a proof whose
termination cannot be checked by Agda: There is not a variant that decreases along the rules.
And indeed, one may devise a globular type theory for which type checking is not decidable.
But we can restrict our attention further, and consider theories satisfying an extra hypothesis

wfI : ∀ i → Ci i ⊢T Ti i → dimC (Ci i) ≤ dim (Ti i)

where dim is the dimension of a type (i.e., the number of iterated arrows it is built with) and
dimC is the dimension of a context (i.e., the maximal dimension among the types it contains).
The theory CaTT satisfies this hypothesis.

TYPES 2021

2:16 Formalisation of Dependent Type Theory: The Example of CaTT

▶ Theorem 27 (cf Theorem 16). For every globular type theory satisfying the hypothesis wfI,
the type checking is decidable.

Proving this by induction is fairly straightforward, but ensuring that the induction is well-
formed is quite involved. There is no obvious decreasing variant, so one needs to keep track
of both the dimension and the number of nested term constructors in a precise way. This
argument is non-trivial and the use of a termination checker like Agda’s is extremely valuable.

5.2 Ps-contexts and the theory CaTT
We leverage the definition of globular type theory to formalise and prove some meta-theoretic
properties of the theory CaTT. To this end, we define a particular type J to index the term
constructors, as well as the contexts Ci j and the types Ti j to define the inference rules.

Ps-contexts. In our formalism, there is no difference between the term constructors op
and coh, both of them are of the form Tm-c. If anything, formally, op and coh correspond
to families of term constructors and not term constructors. One of the ingredients to index
these families are the ps-contexts that we formally define here.

▶ Definition 28. We define the judgements _⊢ps and _⊢_#_ over the raw syntax of the type
theory GSeTT as the following inductive types (where we denote l for ℓ Γ)

data _⊢ps_#_ : Pre-Ctx → N → Pre-Ty → Set where
pss : (nil · O # ∗) ⊢ps O # ∗
psd : Γ ⊢ps f # (Var x ⇒[A] Var y) → Γ ⊢ps y # A
pse : Γ ⊢ps x # A → ((Γ · l # A) · S l # Var x ⇒[A] Var l) ⊢ps

S l # Var x ⇒[A] Var l

data _⊢ps : Pre-Ctx → Set where ps :
Γ ⊢ps x # ∗ → Γ ⊢ps

▶ Proposition 29. The ps-contexts are valid contexts of the theory GSeTT.

Γ⊢ps→Γ⊢ : Γ ⊢ps → Γ ⊢

The relation ◁. To work with ps-contexts formally, we define the relation ◁ introduced by
Finster and Mimram [13]. The purpose of this relation is to perform inductive reasoning.

▶ Definition 30. Given a contest Γ, we define a generating relation Γ ,_◁0_, together with
its transitive closure Γ ,_◁_ as follows

data _,_◁0_ Γ x y : Set where
◁∂− : Γ ⊢t (Var y) # (Var x ⇒[A] Var z) → Γ , x ◁0 y
◁∂+ : Γ ⊢t (Var x) # (Var z ⇒[A] Var y) → Γ , x ◁0 y

data _,_◁_ Γ x y : Set where
gen : Γ , x ◁0 y → Γ , x ◁ y
◁T : Γ , x ◁ z → Γ , z ◁0 y → Γ , x ◁ y

▶ Proposition 31. The ps-contexts are linear for the relation _,_◁_, i.e., whenever Γ is a
ps-context, the relation Γ , _ ◁ _ defines a linear order on the variables of Γ.

ps-◁-linear : ∀ Γ → Γ ⊢ps → ◁-linear Γ

T. Benjamin 2:17

The proof of this proposition in [13] relies on semantic consideration and the link between
GSeTT and globular sets. In our approach, we instead give a purely syntactic proof of
this result. This makes it very technical. The main ingredient of the proof is a subtle
invariant, stating that whenever we have Γ ⊢ps x # A and Γ , x ◁ y, then necessarily y
is an iterated target of x in Γ .

▶ Theorem 32. The judgement _⊢ps is decidable, and any two derivation of the same
judgement of this form are equal.

is-prop-⊢ps : ∀ Γ → is-prop (Γ ⊢ps) dec-⊢ps : ∀ Γ → dec (Γ ⊢ps)

These results are proven by induction on the derivation trees, but they are not straightforward.
For instance in the case of the uniqueness, a derivation of Γ ⊢ps necessarily comes from a
derivation of the form Γ ⊢ps x # ∗ and by induction this derivation is necessarily unique.
But the hard part is to prove that there can only be a unique x such that Γ ⊢ps x # ∗.
Using the ◁-linearity, we can prove a more general lemma: if we have a Γ ⊢ps x # A and
Γ ⊢ps y # A with A and B two types of the same dimension, then x == y. The decidability
also presents a difficulty: The rule psd contains variables in its premises that are not bound
in its conclusion. However, these variables belong to the context, so we can solve this issue
by enumeration of the variables and ◁-linearity.

Index of term constructors. With the ps-contexts, we can define the index type for the
term constructors in the theory CaTT. Recall that the term constructors in this theory
are defined by opΓ,A and cohΓ,A, where Γ is a ps-context and A is a type. In our informal
presentation, we also required the side conditions (Cop) and (Ccoh) in the derivation rules.
For convenience, we integrate these side conditions in the index type in our formalisation, and
define J to be the type of pairs of the form (Γ, A), where Γ is a ps-context and A is a type
satisfying either (Cop) or (Ccoh). The conditions (Cop) and (Ccoh) are a bit subtle to formalise
in HoTT, because one variable may appear several times in the same term, so there may be
several witnesses that a term contains all the desired variables. But the intended semantics
is propositional. To solve this issue, we propositionally truncate the type witnessing that a
variable appears in type. We realise the truncation by using the type set of sets of numbers,
for which membership is a proposition. We define the type A ⊂ B of witnesses that a set
A is included in a set B, as well as the type A o= B = (A ⊂ B) × (B ⊂ A) of set equality.
These two types are propositions since we are only manipulating finite subsets of N.

▶ Definition 33. We define the sets of source and target variables of a ps-context. First we
define the i-sources and i-targets by induction on the judgement Γ ⊢ps x # A as lists.

srci-var i pss = if i ≡ 0 then nil else (nil :: 0)
srci-var i (psd Γ⊢psx) = srci-var i Γ⊢psx
srci-var i (pse Γ = Γ A = A Γ⊢psx) with dec-≤ i (S (dim A))
... | inl i≤SdimA = srci-var i Γ⊢psx
... | inr SdimA<i = (srci-var i Γ⊢psx :: (ℓ Γ)) :: (S (ℓ Γ))

tgti-var i pss = if i ≡ 0 then nil else (nil :: 0)
tgti-var i (psd Γ⊢psx) = tgti-var i Γ⊢psx
tgti-var i (pse Γ = Γ A = A Γ⊢psx) with dec-≤ i (S (dim A))
... | inl i≤SdimA = if i ≡ S (dim A) then drop(tgti-var i Γ⊢psx) :: (ℓ Γ)

else tgti-var i Γ⊢psx
... | inr SdimA<i = (tgti-var i Γ⊢psx :: (ℓ Γ)) :: (S (ℓ Γ))

TYPES 2021

2:18 Formalisation of Dependent Type Theory: The Example of CaTT

Here the with construction matches on the decidability of the order in N. For instances
matching on dec-≤ i n produces two cases of type i ≤ n and n < i. Moreover drop takes a
list and removes its head. The source and target sets of a ps-context are the sets corresponding
to the source and target lists in maximal dimension.

src-var (Γ , ps Γ⊢psx) = set-of-list (srci-var (dimC Γ) Γ⊢psx)
tgt-var (Γ , ps Γ⊢psx) = set-of-list (tgti-var (dimC Γ) Γ⊢psx)

▶ Definition 34. We define the type _is-full-in_, witnessing whether either the condition
(Cop) or (Ccoh) is satisfied, as follows

data _is-full-in_ where
Cop : (src-var Γ) o= ((varT A) ∪-set (vart t))

→ (tgt-var Γ) o= ((varT A) ∪-set (vart u)) → (t ⇒[A] u) is-full-in Γ

Ccoh : (varC (fst Γ)) o= (varT A) → A is-full-in Γ

where varT (resp. vart, varC) is the set of variables associated to a type (resp. to a term, to
a context).

▶ Definition 35. The type J = Σ (ps-ctx × Ty) λ {(Γ , A) → A is-full-in Γ} is
the index type for the term constructors of the theory CaTT. It is the types of pairs (Γ, A)
where Γ is a ps-context and A is a raw type satisfying (Cop) or (Ccoh).

The raw syntax of CaTT is the raw syntax of the globular type theory indexed by J.

The type theory CaTT. We define the dependent type theory CaTT by adding rules to the
raw syntax. It suffices to define a context Ci i and a type Ti i for every i of type J.

▶ Definition 36. Considering a term (((Γ , Γ⊢ps), A), A-full) of type J, we pose

Ci (((Γ , Γ⊢ps) , A) , A-full) = (Γ , Γ⊢ps→Γ⊢ Γ⊢ps)
Ti (((Γ , Γ⊢ps) , A) , A-full) = A

The theory CaTT is the globular type theory obtained from these assignations.

▶ Proposition 37. J has decidable equality and satisfies the well-foundedness condition

eqdecJ : ∀ (x y : J) → dec (x == y)
wfJ : ∀ j → Ci j ⊢T Ti j → dimC (Ci j) ≤ dim (Ti j)

Since this definition realises CaTT as a particular case of a globular type theory, it enjoys all
the properties that we have already proved for them. In particular we have already proved

▶ Theorem 38. In the theory CaTT the following statements hold.
The theory support weakening and derivability is preserved by the inference rules.
The theory CaTT defines a category with families.
Every derivable judgement in CaTT has a unique derivation tree.
The sphere contexts in CaTT classify the types.
Type checking is decidable in the theory CaTT.

T. Benjamin 2:19

5.3 The theory MCaTT

In addition to CaTT, we have also defined a dependent type theory to describe monoidal
weak ω-categories, that we call MCaTT. There are actually two slightly different but equi-
valent formulations for this theory [8] and [7], and only the second one is a globular type
theory. Thanks to the generic indexing mechanism that we have provided, we were able
to formalise this theory as well, straightforwardly following the presentation given in [7].
Our understanding of the semantics relies on translations back and forth between CaTT and
MCaTT. Such translations are defined by induction on the syntax, formalising them and
proving their correctness is a technical challenge that we leave for future works.

6 Conclusion and further work

We have presented a full formalisation of the foundational aspects of the dependent type
theory CaTT. Although this dependent type theory is quite simple, in that it does not have
computation rules, proving formally all the relevant aspects that we expected turned out to
be a substantial amount of work with highly non-trivial challenges to solve. In particular for
some of the aspects such as the decidability of type checking, the use of a proof assistant
such as Agda appears almost mandatory given the subtlety of the arguments. The notion
of globular type theory is a limited attempt at a framework to carry out this work once
in a generic enough setting that it can be used for CaTT and MCaTT, and it shows how a
careful indexing of term constructors allows for some genericity while still being able to retain
enough precision to show meaningful properties. It would be valuable to connect this notion
with the work of Leena-Subramaniam [20], and a reasonable conjecture is that it corresponds
to finitary monads on globular sets. More general approaches are being developed by Bauer,
Haselwarter and Lumsdaine [6] and their development with Petkovic of the proof assistant
Andromeda, Umeura [26] and Gylterud with the Myott project7 [15]. Ultimately it would
be valuable to have a formalised definitive framework in which all those meta-theoretic
properties are proved once and for all.

The formalisation that we have presented, and in particular the proof for the decidability
of type checking constitutes a verified implementation of a type checker for the theory CaTT.
We have developed regular implementation of such a type checker8 in OCaml. However, to
improve the user experience, we have defined some meta-operations (called suspension and
functorialization) on the syntax of the theory, that we proved correct manually [10, 7]. To
avoid relying on the correctness of our implementation, the software computes the result
of these operations and checks them like any user inputs. This leads to inefficiency in the
implementation, and is not very satisfying. A better practice would be to define and prove
formally those meta-operations, and then export the results to executable code in order to
have a natively certified, but computationally light implementation of these meta-operations.

The work we have presented also shows once again the connection between the problem of
internalising higher structures and internalising dependent type theory in HoTT. The meet
point is the coherence issue, and we have avoided it here by only focusing solely on the syntax.
A natural, but much harder follow up for this work would be to formalise the semantics of
this theory. There is already some progress made in this direction by Uemura [23] with the
definition of ∞-CwF, and we conjecture that internalizing this notion in HoTT would allow

7 https://git.app.uib.no/Hakon.Gylterud/myott
8 https://github.com/thibautbenjamin/catt

TYPES 2021

https://git.app.uib.no/Hakon.Gylterud/myott
https://github.com/thibautbenjamin/catt

2:20 Formalisation of Dependent Type Theory: The Example of CaTT

us to define an internal notion of models of CaTT, which could provide a suitable definition of
weak ω-categories internally to HoTT. In general, giving a formulation of higher categorical
results in terms of a syntax and a dependent type theory allows to perform some amount of
reasoning that can be formalised within a proof assistant. We believe that it constitutes an
asset for higher category theory, where the complexity of the theory itself quickly becomes a
meaningful obstacle for any non-trivial exploration by hand of the theories.

References
1 Andreas Abel, Joakim Öhman, and Andrea Vezzosi. Decidability of conversion for type theory

in type theory. Proc. ACM Program. Lang., 2(POPL), December 2017. doi:10.1145/3158111.
2 Thorsten Altenkirch, Paolo Capriotti, and Nicolai Kraus. Extending homotopy type theory

with strict equality. CoRR, 2016. arXiv:1604.03799.
3 Thorsten Altenkirch and Ambrus Kaposi. Type theory in type theory using quotient inductive

types. ACM SIGPLAN Notices, 51(1):18–29, 2016. doi:10.1145/2837614.2837638.
4 Thorsten Altenkirch and Ondrej Rypacek. A syntactical approach to weak omega-groupoids.

In 26th Computer Science Logic (CSL’12), volume 16 of LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2012. doi:10.4230/LIPIcs.CSL.2012.16.

5 Michael A Batanin. Monoidal globular categories as a natural environment for the theory of
weak n-categories. Advances in Mathematics, 136(1):39–103, 1998. doi:10.1006/aima.1998.
1724.

6 Andrej Bauer, Philipp G Haselwarter, and Peter LeFanu Lumsdaine. A general definition of
dependent type theories. CoRR, 2020. arXiv:2009.05539.

7 Thibaut Benjamin. A type theoretic approach to weak ω-categories and related higher structures.
PhD thesis, Institut Polytechnique de Paris, 2020.

8 Thibaut Benjamin. Monoidal weak ω-categories as models of a type theory. CoRR,
abs/2111.14208, 2021. arXiv:2111.14208.

9 Thibaut Benjamin, Eric Finster, and Samuel Mimram. Globular weak ω-categories as models
of a type theory. CoRR, 2021. arXiv:2106.04475.

10 Thibaut Benjamin and Samuel Mimram. Suspension et Fonctorialité: Deux Opérations
Implicites Utiles en CaTT. In Journées Francophones des Langages Applicatifs, 2019.

11 James Chapman. Type theory should eat itself. Electronic notes in theoretical computer
science, 228:21–36, 2009. doi:10.1016/j.entcs.2008.12.114.

12 Peter Dybjer. Internal Type Theory. In Types for Proofs and Programs. TYPES 1995, pages
120–134. Springer, Berlin, Heidelberg, 1996. doi:10.1007/3-540-61780-9_66.

13 Eric Finster and Samuel Mimram. A Type-Theoretical Definition of Weak ω-Categories. In
2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–12,
2017. doi:10.1109/LICS.2017.8005124.

14 Alexander Grothendieck. Pursuing stacks. Unpublished manuscript, 1983.
15 Hakon Gylterud. Defining and relating theories. Presentation HoTT Electronic Seminar, 2021.
16 Hugo Herbelin. A dependently-typed construction of semi-simplicial types. Mathematical

Structures in Computer Science, 25(5):1116–1131, 2015. doi:10.1017/S0960129514000528.
17 Ambrus Kaposi, András Kovács, and Ambroise Lafont. For finitary induction-induction,

induction is enough. In TYPES 2019, volume 175 of LIPIcs, pages 6:1–6:30. Schloss Dagstuhl–
Leibniz-Zentrum für Informatik GmbH, 2020. doi:10.4230/LIPIcs.TYPES.2019.6.

18 Nicolai Kraus. Internal ∞-categorical models of dependent type theory: Towards 2ltt eating
hott. In 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages
1–14. IEEE, 2021. doi:10.1109/LICS52264.2021.9470667.

19 Ambroise Lafont, Tom Hirschowitz, and Nicolas Tabareau. Types are weak omega-groupoids,
in Coq. TYPES 2018, 2018.

20 Chaitanya Leena-Subramaniam. From dependent type theory to higher algebraic structures.
PhD thesis, Université Paris 7, 2021. arXiv:2110.02804.

https://doi.org/10.1145/3158111
http://arxiv.org/abs/1604.03799
https://doi.org/10.1145/2837614.2837638
https://doi.org/10.4230/LIPIcs.CSL.2012.16
https://doi.org/10.1006/aima.1998.1724
https://doi.org/10.1006/aima.1998.1724
http://arxiv.org/abs/2009.05539
http://arxiv.org/abs/2111.14208
http://arxiv.org/abs/2106.04475
https://doi.org/10.1016/j.entcs.2008.12.114
https://doi.org/10.1007/3-540-61780-9_66
https://doi.org/10.1109/LICS.2017.8005124
https://doi.org/10.1017/S0960129514000528
https://doi.org/10.4230/LIPIcs.TYPES.2019.6
https://doi.org/10.1109/LICS52264.2021.9470667
http://arxiv.org/abs/2110.02804

T. Benjamin 2:21

21 Peter LeFanu Lumsdaine. Weak ω-categories from intensional type theory. In TLCA, pages
172–187. Springer, 2009. doi:10.1007/978-3-642-02273-9_14.

22 Georges Maltsiniotis. Grothendieck ∞-groupoids, and still another definition of ∞-categories.
CoRR, 2010. arXiv:1009.2331.

23 Hoang Kim Nguyen and Taichi Uemura. ∞-type theories. In abstract presented at the online
workshop HoTT/UF’20, 2020.

24 Mike Shulman. Homotopy type theory should eat itself (but so far, it’s too big to swallow),
2014. URL: https://homotopytypetheory.org/2014/03/03/hott-should-eat-itself/.

25 Matthieu Sozeau, Abhishek Anand, Simon Boulier, Cyril Cohen, Yannick Forster, Fabian
Kunze, Gregory Malecha, Nicolas Tabareau, and Théo Winterhalter. The MetaCoq project.
Journal of Automated Reasoning, 64(5):947–999, 2020. doi:10.1007/s10817-019-09540-0.

26 Taichi Uemura. A general framework for the semantics of type theory. CoRR, 2019. arXiv:
1904.04097.

27 Benno Van Den Berg and Richard Garner. Types are weak ω-groupoids. Proceedings of the
London Mathematical Society, 102(2):370–394, 2011. doi:10.1112/plms/pdq026.

TYPES 2021

https://doi.org/10.1007/978-3-642-02273-9_14
http://arxiv.org/abs/1009.2331
https://homotopytypetheory.org/2014/03/03/hott-should-eat-itself/
https://doi.org/10.1007/s10817-019-09540-0
http://arxiv.org/abs/1904.04097
http://arxiv.org/abs/1904.04097
https://doi.org/10.1112/plms/pdq026

Strictification of Weakly Stable Type-Theoretic
Structures Using Generic Contexts
Rafaël Bocquet #

Eötvös Loránd University, Budapest, Hungary

Abstract
We present a new strictification method for type-theoretic structures that are only weakly stable
under substitution. Given weakly stable structures over some model of type theory, we construct
equivalent strictly stable structures by evaluating the weakly stable structures at generic contexts.
These generic contexts are specified using the categorical notion of familial representability. This
generalizes the local universes method of Lumsdaine and Warren.

We show that generic contexts can also be constructed in any category with families which is
freely generated by collections of types and terms, without any definitional equality. This relies
on the fact that they support first-order unification. These free models can only be equipped with
weak type-theoretic structures, whose computation rules are given by typal equalities. Our main
result is that any model of type theory with weakly stable weak type-theoretic structures admits an
equivalent model with strictly stable weak type-theoretic structures.

2012 ACM Subject Classification Theory of computation → Type theory

Keywords and phrases type theory, strictification, coherence, familial representability, unification

Digital Object Identifier 10.4230/LIPIcs.TYPES.2021.3

1 Introduction

Type-theoretic structures are usually required to be strictly stable under substitution. How-
ever many structures arising from category theory and homotopy theory are only specified
up to isomorphism, equivalence or homotopy. They are then only weakly stable under substi-
tution. This is for instance the case for the identity types arising from weak factorization
systems [1] and for the constructive simplicial model of Gambino and Henry [12]. In order
to interpret type theories into such structures, we have to use strictification theorems that
replace weakly stable structures by strictly stable ones.

Generally, a strictification method is a procedure that constructs, given an input model
with weakly stable type structures, another model with stable type structures, connected to
the original model via a zigzag of equivalences (for a suitable notion of equivalence). Several
strictification methods are known [14, 9, 22, 8, 2], with different constraints on the type
theories and models. We recall two of the most general constructions.
Right adjoint splitting: A strictification method [14, 9] due to Hofmann defines a new model

C⋆ in which types over a context Γ are coherent families of types of the base model C,
indexed by the substitutions ∆ → Γ. This is a cofree construction: we pack together all
the data that is needed when substituting, along with witnesses that this data is coherent,
i.e. that different ways of substituting coincide, up to isomorphism or equivalence.
This method is known to work for extensional type theories, i.e. type theories with
the equality reflection rule, but it does not directly apply to most models arising from
homotopy theory. In presence of equality reflection it is sufficient to consider families
of types that are coherent up to isomorphism. A generalization would need to consider
homotopy-coherent families of types and terms, that include coherence conditions in all
dimensions. Defining a workable notion of homotopy-coherent family is however not easy.
We note that coherence theorems proven in Uemura’s PhD thesis [27] essentially involve
such homotopy-coherent families.

© Rafaël Bocquet;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Types for Proofs and Programs (TYPES 2021).
Editors: Henning Basold, Jesper Cockx, and Silvia Ghilezan; Article No. 3; pp. 3:1–3:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bocquet@inf.elte.hu
https://orcid.org/0000-0001-6484-9570
https://doi.org/10.4230/LIPIcs.TYPES.2021.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Strictification of Weakly Stable Type-Theoretic Structures Using Generic Contexts

Left adjoint splitting/local universes: The local universes method [22] of Lumsdaine and
Warren generalizes Voevodsky’s use of universes to obtain stability in the simplicial
model [21]. It instantiates the weakly stable structures at suitable generic contexts.
Strict stability under substitution then follows from the stability of the construction
of the generic contexts. In order to ensure the existence of the generic contexts, this
strictification method replaces the base model C by a new model, the local universes
model C!, also called the left adjoint splitting, in which types over Γ are replaced by triples
(V, E, χ), where (V, E) is a local universe, consisting of a closed context V and of a type
E over V , and χ is a substitution from Γ to V . The generic contexts of the type and
term formers then only depend on the local universes of the type parameters, but not
on the map χ nor on the term parameters; this ensures that they are invariant under
substitution. The construction of these generic contexts requires the existence of some
local exponentials in the underlying category of the base model. This condition is called
condition (LF).

Generic contexts

We present a new general strictification method. Like the local universes method, our
method instantiates the weakly stable structures at generic contexts. In the local universes
construction, the generic contexts can only depend on the shapes of types, but not on the
structure of terms. We give a finer characterization of the (universal) properties required by
the generic contexts, using the categorical notion of familial representability [4, 5].

If x is an element over a context Γ of a presheaf X (such as the presheaf of types or the
presheaf of terms of a given type), a generalization of x is an element x0 over some context
Γ0, along with a substitution ρ : Γ → Γ0 such that x = x0[ρ]. A most general generalization
is a terminal object in the category of generalizations. When they exist, the most general
generalizations of x and x[σ] coincide (at least up to isomorphism). The presheaf X is
familially representable if all of its elements admit most general generalizations (with some
additional naturality condition). Equivalently, a presheaf is familially representable when it
is a coproduct of a family of representable presheaves.

A weakly stable type-theoretic operation (type or term former) T on a category C is given
by a dependent non-natural transformation T : ∀(Γ : ObC)(x : XΓ) → YΓ(x), where X is a
presheaf over C and Y is a dependent presheaf over X. When the presheaf X is familially
representable, we can define a natural transformation T s : ∀(Γ : Cop)(x : XΓ) → YΓ(x) by
T s(Γ, x) ≜ T (Γ0, x0)[ρ], where x0 : XΓ0 is the most general generalization of x. Here we
have defined a strictly stable operation T s as the instantiation of the weakly stable operation
T at the generic context Γ0.

The presheaves X that may occur as the sources of type-theoretic operations all have a
specific shape: they are given by polynomial sorts, which are obtained by closing the basic
sorts (types and terms) under dependent products (with arities in terms) and dependent
sums. They correspond to the objects of the representable map category [26] that encodes the
type theory. We say that a model (a category with families) has familially representable
polynomial sorts when the presheaves of elements of polynomial sorts are all familially
representable. Any weakly stable type-theoretic structure over a base model that satisfies
that condition can be replaced by a stable type-theoretic structure.

We obtain the following theorem.
▶ Theorem 1. Let C be a CwF equipped with weakly stable identity types. If C has familially
representable polynomial sorts, then C can be equipped with stable identity types that are
equivalent to the weakly stable identity types.

R. Bocquet 3:3

It is straightforward to generalize this construction to any other weakly stable type-
theoretic structure.

The condition (LF) of the local universe method [22] implies that the local universe
model C! has familially representable polynomial sorts; thus the local universe method factors
through our method.

Free categories with families

There are models that have familially representable polynomials sorts without satisfying
condition (LF). We show that this is the case for all categories with families (CwFs) that
are freely generated by some collection of generating types and terms. Freely generated
CwFs can also be seen as generalized (i.e. dependently sorted) algebraic theories [6] without
equations. Using the terminology of weak factorization systems, the freely generated CwFs
can be described as the cellular objects with respect to some set I of CwF morphisms.

Thanks to the absence of equations, free CwFs support first-order unification; any two
unifiable types, terms or substitutions admit a most general unifier. These most general
unifiers are used to construct most general generalization for polynomial sorts.

▶ Theorem 2. If a CwF C is freely generated (I-cellular), then it has locally familially
representable polynomials sorts.

Strictification of weakly stable weak type-theoretic structures

By the small object argument, every CwF C admits an I-cellular replacement, which is a
freely generated CwF C0 equipped with a trivial fibration F : C0

∼↠ C. A trivial fibration is a
morphism that is surjective on types and terms; in particular it is a kind of equivalence between
CwFs. Thus every CwF C admits an equivalent CwF C0 that has familially representable
polynomial sorts. Furthermore all type and term formers can be lifted from C to C0 along F ,
except that definitional equalities cannot be lifted.

In other words, every weak type-theoretic structure can be lifted. A weak type-theoretic
structure is a type-theoretic structure that is presented without definitional equalities.
Typically, their computation rules are specified up to typal equality, rather than up to
definitional equality. For example, weak identity types (under the name of propositional
identity types) were introduced in [28]. The computation rule of the weak J eliminator is
only given by a typal equality Jβ : Id(J(d, x, refl), d). Similarly, we can consider weak Π-types,
weak Σ-types, etc.

We thus have two ways to weaken the usual presentation of a type-theoretic structure: we
can weaken either the stability under substitution and/or the computation rules. In general
we may want to compare weakly stable, weakly computational structures with strictly stable,
strictly computational structures. As it is hard to do this comparison directly, it has to be
split into multiple steps. The present paper provides comparisons between weakly stable,
weak and strictly stable, weak structures. There is ongoing work [3] by the author towards
coherence theorems that compare strictly stable, weak structures with strictly stable, strict
structures.

Combining the previous results, we obtain the following theorem:

▶ Theorem 3. Let C be a CwF with weakly stable weak identity types. Then there exists a
CwF D with stable weak identity types and a trivial fibration F : D → C in CwF that weakly
preserves identity types.

TYPES 2021

3:4 Strictification of Weakly Stable Type-Theoretic Structures Using Generic Contexts

This theorem can straightforwardly be extended to any other weakly stable weak type-
theoretic structure.

In general, we are interested in coherence theorems that are more powerful than Theorem 3.
We expect that Theorem 3 can be part of the proofs of such coherence theorems; this is
discussed in Section 6.

2 Background

We work in a constructive metatheory.

2.1 Presheaf categories

We use the internal language of the category Psh(C) of presheaves over a base category
C; any presheaf category is a model of extensional type theory [15]. This justifies the use
of higher-order abstract syntax (HOAS) to describe type-theoretic structures over a base
category C.

If Γ : ObC is an object of C, the corresponding representable presheaf is written y(Γ). A
morphism f : Γ → ∆ can be identified with the natural transformation f : y(Γ) → y(∆).

If X is a presheaf, we identify global elements of the exponential presheaf (y(Γ) → X)
with elements of the evaluation of X at Γ. If x : y(Γ) → X and f : ∆ → Γ, we may write
x[f] for the restriction of x along f .

We write
∫

C X for the category of elements of X; its objects are pairs (Γ, x) with
x : y(Γ) → X, and a morphism (∆, x′) → (Γ, x) is a morphism ρ : ∆ → Γ such that x′ = x[ρ].

A dependent presheaf over X is a presheaf over
∫

C X. If Y is a dependent presheaf over
X and x : y(Γ) → X, global elements of the presheaf (γ : y(Γ)) → Y (x(γ)) coincide with
elements of the evaluation of Y at Γ and x.

The presheaf universe classifying the i-small dependent presheaves is denoted by Ui; we
will generally omit the universe level i. Dependent products are written (a : A) → B(a),
sometimes with a leading ∀ quantifier. Dependent sums are written (a : A) × B(a). The
terminal presheaf is denoted by ⊤.

If x : y(Γ) → X and y : (γ : y(Γ)) → Y (x(γ)), we write ⟨x, y⟩ for the corresponding
element of (γ : y(Γ)) → (a : X(γ)) × (b : Y (a)). We write ⟨⟩ for the unique element of
y(Γ) → ⊤.

2.2 Categories with Families

We use categories with families [10, 7] as our models of type theory. We recall how the notion
of local representability, which encodes the context extensions, is derived from the (non-local)
notion of representability. We will similarly derive a notion of local familial representability
from the notion of familial representability in Section 3.1.

▶ Definition 4. A dependent presheaf Y : X → U is locally representable if for every
element x : y(Γ) → X, the restricted presheaf

Y|x : Psh(C/Γ)
Y|x(ρ : ∆ → Γ) ≜ Y (x[ρ] : y(∆) → X)

is representable. ⌟

R. Bocquet 3:5

▶ Definition 5. A family over a category C is a pair (Ty, Tm) consisting of a presheaf
Ty : U and of a dependent presheaf Tm : Ty → U . We say that the family has representable
elements when Tm is locally representable. ⌟

▶ Definition 6. A category with families (CwF) is a category C equipped with a terminal
object ⋄, along with a global family (TyC , TmC) with representable elements. ⌟

The local representability condition describes the context extensions. If Γ : ObC and
A : y(Γ) → TyC , we have an extended context Γ.A : ObC and a natural isomorphism
y(Γ.A) ≃ (γ : y(Γ)) × (a : TmC(A(γ))). We will often identify the two sides of this
isomorphism. The two projections out of this dependent sum are the projection morphism
pA : Γ.A → Γ and the variable term qA : ((γ, a) : y(Γ.A)) → TmC(A(γ)). If ρ : ∆ → Γ, we
write ρ+ for the canonical morphism ρ+ : ∆.A[ρ] → Γ.A, i.e. ρ+ = ⟨ρ ◦ pA, qA⟩.

We write CwF for the 1-category of CwFs and strict CwF morphisms.
We write (Ty⋆, Tm⋆) for the family of telescopes of a family (Ty, Tm). It is defined as

the following inductive-recursive family, internally to Psh(C):

Ty⋆ : U

Tm⋆ : Ty⋆ → U

⋄ : Ty⋆

Tm⋆(⋄) ≜ ⊤
. : (∆ : Ty⋆)(A : Tm⋆(∆) → Ty) → Ty⋆

Tm⋆(∆.A) ≜ (δ : Tm⋆(∆)) × (a : Tm(A(δ)))

In other words, a telescope of types A : Ty⋆ is a finite sequence A1.A2. · · · .An of
dependent types. A telescope of terms a : Tm⋆(A) is a sequence a1 : A1, a2 : A2(a1), . . . ,
an : An(a1, a2, . . .) of terms. If (Ty, Tm) has representable elements, then so does (Ty⋆, Tm⋆);
the context extensions of (Ty⋆, Tm⋆) are iterations of the context extensions of (Ty, Tm).

There is a canonical map Ty⋆
C → ObC sending any closed telescope to the corresponding

extension of the empty context. We say that C is contextual when that map is bijective. In
that case, we identify the objects of C and the closed telescopes. Up to that identification,
the Yoneda embedding y : ObC → U coincides with the restriction of Tm⋆

C : Ty⋆
C → U to

closed telescopes.

▶ Definition 7. If C is a contextual CwF, we characterize its variables by an inductive family
Var : (Γ : ObΓ)(A : y(Γ) → TyC)(a : ∀γ → TmC(A(γ))) → Set, generated by:

VarΓ.A,A[pA](qA)
VarΓ,A(x)

VarΓ.B,A[pB](x[pB])

2.3 Strictly stable and weakly stable weak identity types
We give definitions of the structures of stable and weakly stable weak identity types using
the internal language of Psh(C). Note that the weakly stable structures cannot be fully be
specified internally; it involves an external quantification over contexts.

We use Paulin-Mohring’s variant of the identity type elimination principle, as it is better
behaved than Martin-Löf’s eliminator in the absence of other type-theoretic structures. In
the absence of Π-types, Martin-Löf’s eliminator needs to be parametrized by an additional
telescope, as introduced by Gambino and Garner [11]. This is discussed in more details
in [23, 18, 3].

TYPES 2021

3:6 Strictification of Weakly Stable Type-Theoretic Structures Using Generic Contexts

Paulin-Mohring’s eliminator corresponds to based path induction, in which the left
endpoint of a path is fixed.

A type x : A

[y : A] Id(A, x, y) type
A type x : A

refl(A, x) : Id(A, x, x)

A type x : A

[y : A, p : Id(A, x, y)] P (y, p) type d : P (x, refl(A, x))
[y : A, p : Id(A, x, y)] J(A, x, P, d, y, p) : P (y, p)

We consider weak identity types, which means that their computation rule is given by a
typal equality, rather than a definitional equality.

A type x : A

[y : A, p : Id(A, x, y)] P (y, p) type d : P (x, refl(A, x))
Jβ(A, x, P, d, y, p) : Id(P (x, refl(A, x)), J(A, x, P, d, x, refl(A, x)), d)

Note that the type former Id has two parameters (A and x) and one index y. The fact
that y is an index cannot be seen in the definition of the stable type-former Id as a natural
transformation Id : (A : TyC)(x, y : TmC(A)) → TyC . However it changes the definition of the
weakly stable type-former Id; we will have a type IdΓ,A,x in the extended context Γ.(y : A).

▶ Definition 8. A (strictly stable) weak identity type structure on a family (Ty, Tm)
consists of an introduction structure

Id : ∀(A : Ty)(x, y : Tm(A)) → Ty,

refl : ∀A x → Tm(Id(A, x, x)),

along with a weak elimination structure

J : ∀(A : Ty)(x : Tm(A))
(P : ∀(y : Tm(A))(p : Tm(Id(A, x, y))) → Ty)
(d : Tm(P (x, refl(A, x))))
→ ∀y p → Tm(P (y, p)),

Jβ : ∀(A : Ty)(x : Tm(A))
(P : ∀(y : Tm(A))(p : Tm(Id(A, x, y))) → Ty)
(d : Tm(P (x, refl(A, x))))
→ Tm(Id(P (x, refl(A, x)), J(A, x, P, d, x, refl(A, x)), d)). ⌟

We also define the weakly stable weak identity types.

▶ Definition 9. A Id-introduction context is a triple (Γ, A, x), where

Γ : ObC ,

A : y(Γ) → Ty,

x : (γ : y(Γ)) → Tm(A(γ)).

Here Γ is an object of C, and A and x are types and terms that only depend on Γ.

R. Bocquet 3:7

A weakly stable identity type introduction structure consists, for every Id-
introduction context (Γ, A, x), of operations

Id(Γ,A,x) : ∀(γ : y(Γ))(y : Tm(A(γ))) → Ty,

refl(Γ,A,x) : ∀(γ : y(Γ)) → Tm(Id(Γ,A,x)(γ, x(γ))).

A Id-elimination context over an Id-introduction context (Γ, A, x) is a tuple (∆, γ, P, d),
where

∆ : ObC ,

γ : ∆ → Γ,

P : ∀(δ : y(∆))(y : Tm(A(γ(δ))))(p : Tm(Id(Γ,A,x)(γ(δ), y))) → Ty,

d : ∀(δ : y(∆)) → Tm(P (δ, x(γ(δ)), refl(Γ,A,x)(γ(δ)))).

A weakly stable identity type elimination structure consists, for every Id-elimination
context (∆, γ, P, d) over (Γ, A, x), of operations

J(Γ,A,x,∆,γ,P,d) : ∀(δ : y(∆))(y : Tm(A(γ(δ))))(p : Tm(Id(Γ,A,x)(γ(δ), y))) → Tm(P (δ, y, p)),
Jβ(Γ,A,x,∆,γ,P,d) : ∀(δ : y(∆)) → Id(∆,P ′,d)(δ, J(Γ,A,x,∆,γ,P,d)(δ, x(γ(δ)), refl(Γ,A,x)(γ(δ)))),

P ′(δ′) ≜ P (δ′, x(γ(δ′)), reflΓ(γ(δ′))). ⌟

Note that strictly stable identity types are weakly stable identity types satisfying additional
naturality conditions. In presence of weakly stable weak identity types, we have well-behaved
notions of contractible types, type equivalences, etc.

▶ Proposition 10. The weakly stable weak identity types are indeed weakly stable: for every
Id-introduction context (Γ, A, x) and substitution ρ : ∆ → Γ, the canonical map

Tm(Id(∆,A[ρ],x[ρ])) → Tm(Id(Γ,A,x)[ρ])

is an equivalence over ∆.A[ρ]. ◀

▶ Definition 11. A CwF morphism F : C → D weakly preserves weakly stable weak identity
types if for every Id-introduction context (Γ, A, x) of C, then the canonical map

TmD(Id(F (Γ),F (A),F (x))) → TmD(F (Id(Γ,A,x)))

is an equivalence over F (Γ.A). ◀

2.4 Trivial fibrations and freely generated CwFs
We recall the definition of the (cofibrations, trivial fibrations) weak factorization system
on CwF. The same weak factorization system on the category CwA of Categories with
Attributes, which is equivalent to CwF, was introduced by Kapulkin and Lumsdaine [19,
Definition 4.12].

▶ Definition 12. A morphism F : C → D of CwFs is a trivial fibration if its actions on
types and terms are surjective, i.e. if it satisfies the following lifting conditions:
(type lifting) For every object Γ : ObC and type A : y(F (Γ)) → TyD, there exists a type

A0 : y(Γ) → TyC such that F (A0) = A.
(term lifting) For every object Γ : ObC, type A : y(Γ) → TyC and term a : (γ : y(F (Γ))) →

TmD(F (A)(γ)), there exists a term a0 : (γ : y(Γ)) → TmC(A(γ)) such that F (a0) = a,
where the existential quantifications are strong, meaning that F is equipped with a choice of
lifts. ⌟

TYPES 2021

3:8 Strictification of Weakly Stable Type-Theoretic Structures Using Generic Contexts

The (cofibrations, trivial fibrations) weak factorization system on CwF is cofibrantly
generated by the set I = {Ity, Itm}, where

Ity : Free(Γ : Ob) → Free(A : yΓ → Ty),

Itm : Free(A : yΓ → Ty) → Free(a : (γ : yΓ) → Tm(A(γ))).

Here Free(Γ : Ob) is the CwF freely generated by an object Γ, Free(A : yΓ → Ty) is the CwF
freely generated by an object Γ and a type A over Γ, and Free(a : (γ : yΓ) → Tm(A(γ))) is
the CwF freely generated by Γ, A and a term a of type A over Γ.

We also recall the definition of I-cellular maps and objects in CwF.

▶ Definition 13. A basic I-cellular map C → D is a pushout of a coproducts of maps in I;
it freely adjoins to a model C a collection of new types and terms whose contexts and types are
from C. An I-cellular map is a sequential composition of a sequence (ιi+1

i : Ci → Ci+1)i≤ω

of basic I-cellular maps.
A CwF C is an I-cellular object (or I-cell complex) if the unique map 0 → C is an

I-cellular map. ⌟

By the small object argument, every morphism of CwFs can be factored as an I-cellular
map followed by a trivial fibration. In particular, for any CwF C, the factorization of the
unique map 0 → C provides an I-cellular object C0 and a trivial fibration C0 → C.

▶ Proposition 14. If F : C → D is a trivial fibration between CwFs and D is equipped with
weakly stable weak identity types, then C can be equipped with weakly stable weak identity
types that are strictly preserved by F .

Proof. By lifting each component of the weakly stable weak identity types of D. ◀

▶ Proposition 15. Any I-cellular CwF is contextual.

Proof. Let N be the terminal contextual CwFs; its contexts are natural numbers, and it has
a unique type and a unique term over every context. A CwF C is contextual if and only
there exists a unique CwF morphism C → N; such a morphism gives the length of every
context of C.

Now take an I-cellular CwF C. For any other CwF D, a CwF morphism C → D is
determined by the image of the generating types and terms of C. Since N has a unique type
and a unique term, there exists a unique CwF morphism C → N, sending each generating
type or term to the unique type or term of N. Thus C is contextual, as needed. ◀

The collections of generating types and terms of an I-cellular CwF C can be obtained from
the decomposition of 0 → C as an I-cellular map. We use a (red,bold) font to distinguish
the generating types and terms from arbitrary types and terms.

▶ Construction 16. Let C be an I-cellular CwF. Then we construct sets GenTyC : Set of
generating types and GenTmC : Set of generating terms such that

For every S : GenTyC , we have an object ∂S : ObC and a dependent type S : ∂S → TyC .
For every f : GenTmC , we have an object ∂f : ObC , a type T f : ∂f → TyC and a dependent
term f : ∀(τ : ∂f) → TmC(T f(τ)).

The components ∂S and ∂f specify the dependencies (or the boundary) of the generating
types and terms. The component T f gives the output type of a generating term.

Details of Construction 16. See Appendix A. ◀

R. Bocquet 3:9

We can obtain an syntactic description of the general types and terms of an I-cellular
CwF as the well-typed trees built out of the generating types and terms.

▶ Construction 17. Given an object Γ : ObC , we define inductive families of sets

NfTy : ∀∆ (y(Γ) → TyC) → Set,
Nf⋆

Γ : ∀∆ (y(Γ) → Tm⋆
C(∆)) → Set,

NfΓ : ∀A (y(Γ) → TmC(A)) → Set,

generated by the following (unnamed) constructors:

S : GenTmC Nf⋆
Γ(τ)

NfTyΓ(S[τ])

Nf⋆
Γ(⟨⟩)

Nf⋆
Γ(δ) NfΓ(a)

Nf⋆
Γ(⟨δ, a⟩)

VarΓ(a)
NfΓ(a)

f : GenTmC Nf⋆
Γ(τ)

NfΓ(f [τ])

Then for every type A, substitution σ or term a, there is a unique element of NfTy(A),
Nf⋆(σ) or Nf(a). In other words, types, terms and telescopes of terms admit a unique normal
form. ⌟

Details of Construction 17. See Appendix A. ◀

3 Generic contexts

3.1 Familially representable presheaves
We recall the notion of familially representable presheaf [4, 5].

▶ Definition 18. Let C be a category and X : U be a presheaf over C.
The following conditions are equivalent:

1. Every connected component of the category of elements
∫

C X is equipped with a terminal
object. If x : y(Γ) → X is an element, the terminal object x0 : y(Γ0) → X of its connected
component is called the most general generalization of x.

2. The presheaf X can be decomposed as a coproduct of representable presheaves

X ≃
∐
i:I

(y(Xi))

for some family of objects X : I → ObC indexed by some set I.
3. For every element x : y(Γ) → X, we have an element x0 : y(Γ0) → X and there is a

unique morphism f : Γ → Γ0 such that x = x0[f]. Furthermore, x0 depends strictly
naturally on Γ.

When they hold, we say that X is familially representable. ⌟

Proof. See [4] for the equivalence between conditions (1) and (2). Condition (3) is an
unfolding of condition (1). ◀

TYPES 2021

3:10 Strictification of Weakly Stable Type-Theoretic Structures Using Generic Contexts

▶ Definition 19. A dependent presheaf Y : X → U is locally familially representable if
for every element x : y(Γ) → X, the restricted presheaf

Y|x : Psh(C/Γ)
Y|x(ρ : ∆ → Γ) ≜ Y (x[ρ] : y(∆) → X)

is familially representable. ⌟

Unfolding the definition, a dependent presheaf Y : X → U is locally familially rep-
resentable if for every element x : y(∆) → X, morphism ρ : Γ → ∆ and element
y : (γ : y(Γ)) → Y (x(ρ(γ))), there is, strictly naturally in Γ, a map ρ0 : Γ0 → ∆ and
an element y : (γ : y(Γ0)) → Y (x(ρ0(γ))) such that there is a unique map f : Γ → Γ0
satisfying ρ = ρ0 ◦ f and y = y0[f]. The object Γ0 can be seen as the extension of the context
∆ that classifies the connected component of y.

▶ Proposition 20. If a family Y : X → U is locally familially representable, the family of
telescopes Y ⋆ : X⋆ → U is also locally familially representable. ◀

3.2 Polynomial sorts
▶ Definition 21. Let C be a CwF. We define global families BSortC of basic sorts, MonoSortC

of monomial sorts and PolySortC of polynomial sorts. We write Elem(−) for the elements
of these families. Note that they do not necessarily have representable elements.

A basic sort is either ty or tm(A) for some A : TyC .

Elem(ty) ≜ TyC

Elem(tm(A)) ≜ TmC(A)

We can view the basic sorts ty and tm(−) as codes for the presheaves of types and terms.
A monomial sort [∆ ⊢ A] (or [δ : ∆ ⊢ A(δ)]) consists of a telescope ∆ : Ty⋆

C and a
dependent basic sort A : Tm⋆

C(∆) → BSortC . It represents dependent functions from ∆ to
A, or equivalently elements of A in a context extended by ∆.

Elem([∆ ⊢ A]) ≜ (δ : Tm⋆
C(∆)) → TmC(A(δ))

A polynomial sort is a telescope of monomial sorts:

PolySortC ≜ MonoSort⋆
C . ⌟

Thus a polynomial sort is a dependent sum of dependent products of basic sorts. Since
dependent sums distribute over dependent products, PolySortC is closed under dependent
products with arities in TmC .

The parameters of (both weakly and strictly stable) type-theoretic structures are all
described by (closed) polynomial sorts. For instance, the parameters of an Id-introduction
structure are given by the closed polynomial sort

∂Id ≜ (A : ty) × (x : tm(A)).

The parameters of an Id-elimination structure are specified by the polynomial sort

∂J ≜ ((A, x) : ∂Id) × (P : [y : A(γ), p : IdΓ(γ, y) ⊢ ty]) × (d : tm(P (x(γ), reflΓ(γ)))).

▶ Definition 22. We say that a CwF C has familially representable polynomial sorts
if for every closed polynomial sort P , the presheaf Elem(P) is familially representable. ⌟

R. Bocquet 3:11

3.3 Strictification
▶ Theorem 1. Let C be a CwF equipped with weakly stable identity types. If C has familially
representable polynomial sorts, then C can be equipped with stable identity types that are
equivalent to the weakly stable identity types.

Proof. The proof works for identity types with either a weak or a strict computation rule.
We first consider the closed polynomial ∂Id ≜ (A : ty) × (x : tm(A)).
Let ⟨A, x⟩ : y(Γ) → Elem(∂Id) be the parameters of the stable Id-introduction structure

over a context Γ. Since C has generic polynomial contexts, we can find a most general
generalization ⟨A0, x0⟩ : y(Γ0) → Elem(∂Id) of ⟨A, x⟩. By the universal property of ⟨A0, x0⟩,
we have a map f : Γ → Γ0 such that ⟨A, x⟩ = ⟨A0, x0⟩[f].

We then pose

Ids
Γ(A, x, y) ≜ Id(Γ0,A0,x0)[⟨f, y⟩],

refls
Γ(A, x) ≜ refl(Γ0,A0,x0)[f].

Since most general generalizations are strictly natural, (Ids, refls) is a stable Id-introduction
structure.

Now consider the polynomial sort

∂J ≜ ((A, x) : ∂Id) × (P : [y : A, p : Ids(A, x, y)] ty) × (d : tm(P (x, refls(A, x)))).

Let ⟨A, x, P, d⟩ : (γ : y(Γ)) → Elem(∂J) be the parameters of the stable Id-elimination
structure over Γ, A and x. Since C has generic polynomial contexts, we can find a most
general generalization ⟨A1, x1, P1, d1⟩ : y(Γ1) → ∂J. There is a unique map g : Γ → Γ1 such
that ⟨A, x, P, d⟩ = ⟨A1, x1, P1, d1⟩[g].

We can also obtain the most general generalization ⟨A0, x0⟩ : y(Γ0) → ∂Id of ⟨A1, x1⟩.
We have a map f : Γ1 → Γ0 such that ⟨A1, x1⟩ = ⟨A0, x0⟩[f]. By the universal property of
most general generalizations, ⟨A0, x0⟩ is also the most general generalization of ⟨A, x⟩. Thus
by definition of Ids, we have Ids

Γ(A, x, y) = Id(Γ0,A0,x0)[⟨f ◦ g, y⟩].
We can finally pose

Js
Γ(A, x, P, d, y, p) ≜ J(Γ0,A0,x0,Γ1,f,P1,d1)[⟨g, y, p⟩],

Jβs
Γ(A, x, P, d) ≜ Jβ(Γ0,A0,x0,Γ1,f,P1,d1)[g].

This determines a stable Id-elimination structure (Js, Jβs). Note that if Jβ is strict, then Jβs

is also strict.
By Proposition 10 the stable Id-types are equivalent to the weakly stable identity types. ◀

3.4 The local universes method
We show that the local universes strictification method [22] factors through ours.

▶ Definition 23 ([22, Definition 3.1.3]). A CwF C satisfies the condition (LF) if its underlying
category has finite products, and given maps Z

g−→ Y
f−→ X, if f is a display map and g is

either a display map or a product projection, then a dependent exponential Π[f, g] exists. ⌟

In the above definition, a display map is a finite composite of projections maps pA : Γ.A → Γ;
equivalently a display map is a projection map p∆ : Γ.∆ → Γ where Γ is an object of C and
∆ is a telescope over Γ.

TYPES 2021

3:12 Strictification of Weakly Stable Type-Theoretic Structures Using Generic Contexts

Condition (LF) can essentially be unfolded into the following two representability condi-
tions:

For every object Γ : ObC , telescope ∆ : y(Γ) → Ty⋆
C and object Θ : ObC , the presheaf

(γ : y(Γ)) × (Tm⋆
C(∆(γ)) → y(Θ))

is representable.
For every object Γ : ObC , telescope ∆ : y(Γ) → Ty⋆

C and type

A : (γ : y(Γ))(δ : Tm⋆
C(∆(γ))) → TyC ,

the presheaf

(γ : y(Γ)) × ((δ : Tm⋆
C(∆(γ))) → TmC(A(γ, δ)))

is representable.

▶ Definition 24. Let C be a CwF.
A local universe is a pair (V, E), where V : ObC is an object of C and E : y(V) → TyC

is a type over V .
The local universe model C! is another CwF over the same base category. We write

(Ty!, Tm!) for its family of types and terms.
A type of C! is a triple (V, E, χ), where (V, E) is a local universe, and χ : y(V). There is

a natural transformation Ty! → TyC , sending (V, E, χ) to E(χ).
The terms of C! are induced by this natural transformation: Tm!(V, E, χ) ≜ TmC(E(χ)).

The local representability of the dependent presheaf Tm! follows from the local representability
of TmC . ⌟

There is a CwF morphism C! → C lying over the identity functor. That morphism is
surjective on types and bijective on terms. In particular, it is a trivial fibration.

Any weakly stable type-theoretic structure can be lifted along C! → C. Since C! → C is
injective on terms, definitional equalities between terms can also be lifted. It is however not
generally possible to lift definitional equalities between types.

▶ Proposition 25. If C satisfies condition (LF), then C! has familially representable polyno-
mial sorts.

Proof. See Appendix A. ◀

4 Most general generalizations in free CwFs

In this section we prove the following result.

▶ Theorem 2. If a CwF C is freely generated (I-cellular), then it has locally familially
representable polynomials sorts.

We fix an I-cellular CwF C. We use the explicit description of the types and terms of C
that was given in Construction 16.

R. Bocquet 3:13

4.1 First-order unification

First-order unification [24, 13] is usually presented for free unityped or simply typed theories,
but it is folklore that the same unification procedure is also valid for free dependently typed
theories1, i.e. for freely generated CwFs. In our setting, this means that the category of cones
over any pair of parallel substitutions is either empty or has a terminal object, which is then
the most general unifier of the two substitutions.

We prove a slightly stronger result, for contexts that are split into flexible and rigid parts.
The unification procedure can only change the flexible part.

▶ Definition 26. An unification context is an object of the form Γ.∆, where ∆ is a
telescope over Γ. The variables of Γ are called flexible variables, while the variables from
∆ are called rigid variables.

A morphism of unification contexts is a substitution that preserves the rigid variables, i.e.
a substitution of the form ρ+ : Θ.∆[ρ] → Γ.∆ for some ρ : Θ → Γ. ⌟

▶ Definition 27 (Unifiers). Let Γ.∆ be a unification context and X be a dependent presheaf
over y(Γ.∆). A unifier of a pair a, b : (x : y(Γ.∆)) → X(x) of parallel elements of X is a
morphism ρ : Θ → Γ such that a[ρ+] = b[ρ+]. We say that a and b are unifiable if there
merely exists a unifier.

A most general unifier is a terminal unifier. ⌟

▶ Lemma 28 (Instantiation). Let Γ be a context, a : (γ : y(Γ)) → TmC(A(γ)) be a variable
from Γ and b : (γ : y(Γ)) → TmC(A(γ)) be a term of type A such that b ̸= a.

If the terms a and b are unifiable, then we can construct a most general unifier Γ[a := b].
Moreover, the length of Γ[a := b] is less than the length of Γ.

Proof. We have a bijective renaming Γ ≃ (γ0 : Γ0).Γ1(γ0) where Γ0 is the support of the
term b. Up to this renaming, we have A : y(Γ0) → TyC , b : (γ0 : y(Γ0)) → TmC(A(γ0)) and
a : (γ0 : y(Γ0))(γ1 : Tm⋆

C(Γ1(γ0))) → TmC(A(γ0)).
The variable a cannot belong to the support Γ0 of b, since a and b are unifiable and

different; this is the occurs check of first-order unification. Indeed, assuming that a did
belong to Γ0 and considering the unifier ρ of a and b, the term b[ρ] would be infinite.

Thus a is a variable from Γ1 and we can write Γ1(γ0)=(γ2 :Γ2(γ0)).(a : A(γ0)).Γ3(γ0, γ2, a).
We now pose Γ[a := b] ≜ (γ0 : Γ0).(γ2 : Γ2(γ0)).Γ3(γ0, γ2, b). It is the most general unifier

of a and b. ◀

▶ Lemma 29 (Strengthening). Let Γ.∆ be a unification context, a : (γ : y(Γ)) → TmC(A(γ))
be a term over Γ and b : ((γ, δ) : y(Γ.∆)) → TmC(A(γ)) be a term of type A[p∆].

If the terms a[p∆] and b are unifiable, then there exists a (necessarily unique) term
b′ : (γ : y(Γ)) → TmC(A(γ)) such that b = b′[p∆].

Proof. Let ρ : Ω → Γ be a unifier of a[p∆] and b. Then b[ρ+] = a[p∆][ρ+] = a[ρ][p∆[ρ]].
Thus b[ρ+] cannot depend on any variable from ∆[ρ]. Since ρ+ preserves the variables of ∆,
the term b cannot depend on any variable from ∆. Therefore it can be strengthened to some
term b′ : (γ : y(Γ)) → TmC(A(γ)). ◀

1 This is observed by Simon Henry in https://mathoverflow.net/questions/307373/on-a-surprising-
property-of-free-theories.

TYPES 2021

https://mathoverflow.net/questions/307373/on-a-surprising-property-of-free-theories
https://mathoverflow.net/questions/307373/on-a-surprising-property-of-free-theories

3:14 Strictification of Weakly Stable Type-Theoretic Structures Using Generic Contexts

▶ Theorem 30 (First-order unification). Let Γ.∆ be a unification context and X : y(Γ.∆) → U
a dependent presheaf of the form Tm⋆

C(Ξ), TyC or TmC(A(−)). If there exists a unifier
σ : Θ → Γ of a pair x1, x2 : ((γ, δ) : y(Γ.∆)) → X(γ, δ) of parallel elements of X, then there
exists a most general unifier ρ : Ω → Γ, such that either ρ = id or the length of Ω is less than
the length of Γ. ◀

Proof. See Appendix A. ◀

▶ Remark 31. Note that Theorem 30 implies that the families

(∆ : Ty⋆
C) × (f, g : Tm⋆

C(∆) → y(Ξ)) 7→ f = g

(∆ : Ty⋆
C) × (A, B : Tm⋆

C(∆) → TyC) 7→ A = B

(∆ : Ty⋆
C) × (A : Tm⋆

C(∆) → TyC) × (a, b : ∀δ → TmC(A(δ))) 7→ a = b

are locally familially representable. Indeed, their categories of elements are the categories of
unifiers for substitutions, types or terms. By Theorem 30, these categories are either empty,
or admit a terminal object. In particular, every connected component admits a terminal
object. ⌟

4.2 Most general generalizations
We now apply first-order unification to the construction of most general generalizations.

We first describe this construction informally. For any type B over a unification context
Γ.∆, we compute some B0 over a context of the form Γ0.∆0 and a substitution f : Γ → Γ0
such that ∆ = ∆0[f] and B = B0[f+]. The type B0 should be the most general generalization
of B that retains the dependency on ∆.

The type B0 is essentially obtained by removing the dependencies on Γ, that is by
replacing the subterms of B that only depend on Γ by new variables; these new variables are
collected in the new context Γ0. Because of the dependencies of the generating terms, it is
not always possible to fully remove a subterm. We have to rely on first-order unification to
determine which parts can be removed; some of the new variables may need to be instantiated
to more precise terms.

We give examples involving the following generating types and terms.

X : Ty
Y : Tm(X) → Ty
f1 : Tm(X) → Tm(X)
f2 : Tm(X) → Tm(X) → Tm(X)
g : ∀(x : Tm(X)) (y : Tm(Y(x))) → Tm(X)
h : ∀(x : Tm(X)) → Tm(Y(x)) → Tm(Y(f1(x)))

We write x, y, z, . . . for the variables from Γ and x, y, z, . . . for the variables from ∆.

Consider B = Y(f1(x)) over (x : X).
Then we can pose B0 = Y(y) over (y : X), we have B = B0[y 7→ f1(x)].
Consider B = Y(f1(x)) over (x : X).
Then we have to keep B0 = Y(f1(x)).
Consider B = Y(f2(f1(x), f1(y))) over (x : X, y : X).
Then B0 = Y(f2(z, f1(y))) over (z : X, y : X); we have B = B0[z 7→ f1(x)].

R. Bocquet 3:15

Consider B = Y(g(f1(x), y)) over (x : X, y : Y(f1(x))).
Then B0 = Y(g(z, y)) over (z : X, y : Y(z)); we have B = B0[z 7→ f1(x), y 7→ y].
Consider B = Y(g(f1(x), h(x, y))) over (x : X, y : Y(x)).
The B0 = B. We cannot prune the subterm f1(x), because of the typing constraints of g
and h.

▶ Proposition 32. The families

(∆ : Ty⋆
C) × (Ξ : ObC) 7→ (Tm⋆

C(∆) → Tm⋆
C(Ξ)) (1)

(∆ : Ty⋆
C) 7→ (Tm⋆

C(∆) → TyC) (2)
(∆ : Ty⋆

C) × (A : Tm⋆
C(∆) → TyC) 7→ ∀(δ : Tm⋆

C(∆)) → TmC(A(δ)) (3)

are locally familially representable.
In particular the family MonoSortC , which is the coproduct of the families (2) and (3), is

locally familially representable.

Proof. See Appendix A. ◀

Proof of Theorem 2. This follows from Proposition 32 and Proposition 20. ◀

4.3 Strictification

▶ Theorem 3. Let C be a CwF with weakly stable weak identity types. Then there exists a
CwF D with stable weak identity types and a trivial fibration F : D → C in CwF that weakly
preserves identity types.

Proof. Let D be an I-cellular replacement of C. We have a trivial fibration F : D → C in
CwF. By Proposition 14, D can be equipped with weakly stable identity types Id that are
strictly preserved by F .

By Theorem 2, D has familially representable polynomials sorts. Thus by Theorem 1, D
has stable identity types Ids that are weakly equivalent to the weakly stable identity types.
In other words, the CwF morphism id : (D, Ids) → (D, Id) weakly preserves identity types.
Then the composition (D, Ids) id−→ (D, Id) F−→ (C, Id) weakly preserves identity types. ◀

5 Other type-theoretic structures

So far we have only considered (weak) identity types. However our methods can more
generally be applied to any weakly stable weak type-theoretic structure. Indeed the proofs
of Theorem 1 and Theorem 3 only rely on Proposition 10 and on the fact that the parameters
of the identity introduction and elimination structures can be specified by (closed) polynomial
sorts. Thus the same proof scheme works for any type-theoretic structure that is weakly
stable (in the sense that it satisfies a variant of Proposition 10). This holds in particular for
most standard type-theoretic structures, including Π-types, Σ-types, coproducts, natural
numbers and other inductive types, etc.

Note that in general, weak structures can only be specified in presence of identity types;
thus their strictification depends on the strictification of identity types. It is then necessary
to see Theorem 1 as a construction.

TYPES 2021

3:16 Strictification of Weakly Stable Type-Theoretic Structures Using Generic Contexts

6 Towards full coherence theorems

We have presented general strictification methods for weakly stable weak type-theoretic struc-
tures. However we generally want coherence theorems that give a more precise comparison
between the categories CwFcxl

s and CwFcxl
ws of contextual CwFs equipped with stable or

weakly stable weak type-theoretic structures (for some unspecified choice of such structures).
Following [19, 16], we expect that these categories can be equipped with cofibrantly

generated left-semi model structures, with trivial fibrations as defined in Definition 12. We
then want to prove that the free-forgetful adjunction

CwFcxl
ws CwFcxl

s

L

⊥

R

is a Quillen equivalence. This notion of Morita equivalence between type theories has been
studied by Isaev [17], albeit only for strictly stable type-theoretic structures.

We recall the definition of weak equivalence [19] between CwFs.

▶ Definition 33. Let F : C → D be a CwF morphism, where D is equipped with weakly stable
weak identity types. The map F is a weak equivalence if it is essentially surjective on types
and terms, i.e. if it satisfies the following weak type and term lifting conditions:
(weak type lifting) For every Γ : ObC and type A : y(F (Γ)) → TyD, there exists a type

A0 : y(Γ) → TyC and an equivalence between F (A0) and A over F (Γ).
(weak term lifting) For every Γ : ObC, type A : y(Γ) → TyC and term a : (γ : y(F (Γ))) →

TmD(F (A)(γ)), there exists a term a0 : (γ : y(Γ)) → TmC(A(γ)) and a typal equality
between F (a0) and a over F (Γ). ⌟

▶ Conjecture 34. The theories of weakly stable weak identity types and strictly stable weak
identity types of are Morita equivalent: for every Iws-cellular model C : CwFws, the unit
η : C → L(C) is a weak equivalence. ⌟

Here the Iws-cellular models are the freely generated models in CwFws. Note that they
do not coincide with the I-cellular CwFs.

We give an informal outline of a likely proof of this result. We leave a detailed proof to
future work.

Fix a Iws-cellular model C : CwFws. Since C is freely generated, it admits a syntactic
description and satisfies a universal property; a morphism C → E in CwFws is determined
by the image of the generating types and terms.

By Theorem 3, or a generalization to additional type formers, we have a CwF D, equipped
with strictly stable type structures, along with a trivial fibration F : D → C in CwF that
weakly preserves the various type structures.

By induction on the syntax of C, we construct a morphism G : C → D in CwFws along
with a homotopy α : F ◦ G ∼ idC . In other words, we construct a homotopy section G

of F . If F was a morphism in CwFws, we could obtain a (strict) section from the fact
that C is cofibrant in CwFws and satisfies a strict lifting property with respect to trivial
fibrations. Since F only preserves the type-theoretic structures weakly, we can only construct
a homotopy section.

More precisely, this induction can be described using the homotopical gluing of F : D → C;
it is a model G : CwFws that classifies the homotopy sections of F . Its objects are triples
(Γ, ∆, e), where Γ : ObD, ∆ : ObC and e is an equivalence between F (∆) and Γ. Its
construction ought to be similar to other constructions of homotopical gluing models [25]
and homotopical diagram models [20].

R. Bocquet 3:17

The universal property of C then provides a section of π2 : G → C, which can be
decomposed into a morphism G : C → D and a homotopy α : F ◦ G ∼ idC .

G D

C

π1

π2

F

⟨G,id,α⟩

By the universal property of L(C), we obtain a map T : L(C) → D in CwFs such that
T ◦ η = G.

D

C L(C)

F
G

η

T

We can now attempt to prove the weak type lifting property for η. For any context Γ : ObC

and type A : y(ηΓ) → TyL(C) of L(C), we have a candidate lift F (T (A))[α] : y(Γ) → TyC . It
remains to prove that η(F (T (A))[α]) is equivalent to A, or equivalently that η(F (T (A))) is
equivalent to A over the context equivalence η(αΓ) : η(F (G(Γ))) ∼= η(Γ).

It suffices to construct a homotopy β : η ◦ F ◦ T ∼ idL(C) along with a higher homotopy γ

between the homotopies β ◦ η and η ◦ α. We expect that these homotopies can be constructed
using the universal properties of respectively L(C) and C, by mapping into some other
homotopical gluing models. The weak term lifting property also follows from the existence
of these homotopies.

Thus, we have essentially reduced the proof of the Morita equivalence between weakly
stable and strictly stable structures to the construction of three homotopical gluing models.

References
1 Steve Awodey and Michael A. Warren. Homotopy theoretic models of identity types.

Mathematical Proceedings of the Cambridge Philosophical Society, 146(1):45–55, 2009. doi:
10.1017/S0305004108001783.

2 Martin E. Bidlingmaier. An interpretation of dependent type theory in a model category of
locally cartesian closed categories. CoRR, abs/2007.02900, 2020. arXiv:2007.02900.

3 Rafaël Bocquet. Coherence of strict equalities in dependent type theories. CoRR,
abs/2010.14166, 2020. arXiv:2010.14166.

4 Aurelio Carboni and Peter Johnstone. Connected limits, familial representability and artin
glueing. Mathematical Structures in Computer Science, 5(4):441–459, 1995. doi:10.1017/
S0960129500001183.

5 Aurelio Carboni and Peter Johnstone. Corrigenda for ‘connected limits, familial representability
and artin glueing’. MSCS. Mathematical Structures in Computer Science, 14, February 2004.
doi:10.1017/S0960129503004080.

6 John Cartmell. Generalised algebraic theories and contextual categories. Annals of Pure and
Applied Logic, 32:209–243, 1986. doi:10.1016/0168-0072(86)90053-9.

7 Simon Castellan, Pierre Clairambault, and Peter Dybjer. Categories with families: Unityped,
simply typed, and dependently typed. In Joachim Lambek: The Interplay of Mathematics,
Logic, and Linguistics, pages 135–180. Springer, 2021.

8 Pierre-Louis Curien. Substitution up to Isomorphism. Fundam. Informaticae, 19(1/2):51–85,
1993.

9 Pierre-Louis Curien, Richard Garner, and Martin Hofmann. Revisiting the categorical
interpretation of dependent type theory. Theor. Comput. Sci., 546:99–119, 2014. doi:
10.1016/j.tcs.2014.03.003.

TYPES 2021

https://doi.org/10.1017/S0305004108001783
https://doi.org/10.1017/S0305004108001783
http://arxiv.org/abs/2007.02900
http://arxiv.org/abs/2010.14166
https://doi.org/10.1017/S0960129500001183
https://doi.org/10.1017/S0960129500001183
https://doi.org/10.1017/S0960129503004080
https://doi.org/10.1016/0168-0072(86)90053-9
https://doi.org/10.1016/j.tcs.2014.03.003
https://doi.org/10.1016/j.tcs.2014.03.003

3:18 Strictification of Weakly Stable Type-Theoretic Structures Using Generic Contexts

10 Peter Dybjer. Internal type theory. In Stefano Berardi and Mario Coppo, editors, Types
for Proofs and Programs, International Workshop TYPES’95, Torino, Italy, June 5-8, 1995,
Selected Papers, volume 1158 of Lecture Notes in Computer Science, pages 120–134. Springer,
1995. doi:10.1007/3-540-61780-9_66.

11 Nicola Gambino and Richard Garner. The identity type weak factorisation system. Theor.
Comput. Sci., 409(1):94–109, 2008. doi:10.1016/j.tcs.2008.08.030.

12 Nicola Gambino and Simon Henry. Towards a constructive simplicial model of Univalent
Foundations. Journal of the London Mathematical Society, 105, 2022.

13 Joseph A. Goguen. What is unification? - a categorical view of substitution, equation and
solution. In Resolution of Equations in Algebraic Structures, Volume 1: Algebraic Techniques,
pages 217–261. Academic, 1989.

14 Martin Hofmann. On the interpretation of type theory in locally cartesian closed categories.
In Leszek Pacholski and Jerzy Tiuryn, editors, Computer Science Logic, 8th International
Workshop, CSL ’94, Kazimierz, Poland, September 25-30, 1994, Selected Papers, volume 933 of
Lecture Notes in Computer Science, pages 427–441. Springer, 1994. doi:10.1007/BFb0022273.

15 Martin Hofmann. Syntax and semantics of dependent types, pages 13–54. Springer London,
London, 1997. doi:10.1007/978-1-4471-0963-1_2.

16 Valery Isaev. Model structures on categories of models of type theories. Mathematical
Structures in Computer Science, 28:1695–1722, 2017.

17 Valery Isaev. Morita equivalences between algebraic dependent type theories. CoRR,
abs/1804.05045, 2018. arXiv:1804.05045.

18 Valery Isaev. Indexed type theories. Math. Struct. Comput. Sci., 31(1):3–63, 2021. doi:
10.1017/S0960129520000092.

19 Chris Kapulkin and Peter Lumsdaine. The homotopy theory of type theories. Advances in
Mathematics, 337, September 2016. doi:10.1016/j.aim.2018.08.003.

20 Krzysztof Kapulkin and Peter Lumsdaine. Homotopical inverse diagrams in categories with
attributes. Journal of Pure and Applied Algebra, 225:106563, April 2021. doi:10.1016/j.
jpaa.2020.106563.

21 Krzysztof Kapulkin and Peter LeFanu Lumsdaine. The simplicial model of Univalent Found-
ations (after Voevodsky). Journal of the European Mathematical Society, 23(6):2071–2126,
2021.

22 Peter LeFanu Lumsdaine and Michael A. Warren. The local universes model: An overlooked
coherence construction for dependent type theories. ACM Trans. Comput. Log., 16(3):23:1–
23:31, 2015. doi:10.1145/2754931.

23 Paige Randall North. Identity types and weak factorization systems in Cauchy complete categor-
ies. Math. Struct. Comput. Sci., 29(9):1411–1427, 2019. doi:10.1017/S0960129519000033.

24 J. A. Robinson. A machine-oriented logic based on the resolution principle. J. ACM, 12(1):23–
41, January 1965. doi:10.1145/321250.321253.

25 Michael Shulman. Univalence for inverse diagrams and homotopy canonicity. Mathematical
Structures in Computer Science, 25(5):1203–1277, 2015. doi:10.1017/S0960129514000565.

26 Taichi Uemura. A general framework for the semantics of type theory. CoRR, abs/1904.04097,
2019. arXiv:1904.04097.

27 Taichi Uemura. Abstract and concrete type theories. PhD thesis, Institute for Lo-
gic, Language and Computation, 2021. URL: https://dare.uva.nl/search?identifier=
41ff0b60-64d4-4003-8182-c244a9afab3b.

28 Benno van den Berg. Path categories and propositional identity types. ACM Trans. Comput.
Log., 19(2):15:1–15:32, 2018. doi:10.1145/3204492.

https://doi.org/10.1007/3-540-61780-9_66
https://doi.org/10.1016/j.tcs.2008.08.030
https://doi.org/10.1007/BFb0022273
https://doi.org/10.1007/978-1-4471-0963-1_2
http://arxiv.org/abs/1804.05045
https://doi.org/10.1017/S0960129520000092
https://doi.org/10.1017/S0960129520000092
https://doi.org/10.1016/j.aim.2018.08.003
https://doi.org/10.1016/j.jpaa.2020.106563
https://doi.org/10.1016/j.jpaa.2020.106563
https://doi.org/10.1145/2754931
https://doi.org/10.1017/S0960129519000033
https://doi.org/10.1145/321250.321253
https://doi.org/10.1017/S0960129514000565
http://arxiv.org/abs/1904.04097
https://dare.uva.nl/search?identifier=41ff0b60-64d4-4003-8182-c244a9afab3b
https://dare.uva.nl/search?identifier=41ff0b60-64d4-4003-8182-c244a9afab3b
https://doi.org/10.1145/3204492

R. Bocquet 3:19

A Constructions and proofs

Details of Construction 16. Since C is I-cellular, it is the colimit of a sequence

(ιi+1
i : Ci → Ci+1)i<ω

of basic I-cellular maps, with C0 = 0CwF and Cω = C. When i ≤ j ≤ ω, we write ιj
i : Ci → Cj

for the composition of maps of that sequence.
For each i ≤ ω, the map ιi+1

i : Ci → Ci+1 is a basic I-cellular map, specified by a set
GenTyi of generating types and a set GenTmi of generating terms. For every S : GenTyi,
we have a boundary ∂S : ObCi and a generating type S : y(ιi+1

i (∂S)) → TyCi+1 . For every
f : GenTmi, we have a boundary ∂f : ObCi

, an output type Tf : y(∂f) → TyCi
and a

generating term a : (γ : y(ιi+1
i (∂f))) → TmCi+1(ιi+1

i (Tf)(γ)). A morphism F : Ci+1 → E is
uniquely determined by the composition F ◦ ιi+1

i and by the image of the generating types
and terms.

We pose GenTyC ≜
∐

i<ω

GenTyi and GenTmC ≜
∐

i<ω

GenTmi. The boundaries and output

types of GenTyC and GenTmC are defined in the evident way using the boundaries and output
types of GenTyi and GenTmi. ◀

Details of Construction 17. This is a standard normalization proof, although it is easier
than usual thanks to the absence of definitional equalities.

We first prove the existence of normal forms. We define a new CwF Cnf ; its substitutions,
types and terms are those of C equipped with normal forms. We omit the full definition
of Cnf , it is lengthy but straightforward. It involves the definition of the action of normal
substitutions on normal forms.

We have a projection morphism F : Cnf → C. We then construct a section G of F , by
transfinite induction on i ≤ ω. The precise induction hypothesis is that for any i ≤ ω, we
construct a morphism Gi : Ci → Cnf such that F ◦ Gi = ιω

i . The zero and limit cases are
straightforward, and in the successor case we only have to show that the generating types
and terms admit a normal form. This holds essentially by definition of normal forms. By
definition of Cnf , the section G equips every type A, term a or substitution σ with a normal
form nf(A), nf(a) or nf(σ).

In order to prove uniqueness, we prove that normalization is stable, i.e. that for every
normal form Anf : NfTy(A), anf : Nf(a) or σnf : Nf⋆(σ), we have Anf = nf(A), anf = nf(a) or
σnf = nf(σ). This is shown by induction on normal forms. Most cases are straightforward.
In the case of a generating type or term coming from the basic I-cellular map Ci → Ci+1, we
use the definition of Gi+1 on these generating types and terms. ◀

Proof of Proposition 25. We prove by induction on closed polynomial sorts that for every
P : PolySortC!

, the presheaf Elem(P) is familially representable.
Case P = ⋄:

Then Elem(P) is the terminal presheaf, which is represented by the terminal object of C.
Case P = Q.M :

Here M : Elem(Q) → MonoSortC! is a monomial sort over Q.
Take an element ⟨q, a⟩ : y(Γ) → Elem(Q.M). Our goal is to construct the most general
generalization of ⟨q, a⟩, i.e. a terminal object of the connected component of ⟨q, a⟩ in the
category of elements of Elem(Q.M).
By the induction hypothesis, we have a most general generalization q0 : y(Γ0) → Elem(Q)
of q. By its universal property, there is a unique map f : Γ → Γ0 such that q = q0[f].
We now inspect M [q0] : y(Γ0) → MonoSortC! , noting that a : (γ : y(Γ)) →
Elem(M [q0](f(γ))).

TYPES 2021

3:20 Strictification of Weakly Stable Type-Theoretic Structures Using Generic Contexts

Case M [q0] = λγ 7→ [∆(γ) ⊢ ty]:
Here ∆ : y(Γ0) → Ty⋆

! is a telescope over Γ0.
We know that a : (γ : y(Γ)) → Tm⋆

! (∆(f(γ))) → Ty!. By definition of the presheaf Ty!,
this means that we have a local universe (V, E) and a classifying map

χ : (γ : y(Γ)) → Tm⋆
! (∆(f(γ))) → y(V)

such that a = λ(γ, δ) 7→ E(χ(γ, δ)).
By condition (LF), there exists an object Γ1 representing the presheaf

(γ : y(Γ0)) × (v : Tm⋆
! (∆(f(γ))) → y(V)).

We now define ⟨q1, a1⟩ : y(Γ1) → Elem(Q.M):

q1(γ, v) ≜ q0(γ),
a1(γ, v) ≜ λ(δ : Tm⋆

! (∆(f(γ)))) 7→ E(v(δ)).

We have ⟨q, a⟩ = ⟨q1, a1⟩[⟨f, χ⟩]. By the universal properties of Γ1 and q0, the element
⟨q1, a1⟩ is the most general generalization of ⟨q, a⟩.

Case M [q0] = λγ 7→ [δ : ∆(γ) ⊢ tm(A(γ, δ))]:
Here ∆ : y(Γ0) → Ty⋆

! is a telescope over Γ0 and A : (γ : y(Γ0)) → Tm⋆
! (∆(γ)) → Ty!.

We can decompose A into a local universe (V, E) and a classifying map

χ : (γ : y(Γ0))(δ : Tm⋆
! (∆(γ))) → y(V)

such that A = λ(γ, δ) 7→ E(χ(γ, δ)).
We know that a : (γ : y(Γ))(δ : Tm⋆

! (∆[f])) → TmC(E(χ(f(γ), δ))).
By condition (LF), there exists an object Γ1 representing the presheaf

(γ : y(Γ0)) × (x : (δ : Tm⋆
! (∆(f(γ)))) → TmC(E(χ(γ, δ)))).

We now define ⟨q1, a1⟩ : y(Γ1) → Elem(Q.M):

q1(γ, x) ≜ q0(γ),
a1(γ, x) ≜ λ(δ : Tm⋆

! (∆(f(γ)))) 7→ x(δ).

We have ⟨q, a⟩ = ⟨q1, a1⟩[⟨f, a⟩]. By the universal properties of Γ1 and q0, the element
⟨q1, a1⟩ is the most general generalization of ⟨q, a⟩. ◀

Proof of Theorem 30. By nested inductions first on the length of Γ, and then on the normal
form of the substitution, type, or term x1.
Case (Γ = ⋄): Let σ : Θ → ⋄ be a unifier of x1 and x2. The map σ = ⟨⟩ is an epimorphism.

Thus x1 = x2 and id : Γ → Γ is the most general unifier of x1 and x2.
Case (X = Tm⋆

C (⋄)):
In that case, x1 = x2 = ⟨⟩ and id : Γ → Γ is the most general unifier of x1 and x2.

Case (X = Tm⋆
C (Ξ.A)):

We can write x1 = ⟨ξ1, a1⟩ and x2 = ⟨ξ2, a2⟩. By the induction hypothesis for ξ1, we have
a most general unifier ρ : Ω → Γ of ξ1 and ξ2.
If ρ = id, then a1 and a2 are parallel terms and by the induction hypothesis for a1 we
can find a most general unifier ρ′ : Ω′ → Γ of a1 and a2. It is then also a most general
unifier of x1 and x2.
Otherwise, the length of Ω is less than the length of Γ. By the induction hypothesis for
Ω, we can then find a most general unifier ρ′ : Ω′ → Ω of a1[ρ] and a2[ρ]. The composite
(ρ ◦ ρ′) : Ω′ → Γ is then a most general unifier of x1 and x2.

R. Bocquet 3:21

Case (X = TyC):
We can write x1 = S[σ1] for some generating type S and σ1 : Γ.∆ → ∂S. Since x1 and
x2 are unifiable, we can also write x2 = S[σ2] for some σ2 : Γ.∆ → ∂S. By the induction
hypothesis for σ1, we have a most general unifier of σ1 and σ2. It is then also a most
general unifier of x1 and x2.

Case (X = TmC(A(−))):
We have several subcases depending on the parallel terms x1 and x2.

Case (x1 = f[σ1]) and (x2 = g[σ2]):
Since x1 and x2 are unifiable, f = g. Here σ1 : Γ.∆ → ∂f and σ2 : Γ.∆ → ∂f . By the
induction hypothesis for σ1, we have a most general unifier of σ1 and σ2. It is then
also a most general unifier of x1 and x2.

If either x1 or x2 is a variable from Γ:
Without loss of generality, assume that x1 is a variable from Γ. By Lemma 29, the
term x2 can be strengthened to only depend on Γ. If x1 = x2 then id : Γ → Γ is the
most general unifier of x1 and x2. Otherwise x1 ̸= x2 and the instantiation Γ[x1 := x2]
is the most general unifier of x1 and x2, by Lemma 28. The length of Γ[x1 := x2] is
then less than the length of Γ.

Otherwise, both x1 and x2 are variables from ∆:
Since x1 and x2 are unifiable by a substitution that preserves the variables from ∆,
they have to be equal. Then id : Γ → Γ is the most general unifier of x1 and x2. ◀

Proof of Proposition 32. The local familial representability can be unfolded to the following
conditions:

Fix the following data:

An object Γ : ObC ;

An object Ω, a telescope ∆ : y(Ω) → Ty⋆
C and a map ρ : Γ → Ω;

Either:

An object Ξ and a map ξ : Γ.∆[ρ] → Ξ;

A type A : y(Γ.∆[ρ]) → TyC ;

A type A : y(Ω.∆) → TyC and a term a : (x : y(Γ.∆[ρ])) → TmC(A(ρ+(x)))

Then we have to construct the following components, strictly naturally in Γ:

An object Γ0 : ObC ;

A map ρ0 : Γ0 → Ω;

Either:

A map ξ0 : Γ0.∆[ρ0] → Ξ;

A type A0 : y(Γ0.∆[ρ0]) → TyC ;

A term a0 : (x : y(Γ0.∆[ρ0])) → TmC(A(ρ+
0 (x)));

Such that there exists a unique map f : Γ → Γ0 satisfying ρ = ρ0[f] and ξ = ξ0[f+],
A = A0[f+] or a = a0[f+].

TYPES 2021

3:22 Strictification of Weakly Stable Type-Theoretic Structures Using Generic Contexts

Ξ

Γ.∆[ρ] Γ0.∆[ρ0] Ω.∆

Γ Γ0 Ω

ρ+

f+

p∆[ρ]

ξ

ρ+
0

ξ0

p∆

ρ

f ρ0

We construct the most general generalizations by induction on the normal forms of ξ, A

or a. The strict naturality in Γ will be proven in a second step.

Case (Ξ = ⋄) and (ξ = ⟨⟩):
We pose Γ0 = Ω, ρ0 = id, ξ0 = ⟨⟩ and f = ρ.

Case (Ξ = Θ.A) and (ξ = ⟨θ, a⟩):
In that case θ : Γ.∆[ρ] → Θ and a : (x : y(Γ.∆[ρ])) → A(θ(x)).
By the induction hypothesis for θ, we have Γ0, ρ0 : Γ0 → Ω, θ0 : Γ0.∆[ρ0] → Θ and there
exists a unique map f : Γ → Γ0 such that ρ0[f] = ρ and θ0[f+] = θ.
By the induction hypothesis for a, we have Γ1, ρ1 : Γ1 → Γ0, a1 : Γ1.∆[ρ0][ρ1] and there
is a unique map g : Γ → Γ1 such that ρ1[g] = f and a1[g+] = a.
We then pose Γ2 = Γ1, ρ2 = ρ0 ◦ ρ1 and ξ2 = ⟨θ0[ρ1], a1⟩. The map g : Γ → Γ1 is then
the unique map such that ρ2[g] = ρ and ξ2[g+] = ξ.

Case (A = S[σ]):
Here σ : Γ → ∂S. We just use the induction hypothesis for σ, and pose A0 = S[σ0].

Case (a = a′[p∆[ρ]])
As a special case, we check if the term a depends on any variable from ∆[ρ]. If it can
be strengthened to a term a′ over Γ such that a′[p∆[ρ]] = a, we also know that the type
A cannot depend on any variable from ∆, and can be strengthened to A′ : y(Ω) → TyC
such that A′[p∆] = A. We then pose Γ0 = (ω : Ω).(a0 : A′(δ)), ρ0 = pA′ : Γ0 → Ω and
f = ⟨ρ, a′⟩.

Case (VarΓ.∆[ρ](a)):
If a is a variable from Γ.∆[ρ], then a has to be variable from ∆[ρ], as variables from Γ
are dealt with in the case above.
Then we let a0 be the corresponding variable from ∆ and we pose Γ0 = Ω, ρ0 = id and
f = ρ.

Case (a = f[τ]):
Here τ : Γ.∆[ρ] → ∂f and a : (x : y(Γ.∆[ρ])) → TmC(T f(τ(x))). We then know that
A[ρ+] = T f [τ].
By the induction hypothesis for τ , we have Γ0, ρ0 : Γ0 → Ω, τ0 : Γ0.∆[ρ0] → ∂f and there
is a unique map f : Γ → Γ0 such that ρ = ρ0[f] and τ = τ0[f+].
The types A[ρ+

0] and T f [τ0] may differ. We know however that they are unifiable by the
map f+; thus by first-order unification (Theorem 30), we can find a most general unifier
ρ1 : Γ1 → Γ0 of these two types. By the universal property of the most general unifier,
we have a factorization of f as a map g : Γ → Γ1 followed by ρ1 : Γ1 → Γ0.

R. Bocquet 3:23

Now we pose Γ2 = Γ1, ρ2 = ρ0 ◦ ρ1, a2 = f [τ [ρ+
1]]. The map g : Γ1 → Γ0 is then the

unique map such that ρ2[g] = ρ and a2[g] = τ .

It remains to prove that the above construction is strictly natural in Γ: we have to prove
for any ξ, A or a and any substitution σ : Λ → Γ that the most general generalizations of
ξ and ξ ◦ σ (or A and A[σ+], or a and a[σ+]) coincide. We prove this by induction on the
normal forms of ξ, A or a, following the inductive cases of the previous construction. It is
then straightforward to check that the construction follows the same cases for both ξ and
ξ[σ+] (or A and A[σ+], or a and a[σ+]).

The main subtlety happens when a : y(Γ.∆[ρ]) → TmC(−) is a variable from Γ. In
that case, the substituted term a[σ+] : y(Λ.∆[ρ][σ]) → TmC(−) is not necessarily a variable.
However it can be strengthened to a term that only depends on Λ. Thus our construction
of the most general generalization of both a and a[σ+] will use the special case for terms
that don’t depend on ∆. Without this special case, we would not be able to prove that our
construction is strictly natural in Γ. ◀

TYPES 2021

A Machine-Checked Proof of Birkhoff’s Variety
Theorem in Martin-Löf Type Theory
William DeMeo #

New Jersey Institute of Technology, Newark, NJ, USA

Jacques Carette #

McMaster University, Hamilton, Canada

Abstract
The Agda Universal Algebra Library is a project aimed at formalizing the foundations of universal
algebra, equational logic and model theory in dependent type theory using Agda. In this paper
we draw from many components of the library to present a self-contained, formal, constructive
proof of Birkhoff’s HSP theorem in Martin-Löf dependent type theory. This achieves one of the
project’s initial goals: to demonstrate the expressive power of inductive and dependent types for
representing and reasoning about general algebraic and relational structures by using them to
formalize a significant theorem in the field.

2012 ACM Subject Classification Theory of computation → Logic and verification; Computing
methodologies → Representation of mathematical objects; Theory of computation → Type theory

Keywords and phrases Agda, constructive mathematics, dependent types, equational logic, formal
verification, Martin-Löf type theory, model theory, universal algebra

Digital Object Identifier 10.4230/LIPIcs.TYPES.2021.4

Related Version Full Version: https://arxiv.org/abs/2101.10166

Supplementary Material Software (Agda Sources): https://github.com/ualib/agda-algebras
archived at swh:1:dir:29817e5c87bb55467269dad672f7f4b4152733d7

Funding William DeMeo: partially supported by ERC Consolidator Grant No. 771005.

Acknowledgements This work would not have been possible without the wonderful Agda language
and the Agda Standard Library, developed and maintained by The Agda Team [21]. We thank the
three anonymous referees for carefully reading the manuscript and offering many excellent suggestions
which resulted in a vast improvement in the overall presentation. One referee went above and beyond
and provided us with a simpler formalization of free algebras which led to simplifications of the
proof of the main theorem. We are extremely grateful for this.

1 Introduction

The Agda Universal Algebra Library (agda-algebras) [8] formalizes the foundations of universal
algebra in intensional Martin-Löf type theory (MLTT) using Agda [15, 18]. The library includes
a collection of definitions and verified theorems originated in classical (set-theory based)
universal algebra and equational logic, but adapted to MLTT.

The first major milestone of the project is a complete formalization of Birkhoff’s variety
theorem (also known as the HSP theorem) [4]. To the best of our knowledge, this is the first
time Birkhoff’s celebrated 1935 result has been formalized in MLTT.1

Our first attempt to formalize Birkhoff’s theorem suffered from two flaws.2 First, we
assumed function extensionality in MLTT; consequently, it was unclear whether the formal-
ization was fully constructive. Second, an inconsistency could be contrived by taking the

1 An alternative formalization based on classical set-theory was achieved in [13].
2 See the Birkhoff.lagda file in the ualib/ualib.gitlab.io repository (15 Jan 2021 commit 71f1738) [6].

© William DeMeo and Jacques Carette;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Types for Proofs and Programs (TYPES 2021).
Editors: Henning Basold, Jesper Cockx, and Silvia Ghilezan; Article No. 4; pp. 4:1–4:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:williamdemeo@gmail.com
https://orcid.org/0000-0003-1832-5690
mailto:carette@mcmaster.ca
https://orcid.org/0000-0001-8993-9804
https://doi.org/10.4230/LIPIcs.TYPES.2021.4
https://arxiv.org/abs/2101.10166
https://github.com/ualib/agda-algebras
https://archive.softwareheritage.org/swh:1:dir:29817e5c87bb55467269dad672f7f4b4152733d7
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://agda.github.io/agda-stdlib/
https://ualib.org/agda-algebras
https://ncatlab.org/nlab/show/Martin-L%C3%B6f+dependent+type+theory
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://ncatlab.org/nlab/show/Martin-L%C3%B6f+dependent+type+theory
https://ncatlab.org/nlab/show/Martin-L%C3%B6f+dependent+type+theory
https://ncatlab.org/nlab/show/Martin-L%C3%B6f+dependent+type+theory
https://github.com/ualib/ualib.github.io/blob/71f173858701398d56224dd79d152c380c0c2b5e/src/lagda/UALib/Birkhoff.lagda
https://github.com/ualib/ualib.github.io
https://github.com/ualib/ualib.github.io/tree/71f173858701398d56224dd79d152c380c0c2b5e
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 A Machine-Checked Proof of Birkhoff’s Theorem

type X, representing an arbitrary collection of variable symbols, to be the two element type
(see §7.1 for details). To resolve these issues, we developed a new formalization of the HSP
theorem based on setoids and rewrote much of the agda-algebras library to support this
approach. This enabled us to avoid function extensionality altogether. Moreover, the type X
of variable symbols was treated with more care using the context and environment types
that Andreas Abel uses in [1] to formalize Birkhoff’s completeness theorem. These design
choices are discussed further in §2.2–2.3.

What follows is a self-contained formal proof of the HSP theorem in Agda. This is achieved
by extracting a subset of the agda-algebras library, including only the pieces needed for the
proof, into a single literate Agda file.3 For spaces reasons, we elide some inessential parts, but
strive to preserve the essential content and character of the development. Specifically, routine
or overly technical components, as well as anything that does not seem to offer insight into
the central ideas of the proof are omitted. (The file src/Demos/HSP.lagda mentioned above
includes the full proof.)

In this paper, we highlight some of the more challenging aspects of formalizing universal
algebra in type theory. To some extent, this is a sobering glimpse of the significant technical
hurdles that must be overcome to do mathematics in dependent type theory. Nonetheless,
we hope to demonstrate that MLTT is a relatively natural language for formalizing universal
algebra. Indeed, we believe that researchers with sufficient patience and resolve can reap
the substantial rewards of deeper insight and greater confidence in their results by using
type theory and a proof assistant like Agda. On the other hand, this paper is probably not
the best place to learn about the latter, since we assume the reader is already familiar with
MLTT and Agda. In summary, our main contribution is to show that a straightforward but
very general representation of algebraic structures in dependent type theory is quite practical,
as we demonstrate by formalizing a major seminal result of universal algebra.

2 Preliminaries

2.1 Logical foundations
To best emulate MLTT, we use {-# OPTIONS –without-K –exact-split –safe #-}; without-K
disables Streicher’s K axiom; exact-split directs Agda to accept only definitions behaving like
judgmental equalities; safe ensures that nothing is postulated outright. (See [19, 20, 22].)

We also use some definitions from Agda’s standard library (ver. 1.7). As shown in
Appendix §A, these are imported using the open import directive and they include some
adjustments to “standard” Agda syntax. In particular, we use Type in place of Set, the infix
long arrow symbol, _−→_, in place of Func (the type of “setoid functions,” discussed in
§2.3), and the symbol _⟨$⟩_ in place of f (application of the map of a setoid function); we
use fst and snd, and sometimes |_| and ∥_∥, to denote the first and second projections out of
the product type _×_.

2.2 Setoids
A setoid is a pair consisting of a type and an equivalence relation on that type. Setoids are
useful for representing a set with an explicit, “local” notion of equivalence, instead of relying
on an implicit, “global” one as is more common in set theory. In reality, informal mathematical

3 src/Demos/HSP.lagda in the agda-algebras repository: github.com/ualib/agda-algebras

https://ualib.org/agda-algebras
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://ualib.org/agda-algebras
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://github.com/ualib/agda-algebras/blob/af4ab7a3bb415649dad398b4f43f3b79aeaddbfc/src/Demos/HSP.lagda
https://ncatlab.org/nlab/show/Martin-L%C3%B6f+dependent+type+theory
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://ncatlab.org/nlab/show/Martin-L%C3%B6f+dependent+type+theory
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://ncatlab.org/nlab/show/Martin-L%C3%B6f+dependent+type+theory
https://ncatlab.org/nlab/show/axiom+K+%28type+theory%29
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://github.com/ualib/agda-algebras/blob/af4ab7a3bb415649dad398b4f43f3b79aeaddbfc/src/Demos/HSP.lagda
https://ualib.org/agda-algebras
https://github.com/ualib/agda-algebras

W. DeMeo and J. Carette 4:3

practice relies on equivalence relations quite pervasively, taking great care to define only
functions that preserve equivalences, while eliding the details. To be properly formal, such
details must be made explicit. While there are many different workable approaches, the one
that requires no additional meta-theory is based on setoids, which is why we adopt it here.
While in some settings setoids are found by others to be burdensome, we have not found
them to be so for universal algebra.

The agda-algebras library was first developed without setoids, relying on propositional
equality instead, along with some experimental, domain-specific types for equivalence classes,
quotients, etc. This required postulating function extensionality,4 which is known to be
independent from MLTT [9, 10]; this was unsatisfactory as we aimed to show that the theorems
hold directly in MLTT without extra axioms. The present work makes no appeal to functional
extensionality or classical axioms like Choice or Excluded Middle.

2.3 Setoid functions

A setoid function is a function from one setoid to another that respects the underlying
equivalences. If A and B are setoids, we use A −→ B to denote the type of setoid functions
from A to B. We define the inverse of such a function in terms of the image of the function’s
domain, as follows.

module _ {A : Setoid α ρa}{B : Setoid β ρb} where
open Setoid B using (_≈_ ; sym) renaming (Carrier to B)

data Image_∋_ (f : A −→ B) : B → Type (α ⊔ β ⊔ ρb) where
eq : {b : B} → ∀ a → b ≈ f ⟨$⟩ a → Image f ∋ b

An inhabitant of the Image f ∋ b type is a point a : Carrier A, along with a proof p : b ≈ f a,
that f maps a to b. Since a proof of Image f ∋ b must include a concrete witness a : Carrier A,
we can actually compute a range-restricted right-inverse of f. Here is the definition of Inv
accompanied by a proof that it gives a right-inverse.

Inv : (f : A −→ B){b : B} → Image f ∋ b → Carrier A
Inv _ (eq a _) = a

InvIsInverser : {f : A −→ B}{b : B}(q : Image f ∋ b) → f ⟨$⟩ (Inv f q) ≈ b
InvIsInverser (eq _ p) = sym p

If f : A −→ B then we call f injective provided ∀(a0 a1 : A), f ⟨$⟩ a0 ≈B f ⟨$⟩ a1 implies
a0 ≈A a1; we call f surjective provided ∀(b : B) ∃(a : A) such that f ⟨$⟩ a ≈B b. We omit
the straightforward Agda definitions.

Factorization of setoid functions5

Any (setoid) function f : A −→ B factors as a surjective map toIm : A −→ Im f followed by
an injective map fromIm : Im f −→ B.

4 the axiom asserting that two point-wise equal functions are equal
5 The code in this paragraph was suggested by an anonymous referee.

TYPES 2021

https://ualib.org/agda-algebras
https://ncatlab.org/nlab/show/Martin-L%C3%B6f+dependent+type+theory
https://ncatlab.org/nlab/show/Martin-L%C3%B6f+dependent+type+theory
https://wiki.portal.chalmers.se/agda/pmwiki.php

4:4 A Machine-Checked Proof of Birkhoff’s Theorem

module _ {A : Setoid α ρa}{B : Setoid β ρb} where

Im : (f : A −→ B) → Setoid _ _
Carrier (Im f) = Carrier A
≈s (Im f) b1 b2 = f ⟨$⟩ b1 ≈ f ⟨$⟩ b2 where open Setoid B

isEquivalence (Im f) = record { refl = refl ; sym = sym; trans = trans }
where open Setoid B

toIm : (f : A −→ B) → A −→ Im f
toIm f = record { f = id ; cong = cong f }

fromIm : (f : A −→ B) → Im f −→ B
fromIm f = record { f = λ x → f ⟨$⟩ x ; cong = id }

fromIm-inj : (f : A −→ B) → IsInjective (fromIm f)
fromIm-inj _ = id

toIm-surj : (f : A −→ B) → IsSurjective (toIm f)
toIm-surj _ = eq _ (refls B)

3 Basic Universal Algebra

We now develop a working vocabulary in MLTT corresponding to classical, single-sorted,
set-based universal algebra. We cover a number of important concepts, but limit ourselves
to those required to prove Birkhoff’s HSP theorem. In each case, we give a type-theoretic
version of the informal definition, followed by its Agda implementation.

This section is organized into the following subsections: §3.1 defines a general type of
signatures of algebraic structures; §3.2 does the same for structures and their products; §3.3
defines homomorphisms, monomorphisms, and epimorphisms, presents types that codify
these concepts, and formally verifies some of their basic properties; §3.5–3.6 do the same for
subalgebras and terms, respectively.

3.1 Signatures
An (algebraic) signature is a pair S = (F , ρ) where F is a collection of operation symbols
and ρ : F → N is an arity function which maps each operation symbol to its arity. Here,
N denotes the arity type. Heuristically, the arity ρ f of an operation symbol f ∈ F may be
thought of as the number of arguments that f takes as “input.” We represent signatures as
inhabitants of the following dependent pair type.

Signature:(OV:Level)→Type(lsuc(O⊔V))

SignatureOV=Σ[F∈TypeO](F→TypeV)

Recalling our syntax for the first and second projections, if S is a signature, then | S |
denotes the set of operation symbols and ∥ S ∥ denotes the arity function. Thus, if f : | S |
is an operation symbol in the signature S, then ∥ S ∥ f is the arity of f.

We need to augment our Signature type so that it supports algebras over setoid domains.
To do so, following Abel [1], we define an operator that translates an ordinary signature into a
setoid signature, that is, a signature over a setoid domain. This raises a minor technical issue:

https://ncatlab.org/nlab/show/Martin-L%C3%B6f+dependent+type+theory
https://wiki.portal.chalmers.se/agda/pmwiki.php

W. DeMeo and J. Carette 4:5

given operations f and g, with arguments u : ∥ S ∥ f → A and v : ∥ S ∥ g → A, respectively,
and a proof of f ≡ g (intensional equality), we ought to be able to check whether u and v
are pointwise equal. Technically, u and v appear to inhabit different types; of course, this is
reconciled by the hypothesis f ≡ g, as we see in the next definition (borrowed from [1]).

EqArgs : {S : Signature O V}{ξ : Setoid α ρa}
→ ∀ {f g} → f ≡ g → (∥ S ∥ f → Carrier ξ) → (∥ S ∥ g → Carrier ξ) → Type (V ⊔ ρa)

EqArgs {ξ = ξ} ≡.refl u v = ∀ i → u i ≈ v i where open Setoid ξ using (_≈_)

This makes it possible to define an operator which translates a signature for algebras over
bare types into a signature for algebras over setoids. We denote this operator by ⟨_⟩.

⟨_⟩ : Signature O V → Setoid α ρa → Setoid _ _

Carrier (⟨ S ⟩ ξ) = Σ[f ∈ | S |] (∥ S ∥ f → ξ .Carrier)
≈s (⟨ S ⟩ ξ)(f , u)(g , v) = Σ[eqv ∈ f ≡ g] EqArgs{ξ = ξ} eqv u v

refle (isEquivalence (⟨ S ⟩ ξ)) = ≡.refl , λ i → refls ξ

syme (isEquivalence (⟨ S ⟩ ξ)) (≡.refl , g) = ≡.refl , λ i → syms ξ (g i)
transe (isEquivalence (⟨ S ⟩ ξ)) (≡.refl , g)(≡.refl , h) = ≡.refl , λ i → transs ξ (g i) (h i)

3.2 Algebras
An algebraic structure A = (A, FA) in the signature S = (F, ρ), or S-algebra, consists of

a type A, called the domain of the algebra;
a collection FA := { fA | f ∈ F, fA : (ρ f → A) → A } of operations on A;
a (potentially empty) collection of identities satisfied by elements and operations of A.

Our Agda implementation represents algebras as inhabitants of a record type with two
fields – a Domain setoid denoting the domain of the algebra, and an Interp function denoting
the interpretation in the algebra of each operation symbol in S. We postpone introducing
identities until §4.

record Algebra α ρ : Type (O ⊔ V ⊔ lsuc (α ⊔ ρ)) where
field Domain : Setoid α ρ

Interp : ⟨ S ⟩ Domain −→ Domain

Thus, for each operation symbol in S we have a setoid function f whose domain is a power of
Domain and whose codomain is Domain. Further, we define some syntactic sugar to make
our formalizations easier to read and reason about. Specifically, if A is an algebra, then

D[A] denotes the Domain setoid of A,
U[A] is the underlying carrier of (the Domain setoid of) A, and
f ˆ A denotes the interpretation of the operation symbol f in the algebra A.

We omit the straightforward formal definitions (see [7] for details).

Universe levels of algebra types

Types belong to universes, which are structured in Agda as follows: Type ℓ : Type (suc
ℓ), Type (suc ℓ) : Type (suc (suc ℓ)),6 While this means that Type ℓ has type Type
(suc ℓ), it does not imply that Type ℓ has type Type (suc (suc ℓ)). In other words, Agda’s

6 suc ℓ denotes the successor of ℓ in the universe hierarchy.

TYPES 2021

https://wiki.portal.chalmers.se/agda/pmwiki.php
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://wiki.portal.chalmers.se/agda/pmwiki.php

4:6 A Machine-Checked Proof of Birkhoff’s Theorem

universes are non-cumulative. This can be advantageous as it becomes possible to treat
size issues more generally and precisely. However, dealing with explicit universe levels can
be daunting, and the standard literature (in which uniform smallness is typically assumed)
offers little guidance. While in some settings, such as category theory, formalizing in Agda
works smoothly with respect to universe levels (see [12]), in universal algebra the terrain
is bumpier. Thus, it seems worthwhile to explain how we make use of universe lifting and
lowering functions, available in the Agda Standard Library, to develop domain-specific tools
for dealing with Agda’s non-cumulative universe hierarchy.

The Lift operation of the standard library embeds a type into a higher universe. Special-
izing Lift to our situation, we define a function Lift-Alg with the following interface.

Lift-Alg : Algebra α ρa → (ℓ0 ℓ1 : Level) → Algebra (α ⊔ ℓ0) (ρa ⊔ ℓ1)
Lift-Alg takes an algebra parametrized by levels a and ρa and constructs a new algebra whose
carrier inhabits Type (α ⊔ ℓ0) and whose equivalence inhabits Rel Carrier (ρa ⊔ ℓ1). To be
useful, this lifting operation should result in an algebra with the same semantic properties as
the one we started with. We will see in §3.4 that this is indeed the case.

Product Algebras

We define the product of a family of algebras as follows. Let ι be a universe and I : Type ι

a type (the “indexing type”). Then A : I → Algebra α ρa represents an indexed family of
algebras. Denote by

d
A the product of algebras in A (or product algebra), by which we mean

the algebra whose domain is the Cartesian product Π i : I , D[A i] of the domains of the
algebras in A, and whose operations are those arising from pointwise interpretation in the
obvious way: if f is a J-ary operation symbol and if a : Π i : I , J → D[A i] is, for each
i : I, a J-tuple of elements of the domain D[A i], then we define the interpretation of f in

d
Aby

(f ˆ d
A) a := λ (i : I) → (f ˆ A i)(a i).

Here is the formal definition of the product algebra type in Agda.

module _ {ι : Level}{I : Type ι } where
d

: (A : I → Algebra α ρa) → Algebra (α ⊔ ι) (ρa ⊔ ι)

Domain (
d

A) = record { Carrier = ∀ i → U[A i]
; _≈_ = λ a b → ∀ i → (_≈s_ D[A i]) (a i)(b i)
; isEquivalence =

record { refl = λ i → refle (isEquivalence D[A i])
; sym = λ x i → syme (isEquivalence D[A i])(x i)
; trans = λ x y i → transe (isEquivalence D[A i])(x i)(y i) }}

Interp (
d

A) ⟨$⟩ (f , a) = λ i → (f ˆ (A i)) (flip a i)
cong (Interp (

d
A)) (≡.refl , f=g) = λ i → cong (Interp (A i)) (≡.refl , flip f=g i)

Evidently, the carrier of the product algebra type is indeed the (dependent) product of the
carriers in the indexed family. The rest of the definitions are the “pointwise” versions of the
underlying ones.

3.3 Structure preserving maps and isomorphism
Throughout the rest of the paper, unless stated otherwise, A and B will denote S-algebras
inhabiting the types Algebra α ρa and Algebra β ρb, respectively.

https://wiki.portal.chalmers.se/agda/pmwiki.php
https://agda.github.io/agda-stdlib/
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://wiki.portal.chalmers.se/agda/pmwiki.php

W. DeMeo and J. Carette 4:7

A homomorphism (or “hom”) from A to B is a setoid function h : D[A] −→ D[B]
that is compatible with all basic operations; that is, for every operation symbol f : | S | and
all tuples a : ∥ S ∥ f → U[A], we have h ⟨$⟩ (f ˆ A) a ≈ (f ˆ B) λ x → h ⟨$⟩ (a x).

It is convenient to first formalize “compatible” (compatible-map-op), representing the
assertion that a given setoid function h : D[A] −→ D[B] commutes with a given operation
symbol f, and then generalize over operation symbols to yield the type (compatible-map) of
compatible maps from (the domain of) A to (the domain of) B.

module _ (A : Algebra α ρa)(B : Algebra β ρb) where

compatible-map-op : (D[A] −→ D[B]) → | S | → Type _
compatible-map-op h f = ∀ {a} → h ⟨$⟩ (f ˆ A) a ≈ (f ˆ B) λ x → h ⟨$⟩ (a x)

where open Setoid D[B] using (_≈_)

compatible-map : (D[A] −→ D[B]) → Type _
compatible-map h = ∀ {f} → compatible-map-op h f

Using these we define the property (IsHom) of being a homomorphism, and finally the type
(hom) of homomorphisms from A to B.

record IsHom (h : D[A] −→ D[B]) : Type (O ⊔ V ⊔ α ⊔ ρb) where
constructor mkhom
field compatible : compatible-map h

hom : Type _
hom = Σ (D[A] −→ D[B]) IsHom

Thus, an inhabitant of hom is a pair (h , p) consisting of a setoid function h, from the domain
of A to that of B, along with a proof p that h is a homomorphism.

A monomorphism (resp. epimorphism) is an injective (resp. surjective) homomorphism.
The agda-algebras library defines predicates IsMon and IsEpi for these, as well as mon and
epi for the corresponding types.

record IsMon (h : D[A] −→ D[B]) : Type (O ⊔ V ⊔ α ⊔ ρa ⊔ ρb) where
field isHom : IsHom h

isInjective : IsInjective h
HomReduct : hom
HomReduct = h , isHom

mon : Type _
mon = Σ (D[A] −→ D[B]) IsMon

As with hom, the type mon is a dependent product type; each inhabitant is a pair consisting
of a setoid function, say, h, along with a proof that h is a monomorphism.

record IsEpi (h : D[A] −→ D[B]) : Type (O ⊔ V ⊔ α ⊔ β ⊔ ρb) where
field isHom : IsHom h

isSurjective : IsSurjective h
HomReduct : hom
HomReduct = h , isHom

epi : Type _
epi = Σ (D[A] −→ D[B]) IsEpi

TYPES 2021

https://ualib.org/agda-algebras

4:8 A Machine-Checked Proof of Birkhoff’s Theorem

Composition of homomorphisms

The composition of homomorphisms is again a homomorphism, and similarly for epimorphisms
and monomorphisms. The proofs of these facts are straightforward so we omit them, but
give them the names ◦-hom and ◦-epi so we can refer to them below.

Two structures are isomorphic provided there are homomorphisms from each to the other
that compose to the identity. We define the following record type to represent this concept.

module _ (A : Algebra α ρa) (B : Algebra β ρb) where
open Setoid D[A] using () renaming (_≈_ to _≈A_)
open Setoid D[B] using () renaming (_≈_ to _≈B_)

record _∼=_ : Type (O ⊔ V ⊔ α ⊔ ρa ⊔ β ⊔ ρb) where
constructor mkiso
field to : hom A B

from : hom B A
to∼from : ∀ b → | to | ⟨$⟩ (| from | ⟨$⟩ b) ≈B b
from∼to : ∀ a → | from | ⟨$⟩ (| to | ⟨$⟩ a) ≈A a

The agda-algebras library also includes formal proof that the to and from maps are bijections
and that _∼=_ is an equivalence relation, but we suppress these details.

Homomorphic images

We have found that a useful way to encode the concept of homomorphic image is to produce
a witness, that is, a surjective hom. Thus we define the type of surjective homs and also
record the fact that an algebra is its own homomorphic image via the identity hom.7

IsHomImageOf : (B : Algebra β ρb)(A : Algebra α ρa) → Type _
B IsHomImageOf A = Σ[φ ∈ hom A B] IsSurjective | φ |

IdHomImage : {A : Algebra α ρa} → A IsHomImageOf A
IdHomImage {α = α}{A = A} = id , λ {y} → Image_∋_.eq y refl

where open Setoid D[A] using (refl)

Factorization of homomorphisms

Another theorem in the agda-algebras library, called HomFactor, formalizes the following
factorization result: if g : hom A B, h : hom A C, h is surjective, and ker h ⊆ ker g, then
there exists φ : hom C B such that g = φ ◦ h. A special case of this result that we use
below is the fact that the setoid function factorization we saw above lifts to factorization of
homomorphisms. Moreover, we associate a homomorphism h with its image – which is (the
domain of) a subalgebra of the codomain of h – using the function HomIm defined below.8

module _ {A : Algebra α ρa}{B : Algebra β ρb} where

HomIm : (h : hom A B) → Algebra _ _
Domain (HomIm h) = Im | h |
Interp (HomIm h) ⟨$⟩ (f , la) = (f ˆ A) la
cong (Interp (HomIm h)) {x1 , x2} {.x1 , y2} (≡.refl , e) =

7 Here and elsewhere we use the shorthand ov α := O ⊔ V ⊔ α, for any level α.
8 The definition of HomIm was provided by an anonymous referee.

https://ualib.org/agda-algebras
https://ualib.org/agda-algebras

W. DeMeo and J. Carette 4:9

begin
| h | ⟨$⟩ (Interp A ⟨$⟩ (x1 , x2)) ≈⟨ h-compatible ⟩

Interp B ⟨$⟩ (x1 , λ x → | h | ⟨$⟩ x2 x) ≈⟨ cong (Interp B) (≡.refl , e) ⟩
Interp B ⟨$⟩ (x1 , λ x → | h | ⟨$⟩ y2 x) ≈˘⟨ h-compatible ⟩

| h | ⟨$⟩ (Interp A ⟨$⟩ (x1 , y2)) ■
where open Setoid D[B] ; open SetoidReasoning D[B]

open IsHom ∥ h ∥ renaming (compatible to h-compatible)

toHomIm : (h : hom A B) → hom A (HomIm h)
toHomIm h = toIm | h | , mkhom (refls D[B])

fromHomIm : (h : hom A B) → hom (HomIm h) B
fromHomIm h = fromIm | h | , mkhom (IsHom.compatible ∥ h ∥)

3.4 Lift-Alg is an algebraic invariant
The Lift-Alg operation neatly resolves the technical problem of universe non-cumulativity
because isomorphism classes of algebras are closed under Lift-Alg.

module _ {A : Algebra α ρa}{ℓ : Level} where
Lift-∼=l : A ∼= (Lift-Algl A ℓ)
Lift-∼=l = mkiso ToLiftl FromLiftl (ToFromLiftl{A = A}) (FromToLiftl{A = A}{ℓ})
Lift-∼=r : A ∼= (Lift-Algr A ℓ)
Lift-∼=r = mkiso ToLiftr FromLiftr (ToFromLiftr{A = A}) (FromToLiftr{A = A}{ℓ})

Lift-∼= : {A : Algebra α ρa}{ℓ ρ : Level} → A ∼= (Lift-Alg A ℓ ρ)
Lift-∼= = ∼=-trans Lift-∼=l Lift-∼=r

3.5 Subalgebras
We say that A is a subalgebra of B and write A ≤ B just in case A can be homomorphically
embedded in B; in other terms, A ≤ B iff there exists an injective hom from A to B.

≤ : Algebra α ρa → Algebra β ρb → Type _
A ≤ B = Σ[h ∈ hom A B] IsInjective | h |

The subalgebra relation is reflexive, by the identity monomorphism (and transitive by
composition of monomorphisms, hence, a preorder, though we won’t need this fact here).

≤-reflexive : {A : Algebra α ρa} → A ≤ A
≤-reflexive = id , id

We conclude this subsection with a simple utility function that converts a monomorphism
into a proof of a subalgebra relationship.

mon→≤ : {A : Algebra α ρa}{B : Algebra β ρb} → mon A B → A ≤ B
mon→≤ {A = A}{B} x = mon→intohom A B x

3.6 Terms
Fix a signature S and let X denote an arbitrary nonempty collection of variable symbols.
Such a collection is called a context. Assume the symbols in X are distinct from the operation
symbols of S, that is X ∩ | S | = ∅. A word in the language of S is a finite sequence of
members of X ∪ | S |. We denote the concatenation of such sequences by simple juxtaposition.

TYPES 2021

4:10 A Machine-Checked Proof of Birkhoff’s Theorem

Let S0 denote the set of nullary operation symbols of S. We define by induction on n the
sets T n of words over X ∪ | S | as follows: T 0 := X ∪ S0 and T n+1 := T n ∪ Tn, where Tn

is the collection of all f t such that f : | S | and t : ∥ S ∥ f → T n. An S-term is a term in
the language of S and the collection of all S-terms in the context X is Term X :=

⋃
n T n.

In type theory, this translates to two cases: variable injection and applying an operation
symbol to a tuple of terms. This represents each term as a tree with an operation symbol
at each node and a variable symbol at each leaf g; hence the constructor names (g for
“generator” and node for “node”) in the following inductively defined type.

data Term (X : Type χ) : Type (ov χ) where
g : X → Term X
node : (f : | S |)(t : ∥ S ∥ f → Term X) → Term X

The term algebra

We enrich the Term type to a setoid of S-terms, which will ultimately be the domain of an
algebra, called the term algebra in the signature S. This requires an equivalence on terms.

module _ {X : Type χ } where

data _≃_ : Term X → Term X → Type (ov χ) where
rfl : {x y : X} → x ≡ y → (g x) ≃ (g y)
gnl : ∀ {f}{s t : ∥ S ∥ f → Term X} → (∀ i → (s i) ≃ (t i)) → (node f s) ≃ (node f t)

Below we denote by ≃-isEquiv the easy (omitted) proof that _≃_ is an equivalence relation.
For a given signature S and context X, we define the algebra T X, known as the term

algebra in S over X. The domain of T X is Term X and, for each operation symbol f : | S |,
we define f ˆ T X to be the operation which maps each tuple t : ∥ S ∥ f → Term X of terms
to the formal term f t.

TermSetoid : (X : Type χ) → Setoid _ _
TermSetoid X = record { Carrier = Term X ; _≈_ = _≃_ ; isEquivalence = ≃-isEquiv }

T : (X : Type χ) → Algebra (ov χ) (ov χ)
Algebra.Domain (T X) = TermSetoid X
Algebra.Interp (T X) ⟨$⟩ (f , ts) = node f ts
cong (Algebra.Interp (T X)) (≡.refl , ss≃ts) = gnl ss≃ts

Environments and interpretation of terms

Fix a signature S and a context X. An environment for A and X is a setoid whose carrier is
a mapping from the variable symbols X to the domain U[A] and whose equivalence relation
is pointwise equality. Our formalization of this concept is the same as that of [1], which Abel
uses to formalize Birkhoff’s completeness theorem.

module Environment (A : Algebra α ℓ) where
open Setoid D[A] using (_≈_ ; refl ; sym ; trans)

Env : Type χ → Setoid _ _
Env X = record { Carrier = X → U[A]

; _≈_ = λ ρ τ → (x : X) → ρ x ≈ τ x
; isEquivalence = record { refl = λ _ → refl

; sym = λ h x → sym (h x)
; trans = λ g h x → trans (g x)(h x) }}

W. DeMeo and J. Carette 4:11

The interpretation of a term evaluated in a particular environment is defined as follows.

J_K : {X : Type χ}(t : Term X) → (Env X) −→ D[A]
J g x K ⟨$⟩ ρ = ρ x
J node f args K ⟨$⟩ ρ = (Interp A) ⟨$⟩ (f , λ i → J args i K ⟨$⟩ ρ)
cong J g x K u≈v = u≈v x
cong J node f args K x≈y = cong (Interp A)(≡.refl , λ i → cong J args i K x≈y)

Two terms are proclaimed equal if they are equal for all environments.

Equal : {X : Type χ}(s t : Term X) → Type _
Equal {X = X} s t = ∀ (ρ : Carrier (Env X)) → J s K ⟨$⟩ ρ ≈ J t K ⟨$⟩ ρ

Proof that Equal is an equivalence relation, and that the implication s ≃ t → Equal s t holds
for all terms s and t, is also found in [1]. We denote the latter by ≃→Equal in the sequel.

Compatibility of terms

We need to formalize two more concepts involving terms. The first (comm-hom-term) is the
assertion that every term commutes with every homomorphism, and the second (interp-prod)
is the interpretation of a term in a product algebra.

module _ {X : Type χ}{A : Algebra α ρa}{B : Algebra β ρb}(hh : hom A B) where
open Environment A using (J_K)
open Environment B using () renaming (J_K to J_KB)
open Setoid D[B] using (_≈_ ; refl)
private hfunc = | hh | ; h = _⟨$⟩_ hfunc

comm-hom-term : (t : Term X) (a : X → U[A]) → h (J t K ⟨$⟩ a) ≈ J t KB ⟨$⟩ (h ◦ a)
comm-hom-term (g x) a = refl
comm-hom-term (node f t) a = begin

h(J node f t K ⟨$⟩ a) ≈⟨ compatible ∥ hh ∥ ⟩
(f ˆ B)(λ i → h(J t i K ⟨$⟩ a)) ≈⟨ cong(Interp B)(≡.refl , λ i → comm-hom-term(t i) a) ⟩
J node f t KB ⟨$⟩ (h ◦ a) ■ where open SetoidReasoning D[B]

module _ {X : Type χ}{ι : Level} {I : Type ι} (A : I → Algebra α ρa) where
open Setoid D[

d
A] using (_≈_)

open Environment using (J_K ; ≃→Equal)

interp-prod : (p : Term X) → ∀ ρ → (J
d

A K p) ⟨$⟩ ρ ≈ λ i → (J A i K p) ⟨$⟩ λ x → (ρ x) i
interp-prod (g x) = λ ρ i → ≃→Equal (A i) (g x) (g x) ≃-isRefl λ _ → (ρ x) i
interp-prod (node f t) = λ ρ → cong (Interp (

d
A)) (≡.refl , λ j k → interp-prod (t j) ρ k)

4 Equational Logic

4.1 Term identities, equational theories, and the |= relation
An S-term equation (or S-term identity) is an ordered pair (p , q) of S-terms, also denoted
by p ≈ q. We define an equational theory (or algebraic theory) to be a pair T = (S , E)
consisting of a signature S and a collection E of S-term equations.9

9 Some authors reserve the term theory for a deductively closed set of equations, that is, a set of equations
that is closed under entailment.

TYPES 2021

4:12 A Machine-Checked Proof of Birkhoff’s Theorem

We say that the algebra A models the identity p ≈ q and we write A |= p ≈ q if for
all ρ : X → D[A] we have J p K ⟨$⟩ ρ ≈ J q K ⟨$⟩ ρ. In other words, when interpreted in
the algebra A, the terms p and q are equal no matter what values are assigned to variable
symbols occurring in p and q. If K is a class of algebras of a given signature, then we write
K ||= p ≈ q and say that K models the identity p ≈ q provided A |= p ≈ q for every A ∈ K.

module _ {X : Type χ} where
|=≈_ : Algebra α ρa → Term X → Term X → Type _
A |= p ≈ q = Equal p q where open Environment A

||=≈_ : Pred (Algebra α ρa) ℓ → Term X → Term X → Type _
K ||= p ≈ q = ∀ A → K A → A |= p ≈ q

We represent a set of term identities as a predicate over pairs of terms, and we denote by
A E the assertion that A models p ≈ q for all (p , q) ∈ E.

_ _ : (A : Algebra α ρa) → Pred(Term X × Term X)(ov χ) → Type _
A E = ∀ {p q} → (p , q) ∈ E → Equal p q where open Environment A

An important property of the binary relation |= is algebraic invariance (i.e., invariance under
isomorphism). We formalize this result as follows.

module _ {X : Type χ}{A : Algebra α ρa}(B : Algebra β ρb)(p q : Term X) where

|=-I-invar : A |= p ≈ q → A ∼= B → B |= p ≈ q
|=-I-invar Apq (mkiso fh gh f∼g g∼f) ρ = begin

J p K ⟨$⟩ ρ ≈˘⟨ cong J p K (f∼g ◦ ρ) ⟩
J p K ⟨$⟩ (f ◦ (g ◦ ρ)) ≈˘⟨ comm-hom-term fh p (g ◦ ρ) ⟩
f(J p KA ⟨$⟩ (g ◦ ρ)) ≈⟨ cong | fh | (Apq (g ◦ ρ)) ⟩
f(J q KA ⟨$⟩ (g ◦ ρ)) ≈⟨ comm-hom-term fh q (g ◦ ρ) ⟩
J q K ⟨$⟩ (f ◦ (g ◦ ρ)) ≈⟨ cong J q K (f∼g ◦ ρ) ⟩
J q K ⟨$⟩ ρ ■
where private f = _⟨$⟩_ | fh | ; g = _⟨$⟩_ | gh |

open Environment A using () renaming (J_K to J_KA)
open Environment B using (J_K) ; open SetoidReasoning D[B]

If K is a class of S-algebras, the set of identities modeled by K, denoted Th K, is called the
equational theory of K. If E is a set of S-term identities, the class of algebras modeling E,
denoted Mod E, is called the equational class axiomatized by E. We codify these notions in
the next two definitions.

Th : {X : Type χ} → Pred (Algebra α ρa) ℓ → Pred(Term X × Term X) _
Th K = λ (p , q) → K ||= p ≈ q

Mod : {X : Type χ} → Pred(Term X × Term X) ℓ → Pred (Algebra α ρa) _
Mod E A = ∀ {p q} → (p , q) ∈ E → Equal p q where open Environment A

4.2 The Closure Operators H, S, P and V
Fix a signature S, let K be a class of S-algebras, and define

H K := the class of all homomorphic images of members of K;
S K := the class of all subalgebras of members of K;
P K := the class of all products of members of K.

W. DeMeo and J. Carette 4:13

H, S, and P are closure operators (expansive, monotone, and idempotent). A class K of
S-algebras is said to be closed under the taking of homomorphic images provided H K ⊆ K.
Similarly, K is closed under the taking of subalgebras (resp., arbitrary products) provided
S K ⊆ K (resp., P K ⊆ K). The operators H, S, and P can be composed with one another
repeatedly, forming yet more closure operators. We represent these three closure operators
in type theory as follows.

module _ {α ρa β ρb : Level} where
private a = α ⊔ ρa

H : ∀ ℓ → Pred(Algebra α ρa) (a ⊔ ov ℓ) → Pred(Algebra β ρb) _
H _ K B = Σ[A ∈ Algebra α ρa] A ∈ K × B IsHomImageOf A

S : ∀ ℓ → Pred(Algebra α ρa) (a ⊔ ov ℓ) → Pred(Algebra β ρb) _
S _ K B = Σ[A ∈ Algebra α ρa] A ∈ K × B ≤ A

P : ∀ ℓ ι → Pred(Algebra α ρa) (a ⊔ ov ℓ) → Pred(Algebra β ρb) _
P _ ι K B = Σ[I ∈ Type ι] (Σ[A ∈ (I → Algebra α ρa)] (∀ i → A i ∈ K) × (B ∼=

d
A))

Identities modeled by an algebra A are also modeled by every homomorphic image of A
and by every subalgebra of A. We refer to these facts as |=-H-invar and |=-S-invar; their
definitions are similar to that of |=-I-invar. An identity satisfied by all algebras in an indexed
collection is also satisfied by the product of algebras in the collection. We refer to this fact
as |=-P-invar.

A variety is a class of S-algebras that is closed under the taking of homomorphic images,
subalgebras, and arbitrary products. If we define V K := H (S (P K)), then K is a variety
iff V K ⊆ K. The class V K is called the varietal closure of K. Here is how we define V
in type theory. (The explicit universe level declarations that appear in the definition are
needed for disambiguation.)

module _ {α ρa β ρb γ ρc δ ρd : Level} where
private a = α ⊔ ρa ; b = β ⊔ ρb

V : ∀ ℓ ι → Pred(Algebra α ρa) (a ⊔ ov ℓ) → Pred(Algebra δ ρd) _
V ℓ ι K = H{γ}{ρc}{δ}{ρd} (a ⊔ b ⊔ ℓ ⊔ ι) (S{β}{ρb} (a ⊔ ℓ ⊔ ι) (P ℓ ι K))

The classes H K, S K, P K, and V K all satisfy the same term identities. We will only
use a subset of the inclusions needed to prove this assertion.10 First, the closure operator H
preserves the identities modeled by the given class; this follows almost immediately from the
invariance lemma |=-H-invar.

module _ {X : Type χ}{K : Pred(Algebra α ρa) (α ⊔ ρa ⊔ ov ℓ)}{p q : Term X} where
H-id1 : K ||= p ≈ q → H{β = α}{ρa}ℓ K ||= p ≈ q
H-id1 σ B (A , kA , BimgA) = |=-H-invar{p = p}{q} (σ A kA) BimgA

The analogous preservation result for S is a consequence of the invariance lemma |=-S-invar;
the converse, which we call S-id2, has an equally straightforward proof.

S-id1 : K ||= p ≈ q → S{β = α}{ρa}ℓ K ||= p ≈ q
S-id1 σ B (A , kA , B≤A) = |=-S-invar{p = p}{q} (σ A kA) B≤A

10 The others are included in the Setoid.Varieties.Preservation module of the agda-algebras library.

TYPES 2021

https://ualib.org/Setoid.Varieties.Preservation.html
https://ualib.org/agda-algebras

4:14 A Machine-Checked Proof of Birkhoff’s Theorem

S-id2 : S ℓ K ||= p ≈ q → K ||= p ≈ q
S-id2 Spq A kA = Spq A (A , (kA , ≤-reflexive))

The agda-algebras library includes analogous pairs of implications for P, H, and V, called
P-id1, P-id2, H-id1, etc. whose formalizations we suppress.

5 Free Algebras

5.1 The absolutely free algebra
The term algebra T X is the absolutely free S-algebra over X. That is, for every S-algebra A,
the following hold.

Every function from X to U[A] lifts to a homomorphism from T X to A.
That homomorphism is unique.

Here we formalize the first of these properties by defining the lifting function free-lift and its
setoid analog free-lift-func, and then proving the latter is a homomorphism.11

module _ {X : Type χ}{A : Algebra α ρa}(h : X → U[A]) where
free-lift : U[T X] → U[A]
free-lift (g x) = h x
free-lift (node f t) = (f ˆ A) λ i → free-lift (t i)

free-lift-func : D[T X] −→ D[A]
free-lift-func ⟨$⟩ x = free-lift x
cong free-lift-func = flcong where

open Setoid D[A] using (_≈_) renaming (reflexive to reflexiveA)
flcong : ∀ {s t} → s ≃ t → free-lift s ≈ free-lift t
flcong (_≃_.rfl x) = reflexiveA (≡.cong h x)
flcong (_≃_.gnl x) = cong (Interp A) (≡.refl , λ i → flcong (x i))

lift-hom : hom (T X) A
lift-hom = free-lift-func ,

mkhom λ{_}{a} → cong (Interp A) (≡.refl , λ i → (cong free-lift-func){a i} ≃-isRefl)

It turns out that the interpretation of a term p in an environment η is the same as the
free lift of η evaluated at p. We apply this fact a number of times in the sequel.

module _ {X : Type χ} {A : Algebra α ρa} where
open Setoid D[A] using (_≈_ ; refl)
open Environment A using (J_K)

free-lift-interp : (η : X → U[A])(p : Term X) → J p K ⟨$⟩ η ≈ (free-lift{A = A} η) p
free-lift-interp η (g x) = refl
free-lift-interp η (node f t) = cong (Interp A) (≡.refl , (free-lift-interp η) ◦ t)

5.2 The relatively free algebra
Given an arbitrary class K of S-algebras, we cannot expect that T X belongs to K. Indeed,
there may be no free algebra in K. Nonetheless, it is always possible to construct an algebra
that is free for K and belongs to the class S (P K). Such an algebra is called a relatively

11 For the proof of uniqueness, see the Setoid.Terms.Properties module of the agda-algebras library.

https://ualib.org/agda-algebras
https://ualib.org/Setoid.Terms.Properties.html
https://ualib.org/agda-algebras

W. DeMeo and J. Carette 4:15

free algebra over X (relative to K). There are several informal approaches to defining this
algebra. We now describe the approach on which our formal construction is based and then
we present the formalization.

Let F[X] denote the relatively free algebra over X. We represent F[X] as the quotient
T X / ≈ where x ≈ y if and only if h x = h y for every homomorphism h from T X into
a member of K. More precisely, if A ∈ K and h : hom (T X) A, then h factors as T X
h
↠ HomIm h

⊆
↣ A and T X / ker h ∼= HomIm h ≤ A; that is, T X / ker h is (isomorphic

to) an algebra in S K. Letting ≈ :=
⋂

{θ ∈ Con T X | T X / θ ∈ S K }, observe that
F[X] := T X / ≈ is a subdirect product of the algebras {T X / ker h } as h ranges over all
homomorphisms from T X to algebras in K. Thus, F[X] ∈ P (S K) ⊆ S (P K). As we have
seen, every map ρ : X → U[A] extends uniquely to a homomorphism h : hom (T X) A and
h factors through the natural projection T X → F[X] (since ≈ ⊆ ker h) yielding a unique
homomorphism from F[X] to A extending ρ.

In Agda we construct F[X] as a homomorphic image of T X in the following way. First,
given X we define C as the product of pairs (A, ρ) of algebras A ∈ K along with environments
ρ : X → U[A]. To do so, we contrive an index type for the product; each index is a triple
(A, p, ρ) where A is an algebra, p is proof of A ∈ K, and ρ : X → U[A] is an arbitrary
environment.

module FreeAlgebra (K : Pred (Algebra α ρa) ℓ) where
private c = α ⊔ ρa ; ι = ov c ⊔ ℓ

I : {χ : Level} → Type χ → Type (ι ⊔ χ)
I X = Σ[A ∈ Algebra α ρa] A ∈ K × (X → U[A])

C : {χ : Level} → Type χ → Algebra (ι ⊔ χ)(ι ⊔ χ)
C X =

d
{I = I X} |_|

We then define F[X] to be the image of a homomorphism from T X to C as follows.

homC : (X : Type χ) → hom (T X) (C X)
homC X =

d
-hom-co _ (λ i → lift-hom (snd ∥ i ∥))

F[_] : {χ : Level} → Type χ → Algebra (ov χ) (ι ⊔ χ)
F[X] = HomIm (homC X)

Observe that if the identity p ≈ q holds in all A ∈ K (for all environments), then
p ≈ q holds in F[X]; equivalently, the pair (p , q) belongs to the kernel of the natural
homomorphism from T X onto F[X]. This natural epimorphism is defined as follows.

module FreeHom {K : Pred(Algebra α ρa) (α ⊔ ρa ⊔ ov ℓ)} where
private c = α ⊔ ρa ; ι = ov c ⊔ ℓ

open FreeAlgebra K using (F[_] ; homC)

epiF[_] : (X : Type c) → epi (T X) F[X]
epiF[X] = | toHomIm (homC X) | , record { isHom = ∥ toHomIm (homC X) ∥

; isSurjective = toIm-surj | homC X | }

homF[_] : (X : Type c) → hom (T X) F[X]
homF[X] = IsEpi.HomReduct ∥ epiF[X] ∥

Before formalizing the HSP theorem in the next section, we need to prove the following
important property of the relatively free algebra: For every algebra A, if A Th (V K),
then there exists an epimorphism from F[A] onto A, where A denotes the carrier of A.

TYPES 2021

https://wiki.portal.chalmers.se/agda/pmwiki.php

4:16 A Machine-Checked Proof of Birkhoff’s Theorem

module _ {A : Algebra (α ⊔ ρa ⊔ ℓ)(α ⊔ ρa ⊔ ℓ)}{K : Pred(Algebra α ρa)(α ⊔ ρa ⊔ ov ℓ)} where
private c = α ⊔ ρa ⊔ ℓ ; ι = ov c
open FreeAlgebra K using (F[_] ; C)
open Setoid D[A] using (refl ; sym ; trans) renaming (Carrier to A ; _≈_ to _≈A_)

F-ModTh-epi : A ∈ Mod (Th K) → epi F[A] A
F-ModTh-epi A∈ModThK = φ , isEpi where

φ : D[F[A]] −→ D[A]
⟨$⟩ φ = free-lift{A = A} id
cong φ {p} {q} pq = Goal

where
lift-pq : (p , q) ∈ Th K

lift-pq B x ρ = begin
J p K ⟨$⟩ ρ ≈⟨ free-lift-interp {A = B} ρ p ⟩
free-lift ρ p ≈⟨ pq (B , x , ρ) ⟩
free-lift ρ q ≈˘⟨ free-lift-interp{A = B} ρ q ⟩
J q K ⟨$⟩ ρ ■

where open SetoidReasoning D[B] ; open Environment B using (J_K)

Goal : free-lift id p ≈A free-lift id q
Goal = begin

free-lift id p ≈˘⟨ free-lift-interp {A = A} id p ⟩
J p K ⟨$⟩ id ≈⟨ A∈ModThK {p = p} {q} lift-pq id ⟩
J q K ⟨$⟩ id ≈⟨ free-lift-interp {A = A} id q ⟩
free-lift id q ■

where open SetoidReasoning D[A] ; open Environment A using (J_K)

isEpi : IsEpi F[A] A φ

isEpi = record { isHom = mkhom refl ; isSurjective = eq (g _) refl }

F-ModThV-epi : A ∈ Mod (Th (V ℓ ι K)) → epi F[A] A
F-ModThV-epi A∈ModThVK = F-ModTh-epi λ {p}{q} → Goal {p}{q}

where
Goal : A ∈ Mod (Th K)
Goal {p}{q} x ρ = A∈ModThVK{p}{q} (V-id1 ℓ {p = p}{q} x) ρ

6 Birkhoff’s Variety Theorem

Let K be a class of algebras and recall that K is a variety provided it is closed under
homomorphisms, subalgebras and products; equivalently, V K ⊆ K. (Observe that K ⊆ V
K holds for all K since V is a closure operator.) We call K an equational class if it is the
class of all models of some set of identities.

Birkhoff’s variety theorem, also known as the HSP theorem, asserts that K is an equational
class if and only if it is a variety. In this section, we present the statement and proof of this
theorem – first in a style similar to what one finds in textbooks (e.g., [3, Theorem 4.41]),
and then formally in the language of MLTT.

6.1 Informal proof
(⇒) Every equational class is a variety. Indeed, suppose K is an equational class axiomatized
by term identities E; that is, A ∈ K iff A E. Since the classes H K, S K, P K and K all
satisfy the same set of equations, we have V K ||= p ≈ q for all (p , q) ∈ E, so V K ⊆ K.

https://ncatlab.org/nlab/show/Martin-L%C3%B6f+dependent+type+theory

W. DeMeo and J. Carette 4:17

(⇐) Every variety is an equational class.12 Let K be an arbitrary variety. We will describe
a set of equations that axiomatizes K. A natural choice is to take Th K and try to prove
that K = Mod (Th K). Clearly, K ⊆ Mod (Th K). To prove the converse inclusion, let
A ∈ Mod (Th K). It suffices to find an algebra F ∈ S (P K) such that A is a homomorphic
image of F, as this will show that A ∈ H (S (P K)) = K.

Let X be such that there exists a surjective environment ρ : X → U[A].13 By the lift-hom
lemma, there is an epimorphism h : T X → U[A] that extends ρ. Put F[X] := T X/≈
and let g : T X → F[X] be the natural epimorphism with kernel ≈. We claim ker g ⊆ ker h.
If the claim is true, then there is a map f : F[X] → A such that f ◦ g = h, and since h is
surjective so is f. Therefore, A ∈ H (F X) ⊆ Mod (Th K) completing the proof.

It remains to prove the claim ker g ⊆ ker h. Let u, v be terms and assume g u = g v.
Since T X is generated by X, there are terms p, q such that u = J T X K p and v = J T X K q.
Therefore, J F[X] K p = g (J T X K p) = g u = g v = g (J T X K q) = J F[X] K q, so
K ||= p ≈ q; thus, (p , q) ∈ Th K. Since A ∈ Mod (Th K), we obtain A |= p ≈ q, which
implies that h u = (J A K p) ⟨$⟩ ρ = (J A K q) ⟨$⟩ ρ = h v, as desired.

6.2 Formal proof
(⇒) Every equational class is a variety. We need an arbitrary equational class, which we
obtain by starting with an arbitrary collection E of equations and then defining K = Mod E,
the class axiomatized by E. We prove that K is a variety by showing that K = V K. The
inclusion K ⊆ V K, which holds for all classes K, is called the expansive property of V.

module _ (K : Pred(Algebra α ρa) (α ⊔ ρa ⊔ ov ℓ)) where
V-expa : K ⊆ V ℓ (ov (α ⊔ ρa ⊔ ℓ)) K

V-expa {x = A}kA = A , (A , (⊤ , (λ _ → A), (λ _ → kA), Goal), ≤-reflexive), IdHomImage
where
open Setoid D[A] using (refl)
open Setoid D[

d
(λ _ → A)] using () renaming (refl to refl

d
)

to
d

: D[A] −→ D[
d

(λ _ → A)]
to

d
= record { f = λ x _ → x ; cong = λ xy _ → xy }

from
d

: D[
d

(λ _ → A)] −→ D[A]
from

d
= record { f = λ x → x tt ; cong = λ xy → xy tt }

Goal : A ∼=
d

(λ x → A)
Goal = mkiso (to

d
, mkhom refl

d
) (from

d
, mkhom refl) (λ _ _ → refl) (λ _ → refl)

Observe how A is expressed as (isomorphic to) a product with just one factor (itself), that
is, the product

d
(λ x → A) indexed over the one-element type ⊤.

For the inclusion V K ⊆ K, recall lemma V-id1 which asserts that K ||= p ≈ q implies
V ℓ ι K ||= p ≈ q; whence, if K is an equational class, then V K ⊆ K, as we now confirm.

module _ {ℓ : Level}{X : Type ℓ}{E : {Y : Type ℓ} → Pred (Term Y × Term Y) (ov ℓ)} where
private K = Mod{α = ℓ}{ℓ}{X} E – an arbitrary equational class

EqCl⇒Var : V ℓ (ov ℓ) K ⊆ K

EqCl⇒Var {A} vA {p} {q} pEq ρ = V-id1 ℓ {K} {p} {q} (λ _ x τ → x pEq τ) A vA ρ

By V-expa and Eqcl⇒Var, every equational class is a variety.

12 The proof we present here is based on [3, Theorem 4.41].
13 Informally, this is done by assuming X has cardinality at least max(| U[A] |, ω). Later we will see how

to construct an X with the required property in type theory.

TYPES 2021

4:18 A Machine-Checked Proof of Birkhoff’s Theorem

(⇐) Every variety is an equational class. To fix an arbitrary variety, start with an arbitrary
class K of S-algebras and take the varietal closure, V K. We prove that V K is precisely the
collection of algebras that model Th (V K); that is, V K = Mod (Th (V K)). The inclusion
V K ⊆ Mod (Th (V K)) is a consequence of the fact that Mod Th is a closure operator.

module _ (K : Pred(Algebra α ρa) (α ⊔ ρa ⊔ ov ℓ)){X : Type (α ⊔ ρa ⊔ ℓ)} where
private c = α ⊔ ρa ⊔ ℓ ; ι = ov c

ModTh-closure : V{β = β}{ρb}{γ}{ρc}{δ}{ρd} ℓ ι K ⊆ Mod{X = X} (Th (V ℓ ι K))
ModTh-closure {x = A} vA {p} {q} x ρ = x A vA ρ

Our proof of the inclusion Mod (Th (V K)) ⊆ V K is carried out in two steps.

1. Prove F[X] ≤ C X.
2. Prove that every algebra in Mod (Th (V K)) is a homomorphic image of F[X].

From 1 we have F[X] ∈ S (P K)), since C X is a product of algebras in K. From this and 2
will follow Mod (Th (V K)) ⊆ H (S (P K)) (= V K), as desired.

1. To prove F[X] ≤ C X, we construct a homomorphism from F[X] to C X and then
show it is injective, so F[X] is (isomorphic to) a subalgebra of C X.

open FreeHom {ℓ = ℓ}{K}
open FreeAlgebra K using (homC ; F[_] ; C)
homFC : hom F[X] (C X)
homFC = fromHomIm (homC X)

monFC : mon F[X] (C X)
monFC = | homFC | , record { isHom = ∥ homFC ∥

; isInjective = λ {x}{y}→ fromIm-inj | homC X | {x}{y} }
F≤C : F[X] ≤ C X
F≤C = mon→≤ monFC

open FreeAlgebra K using (I)

SPF : F[X] ∈ S ι (P ℓ ι K)
SPF = C X , ((I X) , (|_| , ((λ i → fst ∥ i ∥) , ∼=-refl))) , F≤C

2. Every algebra in Mod (Th (V K)) is a homomorphic image of F[X]. Indeed,

module _ {K : Pred(Algebra α ρa) (α ⊔ ρa ⊔ ov ℓ)} where
private c = α ⊔ ρa ⊔ ℓ ; ι = ov c

Var⇒EqCl : ∀ A → A ∈ Mod (Th (V ℓ ι K)) → A ∈ V ℓ ι K

Var⇒EqCl A ModThA = F[U[A]] , (SPF{ℓ = ℓ} K , Aim)
where
open FreeAlgebra K using (F[_])
epiFlA : epi F[U[A]] (Lift-Alg A ι ι)
epiFlA = F-ModTh-epi-lift{ℓ = ℓ} λ {p q} → ModThA{p = p}{q}

φ : Lift-Alg A ι ι IsHomImageOf F[U[A]]
φ = epi→ontohom F[U[A]] (Lift-Alg A ι ι) epiFlA

Aim : A IsHomImageOf F[U[A]]
Aim = ◦-hom | φ |(from Lift-∼=), ◦-IsSurjective _ _ ∥ φ ∥(fromIsSurjective(Lift-∼={A = A}))

By ModTh-closure and Var⇒EqCl, we have V K = Mod (Th (V K)) for every class K of
S-algebras. Thus, every variety is an equational class.

This completes the formal proof of Birkhoff’s variety theorem. ◀

W. DeMeo and J. Carette 4:19

7 Conclusion

7.1 Discussion

How do we differ from the classical, set-theoretic approach? Most noticeable is our avoidance
of all size issues. By using universe levels and level polymorphism, we always make sure
we are in a large enough universe. So we can easily talk about “all algebras such that . . . ”
because these are always taken from a bounded (but arbitrary) universe.

Our use of setoids introduces nothing new: all the equivalence relations we use were
already present in the classical proofs. The only “new” material is that we have to prove
that functions respect those equivalences.

Our first attempt to formalize Birkhoff’s theorem was not sufficiently careful in its handling
of variable symbols X. Specifically, this type was unconstrained; it is meant to represent the
informal notion of a “sufficiently large” collection of variable symbols. Consequently, we
postulated surjections from X onto the domains of all algebras in the class under consideration.
But then, given a signature S and a one-element S-algebra A, by choosing X to be the empty
type ⊥, our surjectivity postulate gives a map from ⊥ onto the singleton domain of A. (For
details, see the Demos.ContraX module which constructs the counterexample in Agda.)

7.2 Related work

There have been a number of efforts to formalize parts of universal algebra in type theory
besides ours. The Coq proof assistant, based on the Calculus of Inductive Constructions,
was used by Capretta, in [5], and Spitters and Van der Weegen, in [17], to formalized the
basics of universal algebra and some classical algebraic structures. In [11] Gunther et al
developed what seemed (prior to the agda-algebras library) the most extensive library of
formalized universal algebra to date. Like agda-algebras, [11] is based on dependent type
theory, is programmed in Agda, and goes beyond the basic isomorphism theorems to include
some equational logic. Although their coverage is less extensive than that of agda-algebras,
Gunther et al do treat multi-sorted algebras, whereas agda-algebras is currently limited to
single-sorted structures.

As noted by Abel [1], Amato et al, in [2], have formalized multi-sorted algebras with
finitary operators in UniMath. The restriction to finitary operations was due to limitations
of the UniMath type theory, which does not have W-types nor user-defined inductive types.
Abel also notes that Lynge and Spitters, in [14], formalize multi-sorted algebras with finitary
operators in Homotopy type theory ([16]) using Coq [23]. HoTT’s higher inductive types
enable them to define quotients as types, without the need for setoids. Lynge and Spitters
prove three isomorphism theorems concerning subalgebras and quotient algebras, but do not
formalize universal algebras nor varieties. Finally, in [1], Abel gives a new formal proof of
the soundness and completeness theorem for multi-sorted algebraic structures.

References

1 Andreas Abel. Birkhoff’s Completeness Theorem for multi-sorted algebras formalized in Agda.
CoRR, abs/2111.07936, 2021. arXiv:2111.07936.

2 Gianluca Amato, Marco Maggesi, and Cosimo Perini Brogi. Universal Algebra in UniMath.
CoRR, abs/2102.05952, 2021. arXiv:2102.05952.

3 Clifford Bergman. Universal Algebra: fundamentals and selected topics, volume 301 of Pure
and Applied Mathematics (Boca Raton). CRC Press, Boca Raton, FL, 2012.

TYPES 2021

https://github.com/ualib/agda-algebras/blob/af4ab7a3bb415649dad398b4f43f3b79aeaddbfc/src/Demos/ContraX.lagda
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://ualib.org/agda-algebras
https://ualib.org/agda-algebras
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://ualib.org/agda-algebras
https://ualib.org/agda-algebras
http://arxiv.org/abs/2111.07936
http://arxiv.org/abs/2102.05952

4:20 A Machine-Checked Proof of Birkhoff’s Theorem

4 G Birkhoff. On the structure of abstract algebras. Proceedings of the Cambridge Philosophical
Society, 31(4):433–454, October 1935.

5 Venanzio Capretta. Universal Algebra in Type Theory. In Theorem proving in higher order
logics (Nice, 1999), volume 1690 of Lecture Notes in Comput. Sci., pages 131–148. Springer,
Berlin, 1999. doi:10.1007/3-540-48256-3_10.

6 William DeMeo. The Agda Universal Algebra Library. GitHub.com, 2020. Ver. 1.0.0. Source
code: gitlab.com/ualib/ualib.gitlab.io.

7 William DeMeo and Jacques Carette. A Machine-checked Proof of Birkhoff’s Variety Theorem
in Martin-Löf Type Theory. CoRR, abs/2101.10166, 2021. Source code: github.com/ualib/agda-
algebras/. doi:10.48550/ARXIV.2101.10166.

8 William DeMeo and Jacques Carette. The Agda Universal Algebra Library (agda-algebras). Git-
Hub.com, 2021. Ver. 2.0.1. Source code: agda-algebras-v.2.0.1.zip. Documentation: ualib.org.
GitHub repo: github.com/ualib/agda-algebras. doi:10.5281/zenodo.5765793.

9 Martín Hötzel Escardó. Introduction to Univalent Foundations of mathematics with Agda.
https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/, May 2019. Accessed
on 30 Nov 2021.

10 Martín Hötzel Escardó. Introduction to Univalent Foundations of mathematics with Agda.
CoRR, abs/1911.00580, 2019. arXiv:1911.00580.

11 Emmanuel Gunther, Alejandro Gadea, and Miguel Pagano. Formalization of Universal
Algebra in Agda. Electronic Notes in Theoretical Computer Science, 338:147–166, 2018.
The 12th Workshop on Logical and Semantic Frameworks, with Applications (LSFA 2017).
doi:10.1016/j.entcs.2018.10.010.

12 Jason Z. S. Hu and Jacques Carette. Formalizing Category Theory in Agda. In Proceedings of
the 10th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP
2021, pages 327–342, New York, NY, USA, 2021. Association for Computing Machinery.
doi:10.1145/3437992.3439922.

13 Artur Korniłowicz. Birkhoff theorem for many sorted algebras, 1999.
14 Andreas Lynge and Bas Spitters. Universal Algebra in HoTT. In Proceedings of the 25th

International Conference on Types for Proofs and Programs (TYPES 2019), 2019. URL:
http://www.ii.uib.no/~bezem/abstracts/TYPES_2019_paper_7.

15 Ulf Norell. Towards a practical programming language based on dependent type theory. PhD
thesis, Department of Computer Science and Engineering, Chalmers University of Technology,
SE-412 96 Göteborg, Sweden, September 2007.

16 The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of
Mathematics. Lulu and The Univalent Foundations Program, Institute for Advanced Study,
2013. URL: https://homotopytypetheory.org/book.

17 Bas Spitters and Eelis Van der Weegen. Type classes for mathematics in type theory. CoRR,
abs/1102.1323, 2011. arXiv:1102.1323.

18 The Agda Team. Agda Language Reference, 2021. URL: https://agda.readthedocs.io/en/
v2.6.1/language/index.html.

19 The Agda Team. Agda Language Reference section on Axiom K, 2021. URL: https://agda.
readthedocs.io/en/v2.6.1/language/without-k.html.

20 The Agda Team. Agda Language Reference section on Safe Agda, 2021. URL: https:
//agda.readthedocs.io/en/v2.6.1/language/safe-agda.html#safe-agda.

21 The Agda Team. The Agda Standard Library, 2021. URL: https://github.com/agda/
agda-stdlib.

22 The Agda Team. Agda Tools Documentation section on Pattern matching and equal-
ity, 2021. URL: https://agda.readthedocs.io/en/v2.6.1/tools/command-line-options.
html#pattern-matching-and-equality.

23 The Coq Development Team. The Coq proof assistant reference manual. LogiCal Project,
2004. Version 8.0. URL: http://coq.inria.fr.

https://doi.org/10.1007/3-540-48256-3_10
https://gitlab.com/ualib/ualib.gitlab.io
https://github.com/ualib/agda-algebras/blob/master/src/Demos/HSP.lagda
https://github.com/ualib/agda-algebras/blob/master/src/Demos/HSP.lagda
https://doi.org/10.48550/ARXIV.2101.10166
https://zenodo.org/record/5765793/files/ualib/agda-algebras-v.2.0.1.zip?download=1
https://ualib.org
https://github.com/ualib/agda-algebras
https://doi.org/10.5281/zenodo.5765793
https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/
http://arxiv.org/abs/1911.00580
https://doi.org/10.1016/j.entcs.2018.10.010
https://doi.org/10.1145/3437992.3439922
http://www.ii.uib.no/~bezem/abstracts/TYPES_2019_paper_7
https://homotopytypetheory.org/book
http://arxiv.org/abs/1102.1323
https://agda.readthedocs.io/en/v2.6.1/language/index.html
https://agda.readthedocs.io/en/v2.6.1/language/index.html
https://agda.readthedocs.io/en/v2.6.1/language/without-k.html
https://agda.readthedocs.io/en/v2.6.1/language/without-k.html
https://agda.readthedocs.io/en/v2.6.1/language/safe-agda.html#safe-agda
https://agda.readthedocs.io/en/v2.6.1/language/safe-agda.html#safe-agda
https://github.com/agda/agda-stdlib
https://github.com/agda/agda-stdlib
https://agda.readthedocs.io/en/v2.6.1/tools/command-line-options.html#pattern-matching-and-equality
https://agda.readthedocs.io/en/v2.6.1/tools/command-line-options.html#pattern-matching-and-equality
http://coq.inria.fr

W. DeMeo and J. Carette 4:21

A Imports from the Agda Standard Library

We import a number of definitions from Agda’s standard library (ver. 1.7), as shown below.
Notice that these include some adjustments to “standard” Agda syntax; in particular, we
use Type in place of Set, the infix long arrow symbol, _−→_, in place of Func (the type of
“setoid functions,” discussed in §2.3 below), and the symbol _⟨$⟩_ in place of f (application
of the map of a setoid function); we use fst and snd, and sometimes |_| and ∥_∥, to denote
the first and second projections out of the product type _×_.

– Import 16 definitions from the Agda Standard Library.
open import Data.Unit.Polymorphic using (⊤ ; tt)
open import Function using (id ; _◦_ ; flip)
open import Level using (Level)
open import Relation.Binary using (Rel ; Setoid ; IsEquivalence)
open import Relation.Binary.Definitions using (Reflexive ; Symmetric ; Transitive ; Sym ; Trans)
open import Relation.Binary.PropositionalEquality using (_≡_)
open import Relation.Unary using (Pred ; _⊆_ ; _∈_)

– Import 23 definitions from the Agda Standard Library and rename 12 of them.
open import Agda.Primitive renaming (Set to Type) using (_⊔_ ; lsuc)
open import Data.Product renaming (proj1 to fst) using (_×_ ; _,_ ; Σ ; Σ-syntax)

renaming (proj2 to snd)
open import Function renaming (Func to _−→_) using ()
open _−→_ renaming (f to _⟨$⟩_) using (cong)
open IsEquivalence renaming (refl to refle)

renaming (sym to syme)
renaming (trans to transe) using ()

open Setoid renaming (refl to refls)
renaming (sym to syms)
renaming (trans to transs)
renaming (_≈_ to _≈s_) using (Carrier ; isEquivalence)

– Assign handles to 3 modules of the Agda Standard Library.
import Function.Definitions as FD
import Relation.Binary.PropositionalEquality as ≡
import Relation.Binary.Reasoning.Setoid as SetoidReasoning

private variable α ρa β ρb γ ρc δ ρd ρ χ ℓ : Level ; Γ ∆ : Type χ

TYPES 2021

https://wiki.portal.chalmers.se/agda/pmwiki.php
https://wiki.portal.chalmers.se/agda/pmwiki.php

Principal Types as Lambda Nets
Pietro Di Gianantonio # Ñ

University of Udine, Italy

Marina Lenisa # Ñ

University of Udine, Italy

Abstract
We show that there are connections between principal type schemata, cut-free λ-nets, and normal
forms of the λ-calculus, and hence there are correspondences between the normalisation algorithms of
the above structures, i.e. unification of principal types, cut-elimination of λ-nets, and normalisation
of λ-terms. Once the above correspondences have been established, properties of the typing system,
such as typability, subject reduction, and inhabitation, can be derived from properties of λ-nets, and
vice-versa. We illustrate the above pattern on a specific type assignment system, we study principal
types for this system, and we show that they correspond to λ-nets with a non-standard notion of
cut-elimination. Properties of the type system are then derived from results on λ-nets.

2012 ACM Subject Classification Theory of computation → Lambda calculus; Theory of computation
→ Type structures; Theory of computation → Linear logic

Keywords and phrases Lambda calculus, Principal types, Linear logic, Lambda nets, Normalization,
Cut elimination

Digital Object Identifier 10.4230/LIPIcs.TYPES.2021.5

Funding Work supported by the Italian MUR project PRIN 2017FTXR7S “IT-MaTTerS” (Methods
and Tools for Trustworthy Smart Systems).

Acknowledgements We thank Beniamino Accattoli, Paolo Coppola, Furio Honsell, Ivan Scagnetto,
and Gabriele Vanoni for helpful discussions on the subject. We are indebted to the anonymous
referees for their valuable comments on the present work.

1 Introduction

The objective of this paper is to present the connections existing among principal type
schemata, cut-free λ-nets, and normal forms of λ-calculus. As a consequence of these
correspondences there exist correspondences among the normalisation algorithms in the
above structures, that is: unification of principal type schemata, cut-elimination on λ-nets,
normalisation on λ-terms. While the connection between the two latter is well-known, the
relationships between unification of principal type schemata and cut-elimination on λ-nets
have rarely been presented explicitly. There are very few works in the literature, [16, 25, 23],
based on the above correspondence, and a complete detailed presentation relating also cut-
elimination and unification algorithm is missing. We think that it is worthwhile to analyse
in detail such a connection since it allows to derive several properties on the type system
from properties of λ-nets, so giving new proves and explanations of some already known
results concerning type assignment systems. In general, the correspondence existing among
types, principal types, λ-nets, and normal forms can be expressed by the following chain of
equivalences. For any closed λ-term M :

M has type τ in the type assignment system, ⊢ M : τ , if and only if
M has principal type schema τ ′ in the principal type assignment system, ⊩ M : τ ′, and τ

is an instance of τ ′, if and only if

© Pietro Di Gianantonio and Marina Lenisa;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Types for Proofs and Programs (TYPES 2021).
Editors: Henning Basold, Jesper Cockx, and Silvia Ghilezan; Article No. 5; pp. 5:1–5:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pietro.digianantonio@uniud.it
https://users.dimi.uniud.it/~pietro.digianantonio/
https://orcid.org/0000-0002-0638-4610
mailto:marina.lenisa@uniud.it
https://users.dimi.uniud.it/~marina.lenisa/
https://orcid.org/0000-0003-0497-0429
https://doi.org/10.4230/LIPIcs.TYPES.2021.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Principal Types as Lambda Nets

the λ-net associated with M reduces, by a cut-elimination strategy C, to a cut-free λ-net
t, which is the translation of τ ′, if and only if
M reduces according to the strategy S to a normal form N , and t is the λ-net associated
with N .

Once the above correspondences have been established, it is possible to derive properties
concerning the type system and the reduction strategy S from properties of λ-nets and the
cut-elimination strategy C, or vice-versa.

In this paper, we present in detail an instance of the general pattern outlined above.
Namely, we choose a particular version of type assignment system, we define a corresponding
type assignment system for principal types, and we consider a corresponding notion of λ-net.

The type system that we consider includes an intersection operation ∧ on types, which is
commutative and associative, but non-idempotent. However, most of our results hold also in
the case of idempotency. The type system is almost standard, the only minor non-standard
feature is a bang operator used to mark the type subterms on which the ∧ operator can be
applied. Then we introduce principal types (type schemata) together with a type assignment
system assigning type schemata to λ-terms. Type schemata differ from simple-types by the
introduction of type variables and by a box operator, used to mark parts of the type that
can be replicated. From type schemata, by suitable instantiation, one gets (ground) types.
Each λ-term turns out to have at most one principal type schema, while the set of ground
types assignable to a term consists of all the instances of the principal type schema. In the
type assignment system for principal types, the rule for introducing the type schema of an
application makes use of a generalised unification algorithm on types.

We will show that principal types can be seen as an alternative representation of cut-free
λ-nets, and the unification algorithm on principal types can be seen as a reformulation of the
cut-elimination algorithm for λ-nets. In order to formalise these correspondences, we present
a translation from principal type schemata to λ-nets. However, we need to consider a variation
of the standard cut-elimination procedure on λ-nets, whereby the cut-rule concerning the
conclusions of a weakening and a promotion does not eliminate the box, but leaves a pending
term. With this variation the cut-elimination procedure becomes perpetual, that is a cut
is eliminated only if the λ-net is strongly normalising. On the other hand, we present, in
our setting, the standard translation of λ-terms into λ-nets [20, 1]. The main result of this
paper can be seen as a commutation result, namely: given a λ-term M , we assign to it a
principal type τ , this, in turn, induces a cut-free λ-net, which can be alternatively obtained
by applying to M the standard transformation into λ-nets and then the cut-elimination
procedure.

As consequences of the correspondences that we have established, we derive the following
results on the type assignment system: the typable terms are exactly the strongly normalising
ones, subject reduction holds up-to a suitable relation on types, the inhabitation problem is
decidable.

The present paper builds on [11], where the analogies involutions as principal types and
application as unification have been introduced and explored for a type assignment system
related to Abramsky’s Geometry of Interaction model of partial involutions.

Related work

Duquesne and Van De Wiele have first described the connection between principal types and
proof-nets, [16]. This approach has been further extended by Regnier in his PhD thesis [25].
Similarly to Duquesne, Van De Wiele and Regnier’s approach (referred to as the DVR

P. Di Gianantonio and M. Lenisa 5:3

approach in the following), we use indexes to delimit the parts of a type that need to be
replicated. However, there exists a long list of differences. Principal types in the DVR
approach are pairs composed by a variable and a set of pairs of terms that need to be unified;
the most general unifier (MGU) of this set of pairs, if existing, will transform the variable in
a principal type in our sense. As a result, principal types in the DVR approach are almost a
direct translation of proof-nets, while our principal types describe the normal forms of the
proof-nets associated with lambda terms. In defining the principal type of an application, we
explicitly define a notion of MGU among two types, while the MGU notion is not present
in DVR. As far as this aspect is concerned, we are in the tradition of the Hindley-Milner
algorithm for principal types, even if our MGU algorithm is a substantial extension of the
original one. In DVR approach, any lambda-term has a principal type, and the type system
characterises weakly normalisable terms, while our system just the strongly normalising ones.

Our work is also related to [9, 10, 21, 23]. Our type assignment system for principal
types is quite similar to Sistem I, described in [21] and Sistem E, described in [9, 10].
Still, our presentation is completely different, e.g. we use a different syntax and different
auxiliary procedures; what we call index variable, there is called expansion variable, what
we call duplication, there is called expansion. Moreover, the implementations of duplication
and expansion are different, using different auxiliary structures. Nevertheless, one can find
similarities in the technique used in System E to describe the scope of expansion (duplication).
A connection between the principal types in [21] and interaction-nets is then presented in [23].
However, again the notation is completely different from ours; [21] does not consider standard
connectives of MELL but the ones of interaction nets, croissant, sharing, application, . . . ,
the formulas associated to wires are not MELL proposition, but triples formed by a type, a
substitution, and an expansion. Comparing these works to ours, we can say that our principal
type algorithm and the connection between types and proof-nets are simpler and more direct.
Essentially, our algorithm for principal types is directly inspired by the cut-elimination
algorithm on proof-nes. Consequently, the correspondence between the two becomes almost
immediate, but the presentation of the principal type algorithm becomes simpler. Moreover,
compared to [23], we consider a different and broader set of applications of the correspondence
mentioned above. From another point of view, a strict relation between type inference and
β-reduction, on so indirectly to λ-nets, is established in [8].

There exists an extensive literature on principal types in general, or more specifically in
combination with intersection types, as in our case, [7, 15, 24, 28]. However, the objective
of these works is quite different from ours, namely, often principal types are used to define
type inference algorithms for simple programming languages. In other works, [12, 26], the
connection between principal types and β-normal forms of terms is investigated. Moreover,
the type syntax and the type inference algorithm are quite different from ours, and there is
no explicit connection to proof-nets.

Non-idempotent intersection types also have a rich bibliography, their interest lies in
connection with linear logic, and the possibility to give a finer description of the behaviour
lambda terms, e.g. [4, 13]. A quite complete presentation of works on this subject can be
found in [7]. In this paper, we are going to present a series of new proofs of some results
that can be found also in [3, 6, 7, 22].

Summary

In Section 2, we introduce a type assignment system for the λ-calculus, where types include a
∧ and a ! operator. In Section 3, we introduce a type assignment system for assigning principal
type schemata, and we show how the two systems are related via suitable transformations.

TYPES 2021

5:4 Principal Types as Lambda Nets

In Section 4, we present λ-nets together with a translation of λ-terms into λ-nets with a
modified cut-elimination procedure, and we relate this translation to the standard one and
to principal types. In Section 5, we show how the correspondence results established in the
previous sections can be used to prove properties of the ground typing system by exploiting
results on λ-nets. Finally, in Section 6, final comments and lines for future work appear.

2 The intersection types

We separate the set of types in two sets, simple-types, that are used to assign types to
subterms in functional position, and and-types, used to assign types to subterms that are
arguments of a function.

▶ Definition 1 (Ground Types). We introduce the following two sets of types:

(SimTypeG ∋) σ, τ ::= q | σ̂ ⊸ τ

(AndTypeG ∋) σ̂, τ̂ ::= !τ | σ̂ ∧ τ̂

where q ranges over a set of type constants TConst.
Let TypeG = SimTypeG ∪ AndTypeG, and let µ, ν, ρ range over TypeG.

We assume ∧ to be commutative and associative, i.e. we (implicitly) consider the least
congruence on types induced by the following relation:

σ̂1 ∧ σ̂2 = σ̂2 ∧ σ̂1 σ̂1 ∧ (σ̂2 ∧ σ̂3) = (σ̂1 ∧ σ̂2) ∧ σ̂3.

As a side remark, the main reason to assume ∧ commutative and associative is to have
subject reduction, no other result depends on the algebraic properties of ∧.

▶ Definition 2. The intersection type system for the λ-calculus derives judgements ∆ ⊢ M : µ,
where M is a λ term, µ ∈ TypeG and the environment ∆ is a set x1 : σ̂1, . . . , xn : σ̂n, where
σ̂i ∈ AndTypeG for all i, and the rules for assigning intersection types are the following:

x :!τ ⊢ x : τ
(ax) ∆ ⊢ M : σ̂ ⊸ τ ∆′ ⊢ N : σ̂

∆ ∧ ∆′ ⊢ MN : τ
(app)

∆, x : σ̂ ⊢ M : τ

∆ ⊢ λx.M : σ̂ ⊸ τ
(λ!)

∆ ⊢ M : τ x ̸∈ dom(∆) σ̂ ∈ AndTypeG
∆ ⊢ λx.M : σ̂ ⊸ τ

(λA)

∆ ⊢ M : τ

∆ ⊢ M :!τ (!) ∆ ⊢ M : σ̂1 ∆′ ⊢ M : σ̂2

∆ ∧ ∆′ ⊢ M : σ̂1 ∧ σ̂2
(∧)

where ∆ ∧ ∆′ is the environment ∆′′ defined by: x : σ̂ ∈ ∆′′ if and only if x : σ̂ ∈ ∆ and
x ̸∈ dom(∆′), or x : σ̂ ∈ ∆′ and x ̸∈ dom(∆), or σ̂ = σ̂1 ∧ σ̂2 and x : σ̂1 ∈ ∆ and x : σ̂2 ∈ ∆′.

3 Principal type schemata

This section aims to show that, for any λ-term M , the set of typing judgements for M are all
instances of a unique principal type judgement. In order to obtain the principal schema one
needs to introduce in the grammar for types a set of variables and a sort of boxing operators.
If a typing judgement is derivable in the principal type assignment system, any ground type
judgement obtained by instantiating the type variables and by replicating the parts of the
judgement marked by boxing operators will be a valid typing judgement. In the grammar
for principal types we mark the positive and negative occurrences of the same variable α by
α and α, respectively:

P. Di Gianantonio and M. Lenisa 5:5

▶ Definition 3. The type schemata are defined by the following grammar:

(SimType ∋) σ, τ ::= α | σ̂ ⊸ τ

(AndType ∋) σ̂, τ̂ ::= !τ | σ̂ ∧ τ̂ | ✷iσ̂

where α ∈ TVar is a type variable, and i ∈ Ind is an index.
Let Type = SimType ∪ AndType, let µ, ν, ρ range over Type.

Principal type schemata have been introduced in [24]. Here we present an alternative
version of the algorithm for the derivation of principal type schemata that differs in several
aspects from the original one. The main difference is that our version of the algorithm
is inspired by linear logic and λ-nets, in particular, we introduce a mechanism to define
boxes inside type schemata. With these modifications, there exists a direct correspondence
between the principal type schemata of a term M and the cut-free normal form of the λ-net
representing M . This correspondence goes on by connecting the cut-elimination process
on λ-nets and a Most General Unification (MGU) algorithm on principal types schemata.
Two principal type schemata are unified by generalised notion of substitution, which we call
substitution-replication.

▶ Definition 4 (Substitution-replication). Substitution-replications are transformations on
type schemata that are compositions of four basic actions:

Substitution of type variables α by a simple-type σ, denoted by [σ / α].
Duplication of all the subtypes appearing under a box operator marked by i, denoted by
Dup(i).
Substitution of the box operator index i by a pair of box operators indexed by j1, j2, denoted
by [j1, j2 / i].
Elimination of all the box operators with index i, denoted by [ϵ / i].

The formal definition of the above operators is given by induction on the structure of the
type to which they are applied:

[σ/α](α) = σ, and in the remaining cases by recursive application on the arguments:
[σ/α](opb(µ1, µ2)) = opb([σ/α](µ1), [σ/α](µ2)) with opb ∈ {⊸, ∧}
[σ/α](opu(µ)) = opu([σ/α](µ)), with opu ∈ {✷j}j ∪ {!}
[σ/α](opn) = opn with opn ∈ {β | β ̸= α};

Dup(i)(✷iσ̂) = V erL(✷iσ̂) ∧ V erR(✷iσ̂), and in the remaining cases by recursive applic-
ation on the arguments. In turn, V erL and V erR are defined by induction on their type
schemata arguments as:

V erL(α) = αl, V erR(α) = αr,
V erL(✷jµ) = ✷jl

(V erL(µ)), V erR(✷jµ) = ✷jr (V erR(µ)),
and in the remaining cases by recursive application on the arguments;

[j1, j2 /i](✷iσ̂) = ✷j1✷j2 σ̂, and in the remaining cases by recursive application on the
arguments;
[ϵ /i](✷iσ̂) = σ̂, and in the remaining cases by recursive application on the arguments.

According to the above defintion, the duplication operator Dup(i) replaces a subtype in
the form ✷iσ̂ by V erL(✷iσ̂) ∧ V erR(✷iσ̂), where V erL(✷iσ̂) and V erR(✷iσ̂) are distinct
copies of ✷iσ̂, the left and the right versions. These two new versions have the same syntactic
structure but use two distinct sets of indexes and type variables. To accomplish this we
assume that to each index i and type variable α are associated two new fresh instances, their
left and their right versions, denoted by il and ir, αl and αr, respectively.

TYPES 2021

5:6 Principal Types as Lambda Nets

The operations of duplication, substitution of a box index by a pair of box indexes, and
elimination of a box index correspond to box duplication, box insertion rule, and elimination
of a box boundary in cut-elimination of proof nets.

The role of the indexes in the box operators in the types is to mark explicitly the parts
of a type that can be replicated, and this, in turn, is fundamental to have a principal type
whose instantiations define the whole set of types associated with a term.

It is possible to extend to type schemata and substitution-replications the definitions of
partial order and MGU on terms and substitutions:

▶ Definition 5.
(i) On type schemata we define the subsumption preorder ⪯:

µ ⪯ ν if and only if there exists a substitution-replication T such that µ = T (ν) .

(ii) The generality preorder on substitution-replications is defined by:
S ⪯ T iff there exists a substitution-replication R such that S = R ◦ T .

(iii) Two type schemata, µ, ν, have a unifier U if U is a substitution-replication such that
U(µ) = U(ν).

The equivalence relation on type schemata induced by the subsumption preoder can be
characterised as the least equivalence relation closed by renaming of type variables and indexes,
and by uniformly substituting all the boxes with given index i, ✷i, by a pair of boxes ✷j1✷j2

with two fresh indexes j1, j2. Namely, ✷iτ = ✷j1✷j2τ , because [j1, j2/i](✷iτ) = ✷j1✷j2τ

and [ϵ/j1] ◦ [ϵ/j2] ◦ [i, j1/j1](✷j1✷j2τ) = ✷iτ .

▶ Proposition 6.
(i) Any two type schemata µ and ν have a supremum ρ in the preoder ⪯.
(ii) If two type schemata, µ, ν, have a unifier, then they have a most general unifier, MGU.

On type schemata we define a partial algorithm that, if converging, finds the MGU of two
types. In order to study some regularities of our typing system, it is convenient to introduce
the following definition, where we distinguish between positive and negative type schemata:

▶ Definition 7. Let PSimType, NSimType, PAndType, NAndType be the sets of type schemata
defined by the following grammars:

(PSimType ∋) τ ::= α | σ̂ ⊸ τ (PAndType ∋) τ̂ ::= ✷i!τ
(NSimType ∋) σ ::= α | τ̂ ⊸ σ (NAndType ∋) σ̂ ::=!σ | ✷iσ̂ | σ̂1 ∧ σ̂2
Let PType = PSimType ∪ PAndType, let µ range over PType.
Let NType = NSimType ∪ NAndType, let ν range over NType.

Positive types are assigned to λ-terms. Inside a positive type, the subterms occurring
in negative positions, i.e. on the left of an odd number of ⊸, will be negative types, while
those occurring in positive positions will be positive. A positive type describes the behaviour
of a λ-term or the behaviour of a subterm inside a normalised λ-term, while a negative type
describes how a potential argument of a λ-term is used inside the term. This fact explains
the different shapes of positive and negative types. For example, when an ∧-negative type is
the meet of several component types, the corresponding argument is used several times inside
a term, in different contexts, and each use of the argument is described by a component type.

Notice that, in particular, in the above definition we distinguish between positive and
negative occurrences of type variables.

The MGU algorithm that we introduce below is defined on pairs of types, (ν, µ), where
µ ∈ PType, ν ∈ NType, and µ, ν are either both simple or both “and” types. As we will see,
this is sufficient for our purposes.

P. Di Gianantonio and M. Lenisa 5:7

▶ Definition 8. Let µ, ν be a positive and a negative type, respectively, with µ, ν either both
simple or both and-types. The partial algorithm MGU(ν, µ) yields a substitution-replication
U on types and indexes such that U(ν) = U(µ), and it is defined via the following rules:

α /∈ V ar(σ)
MGU(σ, α) = [σ / α]

α /∈ V ar(τ)
MGU(α, τ) = [τ / α]

MGU(σ̂1, τ̂1) = U1 MGU(U1(σ2), U1(τ2)) = U2

MGU(τ̂1 ⊸ σ2, σ̂1 ⊸ τ2) = U2 ◦ U1

MGU(σ̂1, V erL(✷i!τ)) = U1 MGU(U1(σ̂2), U1(V erR(✷i!τ))) = U2

MGU(σ̂1 ∧ σ̂2,✷i!τ) = U2 ◦ U1 ◦ Dup(i)

MGU(σ̂,✷i!τ) = U

MGU(✷j σ̂,✷i!τ) = U ◦ [j, i / i]
MGU(σ, τ) = U

MGU(!σ,✷i!τ) = U ◦ [ϵ / i]

One can notice that, to avoid introducing an extra ad hoc rule, the unification of two
type schemata of the form ✷j !σ̂ and ✷i!τ is performed by first duplicating the box i, and
then removing one instance of the two boxes which have been just created. It is not difficult
to check that the MGU algorithm is well-defined, i.e.:

▶ Lemma 9. Let µ, ν be a positive and a negative type, respectively, with µ, ν either both
simple or both and-types. Then

(i) if MGU(ν, µ) terminates yielding a substitution-replication U , then U is the most
general unifier of µ, ν;

(ii) if µ, ν have a unifier, then the MGU algorithm terminates with a well-formed
substitution-replication U , i.e., for each variable α, the substitution part includes either
[σ/α] or [τ/α].

Since the ∧-operator is commutative and associative, the MGU-algorithm performs
different runs starting from different writings of the input values ν, µ. However, since by
Proposition 6 the MGU solution is unique up-to the equivalence relation on type schemata
of Definition 5, all runs lead to the same result (up-to equivalence relation). A similar
consideration applies if one considers an alternative formulation of the MGU algorithm,
where the rule for the ⊸ case unifies the subterms of the types in a different order. The
alternative formulation of the MGU algorithm gives the same results, up-to equivalence
relation on type schemata.

When the two types µ, ν do not have a unifier, then the MGU algorithm does not
terminate, because there is an infinite number of applications of the rules. This happens
when searching for principal type schemata of non-normalising λ-terms, for example the
λ-term Ω = (λx.xx)(λx.xx). Namely, as we will see, to assign a principal type to Ω one needs
to find a unifier of the types !(✷i!α ⊸ β) ∧ ✷i!α and ✷j′ !(!(✷i′ !α′ ⊸ β′) ∧ ✷i′ !α′) ⊸ β′). In
more detail, the steps of the MGU algorithm for the above case are given in the following
example.

▶ Example 10. Let σ̂ =!(✷i!α ⊸ β)∧✷i!α. Given a generic list p of l and r labels, we denote
by σ̂p the type !(✷ip

!αp ⊸ βp) ∧ ✷ip
!αp, where αpo...pn

denotes the variable ((αp0)...)pn
and

analogously for the index ip.
With this notation, the MGU evaluation mentioned above is equivalent to evaluate:

U = MGU(σ̂l, ✷j !(σ̂r ⊸ βr))

= MGU(!(✷il !αl ⊸ βl) ∧ ✷il !αl, ✷j !(σ̂r ⊸ βr)) = U2 ◦ U1 ◦ Dup(j)

TYPES 2021

5:8 Principal Types as Lambda Nets

where

U1 = MGU(!(✷il !αl ⊸ βl), ✷jl !(σ̂rl ⊸ βrl))

= MGU(✷il !αl ⊸ βl, σ̂rl ⊸ βrl) ◦ [ϵ/jl]

= MGU(✷il !αl ⊸ βl, (!(✷irl !αrl ⊸ βrl) ∧ ✷irl !αrl) ⊸ βrl) ◦ [ϵ/jl]

= [βl/βrl] ◦ MGU(!(✷irl !αrl ⊸ βrl) ∧ ✷irl !αrl, ✷il !αl) ◦ [ϵ/jl]

= [βl/βrl] ◦ [αrl/αlr] ◦ [ϵ/ilr] ◦ [irl, ilr/ilr] ◦ [✷irl !αrl ⊸ βrl/αll] ◦ [ϵ/ill] ◦ Dup(il) ◦ [ϵ/jl]

and

U2 = MGU(U1(✷il !αl), U1(✷jr !(σ̂rr ⊸ βrr))) = MGU([βl/βrl](σ̂rl), ✷jr !(σ̂rr ⊸ βrr)).

Up-to renaming of the indexes, U2 coincides with U , so the attempt to define the unifier
U leads to build an infinite sequence of equivalent unification problems, none of them having
solution.

▶ Definition 11. The principal intersection type system for the λ-calculus derives judgments
∆ ⊩ M : µ, where µ ∈ PType, the environment ∆ is a set x1 : σ̂1, . . . , xn : σ̂n, σ̂i ∈ NType
for all i, and the rules for assigning principal intersection types are the following:

x :!α ⊩ x : α
(ax) ∆, x : σ̂ ⊩ M : τ

∆ ⊩ λx.M : σ̂ ⊸ τ
(λ!)

∆ ⊩ M : τ x, α fresh
∆ ⊩ λx.M : !α ⊸ τ

(λA)

∆ ⊩ M : α ∆′ ⊩ N : τ̂ β fresh
[(τ̂ ⊸ β) / α](∆ ∧ ∆′) ⊩ MN : β

(appNorm) ∆ ⊩ M : τ i fresh
✷i∆ ⊩ M : ✷i!τ

(box)

∆ ⊩ M : σ̂ ⊸ τ1 ∆′ ⊩ N : τ̂ U = MGU(σ̂, τ̂)
U(∆ ∧ ∆′) ⊩ MN : U(τ1) (appRedex)

where
in each derivation, for rules with two premises, i.e. ∆1 ⊩ M1 : τ1 ∆2 ⊩ M2 : τ2

∆ ⊩ M : τ
, we

implicitly assume that ∆1, τ1 and ∆2, τ2 have disjoint sets of type variables and indexes.
✷i(x1 : σ̂1, . . . , xn : σ̂n) denotes the environment x1 : ✷iσ̂1, . . . , xn : ✷iσ̂n;
∆ ∧ ∆′ is defined as in Definition 2;
U denotes the most general unifier of types σ̂, τ̂ , obtained from the MGU algorithm
previously defined.

Next one can observe that all derivable judgements have a specific form, for this purpose we
define the notions of well-formed judgement and well-formed application of a substitution-
replication:

▶ Definition 12.
(i) A well-formed judgement ∆ ⊩ M : µ is a judgement where:

each type variable occurs at most twice, at most once as positive simple-type
PSimType, and once as negative simple-type NSimType;
each index occurs once as box index in a positive type, ✷i!τ , and an arbitrary number
of times as box index of and-types of the shape ✷iσ̂.

(ii) A well-formed application of a substitution-replication, U(µ), satisfies the following
condition: if U contains an action on an index i, that is an operation in the form
Dup(i), [j1, j2/i], [ϵ/i], then i appears only negatively in µ, that is the boxes with index
i have all form ✷iσ̂.

P. Di Gianantonio and M. Lenisa 5:9

▶ Lemma 13. For every λ-term M :
(i) there is at most one derivable judgement ∆ ⊩ M : τ , up-to-renaming of type variables

and indexes;
(ii) every derivable judgment ∆ ⊩ M : τ is well-formed;
(iii) in deriving ∆ ⊩ M : τ the substitution-replications obtained via the MGU algorithm

induce well-formed applications.

Proof. Item (i) is proved by induction on the structure of M . Items (ii) and (iii) are proved
by first proving, by induction on the derivation, that any well-formed application of the
MGU algorithm defines a unification that is well-formed, and that any application of the
unification is well-formed. After that, item (ii) is proved by induction on the derivation, and
item (iii) is almost straightforward. ◀

▶ Example 14. Completing Example 10, one can show that, by applying the rules of
Definition 11, we derive the following chain of type assignments:

x : !γ ⊩ x : γ

x : ✷i!α ⊩ x : ✷i!α
x : !(✷i!α ⊸ β) ∧ ✷i!α ⊩ x x : β

⊩ λx.xx : !(✷i!α ⊸ β) ∧ ✷i!α ⊸ β

⊩ (λx.xx) : ✷j !(!(✷i!α ⊸ β) ∧ ✷i!α ⊸ β).

However, Ω = (λx.xx)(λx.xx) is not typable, since the types !(✷i!α ⊸ β) ∧ ✷i!α and
✷j !(!(✷i′ !α′ ⊸ β′) ∧ ✷i′ !α′ ⊸ β′ do not have a unifier, as shown in Example 10 above.

A more complex and somewhat classical example, which shows in more detail how
duplication works, is obtained by considering the Church numeral two, 2 = λf.λx.f(fx),
applied to itself, 2 2:

▶ Example 15. The principal type of the λ-term 2 is derived by the following chain of
principal typing judgements:

f : !α′ ⊩ f : α′

x : ✷j !γ ⊩ x : ✷j !γ
f : !(✷j !γ ⊸ β), x : ✷j !γ ⊩ f x : β

f : ✷i !(✷j !γ ⊸ β), x : ✷i✷j !γ ⊩!(f x) : ✷i!β
f : !(✷i!β ⊸ α) ∧ ✷i !(✷j !γ ⊸ β), x : ✷i✷j !γ ⊩ f(f x) : α

f : !(✷i!β ⊸ α) ∧ ✷i !(✷j !γ ⊸ β) ⊩ λx.f(f x) : ✷i✷j !γ ⊸ α

⊩ 2 : !(✷i!β ⊸ α) ∧ ✷i !(✷j !γ ⊸ β) ⊸ (✷i✷j !γ ⊸ α)

To simplify the evaluation, we introduce the following notation: given a list p of l and r

labels, we denote by σp the type !(✷ip
!βp ⊸ αp) ∧ ✷ip

!(✷jp
!γp ⊸ βp) and by τp the type

σp ⊸ (✷ip
✷jp

!γp ⊸ αp).
Taking advantage by these notations, up-to renaming of variables and indexes, we have

that:

⊩ 2 2 : U(✷il
✷jl

!γl ⊸ αl),

where U = MGU(σl, ✷k!τr).

TYPES 2021

5:10 Principal Types as Lambda Nets

By applying the MGU rules, the evaluation of U develops as follows:

U = U2 ◦ U1 ◦ Dup(k)

where

U1 = MGU(!(✷il
!βl ⊸ αl), V erL(✷k!τr))

= MGU(!(✷il
!βl ⊸ αl), ✷kl

(σrl ⊸ ✷irl
✷jrl

!γrl ⊸ αrl))
= MGU(✷il

!βl ⊸ αl, σrl ⊸ ✷irl
✷jrl

!γrl ⊸ αrl) ◦ [ϵ/kl].

It follows U1 = U4 ◦ U3 ◦ [ϵ/kl], where

U3 = MGU(σrl, ✷il
!βl)

= MGU(!(✷irl
!βrl ⊸ αrl) ∧ ✷irl

!(✷jrl
!γrl ⊸ βrl), ✷il

!βl)
= [γrl ⊸ βrl/βlr] ◦ [irl/ilr] ◦ [✷irl

!βrl ⊸ αrl/βll] ◦ [ϵ/ill] ◦ Dup(il)

To have a more compact notation, in the above formula, the substitution [ϵ/ilr] ◦ [irl, ilr/ilr],
formally obtained by application of the MGU rules, is written as [irl/ilr]; in the following a
similar simplification is used. Carrying on with the evaluation, we have:

U4 = MGU(U3(αl), U3(✷irl
✷jrl

!γrl ⊸ αrl)) = [✷irl
✷jrl

!γrl ⊸ αrl/αl]

It is not difficult to check that U1 is indeed the unifier of the types !(✷il
!βl ⊸ αl) and

✷kl
(σrl ⊸ ✷irl

✷jrl
!γrl ⊸ αrl).

Continuing with the evaluation, we have:

U2 = MGU(U1(✷il
!(✷jl

!γl ⊸ βl)), U1(V erR✷k!τr))
= MGU(!(✷jll

!γll ⊸ ✷irl
!βrl ⊸ αrl) ∧ ✷irl

!(✷jlr
!γlr ⊸ ✷jrl

!γrl ⊸ βrl), ✷kr
!τrr))

= U6 ◦ U5 ◦ Dup(kr), where
U5 = MGU(!(✷jll

!γll ⊸ ✷irl
!βrl ⊸ αrl),✷krl

!(σrrl ⊸ (✷irrl
✷jrrl

!γrrl ⊸ αrrl)))
= [αrl/αrrl] ◦ [γrrl/βrl] ◦ [irrl, jrrl/irl] ◦ [σrrl/γll] ◦ [ϵ/jll] ◦ [ϵ/krl], and

U6 = MGU(U5(✷irl
!(✷jlr

!γlr ⊸ ✷jrl
!γrl ⊸ βrl)), U5(V erR(✷kr

!τrr)))
= MGU(✷irrl

✷jrrl
!(✷jlr

!γlr ⊸ ✷jrl
!γrl ⊸ γrrl),

(✷krr
!(σrrr ⊸ (✷irrr

✷jrrr
!γrrr ⊸ αrrr)))))

= [γrrl/αrrr] ◦ [γrrr/γrl] ◦ [irrr, jrrr/jrl] ◦ [σrrr/γlr] ◦ [ϵ/jlr] ◦ [irrl, jrrl/krr]

Summing up we obtain:

U(✷il
✷jl

!γl ⊸ αl)
= U2 ◦ U4 ◦ U3 ◦ [ϵ/kl] ◦ Dup(k)(✷il

✷jl
!γl ⊸ αl)

= U2 ◦ U4 ◦ [γrl ⊸ βrl/βlr] ◦ [irl/ilr] ◦ [✷irl
!βrl ⊸ αrl/βll] ◦ [ϵ/ill] ◦ Dup(il)(✷il

✷jl
!γl ⊸ αl)

= U2 ◦ U4 ◦ [γrl ⊸ βrl/βlr] ◦ [irl/ilr]((✷jll!γll ∧ ✷ilr✷jlr!γlr) ⊸ αl)
= U6 ◦ U5 ◦ Dup(kr)((✷jll!γll ∧ ✷irl

✷jlr!γlr) ⊸ ✷irl
✷jrl

!γrl ⊸ αrl)
= U6 ◦ [αrl/αrrl] ◦ [γrrl/βrl] ◦ [irrl, jrrl/irl] ◦ [σrrl/γll] ◦ [ϵ/jll]

((✷jll!γll ∧ ✷irl
✷jlr!γlr) ⊸ ✷irl

✷jrl
!γrl ⊸ αrl)

= U6 ◦ [αrl/αrrl]((σrrl ∧ ✷irrl
✷jrrl

✷jlr!γlr) ⊸ ✷irrl
✷jrrl

✷jrl
!γrl ⊸ αrl)

= [βrl/αrrr] ◦ [γrrr/γrl] ◦ [irrr, jrrr/jrl] ◦ [σrrr/γlr] ◦ [ϵ/jlr]
((([αrl/αrrl]σrrl) ∧ ✷irrl

✷jrrl
✷jlr!γlr) ⊸ ✷irrl

✷jrrl
✷jrl

!γrl ⊸ αrl)
= [γrrl/αrrr]◦[γrrr/γrl]((([αrl/αrrl]σrrl)∧✷irrl

✷jrrl
σrrr) ⊸ ✷irrl

✷jrrl
✷irrr

✷jrrl
!γrl ⊸ αrl)

= ((([αrl/αrrl]σrrl) ∧ ✷irrl
✷jrrl

([γrrl/αrrr]σrrr)) ⊸ ✷irrl
✷jrrl

✷irrr✷jrrl
!γrrr ⊸ αrl)

which coincides with the principal type of the Church number 4.

P. Di Gianantonio and M. Lenisa 5:11

3.1 Relating the typing systems

The ground typing system and the principal type system are connected via substitution-
replications:

▶ Theorem 16.
(i) If ∆ ⊢ M : µ is derivable, then there exist ∆′, µ′ and a substitution-replication T such

that ∆′ ⊩ M : µ′ is derivable, T (∆′) = ∆ and T (µ′) = µ.
(ii) For any derivable judgement ∆ ⊩ M : µ and for all substitution-replications T , if the

judgement T (∆) ⊢ M : T (µ) contains only ground types, then it is derivable.

Proof.
(i) By induction on ⊢-judgement derivations, using Lemma 13(i) above, and the fact that

MGU gives the most general substitution-replication (Lemma 9).
(ii) By induction on ⊩-judgement derivations. ◀

4 Principal types and lambda nets

The aim of this section is to show that the principal type of a λ-term M is an alternative
description of the cut-free form of the λ-net representing M . Moreover, the MGU algorithm
amounts to the cut-elimination algorithm on λ-nets.

In order to exhibit the correspondence, and maybe against the spirit of proof nets, we are
going to give a representation of proof structures by sets of terms. Similar representations
have been used in [17] for MLL, and in [18] for interaction nets. The main idea in this
representation is to use a pair of variables to represent a proof-net axiom, and a term to
represent a proof-net conclusion. Differently from the cited works, we consider MELL, the
multiplicative and exponential fragment of LL, so we give a term representation also for
boxes.

The following grammar defines a set of proof terms in the form t : A, where A is a formula
of MELL, and t is a term representing the part of a proof structure having A as conclusion:

t : A ::= α : A | α : A⊥ | (t : A) O (s : B) : A O B

| (t : A) ⊗ (s : B) : A ⊗ B | !i(t : A) : !A
| d(t : A) :?A | c((t :?A), (s :?A)) :?A | w :?A

| cut(t : A, s : A⊥) : ⊥
| ✷i(t :?A) :?A | ✷i(t : ⊥) : ⊥

where α ranges over a set of basic variables TVar , and i over a set of indexes Ind. We assume
that TVar is equipped with an involution operation α 7→ α. The idea is to use a pair α, α to
mark the pair of formulas introduced by an axiom, and an index i to mark the boundary of
a box in proof structures. The constructor c is taken to be associative and commutative.

In an almost straightforward way, one can transform a proof structure with conclusions
A1, ..., Am and containing a set of cuts between the pairs of formulae (B1, B⊥

1), ..., (Bm, B⊥
m)

in a set of proof terms ⊢ t1 : A1, ..., tm : Am, cut(s1 : B1, s′
1 : B⊥

1) : ⊥, ..., cut(sm : Bm, s′
m :

B⊥
m) : ⊥.

▶ Example 17. With the above notation, the proof-net represented in the standard notation
by the following diagram:

TYPES 2021

5:12 Principal Types as Lambda Nets

A⊥ A⊥ A A

d d ⊗

?A⊥ ?A⊥ A ⊗ A

c !

?A⊥ !(A ⊗ A)

is written as the list of proof terms:

✷i(c(d(α : A⊥) :?A⊥, d(β : A⊥) :?A⊥) :?A⊥, !i((β : A) ⊗ (α : A) : A ⊗ A) : !(A ⊗ A).

To limit redundancy, the MELL formulae appearing inside a proof term will be most of the
times omitted. With this convention, the above formula is written as:

✷i(c(d α, d β)) :?A⊥, !i(β ⊗ α) : !(A ⊗ A).

The sets of proof terms representing a valid proof structure is inductively defined by the
following set of rules:

|=α : A⊥, α : A
(ax) |=Γ, t : A, s : B

|=Γ, t O s : A O B
(par) |=Γ1, t : A |=Γ2, s : B

|=Γ1, Γ2, t ⊗ s : A ⊗ B
(tens)

|=Γ
|=Γ, w :?A

(weak) |=Γ, t : A

|=Γ, d t :?A
(der) |=Γ, t1 :?A, t2 :?A

|=Γ, c(t1, t2) :?A
(con)

|=?Γ, s : A i fresh
|=✷i(?Γ), !is :!A (prom) |=Γ1, t : A |=Γ2, s : A⊥

|=Γ1, Γ2, cutA(t, s) : ⊥
(cut)

where in each derivation rules with two premises, |=Γ1 |=Γ2
|=Γ , we implicitly assume that Γ1

and Γ2 have disjoint sets of basic variables and indexes, Γ denotes any possible set of proof
terms, ?Γ denotes a set of proof terms in the form t1 :?A1, . . . , tn :?An, s1 : ⊥, . . . , sm : ⊥,
for m, n ≥ 0.
Given ?Γ = t1 :?A1, . . . , tn :?An, s1 : ⊥, . . . , sm : ⊥, the expression ✷i(?Γ) denotes

✷i(t1) :?A1, . . . ,✷i(tn) :?An,✷i(s1) : ⊥, . . . ,✷i(sm) : ⊥.

Note that in the compact notation for proof terms, in order to be able to associate
a MELL formula to each sub-proof term, we mark each application of cut with a MELL
formula. Moreover, it is necessary to choose a type variable α for each axiom rule, and an
index variable for each promotion rule. These choices are completely arbitrary, and therefore
we consider equivalent proof-nets that differ only by variable relabelling.

It is not difficult to check that the above rules are in direct correspondence with MELL
rules.

4.1 Lambda nets
In this paper, we are interested in λ-nets, that is in proof nets representing λ-terms. These
particular proof nets are characterised by introducing polarity on formulas and by restricting
the occurrences of O and ⊗ according to polarities. To model the pure untyped λ-calculus,

P. Di Gianantonio and M. Lenisa 5:13

one needs to define a structure isomorphic to its own function space, D = D → D; in the
linear logic encoding this corresponds to consider a proposition O such that O =!O ⊸ O =
?(O⊥) O O. As a consequence, we consider proof structures having as conclusion just four
kinds of propositions, O, !O, I and ?I, related by I = O⊥, and satisfying the equivalence
induced by O = !O ⊸ O . This in particular implies O = ?I O O and I = !O ⊗ I.

The grammar for proof terms is the following:

t : C ::= α : O | α : I

| (s :?I) O (t : O) : O | (t :!O) ⊗ (s : I) : I

| !i(t : O) :!O | d(s : I) :?I | c((s1 :?I), (s2 :?I)) :?I

| ✷i(t :?I) :?I | ✷i(s : ⊥) : ⊥
| cut(s : I, t : O) : ⊥ | cut!(s :?I, t :!O) : ⊥
| w :?I

In the following, we are going to consider two classes of λ-nets, the standard ones and a
modified version. Since we are dealing with a type system where only strongly normalisable
terms are typable, and principal types correspond to λ-nets in normal form, we need to define
a cut-elimination that is perpetual, i.e. it converges on a λ-net if the standard cut-elimination
procedure converges for every possible choice of order in which cuts are reduced. This can
be achieved by modifying the way weakening is defined. While in a standard cut-elimination
procedure boxes containing cuts can be removed, in our approach boxes are only partially
eliminated and the cuts that they contain are left pending, so the cut-elimination procedure
needs to explicitly eliminate all the cuts which are present in the λ-net.

In the following, we present two rules for weakening, the standard and the modified one:
standard λ-nets are built using standard weakening, i.e. rule (s-weak), while modified λ-nets
are constructed using modified weakening, i.e. rule (m-weak). Note that in a modified λ-net
a type variable, α or α, can appear just once. In the graphical representation of λ-nets, this
possibility corresponds to admitting axioms with a single component.

λ-structures are then defined as sets of proof terms containing a single term with type O

or !O, with all other terms having types I, ?I or ⊥.
The set of rules defining λ-nets are the following:

|=α : I, α : O
(ax) |=Γ, s :?I, t : O

|=Γ, s O t : O
(par)

|=Γ1, s : I |=Γ2, t :!O
|=Γ1, Γ2, t ⊗ s : I

(tens)

|=Γ, s : I

|=Γ, d s :?I
(der) |=Γ, s1 :?I, s2 :?I

|=Γ, c(s1, s2) :?I
(con) |=?Γ, t : O i fresh

|=✷i(?Γ), !it :!O (prom)

|=Γ1, s : I |=Γ2, t : O

|=Γ1, Γ2, cut(s, t) : ⊥
(cut)

|=Γ1, s :?I |=Γ2, t :!O
|=Γ1, Γ2, cut!(s, t) : ⊥

(cut!)

|=Γ
|=Γ, w :?I

(s-weak)
|=Γ1, t1 : O |=Γ2, t2 : O

|=Γ1, Γ2, t1 : O
(m-weak)

where in each derivation rules with two premises, |=Γ1 |=Γ2
|=Γ , we implicitly assume that Γ1

and Γ2 have disjoint sets of basic variables and indexes.
In this setting, the cut-elimination steps are defined by the following rules:

|=Γ, cut(s, α) : ⊥ →ces |=Γ[s/α]
|=Γ, cut(α, t) : ⊥ →ces |=Γ[t/α]
|=Γ, cut(t1 ⊗ s1, s2 O t2) : ⊥ →ces |=Γ, cut(s1, t2) : ⊥, cut!(s2, t1) : ⊥

TYPES 2021

5:14 Principal Types as Lambda Nets

|=Γ, cut!(c(s1, s2), !i t) : ⊥ →ces

⊢ Γ(Dup(i)), cut!(s1, V erL(!i t)) : ⊥, cut!(s2, V erR(!i t)) : ⊥
|=Γ, cut!(✷j s, !i t) : ⊥ →ces |=Γ[j, i / i], ✷j(cut!(s, !i t)) : ⊥
|=Γ, cut!(d s, !i t) : ⊥ →ces |=Γ[ϵ / i], cut(s, t) : ⊥
|=Γ, cut!(w, !i t) : ⊥ →ces |=Γ(Del(i))

where with Γ[t/α], Γ[j, i / i], Γ[ϵ / i], Γ(Dup(i)) we denote respectively the environment Γ
where a suitable operation has been performed: namely, in Γ[t/α], the substitution of a
variable α by the term t; in Γ[j, i / i], the substitution of each ✷i by the sequence ✷j✷i; in
Γ[ϵ/ i], the cancellation of each ✷i; in Γ(Dup(i)), the duplication of each subterm in the
form ✷it, implemented similarly to the MGU algorithm; in Γ(Del(i)), the substitution of
each subterm in the form ✷it by w.

Notice that the first two rules for cut-elimination correspond to the standard rule for
the axiom case, the 3rd rule corresponds to the standard rule for par-tensor, the 4th rule
corresponds to the standard rule for the promotion-promotion case, where one box is inserted
into the other, the 5th rule corresponds to rule for dereliction-promotion where a box is
eliminated, and the 6th rule corresponds to the contraction-promotion case where a box is
duplicated. The last rule is the weakening-promotion case, and it will be applied only to
λ-nets obtained through the standard translation of λ-terms.

Notice moreover that there is an, at the moment informal, one to one correspondence
between the MGU-rules and the first 6 rules of cut-elimination. This correspondence will be
formalised later.

4.2 From λ-terms to λ-nets
In this section we present two translations from λ-terms in the two classes of λ-nets: a
translation S to standard λ-nets, mimicking the standard translation, [20], and a modified
translation, L, in the modified λ-nets. We will state some properties explaining how the two
translations are connected; this will allow us to derive properties of L from already known
properties of S.

▶ Definition 18. We associate to a λ-term M two λ-structures, L(M) and S(M), where the
types ?I appearing outermost are marked with the free variables of M .
The λ-net L(M) is inductively defined as follows:

L(x) = |=d α :?Ix, α : O

L(M) = |=Γ1, t : O L(N) = |=Γ2, s : O α fresh
Var(Γ1, t : O) ∩ Var(Γ2, s : O) = ∅

L(MN) = |=c(Γ1,✷iΓ2), cut((!is) ⊗ α), t) : ⊥, α : O

L(M) = |=Γ, s :?Ix, t : O

L(λx.M) = |=Γ, s O t : O

L(M) = |=Γ, t : O x, α fresh
L(λx.M) = |=Γ, (d α) O t : O

where c(Γ, Γ′) = {c(s, t) :?Ix | (s ∈?Ix) ∈ Γ ∧ (t :?Ix) ∈ Γ′)}
∪{s :?Ix | (s ∈?Ix) ∈ Γ ∧ ∄t . (t :?Ix) ∈ Γ′} ∪ {s :?Ix | (s ∈?Ix) ∈ Γ′ ∧ ∄t . (t :?Ix) ∈ Γ}.

The standard λ-net S(M) is inductively defined by the same rules as above, just the last rule
is reformulated as:

S(M) = |=Γ, t : O x fresh
S(λx.M) = |=Γ, (w O t) : O

P. Di Gianantonio and M. Lenisa 5:15

Notice that in the above definition one needs to choose the type and index variables
appearing in L(M), however, all choices generate equivalent λ-nets.

▶ Lemma 19. The function L associates to each λ-term M a λ-net in the form L(M) =
|=s1 :?Ix1 , . . . , sn :?Ixn , t1 : ⊥, . . . , tk : ⊥, t : O, where {x1, . . . , xn} = FV (M), k gives the
number of cuts, which corresponds to the number of applications in the λ-term. A similar
result holds for S.

Proof. By induction on the structure of M . One can easily check that the λ-structure
L(M) is a λ-net, using the inductive hypothesis and a suitable set of derivation rules. The
correspondence is the following:

for a variable one uses (ax) and (der) rules;
for a λ-abstraction binding a variable appearing in the body of the term, one uses the
(par) rule;
for a λ-abstraction binding a variable not appearing in the body of the term, one uses
(ax), (der), (m-weak), and (par) rules;
for application, one uses (prom), (ax), (tens), (cut), and (con) rules.

An analogous proof can be formulated for S. ◀

Notice that, given a λ-term M in normal form, the translations L(M) and S(M) are λ-
nets not in normal form, however they can be reduced to normal form by a number of
cut-elimination steps all of the shape |=Γ, cut(s : I, α : O) : ⊥ →ces |=Γ[s/α]. Quite often
proof nets that differ just by the application of the above cut-elimination steps are informally
considered equivalent.

The translation L differs from the standard translation S of λ-calculus into λ-nets because
of the weakening rule. This difference leads to a difference in the way cut-elimination is
performed. The standard translation leads to cuts between exponentials and weakening
constants, where the whole box containing the exponential is eliminated. The new translation
leads to cuts between unpaired variables and exponentials, where not the whole box containing
the exponential is eliminated, but just the exponential terms, while the remaining parts of
the box are left unchanged, just the box boundary is removed. As a consequence, given a
closed term M , the cut in L(M) can be eliminated if and only if M is strongly normalisable,
and this is due to the fact that in cut-elimination no cut is deleted without being resolved.

In the following we present a formal proof of the above facts.

▶ Definition 20.
(i) Let ⪅ be the least congruent order relation on proof terms and λ-nets s.t. w :?I ⪅ d β :?I,

for any type variable β.
(ii) Let ≲ be the least congruent order relation on proof terms and λ-nets such that:

w :?I ≲ d β :?I, t :?I ≲ c(t, t′) :?I

|=Γ ≲ |=Γ, t :?I, |=Γ ≲ |=Γ, t : ⊥, and |=Γ, t : A ≲ |=Γ, t′ : A whenever
t : A ≲ t′ : A.

A lemma relating ⪅ and ≲ is the following:

▶ Lemma 21. If |=Γ ⪅ |=Γ′, |=Γ ≲ |= ∆ and ∆ does not contain the constant w, then
there exists |=Γ′′, which coincides, up-to renaming of type variables, with |=Γ′, and such that
|=Γ′′ ≲ |= ∆.

Proof. Any instance of w appearing in Γ must be replaced by a proof terms t :?I with
d β :?I ≲ t :?I (for some type variable β) in ∆, while the same instance of w, can remain
the same or be replaced by a proof term d α :?I in Γ′. The λ-net |=Γ′′ is obtained from |=Γ′

by replacing any such α in Γ′ by the corresponding β appearing in ∆. ◀

TYPES 2021

5:16 Principal Types as Lambda Nets

The relation ≲ is preserved by the cut-eliminations steps, that is:

▶ Lemma 22. For any pair of λ-nets |=Γ and |=∆ such that |=Γ ≲ |= ∆, the following hold:
for any Γ′ such that |=Γ →ces |=Γ′, there exists ∆′ such that |=∆ →ces |=∆′ and
|=Γ′ ≲ |= ∆′.
for any ∆′ such that |=∆ →ces |=∆′, either |=Γ ≲ |= ∆′ or there exists Γ′ such that
|=Γ →ces |=Γ′ and |=Γ′ ≲ |= ∆′.

|=Γ ≲ |=∆

|=Γ′ ≲ |=∆′

ces ces

Proof. Both items can be proved by case analysis on the kind of the cut-elimination step,
and by observing that, when |=Γ ≲ |= ∆, any subterm in Γ appears, possibly in an extended
form (i.e. c(t, t′) in place of t) also in ∆, therefore any reduction in Γ can be replicated in
∆. ◀

The above lemma, whose proof is immediate, relates the λ-nets S(M) and L(M) for any
term M .

▶ Lemma 23. For any term M , S(M) ≲ L(M) and S(M) ⪅ L(M).

The following lemmas show that β-reduction on λ-terms can be simulated (even not
faithfully) by cut-elimination.

▶ Lemma 24. For any pair of λ-terms M and N , if M →β N , then there exists a λ-net |=Γ
such that L(M) →ces |=Γ and L(N) ≲ |=Γ.

Proof. By the properties of λ-nets, see e.g. [19], we have that S(M) →ces S(N), then by
Lemmas 23 and 22, there exists |=Γ such that L(M) →ces |=Γ and S(N) ≲ ⊢ Γ. Applying
Lemmas 21 and 23, we derive the thesis. ◀

Notice that if M does not contain any affine abstraction, L(M) coincides with S(M),
and so if M β-reduces to N , also L(M) reduces to L(N).

A subject reduction property for λ-nets in normal form is the following:

▶ Lemma 25. For any pair of λ-terms M and N , if M →β N , and L(M) normalises to a
cut-free λ-net |=Γ, then also L(N) normalises to a cut-free λ-net |=Γ′, and |=Γ′ ≲ |= Γ.

Proof. By Lemma 24 there exists |=∆ such that L(M) →ces |=∆ and L(N) ≲ |=∆. Since
cut-elimination satisfies the Church-Rosser property, it is possible from |=∆ to reduce to |=Γ.
By multiple applications of Lemma 22, L(N) reduces to a λ-net |=Γ′ satisfying |=Γ′ ≲ |= Γ.
Hence |=Γ′ does not contain any cut, that is, is in normal form.

L(M) |=∆ |=Γ

L(N) |=Γ′

ces ces∗ces∗

≳

ces∗

≳

◀

For λ-nets not containing the constant w all reduction strategies are equivalent from the
termination point of view.

P. Di Gianantonio and M. Lenisa 5:17

▶ Lemma 26. For any λ-net |=Γ not containing the constant w, either the cuts cannot be
completely eliminated from |=Γ or any possible sequence of cut-elimination steps leads to a
normal form.

Proof. Let corecursively define a cut divergent if, when eliminated by the associated elimin-
ation rule, it generates new cuts and one of these is divergent. Notice that no rule can create
a new divergent cut, unless a divergent cut already exists in the λ-net. If a cut-elimination
sequence diverges on a λ-net |=Γ, then |=Γ must contain a divergent cut. If the constant
w is not present in a λ-net |=Γ, no rule eliminating boxes can be applied, so no cut can be
eliminated as a consequence of the elimination of a box. It follows that, if |=Γ can diverge, it
contains a divergent cut, then divergent cuts cannot be completely eliminated from |=Γ, no
matter in what order the reduction steps are applied. ◀

The previous proposition implies that, for any λ-term M , strong normalisation and weak
normalisation on L(M) coincide.

▶ Proposition 27. For any λ-term M , the following conditions are all equivalent:
(i) L(M) is weakly normalising.
(ii) L(M) is strongly normalising.
(iii) S(M) is strongly normalising.
(iv) M is strongly normalising.

Proof. By Lemma 26, conditions (i) and (ii) are equivalent.
The implication (ii) ⇒ (iii) is proved using Lemmas 23 and 22. In fact, by these lemmas,
any reduction starting from S(M) can be lifted to a reduction starting from L(M). Since
the lifted reduction terminates, also the original reduction terminates.
To prove (iii) ⇒ (i), one starts with S(M) and applies a reduction strategy where no cut
rule for w is used if the eliminated box contains a cut. In this case one eliminates first the
cut inside the box. Since S(M) is strongly normalising, in this way we obtain a terminating
chain C of reductions. Using the construction in Lemma 22, the chain C can be lifted to
a sequence of reductions starting from L(M). Since no box containing a cut is eliminated,
the lifted chain does not contain extra cuts, hence this leads to a cut-free λ-net, that is it
terminates.
The equivalence between (iii) and (iv) is a standard result in the theory of proof nets, [20]. ◀

4.3 From principal types to λ-nets
We define functions Pp, Pn transforming positive and negative principal types in proof terms
representing parts of proof nets:

Pp(α) = α : O

Pp(σ̂ ⊸ τ) = (Pn(σ̂) O Pp(τ)) : O

Pp(✷i!τ) = (!iPp(τ)) :!O
Pn(α) = α : I

Pn(τ̂ ⊸ σ) = (Pp(τ̂) ⊗ Pn(σ)) : I

Pn(!σ) = d(Pn(σ)) :?I

Pn(✷iσ̂) = ✷i(Pn(σ̂)) :?I

Pn(σ̂1 ∧ σ̂2) = c(Pn(σ̂1), Pn(σ̂2)) :?I

The translations above induce a translation P from judgements to cut-free λ-nets, where the
types in the proof net are indexed by free variables:

P(x1 : σ̂1, . . . , xn : σ̂n ⊩ M : τ) = |= Pn(σ̂1)x1 , . . . , Pn(σ̂n)xn
, Pp(τ).

TYPES 2021

5:18 Principal Types as Lambda Nets

First of all, we have the following lemma (whose proof is immediate):

▶ Lemma 28. The function Pp defines an isomorphism between positive simple-types and
proof terms having type in the form t : O, and between positive and-types and proof terms in
the form t :!O; the function Pn defines an isomorphism between negative simple-types and
proof terms having type in the form t : I, and between negative and-types and proof terms in
the form t :?I.

The main result of this section consists in showing that a judgement ∆ ⊩ M : τ is
derivable if and only if L(M) reduces to the cut-free λ-net P(∆ ⊩ M : τ). In order to show
this, we need first to establish a correspondence between performing cut-elimination and
evaluating a MGU and applying it to a judgement. This correspondence is expressed by the
following lemma:

▶ Lemma 29. For any negative type ν and positive type µ, either both simple or both
and-types, and for any judgement ∆ ⊩ M : τ ,

MGU(ν, µ) exists iff the λ-net |=cut(Pn(ν), Pp(µ)) reduces to a cut-free λ-net.
If MGU(ν, µ) exists, then:
P(MGU(ν, µ)(∆ ⊩ M : τ)) is equal to the normal form of |=Γ, cut(Pn(ν), Pp(µ)) : ⊥,
where Γ = P(∆ ⊩ M : τ).

Proof. The proof is by induction on the derivation MGU(ν, µ) = U , for some unification U .
Informally, the correspondence can be explained in the following way. When in a proof net
|=Γ, cut(Pn(ν), Pp(µ)) : ⊥ the cut cut(Pn(ν), Pp(µ)) : ⊥ is eliminated, the remaining part
of the proof is affected in several ways, i.e. some variables are substituted, some boxes are
duplicated, the boundaries of some boxes are deleted, some boxes are inserted in other boxes.
All these actions coincide with the actions generated by the MGU(ν, µ). ◀

Comparing the MGU definition to cut-elimination, one observes that, while the MGU
is essentially deterministic, i.e. there is always a single rule to apply (up-to the axioms,
in the case of two variable types), the cut-elimination procedure is non-deterministic, i.e.
one can choose the order in which cuts are eliminated. So the MGU evaluation is in direct
correspondence with one particular strategy of cut-elimination. However, in Proposition 27
we have shown that all strategies on L(M) are equivalent from the normalisation point of
view.

We are now in the position to state the following:

▶ Proposition 30. For any ∆, M, τ , the principal type judgement ∆ ⊩ M : τ is derivable iff
the λ-net L(M) reduces, by cut-elimination, to the cut-free λ-net P(∆ ⊩ M : τ).

Proof. The proof is by induction on the structure of M , all cases but application are
immediate. For the application case, M = M1N , one distinguishes two subcases. The first
is when the normal form of L(M1) has the shape |=Γ, α : O. In this case, one observes
that the cut introduced by the main term application can be eliminated in one step, by a
single substitution, and the normal form of L(M1N) coincides with the λ-net obtained by
P-translation of a judgement derived by the (appNorm)-rule. When this case does not apply,
i.e., L(M) is not in the form |=Γ, α : O, the thesis follows from Lemma 29 and from the fact
that L(M) is weakly normalising iff it is strongly normalising, by Proposition 27. ◀

P. Di Gianantonio and M. Lenisa 5:19

5 Applications

In this section we aim at showing how the various correspondence results established in the
previous sections (between the two typing systems, λ-nets and the principal typing system,
the two translations of λ-terms into λ-nets) can be exploited to prove properties of the
ground typing system of Definition 2.

The properties that we are going to analyse are strong normalisation, subject reduction,
and inhabitation. Such properties are already known, and they have been extensively studied
in the literature, but here we present alternative proofs based on the above correspondence
results.

All proofs in this section follow this basic pattern:
given a property of λ-terms, we associate a property of λ-nets via the standard interpret-
ation;
via the correspondence between standard and modified interpretations, we associate a
property of λ-nets through the modified interpretation;
via the correspondence between modified interpretation and the principal typing system,
we associate a property on principal types;
finally, via the correspondence between the principal typing system and the ground
system, we derive a property of the ground typing assignment system.

5.1 Typability and strong normalisation
Idempotent or non-idempotent intersection types are quite often used to characterise (strongly)
normalisable terms, [2, 22, 3, 6]. By extending the chain of equivalences of Proposition 27, we
can give an alternative proof of a classical result, using the correspondence between principal
types and lambda-nets:

▶ Proposition 31. For all M ∈ Λ0, the following conditions are equivalent:
(i) M is strongly normalising.
(ii) M has a principal type.
(iii) M has a ground type.

Proof. By Proposition 27, M is strongly normalising iff L(M) is normalisable, by Proposi-
tion 30 this is equivalent to (ii), which in turn is equivalent to (iii) by Theorem 16. ◀

5.2 Subject reduction
Subject reduction is a sort of minimal requirement for any typing system; again one can use
the correspondence between principal types and lambda-nets to derive this standard result.
In particular, subject reduction holds up-to a suitable ≲-relation on types. Notice that,
however, subject conversion fails, as it is always the case for typing systems characterising
strongly normalisable terms.

▶ Definition 32. Let ≲ be the least precongruence on (principal) types extending the relation
σ̂1 ≲ σ̂1 ∧ σ̂2.

Precongruences on types and on λ-nets are related by:

▶ Lemma 33. For all positive types µ1, µ2, µ1 ≲ µ2 iff Pp(µ1) ≲ Pp(µ2).

▶ Theorem 34 (Subject Reduction). For all M ∈ Λ0,

⊢ M : τ & M →β N =⇒ ∃τ ′. ⊢ N : τ ′ & τ ′ ≲ τ .

TYPES 2021

5:20 Principal Types as Lambda Nets

Proof. By Theorem 16, M has a principal type, hence, by Proposition 31, M is strongly
normalisable. Therefore also N is strongly normalisable, and by Proposition 31 it has a
principal type. By Proposition 30, both L(M) and L(N) reduce to normal forms. Since M

and N are closed, such λ-nets are composed by a single proof term, |=t1 : O and |=t2 : O.
Moreover, let τ1 and τ2 be the type schemata such that Pp(τ1) = t1 and Pp(τ2) = t2 (they
exist since Pp is an isomorphism). By Lemmas 24 and 22, |=t2 : O ≲ |=t1 : O, and therefore,
by Lemma 33, τ2 ≲ τ1. By Proposition 30 ⊩ M : τ1 and ⊩ N : τ2. By Theorem 16(i), there
exists a substitution-replication T such that τ = T (τ1). Since τ2 ≲ τ1, it follows that T (τ2)
is a ground type, hence ⊢ N : T (τ2), and T (τ2) ≲ τ . ◀

5.3 Inhabitation
Here we show that the inhabitation problem for principal types can be reduced to the problem
of correctness of λ-structures, and therefore it is decidable. Then we reflect this result to the
ground typing system, obtaining an alternative proof of the decidability result proved in [5].
Here the hypothesis of non-idempotency of the ∧-operator is essential.

▶ Proposition 35. For any list of negative and-types σ̂1, ..., σ̂n, and for any positive type τ ,
there exists a λ-term M with free variables x1, ..., xn such that: x1 : σ̂1, . . . , xn : σ̂n ⊩ M : τ

if and only if the λ-structure |=Pn(σ̂1), . . . , Pn(σ̂n), Pp(τ) is a λ-net.

Proof.
(⇒) If M exists then, by Proposition 30, |=Pn(σ̂1), . . . , Pn(σ̂n), Pp(τ) is the normal form of
L(M), and therefore a λ-net.
(⇐) By structural induction on the derivation of λ-nets, we show that, for any λ-net in
the form |=s1 : I, . . . , sm : I, t1 :?I, . . . , tn :?I, t : O, there exists a λ-term M with free
variables x1, . . . , xm, y1, . . . , yn such that each variable xi appears once in M , and the
normal form of L(M) is the λ-net |=d s1 :?Ix1 , . . . , d sm :?Ixm

, t1 :?Iy1 , . . . tn :?Iym
, t : O

(up-to commutativity and associativity of the contraction operator, c). Then the thesis
follows from Proposition 30. In proving the above fact, many of the inductive cases are
quite straightforward, here we consider the most difficult ones, namely (tens), (con), and
(m-weak). In the following, let the metavariable Γ denote a sequence of proof terms in the
form t1 :?I, . . . tn :?I, while ∆ denotes a sequence of proof terms in the form s1 : I, . . . , sm : I,
in this case ∆? denotes the sequence of proof terms d s1 :?I, . . . , d sm :?I.
(tens) Let us suppose that |=∆1, Γ1, Γ2, t2 ⊗ s : I, t1 : O is derived from |=∆1, Γ1, s : I, t1 : O

and |=Γ2, t2 :!O. Notice that |=Γ2, t2 :!O can only be derived through the (prom) rule. By
inductive hypothesis there exist two terms M [x] and N , such that M [x] contains a variable x

once and the normal form of L(M [x]) has shape |=∆1?, d s :?Ix, Γ1, t1 : O, while the normal
form of L(N) has shape |=Γ2, t2 :!O. Quite obviously, the free variables in M [x] and N can
be chosen is such a way that no free variable is in common between the two terms. Now one
can prove by structural induction on M [x] that the normal form of L(M [x]N) has shape
|=∆1?, Γ1, Γ2, d(t2 ⊗ s) :?I, t1 : O, from which the thesis follows.
(con) Let us suppose that |=∆, Γ, c(s1, s2) :?I, t : O is derived from |=∆, Γ, s1 :?I, s2 :?I, t : O,
by inductive hypothesis there exists a term M [y1, y2] such that L(M [y1, y2]) has shape
|=∆?, Γ, s1 :?Iy1 , s2 :?Iy2 , t : O. Now one can prove, by structural induction on M [y1, y2],
that the normal form of L(M [y, y]) has the shape (up-to commutativity and associativity of
contraction) |=∆, Γ, c(s1, s2) :?Iy, t : O, from which the thesis follows.
(m-weak) Let us suppose that |=∆, Γ, ?Γ′, t : O is derived from |=∆, Γ, t : O and |=?Γ′, t′ : O.
By inductive hypothesis, there exist terms M and N such that the normal forms of L(M)
and L(N) have shapes |=∆?, Γ, t : O and |=?Γ′, t′ : O. Let x be a variable fresh in M , then
it is easy to check that the normal form of L((λx.M)N) has shape |=∆?, Γ, ?Γ′, t : O. ◀

P. Di Gianantonio and M. Lenisa 5:21

▶ Proposition 36. The inhabitation problem for principal types is decidable.

Proof. By Proposition 35, a type schema τ is inhabited iff the λ-structure |=Pp(τ) is a λ-net.
Notice that, since we consider a modified version of the weakening rule, one cannot use
the standard correctness criterion for λ-structures. However, by a simple induction on the
complexitity of λ-structures, it is easy to prove that the correctness problem is decidable
also in the case of modified weakening. ◀

The previous result can then be transferred to the ground type system, obtaining an
alternative proof of the decidability result of [5].

▶ Proposition 37. The inhabitation problem for ground types is decidable.

Proof. By Theorem 16, a ground type τ is inhabited by a term M if and only if there is a
type schemata τ ′ inhabited by M , and such that τ is an instance of τ ′. Now a ground type τ

can be the instance of just a finite set of well-formed positive type schemata, {τi | 0 < i ≤ n},
that one can construct starting from τ . So the inhabitation of τ can be reduced to the
inhabitation of the finite set of type schemata {τi | 0 < i ≤ n}, which is decidable. ◀

Notice that, in the proof of the above proposition, the hypothesis of non-idempotency
of ∧ is essential. Namely, if ∧ is idempotent, it is not true that a ground type can be an
instance of just a finite set of type schemata. In fact, it is known that the inhabitation
problem is undecidable for ground types when ∧ is idempotent [27].

5.4 Normalisation algorithm for λ-terms
As a further development of the theory in the present paper, it is possible to use the type
system for principal types to build a normalisation algorithm for λ-terms, that in turn can
be seen as a normalisation algorithm based on proof nets, but working on terms and not
on graphs. The code of the Haskell implementation of the above algorithm is available
as supplementary material of the present submission in [14]. It is quite simple but not
particularly efficient. Mainly, we wrote it as a first check of correctness for the formally given
rules.

6 Final Remarks

We have illustrated the analogy of “principal types as λ-nets”, by focusing on a specific type
assignment system for typing strongly normalising λ-terms. The correspondence allowed
us to relate different concepts and to derive properties of the type assignment system from
known results on λ-nets.

In our type assignment system, the ∧ operator is taken to be non-idempotent, however,
all the results in the present paper, apart from inhabitation (Proposition 37), hold also in
the case of idempotency of ∧.

In this paper, we started from a type assignment system, and we built a modified version
of λ-nets that naturally correspond to the principal types of our type assignment system.
However, it is also possible to move the other way round, that is, start from a given notion
of λ-net, define a corresponding principal type assignment system and from this build a
corresponding ground type assignment system. If the construction is carried out correctly, the
ground assignment system will automatically satisfy properties of subject reduction, strong
or weak normalisation, etc. As future work, we plan to pursue this investigation by starting
from standard λ-nets or from different encodings of the λ-calculus in proof nets, in particular

TYPES 2021

5:22 Principal Types as Lambda Nets

the one associated with the call-by-value reduction strategy, see [19], Section 4.2.1. The
corresponding type assignment systems should characterise weakly (or strongly) normalising
λ-terms w.r.t. different reduction strategies.

References
1 Beniamino Accattoli. Proof nets and the linear substitution calculus. In International

Colloquium on Theoretical Aspects of Computing, volume 11187 of LNCS, pages 37–61. Springer,
2018. doi:10.1007/978-3-030-02508-3_3.

2 Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. A filter lambda model
and the completeness of type assignment. J. Symb. Log., 48(4):931–940, 1983. doi:10.2307/
2273659.

3 Alexis Bernadet and Stéphane Lengrand. Non-idempotent intersection types and strong
normalisation. Log. Methods Comput. Sci., 9(4), 2013. doi:10.2168/LMCS-9(4:3)2013.

4 Gérard Boudol, Pierre-Louis Curien, and Carolina Lavatelli. A semantics for lambda calculi
with resources. Math. Struct. Comput. Sci., 9(4):437–482, 1999. URL: http://journals.
cambridge.org/action/displayAbstract?aid=44845.

5 Antonio Bucciarelli, Delia Kesner, and Simona Ronchi Della Rocca. Inhabitation for non-
idempotent intersection types. Logical Methods in Computer Science, 14(3), 2018. doi:
10.23638/LMCS-14(3:7)2018.

6 Antonio Bucciarelli, Delia Kesner, and Daniel Ventura. Strong normalization through intersec-
tion types and memory. In M. Benevides and R. Thiemann, editors, Proceedings of the Tenth
Workshop on Logical and Semantic Frameworks, with Applications (LSFA 2015), volume 23,
pages 75–91. ENTCS, 2016. doi:10.1016/j.entcs.2016.06.006.

7 Antonio Bucciarelli, Delia Kesner, and Daniel Ventura. Non-idempotent intersection types for
the lambda-calculus. Logic Journal of the IGPL, 25(4):431–464, 2017. doi:10.1093/jigpal/
jzx018.

8 S. Carlier and J. B. Wells. Type inference with expansion variables and intersection types in
system E and an exact correspondence with beta-reduction. In Eugenio Moggi and David Scott
Warren, editors, Proceedings of the 6th International ACM SIGPLAN Conference on Principles
and Practice of Declarative Programming, 24-26 August 2004, Verona, Italy, pages 132–143.
ACM, 2004. doi:10.1145/1013963.1013980.

9 S. Carlier and J. B. Wells. Expansion: the crucial mechanism for type inference with intersection
types: A survey and explanation. Electron. Notes Theor. Comput. Sci., 136:173–202, 2005.
doi:10.1016/j.entcs.2005.03.026.

10 S. Carlier and J. B. Wells. The algebra of expansion. Fundam. Informaticae, 121(1-4):43–82,
2012. doi:10.3233/FI-2012-771.

11 Alberto Ciaffaglione, Furio Honsell, Marina Lenisa, and Ivan Scagnetto. The involutions-as-
principal types/application-as-unification analogy. In G. Barthe, G. Sutcliffe, and M. Veanes,
editors, LPAR-22, volume 57 of EPiC Series in Computing, pages 254–270. EasyChair, 2018.
doi:10.29007/ntwg.

12 Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. Principal type schemes and
λ-calculus semantics. In To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism, pages 536–560. Academic Press, 1980.

13 Daniel de Carvalho. Semantiques de la logique lineaire et temps de calcul. PhD thesis,
Université Aix-Marseille II, 2007. URL: https://theses.fr/2007AIX22066.

14 P. Di Gianantonio. A typing and normalisation algorithm for lambda terms, 2019. URL:
https://users.dimi.uniud.it/~pietro.digianantonio/papers/code/principalTAS.hs.

15 Stephen Dolan and Alan Mycroft. Polymorphism, subtyping, and type inference in mlsub. In
Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages
(POPL 2017), pages 60–72. ACM, 2017. doi:10.1145/3009837.3009882.

https://doi.org/10.1007/978-3-030-02508-3_3
https://doi.org/10.2307/2273659
https://doi.org/10.2307/2273659
https://doi.org/10.2168/LMCS-9(4:3)2013
http://journals.cambridge.org/action/displayAbstract?aid=44845
http://journals.cambridge.org/action/displayAbstract?aid=44845
https://doi.org/10.23638/LMCS-14(3:7)2018
https://doi.org/10.23638/LMCS-14(3:7)2018
https://doi.org/10.1016/j.entcs.2016.06.006
https://doi.org/10.1093/jigpal/jzx018
https://doi.org/10.1093/jigpal/jzx018
https://doi.org/10.1145/1013963.1013980
https://doi.org/10.1016/j.entcs.2005.03.026
https://doi.org/10.3233/FI-2012-771
https://doi.org/10.29007/ntwg
https://theses.fr/2007AIX22066
https://users.dimi.uniud.it/~pietro.digianantonio/papers/code/principalTAS.hs
https://doi.org/10.1145/3009837.3009882

P. Di Gianantonio and M. Lenisa 5:23

16 E. Duquesne and J. Van De Wiele. A new intrinsic characterization of the principal type
schemes. Research Report RR-2416, INRIA, 1995. Projet PARA. URL: https://hal.inria.
fr/inria-00074259.

17 Thomas Ehrhard. A new correctness criterion for MLL proof nets. In Proceedings of the Joint
Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL)
and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
pages 1–10. ACM, 2014. doi:10.1145/2603088.2603125.

18 Maribel Fernández and Ian Mackie. A calculus for interaction nets. In G. Nadathur, editor,
Principles and Practice of Declarative Programming, volume 1702 of LNCS, pages 170–187.
Springer, 1999. doi:10.1007/10704567_10.

19 Stefano Guerrini. Correctness of multiplicative proof nets is linear. In Fourteenth Annual
IEEE Symposium on Logic in Computer Science, pages 454–463. IEEE Computer Science
Society, 1999. doi:10.1109/LICS.1999.782640.

20 Stefano Guerrini. Proof nets and the lambda-calculus. In Thomes Ehrhard, editor, Linear
Logic in Computer Science, pages 316–65. Cambridge University Press, 2004. doi:10.1017/
CBO9780511550850.

21 A.J. Kfoury and J.B. Wells. Principality and type inference for intersection types using
expansion variables. Theoretical Computer Science, 311(1):1–70, 2004. doi:10.1016/j.tcs.
2003.10.032.

22 D. Leivant. Typing and computational properties of lambda expressions. Theoretical Computer
Science, 44:51–68, 1986.

23 Peter Møller Neergaard and Harry G. Mairson. Types, potency, and idempotency: Why
nonlinearity and amnesia make a type system work. In Proceedings of the Ninth ACM
SIGPLAN International Conference on Functional Programming, ICFP ’04, pages 138–149.
ACM, 2004. doi:10.1145/1016850.1016871.

24 Simona Ronchi Della Rocca. Principal type scheme and unification for intersection type
discipline. Theor. Comput. Sci., 59:181–209, 1988. doi:10.1016/0304-3975(88)90101-6.

25 Laurent Régnier. Lambda-Calcul et Rèseaux. PhD thesis, Université Paris VII, 1992. URL:
https://theses.fr/1992PA077165.

26 Emilie Sayag and Michel Mauny. Characterization of the principal type of normal forms in
an intersection type system. In V. Chandru and V. Vinay, editors, Foundations of Software
Technology and Theoretical Computer Science, pages 335–346, Berlin, Heidelberg, 1996. Springer
Berlin Heidelberg. doi:10.1007/3-540-62034-6_61.

27 Pawel Urzyczyn. The emptiness problem for intersection types. In Proceedings IEEE Symposium
on Logic in Computer Science, pages 300–309, 1994. doi:10.1109/LICS.1994.316059.

28 J. B. Wells. The essence of principal typings. In Proceedings of the 29th International
Colloquium on Automata, Languages and Programming, ICALP ’02, pages 913–925. Springer-
Verlag, 2002. doi:10.1007/3-540-45465-9_78.

TYPES 2021

https://hal.inria.fr/inria-00074259
https://hal.inria.fr/inria-00074259
https://doi.org/10.1145/2603088.2603125
https://doi.org/10.1007/10704567_10
https://doi.org/10.1109/LICS.1999.782640
https://doi.org/10.1017/CBO9780511550850
https://doi.org/10.1017/CBO9780511550850
https://doi.org/10.1016/j.tcs.2003.10.032
https://doi.org/10.1016/j.tcs.2003.10.032
https://doi.org/10.1145/1016850.1016871
https://doi.org/10.1016/0304-3975(88)90101-6
https://theses.fr/1992PA077165
https://doi.org/10.1007/3-540-62034-6_61
https://doi.org/10.1109/LICS.1994.316059
https://doi.org/10.1007/3-540-45465-9_78

Internal Strict Propositions Using Point-Free
Equations
István Donkó #

Eötvös Loránd University, Budapest, Hungary

Ambrus Kaposi #

Eötvös Loránd University, Budapest, Hungary

Abstract
The setoid model of Martin-Löf’s type theory bootstraps extensional features of type theory from
intensional type theory equipped with a universe of definitionally proof irrelevant (strict) propositions.
Extensional features include a Prop-valued identity type with a strong transport rule and function
extensionality. We show that a setoid model supporting these features can be defined in intensional
type theory without any of these features. The key component is a point-free notion of propositions.
Our construction suggests that strict algebraic structures can be defined along the same lines in
intensional type theory.

2012 ACM Subject Classification Theory of computation Ñ Type theory

Keywords and phrases Martin-Löf’s type theory, intensional type theory, function extensionality,
setoid model, homotopy type theory

Digital Object Identifier 10.4230/LIPIcs.TYPES.2021.6

Supplementary Material Software (Formalisation): https://bitbucket.org/akaposi/prop [12]
archived at swh:1:dir:6648713cc70e9c6fa8a71cccaa31c1d91cfbc418

Funding István Donkó: Supported by the ÚNKP-21-3 New National Excellence Program of the
Ministry for Innovation and Technology from the source of the National Research, Development and
Innovation Fund.
Ambrus Kaposi: Supported by the Bolyai Fellowship of the Hungarian Academy of Sciences, Project
no. BO/00659/19/3, and by the “Application Domain Specific Highly Reliable IT Solutions” project
which has been implemented with the support provided from the National Research, Development and
Innovation Fund of Hungary, financed under the Thematic Excellence Programme TKP2020-NKA-06
(National Challenges Subprogramme) funding scheme.

Acknowledgements Thanks to Christian Sattler for discussions on the topics of this paper. Many
thanks to the anonymous reviewers for their comments and suggestions.

1 Introduction

The setoid model of type theory pioneered by Hofmann [15] supports the following extensional
features that are missing from intensional type theory: function extensionality, propositional
extensionality (univalence for propositions [4]) and quotient inductive-inductive types [18].
If the setoid model is defined in an intensional metatheory and all equations of the model
(such as the β rule) hold definitionally, then it constitutes a model construction (also called
syntactic translation): any model of intensional type theory can be turned into its “setoidified”
variant which supports the extensional features, thus bootstrapping the extensional features
from intensional type theory. Hofmann’s original model only justified some of the equations
definitionally. Altenkirch showed that if the metatheory supports a sort TyP of definitionally
proof irrelevant propositions in addition to the sort Ty of types, then there is a version of
the setoid model where all equations are definitional [2]. After he presented this model
construction at the Symposium on Logic in Computer Science in 1999 [2], Per Martin-Löf
asked whether it is possible to remove the extra requirement of TyP. As far as we know, the
question is still open.

© István Donkó and Ambrus Kaposi;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Types for Proofs and Programs (TYPES 2021).
Editors: Henning Basold, Jesper Cockx, and Silvia Ghilezan; Article No. 6; pp. 6:1–6:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:isti115@inf.elte.hu
mailto:akaposi@inf.elte.hu
https://orcid.org/0000-0001-9897-8936
https://doi.org/10.4230/LIPIcs.TYPES.2021.6
https://bitbucket.org/akaposi/prop
https://archive.softwareheritage.org/swh:1:dir:6648713cc70e9c6fa8a71cccaa31c1d91cfbc418;origin=https://bitbucket.org/akaposi/prop;visit=swh:1:snp:d651b67ac05be22f2b5571303735ede8caa499b8;anchor=swh:1:rev:342f0758427932316130a5a5facbeb6844c55c17
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Internal Strict Propositions Using Point-Free Equations

In this setoid model a closed type is a setoid: a type together with an equivalence relation;
a term is a function between the types which respects the relations. If the equivalence relation
is proof relevant (Ty-valued), then terms have to additionally include components about
respecting the reflexivity, symmetry and transitivity proofs, then when proving equalities
of terms (such as the β law), one has to show that the corresponding new components
are equal, which forces the introduction of new components, and so on. This problem
is usually referred to as coherence problem, see [15, Section 5.3] for a discussion in the
context of the setoid model, or [19] for a recent exposition of the general phenomenon.
Altenkirch’s solution [2] was to make the relation TyP-valued instead of Ty-valued: in this
case, terms automatically respect reflexivity proofs as there is only one proof of reflexivity,
up to definitional equality. We could avoid requiring TyP by using the internally definable
universe of homotopy propositions hProp [23]. If the relation is hProp-valued, terms respect
reflexivity proofs up to the internal identity type. However to show that the relation for Π
types is in hProp, we need that hProp is closed under Π. To prove this, we need function
extensionality, which defeats the purpose of the model bootstrapping function extensionality.

In this paper we show that in intensional type theory there is an alternative notion of
proposition that is closed under Π. A type A is an hProp if any two elements of A are equal.
We can also express this equation in a point-free way: the two functions “first” and “second”
both having type A Ñ A Ñ A are equal. We call this property isPfProp for point-free
propositions.

isHProp A ” pa a1 : Aq Ñ IdA a a1 isPfProp A ” IdpAÑAÑAq pλa a1.aq pλa a1.a1q

In the presence of function extensionality, isHProp A and isPfProp A are equivalent. However,
in intensional type theory without function extensionality, the latter is stronger. isPfProp
classifies definitionally proof irrelevant types in the empty context: from canonicity it follows
that if isPfProp A for a closed type A, then all elements of A are definitionally equal. For a
type family A : D Ñ Type over a closed type we use a dependent variant of isPfProp:

isPfPropd A ” Idppd:DqÑA dÑA dÑA dq pλd a a1.aq pλd a a1.a1q

In intensional type theory, unlike hProp, isPfPropd is closed under Π types. This essentially
relies on the η rule for Π types. Using η for Σ and J, we can prove that isPfPropd is closed
under these type formers too. isPfProp only includes K if it has a weak η rule saying that
any two elements of K are definitionally equal. This is usually not the case in intensional
type theory where K is defined as an inductive type.

With the help of point-free propositions, we give a partial positive answer to Martin-Löf’s
question: in intensional type theory without a sort of propositions, we define the setoid model
with K, J, Π, Σ, types, a sort TyP closed under J, Π, Σ and a TyP-valued identity type
with function extensionality. Our answer is partial because K is not in TyP, and the model
does not support inductive types, or a universe of propositions. We also define an external
version of this model as a model construction taking as input a model of intensional type
theory, and outputting a model with extensionality principles. This latter construction only
uses external point-free propositions which are the same as subobjects in category theory,
but we still haven’t encountered it in the literature.

Recently, there is a renewed interest in models of type theory with a sort TyP. Agda was
extended with a universe of strict propositions [13], this was used to formalise fully featured
variants of the setoid model [4, 3, 18], strict presheaf models were built using TyP [22], and
the metatheory of type theories with TyP was studied [1, 11]. One difference between TyP
and pfProp is that (as every sort) the former is static: it only includes types which are built

I. Donkó and A. Kaposi 6:3

into it. The latter is dynamic: any type is included for which all elements are definitionally
equal. Another difference is that proof irrelevance holds definitionally for assumed elements
of TyP, while we only know proof irrelevance up to propositional equality for members of
pfProp.

More generally, in intensional type theory, point-free equations can be used to describe
strict algebraic structures. One has to express the algebraic equations in a point-free way.
For example, in a strict monoid with carrier M and binary operation – b –, associativity is
expressed as IdMÑMÑMÑM

`

λx y z.px b yq b z
˘ `

λx y z.x b py b zq
˘

. Natural numbers with
addition are not a strict monoid because addition is only weakly associative. An example of
a strict monoid is the function space A Ñ A for any type A with composition as the binary
operation.

1.1 Structure of the paper
After describing related work, in Section 2 we explain our notation and the notion of model
of type theory we use (category with families). In Section 3 we define point-free propositions
and show that they are closed under J, Σ and Π. In Section 4, we show that any model
of type theory can be equipped with a sort of strict propositions. This can be seen as the
external version of Section 3. We compare the internal and external notions of propositions
in Section 5. Then we describe how point-free propositions can be applied to construct the
setoid model. As a warmup, we define the model construction externally (Section 6). Then
we turn to our main application of internal point-free propositions and define the setoid
model internally to a model of intensional type theory (Section 7). In Section 8 we give more
examples of strict algebraic structures. We conclude in Section 9.

Sections 3 and 7 were formalised in Agda [12], and can be understood without much
intuition about categories with families.

1.2 Related work
Hofmann defined two versions of the setoid model in an intensional metatheory [15], one
of them did not have dependent types, the other justified some computation rules (e.g. β

rules for Σ types) only up to propositional equality, and not definitionally. Altenkirch [2]
justified all the rules of type theory but relied on a definitionally proof-irrelevant universe
of propositions. He sketched a normalisation proof for a type theory with such a universe.
Coquand [9] defined a setoid model in intensional type theory which justifies a weak function
space: there is no substitution rule for λ and no η rule. Palmgren [21] formalised a set-
theoretic interpretation of extensional type theory in an intensional metatheory. He used
setoids for encoding sets as well-founded trees quotiented by bisimulation, hence it can also
be seen as a setoid model. Thus it is similar to our Construction 17 and it justifies more
types including inductive types and a universe. It is not clear whether one can obtain a
model construction analogous to Construction 15 from his interpretation.

Strict propositions were introduced in Agda and Coq in a way that is compatible with
univalence [13]. Issues with rewriting-style normalisation for a type theory with strict
propositions, a strict identity type and a strong transport were found by Abel and Coquand
[1]. Normalisation for type theory with strict propositions but without such an identity type
was proved by Coquand [11].

The setoid model as a model construction was described in [4] together with an Agda
formalisation using strict propositions in Agda. This was extended with an inductive-recursive
universe of setoids in [3].

TYPES 2021

6:4 Internal Strict Propositions Using Point-Free Equations

In [4], a variant of the setoid model was described in which transport has a definitional
computation rule. In the accompanying formalisation, a point-free equation was used to ensure
this property: instead of pa : Aq Ñ coeA refl a “ a, the equation pλa.coeA refl aq “ pλa.aq was
used. In his brilliant paper [16], Hugunin shows that function extensionality is not needed to
define natural numbers (and inductive types) from W-types in intensional type theory. He
constructs a predicate which selects the “canonical” elements in natural numbers defined by
W-types. His construction has a similar “point-free” flavour and also essentially relies on η

for function space.

2 Type theory

Our metatheory is extensional type theory and we use notations similar to Agda’s. We write
Type for the Russell universe (we don’t write levels explicitly, but we work in a predicative
setting), we write ” for definitional equality, we write px : Aq Ñ B for function space with
λpx : Aq.t or λx.t for abstraction, juxtaposition for application, px : AqˆB for Σ types with a, b

for pairing and π1 ab, π2 ab for projections. We use the lower case Simonyi naming convention,
e.g. ab is a name for a variable in px : Aq ˆ B. We use implicit arguments and implicit
quantifications which we sometimes specify explicitly in subscripts. We write J, tt for the
unit type and its constructor. Function space, dependent products and unit have η laws. We
write IdA a a1 or a “A a1 or simply a “ a1 for the identity type, it has constructor refl : IdA a a

and eliminator J :
`

P : pa1 : Aq Ñ a “ a1 Ñ Type
˘

Ñ P a refl Ñ pe : a “ a1q Ñ P a1 e with
definitional computation rules. We write transp : pP : A Ñ Typeq Ñ a “ a1 Ñ P a Ñ P a1,
e ‚ e1 : a “ a2 for e : a “ a1 and e1 : a1 “ a2, ap f e : f a “ f a1 for e : a “ a1, all defined via J.
The empty type is denoted K with eliminator elimK. We assume quotient inductive-inductive
types (QIITs), that is, we have syntaxes for type theories (see paragraph after the next one).

In some places (e.g. in sections 3 and 7), we work internally to a model of intensional
type theory, and use the same notations as for our metatheory. In these cases we specify
precisely what features our model has and we only use those features, for example we don’t
use equality reflection. In such cases we use the phrase “external” to refer to the metatheory.

The notion of model of type theory we use is category with families (CwF, [8]). Using this
presentation, type theory is a generalised algebraic theory and the syntax of a type theory is
the initial algebra which is a QIIT. In extensional type theory, it is enough to assume the
existence of a single QIIT to obtain syntaxes for all generalised algebraic theories [17]. We
assume the existence of this QIIT (called the theory of QIIT signatures in [17]).

We give some intuition for the description of type theory as a CwF here. A gentler
introduction is e.g. [5]. Figure 1 lists the components of a model of type theory with J, Σ, Π, K

and Id types. A model of type theory consists of a category with families (CwF, left hand side
of the figure), that is, a category of contexts and substitutions (Con, . . . , idr) with a terminal
object (the empty context ˛, the empty substitution ϵ, ˛η), a presheaf of types (Ty, . . . , rids)
and a locally representable dependent presheaf of terms over types (Tm, . . . ,▷η). Local
representability is also called comprehension, and consists of the context extension operation
– ▷ – together with the natural isomorphism Sub ∆ pΓ ▷ Aq – pγ : Sub ∆ Γq ˆ Tm ∆ pArγsq

witnessed by – , – , . . . ,▷η. Note that many operations have implicit arguments, for example
– ˝ – takes Γ, ∆, Θ implicitly. Also, some equations only typecheck because of previous
equations, for example, rids for terms depends on rids for types: the left hand side is in
Tm Γ pAridsq, the right hand side is in Tm Γ A. We don’t write the transports because we
work in extensional type theory.

I. Donkó and A. Kaposi 6:5

Con : Set J : Ty Γ
Sub : Con Ñ Con Ñ Set Jrs : Jrγs ” J

– ˝ – : Sub ∆ Γ Ñ Sub Θ ∆ Ñ Sub Θ Γ tt : Tm Γ J

ass : pγ ˝ δq ˝ θ ” γ ˝ pδ ˝ θq Jη : pt : Tm Γ Jq Ñ t ” tt
id : Sub Γ Γ Σ : pA : Ty Γq Ñ Ty pΓ ▷ Aq Ñ Ty Γ
idl : id ˝ γ ” γ Σrs : pΣ A Bqrγs ” Σ pArγsq pBrγ ˝ p, qsq

idr : γ ˝ id ” γ – , – : pa : Tm Γ Aq Ñ Tm Γ pBrid, asq Ñ

˛ : Con Tm Γ pΣ A Bq

ϵ : Sub Γ ˛ π1 : Tm Γ pΣ A Bq Ñ Tm Γ A

˛η : pσ : Sub Γ ˛q Ñ σ ” ϵ π2 : pab : Tm Γ pΣ A Bqq Ñ

Ty : Con Ñ Set Tm Γ pBrid, π1 absq

– r– s : Ty Γ Ñ Sub ∆ Γ Ñ Ty ∆ Σβ1 : π1 pa, bq ” a

r˝s : Arγ ˝ δs ” Arγsrδs Σβ1 : π2 pa, bq ” b

rids : Arids ” A Ση : pπ1 ab, π2 abq ” ab

Tm : pΓ : Conq Ñ Ty Γ Ñ Set ,rs : pa, bqrγs ” parγs, brγsq

– r– s : Tm Γ A Ñ pγ : Sub ∆ Γq Ñ Π : pA : Ty Γq Ñ Ty pΓ ▷ Aq Ñ Ty Γ
Tm ∆ pArγsq Πrs : pΠ A Bqrγs ” Π pArγsq pBrγ ˝ p, qsq

r˝s : arγ ˝ δs ” arγsrδs lam : Tm pΓ ▷ Aq B Ñ Tm Γ pΠ A Bq

rids : arids ” a app : Tm Γ pΠ A Bq Ñ Tm pΓ ▷ Aq B

– ▷ – : pΓ : Conq Ñ Ty Γ Ñ Con Πβ : app plam tq ” t

– , – : pγ : Sub ∆ Γq Ñ Tm ∆ pArγsq Ñ Πη : lam papp tq ” t

Sub ∆ pΓ ▷ Aq lamrs : plam tqrγs ” lam ptrγ ˝ p, qsq

pA : Sub pΓ ▷ Aq Γ K : Ty Γ
qA : Tm pΓ ▷ Aq pArpsq Krs : Krγs ” K

▷β1 : p ˝ pγ, aq ” γ elimK : Tm Γ K Ñ Tm Γ A

▷β2 : qrγ, as ” a elimKrs : pelimK tqrγs ” elimK ptrγsq

▷η : pp ˝ γa, qrγasq ” γa Id– : pA : Ty Γq Ñ Tm Γ A Ñ Tm Γ A Ñ

Ty Γ
Idrs : pIdA a a1

qrγs ” IdArγs parγsq pa1
rγsq

refl : Tm Γ pIdA a aq

reflrs : reflrγs ” refl
J : pP : Ty pΓ ▷ A ▷ IdArps parpsq qqq Ñ

Tm Γ pP rid, a, reflsq Ñ

pe : Tm Γ pIdA a a1
qq Ñ

Tm Γ pP rid, a1, esq

Jβ : J P w refl ” w

Jrs : pJ P w eqrγs ”

J pP rγ ˝ p ˝ p, qrps, qsq pwrγsq perγsq

Figure 1 A model of type theory with J, Σ, Π, K, Id. The left column is the definition of CwF,
the right column contains the rules for the type formers, one after the other, in the same order.

TYPES 2021

6:6 Internal Strict Propositions Using Point-Free Equations

, ˝ : pγ, aq ˝ δ ” pγ ˝ δ, arδsq

π1rs : pπ1 abqrγs ” π1 pabrγsq

π2rs : pπ2 abqrγs ” π2 pabrγsq

– ˆ – : Ty Γ Ñ Ty Γ Ñ Ty Γ
A ˆ B :” Σ A pBrpsq

apprs : papp tqrγ ˝ p, qs ” app ptrγsq

– $ – : Tm Γ pΠ A Bq Ñ pa : Tm Γ Aq Ñ Tm Γ pBrid, asq

t $ a :” papp tqrid, as

$β : lam t $ a ” trid, as

$rs : pt $ aqrγs ” trγs $ arγs

– ñ – : Ty Γ Ñ Ty Γ Ñ Ty Γ
A ñ B :” Π A pBrpsq

Figure 2 Provable equations and definable operations in a model of type theory with Σ, Π.

TyP : Con Ñ Set
–r–s : TyP Γ Ñ Sub ∆ Γ Ñ TyP ∆
r˝s : Arγ ˝ δs ” Arγsrδs

rids : Arids ” A

Ò : TyP Γ Ñ Ty Γ
Òrs : pÒAqrγs ” ÒpArγsq

irr : pu v : Tm Γ pÒAqq Ñ u ” v

JP : TyP Γ
JPrs : JPrγs ” JP
ttP : Tm Γ JP
ΣP : pA : TyP Γq Ñ TyP pΓ ▷ ÒAq Ñ TyP Γ
ΣPrs : pΣP A Bqrγs ” ΣP pArγsq pBrγ ˝ p, qsq

– ,P– : pa : Tm Γ pÒAqq Ñ Tm Γ pÒBrid, asq Ñ Tm Γ pÒΣP A Bq

π1P : Tm Γ pÒΣP A Bq Ñ Tm Γ A

π2P : pab : Tm Γ pÒΣP A Bqq Ñ Tm Γ pÒBrid, π1 absq

ΠP : pA : Ty Γq Ñ TyP pΓ ▷ Aq Ñ TyP Γ
ΠPrs : pΠP A Bqrγs ” ΠP pArγsq pBrγ ˝ p, qsq

lamP : Tm pΓ ▷ Aq pÒBq Ñ Tm Γ pÒΠP A Bq

appP : Tm Γ pÒΠP A Bq Ñ Tm pΓ ▷ Aq pÒBq

Figure 3 A model of type theory has a sort of proof-irrelevant propositions closed under J, Σ, Π.

I. Donkó and A. Kaposi 6:7

Variables are represented using typed De Bruijn indices. The zero De Bruijn index is
q : Tm pΓ ▷ Aq pArpsq, the one index is given by qrps : Tm pΓ ▷ A ▷ Bq pArpsrpsq, two is
qrpsrps : Tm pΓ▷A▷B ▷Cq pArpsrpsrpsq, and so on. Some provable equations and definable
operations are listed in Figure 2.

The right hand side of Figure 1 lists rules for J, Σ, Π, K and Id types, in this order. The
first three type formers have η laws, the latter two don’t (they are instances of inductive
types). Every operation comes with substitution laws (e.g. lamrs), some of them are not
listed as they are provable (see Figure 2). Non-dependent special cases of Π and Σ are also
listed there.

Figure 3 lists the operations and equations for a model having a sort of definitionally
proof-irrelevant propositions TyP which is closed under J, Σ and Π. Terms of propositional
types are expressed with the help of lifting Ò which converts a TyP into a Ty. Because of irr,
there is no need to state equations for terms of lifted types, all equations hold.

Two important properties of models that we sometimes assume are canonicity [10] and
normalisation [6, 10]. Canonicity for K says that there is no Tm ˛ K. Canonicity for Id says
that for any t : Tm ˛ pIdA a a1q, we have a ” a1 and t ” refl. Normalisation says that there
is a function from terms to normal forms norm : Tm Γ A Ñ Nf Γ A such that all terms are
equal to their normalised versions (x–y is the inclusion from Nf to Tm): for all a : Tm Γ A,
xnorm ay “ a. Normal forms for the theory of Figure 1 are defined mutually with variables
and neutral terms by the following three inductive types.

x ::“ q | xrps variables
n ::“ x | π1 n | π2 n | n $ v | elimK n | J A v n neutral terms
v :“ n˚ | tt | pv, vq | lam v | refl normal forms

These should be understood as typed rules and there is a restriction (n˚) that only neutral
terms at base types are included in normal forms. Base types are K and Id in our case.

Sometimes we just talk about intensional type theory when we don’t want to specify
precisely what type formers we have in a model.

3 Point-free propositions internally

In this section we show that (the dependent variant of) point-free propositions is closed
under J, Σ and Π. We work internally to a model of type theory with a universe Type closed
under type formers Id, J, Σ, Π. This section was formalised in Agda [12].

The η rule for J says that for any two t, t1 : J we have t ” t1, so we also have that
pλpt t1 : Jq.tq ” pλt t1.t1q, hence refl :

`

pλt t1.tq “ pλt t1.t1q
˘

” isPfProp J.
As a warmup for Σ, we prove closure under non-dependent products.

▶ Proposition 1. If isPfProp A and isPfProp B, then isPfProp pA ˆ Bq.

Proof. We assumed pA : isPfProp A ”
`

pλpa a1 : Aq.aq “ pλa a1.a1q
˘

and pB : isPfProp B ”
`

pλpb b1 : Bq.bq “ pλb b1.b1q
˘

and we want to obtain that A ˆ B is a point-free proposition.

pAˆB : isPfProp pA ˆ Bq ”
`

pλab ab1.abq “ pλab ab1.ab1
q
˘

”
`

pλab ab1.pπ1 ab, π2 abqq “ pλab ab1.pπ1 ab1, π2 ab1
qq
˘

TYPES 2021

6:8 Internal Strict Propositions Using Point-Free Equations

When rewriting the type of pAˆB, we applied the η rule for products which says that
ab ” pπ1 ab, π2 abq for any ab : A ˆ B. Then we prove the equality in two steps: first we use
pA to show that π1 ab “ π1 ab1 while we keep the π2 ab component constant

p1
AˆB :

`

λab ab1.pπ1 ab, π2 abq
˘

“
`

λab ab1.pπ1 ab1, π2 abq
˘

p1
AˆB :” ap

`

λz.λab ab1.pz pπ1 abq pπ1 ab1
q, π2 abq

˘

pA,

then we use pB to show that π2 ab “ π2 ab1 while we keep the π1 ab1 components constant. In
the middle we have the function returning the mixed pair pπ1 ab1, π2 abq.

p2
AˆB :

`

λab ab1.pπ1 ab1, π2 abq
˘

“
`

λab ab1.pπ1 ab1, π2 ab1
q
˘

p2
AˆB :” ap

`

λz.λab ab1.pπ1 ab1, z pπ2 abq pπ2 ab1
qq
˘

pB

We obtain the desired equality via transitivity:

pAˆB :” p1
AˆB

‚ p2
AˆB ◀

To show closure of point-free propositions under Σ types, we have A : Type, B : A Ñ Type,
isPfProp A, but assuming pa : Aq Ñ isPfProp pB aq is not enough. We express that B is a
family of propositions using a dependent version of isPfProp:

isPfPropd : pA Ñ Typeq Ñ Type
isPfPropd B :”

`

λpa : Aqpb b1 : B aq.b
˘

“ pλa b b1.b1q

The non-dependent version is a special case when there is an element of the indexing type
a0 : A, because given B : Type and pB : isPfPropd pλpa : Aq.Bq, we have ap pλz.z a0q pB :
isPfProp B.

We show the dependent version of closure under Σ types.

▶ Proposition 2. Given A : D Ñ Type and B : Σ D A Ñ Type, if isPfPropd A and
isPfPropd B, then isPfPropd pλd.Σ pA dq pλa.B pd, aqqq.

Proof. We have pA : isPfPropd A ” pλd a a1.aq “ pλd a a1.a1q and pB : isPfPropd B ”

pλda b b1.bq “ pλda b b1.b1q, our goal is to obtain

pΣAB : pλd ab ab1.abq “ pλd ab ab1.ab1
q ” pλd ab ab1.pπ1 ab, π2 abqq “ pλd ab ab1.pπ1 ab1, π2 ab1

qq.

We want to prove this in two steps as for non-dependent products, but because B depends
on A, the middle pair pπ1 ab1, π2 abq is not well-typed. We replace the second component
π2 ab : B pd, π1 abq with

transpλa.B pd,aq

´

ap
`

λz.z d pπ1 abq pπ1 ab1
q
˘

pA

¯

pπ2 abq : B pd, π1 ab1
q,

and we will use a more general version of this second component defined as

f ab ab1 e :“ transpλa.B pd,aq

´

ap
`

λz.z d pπ1 abq pπ1 ab1
q
˘

e
¯

pπ2 abq : B pd, h d pπ1 abq pπ1 ab1
qq

for any d, ab, ab1, h and e : pλd a a1.aq “ h. Now the first step has type

p1
ΣAB : pλd ab ab1.abq “

`

λd ab ab1.pπ1 ab1, f ab ab1 pAq
˘

and we prove it by induction on pA using J:

p1
ΣAB :” J

´

λh e.pλd ab ab1.abq “
`

λd ab ab1.ph d pπ1 abq pπ1 ab1
q, f ab ab1 eq

˘

¯

refl pA

I. Donkó and A. Kaposi 6:9

In the next step we simply use ap on pB and we conclude by transitivity:

p2
ΣAB :

`

λd ab ab1.pπ1 ab1, f ab ab1 pAq
˘

“ pλd ab ab1.ab1
q

p2
ΣAB :” ap

´

λz.λd ab ab1.
`

π1 ab1, z pd, π1 ab1
q pf ab ab1 pAq pπ2 ab1

q
˘

¯

pB

pΣAB :” p1
ΣAB

‚ p2
ΣAB ◀

▶ Corollary 3. For A : Type and B : A Ñ Type, if isPfProp A and isPfPropd B, then
isPfProp pΣ A Bq.

Finally, we show closure of isPfPropd under dependent function space.

▶ Proposition 4. Given A : D Ñ Type, B : Σ D A Ñ Type, if isPfPropd B, then
isPfPropd pλd.pa : A dq Ñ B pd, aqq.

Proof. Using pB : pλda b b1.bq “ pλda b b1.b1q, we define

pΠAB : pλd f f 1.fq “ pλd f f 1.f 1q ” pλd f f 1 a.f aq “ pλd f f 1 a.f 1 aq

pΠAB :” ap pλz d f f 1 a.z pd, aq pf aq pf 1 aqq pB . ◀

▶ Corollary 5. For A : Type and B : A Ñ Type, if isPfPropd B, then isPfProp ppa : Aq Ñ B aq.

4 Point-free propositions externally

In this section we show that any model of type theory with J, Σ, Π types has a sort TyP
closed under the same type formers. This can be seen as an externalisation of the previous
section.

Recall that a model of type theory (a CwF, see Section 2) has a sort of strict propositions
if there is a presheaf TyP together with a “lifting” natural transformation Ò into Ty, and
terms of a lifted type are equal.

First we define a predicate on types expressing externally that the type is a point-free
proposition.

▶ Definition 6. For a type A : Ty Γ in any CwF, let isExtPfProp A :” pqArpArpss ” qArpsq.

That is, in the context Γ ▷ A ▷ Arps, the terms qrps and q (1 and 0 De Bruijn indices, both
having type Arpsrps) are definitionally equal. We call this the external variant of pfProp
because it is clear that it is equivalent to saying lam plam pqrpsqq ” lam plam qq which is the
external statement of λx y.x “ λx y.y. In the next section, we will relate the external and
internal variants formally.

Elements of a type which isExtPfProp are equal in any context.

▶ Proposition 7. For a type A, isExtPfProp A is equivalent to

u ” v for all γ : Sub ∆ Γ and u, v : Tm ∆ pArγsq.

Proof. Left to right: we have qrpsrγ, u, vs ” qrγ, u, vs, hence u ” v. Right to left: we choose
u :” qrps, v :” q. ◀

In category theory, external point-free propositions over Γ are called subobjects of Γ.

▶ Proposition 8. For an A : Ty Γ, isExtPfProp A is equivalent to the morphism pA : Sub pΓ▷
Aq Γ being a monomorphism.

TYPES 2021

6:10 Internal Strict Propositions Using Point-Free Equations

Proof. Left to right: given pA ˝ pγ, aq ” pA ˝ pγ1, a1q, we need to show pγ, aq ” pγ1, a1q. Using
the assumption we have γ ” pA ˝ pγ, aq ” pA ˝ pγ1, a1q ” γ1, hence a and a1 are both in
Tm ∆ pArγsq. We get a ” a1 from Proposition 7.

Right to left: given two terms a, a1 : Tm Γ pArγsq, we have pA ˝ pγ, aq ” γ ” pA ˝ pγ, a1q,
hence by assumption pγ, aq ” pγ, a1q and applying qr–s to both sides we obtain a ” a1. ◀

▶ Construction 9. Every CwF with J, Σ, Π can be equipped with a sort of strict propositions
closed under the same type formers.

Construction. We have to define all components in Figure 3. We define

TyP Γ :” pA : Ty Γq ˆ isExtPfProp A.

Substitution is defined by ordinary type substitution of the first component and the equation
for substituted types holds by the following argument.

qArγsrpArγsrpss
” pr˝s,▷β1,▷β2q

qArpArpssrγ ˝ p ˝ p, qArγsrpArγsrpss, qArγsrpss
” (assumption)

qArpsrγ ˝ p ˝ p, qArγsrpArγsrpss, qArγsrpss
” p▷β2q

qArγsrpsq

The Ò operation is defined by ÒpA, pAq :” A. Irrelevance holds by Proposition 7. JP is
defined as J and isExtPfProp J holds by Jη. We define ΣP pA, pAq pB, pBq by pΣ A B, pΣABq

where pΣAB is proven using Proposition 7 for u, v : Tm ∆ pΣ A Brγsq by

u
Ση
” pπ1 u, π2 uq

pA,pB
” pπ1 v, π2 vq

Ση
” v.

We define ΠP A pB, pBq by pΠ A B, pΠABq where pΠAB is proven using Proposition 7 for
u, v : Tm ∆ pΠ A Brγsq by

u
Πη
” lam papp uq

pB
” lam papp vq

Πη
” v. ◀

5 Relationship of different notions of being a proposition

For a type family A : D Ñ Type, being a family of homotopy propositions and a family of
point-free propositions were defined internally as follows.

isHPropd A ” pd : Dqpa a1 : A dq Ñ IdpA dq a a1

isPfPropd A ” Idppd:DqÑA dÑA dÑA dq pλd a a1.aq pλd a a1.a1q

Externally, these can be seen as the following two elements of Ty ˛ for A : Ty p˛ ▷ Dq. We
also repeat the definition of isExtPfProp for comparison which is a metatheoretic equality.

isHPropd A ” Π D
´

Π A
`

Π pArpsq pIdArpsrps pqrpsq qq
˘

¯

isPfPropd A ” IdΠ D pAñAñAq

`

lam plam plam pqrpsqqq
˘ `

lam plam plam qqq
˘

isExtPfProp A ” pqrps ” qq (both sides in Tm p˛ ▷ D ▷ A ▷ Arpsq pArpsrpsq)

We first compare internal point-free propositions and external ones. They coincide for a type
where we collect all dependencies into a single closed type D.

I. Donkó and A. Kaposi 6:11

▶ Proposition 10. In a model of type theory with Π, Id and canonicity, given an A : Ty p˛▷Dq,
there is a Tm ˛ pisPfPropd Aq if and only if isExtPfProp A.

Proof. Right to left: if qrps ” q in Tm p˛ ▷ Dq A, then lam plam plam pqrpsqqq ”

lam plam plam qqq, hence refl : Tm ˛ pisPfPropd Aq.
Left to right: we have t :Tm ˛

´

IdΠ D pAñAñAq

`

lam plam plam pqrpsqqq
˘̀

lam plam plam qqq
˘

¯

.

Canonicity for Id implies that lam plam plam pqrpsqqq ” lam plam plam qqq, hence

app papp papp plam plam plam pqrpsqqqqqq ” app papp papp plam plam plam qqqqqq.

Now using Πβ three times on both sides we obtain qrps ” q where both sides are in
Tm p˛ ▷ D ▷ A ▷ Arpsq pArpsrpsq, and this is isExtPfProp A. ◀

▶ Corollary 11. In a model of type theory with Π, Id and canonicity, given a closed type A,
Tm ˛ pisPfProp Aq if and only if isExtPfProp A.

In an open context, external point-free propositions are stronger than internal ones.

▶ Proposition 12. In a model of type theory with Π, Id, a type U and a family over it El (a
possibly empty universe) and normalisation, we have A : Ty Γ such that Tm Γ pisPfProp Aq,
but not isExtPfProp A.

Proof. Pick Γ :” ˛ ▷ U ▷ IdEl qñEl qñEl q plam plam pqrpsqqq plam plam qqq and A :” El pqrpsq.
Now qrps and q both in Tm pΓ ▷ A ▷ Arpsq pArp ˝ psq have different normal forms. ◀

Next, we describe the relationship of homotopy and point-free propositions. Here we use the
non-dependent variants.

▶ Proposition 13.
(i) In a model of type theory with Π and Id, isPfProp A implies isHProp A.
(ii) In a model of type theory with Π, Id, an inductively defined K and normalisation,

(a) we have isHProp K, but not isPfProp K.
(b) we don’t have that for any type A, isPfProp pisPfProp Aq.

(iii) In a model of type theory with Π, Id and function extensionality, isHProp A implies
isPfProp A.

Proof.
(i) We work internally. Given pA : isPfProp A ” pλpa a1 : Aq.aq “ pλa a1.a1q, we define

λa a1.ap pλz.z a a1q pA : isHProp A.
(ii) (a) Internally, we have λb.elimK b : isHProp K. Let’s assume Tm ˛ pisPfProp Kq. From

Corollary 11 and Proposition 7, any two elements of K in any context are equal.
But from normalisation we have qrps ı q : Tm p˛ ▷ K ▷ Kq K as they have different
normal forms.

(b) Assuming isPfProp pisPfProp Kq, we obtain

qrps ” q : Tm p˛ ▷ isPfProp K ▷ isPfProp Kq pisPfProp Kq

the same way as in (a), but they have different normal forms.

TYPES 2021

6:12 Internal Strict Propositions Using Point-Free Equations

(iii) We have to show that isHProp A implies isPfProp A. We work internally by the following
double application of function extensionality.

isHProp A
”

`

pa a1 : Aq Ñ a “ a1
˘

”
`

pa : Aqpa1 : Aq Ñ pλa1.aq a1 “ pλa1.a1q a1
˘

Ñ (function extensionality)
`

pa : Aq Ñ pλa1.aq “ pλa1.a1q
˘

”
`

pa : Aq Ñ pλa a1.aq a “ pλa a1.a1q a
˘

Ñ (function extensionality)
pλa a1.a1q “ pλa a1.a1q

”
isPfProp A ◀

From the previous section, we know that TyP can be defined using isExtPfProp. If we start
with a model that already has TyP, it is natural to ask about the relationship of TyP and
the other notions of being a proposition.

▶ Proposition 14.
(i) In a model of type theory with Π, Id and TyP, if A : TyP Γ, then Tm Γ pisHProp pÒAqq,

Tm Γ pisPfProp pÒAqq and isExtPfProp pÒAq.
(ii) In a model of type theory with Π, Σ and Id, if for every type A, isHProp A implies

isExtPfProp A, then the model has equality reflection.

Proof.
(i) Because any two terms of type ÒA are definitionally equal by irr, internally λa a1.refl :

isHProp A and refl : isPfProp A.
(ii) The proof is from [13]. Singleton types are in hProp, that is, internally isHProp ppa1 :

Aq ˆ IdA a a1q holds for any a, but if isExtPfProp ppa1 : Aq ˆ IdA a a1q, then for any
e : IdA a a1, we have pa, reflq ” pa1, eq, hence a ” π1 pa, reflq ” π1 pa1, eq ” a1.

◀

6 The setoid model externally

In this section, from a model of type theory with J, Σ and Π, we build another model of type
theory with the same type formers and a strict identity type, a strong transport rule and
function extensionality. Strictness of the identity type means that any two elements of the
identity type are definitionally equal (it is an external point-free proposition, isExtPfProp).
Strength of transport means that we can transport an element of any family of types, not
only families of strict propositions. In contrast, Agda and the method described in [13] only
support a strict identity type with a weak transport: the identity type is Prop-valued and we
can only transport along Prop-valued families.

In Section 7, we describe an internal version of this model construction where we define a
model internally to an intensional metatheory. Section 7 relates to this section as the section
on internal point-free propositions (Section 3) relates to the section on external point-free
propositions (Section 4). The model construction in this section follows those in [4, 3] with
some small improvements, but is defined in a more restricted setting: we do not assume that
the input model has a universe of strict propositions.

Note that even if our metatheory is extensional type theory, we do not rely on any
extensionality features in the input model. We only use an extensional metatheory for
convenience. Following Hofmann’s conservativity theorem [14], our arguments can be
replayed in an intensional metatheory with function extensionality and uniqueness of identity
proofs.

I. Donkó and A. Kaposi 6:13

▶ Construction 15. From an input model of type theory with J, Σ, Π, a sort TyP closed
under JP, ΣP and TyP (as in Figure 3), we construct a model of type theory with the
same type formers and a TyP-valued identity type with a strong transport rule and function
extensionality.

Construction. A context in the output model is a context in the input model together with
an hProp-valued equivalence relation on substitutions into that context. Note that as our
metatheory is extensional type theory, hProp and pfProp coincide.

Con :” p|Γ| : Conq

ˆpΓ„ : Sub Ξ |Γ| Ñ Sub Ξ |Γ| Ñ hPropq

ˆp–r–sΓ : Γ„ γ0 γ1 Ñ pξ : Sub Ξ1 Ξq Ñ Γ„ pγ0 ˝ ξq pγ1 ˝ ξqq

ˆpRΓ : pγ : Sub Ξ |Γ|q Ñ Γ„ γ γq

ˆpSΓ : Γ„ γ0 γ1 Ñ Γ„ γ1 γ0q

ˆpTΓ : Γ„ γ0 γ1 Ñ Γ„ γ1 γ2 Ñ Γ„ γ0 γ2q

In [4], the relation for contexts was TyP-valued, not metatheoretic proposition (hProp)-valued.
We chose to use hProp for reasons of modularity: now the category part of the output model
(Con, Sub) only refers to the category part of the input model. Note that the relation for
types is TyP-valued.

Substitutions are substitutions in the input model which respect the relation.

Sub ∆ Γ :” p|γ| : Sub |∆| |Γ|q ˆ pγ„ : ∆„ δ0 δ1 Ñ Γ„ p|γ| ˝ δ0q p|γ| ˝ δ1qq

Composition and identities are composition and identities from the input model where the „

components are defined by function composition and the identity function. In fact, up to Π
types, all the |– | components in the output model are the corresponding components of the
input model.

The empty context is defined as |˛| :” ˛ and ˛„ σ0 σ1 :” J which is trivially an equivalence
relation.

Types are displayed setoids with TyP-valued relations together with coercion and coherence
operations.

Ty Γ :”
p|A| : Ty |Γ|q

ˆpA„ : Γ„ γ0 γ1 Ñ Tm Ξ p|A|rγ0sq Ñ Tm Ξ p|A|rγ1sq Ñ TyP Ξq

ˆpA„
rs : pA„ γ01 a0 a1qrξs ” A„

pγ01rξsΓq pa0rξsq pa1rξsqq

ˆpRA : pa : Tm Ξ p|A|rγsqq Ñ Tm Ξ pÒA„
pRΓ γq a aqq

ˆpSA : Tm Ξ pÒA„ γ01 a0 a1q Ñ Tm Ξ pÒA„
pSΓ γ01q a1 a0qq

ˆpTA : Tm Ξ pÒA„ γ01 a0 a1q Ñ Tm Ξ pÒA„ γ12 a1 a2q Ñ Tm Ξ pÒA„
pTΓ γ01 γ12q a0 a2qq

ˆpcoeA : Tm Ξ pÒΓ„ γ0 γ1q Ñ Tm Ξ p|A|rγ0sq Ñ Tm Ξ p|A|rγ1sqq

ˆpcoeArs : coeA γ01 a0rξs ” coeA pγ01rξsΓq pa0rξsqq

ˆpcohA : pγ01 : Tm Ξ pÒΓ„ γ0 γ1qqpa0 : Tm Ξ p|A|rγ0sqq Ñ Tm Ξ pÒA„ γ01 a0 pcoeA γ01 a0qqq

Type substitution is given by type substitution in the input model and function composition
for the other components.

Terms are terms which respect the (displayed) equivalence relations.

Tm Γ A :” p|t| : Tm |Γ| |A|q ˆ pt„ : pγ01 : Γ„ γ0 γ1q Ñ Tm Ξ pÒA„ γ01 p|t|rγ0sq p|t|rγ1sqqq

Term substitution is given by term substitution in the input model and function composition
for the „ component.

TYPES 2021

6:14 Internal Strict Propositions Using Point-Free Equations

Context extension is context extension |Γ ▷ A| :” |Γ| ▷ |A|, the relation is given by
metatheoretic Σ types: pΓ ▷ Aq„ pγ0, a0q pγ1, a1q :” pγ01 : Γ„ γ0 γ1q ˆ Tm Ξ pÒA„ γ01 a0 a1q.
This is an equivalence relation because Γ„ is an equivalence relation and A„ is a displayed
equivalence relation. The „ components of – , –, p and q are given by pairing and projections
for metatheoretic Σ types. The equations ▷β1, ▷β2, ▷η follow from β, η for metatheoretic
Σ types. The unit type J is given by |J| :” J, J„ γ01 t0 t1 :” JP.

Σ types use ΣP for the relation: we define |Σ A B| :” Σ |A| |B| and

pΣ A Bq„ γ01 pa0, b0q pa1, b1q :” ΣP pA„ γ01 a0 a1q pB„ pγ01rps, qq pb0rpsq pb1rpsqq.

All the other components are pointwise, for example RΣ A B pa, bq :” pRA a ,P RB bq and

coeΣ A B γ01 pa0, b0q :” pcoeA γ01 a0, coeB pγ01, cohA γ01 a0q b0q.

Pairing, first and second projection and the computation rules are straightforward. Note that
to prove e.g. π1 pa, bq ” a, it is enough to compare the first components, i.e. |π1 pa, bq| ” |a|

as the second components are equal by irr.
For Π types, the |– | component includes „ components of the constituent types:

|Π A B| :”
Σ pΠ |A| |B|q
ˆ

ΠP p|A|rpsq

´

ΠP p|A|rp2sq
`

ΠP pÒA„ pRΓ p3q pqrpsq qq

pB„ pRΓ p4, qq pqrp3s $ qrp2sq pqrp3s $ qrpsqq
˘

¯

˙

Functions are given by functions which respect the relation: for any two elements of |A| that
are related by A„, the outputs of the function are related by B„. We wrote p2 for p ˝ p.
With variable names and without weakenings, the same definition is written

Σpf : Πpa : |A|q.|B|q.ΠPpa0 a1 : |A|, a01 : ÒA„ pRΓ idq a0 a1q.B„ pRΓ id, a01q pf $a0q pf $a1qq.

The relation for Π types says that two functions are related if they map related inputs to
related outputs:

pΠ A Bq
„ γ01 t0 t1 :”

ΠP p|A|rγ0sq

´

ΠP p|A|rγ1 ˝ psq
`

ΠP pÒA„
pγ01rp2

sΓq pqrpsq qq

pB„
pγ01rp3

sΓ, qq pt0rp3
s $ pqrp2

sqq pt1rp3
s $ pqrpsqqq

˘

¯

Reflexivity for Π types is second projection: RΠ A B t :” π2 t. The other components are
defined as in [4]. The definition of lam and app are straightforward. Just as for Π, the
definition of |lam t| involves both |t| and t„. When comparing two elements of |Π A B|

for equality, only the first components of the Σ types have to be compared, the second
components are equal by irr.

The sort TyP is defined by TyPs in the input model together with coercion.

TyP Γ :” p|A| : TyP |Γ|q ˆ pcoeA : Γ„ γ0 γ1 Ñ Tm Ξ pÒ|A|rγ0sq Ñ Tm Ξ pÒ|A|rγ1sqq

Compared to Ty which had nine components, TyP has only two. All the other components
that Ty had are irrelevant for propositional types. Lifting is given by lifting in the input
model, the relation is trivial and coercion comes from the coercion component in TyP:

|ÒA| :” Ò|A| pÒAq„ γ01 a0 a1 :” JP coeÒA γ01 a0 :” coeA γ01 a0

I. Donkó and A. Kaposi 6:15

TyP is closed under JP, ΣP and ΠP.
Thus we constructed a model of type theory with J, Π, Σ and a sort TyP closed under

the same type formers.
This model has an identity type IdA a a1 : TyP Γ for a, a1 : Tm Γ A.

|IdA a a1| :” A„ pRΓ idq a a1 pIdA a a1q„ γ01 e0 e1 :” JP
coeIdA a a1 γ01 e

loomoon

:A„ pRΓ γ0q parγ0sq pa1rγ0sq

:” TA pa„ pSΓ γ01qq
loooooomoooooon

:A„ pSΓ γ01q parγ1sq parγ0sq

`

TA e pa1„
γ01q

looomooon

:A„ γ01 pa1rγ0sq pa1rγ1sq

˘

loooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooon

:A„ pRΓ γ1q parγ1sq pa1rγ1sq

It has a constructor refl and an eliminator transp (J is a consequence of transport as equality
is proof-irrelevant).

refl : Tm Γ pÒIdA a aq

|refl| :” RA a

refl„ γ01 :” ttP
transp : pP : Ty pΓ ▷ Aqq Ñ Tm Γ pÒIdA a a1q Ñ Tm Γ pP rid, asq Ñ Tm Γ pP rid, a1sq

|transp P e u| :” coeP pRΓ id, |e|q |u|

The computation rule of transp only holds up to Id, but as described in [4], the model
can be refined to support a definitional computation rule. Note that transport works with
arbitrary Ty-motive, the motive does not have to be TyP (as opposed to the inductively
defined Prop-valued identity type in Agda). Function extensionality holds by definition of
the identity type. ◀

▶ Construction 16. From an input model of type theory with J, Σ, Π, we construct a
model of type theory with J, Σ, Π, a sort of propositions TyP closed under J, Σ, Π and a
TyP-valued identity type with a strong transport rule and function extensionality.

Construction. We take the input model, equip it with TyP using Construction 9, then invoke
Construction 15. ◀

The above construction can be extended with the empty type: if the input model has
K : Ty, the output model also supports K : Ty with its elimination rule, but we do not have
K : TyP (unless isExtPfProp K in the input model). Similarly, to justify booleans in the output
model, we need that the input model has booleans and a definitionally proof-irrelevant family
over booleans that we can use to define identity for booleans:

IdBool : Ty pΓ ▷ Bool ▷ Boolq
Idtrue : Tm Γ pIdBoolrid, true, truesq

Idfalse : Tm Γ pIdBoolrid, false, falsesq

Idirr : pe e1 : Tm pΓ ▷ Bool ▷ Boolq IdBoolq Ñ e ” e1

But then we might as well require TyP in the input model with closure under inductive types.

TYPES 2021

6:16 Internal Strict Propositions Using Point-Free Equations

7 The setoid model internally

In the previous section we showed how a setoid model can be constructed without requiring
a sort TyP in the input model. Can we redo the same internally to intensional type theory
using point-free propositions? That is, can we define a setoid model in Agda (which can
be viewed as the initial model of intensional type theory) without using strict propositions
(Prop, TyP)?

Compared to Construction 15 of the previous section, the role of the input model is taken
by our metatheory (Agda), the role of the output model is the model we construct. The
equations of our model are given by the identity type of the metatheory. If all the equations
can be proven by refl, it means that the model is strict. In such a case an external model
construction can be obtained from the internal model (see [4, Section 3] for an exposition of
model constructions vs. internal models through the example of the graph model). Model
constructions are also called syntactic translations, see [7] for such a presentation.

The notion of model we construct is described in Figures 1, 2, 3 in extensional type
theory. As some operations and equations typecheck only because of previous equations (e.g.
lamrs depends on Πrs), the complete intensional description of the notion of model has many
transports compared to this (see [5] for an exposition using explicit transports). However if
an equation is proved by refl in the model, then transports over it disappear, so concrete
strict models can be defined in Agda without using any transports.

External model constructions where the definitions of types (and substitutions and terms)
don’t involve equations can be internalised immediately as strict models. This is the case for
the setoid model using TyP, see [4]. In our case however, there is an equation expressing
that the equivalence relation is a proposition. This makes the construction more involved as
we have to prove that the witnesses of propositionality are equal.

The answer to the above question is yes. This section was formalised in Agda [12].

▶ Construction 17. We construct a model of type theory with K, J, Σ, Π, a sort of
propositions TyP closed under J, Σ, Π, a TyP-valued identity type with a strong transport
rule and function extensionality. All equations of our model hold definitionally, with the
exceptions irr, Σrs, ,rs, Πη, Πrs, lamrs.

Construction. We explain the main components, for details consult the formalisation.
We define contexts as setoids where the equivalence relation is a point-free proposition.

Compare it with how contexts were defined in the external Construction 15.

Con :” p|Γ| : Typeq

ˆ pΓ„ : |Γ| ˆ |Γ| Ñ Typeq

ˆ pΓp : isPfPropd Γ„q

ˆ pRΓ : pγx : |Γ|q Ñ Γ„ pγx, γxqq

ˆ pSΓ : Γ„ pγ0, γ1q Ñ Γ„ pγ1, γ0qq

ˆ pTΓ : Γ„ pγ0, γ1q Ñ Γ„ pγ1, γ2q Ñ Γ„ pγ0, γ2qq

We don’t have equations on contexts, so it is not an issue that there is an equation (Γp) as
one of the components. There will be an issue for types, see below.

Substitutions are functions that respect the relations.

Sub ∆ Γ :” p|γ| : |∆| Ñ |Γ|q ˆ pγ„ : ∆„ pδ0, δ1q Ñ Γ„ p|γ| δ0, |γ| δ1qq

I. Donkó and A. Kaposi 6:17

They form a category with function composition (for both |– | and –„ components) and the
identity function. The categorical laws are definitional. The empty context is given by J

with the constant J relation.
Types are displayed setoids with coercion and coherence (note that later we will replace

types by their strictified variants).

Ty Γ :”
p|A| : |Γ| Ñ Typeq

ˆpA„ : pγ0 : |Γ|q ˆ pγ1 : |Γ|q ˆ Γ„ γ0 γ1 ˆ |A| γ0 ˆ |A| γ1 Ñ Typeq

ˆpAp : isPfPropd A„
q

ˆpRA : pax : |A| γxq Ñ A„
pγx, γx, RΓ γx, ax, axqq

ˆpSA : A„
pγ0, γ1, γ01, a0, a1q Ñ A„

pγ1, γ0, SΓ γ01, a1, a0qq

ˆpTA : A„
pγ0, γ1, γ01, a0, a1q Ñ A„

pγ1, γ2, γ12, a1, a2q Ñ A„
pγ0, γ2, TΓ γ01 γ12, a0, a2qq

ˆpcoeA : Γ„
pγ0, γ1q Ñ |A| γ0 Ñ |A| γ1q

ˆpcohA : pγ01 : Γ„
pγ0, γ1qqpa0 : |A| γ0q Ñ A„

pγ0, γ1, γ01, a0, coeA γ01 a0qq

Compared to the external version, we don’t need substitution laws (A„rs and coeArs) and
instead of making the relation Prop-valued we add an element of the identity type saying
that A„ is a point-free proposition. We can prove that two types are equal if their |– |, –„,
–p, coe components are equal. The other components will be equal by –p. Unfortunately,
due to Proposition 13 part (ii) (b), we have to show that the proofs of propositionalities –p

coincide.
Substitution of types is given by function composition for the |– | and –„ components, for

the –p component we use the fact that dependent point-free propositions are closed under
reindexing. The reflexivity, symmetry and transitivity components of Arγs are constructed
using transport and the corresponding components of A. The exact way they are constructed
does not matter as they are proof irrelevant by Ap. We prove the substitution laws r˝s and
rids up to the identity type using J.

Terms are like substitutions, but with dependent functions.

Tm Γ A :” p|t| : pγx : |Γ|q Ñ |A| γxqˆpt„ : pγ01 : Γ„ pγ0, γ1qq Ñ A„ pγ0, γ1, γ01, |t| γ0, , |t| γ1qq

The |– | and –„ components of context extension are given by Σ types, the propositionality
component is using the fact that point-free propositions are closed under Σ.

Analogously to the model in the previous section, we can show that we have K, J, Σ
and Π types. The β rules are definitional for both Σ and Π, however for Π the η rule only
holds up to the metatheoretic identity type. The reason is that |Π A B| is defined as a Σ
type consisting of a function from |A| to |B| and a proof that it respects the relation.

|Π A B| γx :”
`

f : pax : |A| γxq Ñ |B| pγx, axq
˘

ˆ

pa01 : A„ pγx, γx, RΓ γx, a0, a1qq Ñ B„ ppγx, a0q, pγx, a1q, pRΓ γx, a01q, f a0, f a1q

Two functions are related by pΠ A Bq„ if they map related inputs to related outputs. Hence
there are two (definitionally) different ways of proving that a t : Tm Γ pΠ A Bq respects a
(homogeneous) relation a01 : A„ pγx, γx, RΓ γx, a0, a1q. One is π2 p|t| γxq a01, the other is
t„ pRΓ γxq a01. Because B„ is a proposition, these are equal, but only up to the identity type.
And the eta rule computes to the usage of the two different versions on the two sides of the
equation. We do not prove the substitution laws Krs, Jrs, Σrs, ,rs, Πrs, lamrs yet. There is
no need to worry, we will prove them after replacing Ty with its strictified variant.

TYPES 2021

6:18 Internal Strict Propositions Using Point-Free Equations

If an equation is not definitional and there are later components in the model that depend
on it (as lamrs depends on Πrs), it makes the model construction extremely tedious. The
situation one ends up in is also known as “transport hell”. As the functor laws r˝s, rids for
types and terms are not definitional, almost every operation that mentions substitutions
involves transports. Instead of fighting in transport hell and proving the transported versions
of the laws Krs, . . . , lamrs, we follow the local universes approach [20]. We wrap Ty into Ty1

which contains a base context, a substitution into this context and a Ty in this base context.

Ty1 Γ :” pconA : Conq ˆ psubA : Sub Γ conAq ˆ ptyA : Ty conAq

Substitution for Ty1 is defined as composition in the sub component, and as composition in
the category is definitional, the laws r˝s, rids become definitional. Terms Tm1 and context
extension – ▷1 – can be defined, and all the CwF equations are definitional. The type formers
can be redefined as their primed versions K1, Σ1 and Π1. K1rs and J1rs hold definitionally,
but Σ1rs and Π1rs rely on definitional β and η for Σ and Π (the ones defined for Ty), and we
are missing an η for Π. Hence Σrs, ,rs, Πη, Πrs, lamrs only hold up to the identity type.

We define TyP Γ as those families over |Γ| that are (point-free) propositional and which
have coercion.

TyP Γ :” p|A| : |Γ| Ñ Typeq ˆ pAp : isPfPropd |A|q ˆ pcoeA : Γ„ pγ0, γ1q Ñ |A| γ0 Ñ |A| γ1q

Ò is given by letting the relation be constant J, and showing closure under J, Σ and Π is
straightforward. Proof irrelevance irr comes from the assumed equation Ap, hence it is not
definitional. Definition of the TyP-valued identity type is analogous to the construction in
the previous section. Strictification of TyP is analogous to that of Ty. ◀

We conjecture that without strictification (the replacement of Ty by Ty1) we can still
prove all the equations, however this seems to be very difficult due to “transport hell”.

8 Examples of strict algebraic structures

Point-free equations can be used to define strict variants of algebraic structures. For example,
internally to a model of type theory with a universe Type closed under Π, Σ, Id, a strict
monoid is defined as follows.

M : Type
– b – : M Ñ M Ñ M
ass : IdMÑMÑMÑM pλx y z.px b yq b zq pλx y z.x b py b zqq

o : M
idl : IdMÑM pλx.o b xq pλx.xq

idr : IdMÑM pλx.x b oq pλx.xq

Compare it with the usual definition of monoid where the laws are stated using universal
quantification:

ass : px y z : Mq Ñ IdM ppx b yq b zq px b py b zqq

idl : px : Mq Ñ IdM po b xq x

idr : px : Mq Ñ IdM px b oq x

I. Donkó and A. Kaposi 6:19

If our model has canonicity, then in the empty context, for any strict monoid, the laws
hold definitionally. For example, booleans where conjunction is defined as a ^ b :”
if a then b else false do not form a strict monoid. We do have idl : true ^ b ” b, but we
don’t have idr or associativity definitionally, only propositionally. So booleans with –^–
form a usual monoid, but not a strict monoid. Similarly, natural numbers with addition form
a usual monoid, but not a strict monoid.

In contrast, for any type A, the function space A Ñ A forms a monoid with f b g :”
λx.f pg xq and o :” λx.x. We have associativity as λf g h.pf b gq b g ” λf g h x.f pg ph xqq ”

λf g h.f b pg b hq and the identity laws hold as e.g. λf.o b f ” λf x.f x ” λf.f .
Strict monoids are closed under finite products following the η rule for ˆ. We can define

displayed strict monoids over a strict monoid, and dependent product of strict monoids.
Strict monoids are also closed by A-ary products for any type A. That is, given a strict
monoid with carrier M , A Ñ M is also a strict monoid.

Point-free propositions are another strict algebraic structure with no operations and
only one equation: any two elements are equal. Closure under J and Σ give closure under
(dependent) finite products, closure under Π is the same as having A-ary (dependent) products
for any type A.

We conjecture that for any (generalised) algebraic structure, we have a CwF with J, Σ
and extensional Id of strict algebras internally to any model of intensional type theory. The
category part of the CwF is the category of algebras and homomorphisms, terms and types
are displayed algebras and sections, context extension is dependent product of algebras, and
so on. This semantics was called finite limit CwF in [17].

The term “strict” algebraic structure is only correct in intensional type theory. In a
model with function extensionality, strict and usual monoids coincide.

There is a stronger sense in which algebraic structures can be “strict”. Obviously, to
define a strict monoid in the empty context, all laws have to hold definitionally. However
when assuming a strict monoid and using it in a construction in this open context, the laws
only hold up to propositional equality. It would be convenient to have implementations of
type theory with strict algebraic structures in this stronger sense. Currently, Agda only
supports one algebraic structure which is strict in this stronger sense: propositions.

9 Summary

In this paper we attempted to push the limits of what can be done in intensional type
theory without function extensionality or uniqueness of identity proofs. We exploited the fact
that in intensional type theory, in the empty context propositional and definitional equality
coincide. We used this to define a dynamic universe of strict propositions internally. We
expect that other strict algebraic structures with the expected properties can be defined
along the same lines. In a strict algebraic structure, all equations are definitional. As we
cannot assume definitional equalities in type theory, when we assume a member of a strict
algebraic structure, the equations only hold propositionally. This makes it difficult to use such
algebraic structures in practice. However we think that model constructions of type theory
can be formalised as functions between strict models. We conjecture that the canonicity
and normalisation displayed models from the corresponding proofs for type theory [10, 6]
can be formalised in pure intensional type theory. These would be displayed over a strict
model defined as a point-free algebraic structure. There are other inherent limitations of
point-free propositions, e.g. the fact that we cannot prove that being a point-free proposition
is a point-free proposition.

TYPES 2021

6:20 Internal Strict Propositions Using Point-Free Equations

Internal strict models can be externalised directly. We would like to understand in
which circumstances internal non-strict models can be externalised into model constructions.
Another open problem is whether isHProp pisPfProp Aq is provable in intensional type theory.

A strict proposition-valued identity type with a strong transport rule was used to define
presheaves [22] and a universe of setoids closed under dependent function space [3]. It is not
clear whether such a type theory has normalisation [1]. Currently the only justification that
we know for this strong transport rule is the setoid model construction. We showed that such
an identity type can be derived in intensional type theory using point-free propositions. It
seems that our construction is limited, the model we constructed does not include a universe
of propositions or inductive types. In the future, we would like to circumscribe the exact
conditions that the input model has to satisfy in order to obtain inductive types and universes
from the setoid model construction.

References
1 Andreas Abel and Thierry Coquand. Failure of normalization in impredicative type theory

with proof-irrelevant propositional equality. Log. Methods Comput. Sci., 16(2), 2020. doi:
10.23638/LMCS-16(2:14)2020.

2 Thorsten Altenkirch. Extensional equality in intensional type theory. In 14th Annual IEEE
Symposium on Logic in Computer Science, Trento, Italy, July 2-5, 1999, pages 412–420. IEEE
Computer Society, 1999. doi:10.1109/LICS.1999.782636.

3 Thorsten Altenkirch, Simon Boulier, Ambrus Kaposi, Christian Sattler, and Filippo Sestini.
Constructing a universe for the setoid model. In Stefan Kiefer and Christine Tasson, editors,
Foundations of Software Science and Computation Structures - 24th International Conference,
FOSSACS 2021, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27 - April 1, 2021, Proceedings,
volume 12650 of Lecture Notes in Computer Science, pages 1–21. Springer, 2021. doi:
10.1007/978-3-030-71995-1_1.

4 Thorsten Altenkirch, Simon Boulier, Ambrus Kaposi, and Nicolas Tabareau. Setoid type
theory—a syntactic translation. In Graham Hutton, editor, Mathematics of Program Con-
struction, pages 155–196, Cham, 2019. Springer International Publishing.

5 Thorsten Altenkirch and Ambrus Kaposi. Type theory in type theory using quotient inductive
types. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’16, pages 18–29, New York, NY, USA, 2016. ACM.
doi:10.1145/2837614.2837638.

6 Thorsten Altenkirch and Ambrus Kaposi. Normalisation by Evaluation for Type Theory,
in Type Theory. Logical Methods in Computer Science, Volume 13, Issue 4, October 2017.
doi:10.23638/LMCS-13(4:1)2017.

7 Simon Boulier, Pierre-Marie Pédrot, and Nicolas Tabareau. The next 700 syntactical models of
type theory. In Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs and
Proofs, CPP 2017, pages 182–194, New York, NY, USA, 2017. ACM. doi:10.1145/3018610.
3018620.

8 Simon Castellan, Pierre Clairambault, and Peter Dybjer. Categories with families: Unityped,
simply typed, and dependently typed. CoRR, abs/1904.00827, 2019. arXiv:1904.00827.

9 Thierry Coquand. About the setoid model, 2013. URL: http://www.cse.chalmers.se/
~coquand/setoid.pdf.

10 Thierry Coquand. Canonicity and normalization for dependent type theory. Theor. Comput.
Sci., 777:184–191, 2019. doi:10.1016/j.tcs.2019.01.015.

11 Thierry Coquand. Reduction free normalisation for a proof irrelevant type of propositions.
CoRR, abs/2103.04287, 2021. arXiv:2103.04287.

12 István Donkó and Ambrus Kaposi. Agda formalization for the paper “Internal strict propositions
using point-free equations”. https://bitbucket.org/akaposi/prop, 2022.

https://doi.org/10.23638/LMCS-16(2:14)2020
https://doi.org/10.23638/LMCS-16(2:14)2020
https://doi.org/10.1109/LICS.1999.782636
https://doi.org/10.1007/978-3-030-71995-1_1
https://doi.org/10.1007/978-3-030-71995-1_1
https://doi.org/10.1145/2837614.2837638
https://doi.org/10.23638/LMCS-13(4:1)2017
https://doi.org/10.1145/3018610.3018620
https://doi.org/10.1145/3018610.3018620
http://arxiv.org/abs/1904.00827
http://www.cse.chalmers.se/~coquand/setoid.pdf
http://www.cse.chalmers.se/~coquand/setoid.pdf
https://doi.org/10.1016/j.tcs.2019.01.015
http://arxiv.org/abs/2103.04287
https://bitbucket.org/akaposi/prop

I. Donkó and A. Kaposi 6:21

13 Gaëtan Gilbert, Jesper Cockx, Matthieu Sozeau, and Nicolas Tabareau. Definitional proof-
irrelevance without K. Proc. ACM Program. Lang., 3(POPL):3:1–3:28, 2019. doi:10.1145/
3290316.

14 Martin Hofmann. Conservativity of equality reflection over intensional type theory. In TYPES
95, pages 153–164, 1995.

15 Martin Hofmann. Extensional constructs in intensional type theory. CPHC/BCS distinguished
dissertations. Springer, 1997.

16 Jasper Hugunin. Why not w? In Ugo de’Liguoro, Stefano Berardi, and Thorsten Altenkirch,
editors, 26th International Conference on Types for Proofs and Programs, TYPES 2020, March
2-5, 2020, University of Turin, Italy, volume 188 of LIPIcs, pages 8:1–8:9. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.TYPES.2020.8.

17 Ambrus Kaposi, András Kovács, and Thorsten Altenkirch. Constructing quotient inductive-
inductive types. Proc. ACM Program. Lang., 3(POPL):2:1–2:24, January 2019. doi:10.1145/
3290315.

18 Ambrus Kaposi and Zongpu Xie. Quotient inductive-inductive types in the setoid model.
In Henning Basold, editor, 27th International Conference on Types for Proofs and Pro-
grams, TYPES 2021. Universiteit Leiden, 2021. URL: https://types21.liacs.nl/download/
quotient-inductive-inductive-types-in-the-setoid-model/.

19 Nicolai Kraus and Jakob von Raumer. Coherence via well-foundedness: Taming set-quotients
in homotopy type theory. In Holger Hermanns, Lijun Zhang, Naoki Kobayashi, and Dale
Miller, editors, LICS ’20: 35th Annual ACM/IEEE Symposium on Logic in Computer Science,
Saarbrücken, Germany, July 8-11, 2020, pages 662–675. ACM, 2020. doi:10.1145/3373718.
3394800.

20 Peter Lefanu Lumsdaine and Michael A. Warren. The local universes model: An overlooked
coherence construction for dependent type theories. ACM Trans. Comput. Logic, 16(3), July
2015. doi:10.1145/2754931.

21 Erik Palmgren. From type theory to setoids and back. arXiv e-prints, page arXiv:1909.01414,
September 2019. arXiv:1909.01414.

22 Pierre-Marie Pédrot. Russian constructivism in a prefascist theory. In Holger Hermanns,
Lijun Zhang, Naoki Kobayashi, and Dale Miller, editors, LICS ’20: 35th Annual ACM/IEEE
Symposium on Logic in Computer Science, Saarbrücken, Germany, July 8-11, 2020, pages
782–794. ACM, 2020. doi:10.1145/3373718.3394740.

23 The Univalent Foundations Program. Homotopy type theory: Univalent foundations of
mathematics. Technical report, Institute for Advanced Study, 2013.

TYPES 2021

https://doi.org/10.1145/3290316
https://doi.org/10.1145/3290316
https://doi.org/10.4230/LIPIcs.TYPES.2020.8
https://doi.org/10.1145/3290315
https://doi.org/10.1145/3290315
https://types21.liacs.nl/download/quotient-inductive-inductive-types-in-the-setoid-model/
https://types21.liacs.nl/download/quotient-inductive-inductive-types-in-the-setoid-model/
https://doi.org/10.1145/3373718.3394800
https://doi.org/10.1145/3373718.3394800
https://doi.org/10.1145/2754931
http://arxiv.org/abs/1909.01414
https://doi.org/10.1145/3373718.3394740

Constructive Cut Elimination in Geometric Logic
Giulio Fellin # Ñ

Department of Computer Science, University of Verona, Italy
Department of Mathematics, University of Trento, Italy
Department of Philosophy, History and Art Studies, University of Helsinki, Finland

Sara Negri # Ñ

Department of Mathematics, University of Genoa, Italy

Eugenio Orlandelli # Ñ

Department of Philosophy and Communication Studies, University of Bologna, Italy

Abstract
A constructivisation of the cut-elimination proof for sequent calculi for classical and intuitionistic
infinitary logic with geometric rules – given in earlier work by the second author – is presented. This is
achieved through a procedure in which the non-constructive transfinite induction on the commutative
sum of ordinals is replaced by two instances of Brouwer’s Bar Induction. Additionally, a proof of
Barr’s Theorem for geometric theories that uses only constructively acceptable proof-theoretical
tools is obtained.

2012 ACM Subject Classification Theory of computation → Proof theory

Keywords and phrases Geometric theories, sequent calculi, axioms-as-rules, infinitary logic, con-
structive cut elimination

Digital Object Identifier 10.4230/LIPIcs.TYPES.2021.7

Funding Partially funded by the Academy of Finland, research project no. 1308664.

Acknowledgements We are very grateful to Peter Schuster for precious comments and helpful
discussions on various points. We also thank the three anonymous referees for their detailed and
insightful comments that helped improving the paper.

1 Introduction

Notable parts of algebra and geometry can be formalised as coherent theories over first-order
classical or intuitionistic logic. Their axioms are coherent implications, i.e., universal closures
of implications D1 ⊃D2, where both D1 and D2 are built up from atoms using conjunction,
disjunction and existential quantification. Examples include all algebraic theories, such as the
theory of groups and the theory of rings, all essentially algebraic theories, such as category
theory [7], the theory of fields, the theory of local rings, lattice theory [22], projective and
affine geometry [22, 17], the theory of separably closed local rings (aka “strictly Henselian
local rings”) [9, 17, 25].

Although wide, the class of coherent theories leaves out certain axioms used in algebra
such as the axioms of torsion Abelian groups or of Archimedean ordered fields, or used in
the theory of connected graphs, as well as in the modelling of epistemic social notions such
as common knowledge. All the latter examples can however be axiomatised by means of
geometric axioms, a generalization of coherent axioms that allows infinitary disjunctions.

Geometric implications give a Glivenko class [18], as shown by Barr’s Theorem:

▶ Theorem 1 (Barr’s Theorem [3]). If T is a coherent (geometric) theory and A is a coherent
(geometric) sentence provable from T in (infinitary) classical logic, then A is provable from
T in (infinitary) intuitionistic logic.

© Giulio Fellin, Sara Negri, and Eugenio Orlandelli;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Types for Proofs and Programs (TYPES 2021).
Editors: Henning Basold, Jesper Cockx, and Silvia Ghilezan; Article No. 7; pp. 7:1–7:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:giulio.fellin@univr.it
https://fellin.ga
https://orcid.org/0000-0002-3179-7521
mailto:sara.negri@unige.it
https://sites.google.com/view/saranegri/home
https://orcid.org/0000-0003-3958-6312
mailto:eugenio.orlandelli@unibo.it
https://www.unibo.it/sitoweb/eugenio.orlandelli/en
https://orcid.org/0000-0002-4021-8667
https://doi.org/10.4230/LIPIcs.TYPES.2021.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Constructive Cut Elimination in Geometric Logic

Barr’s Theorem1 has its origin, through appropriate completeness results, in the theory of
sheaf models, with the following formulation:

▶ Theorem 2 ([12], Ch.9, Thm.2). For every Grothendieck topos E there exists a complete
Boolean algebra B and a surjective geometric morphism Sh(B) −→ E.

An extremely simple and purely syntactic proof of the first-order Barr’s Theorem for
coherent theories has been given in [14] by means of G3 sequent calculi: it is shown how to
express coherent implications by means of rules that preserve admissibility of the structural
rules. As a consequence, Barr’s theorem is proved by simply noticing that a proof in G3C.G
– i.e., the calculus for classical logic extended with rules for coherent implications – is also a
proof in the intuitionistic multisuccedent calculus G3I.G.

In [16], this approach to Barr’s Theorem has been generalized to (infinitary) geometric
theories using G3-style calculi for classical and intuitionistic infinitary logic G3[CI]ω (with
finite sequents instead of countably infinite sequents) and their extension with rules expressing
geometric implications G3[CI]ω.G. To illustrate, the geometric axiom of torsion Abelian
groups

∀x.
∨

n>0
nx = 0

is expressed by the infinitary rule

{nx = 0, Γ ⇒ ∆ | n > 0}
Γ ⇒ ∆ .

The main results in [16] are that in G3[CI]ω.G all rules are height-preserving invertible, the
structural rules of weakening and contraction are height-preserving admissible, and cut is
admissible. Hence, Barr’s Theorem for geometric theories is proved in [16] as it was done in
[14] for coherent ones: a proof in G3Cω.G is also a proof in the intuitionistic multisuccedent
calculus G3Iω.G.

We observe that the cut-elimination procedure given in Sect. 4.1 of [16] is not constructive.
This is an instance of a typical limitation of cut eliminations in infinitary logics [6, 11, 23]
since these proofs use the “natural” (or Hessenberg) commutative sum of ordinals α#β:

(ωαm + · · · + ωα0) #(ωβn + · · · + ωβ0) = (ωγm+n+1 + · · · + ωγ0)

where γm+n+1, . . . , γ0 is a decreasing permutation of αm, . . . , α0, βn, . . . , β0; see [24, 10.1.2B].
The resort to the natural sum is inescapable for proofs using cut-height (i.e., the sum of the
derivation-height of the premisses of cut) as inductive parameter: it ensures that we can
apply the inductive hypothesis when permuting the cut upwards in the derivation of one
premisses. Nevertheless, it makes the proof non-constructive since

[its] definition utilises the Cantor normal form of ordinals to base ω. This normal
form is not available in CZF [Constructive Zermelo–Fraenkel set theory] (or IZF
[Intuitionistic Zermelo–Fraenkel set theory]) and thus a different approach is called
for. [20, p. 369]

1 Barr’s theorem is often alleged to achieve more in that it also allows to eliminate uses of the axiom of
choice. That such formulations of Barr’s theorem should be taken with caution is demonstrated in [20]
where the internal vs. external addition of the the axiom of choice is considered and it is shown that the
latter preserves conservativity whereas the former does not.

G. Fellin, S. Negri, and E. Orlandelli 7:3

We constructivise2 the cut-elimination proof for G3[CI]ω.G by giving a procedure that
replaces the induction on the cut-height with two transfinite inductions on the height of
the derivations of the right and the left premiss of cut respectively – see Lemmas 20 and
21 – and it replaces the main induction on the depth of the cut-formula with two instances
of Brouwer’s principle of Bar Induction – see Theorem 23.3 As a consequence, we are
able to give a proof of Barr’s Theorem for geometric theories that uses only constructively
acceptable proof-theoretic tools. Moreover, our proof strategy allows to constructivise the
cut-elimination procedure for other infinitary calculi.

2 Syntax and sequent calculi for infinitary logics

Let S be a signature containing, for every n ∈ N, a countable (i.e., finite, possibly empty, or
countably infinite) set RELS

n of n-ary predicate letters P n
1 , P n

2 , . . . , and a countable set CON
of individual constants c1, c2, Let VAR be a denumerable set of variables x1, x2, The
language contains the following logical symbols: =, ⊤, ⊥, ∧, ∨, ⊃, ∀, ∃, as well as countable
conjunction

∧
n>0 and countable disjunction

∨
n>0.

The sets TER of terms is the union of VAR and CON . The set of formulas of the
language LS

ω is generated by:

A ::= P n
i t1, . . . , tn | t1 = t2 | ⊤ | ⊥ | A ∧ A | A ∨ A | A⊃A | ∀xA | ∃xA |

∧
n>0

An |
∨

n>0
An

where ti ∈ TER, P n
i ∈ RELS

n , and x ∈ V AR.
We use the following metavariables:

x, y, z for variables and x⃗, y⃗, z⃗ for lists thereof;
t, s, r for terms;
P, Q, R for atomic formulas;
A, B, C for formulas.

We use A(x⃗) to say that the variables having free occurrences in A are included in x⃗. We
follow the standard conventions for parentheses. The formulas ⊤, ¬A and A ⊃⊂ B are
defined as expected. When considering (infinitary) classical logic we can shrink the set
of primitive logical symbols by means of the well-known De Morgan’s dualities (including∨

n>0 An ⊃⊂ ¬
∧

n>0 ¬A), however also in the classical case we consider a language where
all operators (excluding ¬ and ⊃⊂) are taken as primitive. This is not just useful but even
necessary since our purpose is to extract the constructive content of classical proofs and
many of the interdefinabilities do not hold in intuitionistic logic.

The notions of free and bound occurrences of a variable in a formula are the usual ones.
We posit that no formula may have infinitely many free variables. A sentence is a formula
without free occurrences of variables. Given a formula A, we use A(t/x) to denote the formula
obtained by replacing each free occurrence of x in A with an occurrence of t, provided that t

is free for x in A – i.e., no new occurrence of t is bound by a quantifier.
Each formula A has a countable ordinal d(A) as its depth (the successor of the supremum

of the depths of its immediate subformulas). More precisely

2 By “constructive” here we mean not relying on classical logical principles such as excluded middle or
linearity of ordinals but we do not mean acceptable in all schools of constructive mathematics.

3 See [20, §7] for a different proof, based on constructive ordinals, of cut elimination in infinitary logic.
The proof in [2] does not use ordinals, but it is inherently classical in that it uses a one-sided calculus
based on De Morgan’s dualities.

TYPES 2021

7:4 Constructive Cut Elimination in Geometric Logic

▶ Definition 3 (Depth of A). d(A) = sup{d(B) | B is an immediate subformula of A} + 1.

For example, ⊥ and atoms P have depth 1, since they have no immediate subformulas and
the supremum of an empty family of ordinals is 0. The definition of depth implies that, if A′

is a proper subformula of A, then d(A′) < d(A).
Sequents Γ ⇒ ∆ have a finite multiset of formulas on each side. The inference rules for∨

n>0 are thus:

{Γ, An ⇒ ∆ | n > 0}
Γ,

∨
n>0 An ⇒ ∆

L
∨ Γ ⇒ ∆,

∨
n>0 An, Ak

Γ ⇒ ∆,
∨

n>0 An
R

∨
k.

Observe that L
∨

n>0 has countably many premisses, one for each n > 0. The rules for
∧

n>0
are dual to the above ones.

Derivations built using these rules are thus (in general) infinite trees, with countable
branching but where (as may be proved by induction on the definition of derivation) each
branch has finite length. The leaves of the trees are those where the two sides have an atomic
formula in common, and also instances of rules L⊥, R⊤. To make this precise, we give a
formal definition of the notion of derivation D and the associated notions of its height ht(D)
and its end-sequent.

▶ Definition 4 (Derivations, their height and their end-sequent).
1. Any sequent Γ ⇒ ∆, where some atomic formula occurs in both Γ and ∆, is a derivation,

of height 0 and with end-sequent Γ ⇒ ∆.
2. Let β ≤ ω. If each Dn, for 0 < n < β, is a derivation of height αn and with end-sequent

Γn ⇒ ∆n, and

. . . Γn ⇒ ∆n . . .

Γ ⇒ ∆ R

is an instance of a rule with β premisses, then

. . .

... Dn

Γn ⇒ ∆n . . .

Γ ⇒ ∆ R

is a derivation, of height the countable ordinal supn(αn)+1 and with end-sequent Γ ⇒ ∆.4
If X is a calculus, we use X ⊢ Γ ⇒ ∆ to say that Γ ⇒ ∆ is derivable in the calculus X.

By this definition each derivation has a countable ordinal height (the successor of the
supremum of the heights of its immediate subderivations). Thus, if Γ and ∆ have an atomic
formula in common, then Γ ⇒ ∆ has a derivation D of height ht(D) = 0. The sequent
⊥, Γ ⇒ ∆ (regarded as a zero-premiss rule) has a derivation of height 1. Observe that the
definitions of depth of a formula and of height of a derivation differ from those in [6]: we
use the successor of a supremum rather than the supremum of the successors (note that
supn>0(n + 1) = ω ̸= ω + 1 = (supn>0(n)) + 1). It follows that, if D′ is a sub-derivation of
D, then ht(D′) < ht(D). If a sequent has a derivation of height α we say it is α-derivable
and write ⊢α Γ ⇒ ∆.

4 Derivations can thus be represented as (infinite) trees, where the nodes are the sequents in the derivation,
and a node that corresponds to a premiss of a rule is an immediate successor of the node that corresponds
to the conclusion of such rule. Therefore, a node that corresponds to the conclusion of a rule with β
premisses has β immediate successors.

G. Fellin, S. Negri, and E. Orlandelli 7:5

▶ Definition 5 (Sequent calculi for infinitary logics with equality).
1. G3Cω is defined by the rules in Tables 1 and 3;
2. G3Iω is defined as G3Cω with the exception of rules L ⊃, R ⊃, R∀, and R

∧
that are

defined as in Table 2.
By G3[CI]ω we denote any one of the two calculi above. Observe that a multi-succedent
intuitionistic calculus as the one we use is closer to a classical calculus than the usual calculus
with the restriction that the succedent of sequents should consist of at most one formula
(used, for example in [20]). As in the finitary case such a multi-succedent choice is particularly
useful for proving Glivenko-style results [15].

As usual, we consider only derivations of pure sequents – i.e., sequents where no variable
has both free and bound occurrences. We say that Γ ⇒ ∆ is G3[CI]ω-derivable (with height
α), and we write G3[CI]ω ⊢(α) Γ ⇒ ∆, if there is a G3[CI]ω-derivation (of height at most
α) of Γ ⇒ ∆ or of an alphabetic variant of Γ ⇒ ∆. A rule is said to be (height-preserving)
admissible in G3[CI]ω, if, whenever its premisses are G3[CI]ω-derivable (with height at most
α), also its conclusion is G3[CI]ω-derivable (with height at most α). A rule is said to be
(height-preserving) invertible in G3[CI]ω, if, whenever its conclusion is G3[CI]ω-derivable
(with height at most α), also its premisses are G3[CI]ω-derivable (with height at most α).
In each rule depicted in Tables 1, 2, and 3 the multisets Γ and ∆ are called contexts, the
formulas occurring in the conclusion are called principal, and the formulas occurring in the
premiss(es) only are called active.

3 From geometric implications to geometric rules

By a geometric implication we mean the universal closure of an implicative formula whose
antecedent and consequent are formulas constructed from atomic formulas and ⊥, ⊤ using
only ∧, ∨, ∃, and

∨
n>0. More precisely:

▶ Definition 6 (Geometric implication).
A formula is Horn iff it is built from atoms and ⊤ using only ∧;
A formula is geometric iff it is built from atoms and ⊤, ⊥ using only ∧, ∨, ∃, and

∨
n>0;

A sentence is a geometric implication iff it is of the form ∀x⃗(A⊃B) where A and B are
geometric formulas.

By a coherent implication we mean a geometric implication without occurrences of
∨

n>0.
As is well known, for geometric implications we have a normal form theorem.

▶ Theorem 7 (Geometric normal form (GNF)). Any geometric implication is equivalent to a
possibly infinite conjunction of sentences of the form

∀x⃗(A⊃B)

where A is Horn and B is a possibly infinite disjunction of existentially quantified Horn
formulas.

This normal form theorem is important because, as shown in [14] for coherent implications
and in [16] for geometric ones, we can extract from a sentence G in GNF a geometric rule LG

(where the name LG indicates that it is a left rule) that can be added to a sequent calculus
without altering its structural properties. To be more precise, let us consider the following
sentence G in GNF:

∀x⃗(P1(x⃗) ∧ · · · ∧ Pk(x⃗)⊃
∨

n>0
∃y⃗(Qn1(x⃗, y⃗) ∧ · · · ∧ Qnm

(x⃗, y⃗))) (G)

TYPES 2021

7:6 Constructive Cut Elimination in Geometric Logic

Table 1 The calculus G3Cω (z fresh in L∃ and R∀).

Initial sequents:
P, Γ ⇒ ∆, P

Γ ⇒ ∆, ⊤ R⊤
Γ ⇒ ∆, A Γ ⇒ ∆, B

Γ ⇒ ∆, A ∧ B
R∧

Γ ⇒ ∆, A, B

Γ ⇒ ∆, A ∨ B
R∨

⊥, Γ ⇒ ∆ L⊥
A, B, Γ ⇒ ∆

A ∧ B, Γ ⇒ ∆ L∧
A, Γ ⇒ ∆ B, Γ ⇒ ∆

A ∨ B, Γ ⇒ ∆ L∨

A, Γ ⇒ ∆, B

Γ ⇒ ∆, A⊃B
R⊃

Γ ⇒ ∆, A(y/x), ∃xA

Γ ⇒ ∆, ∃xA
R∃

Γ ⇒ ∆, A(z/x)
Γ ⇒ ∆, ∀xA

R∀

Γ ⇒ ∆, A B, Γ ⇒ ∆
A⊃B, Γ ⇒ ∆ L⊃

A(z/x), Γ ⇒ ∆
∃xA, Γ ⇒ ∆ L∃

A(y/x), ∀xA, Γ ⇒ ∆
∀xA, Γ ⇒ ∆ L∀

{Γ ⇒ ∆, Ai | i > 0}
Γ ⇒ ∆,

∧
n>0 An

R
∧ Γ ⇒ ∆,

∨
n>0 An, Ak

Γ ⇒ ∆,
∨

n>0 An

R
∨

Ak,
∧

n>0 An, Γ ⇒ ∆∧
n>0 An, Γ ⇒ ∆

L
∧ {Ai, Γ ⇒ ∆ | i > 0}∨

n>0 An, Γ ⇒ ∆
L

∨

Table 2 Non-classical rules for G3Iω (z fresh in R∀).

A⊃B, Γ ⇒ ∆, A B, Γ ⇒ ∆
A⊃B, Γ ⇒ ∆ L⊃

A, Γ ⇒ B

Γ ⇒ ∆, A⊃B
R⊃

Γ ⇒ A(z/x)
Γ ⇒ ∆, ∀xA

R∀
{Γ ⇒ Ai | i > 0}

Γ ⇒ ∆,
∧

An

R
∧

Table 3 Rules for equality in G3[CI]ω.

s = s, Γ ⇒ ∆
Γ ⇒ ∆ Ref

P (t/x), s = t, P (s/x), Γ ⇒ ∆
s = t, P (s/x), Γ ⇒ ∆

Repl

Table 4 Geometric rule LG expressing the geometric sentence G.

. . . Qn1(x⃗, y⃗n), . . . , Qnm
(x⃗, y⃗n), P1(x⃗), . . . , Pk(x⃗), Γ ⇒ ∆ . . .

P1(x⃗), . . . , Pk(x⃗), Γ ⇒ ∆ LG

G. Fellin, S. Negri, and E. Orlandelli 7:7

Such a sentence G determines the (finitary or infinitary) geometric rule given in Table 4 with
one premiss for each of the countably many disjuncts in

∨
n>0(Qn1(x⃗, y⃗) ∧ · · · ∧ Qnm

(x⃗, y⃗)).
The variables in y⃗n are chosen to be fresh, i.e. are not in the conclusion; and without loss of
generality they are all distinct. The list y⃗n of variables may vary as n varies, and maybe
no finite list suffices for all the countably many cases. The variables x⃗ (finite in number)
may be instantiated with arbitrary terms. Henceforth we shall normally omit mention of the
variables.

We need also a further condition for height-preserving admissibility of contraction to
hold:

▶ Definition 8 (Closure condition). Given a calculus with geometric rules, if it has a rule
with an instance with repetition of some principal formula such as:

. . . Q1, . . . , Qn, P1, . . . , Pk−2, P, P, Γ ⇒ ∆ . . .

P1, . . . , Pk−2, P, P, Γ ⇒ ∆ Lc
G

then also the contracted instance

. . . Q1, . . . , Qm, P1, . . . , Pk−2, P, Γ ⇒ ∆ . . .

P1, . . . , Pk−2, P, Γ ⇒ ∆ Lc
G

has to be included in the calculus.

As for the finitary case [14], also in the infinitary case the condition is unproblematic, since
each atomic formula contains only a finite number of variables and therefore so are the
instances; it follows that, for each geometric rule, the number of rules that have to be added
is finite. Moreover, in many cases contracted instances need not be added since they are
admissible in the calculus without them. To illustrate, we consider the coherent rule Repl for
equality given in Table 3:

P (t/x), s = t, P (s/x), Γ ⇒ ∆
s = t, P (s/x), Γ ⇒ ∆

Repl

This rule generates contracted instances only when its two principal formulas (as well as
its active formula) are copies of the same reflexivity atom t = t. In this case, after having
applied contraction, we can replace the instance of Repl with an instance of Ref (instead of
Replc). That is, we can transform:

t = t, t = t, t = t, Γ ⇒ ∆
t = t, t = t, Γ ⇒ ∆ Repl into

t = t, t = t, t = t, Γ ⇒ ∆
t = t, t = t, Γ ⇒ ∆ LC

t = t, Γ ⇒ ∆ Ref

But this does not hold in general. For example, if < is an Euclidean relation, we must
add both of the following rules:

s < r, t < s, t < r, Γ ⇒ ∆
t < s, t < r, Γ ⇒ ∆ Euc and

s < s, t < s, Γ ⇒ ∆
t < s, Γ ⇒ ∆ Eucc

otherwise the valid sequent t < s ⇒ s < s would not be contraction-free derivable. In
presence of Ref, no added rule is needed.

▶ Theorem 9 ([16]). If we add to the calculus G3[CI]ω a finite or infinite family of geometric
rules LG, then we can prove all of the geometric sentences G from which they were determined.

TYPES 2021

7:8 Constructive Cut Elimination in Geometric Logic

In the following, we shall denote with G3[CI]ω.G any extension of G3[CI]ω with a
finite or infinite family of geometric rules LG (together with all needed contracted instances
thereof).

Before proceeding with the structural properties, we give some examples of geometric
axioms and their corresponding rules.

▶ Example 10 (Geometric axioms and rules).
1. The axiom of torsion Abelian groups, ∀x.

∨
n>1(nx = 0), becomes the rule

. . . nx = 0, Γ ⇒ ∆ . . .

Γ ⇒ ∆
RTor

2. The axiom of Archimedean ordered fields, ∀x.
∨

n≥1(x < n), becomes the rule

. . . x < n, Γ ⇒ ∆ . . .

Γ ⇒ ∆
RArc

3. The axiom of connected graphs,

∀xy.x = y ∨ xRy ∨
∨

n>1
∃z0 . . . ∃zn(x = z0 & y = zn & z0Rz1 & . . . & zn−1Rzn)

becomes the rule
x = y, Γ ⇒ ∆ xRy, Γ ⇒ ∆ . . . x = z0, y = zn, z0Rz1, . . . , zn−1Rzn, Γ ⇒ ∆ . . .

Γ ⇒ ∆
RConn

3.1 Structural rules
We present here the results concerning the admissibility of the structural rules, cut excluded,
in the calculi G3[CI]ω.G. All these results have been proved in Sect. 4 of [16] by simple
transfinite induction on ordinals, either on the depth of a formula or on the height of a
derivation.

▶ Lemma 11 (Generalised initial sequents). The sequent A, Γ ⇒ ∆, A is G3[CI]ω.G-derivable,
for A arbitrary formula.

▶ Lemma 12 (α-conversion). If G3[CI]ω.G ⊢α Γ ⇒ ∆ then G3[CI]ω.G ⊢α Γ′ ⇒ ∆′, for
Γ′ ⇒ ∆′ a bound alphabetic variant of Γ ⇒ ∆.

▶ Lemma 13 (Substitution). If G3[CI]ω.G ⊢α Γ ⇒ ∆ and t is free for x in Γ ⇒ ∆ then
G3[CI]ω.G ⊢α Γ(t/x) ⇒ ∆(t/x).

▶ Theorem 14 (Weakening). The left and right rules of weakening:

Γ ⇒ ∆
A, Γ ⇒ ∆ LW

Γ ⇒ ∆
Γ ⇒ ∆, A

RW

are height-preserving admissible (hp-admissible, for short) in G3[CI]ω.G.

▶ Lemma 15 (Invertibility).
1. Each rule of G3Cω.G is hp-invertible.

2. Each rule of G3Iω.G except R⊃, R∀, and R
∧

is hp-invertible.

G. Fellin, S. Negri, and E. Orlandelli 7:9

▶ Theorem 16 (Contraction). The rules of left and right contraction:

A, A, Γ ⇒ ∆
A, Γ ⇒ ∆ LC

Γ ⇒ ∆, A, A

Γ ⇒ ∆, A
RC

are hp-admissible in G3[CI]ω.G.

4 Constructive cut elimination

We are now ready to prove that the following context-sharing rule of cut:

Γ ⇒ ∆, C C, Γ ⇒ ∆
Γ ⇒ ∆ Cut

is eliminable in the calculus G3[CI]ω.G + {Cut} obtained by extending G3[CI]ω.G with
Cut. In order to give a proof of cut elimination that uses only constructively admissible
proof-theoretical tools we must avoid the “natural” (or Hessenberg) commutative sum of
ordinals: we cannot use cut-height as inductive parameter as done in the Gentzen- and
Dragalin-style proofs. In order to avoid it, we make use of a proof strategy introduced in [13]
for fuzzy logics that has been extensively used in the context of hypersequent calculi; see
[4, 8, 10]. This proof strategy can be seen as a simplified and local version of the proof given
by H.B. Curry in [5]. The proof is based on two main lemmas (Lemmas 20 and 21 below)
that are proved by induction on the height of the derivation of the right and of the left
premiss of cut, respectively. Moreover, (almost) all non-principal instances of cut are taken
care of by a separate lemma (Lemmas 18 and 19) which shows that cut can be permuted
upwards with respect to rule instances not having the cut formula among their principal
formulas.

Observe that, differently from [4, 13, 10], we will not consider an arbitrary instance of Cut
of maximal rank (i.e., such that its cut formula has maximal depth among the cut formulas
occurring in the derivation), but we will always consider an uppermost instance of Cut, i.e. a
cut the premisses of which are cut-free derivations. Otherwise, in Lemmas 20 and 21 as well
as in Theorem 23, we would have to assume that ordinals are linearly/totally ordered; but in
a constructive setting this assumption implies the law of excluded middle [1]. In Theorem 23
we will proceed, instead, by using two instances of Brouwer’s principle of Bar Induction: the
first will be used to show that an uppermost instance of Cut is eliminable and the second
to show that all instances of Cut are eliminable. Note that although it is a constructively
admissible principle, Bar Induction increases the proof-theoretic strength of CZF, cf. [19].

▶ Definition 17 (Cut-substitutive rule). A sequent rule Rule is cut-substitutive if each instance
of cut with cut formula not principal in the last rule instance Rule of one of the premisses of
cut can be permuted upwards w.r.t. Rule as in the following example:

A, Γ ⇒ ∆, B, C

Γ ⇒ ∆, A⊃B, C
R⊃

C, Γ ⇒ ∆, A⊃B

Γ ⇒ ∆, A⊃B
Cut

❀

A, Γ ⇒ ∆, B, C

C, Γ ⇒ ∆, A⊃B

A, C, Γ ⇒ ∆, B
hp-inv

A, Γ ⇒ ∆, B
Cut

Γ ⇒ ∆, A⊃B
R⊃

▶ Lemma 18. Each rule of G3Cω.G is cut-substitutive.

Proof. By inspecting the rules in Tables 1 and 3 it is immediate to realise that each of them
is cut-substitutive because they are all hp-invertible (using Lemma 13 for rules L∃, R∀, and
for geometric rules with a variable condition). ◀

TYPES 2021

7:10 Constructive Cut Elimination in Geometric Logic

▶ Lemma 19. Each rule of G3Iω.G except R⊃, R∀ and R
∧

is cut-substitutive.
Proof. Same as for G3Cω.G. ◀

▶ Lemma 20 (Right reduction). If we are in G3[CI]ω.G and all of the following hold:
1. D1 ⊢ Γ ⇒ ∆, A

2. D2 ⊢ A, Γ ⇒ ∆
3. A is principal in the last rule instance applied in D1
4. A is not of shape ∃xB or

∨
n>0 Bn.

Then there is a G3[CI]ω.G + {Cut}-derivation D concluding Γ ⇒ ∆ containing only cuts
on proper subformulas of A.
Proof. By transfinite induction on ht(D2).

If D2 is a one node tree, the lemma obviously holds.
Else, we have two cases depending on whether A is principal in the last rule instance

Rule applied in D2 or not.
In the latter case, if we are in G3Cω.G + {Cut}, the lemma holds thanks to Lemma

18: we permute the cut upwards in D2 and then we apply the inductive hypothesis and an
instance of Rule. If we are in G3Iω.G + {Cut} and the last step of D2 is not by one of
R ⊃, R∀, and R

∧
then it holds by Lemma 19. In the remaining three cases, we have two

subcases according to whether D1 ends with a step by an invertible rule or not. In the latter
subcase, D1 ends with one of R⊃, R∀, and R

∧
. We permute the cut upwards in the right

premiss. To illustrate, we consider the case of R
∧

. We transform
... D11

Γ ⇒ B(y/x)
Γ ⇒ ∆′,

∧
An, ∀xB

R∀

... D2i

{∀xB, Γ ⇒ Ai | i > 0}
∀xB, Γ ⇒ ∆′,

∧
An

R
∧

Γ ⇒ ∆′,
∧

An
Cut

into
... D11

Γ ⇒ B(y/x)
Γ ⇒ ∀xB

R∀
... D2i

{∀xB, Γ ⇒ Ai | i > 0}
{Γ ⇒ Ai | i > 0}

IHi, i > 0

Γ ⇒ ∆′,
∧

An
R

∧
If, instead, D1 ends by an invertible rule then we apply invertibility, thus transforming the
derivation into one having only cuts on proper subformulas of A. To illustrate, if D1 ends
with a step by R∧, we transform

... D11
Γ ⇒ ∆′,

∧
An, B

... D12
Γ ⇒ ∆′,

∧
An, C

Γ ⇒ ∆′,
∧

An, B ∧ C
R∧

... D2i

{B ∧ C, Γ ⇒ Ai | i > 0}
B ∧ C, Γ ⇒ ∆′,

∧
An

R
∧

Γ ⇒ ∆′,
∧

An
Cut

into

... D12
Γ ⇒ ∆′,

∧
AnC

... D11
Γ ⇒ ∆′,

∧
An, B

C, Γ ⇒ ∆′,
∧

An, B
LW

... D2
B ∧ C, Γ ⇒ ∆′,

∧
An

B, C, Γ ⇒ ∆′,
∧

An
Lem. 15

C, Γ ⇒ ∆′,
∧

An
Cut

Γ ⇒ ∆′,
∧

An
Cut

G. Fellin, S. Negri, and E. Orlandelli 7:11

Next, we consider the case with A principal in the last rule instance applied in D2. We
have cases according to the shape of A.

If A ≡ P for some atomic formula P , then the last rule instance in D2 is by a geometric
rule (rules for equality included) LG concluding P1, . . . , P, . . . , Pk, Γ′′ ⇒ ∆′, P and D1 is the
one node tree P, Γ′ ⇒ ∆′, P . The conclusion of cut is the initial sequent P, Γ′ ⇒ ∆′, P which
is cut-free derivable.

The cases with A ≡ ⊥ or A ≡ B ◦ C, for ◦ ∈ {⊤, ∧, ∨,⊃}, are left to the reader.
If A ≡ ∀xB we transform (if we are in G3Iω.G + {Cut}, ∆ is not in the premiss of R∀)

... D11
Γ ⇒ ∆, B(y/x)

Γ ⇒ ∆, ∀xB
R∀

... D21
B(t/x), ∀xB, Γ ⇒ ∆

∀xB, Γ ⇒ ∆ L∀

Γ ⇒ ∆ Cut

into the following derivation having only cuts on proper subformulas of A (if we are in
G3Iω.G + {Cut} then ∆ is introduced in D11 by height-preserving weakenings, which can
be done since D11 is in G3Iω.G):

... D11
Γ ⇒ ∆, B(y/x)
Γ ⇒ ∆, B(t/x) Lem. 13

... D1
Γ ⇒ ∆, ∀xB

... D21
∀xB, B(t/x), Γ ⇒ ∆

B(t/x), Γ ⇒ ∆ IH

Γ ⇒ ∆ Cut

If A ≡
∧

Bi we transform (∆ not in the premisses of R
∧

if we are in G3Iω.G + {Cut})

... D1i

{Γ ⇒ ∆, Bi | i > 0}
Γ ⇒ ∆,

∧
Bn

R
∧

... D21
Bk,

∧
Bn, Γ ⇒ ∆∧

Bn, Γ ⇒ ∆
L

∧
Γ ⇒ ∆ Cut

into the following derivation having only cuts on proper subformulas of A (if we are in
G3Iω.G + {Cut} then ∆ is introduced in D1k by height-preserving weakenings):

... D1k

Γ ⇒ ∆, Bk

... D1
Γ ⇒ ∆,

∧
Bn

... D21∧
Bn, Bk, Γ ⇒ ∆

Bk, Γ ⇒ ∆ IH

Γ ⇒ ∆ Cut
◀

▶ Lemma 21 (Left reduction). If we are in G3[CI]ω.G and all of the following hold:
1. D1 ⊢ Γ ⇒ ∆, A

2. D2 ⊢ A, Γ ⇒ ∆
Then there is a G3[CI]ω.G + {Cut}-derivation D concluding Γ ⇒ ∆ containing only cuts
on proper subformulas of A.

Proof. By transfinite induction on ht(D1).
If D1 is a one node tree, the lemma obviously holds.
Else, we have two cases depending on whether A is principal in the last rule instance

applied in D1 or not. In the latter case, the lemma holds thanks to Lemma 18 or 19 (if the
last step of D1 is by an intuitionistic non-invertible rule we proceed as in the analogous case
of Lemma 20).

TYPES 2021

7:12 Constructive Cut Elimination in Geometric Logic

When A is principal in the last rule inference in D1, we have cases according to the shape
of A. If A is an atomic formula, or ⊤, or ⊥, or B ◦ C (◦ ∈ {∧, ∨ ⊃}), or ∀xB, or

∧
Bn, the

lemma holds thanks to Lemma 20.
If A ≡ ∃xB, we transform:

... D11
Γ ⇒ ∆, ∃xB, B(t/x)

Γ ⇒ ∆, ∃xB
R∃

... D2
∃xB, Γ ⇒ ∆

Γ ⇒ ∆ Cut

into the following derivation having only cuts on proper subformulas of A (Lemma 15 can be
applied since D2 is in G3[CI]ω.G):

... D11
Γ ⇒ ∆, B(t/x), ∃xB

... D2
∃xB, Γ ⇒ ∆

Γ ⇒ ∆, B(t/x) IH

... D2
∃xB, Γ ⇒ ∆

B(t/x), Γ ⇒ ∆ Lem. 15

Γ ⇒ ∆ Cut

If A ≡
∨

n>0 Bn, we transform:

... D11
Γ ⇒ ∆,

∨
n>0 Bn, Bk

Γ ⇒ ∆,
∨

n>0 Bn
R

∨ ... D2∨
n>0 Bn, Γ ⇒ ∆

Γ ⇒ ∆ Cut

into the following derivation:

... D11
Γ ⇒ ∆, Bk,

∨
n>0 Bn,

... D2∨
n>0 Bn, Γ ⇒ ∆

Γ ⇒ ∆, Bk
IH

... D2∨
n>0 Bn, Γ ⇒ ∆
Bk, Γ ⇒ ∆ Lem. 15

Γ ⇒ ∆ Cut
◀

In order to prove Cut elimination in a constructive way we use Bar Induction as done in
[21, p. 18] for ω-arithmetic. This strategy avoids the assumption of total ordering of ordinal
numbers. Before proving the theorem we introduce Brouwer’s principle of (decidable) Bar
Induction.

▶ Definition 22 (Bar Induction). Let B and I be unary predicates (the so-called “base
predicate” and “inductive predicate”, respectively) of finite lists of natural numbers (to be
denoted by u, v, . . .). If:
1. B is decidable;
2. Every infinite sequence of natural numbers has a finite initial segment satisfying B;
3. B(u) implies I(u) for every finite list u;
4. If I(u ∗ n) holds for all n ∈ N then I(u) holds;

Then I holds for the empty list of natural numbers.

▶ Theorem 23 (Cut elimination). Cut is admissible in G3[CI]ω.

Proof. Throughout this proof, we use finite lists of natural numbers to index (partial)
branches of trees, i.e. directed paths from the root to a node, possibly a leaf. Consider a tree
such that each node has immediate successors either indexed by ω or else by some k < ω,
and such that each branch has finite length, then:

G. Fellin, S. Negri, and E. Orlandelli 7:13

The empty list {} indexes the root of the tree.
Suppose that u indexes a partial branch R of the tree and that the last node a has
immediate successor nodes indexed by k < ω, and let a natural number n be given. Let
m = n mod k: that is, m is the remainder of n after division by k. Then u ∗ n indexes
R extended with the mth immediate successor node of a. For example, in the case of a
2-premiss rule, odd numbers index the left premiss, even numbers the right premiss.

Notice that the above gives a partial surjective map, with decidable domain, from sequences
of natural numbers to branches in the given tree. Moreover, this ensures that every infinite
sequence has an initial segment that indexes a branch of the tree.5

Let D be a derivation in the calculus G3[CI]ω.G + {Cut}. The proof consists of two
parts, each building on an appropriate Bar Induction.

Part 1. We use Bar Induction to show that an uppermost instance of Cut with cut-
formula C occurring in D is admissible. We use the method defined above to index the
branches of the formation tree of the formula C – where C is the root of the tree and
atomic formulas or ⊤ or ⊥ are its leaves. Let B(u) hold if u indexes a branch whose
last element is an atom or ⊥ or ⊤; let I(u) hold if u indexes a partial branch whose last
element is a formula D such that an uppermost cut on D or on some proper subformula
thereof in G3[CI]ω.G + {Cut} is eliminable.
The following hold:

1. B(u) is decidable by simply comparing the list with the formation tree;
2. By definition of the indexing, the nth element of the sequence identifies the nth node

in a branch of the formation tree of a formula. After a finite number of steps from
the root we find an atom or ⊥ or ⊤ since all branches of the tree are finite and this
identifies an initial segment of the infinite sequence that satisfies B.

3. B(u) implies I(u) since cuts on atomic formulas, ⊤, or ⊥ are admissible;
4. I(u ∗ n) for all n implies I(u): by Lemma 21 an uppermost cut on some formula E

can be reduced to cuts on proper subformulas of E.
By Bar Induction we conclude that the uppermost cut with cut-formula C is eliminable
from G3[CI]ω.G + {Cut}.
Part 2. We show that all cuts can be eliminated from D. We consider a derivation D in
G3[CI]ω.G + {Cut} and, as above, we use lists of natural numbers to index branches of
D. Let B(u) hold if u indexes a branch ending in a leaf of D; let I(u) hold if u indexes a
partial branch whose last element has a cut-free derivation (i.e., it is G3[CI]ω.G-derivable).
All conditions of Bar Induction are satisfied by this choice of B and I:

1. B(u) is decidable;
2. Given any infinite sequence of numbers, we have B(u) for every finite initial segment u

that represents a full branch R of the tree, i.e., a root-to-leaf path; and by construction
of the representation there are such u.

3. B(u) implies I(u) since the leaves of D trivially have a cut-free derivation;
4. I(u ∗ n) for all n implies I(u): having shown in part 1 that uppermost instances of Cut

are admissible, if all the premisses of a rule instance in D have a cut-free derivation,
then also its conclusion has a cut-free derivation.

By Bar Induction we conclude that the conclusion of D has a cut-free derivation. ◀

5 Since the number of nodes of the tree is at most countable, one may also define an encoding such that
the correspondence is unique. This however would require more effort and we would lose the property
that every infinite sequence has an initial segment that indexes a branch of the tree.

TYPES 2021

7:14 Constructive Cut Elimination in Geometric Logic

▶ Corollary 24. The rule of context-free cut:

Γ ⇒ ∆, A A, Π ⇒ Σ
Π, Γ ⇒ ∆, Σ

Cutcf

is admissible in G3[CI]ω.G.

Proof. An immediate consequence of Theorem 23 since rules Cut and Cutcf are equivalent
when weakening and contraction are admissible. ◀

5 A proof of the infinitary Barr theorem

Barr’s theorem is a fundamental result in geometric logic: it guarantees that for geometric
theories classical derivability of geometric implications entails their intuitionistic derivability.
As recalled in the Introduction (Theorem 2), the result has its origin, through appropriate
completeness results, in the theory of sheaf models. The most general form of Barr’s theorem
[3, 26, 20] is higher-order and includes the axiom of choice, and stated as eliminating not
just classical reasoning but also the axiom of choice6.

If one is interested solely in derivability in geometric logic (finitary or infinitary, but
without the axiom of choice), Barr’s theorem can be regarded as identifying a Glivenko class,
i.e., a class of sequents for which classical derivability entails intuitionistic derivability and a
proof entirely internal to proof theory, without any detour through completeness with respect
to topos-theoretic models, can be obtained.

Consider now a classical theory axiomatised by coherent or geometric implications.
Extending the conversion into rules of [14] to cover the case of infinitary disjunctions
and using the results detailed above, we transform the classical geometric theory G into
a contraction- and cut-free sequent calculus G3Cω.G. We shall denote by G3Iω.G the
corresponding intuitionistic extension of G3Iω. The following holds:

▶ Theorem 25 (Barr’s theorem). If a coherent or geometric implication is derivable in
G3Cω.G, it is derivable in G3Iω.G.

Proof. Any derivation in G3Cω.G uses only rules that follow the (infinitary) geometric rule
scheme and logical rules. Observe that geometric implications contain no ⊃, nor ∀, nor

∧
in the scope of ∨, which means that no instance of the rules that violates the intuitionistic
restrictions is used, so the derivation directly gives (through the addition, where needed, of
the missing implications in steps of L⊃) a derivation in G3Iω.G of the same conclusion. ◀

A proof of Barr’s theorem for finitary geometric theories was given in [14] through a
cut-free presentation of finitary geometric theories and the choice of an appropriate sequent
calculus that, in effect, trivialises the result. By the results above, the same trivialization
works for infinitary logic: a classical proof already is an intuitionistic proof.

6 Conclusion

This paper has shown how it is possible to constructivise the cut elimination procedure given
in [16] for infinitary geometric theories and how, as a consequence, it is possible to obtain a
constructive proof of Barr’s theorem. The proof used here avoids the use of the natural sum

6 Cf. Footnote 1.

G. Fellin, S. Negri, and E. Orlandelli 7:15

of ordinals which made non-constructive most cut-elimination procedures for infinitary logics,
but it does not avoid the use of transfinite induction on ordinals since all proofs of the results
in Section 3.1, as well as the proofs of Lemmas 20 and 21, are by induction on ordinals. We
observe, however, that the alternative route of resorting to constructive ordinals has been
pursued in [20] to obtain a proof of cut elimination for infinitary logic and of Barr’s theorem.

In the future, we plan to get rid of ordinals altogether by introducing a new well-founded
inductive parameter that can supplant ordinals. Another open line of research is to extend
the purely logical proof of Barr’s theorem given here and in [16] to other infinitary Glivenko
sequent classes, as it has been done in [15] for the finitary ones.

References
1 Peter Aczel and Michael Rathjen. Notes on constructive set theory. Technical report, Institut

Mittag-Leffler (The Royal Swedish Academy of Sciences), 2001. URL: https://ncatlab.org/
nlab/files/AczelRathjenCST.pdf.

2 Ryota Akiyoshi. An ordinal-free proof of the complete cut-elimination theorem for Π1
1-CA +

BI with the ω-rule. IfCoLog J. of Logics and their Applications, 4:867–884, January 2017.
3 Michael Barr. Toposes without points. J. Pure Appl. Algebra, 5(3):265–280, 1974. doi:

10.1016/0022-4049(74)90037-1.
4 Agata Ciabattoni, George Metcalfe, and Franco Montagna. Algebraic and proof-theoretic

characterizations of truth stressers for mtl and its extensions. Fuzzy Sets and Systems,
161(3):369–389, 2010. Fuzzy Logics and Related Structures. doi:10.1016/j.fss.2009.09.001.

5 Haskell B. Curry. Foundations of Mathematical Logic. Dover Books on Mathematics Series.
Dover Publications, 1977.

6 Solomon Feferman. Lectures on Proof Theory. In Proceedings of the Summer School in Logic
(Leeds, 1967), pages 1–107. Springer, Berlin, 1968.

7 Peter Freyd. Aspects of topoi. Bull. Austral. Math. Soc., 7(1):1–76, 1972. doi:10.1017/
S0004972700044828.

8 Andrzej Indrzejczak. Eliminability of cut in hypersequent calculi for some modal logics of linear
frames. Information Processing Letters, 115(2):75–81, 2015. doi:10.1016/j.ipl.2014.07.002.

9 Peter T. Johnstone. Sketches of an Elephant: A Topos Theory Compendium. Vol. 1 & 2.
Oxford University Press, New York, 2002.

10 Hidenori Kurokawa. Hypersequent calculi for modal logics extending S4. In Yukiko Nakano,
Ken Satoh, and Daisuke Bekki, editors, New Frontiers in Artificial Intelligence, pages 51–68,
Cham, 2014. Springer International Publishing. doi:10.1007/978-3-319-10061-6_4.

11 E. G. K. Lopez-Escobar. An interpolation theorem for denumerably long formulas. Fund.
Math., 57:253–272, 1965. doi:10.4064/fm-57-3-253-272.

12 Saunders Mac Lane and Ieke Moerdijk. Sheaves in Geometry and Logic. A First Introduction
to Topos Theory. Springer-Verlag, 1994. doi:10.1007/978-1-4612-0927-0.

13 George Metcalfe, Nicola Olivetti, and Dov Gabbay. Proof Theory for Fuzzy Logics. Springer,
2008. doi:10.1007/978-1-4020-9409-5.

14 Sara Negri. Contraction-free sequent calculi for geometric theories with an application to
Barr’s theorem. Arch. Math. Logic, 42(4):389–401, 2003. doi:10.1007/s001530100124.

15 Sara Negri. Glivenko sequent classes in the light of structural proof theory. Arch. Math. Logic,
55(3-4):461–473, 2016. doi:10.1007/s00153-016-0474-y.

16 Sara Negri. Geometric rules in infinitary logic. In Ofer Arieli and Anna Zamansky, editors,
Arnon Avron on Semantics and Proof Theory of Non-Classical Logics, pages 265–293. Springer,
2021. doi:10.1007/978-3-030-71258-7_12.

17 Sara Negri and Jan von Plato. Proof Analysis. A Contribution to Hilbert’s Last Problem.
Cambridge University Press, Cambridge, 2011.

18 V.P. Orevkov. Glivenko’s sequence classes. In V.P. Orevkov, editor, Logical and logico-
mathematical calculi. Part 1, pages 131–154. Inst. Steklov, Leningrad, 1968.

TYPES 2021

https://ncatlab.org/nlab/files/AczelRathjenCST.pdf
https://ncatlab.org/nlab/files/AczelRathjenCST.pdf
https://doi.org/10.1016/0022-4049(74)90037-1
https://doi.org/10.1016/0022-4049(74)90037-1
https://doi.org/10.1016/j.fss.2009.09.001
https://doi.org/10.1017/S0004972700044828
https://doi.org/10.1017/S0004972700044828
https://doi.org/10.1016/j.ipl.2014.07.002
https://doi.org/10.1007/978-3-319-10061-6_4
https://doi.org/10.4064/fm-57-3-253-272
https://doi.org/10.1007/978-1-4612-0927-0
https://doi.org/10.1007/978-1-4020-9409-5
https://doi.org/10.1007/s001530100124
https://doi.org/10.1007/s00153-016-0474-y
https://doi.org/10.1007/978-3-030-71258-7_12

7:16 Constructive Cut Elimination in Geometric Logic

19 Michael Rathjen. A note on Bar Induction in constructive set theory. Mathematical Logic
Quarterly, 52(3):253–258, 2006. doi:10.1002/malq.200510030.

20 Michael Rathjen. Remarks on Barr’s theorem. Proofs in geometric theories. In Dieter Probst
and Peter Schuster, editors, Concepts of Proof in Mathematics, Philosophy, and Computer
Science, pages 347–374. de Gruyter, 2016. doi:10.1515/9781501502620-019.

21 Annika Siders. From Stenius’ consistency proof to Schütte’s cut elimination for ω-arithmetic.
Rev. Symb. Log., 9(1):1–22, 2016. doi:10.1017/S1755020315000337.

22 Göran Sundholm. Proof theory, a survey of the omega-rule. Videnskapsselskapets skrifter,
1. Mat.-naturv. klasse, 4, April 1983.

23 Gaisi Takeuti. Proof Theory. North-Holland, 1987 (second edition).
24 Anne S. Troelstra and Helmut Schwichtenberg. Basic Proof Theory. Cambridge University

Press, Cambridge, 2nd edition, 2000. doi:10.1017/CBO9781139168717.
25 Gavin C. Wraith. Generic Galois theory of local rings. In Michael P. Fourman et al., editor,

Applications of Sheaves, pages 739–767. Springer-Verlag, 1979. doi:10.1007/BFb0061844.
26 Gavin C. Wraith. Intuitionistic algebra: some recent developments in topos theory. In

Proceedings of the International Congress of Mathematicians (Helsinki, 1978), pages 331–337.
Acad. Sci. Fennica, 1980.

https://doi.org/10.1002/malq.200510030
https://doi.org/10.1515/9781501502620-019
https://doi.org/10.1017/S1755020315000337
https://doi.org/10.1017/CBO9781139168717
https://doi.org/10.1007/BFb0061844

A Succinct Formalization of the Completeness of
First-Order Logic
Asta Halkjær From # Ñ

Technical University of Denmark, Kongens Lyngby, Denmark

Abstract
I succinctly formalize the soundness and completeness of a small Hilbert system for first-order
logic in the proof assistant Isabelle/HOL. The proof combines and details ideas from de Bruijn,
Henkin, Herbrand, Hilbert, Hintikka, Lindenbaum, Smullyan and others in a novel way, and I use a
declarative style, custom notation and proof automation to obtain a readable formalization. The
formalized definitions of Hintikka sets and Herbrand structures allow open and closed formulas to
be treated uniformly, making free variables a non-concern. This paper collects important techniques
in mathematical logic in a way suited for both study and further work.

2012 ACM Subject Classification Theory of computation → Logic and verification

Keywords and phrases First-Order Logic, Completeness, Isabelle/HOL

Digital Object Identifier 10.4230/LIPIcs.TYPES.2021.8

Supplementary Material
Software (Formalization (stable)): https://isa-afp.org/entries/FOL_Axiomatic.html
Software (Formalization (latest)): https://devel.isa-afp.org/entries/FOL_Axiomatic.html

Acknowledgements Thanks to Frederik Krogsdal Jacobsen, Alexander Birch Jensen and Jørgen Vil-
ladsen for their useful comments. I am especially grateful to the anonymous reviewers for their
insightful remarks which have improved both the formalization and the paper.

1 Introduction

The completeness of first-order logic has been known since Gödel’s work in 1929 [19]. Proof
assistants too have a long history [18], with de Bruijn initiating the Automath project in 1967
and the first system of LCF, an Isabelle/HOL predecessor, being developed in 1972. Despite
of this, I am unaware of a formalization of completeness in a proof assistant with a focus on
explaining the core techniques. The ideas involved in such a proof deserve to be documented
and detailed in a formalization where the proof assistant guarantees precision and correctness.
This effort benefits students trying to understand mathematical logic and researchers looking
for a base for their own work. I start from a Hilbert system, partly because I am unaware of
a formalization which does the same, and partly because its simplicity allows me to focus
on the ideas of the completeness proof itself. While other deduction systems may be more
popular for first-order logic, Hilbert systems are still prominent in areas like modal logic.

This paper builds especially on work by Smullyan [40] and Henkin [21]. The Hilbert
system of choice is Smullyan’s System Q1 [40, p. 81] and the completeness proof resembles
the “more direct construction” near the end of his book [40, p. 96] (a construction that
was pointed out to him by Henkin himself). This paper formalizes ideas by de Bruijn,
Henkin, Herbrand [23], Hilbert, Hintikka, Lindenbaum and Smullyan in an attempt to give a
“strikingly direct” [40, p. 96] completeness proof formalized in a modern proof assistant.

Smullyan includes a generalization rule for the universal quantifier that works under an
assumption (i.e. to the right of an implication) rather than on a standalone formula. This
extra generality makes it very suited for my purposes, where I always work under a number

© Asta Halkjær From;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Types for Proofs and Programs (TYPES 2021).
Editors: Henning Basold, Jesper Cockx, and Silvia Ghilezan; Article No. 8; pp. 8:1–8:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ahfrom@dtu.dk
https://people.compute.dtu.dk/ahfrom
https://orcid.org/0000-0002-3601-0804
https://doi.org/10.4230/LIPIcs.TYPES.2021.8
https://isa-afp.org/entries/FOL_Axiomatic.html
https://devel.isa-afp.org/entries/FOL_Axiomatic.html
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 A Succinct Formalization of the Completeness of First-Order Logic

of assumptions. Smullyan does not consider function symbols as part of his syntax, but his
System Q1 is easily extended to cover these: simply allow for any term in the instantiation
axiom. Barwise [1] makes the same modification.

I use the proof assistant Isabelle/HOL [34]. Isabelle is a generic proof assistant and
Isabelle/HOL is the version based on higher-order logic. This paper includes a number of
Isabelle listings, all taken from the formalization after it has been exported to LATEX. These
listings appear either in bulleted lists or prefixed by an Isabelle command in bold and should
therefore be clearly distinguishable from the surrounding text. Any such listing has been
checked and verified by the proof assistant. I sometimes use these listings to explain proofs.
In these cases, I do not include the commands that justify each step of reasoning, but only the
intermediate statements themselves. For clarity, I have omitted many types from the main
text. Some of these can be found in Table 1 on page 6. The full formalization (under 700
lines) is available in the Archive of Formal Proofs [17], which referees Isabelle formalizations
and, when accepted, keeps them up to date with the latest version of the proof assistant.

Contributions

The main contribution of this paper is a succinct formalization of the definitions and proofs
that make up the synthetic style, a widely applicable method of proving completeness.

As a smaller contribution, this is, to my knowledge, the first formalization of completeness
for classical first-order logic that starts from a Hilbert system. However, several formalizations
that start from other proof systems are available (cf. Section 2) and the relations between
various proof systems have also been formalized, see for instance recent work by Laurent [27]
in Coq on translating between Hilbert systems and natural deduction for first-order logic.

On the more technical side, I formalize a Herbrand universe which, like in Herbelin
and Ilik’s [22] unformalized proof, consists of all terms, not just those without variables.
Combined with a Hintikka set in the style of Forster et al. [11] in Coq, based on the absence
of formulas rather than the presence of their negations, but which, unlike theirs, contains
open formulas as well as closed, I naturally formalize completeness for all valid formulas.

Isabelle/HOL Overview

This section seeks to give a quick overview of the Isabelle/HOL features used later. Nipkow
and Klein [33, Part 1] give a more complete introduction.

The higher-order logic of Isabelle/HOL can be reasonably understood as functional
programming + logic [33]. The datatype command defines a new type from a series of
constructors, where each can be given custom syntax. The natural numbers are built from
the nullary constructor 0 and unary Suc. The constructors True and False belong to the
built-in type bool. The usual connectives and quantifiers from first-order logic (−→, ∀ ,
etc.) are available for bool, as well as if-then-else expressions. We can write total functions
over datatypes using primrec for primitive recursive functions and fun for more advanced
definitions. The type constructor A ⇒ B denotes a function from A to B. Instead of concrete
types, we can also use type variables ′a, ′b, etc. These stand in the place of other types. The
term UNIV stands for the set of all values of a given type.

Another important built-in type is ′a list, the type of lists whose elements are of type ′a.
These are built from [], the empty list, and #, an infix constructor that adjoins an element
to an existing list. The notation [a, b, c] is shorthand for these primitive operations. The
function set turns a list into a set of its elements. The higher-order function map applies a
given function to every element of a list.

A. H. From 8:3

Function application resembles functional programming languages in that f(x, y) is
written as f x y. The function f(x := y) maps x to y and every other element x′ to f x′.
Anonymous functions can be built using λ-expressions, e.g. λn. n + n for f(n) = n + n.

In proofs, the meta-logical implication =⇒ separates assumptions from conclusions. These
can also be distinguished using the assumes and shows keywords, using and as a separator
when there are multiple assumptions or conclusions. The keyword have states an intermediate
fact in a proof and the keywords then, moreover and ultimately bind these statements
together in different ways. The keyword let introduces a local abbreviation and obtain
eliminates an existential statement; for quantifies a statement universally.

The command definition introduces a new definition that is hidden behind a name
and must be explicitly unfolded, while an abbreviation is unfolded by the parser. The
inductive command also makes use of the meta-logical implication. This command allows
us to specify the least predicate closed under some given rules. For instance a predicate that
denotes whether a formula can be derived, specified by axioms and inference rules. A locale
in Isabelle, as used here, names an association between terms and assumptions about them.
We could, for instance, specify a group as a set and a binary operation coupled with the
group axioms. To instantiate the locale we must give concrete terms and show that they
satisfy the assumptions. When assuming a locale, we assume the conditions hold for the
terms.

The axiom of choice is available as Hilbert’s choice operator: the expression SOME x. P x
returns some element x that satisfies the predicate P, when such an element exists.

Overview of Paper

I discuss related work next (Section 2). In Section 3, I formalize the syntax of first-order
logic in Isabelle/HOL, including the idea of de Bruijn indices. This idea is developed
further in Section 4 on the semantics of terms and formulas. Section 5 formalizes the proof
system and its soundness, including all the operations necessary to do so. This includes the
instantiation of universal quantifiers, propositional tautologies and a range of lemmas. I
prove the completeness in Section 6 where I introduce the notion of a maximal consistent set,
the Lindenbaum construction and the model existence theorem for Hintikka sets. I discuss
challenges and choices in Section 7 and conclude with thoughts on future work in Section 8.

2 Related Work

The completeness of first-order logic itself has a long history, starting with Gödel’s proof [19]
and Henkin’s later simplification [21]. Smullyan [40], Barwise [1] and Fitting [10] all include
completeness proofs in their texts. Smullyan’s main completeness proof is an “analytic” proof
for a tableau system. He devotes only two pages to the “synthetic” (also called Henkin-style)
completeness proof of System Q1 [40, pp. 96–97] that I formalize a version of here. Barwise [1]
considers System Q1 extended with axioms for equality and gives a quite different proof
that relies on a reduction to propositional logic (and the completeness of propositional logic).
Fitting [10] proves completeness for tableaux and resolution similarly to Smullyan and leaves
the completeness of his Hilbert system as an exercise for the reader. This paper spells out
the synthetic completeness proof for first-order logic, starting from a Hilbert system rather
than from tableaux, resolution or similar.

The synthetic style has been successfully applied in several formalizations lately. From [13]
used it to formalize the completeness of a Hilbert system for propositional logic in Isa-
belle/HOL. Berghofer [3] formalized natural deduction for first-order logic in Isabelle/HOL

TYPES 2021

8:4 A Succinct Formalization of the Completeness of First-Order Logic

following the work by Fitting [10]. My formalization of the syntax and semantics of first-order
logic and the Lindenbaum construction is inspired by his work. My formalization of Hintikka
sets and proof of the model existence theorem, however, differ from his and is inspired by
Herbelin and Ilik [22] and Forster et al. [11]. In particular, I prove completeness for open and
closed formulas together, where Berghofer’s completeness proof only covers closed formulas
and is extended to cover open formulas afterwards. From, Schlichtkrull and Villadsen [14, 16]
built on Berghofer’s work to formalize the completeness of both a sequent calculus and
tableau system for first-order logic. They also described Berghofer’s formalization in detail.
Bentzen [2] formalized the completeness of a Hilbert system for the modal logic S5 in Lean.
Jørgensen et al. [26] gave a synthetic completeness proof for a tableau system for basic hybrid
logic, which From [12, 15] formalized in Isabelle/HOL.

I am far from the first to formalize the completeness of first-order logic, but my formaliz-
ation is the only one that proves completeness for a Hilbert system for classical first-order
logic. Shankar [39] formalized a tautology checker for first-order logic in the Boyer-Moore
theorem prover, but notably did not formalize first-order completeness. Harrison [20] also
formalized first-order logic in higher-order logic (but HOL rather than Isabelle/HOL). He
did not formalize a proof system but rather model-theoretic results like compactness and
the Löwenheim-Skolem theorem. Margetson and Ridge [29] formalized the completeness
of first-order logic without functions in Isabelle/HOL via a sequent calculus. Braselmann
and Koepke [7] did the same in their Mizar formalization. Schlichtkrull [37, 38] formalized
the completeness of first-order resolution in Isabelle/HOL. Michaelis and Nipkow [30, 31]
did not formalize first-order logic, but did formalize a Hilbert system for propositional
logic in Isabelle/HOL. They proved completeness via translation from a sequent calculus
with an analytic completeness proof. Blanchette, Popescu and Traytel [5, 6] formalized
analytic completeness of abstract sequent calculus and tableau systems for first-order logic in
Isabelle/HOL. Blanchette [4] outlines formalizations of logical meta-theory in Isabelle/HOL.

The completeness proof presented here relies on Lindenbaum’s lemma: that any consistent
set of formulas has a maximal consistent extension. The proof is non-constructive since, for
the given semantics, Lindenbaum’s lemma is equivalent to Weak König’s Lemma [22, 24].
There are, however, a number of formalizations of completeness in other meta-theories (and
necessarily using other semantics). Veldman [43] gave an intuitionistic completeness theorem
for intuitionistic predicate logic in 1976. Persson [35] formalized the completeness of sequent
calculus and natural deduction for intuitionistic first-order logic in the ALF proof assistant,
but only defined a Hilbert system without further proof. His models are based on formal
topology. Constable and Bickford [8] constructively proved completeness for intuitionistic
first-order logic in the proof assistant Nuprl. Ilik [25] formalized multiple constructive proofs
of first-order completeness in the proof assistant Coq using novel variants of Kripke models
for full classical and intuitionistic first-order logic. Forster et al. [11] recently analyzed
the computational content of completeness theorems for various semantics and for natural
deduction and sequent calculus systems. They mechanized their results in constructive type
theory using Coq.

3 Syntax

The following syntax will be our starting point.
A term t is either a variable x or a function symbol f applied to a number of other terms:

s, t ::= x | f(t1, . . . , tn)

A function symbol applied to zero terms is called a constant and is denoted by a.

A. H. From 8:5

A formula p is either falsity (denoted ⊥), a predicate symbol P applied to a list of terms,
an implication (−→) between two formulas or a universally quantified formula:

p, q ::= ⊥ | P (t1, . . . , tn) | p −→ q | ∀x. p(x)

I apply a number of techniques to make this syntax suitable for formalization. First,
I represent the variables with de Bruijn indices [9]. Instead of connecting quantifiers and
variables by using the same variable symbol x, each variable is a natural number n that is
understood to be connected to the nth quantifier, starting from the innermost. For example,
the formula ∀x. ∀y. P (x, y) is represented as ∀ ∀ P (1, 0). This makes it simpler to define
capture-avoiding instantiation, which we need for the proof system.

Second, to distinguish variables, function symbols and predicate symbols in the proof as-
sistant, I prefix each kind by a distinct symbol: † for function symbols, ‡ for predicate symbols
and # for variables. The formula ∀ P (f(0)) is then written (for now) as ∀ ‡P (†f(#0)).

Finally, lists of argument terms are represented as proper Isabelle/HOL lists, so the
term f(a) becomes †f [a].

The (parameterized) datatype ′f tm of terms with function symbols of type ′f becomes:

datatype (params-tm: ′f) tm
= Var nat (#)
| Fun ′f (′f tm list) (†)

The annotation params-tm generates a function of that name from terms to ′f sets: it
collects all values of type ′f in a given term. I discuss its properties in Section 5.1.

The following abbreviates a constant, as I use these frequently:

abbreviation Const (⋆) where ⋆a ≡ †a []

The datatype (′f, ′p) fm of formulas with functions symbols of type ′f and predicate
symbols of type ′p becomes:

datatype (params-fm: ′f , ′p) fm
= Falsity (⊥)
| Pre ′p (′f tm list) (‡)
| Imp ((′f , ′p) fm) ((′f , ′p) fm) (infixr −→ 55)
| Uni ((′f , ′p) fm) (∀)

The custom notation for each syntactic case is enclosed in parentheses (infixr specifies
right associativity and 55 specifies parsing priority). I use bold symbols to avoid conflicts
with existing syntax. The notation params-fm, similarly to for terms, generates a function
which produces a set of all function symbols in a given formula.

The Isabelle command term checks the type of an expression. Given the above definitions,
we can try our syntax, here with strings for the types of function and predicate symbols:

term ∀ (⊥ −→ ‡ ′′P ′′ [† ′′f ′′ [#0]])

In regular notation this would be ∀x. ⊥ −→ P (f(x)).
The following abbreviation for negation will ease notation: ¬ p ≡ p −→ ⊥ .
Similar notations can easily be introduced for conjunction, disjunction, the existential

quantifier etc. since in classical logic, these can be defined using the given syntax.
It should be noted that since arities are implicit in the datatypes above, we unfortunately

cannot represent finite signatures. The awarded benefit is that we do not need a predicate to
distinguish between correct and incorrect syntax.

TYPES 2021

8:6 A Succinct Formalization of the Completeness of First-Order Logic

Table 1 Type signatures for selected functions.

semantics-tm (nat ⇒ ′a) ⇒ (′f ⇒ ′a list ⇒ ′a) ⇒ ′f tm ⇒ ′a
semantics-fm (nat ⇒ ′a) ⇒ (′f ⇒ ′a list ⇒ ′a) ⇒ (′p ⇒ ′a list ⇒ bool) ⇒ (′f, ′p) fm ⇒ bool
shift (nat ⇒ ′a) ⇒ nat ⇒ ′a ⇒ nat ⇒ ′a
boolean (′p ⇒ ′f tm list ⇒ bool) ⇒ ((′f, ′p) fm ⇒ bool) ⇒ (′f, ′p) fm ⇒ bool
Axiomatic (′f, ′p) fm ⇒ bool
imply (′f, ′p) fm list ⇒ (′f, ′p) fm ⇒ (′f, ′p) fm
consistent (′f, ′p) fm set ⇒ bool
extend (′f, ′p) fm set ⇒ (nat ⇒ (′f, ′p) fm) ⇒ nat ⇒ (′f, ′p) fm set
witness ′f set ⇒ (′f, ′p) fm ⇒ (′f, ′p) fm set
hmodel (′f, ′p) fm set ⇒ (′f, ′p) fm ⇒ bool

4 Semantics

The semantics of first-order logic has two parts: one for terms and one for formulas. I
formalize both as functions.

4.1 Terms
A term evaluates to an element of the domain. It does so under an environment (a mapping
from variables to the domain) and a function denotation (a mapping from function symbols
to functions on the domain).

In Isabelle, I represent the domain as a type (variable) and the environment as a
function E from the natural numbers (the de Bruijn indices) to that type. Similarly, the
function denotation becomes the function F from function symbols to functions on the
domain. This results in the following definition:

primrec semantics-tm ((|-, -|)) where
(|E , F |) (#n) = E n
| (|E , F |) (†f ts) = F f (map (|E , F |) ts)

The semantics of a variable is given by the environment and in the case of a function
application †f ts, we must first evaluate all the argument terms ts (using map) and then
apply the function denoted by f.

Here (|E, F |) denotes the function from terms to the domain, given by the environment E

and function denotation F . As seen in the clause above for functions, this notation lets me
conveniently “bundle” a given E and F so they can be applied to any term without the need
for anonymous functions. I use a similar notation [[E, F, G]] for the semantics of formulas.

4.2 Formulas
I use a deep embedding where formulas evaluate to a truth value under an environment E, a
function denotation F and a predicate denotation, dubbed G, that maps predicate symbols
to predicates on the domain. I formalize it as follows:

primrec semantics-fm ([[-, -, -]]) where
[[-, -, -]] ⊥ = False
| [[E , F , G]] (‡P ts) = G P (map (|E , F |) ts)
| [[E , F , G]] (p −→ q) = ([[E , F , G]] p −→ [[E , F , G]] q)
| [[E , F , G]] (∀ p) = (∀ x. [[E⟨0 :x⟩, F , G]] p)

A. H. From 8:7

The formula ⊥ is always False and the semantics of a predicate is similar to that of a
function application. For implication each subformula is evaluated to a truth value and the
connective is interpreted using the built-in implication. Similarly, I use the built-in universal
quantifier to interpret the object-level quantifier. The notation E⟨0:x⟩ is explained next.

4.3 Shifting
The expression E⟨n:x⟩ modifies the environment E such that variable n is assigned x, any
smaller variable m is assigned E m and any larger variable m is assigned E (m − 1). This
shift operation has the following definition:

definition shift (-⟨-:-⟩) where
E⟨n:x⟩ m ≡ if m < n then E m else if m = n then x else E (m−1)

To understand the shifting operation on larger variables, consider the following:

[[E, F, G]] (∀ ∀ ‡P [#0, #1])

By the semantics, this reduces to:

∀x. [[E⟨0:x⟩, F, G]] (∀ ‡P [#0, #1])

where the outer quantifier comes from the meta-logic. This again reduces to:

∀x. ∀y. [[E⟨0:x⟩⟨0:y⟩, F, G]] (‡P [#0, #1])

Thus, the terms are evaluated by (|E⟨0:x⟩⟨0:y⟩, F |). This is clearly correct for variable #0
since E⟨0:x⟩⟨0:y⟩ 0 = y as desired. We also want that #1 corresponds to the outer
meta-logic quantifier, namely that E⟨0:x⟩⟨0:y⟩ 1 = x. This is exactly what happens since
E⟨0:x⟩⟨0:y⟩ 1 = E⟨0:x⟩ (1 − 1) = x. Thus, the semantics reduces to the expected:

∀x. ∀y. G P [y, x]

Notice that any free variable in a formula (those with no corresponding quantifier) are not
affected by this shifting when it is coupled with the removal of an outer quantifier: they are
mapped to whatever E originally assigned them to. In this sense they behave like constants.

The following four lemmas will be used implicitly.

▶ Lemma 1 (Shifting). The first three results characterize the function and the last one
commutes a shift of variable 0 with another shift.

n = m =⇒ E⟨n:x⟩ m = x
m < n =⇒ E⟨n:x⟩ m = E m
n < m =⇒ E⟨n:x⟩ m = E (m−1)
(E⟨n:y⟩⟨0 :x⟩) = (E⟨0 :x⟩⟨n+1 :y⟩)

Proof. Immediate from the definition. ◀

5 Proof System

To define the proof system I must first define a number of operations needed to state the
side conditions and transformations of formulas.

TYPES 2021

8:8 A Succinct Formalization of the Completeness of First-Order Logic

5.1 Parameters
The proof rule for the universal quantifier will generalize a fresh constant to a quantified
variable. To perform this freshness check, I use the functions params-tm and params-fm
that Isabelle generates automatically from the datatype declarations above. These collect
all function symbols in terms and formulas, respectively, and would also be easy to define
recursively. Similarly to Smullyan [40], I abbreviate function symbol to parameter.

The following definition generalizes params-fm to a set of formulas:

abbreviation params S ≡
⋃

p ∈ S . params-fm p

I need a few lemmas about parameters for later.

▶ Lemma 2 (Finite parameters). Terms and formulas contain only finitely many parameters:
finite (params-tm t)
finite (params-fm p)

Proof. By simple inductions. ◀

▶ Lemma 3 (Unused parameters). The denotation of an unused parameter does not affect
the semantics of either terms or formulas:

f /∈ params-tm t =⇒ (|E , F(f := x)|) t = (|E , F |) t
f /∈ params-fm p =⇒ [[E , F(f := x), G]] p = [[E , F , G]] p

Proof. By simple inductions. ◀

5.2 Instantiation
I will need to instantiate a universally quantified formula with a concrete term: to go from
∀ p to “p with t inserted for variable 0 and free variables in p adjusted.” I will denote this
formula by ⟨t/0⟩p. Note that when instantiating for n in ∀ p, we need to then instantiate for
n + 1 in p, since we enter the scope of another quantifier (the formula ∀x. ∀y. P (x, y) becomes
∀∀P (1, 0) with de Bruijn indices, so to instantiate for x we must actually replace variable 1).

There are two additional considerations. Consider first why we need to adjust the
free variables in p. Say that we are instantiating ∀ P [#0, #3] with the term t. When
evaluating ∀ P [#0, #3] under an environment E, the free variable 3 will be interpreted
as (E⟨0:x⟩) 3 = E 2. We expect that the interpretation of free variables under the same
environment does not change when we instantiate a quantifier. However, when evaluating
the naively instantiated formula P [t, #3], the free variable 3 will be evaluated as E 3, which
might be a different value than E 2. Therefore, we should decrement any free variables we
encounter during the instantiation. The result here should then be P [t, #2].

Second, it is important that any free variable in t remains free in ⟨t/0⟩p (i.e. that the
instantiation avoids capturing a free variable). With named variables we would ensure this
by renaming any bound variables in p that would conflict. By using de Bruijn indices we are
free from having to come up with fresh names for such an operation. Instead, we increment
every variable in t by one whenever we pass under a quantifier. Thus ⟨†f [#0]/0⟩(∀ (‡P)) =
∀ (⟨†f [#1]/1⟩(‡P)).

I call this last operation lifting the term:

primrec lift-tm (↑) where
↑(#n) = #(n+1)
| ↑(†f ts) = †f (map ↑ ts)

A. H. From 8:9

While this terminology is common (cf. Nipkow [32], Berghofer [3]) it unfortunately
conflicts with the terminology in explicit substitutions (cf. Lescanne [28]) where lifting and
shifting have roughly opposite meanings compared to this paper.

With the above considerations in mind, we can now define instantiation on terms:
primrec inst-tm (⟨⟨- ′/-⟩⟩) where
⟨⟨s/m⟩⟩(#n) = (if n < m then #n else if n = m then s else #(n−1))
| ⟨⟨s/m⟩⟩(†f ts) = †f (map ⟨⟨s/m⟩⟩ ts)

The notation ⟨⟨s/m⟩⟩ “bundles” an instantiation of term s for variable m, ready to be
applied to a term. For formulas, the only interesting case is for the universal quantifier, where
we lift the term we are instantiating with and increment the variable we are instantiating for:

primrec inst-fm (⟨- ′/-⟩) where
⟨-/-⟩⊥ = ⊥
| ⟨s/m⟩(‡P ts) = ‡P (map ⟨⟨s/m⟩⟩ ts)
| ⟨s/m⟩(p −→ q) = ⟨s/m⟩p −→ ⟨s/m⟩q
| ⟨s/m⟩(∀ p) = ∀ (⟨↑s/m+1 ⟩p)

Despite the complexity of instantiation when using de Bruijn indices, it can be captured
in the three simple definitions above that involve little more than simple arithmetic.

A more standard name for ⟨t/n⟩p is substitution, but I prefer instantiation since it
potentially does more than simple syntactic substitution of term t for variable n: namely
lifts t and decrements variables in p.

The only results about instantiation that I need for the formalization are the following.

▶ Lemma 4 (Lifting and shifting). Lifting cancels out with shifting the environment at 0.
(|E⟨0 :x⟩, F |) (↑t) = (|E , F |) t

Proof. By structural induction. ◀

▶ Lemma 5 (Instantiation and shifting). Instantiating with a term at m is the same as shifting
the environment at m with the value denoted by that term.

(|E , F |) (⟨⟨s/m⟩⟩t) = (|E⟨m:(|E , F |) s⟩, F |) t
[[E , F , G]] (⟨t/m⟩p) = [[E⟨m:(|E , F |) t⟩, F , G]] p

Proof. By structural induction, using Lemma 4. ◀

5.3 Size
To prove the model existence theorem, I will need to do induction on formulas. However,
structural induction does not work, since in the case for ∀ p, the induction hypothesis must
be applied to the instance ⟨t/0⟩p, for some term t, rather than simply to p. This calls for
induction on the size of the formula. Unfortunately, the pre-defined size measure for our
datatype takes the size of terms into account and is therefore not invariant under instantiation.
The following definition suffices:

primrec size-fm where
size-fm ⊥ = 1
| size-fm (‡- -) = 1
| size-fm (p −→ q) = 1 + size-fm p + size-fm q
| size-fm (∀ p) = 1 + size-fm p

▶ Lemma 6 (Size). Instantiation preserves size.
size-fm (⟨t/m⟩p) = size-fm p

Proof. By structural induction. ◀

TYPES 2021

8:10 A Succinct Formalization of the Completeness of First-Order Logic

5.4 Propositional Semantics
Instead of picking a suitable set of propositional axioms, Smullyan [40], Barwise [1] and
others simply include all tautologies as one of their axioms. I follow their lead and need
a suitable way to express which formulas are tautologies. Smullyan [40, p. 51] extends his
notion of a Boolean valuation from propositional logic to the syntax of first-order logic by
treating quantified formulas as another sort of propositional symbols. A tautology is then a
formula that is true under all Boolean valuations.

The following definition uses the same principle, where G is a predicate denotation as
before and A is a special “universally quantified formula denotation.”

primrec boolean where
boolean - - ⊥ = False
| boolean G - (‡P ts) = G P ts
| boolean G A (p −→ q) = (boolean G A p −→ boolean G A q)
| boolean - A (∀ p) = A (∀ p)

The hyphens stand for ignored arguments. Compare this semantics to the first-order one:
it is indeed a Boolean valuation [40] of first-order logic. We can now take Smullyan’s notion
of tautology as definition:

abbreviation tautology p ≡ ∀G A. boolean G A p

Smullyan gives no details on his extension of Boolean valuations to first-order logic. The
way I set it up, with a separate denotation for the quantified formulas, it can be directly
related to the first-order semantics.

▶ Lemma 7 (Boolean semantics). The Boolean and first-order semantics coincide when G
matches the first-order predicate semantics and A is the first-order semantics itself.

boolean (λa. G a ◦ map (|E , F |)) [[E , F , G]] = [[E , F , G]]

Proof. By structural induction. ◀

▶ Lemma 8 (Tautologies). All tautologies are valid.
tautology p =⇒ [[E , F , G]] p

Proof. Since a tautology holds for any choice of G and A it holds in particular for those
that coincide with the first-order semantics (cf. Lemma 7). ◀

For reassurance, Isabelle easily verifies that not all first-order validities are propositional
tautologies (e.g. (∀x. P (x)) −→ P (a) is only the former):

proposition ∃ p. (∀E F G. [[E , F , G]] p) ∧ ¬ tautology p

5.5 The Inductively Defined Calculus
Finally, we are ready to define the calculus itself. I define it as an inductive predicate ⊢ that
holds exactly when a formula can be derived from the given axioms and rules. The previous
work has made the definition simple:

inductive Axiomatic (⊢ - [50] 50) where
TA: tautology p =⇒ ⊢ p
| IA: ⊢ ∀ p −→ ⟨t/0 ⟩p
| MP: ⊢ p −→ q =⇒ ⊢ p =⇒ ⊢ q
| GR: ⊢ q −→ ⟨⋆a/0 ⟩p =⇒ a /∈ params {p, q} =⇒ ⊢ q −→ ∀ p

A. H. From 8:11

The Tautology Axiom (TA) derives any tautology. The Instantiation Axiom (IA) states
that a quantified formula implies its instantiation with any term. The Modus Ponens (MP)
rule is stated as usual and lifts an implication between formulas to an implication between
derivations. Finally, the Generalization Rule (GR) works under assumptions q and generalizes
from an instance to a quantified formula, given that the witness (the constant) is fresh.

▶ Theorem 9 (Soundness). Any derivable formula is valid:
⊢ p =⇒ [[E , F , G]] p

Proof. By induction over the inductive definition of the axiomatic system for arbitrary
function denotation F .

All cases except for GR can be proven automatically, with the case for TA relying on
Lemma 8 about tautologies. In the GR case I apply the induction hypothesis not just once
at plain F but at F (a := x) for every element x of the domain:

have [[E , F(a := x), G]] (q −→ ⟨⋆a/0 ⟩p) for x

This is enough help for Isabelle to prove the case. ◀

▶ Corollary 10. Falsity cannot be derived:
¬ (⊢ ⊥)

5.5.1 Notation

For the proof of completeness I need to express that a formula can be derived from a set of
assumptions. Instead of building this notion into the definition of the proof system, I am
going to simulate it using chains of implications. The expression [p1, p2, . . . , pn]⇝ q expands
to p1 −→ p2 −→ . . . −→ pn −→ q. It is defined by recursion on the list of assumptions:

primrec imply (infixr ⇝ 56) where
([] ⇝ q) = q
| (p # ps ⇝ q) = (p −→ ps ⇝ q)

I then write ps ⊢ q to abbreviate ⊢ ps ⇝ q:
When I talk about assumptions in a derivation I will always mean a finite list of formulas.

5.6 Derived Formulas

Due to my semantic characterization of the Tautology Axiom, the automation in Isabelle
can easily prove that various propositional formulas (schemas) can be derived.

▶ Lemma 11 (Derivations). The S and K combinators, double negation elimination and
contraposition in both directions can all be derived:
⊢ (p −→ q −→ r) −→ (p −→ q) −→ p −→ r
⊢ q −→ p −→ q
⊢ ¬ ¬ p −→ p
⊢ (p −→ q) −→ ¬ q −→ ¬ p
⊢ (¬ q −→ ¬ p) −→ p −→ q

Proof. By the Tautology Axiom. ◀

TYPES 2021

8:12 A Succinct Formalization of the Completeness of First-Order Logic

5.6.1 Generalization Rule
My use of chains of implications is a disadvantage to the GR rule since it works on the
consequent but implication is right associative. Consider the following: we know that
ps ⊢ ⟨⋆a/0⟩p, for fresh a and want to use GR to derive ps ⊢ ∀ p. We can only do so if
ps consists of exactly one formula q, as ps ⊢ p is short for ⊢ ps ⇝ q. To circumvent this
restriction, I derive the following variant of the rule.

▶ Lemma 12 (GR’ rule). The following rule is derivable:

GR ′: ⊢ ¬ ⟨⋆a/0 ⟩p −→ q =⇒ a /∈ params {p, q} =⇒ ⊢ ¬ (∀ p) −→ q

Proof. Follows from the GR rule, modus ponens and the derivations in Lemma 11. ◀

Since this rule works on the left-hand side of the implication, the right-hand side can,
without issues, be an arbitrarily long chain of implications. Smullyan [40, p. 83] himself uses
this version of the rule in his System Q1’ (but for notational reasons).

An alternative is to start from the existential quantifier, ∃, as primitive, rather than ∀,
as the generalization rule for ∃ works on the left-hand side of the implication [40]. However,
it is less immediately clear why this rule for ∃ can be called a generalization rule.

5.6.2 Working with Assumptions
The following is an assortment of useful lemmas for working with assumptions.

▶ Lemma 13 (Assumptions). The following are derivable: modus ponens under assumptions,
derivation of any assumption, the deduction theorem in both directions, a cut rule, classical
reasoning and finally a structural rule encompassing weakening, contraction and exchange:

ps ⊢ p −→ q =⇒ ps ⊢ p =⇒ ps ⊢ q
p ∈ set ps =⇒ ps ⊢ p
ps ⊢ p −→ q =⇒ p # ps ⊢ q
p # ps ⊢ q =⇒ ps ⊢ p −→ q
p # ps ⊢ r =⇒ q # ps ⊢ p =⇒ q # ps ⊢ r
(¬ p) # ps ⊢ ⊥ =⇒ ps ⊢ p
ps ⊢ q =⇒ set ps ⊆ set ps ′ =⇒ ps ′ ⊢ q

Proof. By a mix of induction over the list of assumptions and propositional reasoning. ◀

6 Completeness

We are now ready to delve into the completeness proof itself. The plan is as follows. If we
cannot derive a formula p under any assumptions from X then we cannot derive falsity from
¬ p and any assumptions from X either. Sets like {¬ p} ∪ X are consistent with respect
to the proof system, as we cannot derive a contradiction from them. I formalize them in
Section 6.1. These sets are defined based on the proof system but we will use them to build
a model that contradicts the validity of p under X. For this purpose we must prove that
two important types of formulas preserve consistency: fresh witnesses of existential formulas
(Henkin witnesses) and instances of universal formulas.

Lindenbaum (according to Tarski [41]) showed how to extend a consistent set into a
maximal consistent set (MCS). Any proper superset of a maximal consistent set is inconsistent.
In particular this means that for any formula p, an MCS contains exactly p or ¬ p. Henkin [21],

A. H. From 8:13

showed the utility of adding the Henkin witnesses for existential formulas during Lindenbaum’s
construction. I formalize the construction and its consistency in Section 6.2 and prove that
the result is maximal in Section 6.3.

The addition of Henkin witnesses ensures that our MCSs are saturated. Section 6.4
outlines the benefits of ensuring this by construction.

Instead of building a model directly from a maximal consistent saturated set, I introduce
a standard layer of abstraction. In Section 6.5, I formalize the notion of a Hintikka set [40]
using three simple conditions and prove a model existence theorem: given a Hintikka set H,
I build a model from a Herbrand structure [10, 22] that satisfies exactly the formulas in H . I
then prove that maximal consistent saturated sets are Hintikka sets.

In Section 6.6, I put all the pieces together. The model existence theorem gives us a
model for ¬ p and all of X. Therefore, if p is in fact valid under assumptions from X, then
it must be derivable or we have a contradiction.

6.1 Consistent Sets
The definition of consistency is straightforward. The set of formulas S is consistent when
there is no list of assumptions S’, coming from S, that can be used to derive falsity:

definition consistent S ≡ ∄S ′. set S ′ ⊆ S ∧ S ′ ⊢ ⊥

The following lemma will be useful.

▶ Lemma 14 (Inconsistent addition). Assume that S is consistent on its own but becomes in-
consistent with the addition of a formula p. Then there exists a concrete list of assumptions S′,
coming from S, such that p # S ′ ⊢ ⊥:

assumes consistent S and ¬ consistent ({p} ∪ S)
obtains S ′ where set S ′ ⊆ S and p # S ′ ⊢ ⊥

Proof. It follows from consistency and the structural lemma for assumptions (Lemma 13). ◀

It is important to prove that two types of formulas preserve consistency. The first type is
fresh witnesses for existential formulas.

▶ Lemma 15 (Consistency of fresh witnesses). If a consistent set contains an existential
formula ¬ (∀ p) then adding a witness ¬ ⟨⋆a/0⟩p, for a fresh a, preserves consistency:

assumes consistent S and ¬ (∀ p) ∈ S and a /∈ params S
shows consistent ({¬ ⟨⋆a/0 ⟩p} ∪ S)

Proof. We need to show that there is no finite subset from which we can derive falsity, so
assume that indeed there is one. From Lemma 14 we can name the problematic assumptions:

then obtain S ′ where set S ′ ⊆ S and (¬ ⟨⋆a/0 ⟩p) # S ′ ⊢ ⊥

After showing that the side conditions are fulfilled, we can apply the GR’ rule:

then have ¬ (∀ p) # S ′ ⊢ ⊥

But every assumption is now in S, which we assumed to be consistent, so we have reached
the desired contradiction and proved the lemma. ◀

We shall also need that instantiating a universally quantified formula preserves consistency.

TYPES 2021

8:14 A Succinct Formalization of the Completeness of First-Order Logic

▶ Lemma 16 (Consistency of instantiation). If a consistent set contains a universal formula ∀ p

then adding an instance ⟨t/0⟩p, for any term t, preserves consistency:

assumes consistent S and ∀ p ∈ S
shows consistent ({⟨t/0 ⟩p} ∪ S)

Proof. The proof proceeds as before and we start by naming the problematic assumptions
from an assumed inconsistency (Lemma 14):

then obtain S ′ where set S ′ ⊆ S and ⟨t/0 ⟩p # S ′ ⊢ ⊥

This time we make use of the Instantiation Axiom, instantiated to p and t:

moreover have ⊢ ∀ p −→ ⟨t/0 ⟩p

With the deduction theorem, the cut rule and the structural lemma (Lemma 13), we can
apply this implication to weaken the derivation of falsity:

ultimately have ∀ p # S ′ ⊢ ⊥

But again, these assumptions are all in S, which we assumed to be consistent, so this is a
contradiction and adding the instance must also be consistent. ◀

6.2 Lindenbaum Extension
We turn now to a central construction. Note first that if the sets of variable, function and
predicate symbols are countable, so too are the sets of terms and formulas (formalized in
Section 6.6). Thus, we can enumerate the formulas as p0, p1, . . . and so on. Starting from a
consistent set S0, which leaves infinitely many parameters unused, we then build a sequence
of consistent sets in the following way. Given Sn, construct Sn+1 as:

Sn+1 =
{

w(∗, pn) ∪ {pn} ∪ Sn if {pn} ∪ Sn is consistent
Sn otherwise

where ∗ is the set of parameters in {pn} ∪ Sn.
The function w returns a singleton set with a fresh witness when pn is an existential

formula and the empty set otherwise. Usually, the availability of such fresh witnesses is
guaranteed by extending the set of function symbols. I assume instead that the set of function
symbols is infinite from the start and that S0 leaves infinitely many parameters unused. I
pass the parameters of {pn} ∪ Sn to w. It can then pick a parameter that has not been used
already. This is simpler than dealing with two sorts of function symbols.

In the Isabelle formalization, the enumeration of formulas is represented by a (surjective)
function f from the set of natural numbers to the set of formulas (cf. Section 6.6). The
expression extend S f n constructs the set Sn starting from S0 = S:

primrec extend where
extend S f 0 = S
| extend S f (Suc n) =

(let Sn = extend S f n in
if consistent ({f n} ∪ Sn)
then witness (params ({f n} ∪ Sn)) (f n) ∪ {f n} ∪ Sn
else Sn)

The function witness is simple:

A. H. From 8:15

fun witness where
witness used (¬ (∀ p)) = {¬ ⟨⋆(SOME a. a /∈ used)/0 ⟩p}
| witness - - = {}

Its definition uses Hilbert’s choice operator to pick a fresh parameter.
The maximal consistent set is given by taking the union of this sequence of sets:

⋃
n∈N Sn.

In Isabelle, it becomes:
definition Extend S f ≡

⋃
n. extend S f n

The following lemmas are needed later.

▶ Lemma 17 (Lindenbaum bounds). The starting set is included in its maximal extension
and each set in the constructed sequence bounds the previous sets:

S ⊆ Extend S f
(
⋃

n ≤ m. extend S f n) = extend S f m

Proof. By definition and by induction on m, respectively. ◀

▶ Lemma 18 (Lindenbaum parameters). A witness includes only finitely many parameters
and each set Sn contains finitely many more parameters than the starting set S0:

finite (params (witness used p))
finite (params (extend S f n) − params S)

Proof. Since p contains finitely many parameters and by induction on n, respectively. ◀

6.2.1 Consistency
The consistency of each constructed set Sn is apparent.

▶ Lemma 19 (Consistency of Sn). When starting from a consistent S0 with infinitely many
unused parameters, any constructed Sn is consistent:

assumes consistent S and infinite (UNIV − params S)
shows consistent (extend S f n)

Proof. By induction on n. The consistency of adding the witness follows from Lemma 15.
The only complication is to prove that there are indeed always fresh parameters available
and therefore that the parameter given by Hilbert’s choice operator is usable, but this follows
from Lemma 18. ◀

The consistency of the union
⋃

n Sn is more interesting.

▶ Lemma 20 (Consistency of
⋃

n Sn). The maximal extension of a consistent set S with
infinitely many unused parameters is consistent:

assumes consistent S and infinite (UNIV − params S)
shows consistent (Extend S f)

Proof. Assume towards a contradiction that we can derive falsity from some finite subset:
then obtain S ′ where S ′ ⊢ ⊥ and set S ′ ⊆ Extend S f

Since this subset is finite, it must be a subset of some initial segment of the union:
then obtain m where set S ′ ⊆ (

⋃
n ≤ m. extend S f n)

But, by Lemma 17, each such segment is bounded by its last element:
then have set S ′ ⊆ extend S f m

And since we have already shown the consistency of each Sn (Lemma 19), we reach our
desired contradiction. ◀

TYPES 2021

8:16 A Succinct Formalization of the Completeness of First-Order Logic

6.3 Maximal Sets
A maximal set is inconsistent under any proper extension:

definition maximal S ≡ ∀ p. p /∈ S −→ ¬ consistent ({p} ∪ S)

Maximal consistent sets are truly maximal:

▶ Lemma 21 (Maximality of Maximal Consistent Sets). If S is a maximal consistent set, then
for every formula p, p ∈ S if and only if ¬ p /∈ S.

assumes consistent S and maximal S
shows p ∈ S ←→ (¬ p) /∈ S

Proof. The left-to-right direction follows from consistency alone and the right-to-left direction
follows from consistency and maximality. ◀

That the Lindenbaum extension results in a maximal set is very easy to see.

▶ Lemma 22 (Maximality of
⋃

n Sn). Given a surjective enumeration f ,
⋃

n Sn is maximal:

assumes surj f
shows maximal (Extend S f)

Proof. Assume towards a contradiction that some formula p is not included even though its
inclusion preserves consistency:

assume p /∈ Extend S f and consistent ({p} ∪ Extend S f)

Say that p is formula number k in the enumeration. Since p is not in the result, it must
be inconsistent with Sk:

then have ¬ consistent ({p} ∪ extend S f k)

And this set is a subset of the final result:

moreover have {p} ∪ extend S f k ⊆ {p} ∪ Extend S f

Ultimately, this contradicts the assumption that adding p preserves consistency. ◀

6.4 Saturation
We shall need saturation to show that our constructed sets are Hintikka sets:

definition saturated S ≡ ∀ p. ¬ (∀ p) ∈ S −→ (∃ a. (¬ ⟨⋆a/0 ⟩p) ∈ S)

So, in a saturated set there is a corresponding Henkin witness for each existential formula.

▶ Lemma 23 (Saturation of
⋃

n Sn). A consistent Lindenbaum extension is saturated:

assumes consistent (Extend S f) and surj f
shows saturated (Extend S f)

Proof. Guaranteed by construction. ◀

If we only constructed our set to be maximal consistent and tried to show that it was also
saturated, we would run into trouble [40, p. 96]. First, given an arbitrary maximal consistent
set S, it might be that a Henkin witness is missing because S includes every parameter
available and every reuse of a parameter results in an inconsistency. Second, we might be
unlucky and enumerate the negation of every suitable witness before enumerating the witness
itself: we might always add the negation and never the witness. Following Henkin [21], I
ensure saturation by adding the Henkin witnesses together with the existential formulas.

A. H. From 8:17

6.5 Hintikka Sets
Instead of showing the model existence theorem directly for maximal consistent saturated
sets, it will be cleaner to show that Hintikka sets induce a model for their formulas and that
our sets are in fact Hintikka sets.

The following definition characterizes a Hintikka set H over our syntax:

locale Hintikka =
fixes H :: (′f , ′p) fm set
assumes

FlsH : ⊥ /∈ H and
ImpH : (p −→ q) ∈ H ←→ (p ∈ H −→ q ∈ H) and
UniH : (∀ p ∈ H) ←→ (∀ t. ⟨t/0 ⟩p ∈ H)

Hintikka sets are sets that are saturated downwards [40, p. 27] and induce a model for the
formulas in them. Since the set should induce a model, ⊥ should never be present (FlsH).
Following Forster et al. [11, Lemma 11], I enforce that the set respects both implication
(ImpH) and universal quantification (UniH): a formula is in the Hintikka set if and only if
the “evidence” for that formula is also present. Here, evidence is to be understood in terms
of the Herbrand model given below.

6.5.1 Model Existence
The model induced by a Hintikka set H is very simple. It consists of a Herbrand structure [10]
and a predicate denotation based on H itself:
Domain Herbrand universe: the universe of terms.
Function denotation The constructor †, i.e. every function symbol evaluates to itself.
Predicate denotation Predicate P is true for terms ts exactly when ‡P ts ∈ H.

Like in the work by Herbelin and Ilik [22], but unlike for instance the formalizations by
Berghofer [3] and Forster et al. [11], the Herbrand universe includes all terms, not just those
with no variables. I never formalize what it means for a formula to be closed. The Herbrand
structure famously evaluates any term without variables to itself [10]. Or in this case:

▶ Lemma 24 (Herbrand semantics). Under any Herbrand structure and the specific environ-
ment #, every term evaluates to itself:

(|#, †|) t = t

Proof. By structural induction. ◀

I reuse the notation for semantics and abbreviate the model induced by H as [[H]]:

abbreviation hmodel ([[-]]) where [[H]] ≡ [[#, †, λP ts. ‡P ts ∈ H]]

We now reach the model existence theorem.

▶ Theorem 25 (Model existence). When H is a Hintikka set, [[H]] satisfies exactly the
formulas in H.

assumes Hintikka H
shows p ∈ H ←→ [[H]] p

Proof. By well-founded induction on the size of the formula as given by size-fm. Thus the
induction hypothesis applies to any formula that is smaller by this measure, i.e. to subformulas
and to instances of universally quantified formulas (cf. Lemma 6). These are exactly the

TYPES 2021

8:18 A Succinct Formalization of the Completeness of First-Order Logic

formulas that appear in the Hintikka conditions. The proof proceeds by considering each
type of formula. Since there is a Hintikka condition for every type, which corresponds exactly
to the semantics of the induced model, Isabelle automatically proves each case. For instance,
a universal formula p is in the Hintikka set iff every instance ⟨t/0⟩p is in the Hintikka set
(UniH) iff every instance ⟨t/0⟩p holds in the induced model (by the induction hypothesis). ◀

6.5.2 Saturated MCSs are Hintikka Sets
Consider first the following correspondence between derivability and MCSs.

▶ Lemma 26 (Derivability and MCSs). A formula p is derivable from an MCS S iff p is in S:

assumes consistent S and maximal S
shows (∃ ps. set ps ⊆ S ∧ ps ⊢ p) ←→ p ∈ S

Proof. The left to right direction follows from the maximality of MCSs. The right to left
direction follows trivially from the derivability of any assumption (Lemma 13). ◀

I now show that maximal consistent saturated sets are Hintikka sets.

▶ Lemma 27 (Saturated MCSs are Hintikka sets). If the set H is consistent, maximal and
saturated, it is a Hintikka set:

assumes consistent H and maximal H and saturated H
shows Hintikka H

Proof. We need to prove each case of the Hintikka definition. Take first the FlsH case:

show ⊥ /∈ H

We need to show that falsity does not appear in our set. This follows directly from
Lemma 26 and the assumed consistency of H.

Consider next the ImpH case:

show (p −→ q) ∈ H ←→ (p ∈ H −→ q ∈ H)

From left to right, by using Lemma 26 this simply becomes modus ponens: if both p −→ q

and p are derivable from H then q must be derivable from H. The right to left direction is
similar. It relies on Lemma 26, contraposition and Lemma 21: that exactly one of a formula
and its negation is present in an MCS.

Consider next the UniH case:

show (∀ p ∈ H) ←→ (∀ t. ⟨t/0 ⟩p ∈ H)

One direction follows directly from consistency of instantiation (Lemma 16) and the
maximality of H. The other direction follows from saturation (and Lemma 21). ◀

6.6 Completeness Theorem
Isabelle can automatically prove the countability of our syntax:

instance tm :: (countable) countable
instance fm :: (countable, countable) countable

These commands provide instances of the surjective function from-nat that takes natural
numbers and returns terms and formulas, respectively. I state the main theorem as follows.

A. H. From 8:19

▶ Theorem 28 (Completeness). Assume that formula p is valid under assumptions X and
that X leaves infinitely many parameters unused. Then we can derive p from X.

fixes p :: (′f :: countable, ′p :: countable) fm
assumes ∀ (E :: - ⇒ ′f tm) F G. (∀ q ∈ X . [[E , F , G]] q) −→ [[E , F , G]] p

and infinite (UNIV − params X)
shows ∃ ps. set ps ⊆ X ∧ ps ⊢ p

Proof. By contradiction:
assume ∄ ps. set ps ⊆ X ∧ ps ⊢ p
then have ∗: ∄ ps. set ps ⊆ X ∧ ((¬ p) # ps ⊢ ⊥)

If no such list of assumptions exists, then (by classical reasoning on the object level) there
is also no list that allows us to derive falsity when assuming ¬ p.

I introduce some local abbreviations ?S and ?H (where ? is required by Isabelle):
let ?S = {¬ p} ∪ X
let ?H = Extend ?S from-nat

It is easy to see from ∗ above that ?S must be consistent and the extension ?H is therefore
maximal consistent (Lemmas 20, 22):

have consistent ?S
moreover have infinite (UNIV − params ?S)
ultimately have consistent ?H and maximal ?H

?H is saturated (Lemma 23) and Hintikka (Lemma 27):
moreover from this have saturated ?H
ultimately have Hintikka ?H

The model induced by ?H satisfies any formula in ?H (Theorem 25), including the
starting set ?S (Lemma 17):

have [[?H]] p if p ∈ ?S for p
then have [[?H]] (¬ p) and ∀ q ∈ X . [[?H]] q

But this includes all formulas in X so by the assumed validity, [[H]] must also satisfy p
and we reach our contradiction:

moreover from this have [[?H]] p
ultimately show False

The proof system is complete. ◀

The following abbreviation of validity in a specific Herbrand universe, with countably
infinite function and predicate symbols, makes the result simpler to state:

abbreviation valid :: (nat, nat) fm ⇒ bool where
valid p ≡ ∀ (E :: nat ⇒ nat tm) F G. [[E , F , G]] p

I fix the function and predicate symbols to be natural numbers but any countably infinite
type works. One thing to note is that I only assume validity in one domain (the Herbrand
universe), as I cannot quantify over the type I use to represent the domain. This is, however,
a weaker assumption than assuming validity in all domains as is usually done.
▶ Theorem 29 (Soundness and completeness). Exactly the valid formulas are derivable:

theorem main: valid p ←→ (⊢ p)

Proof. By Theorems 9, 28. ◀

Only the definitions in Sections 3, 4 and Sections 5.1 to 5.5 must be inspected to trust
the result. The definitions in this Section are only used for the proof.

TYPES 2021

8:20 A Succinct Formalization of the Completeness of First-Order Logic

7 Discussion

There are many choices to make in a formalization like this one. I choose to work with
de Bruijn indices rather than named variables or Nominal Isabelle [42], which provides
automation for this situation. While this choice makes it more complicated to explain the
formalizations of e.g. semantics and quantifier instantiation, it makes the formalization
self-contained. I hope to have demonstrated that the definitions themselves are simple, the
functions are short and only a few simple lemmas are needed about them.

Recall the GR rule which is used in Lemma 15 to justify the consistency of fresh witnesses:

GR: ⊢ q −→ ⟨⋆a/0 ⟩p =⇒ a /∈ params {p, q} =⇒ ⊢ q −→ ∀ p

Since I use de Bruijn indices, this could also be formalized without the use of a parameter a

by lifting q, in the sense of ↑ , to ensure that variable 0 in p is safe to generalize directly:

⊢ ↑q → p =⇒ ⊢ q → ∀ p

However, we would then need to ensure that the entire set S ′ in Lemma 15 is lifted in order
to apply the rule. With the present GR rule, we simply ensure that a is chosen to be fresh.
It would be interesting to try Laurent’s anti-locally nameless approach to quantifiers [27]
and see whether this would yield a simpler formalization.

Another choice has been to simulate assumptions in derivations by a chain of implications.
This trick applies directly to a one-sided calculus and makes it a lot simpler to work with,
especially with some custom notation. It works especially well with Smullyan’s System Q1
where the generalization rule (GR) works under an implication. The semantic characterization
of the tautology axiom, which works well with Isabelle’s proof automation, makes it even
smoother since propositional reasoning becomes a non-issue.

One challenge was the realization that the variant GR’ is more suitable than GR. Isabelle
cannot tell us something like this, nor is the proof automation powerful enough to derive the
rule automatically. The insight comes from experimenting with the formalization and proofs.

Some of these issues could also be resolved by starting from a natural deduction system
rather than Smullyan’s Hilbert system. Natural deduction systems have a context built in,
where I must simulate it with implications, and more natural rules for the connectives, which
could be used instead of the semantic characterization of tautologies. It remains future work
to adapt the formalization to this setting and review the potential benefits.

At this point in time there is a large body of formalizations to draw on. I am inspired by
Berghofer’s formalization [3] of the completeness of natural deduction for first-order logic.
Berghofer also formalizes Lindenbaum’s construction and my definition is close to his. My
formalization of Hintikka sets and the model existence theorem, however, is both shorter (due
to Forster et al. [11]) and, unlike Berghofer’s, works directly for open formulas (cf. Herbelin
and Ilik [22]). As such, even though some notion has already been formalized, it can be
beneficial to revisit it.

8 Conclusion and Future Work

I have used techniques from computer science like de Bruijn indices and functional program-
ming to work in the meta-logic of the proof assistant Isabelle/HOL. Here, I have formalized
the syntax and semantics of first-order logic and defined a simple axiomatic proof system for
it. This definition has included careful considerations of the interplay between syntax and
semantics, a semantic characterization of tautologies suitable for formalization and notational
tricks like the use of implications to simulate assumptions.

A. H. From 8:21

I have then carried out a completeness proof for the Hilbert system in the style of Henkin,
and using ideas from Lindenbaum, Hintikka and Herbrand along the way. The proof is
direct: use Lindenbaum’s construction to extend a consistent set to a maximal consistent
set, add Henkin witnesses of existential formulas during this construction, notice that the
result is a Hintikka set and build a model in the Herbrand universe. Section 2 demonstrated
the usefulness of this style in the formalization of other logics and proof systems. My
formalization may serve as starting point for such endeavors: researchers can modify the
existing definitions and proofs rather than start from scratch. Isabelle/HOL ensures that
such modifications are correct and can help fill in gaps in the proofs when they arise. This
provides an entry point to formalizing such a completeness proof.

In the future, however, I want to abstract this proof along several dimensions. First, the
entire construction outlined above could potentially be given in the abstract and instantiated
with a concrete proof system, witnessing function, notion of saturation, etc. Then it might
be shared among the several formalizations of this method, and potential new ones. Popescu
and Traytel [36] have already developed some syntax-independent logical infrastructure in
their formal verification of an abstract account of Gödel’s incompleteness theorems. This
future work could potentially build on theirs, extending it with the model existence theorem
and more. Second, Smullyan gives many constructions in his uniform notation that abstracts
over the concrete choice of syntax. I would like to abstract this formalization in a similar way:
witnesses could be added for “δ-formulas”, which might happen to be of the form ¬ (∀ p)
like here or maybe of the form ♢ p as seen in hybrid logic [26].

I also want to extend the syntax, semantics, proof system and completeness proof to
first-order logic with equality. I already handle function symbols, unlike Smullyan, but to get
on par with Barwise, equality needs to be considered too. The Henkin style should scale well
for this extension. The current formalization does, however, have the benefit of outlining
the fundamental ideas of the completeness proof without too many auxiliary considerations.
This is an advantage for adapting it to other logics.

I hope this formalization will serve as inspiration, and perhaps as a starting point, for
further formalizations of logic.

References

1 Jon Barwise. An introduction to first-order logic. In Jon Barwise, editor, Handbook of
Mathematical Logic, volume 90 of Studies in Logic and the Foundations of Mathematics, pages
5–46. Elsevier, 1977. doi:10.1016/S0049-237X(08)71097-8.

2 Bruno Bentzen. A Henkin-style completeness proof for the modal logic S5. In Pietro
Baroni, Christoph Benzmüller, and Yì N. Wáng, editors, Logic and Argumentation - 4th
International Conference, CLAR 2021, Hangzhou, China, October 20-22, 2021, Proceed-
ings, volume 13040 of Lecture Notes in Computer Science, pages 459–467. Springer, 2021.
doi:10.1007/978-3-030-89391-0_25.

3 Stefan Berghofer. First-order logic according to Fitting. Archive of Formal Proofs, August
2007. Formal proof development. URL: https://isa-afp.org/entries/FOL-Fitting.html.

4 Jasmin Christian Blanchette. Formalizing the metatheory of logical calculi and automatic
provers in Isabelle/HOL (invited talk). In Assia Mahboubi and Magnus O. Myreen, editors,
Proceedings of the 8th ACM SIGPLAN International Conference on Certified Programs and
Proofs, CPP 2019, pages 1–13. ACM, 2019.

5 Jasmin Christian Blanchette, Andrei Popescu, and Dmitriy Traytel. Abstract completeness.
Archive of Formal Proofs, April 2014. Formal proof development. URL: https://isa-afp.
org/entries/Abstract_Completeness.html.

TYPES 2021

https://doi.org/10.1016/S0049-237X(08)71097-8
https://doi.org/10.1007/978-3-030-89391-0_25
https://isa-afp.org/entries/FOL-Fitting.html
https://isa-afp.org/entries/Abstract_Completeness.html
https://isa-afp.org/entries/Abstract_Completeness.html

8:22 A Succinct Formalization of the Completeness of First-Order Logic

6 Jasmin Christian Blanchette, Andrei Popescu, and Dmitriy Traytel. Soundness and complete-
ness proofs by coinductive methods. Journal of Automated Reasoning, 58(1):149–179, 2017.
doi:10.1007/s10817-016-9391-3.

7 Patrick Braselmann and Peter Koepke. Gödel’s completeness theorem. Formalized Mathematics,
13(1):49–53, 2005.

8 Robert L. Constable and Mark Bickford. Intuitionistic completeness of first-order logic. Annals
of Pure and Applied Logic, 165(1):164–198, 2014. doi:10.1016/j.apal.2013.07.009.

9 N.G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic
formula manipulation, with application to the Church-Rosser theorem. In R.P. Nederpelt, J.H.
Geuvers, and R.C. de Vrijer, editors, Selected Papers on Automath, volume 133 of Studies in
Logic and the Foundations of Mathematics, pages 375–388. Elsevier, 1994. Reprinted from:
Indagationes Math, 34, 5, p. 381-392, by courtesy of the Koninklijke Nederlandse Akademie
van Wetenschappen, Amsterdam. doi:10.1016/S0049-237X(08)70216-7.

10 Melvin Fitting. First-Order Logic and Automated Theorem Proving, Second Edition. Graduate
Texts in Computer Science. Springer, 1996.

11 Yannick Forster, Dominik Kirst, and Dominik Wehr. Completeness theorems for first-order
logic analysed in constructive type theory. Journal of Logic and Computation, 31(1):112–151,
2021. doi:10.1093/logcom/exaa073.

12 Asta Halkjær From. Synthetic completeness for a terminating Seligman-style tableau system.
In Ugo de’Liguoro, Stefano Berardi, and Thorsten Altenkirch, editors, 26th International
Conference on Types for Proofs and Programs, TYPES 2020, March 2-5, 2020, University of
Turin, Italy, volume 188 of LIPIcs, pages 5:1–5:17. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020. doi:10.4230/LIPIcs.TYPES.2020.5.

13 Asta Halkjær From. Formalizing Henkin-style completeness of an axiomatic system for
propositional logic. In WESSLLI + ESSLLI Virtual Student Session, 2021. Accepted for
post-proceedings.

14 Asta Halkjær From, Anders Schlichtkrull, and Jørgen Villadsen. A sequent calculus for
first-order logic formalized in Isabelle/HOL. In Stefania Monica and Federico Bergenti, editors,
Proceedings of the 36th Italian Conference on Computational Logic, Parma, Italy, September
7-9, 2021, volume 3002 of CEUR Workshop Proceedings, pages 107–121. CEUR-WS.org, 2021.
URL: http://ceur-ws.org/Vol-3002/paper7.pdf.

15 Asta Halkjær From. Formalizing a Seligman-style tableau system for hybrid logic. Archive
of Formal Proofs, December 2019. Formal proof development. URL: http://isa-afp.org/
entries/Hybrid_Logic.html.

16 Asta Halkjær From. A sequent calculus for first-order logic. Archive of Formal Proofs, July 2019.
Formal proof development. URL: https://isa-afp.org/entries/FOL_Seq_Calc1.html.

17 Asta Halkjær From. Soundness and completeness of an axiomatic system for first-order
logic. Archive of Formal Proofs, September 2021. Formal proof development. URL: https:
//isa-afp.org/entries/FOL_Axiomatic.html.

18 Herman Geuvers. Proof assistants: History, ideas and future. Sadhana, 34(1):3–25, 2009.
doi:10.1007/s12046-009-0001-5.

19 Kurt Gödel. Die Vollständigkeit der Axiome des logischen Funktionenkalküls. Monatshefte für
Mathematik und Physik, 37(1):349–360, 1930.

20 John Harrison. Formalizing basic first order model theory. In Jim Grundy and Malcolm C.
Newey, editors, Theorem Proving in Higher Order Logics, 11th International Conference,
TPHOLs’98, Canberra, Australia, September 27 - October 1, 1998, Proceedings, volume 1479 of
Lecture Notes in Computer Science, pages 153–170. Springer, 1998. doi:10.1007/BFb0055135.

21 Leon Henkin. The discovery of my completeness proofs. Bulletin of Symbolic Logic, 2(2):127–
158, 1996. doi:10.2307/421107.

22 Hugo Herbelin and Danko Ilik. An analysis of the constructive content of Henkin’s proof of
Gödel’s completeness theorem. Manuscript available online, 2016.

https://doi.org/10.1007/s10817-016-9391-3
https://doi.org/10.1016/j.apal.2013.07.009
https://doi.org/10.1016/S0049-237X(08)70216-7
https://doi.org/10.1093/logcom/exaa073
https://doi.org/10.4230/LIPIcs.TYPES.2020.5
http://ceur-ws.org/Vol-3002/paper7.pdf
http://isa-afp.org/entries/Hybrid_Logic.html
http://isa-afp.org/entries/Hybrid_Logic.html
https://isa-afp.org/entries/FOL_Seq_Calc1.html
https://isa-afp.org/entries/FOL_Axiomatic.html
https://isa-afp.org/entries/FOL_Axiomatic.html
https://doi.org/10.1007/s12046-009-0001-5
https://doi.org/10.1007/BFb0055135
https://doi.org/10.2307/421107

A. H. From 8:23

23 Jacques Herbrand. Recherches sur la théorie de la démonstration. Number 110 in Thèses de
l’entre-deux-guerres. Faculté des Sciences de L’Université de Paris, 1930.

24 Denis R. Hirschfeldt. Slicing the Truth - On the Computable and Reverse Mathematics of
Combinatorial Principles, volume 28 of Lecture Notes Series / Institute for Mathematical
Sciences / National University of Singapore. World Scientific, 2014. doi:10.1142/9208.

25 Danko Ilik. Constructive Completeness Proofs and Delimited Control. (Preuves constructives
de complétude et contrôle délimité). PhD thesis, École Polytechnique, Palaiseau, France, 2010.
URL: https://tel.archives-ouvertes.fr/tel-00529021.

26 Klaus Frovin Jørgensen, Patrick Blackburn, Thomas Bolander, and Torben Braüner. Synthetic
completeness proofs for Seligman-style tableau systems. In Lev D. Beklemishev, Stéphane
Demri, and András Maté, editors, Advances in Modal Logic 11, proceedings of the 11th
conference on "Advances in Modal Logic," held in Budapest, Hungary, August 30 - September
2, 2016, pages 302–321. College Publications, 2016. URL: http://www.aiml.net/volumes/
volume11/Joergensen-Blackburn-Bolander-Brauner.pdf.

27 Olivier Laurent. An anti-locally-nameless approach to formalizing quantifiers. In Catalin Hritcu
and Andrei Popescu, editors, CPP ’21: 10th ACM SIGPLAN International Conference on
Certified Programs and Proofs, Virtual Event, Denmark, January 17-19, 2021, pages 300–312.
ACM, 2021. doi:10.1145/3437992.3439926.

28 Pierre Lescanne. From lambda-sigma to lambda-upsilon: a journey through calculi of explicit
substitutions. In Hans-Juergen Boehm, Bernard Lang, and Daniel M. Yellin, editors, Conference
Record of POPL’94: 21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, Portland, Oregon, USA, January 17-21, 1994, pages 60–69. ACM Press, 1994.
doi:10.1145/174675.174707.

29 James Margetson and Tom Ridge. Completeness theorem. Archive of Formal Proofs, September
2004. Formal proof development. URL: http://isa-afp.org/entries/Completeness.html.

30 Julius Michaelis and Tobias Nipkow. Propositional proof systems. Archive of Formal Proofs,
June 2017. Formal proof development. URL: http://isa-afp.org/entries/Propositional_
Proof_Systems.html.

31 Julius Michaelis and Tobias Nipkow. Formalized Proof Systems for Propositional Logic. In
Andreas Abel, Fredrik Nordvall Forsberg, and Ambrus Kaposi, editors, 23rd International
Conference on Types for Proofs and Programs (TYPES 2017), volume 104 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 5:1–5:16, Dagstuhl, Germany, 2018. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.TYPES.2017.5.

32 Tobias Nipkow. More Church-Rosser proofs. Journal of Automated Reasoning, 26(1):51–66,
2001. doi:10.1023/A:1006496715975.

33 Tobias Nipkow and Gerwin Klein. Concrete Semantics - With Isabelle/HOL. Springer, 2014.
doi:10.1007/978-3-319-10542-0.

34 Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A Proof Assistant
for Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer, 2002.
doi:10.1007/3-540-45949-9.

35 Henrik Persson. Constructive completeness of intuitionistic predicate logic. Licenciate thesis,
Chalmers University of Technology, 1996.

36 Andrei Popescu and Dmitriy Traytel. A formally verified abstract account of Gödel’s in-
completeness theorems. In Pascal Fontaine, editor, Automated Deduction - CADE 27 - 27th
International Conference on Automated Deduction, Natal, Brazil, August 27-30, 2019, Pro-
ceedings, volume 11716 of Lecture Notes in Computer Science, pages 442–461. Springer, 2019.
doi:10.1007/978-3-030-29436-6_26.

37 Anders Schlichtkrull. The resolution calculus for first-order logic. Archive of Formal Proofs, June
2016. Formal proof development. URL: http://isa-afp.org/entries/Resolution_FOL.html.

38 Anders Schlichtkrull. Formalization of the resolution calculus for first-order logic. Journal of
Automated Reasoning, 61(1-4):455–484, 2018. doi:10.1007/s10817-017-9447-z.

TYPES 2021

https://doi.org/10.1142/9208
https://tel.archives-ouvertes.fr/tel-00529021
http://www.aiml.net/volumes/volume11/Joergensen-Blackburn-Bolander-Brauner.pdf
http://www.aiml.net/volumes/volume11/Joergensen-Blackburn-Bolander-Brauner.pdf
https://doi.org/10.1145/3437992.3439926
https://doi.org/10.1145/174675.174707
http://isa-afp.org/entries/Completeness.html
http://isa-afp.org/entries/Propositional_Proof_Systems.html
http://isa-afp.org/entries/Propositional_Proof_Systems.html
https://doi.org/10.4230/LIPIcs.TYPES.2017.5
https://doi.org/10.1023/A:1006496715975
https://doi.org/10.1007/978-3-319-10542-0
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-030-29436-6_26
http://isa-afp.org/entries/Resolution_FOL.html
https://doi.org/10.1007/s10817-017-9447-z

8:24 A Succinct Formalization of the Completeness of First-Order Logic

39 Natarajan Shankar. Towards mechanical metamathematics. Journal of Automated Reasoning,
1(4):407–434, 1985.

40 Raymond M. Smullyan. First-Order Logic. Springer-Verlag, 1968.
41 Alfred Tarski. Logic, Semantics, Metamathematics: Papers from 1923 to 1938. Hackett

Publishing, 1983.
42 Christian Urban. Nominal techniques in Isabelle/HOL. Journal of Automated Reasoning,

40(4):327–356, 2008. doi:10.1007/s10817-008-9097-2.
43 Wim Veldman. An intuitionistic completeness theorem for intuitionistic predicate logic. Journal

of Symbolic Logic, 41(1):159–166, 1976. doi:10.1017/S0022481200051859.

https://doi.org/10.1007/s10817-008-9097-2
https://doi.org/10.1017/S0022481200051859

Simulating Large Eliminations in Cedille
Christa Jenkins # Ñ

The University of Iowa, Iowa City, IA, USA

Andrew Marmaduke # Ñ

The University of Iowa, Iowa City, IA, USA

Aaron Stump # Ñ

The University of Iowa, Iowa City, IA, USA

Abstract
Large eliminations provide an expressive mechanism for arity- and type-generic programming.
However, as large eliminations are closely tied to a type theory’s primitive notion of inductive
type, this expressivity is not expected within polymorphic lambda calculi in which datatypes are
encoded using impredicative quantification. We report progress on simulating large eliminations for
datatype encodings in one such type theory, the calculus of dependent lambda eliminations (CDLE).
Specifically, we show that the expected computation rules for large eliminations, expressed using a
derived type of extensional equality of types, can be proven within CDLE. We present several case
studies, demonstrating the adequacy of this simulation for a variety of generic programming tasks,
and a generic formulation of the simulation allowing its use for a broad family of datatype encodings.
All results have been mechanically checked by Cedille, an implementation of CDLE.

2012 ACM Subject Classification Theory of computation → Type theory

Keywords and phrases large eliminations, generic programming, impredicative encodings, Cedille,
Mendler algebra

Digital Object Identifier 10.4230/LIPIcs.TYPES.2021.9

Supplementary Material Software (Source Code):
https://github.com/cedille/cedille-developments/

archived at swh:1:dir:8b0dbbbb5203be35a7242a469f45a9cdbffcebfa

1 Introduction

In dependently typed languages, large eliminations allow programmers to define types by
induction over datatypes – that is, as an elimination of a datatype into the large universe
of types. For type theory semanticists, large eliminations rule out two-element models of
types by providing a principle of proof discrimination (e.g., 0 ̸= 1)[26, 25]. For programmers,
they give an expressive mechanism for arity- and type-generic programming with universe
constructions [34]. As an example, the type Nary n of n-ary functions (where n is a natural
number) over type T can be defined as T when n = 0 and T → Nary n′ when n = succ n′.

Large eliminations are closely tied to a type theory’s primitive notion of inductive type.
Thus, this expressivity is not expected within polymorphic pure typed lambda calculi in
which datatypes are impredicatively encoded. The calculus of dependent lambda eliminations
(CDLE) [27, 28] is one such theory that seeks to overcome historical difficulties of impredicative
encodings, such as the lack of induction principles for datatypes [13].

Contributions. In this paper, we report progress on overcoming another difficulty of impre-
dicative encodings: the lack of large eliminations. We show that the expected definitional
equalities of a large elimination can be simulated using a derived type of extensional equality
for types (as CDLE is an extrinsic theory, we take the extent of a type to be the set of terms
it classifies). In particular, we:

describe our method for simulating large eliminations in CDLE (Section 3) using a
concrete example, identifying the features of the theory that enable the development
(Section 2) and noting a limitation on the contexts in which it may be effectively used;

© Christa Jenkins, Andrew Marmaduke, and Aaron Stump;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Types for Proofs and Programs (TYPES 2021).
Editors: Henning Basold, Jesper Cockx, and Silvia Ghilezan; Article No. 9; pp. 9:1–9:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:christa-jenkins@uiowa.edu
https://homepage.divms.uiowa.edu/~cwjnkins/
https://orcid.org/0000-0002-5434-5018
mailto:andrew-marmaduke@uiowa.edu
https://homepage.divms.uiowa.edu/~marmaduke/
mailto:aaron-stump@uiowa.edu
https://homepage.divms.uiowa.edu/~astump/
https://doi.org/10.4230/LIPIcs.TYPES.2021.9
https://github.com/cedille/cedille-developments/
https://github.com/cedille/cedille-developments/
https://archive.softwareheritage.org/swh:1:dir:8b0dbbbb5203be35a7242a469f45a9cdbffcebfa;origin=https://github.com/cedille/cedille-developments;visit=swh:1:snp:fc9514f8541a00d67aa333167a6e552f0c8dbbac;anchor=swh:1:rev:0cc60308ad479358474ea63adccf0e3d1b302819
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Simulating Large Eliminations in Cedille

formulate the method generically for all impredicative encodings of the form used by the
datatype system of the Cedille tool (Section 5);
demonstrate the adequacy of this simulation by applying it to several generic programming
tasks: n-ary functions, a closed universe of datatypes, and an arity-generic map operation
(Sections 3 and 4).

All results have been mechanically checked by Cedille, an implementation of CDLE, and are
available in the supplementary material for this paper.

Outline. Section 2 reviews background material on CDLE, focusing on the primitives which
enable the simulation. In Section 3, we carefully explain the recipe for simulating large
eliminations using as an example the type of n-ary functions over a given type. Section 4
shows two more case studies, a closed universe of strictly positive types and a generalized map
operation for vectors, as evidence of the effectiveness of the simulation in tackling generic
programming tasks. The recipe for concrete examples is then turned into a generic derivation
(that is, parametric in a covariant datatype signature) of simulated large eliminations in
Section 5. Finally, Section 6 discusses related work and Section 7 concludes with a discussion
of future work.

2 Background on CDLE

In this section, we review CDLE, the kernel theory of Cedille. CDLE extends the impredic-
ative extrinsically typed calculus of constructions (CC), overcoming historical difficulties of
impredicative encodings (e.g., underivability of induction [14]) by adding three new type
constructs: equality of untyped terms; the dependent intersections of Kopylov [20]; and
the implicit products of Miquel [24]. The pure term language of CDLE is untyped lambda
calculus, but to make type checking algorithmic terms t are presented with typing annotations
which are removed during erasure (written |t|). Definitional equality of terms t1 and t2 is
βη-equivalence modulo erasure of annotations, denoted |t1| =βη |t2|.

The typing and erasure rules for the fragment of CDLE used in this paper are shown
in Figure 1 and described in Section 2.1 (see also Stump and Jenkins [28]); the derived
constructs we use are presented axiomatically in Section 2.2. We assume the reader is familiar
with the type constructs inherited from CC: abstraction over types in terms is written Λ X. t

(erasing to |t|), application of terms to types (polymorphic type instantiation) is written t · T

(erasing to |t|), and application of type constructors to type constructors is written T1 · T2.
In code listings, we sometimes omit type arguments to terms when Cedille can infer them.

2.1 Primitives
Below, we only discuss implicit products and the equality type. Though dependent inter-
sections play a critical role in the derivation of induction for datatype encodings, they are
otherwise not explicitly used in the coming developments.

The implicit product type ∀ x :T1. T2. The implicit product type ∀ x :T1. T2 of Miquel [24]
is the type for functions which accept an erased (computationally irrelevant) input of type
T1 and produce a result of type T2. Implicit products are introduced with Λ x. t, and the
type inference rule is the same as for ordinary function abstractions except for the side
condition that x does not occur free in the erasure of the body t. Thus, the argument plays
no computational role in the function and exists solely for the purposes of typing: the erasure

C. Jenkins, A. Marmaduke, and A. Stump 9:3

Γ, x : T1 ⊢ t : T2 x ̸∈ FV(|t|)
Γ ⊢ Λ x. t : ∀ x :T1. T2

Γ ⊢ t : ∀ x :T1. T2 Γ ⊢ t′ : T1
Γ ⊢ t -t′ : [t′/x]T2

|t1| =βη |t2|
Γ ⊢ β : {t1 ≃ t2}

Γ ⊢ t : {λ x. λ y. x ≃ λ x. λ y. y}
Γ ⊢ δ - t : T

Γ ⊢ t : {t′ ≃ t′′} Γ ⊢ t′ : T FV(t′′) ⊆ dom(Γ)
Γ ⊢ φ t - t′ {t′′} : T

|Λ x. t| = |t| |t -t′| = |t|
|β| = λ x. x |φ t - t′ {t′′}| = |t′′|
|δ - t| = λ x. x

Figure 1 Typing and erasure for a fragment of CDLE.

of Λ x. t is |t|. For application, if t has type ∀ x :T1. T2 and t′ has type T1, then t -t′ has type
[t′/x]T2 and erases to |t|. When x is not free in T2, we write T1 ⇒ T2, similar to writing
T1 → T2 for Π x :T1. T2.

▶ Note. The notion of computational irrelevance here is not that of a different sort of
classifier for types (e.g. Prop in Coq [31]) separating terms by whether they can be used for
computation. Instead, it is similar to quantitative type theory [2]: relevance and irrelevance
are properties of binders, indicating how functions may use arguments.

The equality type {t1 ≃ t2}. The equality type {t1 ≃ t2} is the type of proofs that t1
is propositionally equal to t2. The introduction form β proves reflexive equations between
βη-equivalence classes of terms: it can be checked against the type {t1 ≃ t2} if |t1| =βη |t2|.
Note that this means equality is over untyped (post-erasure) terms. There is also a standard
elimination form (substitution), but it is not used explicitly in the presentation of our results,
so we omit its inference rule.

Equality types also come with two additional axioms.
The φ axiom gives a strong form of the direct computation rule of NuPRL (see Allen et
al. [1], Section 2.2). Though φ does not appear explicitly in the developments to come, it
plays a central role by enabling the derivation of extensional type equality that enables
zero-cost coercions between the equated types.
The δ axiom provides a principle of proof discrimination. By enabling proofs that datatype
constructors are disjoint, δ plays a vital role in our simulation of large eliminations.

The inference rule for an expression of the form φ t - t′ {t′′} says that the entire expression
can be checked against type T if t′ can be, if there are no undeclared free variables in t′′ (so,
t′′ is a well-scoped but otherwise untyped term), and if t proves that t′ and t′′ are equal.
The crucial feature of φ is its erasure: the expression erases to |t′′|, effectively enabling us to
cast t′′ to the type of t′. An expression of the form δ - t may be checked against any type
if t synthesizes a type convertible with a particular false equation, {λ x. λ y. x ≃ λ x. λ y. y}.
To broaden applicability of δ, the Cedille tool implements the Böhm-out semi-decision
procedure [4] for discriminating between separable lambda terms.

TYPES 2021

9:4 Simulating Large Eliminations in Cedille

Γ ⊢ t1 : S → T Γ ⊢ t2 : Π x :S. {t1 x ≃ x}
Γ ⊢ intrCast · S · T -t1 -t2 : Cast · S · T

Γ ⊢ t : Cast · S · T
Γ ⊢ cast · S · T -t : S → T

Γ ⊢ t : Cast · S · T
Γ ⊢ etaCast · S · T -t : {t ≃ λ x. x}

|intrCast · S · T -t1 -t2| = λ x. x |cast · S · T -t| = λ x. x

|etaCast · S · T -t| = |λ x. x|

Figure 2 Type inclusions.

Γ ⊢ t1 : Cast · S · T Γ ⊢ t2 : Cast · T · S

Γ ⊢ intrTpEq · S · T -t1 -t2 : TpEq · S · T

Γ ⊢ t : TpEq · S · T

Γ ⊢ tpEq1 · S · T -t : S → T

Γ ⊢ t : TpEq · S · T

Γ ⊢ tpEq2 · S · T -t : T → S

|intrTpEq · S · T -t1 -t2| = λ x. x |tpEq1 · S · T -t| = λ x. x

|tpEq2 · S · T -t| = λ x. x

Figure 3 Extensional type equality.

2.2 Derived Constructs
Type inclusions

The φ axiom of equality allows us to define a type constructor Cast that internalizes the
notion that the set of all elements of some type S is contained within the set of all elements
of type T (note that Curry-style typing makes this relation nontrivial). We describe its
axiomatic summary, presented in Figure 2; for the full derivation, see Jenkins and Stump [17]
(also Diehl et al. [11] for the related notion of Curry-style identity functions).

The introduction form intrCast takes two erased term arguments, a function t1 : S → T ,
and a proof that t1 behaves extensionally as the identity function on its domain. The
elimination form cast takes evidence that a type S is included into T and produces a function
of type S → T . The crucial property of cast is its erasure: |cast -t| = λ x. x. Thus, Cast ·S ·T
may also be considered the type of zero-cost type coercions from S to T – zero cost because
the type coercion is performed in a constant number of β-reduction steps. The uniqueness
principle etaCast tells us that every witness of a type inclusion is equal to λ x. x.

▶ Note. The significance to the results presented in this paper of the fact that any two
witnesses of a type inclusion are equal is discussed in Remark 11.

▶ Remark. When inspecting the introduction and elimination forms, it may seem that Cast
provides a form of function extensionality restricted to identity functions. This is not the
case, however, as it is possible to choose S, T , and t1 : S → T such that t1 is provably
extensionally equal to the identity function for terms of type S, and at the same time refute
{t1 ≃ λ x. x} using δ. Instead, these rules should be read as saying that if t1 is extensionally
identity on its domain, then that fact justifies the assignment of type S → T to λ x. x.

C. Jenkins, A. Marmaduke, and A. Stump 9:5

Type equality

The extensional notion of type equality used to simulate large eliminations, TpEq, is the
existence of a two-way type inclusion, as shown by the introduction form intrTpEq in Figure 3.
Similar to Cast, the important feature of the summary of TpEq for the reader to keep in
mind is the erasure rules for the elimination forms, tpEq1 and tpEq2 : both erase to λ x. x.
In Section 3.2, we will see a proof that computes a type equality witness in linear time.
However, in both elimination forms the type equality witness t : TpEq · S · T is given as an
erased argument. This means that the complexity of computing the witness is irrelevant to
the functions that realize the two-way coercion.

▶ Remark. Strictly speaking, the type TpEq · S · T is defined as the intersection of the types
Cast · S · T and Cast · T · S. In particular, this means TpEq enjoys the same uniqueness
property as Cast that all witnesses are equal to λ x. x. However, the developments of this
paper do not need to make explicit use of this property, so we omit this from the figure.

2.2.1 Substitution
Though we call TpEq extensional type equality, within CDLE it is only an isomorphism of
types. To be considered a true notion of equality, TpEq would need a substitution principle.
The type constructors for dependent function types (both implicit and explicit) can be proven
to permit substitution if the domain and codomain parts do, as does quantification over
types. However, a proof of general substitution principle would assume an arbitrary type
constructor X : ⋆ → ⋆ and a term t : X · S, and would need to produce a term of type X · T ,
where S and T are types such that TpEq · S · T . To proceed, we appear to require additional
assumption on X – otherwise, we cannot decompose or analyze the type X · S any further.

Nonetheless, the case studies presented in Sections 3 and 4 show that despite this
limitation, our simulation of large eliminations using TpEq is adequate for dealing with
common generic-programming tasks (see for example Note 9). Where we do use type
constructors of higher order than ⋆ (such as in Section 4.2.1), we restrict ourselves to those
which admit a substitution principle for TpEq.

3 n-ary Functions

In this section, we use a concrete example to detail the method of simulating large eliminations.
Figure 4a shows the definition of Nary, the family of n-ary function types over some type T ,
as a large elimination of natural numbers. Our simulation of this begins by approximating
this inductive definition of a function with an inductive relation between Nat and types,
given as the generalized algebraic datatype [36] (GADT) NaryR in Figure 4b.

This approximation is inadequate: we lack a canonical name for the type Nary n because
n does not a priori determine the type argument of NaryR n. Indeed, without a form of
proof discrimination we would not even be able to deduce that if a given type N satisfies

Nary : Nat → ⋆

Nary zero = T
Nary (succ n) = T → Nary n

(a) As a large elimination.

data NaryR : Nat → ⋆ → ⋆

= naryRZ : NaryR zero ·T
| naryRS : ∀ n: Nat. ∀ Ih: ⋆.

NaryR n ·Ih → NaryR (succ n) ·(T → Ih)

(b) As a GADT.

Figure 4 n-ary functions over T [source].

TYPES 2021

https://github.com/cedille/cedille-developments/blob/master/large-elim-sim/large-elim/example-nary.ced

9:6 Simulating Large Eliminations in Cedille

NaryR zero, then from a term of type N we can extract a term of type T . Proceeding by
induction, in the naryRS case the (impossible) goal is to show that T is the same as T → Ih
for some arbitrary but fixed Ih : ⋆. We would need to derive a contradiction from the absurd
equation that {succ n ≃ zero} for some n. Fortunately, proof discrimination is available in
CDLE in the form of δ, so we are able to define functions such as extr0 below which require
this form of reasoning.

extr0’ : ∀ x: Nat. { x ≃ zero } ⇒ ∀ N: ⋆. NaryR x ·N → N → T
extr0’ -zero -eqx ·T naryRZ x = x
extr0’ -(succ n) -eqx ·(T → X) (naryRS n ·X r) x = δ - eqX

extr0 = extr0’ -zero -β

▶ Note. In code listings such as the above, we present recursive Cedille functions using the
syntax of (dependent) pattern matching to aid readability. This syntax is not currently
supported by the Cedille tool. For the functions we present, those that compute terms are
implemented in this paper’s repository using the datatype system described by Jenkins et
al. [16], and those that compute types use the simulation to be described next.

In the digital version of this paper, figures with code listings are accompanied by hyperlinks
to the Cedille implementation embedded in the text “[source]” in captions.

3.1 Sketch of the Idea
Our task is to show that NaryR defines a functional relation, i.e., for all n : Nat there exists
a unique type Nary n such that NaryR n · (Nary n) is inhabited. The candidate definition
for this type family is:

Nary n = ∀ X: ⋆. NaryR n ·X ⇒ X

For all n, read Nary n as the type of terms contained in the intersection of the family of
types X such that NaryR n · X is inhabited. For example, every term t of type Nary zero
has type T also, since T is in this family (specifically, we have that t · T -naryRZ has type T

and erases to |t|). In the other direction, every term of type T also has type Nary zero, since
the only type X satisfying NaryR zero · X is T itself.

However, at the moment we are stuck when attempting to prove NaryR zero · (Nary zero).
Though we see from the preceding discussion that T and Nary zero are extensionally equal
types (they classify the same terms), naryRZ requires that they be definitionally equal!
Furthermore, and as noted in Section 2.2.1, derived extensional type equality does not admit
a general substitution principle, which would allow us to rewrite the type NaryR zero · T to
the desired type by proving TpEq · T · (Nary zero). Therefore, we must modify the definition
of NaryR so that it defines a relation that is functional with respect to extensional type
equality. This is shown in below, with both constructors now quantifying over an additional
type argument X together with evidence that it is extensionally equal to the type of interest.

data NaryR : Nat → ⋆ → ⋆

= naryRZ : ∀ X: ⋆. TpEq ·X ·T ⇒ NaryR zero ·X
| naryRS : ∀ Ih: ⋆. ∀ n: Nat. NaryR n ·Ih →

∀ X: ⋆. TpEq ·X ·(T → Ih) ⇒ NaryR (succ n) ·X

3.2 Proof that NaryR is a Functional Relation
We now overview the proof that NaryR is a functional relation, shown partially in Figure 5
and sketched below (the full Cedille proof can be found in the code repository). Though we
omit many details of the machine-checked derivation from the code listing, we give proof
sketches in natural language to convey the essence of the derivation.

https://github.com/cedille/cedille-developments/blob/master/large-elim-sim/large-elim/

C. Jenkins, A. Marmaduke, and A. Stump 9:7

naryRResp : ∀ n: Nat. ∀ T1: ⋆. NaryR n ·T1 → ∀ T2: ⋆. TpEq ·T1 ·T2 ⇒ NaryR n ·T2

naryRUnique : ∀ n: Nat. ∀ T1: ⋆. NaryR n ·T1 → ∀ T2: ⋆. NaryR n ·T2 → TpEq ·T1 ·T2

naryZEq : TpEq ·(Nary zero) ·T
naryZ : NaryR zero ·(Nary zero)

narySEq : ∀ n: Nat. NaryR n ·(Nary n) → TpEq ·(Nary (succ n)) ·(T → Nary n)
naryS : ∀ n: Nat. NaryR n ·(Nary n) → NaryR (succ n) ·(Nary (succ n))

naryREx : Π n: Nat. NaryR n ·(Nary n)
naryREx zero = naryZ
naryREx (succ n) = naryS -n (naryREx n)

Figure 5 Respectfulness, uniqueness, and existence [source].

Having made the operating notion of type equality extensional, we are required to prove
another property (in addition to uniqueness and existence): it respects (or is congruent with)
extensional type equality.

▶ Proposition 1 (Respectfulness (naryRResp)). For all n : Nat and T1, T2 : ⋆, if Nary relates
n to T1 and T1 is equal to T2, then Nary relates n to T2 also.

Proof idea. By case analysis on the assumed proof x : NaryR n · T1. In both cases, we have
a type X which is equal to T1, so use transitivity to conclude X is equal to T2. ◀

▶ Proposition 2 (Uniqueness (naryRUnique)). For all n : Nat and T1, T2 : ⋆, if Nary relates
n to T1 and also to T2, then T1 and T2 are equal.

Proof idea. By induction on the assumed proofs f1 : NaryR n · T1 and f2 : NaryR n · T2. In
the case for naryRZ , T1 and T2 are equal to T and thus to each other. In the case for naryRS ,
T1 is equal to a type of the form T → Ih1 and T2 is equal to a type of the form T → Ih2
for some Ih1, Ih2 : ⋆, both of which are assumed to satisfy Nary n′ (where n = succ n′). By
the inductive hypothesis, Ih1 and Ih2 are equal. Since the type constructor → respects type
equality in both domain and codomain, we have T → Ih1 is equal to T → Ih2, and thus T1
is equal to T2. ◀

Compared to the first two properties, the proof of existence, naryEx , is more involved. It
proceeds by induction, using lemmas naryZ and naryS , which specialize the constructors
naryRZ and naryRS to the corresponding members of the Nary family. We only sketch the
idea of one of these two lemmas, naryRS (the idea for naryRZ appeared in Section 3.1).

▶ Lemma 3 (naryS). For all n : Nat, if NaryR relates n and Nary n, then it relates succ n

and Nary (succ n).

Proof idea. First, given the assumption that NaryR n · (Nary n) holds, we have
NaryR (succ n) · (T → Nary n) as an instance of the constructor naryRS . From this
and the proof that NaryR respects type equality, it suffices to show that Nary (succ n) and
T → Nary n are equal types. We proceed by proving a two-way type inclusion.

In the first direction, we assume f : Nary (succ n). Since this type is the intersection of
the family of types X such that NaryR (succ n) · X holds, we conclude by showing that
T → Nary n is in this family; this allows us to assign this type to f .

TYPES 2021

https://github.com/cedille/cedille-developments/blob/master/large-elim-sim/large-elim/concrete/nary.ced#L1-L107

9:8 Simulating Large Eliminations in Cedille

naryZC : Nary zero → T
naryZC = tpEq1 -naryZEq

narySC : ∀ n: Nat. Nary (succ n) → (T → Nary n)
narySC -n = tpEq1 -(narySEq -n (naryREx n))

naryZCId : { naryZC = λ x. x }
naryZCId = β

narySCId : ∀ n: Nat. { narySC -n ≃ λ x. x }
narySCId -n = β

Figure 6 Computation laws for Nary as zero-cost coercions [source].

In the second direction, we assume f : T → Nary n and an arbitrary type X such that
Nary (succ n) · X holds, and must show f can be assigned the type X. We appeal
to uniqueness, as NaryR relates succ n to both X and T → Nary n. Since X and
T → Nary n are equal, f can be assigned type X. ◀

▶ Proposition 4 (Existence (naryREx)). For all n : Nat, NaryR relates n and Nary n.

Proof. By induction on n, using lemmas naryZ and naryS . ◀

3.3 Computation Laws as Zero-cost Type Coercions
The proof of existence, naryREx , takes time linear in its argument n to compute a proof
of NaryR n · (Nary n). Therefore, at first glance it would seem that any type coercions
using naryEx could not be constant time. However, thanks to erasure in CDLE this is not
the situation: eliminators tpEq1 and tpEq2 (Figure 3) take the proof of type equality as
an erased argument, meaning the runtime complexity of naryREx is irrelevant to the type
coercion to which it entitles us!

Figure 6 demonstrates concretely the above discussion. Therein, we define the type
coercions naryZC and narySC , corresponding to the two computation laws (left-to-right)
for NaryR. In the definition of narySC , note that n is bound as an erased argument, and
that our problematic linear-time proof naryEx occurs only as part of the erased argument to
tpEq1 . Furthermore, we are able to prove that these to coercions are equal to the identity
function. The proofs, named naryZCId and narySCId in the figure, are given by β in both
cases, meaning that this equality holds not just propositionally, but definitionally – as we
would expect given the erasure rules for tpEq1 .

▶ Example 5. We conclude with an example: applying an n-ary function to n arguments of
type T , given as a length-indexed list (Vec). This is shown as appN below.
appN : ∀ n: Nat. Nary n → Vec ·T n → T
appN -zero f vnil = naryZC f
appN -(succ n) f (vcons -n x xs) = appN -n ((narySC -n f) x) xs

The definition proceeds by induction on the list of arguments of type Vec · T n. In the vcons
case, the given natural number is revealed to have the form succ n, so we may coerce the
type of f : Nary (succ n) to the type T → Nary n to may apply f to the head of the list,
then recursively call appN on the tail.

https://github.com/cedille/cedille-developments/blob/master/large-elim-sim/large-elim/concrete/nary.ced#L109-L119

C. Jenkins, A. Marmaduke, and A. Stump 9:9

4 Generic Programming Case Studies

In the previous section, we outlined the recipe simulating large eliminations, and in particular
we showed explicitly the use of type coercions for the example of applying an n-ary function.
For the case studies we consider next, all code listings are presented in a syntax that omits
the uses of type coercions to improve readability. In our implementation, we must explicitly
use these coercions as well as several substitution lemmas for TpEq over type constructors.
As CDLE is a kernel theory (and thus not intended to be ergonomic to program in), the
purpose of these examples is to show that this simulation is indeed capable of expressing
common generic programming tasks, and we leave the implementation of a high-level surface
language for its utilization as future work. We do, however, remark on any new difficulties
that are obscured by this presentation (such as Remark 9). Full details of all examples of
this section can be found in the repository associated with this paper.

4.1 A Closed Universe of Strictly Positive Datatypes

data Descr : ⋆

= idD : Descr
| constD : Descr
| pairD : Descr → Descr → Descr
| sumD : Π c: C. (I c → Descr) → Descr
| sigD : Π n: Nat. (Fin n → Descr) → Descr

Decode : ⋆ → Descr → ⋆

Decode ·T idD = T
Decode ·T constD = Unit
Decode ·T (pairD d1 d2) = Pair ·(Decode ·T d1) ·(Decode ·T d2)
Decode ·T (sumD c f) = Sigma ·(I c) ·(λ i: I c. Decode ·T (f i))
Decode ·T (sigD n f) = Sigma ·(Fin n) ·(λ i: Fin n. Decode ·T (f i))

U : Descr → ⋆

U d = µ (λ T: ⋆. Decode ·T d)

inSig : ∀ n: Nat. ∀ cs: Fin n → Descr. Π i: Fin n. U (cs i) → U (sigD n cs)
inSig -n -cs i d = in (i , d)

Figure 7 A closed universe of strictly positive types [Descr source] [Decode source].

In the preceding section, we saw an example of arity-generic programming. We consider
now a type-generic task: proving the no confusion property [5] of datatype constructors for
a closed universe of strictly positive types. For the datatype universe, the idea (describe in
more detail by Dagand and McBride [9]) is to define a type whose elements are interpreted
as codes for datatype signatures and combine this with a type-level least fixedpoint operator.

This universe is shown in Figure 7, where Descr is the type of codes for signatures,
Decode the large elimination interpreting them, and C : ⋆ and I : C → ⋆ are parameters to
the derivation. Signatures comprise the identity functor (idD), a constant functor returning
the unitary type Unit (constD), a product of signatures (pairD), and two forms of sums.
The latter of these, sigD, takes an argument n : Nat for the number of constructors and
a family of n descriptions of the constructor argument types (Fin n is the type of natural
numbers less than n). The former, sumD, is a more generalized form that takes a code c : C

TYPES 2021

https://github.com/cedille/cedille-developments/blob/master/large-elim-sim/large-elim/concrete/universe/descr.ced
https://github.com/cedille/cedille-developments/blob/master/large-elim-sim/large-elim/concrete/universe/decode.ced

9:10 Simulating Large Eliminations in Cedille

for a constructor argument type, and a mapping of values of type I c (where I interprets
these codes) to descriptions. Both are interpreted by Decode as dependent pairs which pack
together an element of the indexing type (I c or Fin n) with the decoding of the description
associated with that index.
▶ Remark 6. In order to express a variety of datatypes, our universe is parameterized by
codes C and interpretations I : C → ⋆ for constructor argument types, such as used in
Example 8 below. Unlike much of the literature describing the definition of a closed universe
of strictly positive types [6, 9, 8] wherein the host language is a variation of intrinsically typed
Martin-Löf type theory, CDLE is extrinsically typed – type arguments to constructors can
play no role in computation, even in the (simulated) computation of other types. This appears
to be essential for avoiding paradoxes of the form described by Coquand and Paulin [7], as
CDLE is an impredicative theory in which datatype signatures need not be strictly positive.

Finally, the family of datatypes within this universe is given as U , defined using a type-
level least fixedpoint operator µ which we discuss in more detail in Section 5. We define a
constructor inSig for datatypes whose signatures are described by codes of the form sigD n cs

(for n : Nat and cs : Fin n → Descr) using the generic constructor in : F µF → µF .

▶ Example 7 (Natural numbers). The type of natural numbers can be defined as:
unatSig : Descr
unatSig = sigD 2 (fvcons constD (fvcons idD fvnil))

UNat = U unatSig

where fvcons and fvnil are utilities for expressing functions out of Fin n in a list-like notation.
The constructors of UNat are:

uzero : UNat
uzero = inSig fin0 unit

usucc : UNat → UNat
usucc n = inSig fin1 n

We do not need the parameters C and I for these definitions.

▶ Example 8 (Lists). Let T : ⋆ be an arbitrary type, and let parameters C and I be resp.
Unit and λ _. T . The type of lists containing elements of type T is defined as:
ulistSig : Descr
ulistSig = sigD 2 (fvcons constD (fvcons (sumD unit (λ _. idD)) fvnil))

UList = U ulistSig

with constructors defined similarly to those of UNat in the preceding example.

Proving No Confusion

Figure 8 shows the definition of the no confusion property, NoConfusion, as well as the type
of the proof noConfusion which states that the property holds for all equal datatype values.
NoConfusion is defined by case analysis over the two datatype values, and additionally
abstracts over a test of equality between the constructor labels i1 and i2 . The clause in
which they are equal corresponds to the statement of constructor injectivity (the two terms
are equal only if equal arguments were given to the constructor); the clause where i1 ̸= i2
gives the statement of disjointness (datatype expressions cannot be equal and also be in the
image of distinct constructors). The proof noConfusion (definition omitted) proceeds by
abstracting over the same equality test, and in both cases relies on injectivity of inSig.

C. Jenkins, A. Marmaduke, and A. Stump 9:11

NoConfusion : Π n: Nat. Π cs: Fin n → Descr. U (sigD n cs) → U (sigD n cs) → ⋆

NoConfusion n cs (in (i1 , d1)) (in (i2 , d2)) | i1 =? i2
NoConfusion n cs (in (i1 , d1)) (in (i1 , d2)) | yes _ = { d1 ≃ d2 }
NoConfusion n cs (in (i1 , d1)) (in (i2 , d2)) | no _ = False

noConfusion : ∀ n: Nat. ∀ cs: Fin n → Descr.
Π d1: U (sigD n cs). Π d2: U (sigD n cs).
{ d1 ≃ d2 } → NoConfusion d1 d2

Figure 8 Statement and proof of no confusion [source].

κTpVec (n : Nat) = Fin n → ⋆

TVNil : κTpVec zero
TVNil _ = ∀ X: ⋆. X.

TVCons : Π n: Nat. Π H: ⋆. Π L: κTpVec n → κTpVec (succ n)
TVCons n ·H ·L zeroFin = H
TVCons n ·H ·L (succFin i) = L i

TVHead : Π n: Nat. κTpVec (succ n) → ⋆

TVHead n ·L = L zeroFin

TVTail : Π n: Nat. κTpVec (succ n) → κTpVec n
TVTail n ·L i = L (succFin i)

TVMap : Π F: ⋆ → ⋆. Π n: Nat. κTpVec n → κTpVec n
TVMap ·F n ·L i = F ·(L i)

TVFold : Π F: ⋆ → ⋆ → ⋆. Π n: Nat. κTyVec (succ n) → ⋆

TVFold ·F zero ·L = TVHead zero ·L
TVFold ·F (succ n) ·L = F ·(TVHead n ·L) ·(TVFold n ·(TVTail (succ n) ·L))

Figure 9 Vectors of types [source].

▶ Note. Though our definition of NoConfusion follows that of Dagand and McBride [9], it
has a subtle difference: the primitive equality type in CDLE is untyped. Specifically, in the
case where we have that i1 and i2 are equal, we do not need the evidence of this fact to make
{d1 ≃ d2}, the type of equalities between d1 : U (cs i1) and d2 : U (cs i2), well-formed.

4.2 Arity-generic Map Operation

The last case study we consider is an arity-generic vector operation that generalizes map.
We summarize the goal (Weirich and Casinghino [34] give a more detailed explanation):
define a function which, for all n and families of types (Ai)i∈{1···n+1}, takes an n-ary function
of type A1 → . . . → An → An+1 and n vectors of type Vec · Ai m (for arbitrary m and
i ∈ {1, . . . , n}), and produces a result vector of type Vec · An+1 m. Note that when n = 1,
this is the usual map operation, and when n = 2 it is zipWith (when n = 0, we have
repeat : Π m :Nat. A1 → V ec · A1 m).

TYPES 2021

https://github.com/cedille/cedille-developments/blob/master/large-elim-sim/large-elim/concrete/universe/noconfusion.ced
https://github.com/cedille/cedille-developments/blob/master/large-elim-sim/large-elim/concrete/zipwith/tpvec.ced

9:12 Simulating Large Eliminations in Cedille

RespTpEq2 : Π F: ⋆ → ⋆ → ⋆. ⋆

RespTpEq2 ·F = ∀ A1: ⋆. ∀ A2: ⋆. TpEq ·A1 ·A2 ⇒
∀ B1: ⋆. ∀ B2: ⋆. TpEq ·B1 ·B2 ⇒
TpEq ·(F ·A1 ·B1) ·(F ·A2 ·B2)

tvFoldZEq : ∀ F: ⋆ → ⋆ → ⋆. RespTpEq2 ·F ⇒
∀ X: ⋆. TpEq ·(TVFold ·F zero ·(TVCons zero ·X ·TVNil)) ·X

tvFoldSEq : ∀ F: ⋆ → ⋆ → ⋆. RespTpEq2 ·F ⇒
∀ n: Nat. ∀ X: ⋆. ∀ L: κTyVec (succ n).
TpEq ·(TVFold ·F (succ n) ·(TVCons (succ n) ·X ·L)) ·(F ·X ·(TVFold ·F n ·L))

Figure 10 Variant computation laws for TVFold [source].

4.2.1 Vectors of Types

Our first task is to represent Nat-indexed families – i.e., length-indexed lists, or vectors
– of types. As discussed in Remark 6, it is not possible to define vectors of types which
support lookup as a Cedille datatype. We instead use simulated large eliminations to define
them directly as lookup functions. This definition, along with some operations, is shown in
Figure 9.

The kind of length n vectors of types, κTpVec n, is defined as a function from Fin n to ⋆.
For the empty type vector TVNil, it does not matter what type we give for the right-hand
side of the equation as Fin zero is uninhabited. For TVCons, we use a (non-recursive) large
elimination of the given index, returning the head type H if it is zero and performing a
lookup in the tail vector L otherwise. The destructors TVHead and TVTail and the mapping
function TVMap are defined as expected. The fold operation, TVFold, is given as a large
elimination of the Nat argument; in the successor case, the recursive call is made on the tail
of the given type vector L.

▶ Remark 9. Somewhat hidden by our use of high-level pseudocode is the fact that, since
type equality does not admit a general substitution principle, effective use of TVFold requires
restricting its first argument to type constructors F : ⋆ → ⋆ → ⋆ which support substitution
with type equality. In particular, if we do not make this assumption, then for types of the
form TVFold · F (succ (succ n)) · L we can in general simulate only one computation step.

Additionally, under the assumption type constructor F respects type equality in both
its type arguments, we are able to give an alternative, more familiar characterization of
TVFold · F by expressing its action over type vectors constructed from TVNil and TVCons.
We show this characterization in Figure 10, where RespTpEq2 · F formally expresses that
F respects type equality, and tvFoldZEq and tvFoldSEq respectively express the action of
TVFold on a singleton list and a list with two or more arguments.

4.2.2 ArrTp and nvecMap

We are now ready to define the arity-generic vector operation nvecMap, shown in Figure 11.
We begin with ArrTp, the large elimination that computes the type A1 → · · · → An → An+1
as a fold over a vector of types L = (Ai)i∈{1···n+1}. The type Vec·A1 m → . . . → Vec·An m →
Vec · An+1 m is then constructed simply by composing ArrTp n with a map over L taking
each entry Ai to the type Vec · Ai m, shown in ArrTpVec.

https://github.com/cedille/cedille-developments/blob/master/large-elim-sim/large-elim/concrete/zipwith/tpvec/fold.ced#L99-L131

C. Jenkins, A. Marmaduke, and A. Stump 9:13

ArrTp : Π n: Nat. κTpVec (succ n) → ⋆

ArrTp = TVFold ·(λ X: ⋆. λ Y: ⋆. X → Y)

ArrTpVec m n ·L = ArrTp n ·(TVMap ·(λ A: ⋆. Vec ·A m) (succ n) ·L)

vrepeat : ∀ A: ⋆. Π m: Nat. A → Vec ·A m
vapp : ∀ A: ⋆. ∀ B: ⋆. ∀ m: Nat. Vec ·(A → B) m → Vec ·A m → Vec ·B m

nvecMap : Π m: Nat. Π n: Nat. ∀ L: κTpVec (succ n). ArrTp n ·L → ArrTpVec m n ·L
nvecMap m n ·L f = go n ·L (vrepeat m f)

where
go : Π n: Nat. ∀ L: κTpVec (succ n) → Vec ·(ArrTp n ·L) → ArrTpVec m n ·L
go zero ·L fs = fs
go (succ n) ·L fs = λ xs. go n ·(TVTail (succ n) ·L) (vapp -m fs xs)

Figure 11 Arity-generic map [source].

For nvecMap, we use vrepeat to create m replicas of the given n-ary function argument f ,
then invoke the helper function go which is defined by recursion over n. In the zero case, fs
has type Vec · (TVHead zero · L) m, which is equal to the expected type (by the computation
laws for ArrTp and a proof that Vec respects type equality). In the successor case, fs is a
vector of functions where the type of each element is equal to

TVHead (succ n) · L → ArrTp n · (TVTail (succ n) · L)

and the expected type is

Vec · (TVHead (succ n) · L) m → ArrTpVec m n · (TVTail (succ n) · L)

so we assume such a vector xs, use vapp to apply each function of fs point-wise to the
elements of xs, then recurse to consume the remaining arguments.

5 Generic Simulation

We now generalize the approach outlined in Section 3 and simulate large eliminations
generically for datatypes. In the Cedille tool, datatype declarations are elaborated [16]
to impredicative encodings provided by the generic framework of Firsov et al. [12]. This
framework is based on the categorical semantics of datatypes as initial algebras [15], specifically
Mendler-style algebras [32], and it supports a broad class of datatypes including those that
are nonstrictly positive. To enjoy this same generality and to establish a foundation for
surface-language syntax of large eliminations in the Cedille tool, the developments in this
section also uses the framework of op. cit. Specifically, we simulate large eliminations for all
datatypes of the form µF : ⋆, where F : ⋆ → ⋆ is a covariant (but otherwise arbitrary) type
scheme and µ is the operator for type-level least fixedpoints provided by Firsov et. al. [12].

We first review Mendler-style recursion, and the framework of op. cit. for inductive
Mendler-style lambda encodings of datatypes in CDLE. Then, we define the notion of a
Mendler-style F -algebra at the level of types, overcoming a technical difficulty for classical
F -algebras arising from CDLE’s truncated sort hierarchy. Finally, we show that if a type-level
Mendler F -algebra A satisfies a certain condition with respect to derived type equality, then
A can be used for a simulated large elimination.

TYPES 2021

https://github.com/cedille/cedille-developments/blob/master/large-elim-sim/large-elim/concrete/zipwith/nvecMap.ced

9:14 Simulating Large Eliminations in Cedille

5.1 Mendler-style Recursion and Encodings
We briefly review the datatype recursion scheme à la Mendler. Originally proposed by
Mendler [23] as a method of impredicatively encoding datatypes, Uustalu and Vene have
shown that it forms the basis of an alternative categorical semantics of inductive datatypes [32],
and the same have advocated for the Mendler style of coding recursion, arguing that it is
more idiomatic than the classical formulation of structured recursion schemes [33].

▶ Definition 10 (Mendler-style primitive recursion). Let F : ⋆ → ⋆ be a positive type scheme.
The datatype with signature F is µF with constructor in : F · µF → µF . The Mendler-style
primitive recursion scheme for µF is described by the typing and computation law given for
rec below:

Γ ⊢ T : ⋆ Γ ⊢ a : ∀ R :⋆. (R → µF) → (R → T) → F · R → T

Γ ⊢ rec · T a : µF → T

rec · T a (in d)⇝ a · µF (id · µF) (rec · T a) d

In Definition 10, the type T (the carrier) is the type of results we wish to compute, and
the term a (the action) gives a single step of a recursive function, and we call the two of
them together a Mendler-style F -algebra for recursion. We understand the type argument R

of the action as a kind of subtype of the datatype µF – specifically, a subtype containing
only predecessors on which we are allowed to make recursive calls.

The first term argument of the action, a function of type R → µF , we can view as the
coercion that realizes the subtyping relation; in the computation law, type argument R is
instantiated to µF , and the coercion is just id · µF , the identity. The next argument, a
function of type R → T , is the handle for making recursive calls; in the computation law, it
is instantiated to rec · T a. Finally, the last argument is an “F -collection” of predecessors
of the type R; in the computation law, it is instantiated to the collection of predecessors
d : F µF of the datatype value in d.

▶ Note. We can use the fact that the “coercion” function for Mendler recursion is always
instantiated to the identity. In such cases, in CDLE it is idiomatic to have, instead of a
computationally relevant argument of type R → µF , a computationally irrelevant argument
of type Cast · R · µF (Figure 2). Since a Cast term is a proof of a type inclusion, this makes
explicit the previously informal intuition that the quantified type R is a subtype of µF .

Generic framework for Mendler-style datatypes. Figure 12 gives an axiomatic summary
of the generic framework of Firsov et al. [12] for deriving efficient Mendler-style lambda
encodings of datatypes with induction. In all inference rules save the type formation rule of
µ, the datatype signature F is required to be Monotonic (that is, positive).

in is the datatype constructor. For the developments in this section, we find the Mendler-
style presentation given in the figure more convenient than the classical type of in.
out is the datatype destructor, revealing the F -collection of predecessors used to construct
the given value.
PrfAlg is a generalization of Mendler-style algebras to dependent types. Compared to
the earlier discussion:

the carrier is a predicate P : µF → ⋆ instead of a type;
the coercion function R → µF from Mendler recursion becomes an erased witness of
type Cast · R · µF ;

C. Jenkins, A. Marmaduke, and A. Stump 9:15

Monotonic · F = ∀ X :⋆. ∀ Y :⋆. Cast · X · Y ⇒ Cast · (F · X) · (F · Y)
PrfAlg · F m · P = ∀ R :⋆. ∀ c :Cast · R · µF.

(Π x :R. P (cast -c x)) → Π xs :F · R. P (in -m -c xs)

Γ ⊢ F : ⋆ → ⋆
Γ ⊢ µF : ⋆

Γ ⊢ F : ⋆ → ⋆ Γ ⊢ m : Monotonic · F
Γ ⊢ in -m : ∀ R :⋆. Cast · R · µF ⇒ F · R → µF

Γ ⊢ F : ⋆ → ⋆ Γ ⊢ m : Monotonic · F
Γ ⊢ out -m : µF → F · µF

Γ ⊢ F : ⋆ → ⋆ Γ ⊢ m : Monotonic · F
Γ ⊢ ind -m : ∀ P :µF → ⋆. PrfAlg · F m · P → Π x :µF. P x

|ind -m · P a (in -m · R -c xs)| =βη |a · R -c (λ x. ind -m · P a (cast -c x)) xs|
|out -m (in -m · R -c xs)| =βη |xs|

Figure 12 Axiomatic summary of the generic framework of Firsov et al. [12].

given a handle for invoking the inductive hypothesis on predecessors of type R and an
F -collection of such predecessors, a P -proof F -algebra action must show that P holds
for the value constructed from these predecessors using in.

ind gives the induction principle: to prove a property P for an arbitrary term of type
µF , it suffices to give a P -proof F -algebra.

5.2 Mendler-style Type Algebras
Like other (well-founded) recursive definitions, a large elimination can be expressed as a fold
of an algebra. In theories with a universe hierarchy, expressing this algebra is no difficult
task: the signature F can be universe polymorphic so that its application to either a type or
kind is well-formed. This is not the case for CDLE, however, as it has a truncated hierarchy
of sorts and no sort polymorphism. More specifically, there is no way to express a classical
F -algebra on the level of types, e.g., a kind (F ⋆) → ⋆, as it is not possible to define a
function on the level of kinds (which F would need to be).

Thankfully, this difficulty disappears when the type algebra is expressed in the Mendler
style! This is because F does not need to be applied to the kind (⋆) of previously com-
puted types, only to the universally quantified type R. Instead, types are computed from
predecessors using an assumption of kind R → ⋆.

Figure 13 shows the definition κAlgTy of the kind of Mendler-style algebras for primitive
recursion having carrier ⋆ (henceforth we will refer to the action of type algebras simply
as algebra). Just as in the concrete derivation of Section 3, we require that algebras must
respect type equality. This condition is codified in the figure as AlgTyResp, which says:

given two subtypes R1 and R2 of µF (which need not be equal),
and two inductive hypotheses Ih1 and Ih2 for computing types from values of type R1
and R2, resp.,
that return equal types on equal terms, then
we have that the algebra A returns equal types on equal F -collections of predecessors
(where the types of predecessors are resp. R1 and R2).

TYPES 2021

9:16 Simulating Large Eliminations in Cedille

κAlgTy = Π R: ⋆. Cast ·R ·µF → (R → ⋆) → F ·R → ⋆ .

AlgTyResp : κAlgTy → ⋆

= λ A: κAlgTy.
∀ R1: ⋆. ∀ R2: ⋆. ∀ c1: Cast ·R1 ·µF. ∀ c2: Cast ·R2 ·µF.
∀ Ih1: R1 → ⋆. ∀ Ih2: R2 → ⋆.
(Π r1: R1. Π r2: R2. { r1 ≃ r2 } → TpEq ·(Ih1 r1) ·(Ih2 r2)) →
Π xs1: F ·R1. Π xs2: F ·R2. { xs1 ≃ xs2 } →
TpEq ·(A ·R1 c1 ·Ih1 xs1) ·(A ·R2 c2 ·Ih2 xs2) .

Figure 13 Mendler-style type algebras [source].

▶ Remark 11. A careful reader may have noticed that, in Figure 13, we place no constraints
on the witnesses c1 : Cast · R1 µF and c2 : Cast · R2 · µF , even though they both appear in
the final equality of AlgTyResp. This is because none are needed: recall from Figure 2 that
etaCast tells us all witnesses of a type coercion are provably equal to λ x. x, so in particular
c1 and c2 are provably equal to each other.

▶ Example 12. Let F ·R = 1+R be the signature of natural numbers with zeroF : ∀ R :⋆. F ·R
and succF : ∀ R :⋆. R → F · R the signature’s injections. For a given property P : µF → ⋆,
we can express as a fold over a Mendler type algebra the property that P holds for a given
value and all its predecessors, as might be used for a hypothesis for strong induction. That
algebra is given below as StrongIndAlg:

StrongIndAlg : κAlgTy
StrongIndAlg ·R c Ih (zeroF ·R) = P (in -c (zeroF ·R))
StrongIndAlg ·R c Ih (succF ·R n) =

Pair ·(P (in -c (succF ·R n))) ·(StrongIndAlg ·R c Ih n)

Note that unlike previous examples, this algebra is recursive rather than being only iterative,
as the cast c is used (by in) to access predecessors at type µF .

Inspecting this definition, we see it indeed satisfies the condition AlgTyResp, with the
proof sketch as follows. We assume R1, R2, c1 : Cast · R1 · µF , c2 : Cast · R2 · µF , and
xs1 : F · R1 and xs2 : F · R2 such that {xs1 ≃ xs2}. We may proceed by considering the cases
where both are formed by the same injection.

In the zeroF case, the algebra returns P (in -c1 (zeroF · R1)) and P (in -c2 (zeroF · R2)),
which are convertible by erasure (we do not need etaCast for this).
In the succF case, Pair respects type equality, so it suffices to prove that the types of the
components are equal. From the assumption that succF · R1 n1 is equal to succF · R2 n2
(for some n1 : R1, n2 : R2), we obtain {n1 ≃ n2}, allowing us to conclude by using term
substitution in the first component type and the inductive hypothesis for the second.

▶ Remark 13. We again note that, in the definition of AlgTyResp, the two assumed subtypes
R1 and R2 need not be equal. As a consequence, in order to satisfy this condition the type
produced by the algebra should not depend on its type argument R. A high-level surface
language implementation for large eliminations in Cedille could require that the bound type
variable R only occurs in type arguments of term subexpressions. As definitional equality of
types is modulo erasure of typing annotations in term subexpressions, this would ensure that
the meaning (extent) of the type does not depend on R.

https://github.com/cedille/cedille-developments/blob/master/large-elim-sim/large-elim/generic/algty.ced

C. Jenkins, A. Marmaduke, and A. Stump 9:17

data FoldR : µF → ⋆ → ⋆

= foldRIn
: ∀ R: ⋆. ∀ c: Cast ·R ·µF. ∀ xs: F ·R.

∀ Ih: R → ⋆. (Π x: R. FoldR (cast -c x) ·(Ih x)) →
∀ X: ⋆. TpEq ·X ·(A ·R c ·Ih xs) ⇒ FoldR (in -c xs) ·X

Fold : µF → ⋆

Fold x = ∀ X: ⋆. FoldR x ·X ⇒ X .

foldRResp : ∀ x: µF. ∀ X1: ⋆. FoldR x ·X1 → ∀ X2: ⋆. TpEq ·X1 ·X2 ⇒ FoldR x ·X2
foldRUnique : ∀ x: µF. ∀ X1: ⋆. FoldR x ·X1 → ∀ X2: ⋆. FoldR x ·X2 → TpEq ·X1 ·X2
foldREx : Π x: µF. FoldR x ·(Fold x)

foldBeta : ∀ R: ⋆. ∀ c: Cast ·R ·µF. ∀ xs: F ·R.
TpEq ·(Fold (in -c xs)) ·(A ·R c ·(λ x: R. Fold (cast -c x)) xs)

foldEta : ∀ H: µF → ⋆.
Π homH: ∀ R: ⋆. ∀ c: Cast ·R ·µF. Π xs: F ·µF.

TpEq ·(H (in -c xs)) ·(A ·R c ·(λ x: R. H (cast -c x)) xs).
Π x: µF. TpEq ·(H x) ·(Fold x)

Figure 14 Generic large elimination [source].

5.3 Relational Folds of Type Algebras
Figure 14 gives the definition of FoldR, a GADT expressing the fold of a type level algebra
A : κAlgTy over µF as a functional relation (A and F are parameters to the definition). It
has a single constructor, foldRIn, corresponding to the single generic constructor in of the
datatype, whose type we read as follows:

given a subtype R of µF and a collection of predecessors xs : F · R, and
a function Ih : R → ⋆ that, for every element x in its domain, produces a type related
(by FoldR) to that element, then
the datatype value constructed from xs is related to all types that are equal to A·R c·Ih xs.

Just as in Section 3, to show that the inductive relation given by FoldR determines a
function (from µF to equivalence classes of types), we define a canonical name (Fold) for
the types determined by the datatype elements and prove that the relation satisfies three
properties: it respects type equality, and every datatype element uniquely determines a type.
The proofs of respectfulness and existence properties proceed similarly to the concrete proofs
given for n-ary functions (see the code repository for full details). We use the condition on
type algebras in the proof of uniqueness, so we give a proof sketch below.

▶ Proposition 14 (Uniqueness (foldRUnique)). For all x : µF and X1, X2 : ⋆, if FoldR
relates x to both X1 and X2, then X1 and X2 are equal.

Proof idea. By induction on the proofs f1 : FoldR x ·X1 and f2 : FoldR x ·X2. In the case for
foldRIn for f1, we know that x is of the form in ·R1 -c1 xs1 for some R1 : ⋆, c1 : Cast ·R1 ·µF ,
and xs1 : F · R. Similarly, from f2 we know that x is also of the form in · R2 -c2 xs2. By
injectivity of in, we know that {xs1 ≃ xs2}. Call this result (1).

In the case for foldRIn, we also are given: from f1, a type family Ih1 : R1 → ⋆ such that
FoldR relates every x : R1 (R1 is a subtype of µF) to Ih1 x, and a type X1 extensionally equal
to A · R1 c1 · Ih1 xs1; from f2, a type family Ih2 and type X2 satisfying similar conditions.
By the inductive hypothesis, we can obtain the fact that for all r1 : R1 and r2 : R2 such that
{r1 ≃ r2}, Ih1 r1 is equal to Ih2 r2. Call this result (2).

TYPES 2021

https://github.com/cedille/cedille-developments/blob/master/large-elim-sim/large-elim/generic/large.ced

9:18 Simulating Large Eliminations in Cedille

We may now use results (1) and (2) to invoke the assumed condition on A that it respects
type equality, obtaining a proof that A ·R1 c1 · Ih1 xs1 is equal to A ·R2 c2 · Ih2 xs2. From this
and some equational reasoning it follows that X1 is equal to X2, concluding the proof. ◀

▶ Remark 15. At present, we are unable to express in a single definition type constructor
algebras with arbitrarily kinded carriers. Thus, while our derivation is parametric in a
datatype signature, it must be repeated once for each type constructor kind. This process is
however entirely mechanical, so an implementation of a higher-level surface language for large
eliminations in Cedille could elaborate each variant of the derivation as needed, removing
the burden of writing boilerplate code.

5.3.1 Characterization
The last two definitions of Figure 14 characterize Fold as a recursion scheme. The computation
law, given by foldBeta, follows a similar pattern as for the Mendler-style recursion shown
in Definition 10. Fold acts over a datatype value constructed with predecessors xs : F · R

by calling the type level algebra A with Fold as the handle for recursive calls. Since in is a
Mendler-style datatype constructor, we instantiate the type argument of A to R so that A

may be applied directly to xs. The requirement that A satisfies AlgTyResp means that this
is equivalent (up to type equality) to instantiating A with µF and applying this to xs after
casting xs to the type F · µF .

In the case studies of Sections 3 and 4, we discussed only the computation laws of our
simulated large eliminations. For the generic result, we go further: Fold satisfies (up to type
equality and function extensionality) the extensionality law for Mendler-style recursion, which
says that Fold is uniquely defined by its action on the values generated by the constructor in.
This is shown as foldEta in the figure, whose type says that any other function H : µF → ⋆

that satisfies the same computation law as Fold is in fact equal to Fold.

6 Related Work

CDLE. In an earlier formulation of CDLE [27], Stump proposed a mechanism called
lifting which allowed simply typed terms to be lifted to the level of types. While adequate
for both proving constructor disjointness for natural numbers and enabling some type-
generic programming (such as formatted printing in the style of printf), its presence
significantly complicated the meta-theory of CDLE and its expressive ability was found to
be incomplete [28]. Lifting was subsequently removed from the theory, replaced with the
simpler δ axiom for proof discrimination.

Marmaduke et al. [22] described a method of encoding datatype signatures that enables
constructor subtyping (à la Barthe and Frade [3]) with zero-cost type coercions. A key
technique for this result was the use of intersection types and equational constraints to
simulate (again with type coercions) the computation of types by case analysis on terms –
that is, non-recursive large eliminations. Their method of simulation is therefore suitable for
expressing type algebras, but not their folds.

System FC . The intermediate language used by the Haskell compiler GHC, System FC [29],
is an extension of System F with type coercions and equalities. In particular, within
System FC one can express nonparametric type-level functions by adding type equality
axioms, such as f Int ∼ Bool (where ∼ is the type equality operator for FC). In our
approach, clauses of type-level functions are encoded using datatype constructors, and
incoherent or partial functions cannot be used because the relation defined by the underlying
datatype must be proven to be functional.

C. Jenkins, A. Marmaduke, and A. Stump 9:19

MLTT and CC. Smith [26] showed that disjointness of datatype constructors was not
provable in Martin-Löf type theory without large eliminations by exhibiting a model of types
with only two elements – a singleton set and the empty set. In the calculus of constructions,
Werner [35] showed that disjointness of constructors would be contradictory by using an
erasure procedure to extract System F ω terms and types, showing that a proof of 1 ̸= 0 in
CC would imply a proof of (∀ X :⋆. X → X) → ∀ X :⋆. X in F ω. Proof irrelevance is central
to both results. Since in CDLE proof relevance is axiomatized with δ, this paper can be
viewed as a kind of converse to these results: large eliminations enable proof discrimination,
and proof discrimination together with extensional type equality enable the simulation of
large eliminations.

GADT Semantics. Our simulation of large eliminations rests upon a semantics of GADTs
which (intuitively) interprets them as the least set generated by their constructors. However,
the semantics of GADTs is a subject which remains under investigation. Johann and
Polonsky [19] recently proposed a semantics which makes them functorial, but in which the
above-given intuition fails to hold. In subsequent work, Johann et al. [18] explain that GADTs
whose semantics are instead based on impredicative encodings (in which case they are not
in general functorial) may be equivalently expressed using explicit type equalities. Though
they exclude functorial semantics for GADTs in CDLE, the presence of type equalities (both
implicit in the semantics and the explicit uses of derived extensional type equality) are
essential for defining a relational simulation of large eliminations.

7 Conclusion and Future Work

We have shown that large eliminations may be simulated in CDLE using a derived extensional
type equality, zero-cost type coercions, and GADTs to inductively define functional relations.
This result overcomes seemingly significant technical obstacles, chiefly CDLE’s lack of
primitive inductive types and universe polymorphism, and is made possible by an axiom for
proof discrimination. To demonstrate the effectiveness of the simulation, we examine several
case studies involving type- and arity-generic programming. Additionally, we have shown
that the simulation may be derived generically (that is, parametric in a datatype signature)
with Mendler-style type algebras satisfying a certain condition with respect to type equality.

Syntax. In this paper, we have chosen to present code examples using a high-level syntax
to improve readability. While the current version of Cedille [10] supports surface language
syntax for datatype declarations and recursion, syntax for large eliminations remains future
work. Support for this requires addressing (at least) two issues. First, it requires a sound
criterion for determining when the type algebra denoted by the surface syntax satisfies
the condition AlgTyResp (Section 5.2). We conjecture that a simple syntactic occurrence
check, along the lines outlined in Remark 13, for erased arguments will suffice. Second, it is
desirable that the type coercions that simulate the computation laws of a large elimination
be automatically inferred using a subtyping system based on coercions [21, 30].

Semantics. As discussed in Section 2.2.1, the derived form of extensional type equality used
in our simulation lacks a substitution principle. However, we claim that such a principle is
validated by CDLE’s semantics [28], wherein types are interpreted as sets of (βη-equivalence
classes of) terms of untyped lambda calculus. Under this semantics, a proof of extensional type
equality in the syntax implies equality of the semantic objects. We are therefore optimistic

TYPES 2021

9:20 Simulating Large Eliminations in Cedille

that CDLE may be soundly extended with a kind-indexed family of type constructor equalities
with an extensional introduction form and substitution for its elimination form, removing all
limitations of the simulation of large eliminations.

References
1 Stuart F. Allen, Mark Bickford, Robert L. Constable, Richard Eaton, Christoph Kreitz, Lori

Lorigo, and E. Moran. Innovations in computational type theory using NuPRL. J. Applied
Logic, 4(4):428–469, 2006. doi:10.1016/j.jal.2005.10.005.

2 Robert Atkey. Syntax and semantics of quantitative type theory. In Anuj Dawar and
Erich Grädel, editors, Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages 56–65. ACM, 2018.
doi:10.1145/3209108.3209189.

3 Gilles Barthe and Maria João Frade. Constructor subtyping. In S. Doaitse Swierstra,
editor, Programming Languages and Systems, 8th European Symposium on Programming,
ESOP’99, Held as Part of the European Joint Conferences on the Theory and Practice
of Software, ETAPS’99, Amsterdam, The Netherlands, 22-28 March, 1999, Proceedings,
volume 1576 of Lecture Notes in Computer Science, pages 109–127. Springer, 1999. doi:
10.1007/3-540-49099-X_8.

4 Corrado Böhm, Mariangiola Dezani-Ciancaglini, P. Peretti, and Simona Ronchi Della Rocca.
A discrimination algorithm inside lambda-beta-calculus. Theor. Comput. Sci., 8:265–292, 1979.
doi:10.1016/0304-3975(79)90014-8.

5 R. M. Burstall and J. A. Goguen. Algebras, Theories and Freeness: An Introduction for
Computer Scientists, pages 329–349. Springer Netherlands, Dordrecht, 1982. doi:10.1007/
978-94-009-7893-5_11.

6 James Chapman, Pierre-Évariste Dagand, Conor McBride, and Peter Morris. The gentle art of
levitation. In Proceeding of the 15th ACM SIGPLAN international conference on Functional
programming, ICFP 2010, Baltimore, Maryland, USA, September 27-29, 2010, pages 3–14,
2010. doi:10.1145/1863543.1863547.

7 Thierry Coquand and Christine Paulin. Inductively defined types. In Per Martin-Löf and
Grigori Mints, editors, COLOG-88, International Conference on Computer Logic, Tallinn,
USSR, December 1988, Proceedings, volume 417 of Lecture Notes in Computer Science, pages
50–66. Springer, 1988. doi:10.1007/3-540-52335-9_47.

8 Pierre-Évariste Dagand. A cosmology of datatypes: reusability and dependent types. PhD
thesis, University of Strathclyde, Glasgow, UK, 2013. URL: http://oleg.lib.strath.ac.uk/
R/?func=dbin-jump-full&object_id=22713.

9 Pierre-Évariste Dagand and Conor McBride. Elaborating inductive definitions. CoRR,
abs/1210.6390, 2012. arXiv:1210.6390.

10 Cedille development team. Cedille v1.2.1. https://github.com/cedille/cedille.
11 Larry Diehl, Denis Firsov, and Aaron Stump. Generic zero-cost reuse for dependent types.

Proc. ACM Program. Lang., 2(ICFP):104:1–104:30, July 2018. doi:10.1145/3236799.
12 Denis Firsov, Richard Blair, and Aaron Stump. Efficient Mendler-style lambda-encodings

in Cedille. In Jeremy Avigad and Assia Mahboubi, editors, Interactive Theorem Proving -
9th International Conference, ITP 2018, Held as Part of the Federated Logic Conference,
FloC 2018, Oxford, UK, July 9-12, 2018, Proceedings, volume 10895 of Lecture Notes in
Computer Science, pages 235–252, Cham, 2018. Springer International Publishing. doi:
10.1007/978-3-319-94821-8_14.

13 Denis Firsov and Aaron Stump. Generic derivation of induction for impredicative encodings
in Cedille. In Proceedings of the 7th ACM SIGPLAN International Conference on Certified
Programs and Proofs, CPP 2018, pages 215–227, New York, NY, USA, 2018. Association for
Computing Machinery. doi:10.1145/3167087.

https://doi.org/10.1016/j.jal.2005.10.005
https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1007/3-540-49099-X_8
https://doi.org/10.1007/3-540-49099-X_8
https://doi.org/10.1016/0304-3975(79)90014-8
https://doi.org/10.1007/978-94-009-7893-5_11
https://doi.org/10.1007/978-94-009-7893-5_11
https://doi.org/10.1145/1863543.1863547
https://doi.org/10.1007/3-540-52335-9_47
http://oleg.lib.strath.ac.uk/R/?func=dbin-jump-full&object_id=22713
http://oleg.lib.strath.ac.uk/R/?func=dbin-jump-full&object_id=22713
http://arxiv.org/abs/1210.6390
https://github.com/cedille/cedille
https://doi.org/10.1145/3236799
https://doi.org/10.1007/978-3-319-94821-8_14
https://doi.org/10.1007/978-3-319-94821-8_14
https://doi.org/10.1145/3167087

C. Jenkins, A. Marmaduke, and A. Stump 9:21

14 Herman Geuvers. Induction is not derivable in second order dependent type theory. In Samson
Abramsky, editor, Typed Lambda Calculi and Applications, 5th International Conference, TLCA
2001, Krakow, Poland, May 2-5, 2001, Proceedings, volume 2044 of Lecture Notes in Computer
Science, pages 166–181, Berlin, Heidelberg, 2001. Springer. doi:10.1007/3-540-45413-6_16.

15 Tatsuya Hagino. A categorical programming language. PhD thesis, The University of Edinburgh,
UK, 1987.

16 Christopher Jenkins, Colin McDonald, and Aaron Stump. Elaborating inductive definitions
and course-of-values induction in Cedille, 2019. arXiv:1903.08233.

17 Christopher Jenkins and Aaron Stump. Monotone recursive types and recursive data rep-
resentations in Cedille. Math. Struct. Comput. Sci., 31(6):682–745, 2021. doi:10.1017/
S0960129521000402.

18 Patricia Johann, Enrico Ghiorzi, and Daniel Jeffries. GADTs, functoriality, parametricity:
Pick two. CoRR, 2021. arXiv:2105.03389, doi:10.4204/EPTCS.357.6.

19 Patricia Johann and Andrew Polonsky. Higher-kinded data types: Syntax and semantics. In
34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019, Vancouver,
BC, Canada, June 24-27, 2019, pages 1–13. IEEE, 2019. doi:10.1109/LICS.2019.8785657.

20 Alexei Kopylov. Dependent intersection: A new way of defining records in type theory.
In Proceedings of 18th IEEE Symposium on Logic in Computer Science (LICS 2003), 22-
25 June 2003, Ottawa, Canada, LICS ’03, pages 86–95. IEEE Computer Society, 2003.
doi:10.1109/LICS.2003.1210048.

21 Zhaohui Luo. Coercive subtyping. J. Logic and Computation, 9(1):105–130, 1999. doi:
10.1093/logcom/9.1.105.

22 Andrew Marmaduke, Christopher Jenkins, and Aaron Stump. Zero-cost constructor subtyping.
In IFL 2020: Proceedings of the 32nd Symposium on Implementation and Application of
Functional Languages, IFL 2020, pages 93–103, New York, NY, USA, 2020. Association for
Computing Machinery. doi:10.1145/3462172.3462194.

23 N. P. Mendler. Recursive types and type constraints in second-order lambda calculus. In
Proceedings of the Symposium on Logic in Computer Science, (LICS ’87), pages 30–36, Los
Alamitos, CA, June 1987. IEEE Computer Society.

24 Alexandre Miquel. The implicit calculus of constructions: Extending pure type systems with
an intersection type binder and subtyping. In Proceedings of the 5th International Conference
on Typed Lambda Calculi and Applications, TLCA’01, pages 344–359, Berlin, Heidelberg, 2001.
Springer-Verlag. doi:10.1007/3-540-45413-6_27.

25 Jan M. Smith. An interpretation of Martin-Löf’s type theory in a type-free theory of proposi-
tions. J. Symb. Log., 49(3):730–753, 1984. doi:10.2307/2274128.

26 Jan M. Smith. The independence of Peano’s fourth axiom from Martin-Lof’s type theory
without universes. J. Symb. Log., 53(3):840–845, 1988. doi:10.2307/2274575.

27 Aaron Stump. The calculus of dependent lambda eliminations. J. Funct. Program., 27:e14,
2017. doi:10.1017/S0956796817000053.

28 Aaron Stump and Christopher Jenkins. Syntax and semantics of Cedille, 2018. arXiv:
1806.04709.

29 Martin Sulzmann, Manuel M. T. Chakravarty, Simon L. Peyton Jones, and Kevin Donnelly.
System F with type equality coercions. In François Pottier and George C. Necula, editors,
Proceedings of TLDI’07: 2007 ACM SIGPLAN International Workshop on Types in Languages
Design and Implementation, Nice, France, January 16, 2007, pages 53–66. ACM, 2007.
doi:10.1145/1190315.1190324.

30 Nikhil Swamy, Michael W. Hicks, and Gavin M. Bierman. A theory of typed coercions
and its applications. In Graham Hutton and Andrew P. Tolmach, editors, Proceeding of
the 14th ACM SIGPLAN international conference on Functional programming, ICFP 2009,
Edinburgh, Scotland, UK, August 31 - September 2, 2009, pages 329–340. ACM, 2009. doi:
10.1145/1596550.1596598.

TYPES 2021

https://doi.org/10.1007/3-540-45413-6_16
http://arxiv.org/abs/1903.08233
https://doi.org/10.1017/S0960129521000402
https://doi.org/10.1017/S0960129521000402
http://arxiv.org/abs/2105.03389
https://doi.org/10.4204/EPTCS.357.6
https://doi.org/10.1109/LICS.2019.8785657
https://doi.org/10.1109/LICS.2003.1210048
https://doi.org/10.1093/logcom/9.1.105
https://doi.org/10.1093/logcom/9.1.105
https://doi.org/10.1145/3462172.3462194
https://doi.org/10.1007/3-540-45413-6_27
https://doi.org/10.2307/2274128
https://doi.org/10.2307/2274575
https://doi.org/10.1017/S0956796817000053
http://arxiv.org/abs/1806.04709
http://arxiv.org/abs/1806.04709
https://doi.org/10.1145/1190315.1190324
https://doi.org/10.1145/1596550.1596598
https://doi.org/10.1145/1596550.1596598

9:22 Simulating Large Eliminations in Cedille

31 The Coq Development Team. The Coq Reference Manual, version 8.13, 2021. Available
electronically at https://coq.github.io/doc/v8.13/refman/.

32 Tarmo Uustalu and Varmo Vene. Mendler-style inductive types, categorically. Nordic Journal
of Computing, 6(3):343–361, September 1999. URL: http://dl.acm.org/citation.cfm?id=
774455.774462.

33 Tarmo Uustalu and Varmo Vene. Coding recursion a la Mendler (extended abstract). In Proc.
of the 2nd Workshop on Generic Programming, WGP 2000, Technical Report UU-CS-2000-19,
pages 69–85. Dept. of Computer Science, Utrecht University, 2000.

34 Stephanie Weirich and Chris Casinghino. Generic programming with dependent types. In
Jeremy Gibbons, editor, Generic and Indexed Programming - International Spring School,
SSGIP 2010, Oxford, UK, March 22-26, 2010, Revised Lectures, volume 7470 of Lecture Notes
in Computer Science, pages 217–258. Springer, 2010. doi:10.1007/978-3-642-32202-0_5.

35 Benjamin Werner. A normalization proof for an impredicative type system with large elimina-
tion over integers. In Bengt Nordström, Kent Petersson, and Gordon Plotkin, editors, Proc.
of the 1992 Workshop on Types for Proofs and Programs, pages 341–357, June 1992.

36 Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded recursive datatype constructors. In Alex
Aiken and Greg Morrisett, editors, Conference Record of POPL 2003: The 30th SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, New Orleans, Louisisana,
USA, January 15-17, 2003, pages 224–235. ACM, 2003. doi:10.1145/604131.604150.

https://coq.github.io/doc/v8.13/refman/
http://dl.acm.org/citation.cfm?id=774455.774462
http://dl.acm.org/citation.cfm?id=774455.774462
https://doi.org/10.1007/978-3-642-32202-0_5
https://doi.org/10.1145/604131.604150

Quantitative Polynomial Functors
Georgi Nakov #

Department of Computer and Information Sciences, University of Strathclyde, Glasgow, UK

Fredrik Nordvall Forsberg #

Department of Computer and Information Sciences, University of Strathclyde, Glasgow, UK

Abstract
We investigate containers and polynomial functors in Quantitative Type Theory, and give initial
algebra semantics of inductive data types in the presence of linearity. We show that reasoning by
induction is supported, and equivalent to initiality, also in the linear setting.

2012 ACM Subject Classification Theory of computation → Type theory; Theory of computation
→ Linear logic

Keywords and phrases quantitative type theory, polynomial functors, inductive data types

Digital Object Identifier 10.4230/LIPIcs.TYPES.2021.10

Supplementary Material Software (Idris 2 Formalisation):
https://github.com/g-nakov/quantitative-poly

archived at swh:1:dir:ae7679e3704d07ffa7732029c7c9f0f68abf1271

1 Introduction

Data types are the basic building blocks of modern type theories and programming languages.
Having more powerful data types around can increase the proof-theoretic strength of the
theory [34], i.e., allow more programs to be written, and can also make existing proofs/pro-
grams more convenient to write [13]. Recent advances in type theories such as cubical type
theory [11] have also been accompanied by advances in data type theory, such as quotient
and higher inductive types [5, 12, 30]. In this paper, we explore what a corresponding
notion of (non-higher, so far) inductive types for the also recently introduced type theory
Quantitative Type Theory (QTT) [6, 31] might be. QTT combines dependent types and
linear types, in the sense of linear logic [20, 37]. By using linearity to track variable (and
hence resource) usage of programs, QTT thus promises to enable formal reasoning about both
functional and non-functional correctness of programs. A variant of QTT is implemented
in the Idris 2 programming language [8], and we hope that our work can be used as a
foundational justification for the implementation of data types there. Conversely, we have
used Idris 2 to mechanically verify parts of our development.

In a linear world, there are exciting new data types to explore, such as binary trees where
only one subtree at each node is present at runtime. Such trees could be used to reduce
memory usage and network traffic, or to accurately model the situation at hand. For example,
if the tree represents an I/O program in the sense of Hancock and Setzer [22], where subtrees
stand for continuation computations, then we would like to ensure that indeed only one
continuation is invoked – we do not want the user to simultaneously launch the nukes, and
refrain from doing so, by exploring two different subtrees!

While it would be possible to add such data types to QTT by manually writing down
formation, introduction, elimination and computation rules for them in an ad-hoc fashion,
this is a cumbersome and error-prone process. The goal of this paper is to present a more
principled solution. We would like to derive the rules for data types from some kind of
canonical rules. Our instinct is to turn to the theory of polynomial functors [18, 19], also
known as containers [1]. These specify data types as given by shapes and positions, with

© Georgi Nakov and Fredrik Nordvall Forsberg;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Types for Proofs and Programs (TYPES 2021).
Editors: Henning Basold, Jesper Cockx, and Silvia Ghilezan; Article No. 10; pp. 10:1–10:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:georgi.nakov@strath.ac.uk
https://orcid.org/0000-0002-0292-5619
mailto:fredrik.nordvall-forsberg@strath.ac.uk
https://orcid.org/0000-0001-6157-9288
https://doi.org/10.4230/LIPIcs.TYPES.2021.10
https://github.com/g-nakov/quantitative-poly
https://github.com/g-nakov/quantitative-poly
https://archive.softwareheritage.org/swh:1:dir:ae7679e3704d07ffa7732029c7c9f0f68abf1271
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Quantitative Polynomial Functors

a data value given by choosing a shape, and then filling every position of the data type
with a payload. Pleasingly, containers are closed under many constructions on types such
as products and coproducts, and so all strictly positive data types can be reduced to (fixed
points of) containers in “traditional” type theory [2, 15, 25].

Hence we present a quantitative version of containers, replacing dependent pair types
with dependent tensor types, and function spaces with linear function spaces. Fixed points
of such containers now more or less immediately admit formation and introduction rules for
their corresponding data types, but what about the elimination and computation rules? Our
main technical contribution is to show that the problem of providing an elimination rule
for fixed points of such containers can be reduced to the problem of proving initiality in a
category of algebras. For traditional data types, this is well known [23, 7], and our proof is a
linear refinement of the traditional proof – pairs with “unused” first components play a key
role in the construction.

Is that the end of the story? Unfortunately not! Ordinary containers are useful as
a foundation for data types in traditional type theory exactly since all strictly positive
data types can be reduced to them. However when we try to replicate this reduction for
quantitative data types, we hit a snag: in the quantitative setting, it is no longer the case
that every strictly positive type is isomorphic to a quantitative container, because of the
splitting up of connectives into additive and multiplicative variants. Quantitative containers
still serve as an instructive special case of quantitative data types, but they do not cover
every interesting example. Instead, we define quantitative polynomial functors as inductively
generated from a grammar containing constants, the identity, and sums and products. We
can show that also for this class of functors, elimination rules are supported if and only
if the algebra is initial. The proof is similar to the proof for quantitative containers, but
now further complicated by having to also do induction on the generation according to the
polynomial functors grammar.

Our second major contribution is to show that finitary polynomial functors indeed have
initial algebras in Atkey’s linear realisability model of QTT [6, § 4]. This is a model where
types are interpreted as assemblies, i.e., sets whose elements are assigned realisers from a
combinatory algebra of (untyped) linear programs. We construct the initial algebras in two
stages: first we consider the initial algebra of the polynomial functor in the category Set,
which is known to exist. We then use the initiality of the algebra in Set to both define the
realisability relation, and to prove that the algebra map and mediating morphism into other
algebras are realised – this constructs an initial algebra also in the category of assemblies.
Putting our contributions together, we have thus defined a syntactic class of polynomial data
types, and shown that QTT extended with rules for them, including dependent elimination
rules, can be soundly interpreted in Atkey’s realisability model.

Structure of the paper

In Section 2, we recall the syntax and semantics of QTT, including a sketch of a realisability
model. In Section 3, we review the traditional theory of initial algebras and containers. We
then move from containers to quantitative containers in Section 4, and prove that initiality
is equivalent to dependent elimination for them. In Section 5, we generalise quantitative
containers to inductively generated quantitative polynomial functors, and show that also for
them, initiality is equivalent to dependent elimination. We finally construct initial algebras
of finitary quantitative polynomial functors in the aforementioned realisability model.

G. Nakov and F. Nordvall Forsberg 10:3

Partial Idris 2 formalisation

We have formalised the basic definitions and results from Section 4 and Section 5 in Idris 2,
most notably including a verification of Theorem 16 and the induction-from-initiality dir-
ection of Theorem 26. We make use of Idris 2’s implementation of linearity to faithfully
model quantitative containers and quantitative polynomial functors, and to verify that the
morphisms we construct, such as distF from Lemma 24, really are linear. It was helpful to
have Idris 2 guide us by the quantity information during the construction of the proofs – for
example, feedback from Idris 2 made us realise the correct definition of lifting of constant
functors in Definition 20.

The code can be found at https://github.com/g-nakov/quantitative-poly.

2 Quantitative Type Theory

In this section, we give a brief introduction to the syntax and semantics of QTT, and present
the typing rules for the type formers we will use. For a detailed presentation, see Atkey [6].
In contrast to dependent linear/non-linear type theories [9, 29], QTT maintains a single
context in which variables can both contribute to type formation, and be marked as a linear
resource. This is in line with recent work by Fu, Kishida and Selinger [17], and Abel and
Bernardy [3]. See also Choudhury, Eades III, Eisenberg and Weirich [10], and Orchard,
Liepelt and Eades III [32] for similar approaches.

2.1 Syntax of Quantitative Type Theory
The main difference between quantitative and ordinary type theory is that variables in
quantitative type theory contexts are annotated with resources, intuitively governing how
many times they can be used. These resource annotations are drawn from a semiring,
satisfying some additional axioms that are needed for the typing rules to make sense.

▶ Definition 1. A resource semiring is a structure R = ⟨R, +, ·, 0, 1⟩, such that ⟨R, +, 0⟩ is a
monoid, ⟨R, ·, 1⟩ is a commutative monoid, with · distributing over +, such that for every
ρ, π ∈ R, ρ · π = 0 if and only if ρ = 0 or π = 0, and such that ρ + π = 0 implies ρ = π = 0.

Examples of resource semirings are given by the natural numbers with ordinary addition
and multiplication, and the “zero-one-many” resource semiring ⟨{0, 1, ω<}, +, ·, 0, 1⟩ with
x + ω< = ω< + x = ω<, 1 + 1 = ω<, and ω< · ω< = ω<.

Fixing a semiring R, a QTT term judgement has the following form:

x1
π1: S1, x2

π2: S2, . . . xn
πn: Sn ⊢ M

σ: T

with πi ∈ R and σ restricted to either σ = 0R or σ = 1R. The list of variables xi on the left
of the turnstile forms the context of the judgement. The resource semiring operations can be
lifted pointwise to contexts:

π(Γ, x
ρ: S) = πΓ, x

πρ: S

(Γ1, x
ρ1: S) + (Γ2, x

ρ2: S) = (Γ1 + Γ2), x
ρ1+ρ2: S, if 0Γ1 = 0Γ2.

In typical dependent type theory fashion, the variables xi are available for forming both
types and terms. Each variable xi is annotated with a resource πi denoting how many times
xi must be used computationally in the term M on the right hand side of the turnstile. In
contrast, the calculus is set up so that types are always formed in contexts of the form 0Γ –

TYPES 2021

https://github.com/g-nakov/quantitative-poly

10:4 Quantitative Polynomial Functors

0Γ ⊢ I : Type 0Γ ⊢ ⊤ : Type 0Γ ⊢ 0 : Type

0Γ ⊢ ⋆ : I
0Γ1, x

0: I ⊢ S : Type Γ1 ⊢ m : I Γ2 ⊢ n : S[⋆/x]
Γ1 + Γ2 ⊢ let ⋆ = m in n : S[m/x] Γ ⊢ ⋆ : ⊤

Γ ⊢ m : 0
Γ ⊢ abort m : B

Figure 1 Type formation and rules for basic types.

type formation consume no resources. The distinction between computational and “vacuous”
usage is marked explicitly by the annotation σ on the term M in the conclusion, which
can only be 0 or 1. Such a restriction is needed to retain admissibility of substitution and
effectively splits the theory in two fragments. Terms in the 0 fragment bear no computational
content, consume no resources, and are available at any point in a derivation, while the
inhabitants of the 1 fragment are computationally relevant, but need sufficient resources to
be constructed. The following meta-result, which states that “zero needs nothing”, is useful
for constructing derivations in the 0 fragment, basically without worrying about resource
usage:

▶ Lemma 2 (Atkey [6]). If Γ ⊢ M
0: S, then Γ = 0Γ.

From now on, we follow the following conventions: Types are formed in the 0 fragment,
but we may omit the 0 annotation, that is, we may write 0Γ ⊢ S : Type for 0Γ ⊢ S

0: Type.
Any other judgement takes place in the 1 fragment, unless explicitly annotated otherwise,
and we suppress the annotation on the conclusion – that is, Γ ⊢ M : S should be read as
Γ ⊢ M

1: S. Scaling the context by 0 yields the corresponding rule in the 0 fragment. We
further assume that contexts are well formed; for example, we only consider the context
Γ1 + Γ2 if 0Γ1 = 0Γ2.

As an example, consider the type family Fin : N → Type of finite types. It has formation
rule

0Γ ⊢ n
0: N

0Γ ⊢ Fin(n) : Type

where we ask for 0 copies of n : N, since this n occurs in a type. The introduction rules are

0Γ ⊢ n
0: N

0Γ ⊢ zero : Fin(n + 1)
0Γ ⊢ n

0: N Γ ⊢ m : Fin(n)
Γ ⊢ suc(m) : Fin(n + 1)

where again n : N does not require any resources, since it occurs only in a type. We omit the
elimination rule here, since we will not make use of it further. Rules for other basic types
can be found in Figure 1; the type I was considered by Atkey [6, §2.1.3], whereas ⊤ and 0
are first described for QTT here. The monoidal unit type I contains no information, and
hence it is always possible to construct an element ⋆ : I at no cost, or use the elimination
rule to discard such an element. The terminal type ⊤ superficially looks very similar to the
monoidal unit I, but note that it is possible to construct ⋆ : ⊤ (we reuse the same syntax
⋆ for the term as for I) even in non-zero contexts, which makes it terminal. There is no
elimination rule. Dually the empty type 0 allows elimination into any other type.

Rules for type formers are given in Figure 2; (x ρ: S) ⊗ T and (x ρ: S) → T were considered
by Atkey, and (x : S) & T was introduced by Svoboda [35], whereas S ⊕ T is new to QTT, as
far as we know. Extra care should be taken in the rules for types with binders, as the bound

G. Nakov and F. Nordvall Forsberg 10:5

0Γ ⊢ S : Type 0Γ, x
0: S ⊢ T : Type

0Γ ⊢ (x ρ: S) → T : Type

Γ, x
ρ: S ⊢ t : T

Γ ⊢ λx. t : (x ρ: S) → T

Γ1 ⊢ f : (x ρ: S) → T Γ2 ⊢ s : S

Γ1 + ρΓ2 ⊢ f(s) : S[s/x]

0Γ ⊢ S : Type 0Γ, x
0: S ⊢ T : Type

0Γ ⊢ (x ρ: S) ⊗ T : Type

Γ1 ⊢ s : S Γ2 ⊢ t : T [s/x]

ρΓ1 + Γ2 ⊢ (s, t) : (x ρ: S) ⊗ T

0Γ1, z
0: (x ρ: S) ⊗ T ⊢ U : Type Γ1 ⊢ p : (x ρ: S) ⊗ T Γ2, x

ρ: S, y
1: T ⊢ u : U [(x, y)/z]

Γ1 + Γ2 ⊢ let (x, y) = p in u : U [p/z]

0Γ ⊢ S : Type 0Γ, x
0: S ⊢ T : Type

0Γ ⊢ (x : S) & T : Type
Γ ⊢ s : S Γ ⊢ t : T [s/x]

Γ ⊢ (s, t) : (x : S) & T

Γ ⊢ p : (x : S) & T

Γ ⊢ proj1(p) : S

Γ ⊢ p : (x : S) & T

Γ ⊢ proj2(p) : T [proj1(p)/x]

0Γ ⊢ S : Type 0Γ ⊢ T : Type
0Γ ⊢ S ⊕ T : Type

Γ ⊢ s : S
Γ ⊢ inl s : S ⊕ T

Γ ⊢ t : T
Γ ⊢ inr t : S ⊕ T

0Γ1, z
0: S ⊕ T ⊢ U : Type Γ1 ⊢ e : S ⊕ T Γ2, x

1: S ⊢ u : U [inl x/z] Γ2, y
1: T ⊢ v : U [inr y/z]

Γ1 + Γ2 ⊢ case e of inl x ⇒ u | inr y ⇒ v : U [e/z]

0Γ ⊢ S : Type 0Γ ⊢ s
0: S 0Γ ⊢ t

0: S

0Γ ⊢ IdS(s, t) : Type
0Γ ⊢ s = t : S

0Γ ⊢ refl : IdS(s, t)
0Γ ⊢ p : IdS(s, t)

0Γ ⊢ s = t : S

Figure 2 Typing rules for type formers.

variable could potentially represent a computational resource – for example, the dependent
function type (x ρ: S) → T records how many copies ρ of its argument are needed. We write
S

ρ→ T for (x ρ: S) → T if x does not occur in T . The dependent tensor type (x ρ: S) ⊗ T is
the multiplicative linear version of the dependent pair type; it contains pairs (s, t) with ρ

copies of s and one copy of t, which must both be consumed fully in the elimination rule. We
pay special attention to that type as a key to a simpler presentation of the remaining rules.
Using the monoidal unit I, we can form an exponential type !ρS = (x ρ: S) ⊗ I and “disguise”
resource usage information within the types themselves. Thus, we avoid proliferating the
typing rules with abundant annotations while still retaining the full expressiveness of QTT.
For example, no modifications in the rules are needed to allow for arbitrarily many copies of
the second component of the tensor tuple – working with the type (x ρ: S) ⊗ (!πT) already
achieves that.

In contrast to the dependent tensor type, the dependent additive conjunction (x : S) & T

(pronounced “with”) contains pairs (s, t) where the consumer can choose to either use s : S

or t : T [s/x]. We write S ⊗ T for (x 1: S) ⊗ T and S & T for (x : S) & T respectively, if x does
not occur in T – these types correspond to the usual non-dependent linear logic connectives.
Finally S ⊕ T is the disjoint union of S and T ; note that both branches share the same
context Γ2 in its elimination rule. Combining with exponential types, we can recover the

TYPES 2021

10:6 Quantitative Polynomial Functors

Γ ⊢ n : S[⋆/x]
Γ ⊢ let ⋆ = ⋆ in n ≡ n : S[⋆/x]

Γ1, x
ρ: S ⊢ t : T Γ2 ⊢ s : S

Γ1 + ρΓ2 ⊢ (λx. t) s ≡ t[s/x] : T [s/x]

Γ1 ⊢ s : S Γ2 ⊢ t : T [s/x] Γ3, x
ρ: S, y

1: T ⊢ u : U [(x, y)/z]
ρΓ1 + Γ2 + Γ3 ⊢ let (x, y) = (s, t) in u ≡ u[s/x, t/y] : U [(s, t)/z]

Γ ⊢ s : S Γ ⊢ t : T [s/x]
Γ ⊢ proj1(s, t) ≡ s : S

Γ ⊢ s : S Γ ⊢ t : T [s/x]
Γ ⊢ proj2(s, t) ≡ t : T [s/x]

Γ1 ⊢ s : S Γ2, x
1: S ⊢ u : U [inl x/z] Γ2, y

1: T ⊢ v : U [inr y/z]
Γ1 + Γ2 ⊢ case inl s of inl x ⇒ u | inr y ⇒ v ≡ u[s/x] : U [inl s/z]

Γ1 ⊢ t : T Γ2, x
1: S ⊢ u : U [inl x/z] Γ2, y

1: T ⊢ v : U [inr y/z]
Γ1 + Γ2 ⊢ case inr t of inl x ⇒ u | inr y ⇒ v ≡ v[t/y] : U [inr t/z]

Γ ⊢ t : ⊤
Γ ⊢ t ≡ ⋆ : ⊤

Γ ⊢ f : (x ρ: S) → T

Γ ⊢ f ≡ λx. f(x) : (x ρ: S) → T

Figure 3 β- and η-rules.

more general version (!ρS) ⊕ (!πT). We can define the type of Booleans by 2 = I ⊕ I. In
particular, this implies that the constructors false = inl ⋆ and true = inr ⋆ can be introduced
using zero resources. To facilitate formal reasoning within QTT, we also add extensional
identity types. Because of equality reflection, a term p of type IdS(s, t) does not use any
computational resources, and thus can be introduced even if the resources designated by
the terms s and t have been exhausted. We chose to an extensional identity type since they
are easier to work with, and easy to model in realisability models – in particular, with an
extensional identity type we do not need to worry about if the rules for the identity type
should be formulated multiplicatively, additively, or both. In principle one could also try
to develop QTT with an intensional flavour – linearity and identity types appear to be
orthogonal features in the type system.

Eliminators come with their expected β- and η-rules familiar from ordinary type theory,
listed in Figure 3. Note that we have only included η-rules for ⊤ and dependent function
types – all other type formers have eliminators that can be used to derive the expected
η-rules using the extensional identity type, but ⊤ does not have an eliminator, and the η-rule
for dependent function types is needed to derive function extensionality from the extensional
identity type.

These rules give types a rich algebraic structure. An isomorphism of types A ∼= B is given
by two linear functions ⊢ f : A

1→ B and ⊢ g : B
1→ A such that x

0: A ⊢ g(f(x)) = x : A

and y
0: B ⊢ f(g(y)) = y : B – using equality reflection, these equalities can also be proven

using the extensional identity type. For example, the usual currying-uncurrying isomorphism,
relating dependent functions and dependent pairs, becomes (z 1: ((x ρ: A) ⊗ B) → C) ∼=
(x ρ: A) → (y 1: B) → C[(x, y)/z] in the QTT setting. We will make use of the following
isomorphisms.

G. Nakov and F. Nordvall Forsberg 10:7

▶ Lemma 3. For any type A, we have:

I ⊗ A ∼= A 0 1→ A ∼= ⊤ I 1→ A ∼= A 2 1→ A ∼= A & A

In contrast, for example ⊤ ⊗ A ̸∼= A and (A 1→ I) ̸∼= I, intuitively because there is no way
to consume an element of ⊤, or to produce a function A

1→ I in general – this would allow
discarding elements of A. Formally, one can show that such isomorphisms do not exist by
exhibiting concrete models of QTT where they do not hold.

2.2 Semantics of Quantitative Type Theory
Categories with Families [14] (CwFs) form a sound and complete semantics for dependent type
theories, and are given by a category C (modelling contexts and substitutions), together with
a functor (Ty, Tm) : C → Fam(Set) into the category of families of sets (modelling types and
terms in a given context), and a context comprehension operation −.− : (Γ : C) → Ty(Γ) → C
(modelling context extension), with a universal property. Atkey [6] presents a refined notion
of quantitative CwF to account for QTT’s usage information in contexts, terms and types.
Intuitively, a quantitative CwF for a fixed resource semiring R is given by two categories L
and C, used to model resourced contexts and contexts in the 0 fragment, respectively. To any
resourced context corresponds a plain one, obtained by forgetting the resource annotations,
and so there should be a faithful functor U : L → C. Since the 0 fragment allows unrestricted
usage, C should be a CwF on its own. Types are always formed in the 0 fragment, so there
is no need to have a separate notion of “resourced types”, but L needs to support both
resourced context extension and resourced terms, both suitably displayed by U over their
unresourced counterparts in C. Finally, we need to ask for functors ρ(−) : L → L for each
ρ ∈ R, and (+) : L ×C L → L (where L ×C L is the pullback of U along itself), modelling
scaling and context addition, respectively.

Since quantitative CwFs are refinements of CwFs, we can construct a “trivially quantita-
tive” CwF for each ordinary CwF C by putting L = C with U = Id, and RTm = Tm. We
can also build models that actually demonstrate the distinction between computational and
non-computational use of data. Atkey [6] constructs a model based on linear realisability [24],
which we now describe, since we will make use of it in what follows. Unresourced terms will be
modelled by set-theoretic functions, while their resourced counterparts will be supplemented
with computable, linear realisers, drawn from an R-linear combinatory algebra.

▶ Definition 4. An R-linear combinatory algebra (R-LCA) consists of a set A, a binary
operation (·) : A × A → A, a family of unary operations !ρ : A → A for ρ ∈ R, and
combinators B, C, I, K, D, Wπρ, δπρ, Fρ ∈ A for every π, ρ ∈ R, satisfying the following
equations:

B · x · y · z = x · (y · z)
C · x · y · z = x · z · y

I · x = x

K · x·!0y = x

D·!1x = x

Wπρ · x·!π+ρy = x·!πy·!ρy

δπρ·!πρx =!π!ρx

Fρ·!ρx·!ρy =!ρ(x · y)
An R-LCA A supports booleans if there exists elements T, F ∈ A and a function case :
A × A → A, such that for all p, q ∈ A, case(p, q) · T = p and case(p, q) · F = q.

TYPES 2021

10:8 Quantitative Polynomial Functors

The operation · is meant to represent function application; the combinators B, C, I are used
to implement composition, exchange and identity, !ρ represents “making ρ copies”, with K, D,
Wπρ, δπρ, and Fρ implementing structural rules and reshuffling of resources – these witness
that !− : R × A → A is an action. See Abramsky, Haghverdi and Scott [4], and Hoshino [24]
for more details. Importantly, R-linear combinatory algebras are combinatorily complete:
given an expression M built from applications, elements of A, and variables, with exactly one
occurrence of the variable x, there exists an expression λ∗x.M , not containing x, such that
(λ∗x.M) · N = M [N/x]. We define the tupling of elements a1, . . . , an ∈ A using combinatory
completeness and the standard Church encoding [x1, . . . , xn] := λ∗q.q · x1 · . . . xn.

▶ Example 5. Fix R as the zero-one-many semiring {0, 1, ω<}, and let ⟨−, −⟩ : N × N → N
be a bijection, and [−] : ListN → N an encoding of finite lists of natural numbers as
natural numbers, in such a way that there is a “list membership” predicate a ∈ b and a
list concatenation a ++ b such that ai ∈ [a1, . . . , an], and [a1, . . . , an] ++[an+1, . . . , am] =
[a1, . . . , am] (with no requirements on a ∈ bs and as ++ bs when as and bs are not in
the image of [−]). Following Atkey [6, Examples 4.3, 4,6 and 4.7], who in turn followed
Hoshino [24, §5.3], we can endow the power set P(N) of N with the structure of an R-LCA
by defining the application α · β = {n | ⟨m, n⟩ ∈ α, m ∈ β}. We write [a1, . . . , aρ] for a list of
length ρ, i.e. [a1, . . . , a0] = [], [a1, . . . , a1] = [a1] and [a1, . . . , aω<] means [a1, . . . , an] for some
n ∈ N, and we define !ρ : P(N) → P(N) by !ρα = {[a1, . . . , aρ] | ai ∈ α}. The combinators
are given by:

B = {⟨⟨m, k⟩, ⟨⟨n, m⟩, ⟨n, k⟩⟩⟩ | n, m, k ∈ N}
C = {⟨⟨m, ⟨n, k⟩⟩, ⟨n, ⟨m, k⟩⟩⟩ | n, m, k ∈ N}
I = {⟨n, n⟩ | n ∈ N}
K = {⟨n, ⟨[], n⟩⟩ | n ∈ N}
D = {⟨[n], n⟩ | n ∈ N}
Wπρ = {⟨⟨a1, ⟨a2, b⟩⟩, ⟨a1 ++ a2, b⟩⟩ | a1 = [a1,1, . . . , a1,π], a2 = [a2,1, . . . , a2,ρ], ai,j , b ∈ N}
δπρ = {⟨a1 ++ . . . ++ aπ, [a1, . . . , an]⟩ | ai = [ai,1, . . . , ai,ρ], ai,j ∈ N}
Fρ = {⟨f, ⟨a, [b1, . . . , bρ]⟩⟩|∀bi.∃c.c ∈ a ∧ ⟨c, bi⟩ ∈ f, a, f ∈ N}.

This R-LCA also supports Booleans by defining T = {1}, F = {0}.

As a final prerequisite towards constructing a realisability quantitative CwF, we recall
the definition of the category of assemblies [24, §2.3].

▶ Definition 6. Let A be an R-LCA. An assembly is a pair Γ = (|Γ|,⊨Γ), where |Γ| is
a set, and ⊨Γ is a relation ⊨Γ⊆ A × |Γ|. A morphism of assemblies from Γ to ∆ is a
function f : |Γ| → |∆|, which is realisable – there exists af ∈ A, such that a ⊨Γ γ implies
af · a ⊨∆ f(γ).

We can think of |Γ| as a set of extensional meanings, and a ⊨Γ x as saying that the “program”
a ∈ A realises the meaning of x. Usually, it is required that every γ ∈ Γ has a realiser, but
Atkey (personal communication) found the need to drop this condition due to technical
reasons in the interpretation of dependent function types. This modified notion of assemblies
and realisable functions still forms a category, using the B and I combinators to realise
composition and identities. We now have all the pieces needed to describe Atkey’s linear
realisability model of QTT.

G. Nakov and F. Nordvall Forsberg 10:9

▶ Proposition 7. Let A be the {0, 1, ω<}-LCA described in Example 5. There is a quantitative
CwF where C = Set and L = Asm(A) the category of (modified) assemblies over A, with
U(Γ) = |Γ|. Types over ∆ are given by ∆-indexed families of assemblies. Unresourced terms
are given by set-theoretic functions, whereas resourced terms are realisable functions. Scaling of
assemblies is defined by ρ(Γ) = (|Γ|,⊨ρΓ) where a ⊨ρΓ γ if there exists b ∈ A, such that a =
!ρb and b ⊨Γ γ. Similarly context addition is defined by the realisability relation where
a ⊨Γ1+Γ2 γ if there exist b, c ∈ A, such that a = [b, c] with b ⊨Γ1 γ and c ⊨Γ2 γ.

Proof. Atkey [6, §4.2] shows that the given data forms a quantitative category with families
interpreting dependent tensor types, Booleans, and dependent function types, where the
types are interpreted as follows: for dependent tensor types, we have |(x ρ: S) ⊗ T | =
{(s, t) | s ∈ |S|, t ∈ |T (s)|}, with a ⊨(x

ρ
:S)⊗T

(s, t) if there exists b, c such that a = [!ρb, c],
b ⊨S s, and c ⊨T (s) t. Booleans are interpreted using that they are supported in A. Finally
dependent function types are interpreted by |(x ρ: S) → T | = Πx:|S||T (s)| where a ⊨(x

ρ
:S)→T

f

if b ⊨S s implies a·!ρb ⊨T (s) f(s).1 We briefly sketch the interpretation for the remaining
type formers we have introduced: We have |I| = |⊤| = {⋆} and |0| = ∅, with I ⊨I ⋆ and
x ⊨⊤ ⋆ for any x ∈ A. Further we have |(x : S) & T | = {(s, t) | s ∈ |S|, t ∈ |T (s)|} and
|S⊕T | = |S|+|T |, with case(x, y) ⊨(x:S) & T (s, t) if x ⊨S s and y ⊨T (s) t, and [T, x] ⊨S⊕T inl s
if x ⊨S s, and similarly [F, y] ⊨S⊕T inr t if y ⊨T t – for S & T , the realisers for the projections
can choose which realiser of x and y they want, and dually for S ⊕ T , the realisers for the
injections tag themselves with a Boolean T or F so that the realiser for the eliminator knows
which case it is in. Finally the extensional identity type is interpreted as a subsingleton
|Id(s, t)| = {⋆ | JsK = JtK}, with a trivial realiser I ⊨Id(s,t) ⋆. ◀

We will use the above model to show that our proposed induction principles for data
types are sound, by interpreting them in the model.

3 Data Types in Ordinary Type Theory

In this section, we recall how data types are usually presented in ordinary type theory.

3.1 Initial Algebra Semantics
An F -algebra for an endofunctor F : C → C is a pair (A, a), where A is an object of C and
a : F (A) → A is a C-morphism. A morphism between F -algebras (A, a) and (B, b) is a map
f : A → B in C, such that f ◦ a = b ◦ F (f), i.e., the following diagram commutes:

F (A) A

F (B) B

F (f)

a

f

b

Identity morphisms in C are F -algebra morphisms, and F -algebra morphisms compose. Hence
F -algebras and their morphisms form a category. An initial F-algebra is an initial object
in this category, that is, it is an F -algebra (A, a) with a unique morphism foldB to every
F -algebra B. We often write µF or µX.F (X) for the initial F -algebra.

1 Unfortunately the proof in Atkey [6, §4.2] overlooked the need to also allow potentially unrealised
elements in |(x

ρ
: S) → T |, which is needed to achieve the curry-uncurry isomorphism for unresourced

terms in Atkey [6, Def. 3.5].

TYPES 2021

10:10 Quantitative Polynomial Functors

Initial F -algebras model inductively defined data types: the algebra map a : F (A) → A

represents the constructors of the data type, and the unique morphism foldB : A → B

gives an “iteration principle” for defining functions out of the data type, à la pattern
matching definitions – as we will see later, this “non-dependent” elimination rule together
with uniqueness is actually equivalent to full dependent elimination for many functors F .
This equivalence makes crucial use of the extensional identity type.

Concretely, working in the category of types and functions, we can build up many data
types as initial algebras of polynomial functors, inductively generated by the following
grammar:

F, G ::= Id | ConstA | F × G | F + G | | A → F (1)

where Id is the identity functor, ConstA(X) = A, and ×, +, A → F are defined pointwise.
For example, the data type of natural numbers is the initial algebra of Const1 + Id, and the
data type of binary trees with elements of A stored at the leaves is the initial algebra of the
functor A + Id × Id. Note that all types generated by (1) are strictly positive, in the sense
that no input variable occurs to the left of an arrow. This is important for initial algebras to
exist.

3.2 Containers
Containers are based on a shapes-and-positions metaphor for data types, meant to represent
how concrete data are stored at locations in memory. For example, every list ℓ : List X can
be uniquely represented by a natural number n : N (given by the length of the list), together
with a function f : Fin n → X, which returns the elements of the list at the given position.
The number n : N represents the shape of the list, and Fin n is the type of positions of the
given shape. In general, we have:

▶ Definition 8 (Abbott, Altenkirch and Ghani [1]). A container S ◁ P is given by a type
S : Type of shapes, and a type family P : S → Type of positions. Its extension is given by
the operation JS ◁ P K : Type → Type defined by

JS ◁ P K X = (s : S) × (P (s) → X) .

More generally, containers can be presented in arbitrary locally Cartesian closed categories,
but we restrict ourselves to the category of types here. The extension of a container formalises
the intuition that an instantiation of the container is given by choosing a shape, and then a
a payload for each position. This action is functorial.

▶ Proposition 9. Let S ◁ P be a container. The extension JS ◁ P K extends to a functor
Type → Type, defined by JS ◁ P K(g) (s, f) = (s, g ◦ f).

The action on morphisms evidently preserves identities and composition. We call any
functor isomorphic to one of the form JS ◁ P K a container functor. Container functors are
closed under many type formers and operations, for example:

Id ∼= J1 ◁ (λ_.1)K
ConstA

∼= JA ◁ (λ_.0)K
JS ◁ P K × JS′ ◁ P ′K ∼= J

(
S × S′) ◁

(
λ(s, s′).P (s) + P ′(s′)

)
K

JS ◁ P K + JS′ ◁ P ′K ∼= J
(
S + S′) ◁ [P, P ′] K

A → JS ◁ P K ∼= J
(
A → S

)
◁

(
λf.(a : A) × P (f(a))

)
K

(2)

G. Nakov and F. Nordvall Forsberg 10:11

Using the above isomorphisms, one can show that any polynomial functor in the sense of
(1) can be represented as a container.

▶ Theorem 10 (Dybjer [15]). In extensional type theory, for any polynomial functor F , there
is a container SF ◁ PF such that F ∼= JSF ◁ PF K.

Hence in extensional type theory, the problem of constructing initial algebras for polyno-
mial functors reduces to the problem of constructing initial algebras of containers, which are
given by Martin Löf’s W-type2. As a consequence, we can restrict our attention to containers,
that are easier to work with compared to polynomial functors, since they are not inductively
generated.

4 Quantitative Containers

Based on their success for data types in ordinary type theory, it seems reasonable to try
to generalise containers to the quantitative setting. Since categorical models of QTT are
monoidal closed rather than Cartesian closed, they are in particular not locally Cartesian
closed, and so, this is not a question of interpreting containers directly.

4.1 Quantitative Container Functors on the Category of Closed Types
and Linear Functions

Working internally in QTT, we can keep the same notion of a container S ◁ P as given by
S : Type and P : S → Type. Since types are checked in the 0-fragment, we do not need to
worry about linear uses of s : S when forming P (s) : Type. However from now on, we change
the extension of the container from using dependent pairs and functions, to using dependent
tensors and linear functions respectively:

▶ Definition 11. A quantitative container S ◁ P is given by a QTT type S : Type of shapes,
and a QTT type family P : S → Type of positions. Its extension is given by the operation
JS ◁ P K : Type → Type defined by

JS ◁ P K X = (s 1: S) ⊗ (P (s) 1→ X) .

As expected, container extensions are still functorial, if we move to the category TypeLin
of closed types and linear functions: a morphism from a type X to a type Y is given by a
function ⊢ f : X

1→ Y .

▶ Proposition 12. Let S ◁ P be a container. The extension JS ◁ P K extends to a functor
TypeLin → TypeLin, defined by JS ◁ P K(g) x = let (s, f) = x in (s, g ◦ f).

The above proposition can be generalised to a category of types and functions over an
arbitrary, fixed context of the shape Γ = 0Γ, i.e. a context where all variables are annotated
with 0.

▶ Example 13. We can define the list container N ◁ Fin as before, but note that its use
is rather complicated, due to linearity constraints: to define a function out of JN ◁ FinK X,
we have to make use of both the length n and the payload function f : Fin(n) → X

2 Recently, Hugunin [25] showed how this result can be extended also to intensional type theory.

TYPES 2021

10:12 Quantitative Polynomial Functors

exactly once. As an example, consider a slightly unusual Maybe container, given by M =
2 ◁

(
λb. if b then I else Fin 0

)
: we have two shapes, one with trivial positions (representing a

just value), and one with Fin 0 positions (representing nothing). Now we can write a function
head : JN ◁ FinK X

1→ JMK X, which given a tensor tuple (n, f) first inspects the length n; if
it is non-zero, f : Fin (n′ + 1) 1→ X and we can return just (f 0), otherwise if n = 0 we can
return f : Fin 0 1→ X itself as the payload function in the nothing case, thus using both the
length and the payload of the list. However many other plausibly linear operations on lists
can not be written with this representation – as we will see, this hints at a deficiency of the
container representation of data types in a quantitative setting.

▶ Example 14. Hancock and Hyvernat [21] suggest to think of a container Q ◁ A as an
interaction structure: the shapes Q represent questions, or commands, and the positions A

represent answers, or responses. An element of JQ ◁ AK X is thus a tuple (q, f) where q is
a question, and f : A(q) 1→ X is a linear function ready to give an element of X for every
answer to q. An initial algebra D = µX.JQ ◁ AK X of JQ ◁ AK thus intuitively consists of
wellfounded “dialogue trees” (q, f) where q : Q is a question, and f : A(q) 1→ D is a function
ready to supply a dialogue subtree for each possible answer to the question. Linearity here
means that to consume such a dialogue tree, we firstly need to consume the question, and
then we get to choose exactly one answer to the question to continue the dialogue, and so on,
until we reach a question with no answers. Similar to when modelling stateful operations [33],
linearity prevents us from “going back in time” and speculatively trying a different answer.
Dually, when constructing such a dialogue tree, the typing rules allow us to use the same
resources when constructing different subtrees – only one subtree is eventually going to be
explored anyway.

4.2 Closure Under Type Formers
Unfortunately, many of the isomorphisms in (2) do not carry over from ordinary containers to
quantitative containers, due to the bifurcation into additive and multiplicative type formers
in the linear setting.

▶ Theorem 15. The identity functor is a quantitative container, but constant functors are
not, in general.

Proof. The identity functor is represented by the quantitative container I ◁ (λ_.I), since
I ⊗ A ∼= A and I 1→ A ∼= A by Lemma 3. For showing that quantitative containers are not
closed under constant functors, note that every model of ordinary type theory is also a model
of QTT, with vacuous resource tracking [6, Prop 3.3]. Hence if ConstA

∼= JS ◁ P K, the same
isomorphism must hold if all linear type formers are replaced by their Cartesian variants in
the definition of S and P , because that would be the interpretation of the isomorphism in
a vacuous model. Further, since the extension functor J−K is full and faithful for ordinary
containers [1, Thm. 3.4], if ConstA

∼= JS ◁ P K in a vacuous model, then in that model we
must have S ∼= A and (P (s) → X) ∼= 1 by (2). Going back to the linear world, we must
hence for each s : S and type X have (P (s) 1→ X) ∼= I. In particular, for X = 0, there is a
function of type P (s) 1→ 0, which implies P (s) ∼= 0 since 0 is initial. But this absurd: since
(0 1→ X) ∼= ⊤, we then would have ⊤ ∼= I, but this isomorphism does not hold in all models.
Hence there cannot be such a quantitative container S ◁ P . ◀

G. Nakov and F. Nordvall Forsberg 10:13

It is not hard to see that quantitative containers are closed under ⊕, as the isomorphism
for + in (2) is already linear. However the isomorphisms for closure under all the other type
formers are not, and so quantitative containers are not closed under function spaces, ⊗, or
&. This is quite a blow for their usefulness as a general framework for data types – as a
consequence, we will consider alternatives in Section 5.

4.3 Elimination Rules and Induction Principles
As we have seen in Example 14, it is sometimes helpful to consider initial algebras W of
quantitative container functors JS ◁P K. The algebra map c : JS ◁P K(W) 1→ W corresponds to
the introduction rule of the type, and the mediating morphism into any other JS ◁ P K-algebra
B : Type corresponds to an elimination rule:

⊢ b :
(
(s 1: S) ⊗ (P (s) 1→ B)

) 1→ B

⊢ fold(B,b) : W
1→ B

with computation rule fold(B,b)(c(x)) = b(JS ◁ P K(fold(B,b)) x) given by the fact that fold(B,b)
is an algebra morphism. A priori, this only gives a non-dependent elimination rule (also
known as a recursion principle), but by exploiting the uniqueness of the mediating map,
we can also derive the following dependent elimination rule (induction principle) for any
⊢ Q : W → Type:

⊢ m : (s 1: S) → (h 0: P (s) 1→ W) → ((p 1: P (s)) → Q[h(p)]) 1→ Q[c(s, h)]

⊢ elim(Q, m) : (x 1: W) → Q[x] (3)

This rule says that to prove Q[x] for every x : W using one copy of x, it is enough to prove
Q[c(s, h)] for s : S and h : P (s) 1→ W , assuming Q[h(p)] already holds for every p : P (s),
using one copy of s and the induction hypothesis, but zero copies of h. A priori, it is perhaps
not completely obvious that this is the right usage annotation of the variables involved.
Indeed, a noteworthy feature of Theorem 16 below is that these annotations naturally fall
out from its proof, so that we can use it to derive the form of of the induction principle in a
principled manner in the quantitative setting.

In fact, just like in ordinary type theory, initiality and induction are actually equivalent
principles: An algebra is initial if and only if it supports induction. This result and
construction seems to have been discovered several times by several authors, for example
Dybjer and Setzer [16], Hermida and Jacobs [23], and Awodey, Gambino and Sojakova [7].
Our contribution here is to adapt the proof to also account for linearity.

▶ Theorem 16. Let (W, c : JS ◁P K(W) 1→ W) be an JS ◁P K-algebra. The algebra W is initial
if and only if there is a term elim(Q, m) as in (3) for every w

0: W ⊢ Q : Type, satisfying the
computation rule elim(Q, c(x)) = let (s, h) = x in m s h (λp.elim(Q, h(p))).

Proof. Assuming that (W, c) is initial and the premises of the elimination rule, we build
an JS ◁ P K-algebra on the dependent tensor type (w 0: W) ⊗ Q, and get a unique mediating
morphism fold : W

1→ (w 0: W) ⊗ Q by initiality. We compose with the second projection
snd : (x 1: (w 0: W) ⊗ Q) → Q[fst(x)] to get a map (x 1: W) → Q[fst(fold(x))]. Note that the
use of second projection is admissible due to the annotation of the first component w

0: W –
we are free to dispose of w, since it is used 0 times. To show that snd ◦ fold has the right
type, we need to show that Q[fst(fold(x))] = Q[x] for every x : W , but as this is a type
equality, unrestricted use of terms is permissible. The map fst : (w 0: W) ⊗ Q

1→ W is an
JS ◁ P K-algebra morphism, and thus the composite fst ◦ fold : W

1→ W is also one:

TYPES 2021

10:14 Quantitative Polynomial Functors

JS ◁ P K(W) W

JS ◁ P K((w 0: W) ⊗ Q) (w 0: W) ⊗ Q

JS ◁ P K(W) W

c

fold

fst

c

Thus fst◦fold = id holds by uniqueness of the mediating morphism out of W . The computation
rule is exactly that fold is an JS ◁ P K-algebra morphism.

For the converse direction, assume that the elimination rule holds for (W, c). Let
(A, f : JS ◁ P K(A) → A) be an arbitrary JS ◁ P K-algebra and define the type Q[x] := A for
all x : W . Hence the type of the method in the elimination simplifies to

m
1: (s 1: S) → (h 0: P (s) 1→ W) → ((p 1: P (s)) → A) 1→ A

which we can define by m = λs.λh.λy.f(s, y), since we have 0 copies of h, and thus do not
need to use it. The elimination principle gives a function fold := elim(A, m) : W

1→ A, which
by the computation rule is an JS ◁ P K-algebra morphism. We show uniqueness of fold as
follows: given another JS ◁ P K-algebra morphism g : W

1→ A, we use the elimination principle
and equality reflection to prove g(x) = fold(x) for every x : W . For x of the form c(s, f), this
follows linearly from both g and fold being JS ◁ P K-algebra morphisms and the induction
hypothesis, and the result follows by equality reflection. ◀

5 Quantitative Polynomial Functors

As we have seen, quantitative containers give a seemingly well behaved notion of data types in
quantitative type theory: they are functorial, and their algebras support induction principles
if and only if they are initial, which is a property that is usually easier to verify in models.
However, there is a caveat – most quantitative versions of standard data types are not
quantitative containers in the above sense, because quantitative containers are not closed
under many type formers, as discussed in Section 4.2.

Consider, for example, the natural numbers, the initial algebra of the polynomial functor
F (X) = 1+X, or binary trees, the initial algebra of G(X) = A+X×X. Their representations
as initial algebras of containers in Theorem 10 crucially depend on the isomorphisms (0 →
X) ∼= 1 and (2 → X) ∼= X × X, respectively. If we consider the corresponding QTT data
types given by F (X) = I ⊕ X and G(X) = A ⊕ (X ⊗ X), we see using Lemma 3 that
the QTT counterparts of the above isomorphisms do not hold: (0 1→ X) ∼= ⊤ ̸∼= I and
(2 1→ X) ∼= X & X ̸∼= X ⊗ X.

G. Nakov and F. Nordvall Forsberg 10:15

5.1 A Grammar for Quantitative Polynomial Functors

Since we can no longer reduce all data types we are interested in to quantitative containers,
we instead resort to generating them inductively. This follows the same pattern as for
polynomial functors in the grammar (1), except that we now have multiplicative and additive
versions of many type formers.

▶ Definition 17. The class of quantitative polynomial type expressions is inductively
generated by the following grammar:

F, G ::= Id | ConstA | F ⊗ G | F ⊕ G | F & G | A
1→ F

If the type expression is generated without making use of the A
1→ F production, we call it

finitary.

A simple induction on how the type expression is generated proves that all quantitative
polynomial type expressions are functors of type TypeLin → TypeLin. Hence we are justified
in calling them polynomial functors.

▶ Example 18. A functor describing the natural numbers is given by the finitary type
expression F = ConstI ⊕ Id. An element of F (X) is either inl ⋆, representing 0, or of the form
inr n, representing the successor of n. A function F (X) 1→ A uses no resources for the zero
case, and gets one copy of n in the successor of n case. This is different from an attempted
quantitative container representation of F , which would be given by 2 ◁ P , where P (true) = 0
and P (false) = I, since the representation of 0 there would also have a “junk” term of type
(0 1→ X) ∼= ⊤ around.

▶ Example 19. Similarly, a finitary polynomial functor describing binary trees is given by
G = ConstA ⊕ (Id ⊗ Id). An element is either of the form inl a for some a : A, representing
a leaf with label a, or of the form inr (ℓ, r), representing a node with subtrees ℓ and r. A
function G(X) 1→ B must be able to deal with either getting one copy of a : A, or one copy
each of subtrees ℓ and r. In contrast, an attempted quantitative container representation
of G would be given by (A ⊕ I) ◁ P , where P (inl a) = 0 and P (inr ⋆) = 2. This would have
the same “junk term” problem for leaves as zero does in Example 18, but in addition, a
function J(A ⊕ I) ◁ P K 1→ B would only get access to one of the two subtrees ℓ and r. If this
is the intended use case, like in Example 14, then one can instead change the quantitative
polynomial functor to G′ = ConstA ⊕ (Id & Id).

5.2 Elimination Rules and Induction Principles

In order to consider initial algebras, a functor is all we need, but to formulate induction
principles, we now need to construct some additional machinery: we need to explain what
the type of induction hypothesis is for a given functor, and what the computation rule should
be. For quantitative containers, we could do this directly, but since quantitative polynomial
functors are inductively generated, we also need to proceed inductively. Our main tool is
the predicate lifting [23] of polynomial functors, which will be used as the type of induction
hypothesis.

TYPES 2021

10:16 Quantitative Polynomial Functors

▶ Definition 20. Let F be a quantitative polynomial functor. We define its predicate lifting
F̂ : (Q : X → Type) → (F (X) → Type) by induction on F :

Îd(Q, x) = Q(x)

ĈonstA(Q, x) = (a 1: A) ⊗ (a = x)

F̂ ⊗ G(Q, x) = F̂ (Q, proj1 x) ⊗ Ĝ(Q, proj2 x)

F̂ ⊕ G(Q, x) = ((x1
0: F (X)) ⊗ (p 1: x = inl x1) ⊗ F̂ (Q, x1)) ⊕

((x2
0: G(X)) ⊗ (p 1: x = inr x2) ⊗ Ĝ(Q, x2))

F̂ & G(Q, x) = F̂ (Q, proj1 x) & Ĝ(Q, proj2 x)

Â
1→ F (Q, x) = (a 1: A) → F̂ (Q, x(a)).

The lifting follows the same structure as the underlying functor. Note that we can use
projections proji := λx. let (x1, x2) = x in xi in the F ⊗ G case, as we are defining a type,
and hence we are in the 0 fragment. The only possibly surprising case is the lifting of constant
functors ĈonstA(Q, x) = (a 1: A) ⊗ (a = x); in a non-quantitative setting, this would be a
complicated way to define ĈonstA(Q, x) = 1, since, in the language of homotopy type theory,
singletons (a : A) × (a = x) are contractible [36, Lem. 3.11.8]. However the point is that we
get one “extra” copy a of x which can be used even when we have zero copies of x available.
This is crucial for the proof of Lemma 24 below.

We will use predicate liftings to formulate the notion of induction hypothesis for F -
algebras for a quantitative polynomial functor F . For formulating computation rules, we will
furthermore make use of the following lemma, which states that each predicate lifting has a
“functorial action” on dependent functions:

▶ Lemma 21. Let F be a quantitative polynomial functor. If f : (x 1: X) → Q(x) then we
can define F̂ (f) : (y 1: F (X)) → F̂ (Q, y). In addition, if g : Y

1→ X, then F̂ (Q, F (g)(y)) =
F̂ (Q ◦ g, y), and F̂ (f ◦ g) = F̂ (f) ◦ F (g).

The proof is again a simple induction on the buildup of F . Since there are no identity
dependent functions or compositions of dependent functions in general for this fixed form, it
does not make sense to ask for F̂ to preserve neither identities or composition in general,
beyond the “mixed” F̂–F preservation stated in the lemma. However Lemma 25 below
implies that F̂ does preserve identities and compositions when these make sense.

We now have all the ingredients we need to define what it means for an algebra to
support elimination and computation rules. Let F be a quantitative polynomial functor, and
(W, c) an F -algebra. The dependent elimination rule (or induction principle) for W , for any
predicate ⊢ Q : W → Type, is stated as follows:

⊢ m : (y 0: F (W)) → F̂ (Q, y) 1→ Q(c(y))

⊢ elim(Q, m) : (x 1: W) → Q(x) (4)

with computation rule elim(Q, m)(c(y)) = m y (F̂ (elim(Q, m), y)). Note how the computation
rule is making use of the action of F̂ on dependent functions from Lemma 21.

▶ Example 22. Recall from Example 18 that the quantitative polynomial functor F =
ConstI ⊕ Id describes the data type of natural numbers. The type of induction hypothesis for
zero := c(inl ⋆) is, up to isomorphism, F̂ (Q, inl ⋆) ∼= I, i.e., it contains no information, and
the induction hypothesis for suc n := c(inr n) is isomorphic to F̂ (Q, inr n) ∼= Îd(Q, n) = Q(n),
as expected. We would thus expect the induction principle to be familiarly stated as follows

G. Nakov and F. Nordvall Forsberg 10:17

⊢ mz : Q(zero) ⊢ ms : (n 0: N) → Q(n) 1→ Q(suc n)

⊢ elim(Q, m) : (x 1: N) → Q(x)

and indeed it can be, up to isomorphism. An important point is that when translating
between m : (y 0: F (W)) → F̂ (Q, y) 1→ Q(c(y)) and mz and ms as above, we cannot make
case distinctions on y

0: F (W), since we have zero copies of y available. Instead, we have
to split on the F̂ (Q, y) argument, which in turn will refine y. This is why the definition of
F̂ ⊕ G(Q, x) is designed the way it is, rather than just giving cases for F̂ ⊕ G(Q, inl x1) and
F̂ ⊕ G(Q, inr x2) directly.

▶ Example 23. The quantitative polynomial functor G = ConstA ⊕ (Id⊗ Id) from Example 19
describes binary trees. For leaves, we have Ĝ(Q, inl x) ∼= (a 1: A) ⊗ (a = x), and for nodes we
have Ĝ(Q, inr x) ∼= Q(proj1 x) ⊗ Q(proj2 x). Hence the induction principle becomes

⊢ ml : (a 1: A) → Q(leaf a) ⊢ mn : (ℓ 0: TreeA) → (r 0: TreeA) → Q(ℓ) 1→ Q(r) 1→ Q(node ℓ r)

⊢ elim(Q, m) : (t 1: TreeA) → Q(t)

Note how the method ml gets one rather than zero copies of a : A, thanks to the definition
of Ĝ(Q, inl x) ∼= (a 1: A) ⊗ (a = x).

We now aim to show that initiality and induction are equivalent also for quantitative
polynomial functors. The proof follows the same pattern as Theorem 16, but we need some
additional lemmas. Firstly, we need that F distributes over dependent tensor products of
the form (w 0: W) ⊗ Q in an appropriate sense:

▶ Lemma 24. For a quantitative polynomial functor F , we have

distF : F ((x 0: W) ⊗ Q(x)) 1→ (y 0: F (W)) ⊗ F̂ (Q, y)

with proj1 ◦ distF = F (proj1) as an equation in the 0-fragment.

Secondly, for deriving initiality from induction, we need that F̂ basically reduces to F for
constant predicates:

▶ Lemma 25. If Q(x) = A for every x : X, i.e., Q is constant, then F̂ (Q, y) ∼= F (A) for
every y : F (X), and F̂ (f) ∼= F (f) for every f : X

1→ A.

Armed with these lemmas, we can now attack our main theorem:

▶ Theorem 26. Let F be a quantitative polynomial functor and (W, c : F (W) 1→ W) an
F -algebra. The algebra W is initial if and only if there is a term elim(Q, m) as in (4) for every
w

0: W ⊢ Q : Type, satisfying the computation rule elim(Q, m)(c(y)) = m y (F̂ (elim(Q, m), y)).

Proof. Assuming that (W, c) is initial, and given m : (y 0: F (W)) → F̂ (Q, y) 1→ Q(c(y)), we
construct an F -algebra

F ((x 0: W) ⊗ Q(x)) (y 0: F (W)) ⊗ F̂ (Q, y) (x 0: W) ⊗ Q(x)distF ⟨c,m⟩

TYPES 2021

10:18 Quantitative Polynomial Functors

and by initiality, we get fold⟨c,m⟩◦distF
: W

1→ (x 0: W) ⊗ Q(x). By Lemma 24, the following
diagram commutes, meaning that proj1 is an algebra morphism from (x 0: W) ⊗ Q(x) to W

in the 0-fragment:

F ((x 0: W) ⊗ Q(x)) (y 0: F (W)) ⊗ F̂ (Q, y) (x 0: W) ⊗ Q(x)

F (W) F (W) W

distF

F (proj1)

⟨c,m⟩

proj1 proj1
c

Hence by uniqueness, we have proj1 ◦fold⟨c,m⟩◦distF
= id, and hence we can define elim(Q, m) =

proj2 ◦ fold⟨c,m⟩◦distF
: (y 1: W) → Q(y). The computation rule follows from the fact that fold

is an F -algebra morphism, and the second part of Lemma 21. Conversely, using Lemma 25
we can use the induction principle on a constant predicate to get a morphism W

1→ B for
an F -algebra B. We prove uniqueness with another instantiation of the induction principle,
together with function extensionality. ◀

5.3 Initial Algebras of Finitary Quantitative Polynomial Functors in the
Realisability Model

Initial algebras of a polynomial functor F : C → C need not necessarily exist for an arbitrary
category C. When the category in question is Set, however, the initial algebra µF always
exists for polynomial functors. We show that a similar result holds for finitary quantitative
polynomial functors in the quantitative CwF from Proposition 7. We refer to that category
as the realisability model Mr .

Semantic types in Mr are interpreted by a collection of assemblies. Thus to construct
the initial algebra of a quantitative polynomial functor F , we first need to define a type
µF , endow it with a realisable structure map c : F (µF) → µF , and finally show that the
mediating morphism fold to any other F -algebra (X, α : F (X) → X) is realisable. For
simplicity of notation, we present the construction as in the empty context.

Let F̃ : Set → Set designate the set functor obtained from F by replacing each linear
connective with a Cartesian one. This is a polynomial functor, and hence has an initial
algebra (µF̃ , c̃ : F̃ (µF̃) → µF̃). Our plan is to augment the F̃ -initial algebra with realisability
information following the structure of F . Denote by n the encoding of the numeral n using
tupling and Booleans in the underlying R-LCA A = P(N) from Example 5.

▶ Construction 27. Let F be a quantitative polynomial functor and let (µF̃ , c̃ : F̃ (µF̃) → µF̃)
be the initial algebra of F̃ in Set. We define (⊨µF x) ⊆ A by induction on x ∈ µF̃ and the
buildup of F : it is sufficient to define a ⊨µF c̃(y) for some y ∈ F̃ (µF̃), assuming we have
already defined the relation a′ ⊨µF z for all structurally smaller z.

if F = Id, then y ∈ |µF | and we have already defined (⊨µF x) ⊆ A. We define
a ⊨µF c̃(y) ⇐⇒ ∃b ∈ A, such that b ⊨µF y ∧ a = [1, b].
if F = ConstA, then y ∈ |A| and we define a ⊨µF c̃(y) ⇐⇒ ∃b ∈ A, such that b ⊨A

y ∧ a = [2, b].
if F = F ′⊗G′, then there are some y1 ∈ |F ′(µF)| and y2 ∈ |G′(µF)|, such that y = (y1, y2).
Let a ⊨µF c̃(y) ⇐⇒ ∃b1, b2 ∈ A, such that b1 ⊨F ′(µF) y1 ∧ b2 ⊨G′(µF) y2 ∧ a = [3, [b1, b2]]
if F = F ′ ⊕ G′, there are y1 ∈ |F ′(µF)| and y2 ∈ |G′(µF)|, such that y = inl(y1) or
y = inr(y2).
If y = inl(y1), let a ⊨µF c̃(y) ⇐⇒ ∃b1 ∈ A, such that b1 ⊨F ′(µF) y1 ∧ a = [4, [T, b1]];
if y = inr(y2), let a ⊨µF c̃(y) ⇐⇒ ∃b2 ∈ A, such that b2 ⊨G′(µF) y2 ∧ a = [4, [F, b2]].

G. Nakov and F. Nordvall Forsberg 10:19

if F = F ′ & G′, there are y1 ∈ |F ′(µF)| and y2 ∈ |G′(µF)|, such that y = (y1, y2).
Let a ⊨µF c̃(y) ⇐⇒ ∃b1, b2 ∈ A, such that b1 ⊨F ′(µF) y1 ∧ b2 ⊨G′(µF) y2 ∧ a =
[5, case(b1, b2)].
if F = A

1→ F ′, then y ∈ |A → F (µF)|. Let a ⊨µF c̃(y) ⇐⇒ ∃b ∈ A, s.t. (∀i ∈ A ∀ai ∈
A, ai ⊨A i =⇒ b · ai ⊨F ′(µF) y(i)) ∧ a = [6, b].

The only perhaps slightly odd case is for the function space F = A
1→ F ′, which is obtained

through unwinding the definition of a realisable function. The following lemma is easily
provable by induction on the buildup of F , using combinatory completeness to define the
realisers.

▶ Lemma 28. Let F be a quantitative polynomial functor and µF be constructed as in
Construction 27. Then the function c : F (µF) → µF is realisable.

Similarly, we can prove that the mediating morphism fold is realisable by induction on its
argument x ∈ µF̃ , when F is finitary, i.e., when the rule A

1→ F ′ is omitted. This is making
essential use of the fact that fold is an F̃ -algebra morphism in Set.

▶ Lemma 29. Let F be a finitary quantitative polynomial functor, and (X, α : F (X) → X)
be an F -algebra. Then the map fold : µF → X is realisable.

It is important to understand why we had to assume that F was finitary: given a function
y ∈ |A 1→ F ′(µF)|, s.t. x = c(y), we get a family of realisers {ai|ai ⊨F ′(µF) fold(y(i))}i∈|A|
by the induction hypothesis. However, we have to construct a realiser for fold(c(y)) itself –
that is, we have to find some b ∈ A, s.t. ∀i ∈ |A| if d ⊨A i, then b · d = ai. But there is no
general construction for such a b, because there is no guarantee that the function i 7→ ai is
linear, or even computable.

Even though there might be elements without realisers in our assemblies in general, we can
show by induction that elements in |µF | have realisers, for finitary quantitative polynomial
functors F , assuming of course that F is not constructed from ConstA for some A with
elements without realisers. We have to restrict ourselves to finitary quantitative polynomial
functors for the same reason as in the proof of Lemma 29: the induction hypothesis for
F = A

1→ F ′ only gives us a collection of realisers, but no computable function that selects
one for every realiser of a ∈ |A|.

▶ Proposition 30. Let F be a finitary quantitative polynomial functor such that if F was
generated using a ConstA rule, then every x ∈ |A| has a realiser. Then every element x ∈ |µF |
has a realiser.

Altogether, we have now shown how to interpret the type µF as an assembly by making
use of the initial algebra of F̃ in Set, and how both the algebra map c : F (µF) → µF and
the unique mediating morphism fold : µF → X are realisable, the latter if F is finitary.
Furthermore, if built from components where every element has a realiser, the initial algebra
will retain this property, which is often important for reasoning about terms in the model.
Hence initial algebras of finitary quantitative polynomial functors are supported in the
realisability model Mr .

6 Conclusions and Future Work

We have given the first principled account of data types in quantitative type theory. This
is necessary, since many established facts about ordinary data types, such as the universal
applicability of containers to represent all strictly positive type formers, do not carry over

TYPES 2021

10:20 Quantitative Polynomial Functors

to the quantitative setting. Instead we have considered quantitative polynomial functors
inductively generated by a grammar. By firstly reducing elimination rules to initiality, and
then concretely constructing initial algebras in the model, we have shown how finitary data
types can be given semantics in a linear realisability model of QTT. This gives a precise
mathematical meaning to a subset of the data types that can be defined in Idris 2, and
reassurance that they are canonical, in the sense that they satisfy the universal property of
initiality.

The equivalence between elimination rules and initiality works for arbitrary quantitative
polynomial functors, but our proof of the existence of initial algebras in the realisability
model is restricted to finitary quantitative polynomial functors. We conjecture that also
infinitary data types are supported in this model, but this result is out of reach of our
current proof method. Our data types are also functors on categories of closed types, and
correspondingly we only derive induction principles in empty contexts; it would be good to
relax this restriction.

Going beyond simple polynomial functors, we believe it should be possible to adapt
Gambino and Hyland’s reduction of the existence of initial algebras of indexed containers to
the existence of initial algebras of containers [18] to the quantitative setting, at least with an
extensional identity type. It seems as if the proof should extend to quantitative polynomial
functors as well, with some more work. However going further, Kaposi and Kovács have
had great success describing and modelling quotient and higher inductive-inductive types
using a notion of signature based on internal categories with families to model the intricate
dependencies between different constructors [27, 28, 26]. It would be interesting to see if a
similar approach of internal type theory [14] using quantitative categories with families could
also work to describe more expressive data types in the setting of QTT.

References
1 Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Categories of containers. In Andrew D.

Gordon, editor, Foundations of Software Science and Computation Structures, pages 23–38.
Springer, 2003. doi:10.1007/3-540-36576-1_2.

2 Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Containers: Constructing strictly
positive types. Theoretical Computer Science, 342(1):3–27, 2005. doi:10.1016/j.tcs.2005.
06.002.

3 Andreas Abel and Jean-Philippe Bernardy. A unified view of modalities in type systems.
Proceedings of the ACM on Programming Languages, 4(ICFP):1–28, 2020. doi:10.1145/
3408972.

4 Samson Abramsky, Esfandiar Haghverdi, and Philip Scott. Geometry of interaction and linear
combinatory algebras. Mathematical Structures in Computer Science, 12(5):625–665, 2002.
doi:10.1017/S0960129502003730.

5 Thorsten Altenkirch, Paolo Capriotti, Gabe Dijkstra, Nicolai Kraus, and Fredrik Nordvall Fors-
berg. Quotient inductive-inductive types. In Christel Baier and Ugo Dal Lago, editors,
Foundations of Software Science and Computation Structures, Lecture Notes in Computer
Science, pages 293–310. Springer, Heidelberg, 2018. doi:10.1007/978-3-319-89366-2_16.

6 Robert Atkey. Syntax and semantics of quantitative type theory. In Proceedings of the 33rd
Annual ACM/IEEE Symposium on Logic in Computer Science - LICS ’18, pages 56–65. ACM
Press, 2018. doi:10.1145/3209108.3209189.

7 Steve Awodey, Nicola Gambino, and Kristina Sojakova. Homotopy-initial algebras in type
theory. Journal of the ACM, 63(6), 2017. doi:10.1145/3006383.

8 Edwin Brady. Idris 2: Quantitative Type Theory in Practice. In Anders Møller and Manu
Sridharan, editors, 35th European Conference on Object-Oriented Programming (ECOOP 2021),
volume 194 of Leibniz International Proceedings in Informatics (LIPIcs), pages 9:1–9:26. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.ECOOP.2021.9.

https://doi.org/10.1007/3-540-36576-1_2
https://doi.org/10.1016/j.tcs.2005.06.002
https://doi.org/10.1016/j.tcs.2005.06.002
https://doi.org/10.1145/3408972
https://doi.org/10.1145/3408972
https://doi.org/10.1017/S0960129502003730
https://doi.org/10.1007/978-3-319-89366-2_16
https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1145/3006383
https://doi.org/10.4230/LIPIcs.ECOOP.2021.9

G. Nakov and F. Nordvall Forsberg 10:21

9 Iliano Cervesato and Frank Pfenning. A Linear Logical Framework. Information and Compu-
tation, 179(1):19–75, 2002. doi:10.1006/inco.2001.2951.

10 Pritam Choudhury, Harley Eades III, Richard A. Eisenberg, and Stephanie Weirich. A
graded dependent type system with a usage-aware semantics. Proc. ACM Program. Lang.,
5(POPL):1–32, 2021. doi:10.1145/3434331.

11 Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical type theory:
A constructive interpretation of the univalence axiom. In Tarmo Uustalu, editor, 21st
International Conference on Types for Proofs and Programs (TYPES 2015), volume 69 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 5:1–5:34, Dagstuhl, Germany,
2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.TYPES.2015.
5.

12 Thierry Coquand, Simon Huber, and Anders Mörtberg. On higher inductive types in cubical
type theory. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS ’18, pages 255–264. Association for Computing Machinery, 2018. doi:10.1145/
3209108.3209197.

13 Thierry Coquand and Christine Paulin. Inductively defined types. In Per Martin-Löf
and Grigori Mints, editors, COLOG-88, pages 50–66. Springer, 1990. doi:10.1007/
3-540-52335-9_47.

14 Peter Dybjer. Internal type theory. In Lecture Notes in Computer Science, volume 1158 LNCS,
pages 120–134. Springer, Berlin, Heidelberg, 1996. doi:10.1007/3-540-61780-9_66.

15 Peter Dybjer. Representing inductively defined sets by wellorderings in Martin-Löf’s type theory.
Theoretical Computer Science, 176(1):329–335, 1997. doi:10.1016/S0304-3975(96)00145-4.

16 Peter Dybjer and Anton Setzer. Induction–recursion and initial algebras. Annals of Pure and
Applied Logic, 124(1):1–47, 2003. doi:10.1016/S0168-0072(02)00096-9.

17 Peng Fu, Kohei Kishida, and Peter Selinger. Linear Dependent Type Theory for Quantum
Programming Languages: Extended Abstract. In Proceedings of the 35th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2020: Proceedings of the 35th Annual
ACM/IEEE Symposium on Logic in Computer Science, pages 440–453. Association for Com-
puting Machinery, 2020. doi:10.1145/3373718.3394765.

18 Nicola Gambino and Martin Hyland. Wellfounded Trees and Dependent Polynomial Functors.
In Stefano Berardi, Mario Coppo, and Ferruccio Damiani, editors, Types for Proofs and
Programs, TYPES 2003, volume 3085 of Lecture Notes in Computer Science, pages 210–225.
Springer, Berlin, Heidelberg, 2003. doi:10.1007/978-3-540-24849-1_14.

19 Nicola Gambino and Joachim Kock. Polynomial functors and polynomial monads. Mathematical
Proceedings of the Cambridge Philosophical Society, 154(1):153–192, 2013. doi:10.1017/
S0305004112000394.

20 Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, 1987. doi:
10.1016/0304-3975(87)90045-4.

21 Peter Hancock and Pierre Hyvernat. Programming interfaces and basic topology. Annals of
Pure and Applied Logic, 137(1-3):189–239, 2006. doi:10.1016/j.apal.2005.05.022.

22 Peter Hancock and Anton Setzer. Interactive Programs in Dependent Type Theory. In Peter
Clote and Helmut Schwichtenberg, editors, Computer Science Logic, CSL 2000, volume 1862
of Lecture Notes in Computer Science, pages 317–331. Springer, Berlin, Heidelberg, 2000.
doi:10.1007/3-540-44622-2_21.

23 Claudio Hermida and Bart Jacobs. Structural Induction and Coinduction in a Fibrational
Setting. Information and Computation, 145(2):107–152, 1998. doi:10.1006/inco.1998.2725.

24 Naohiko Hoshino. Linear Realizability. In Computer Science Logic, volume 4646 LNCS,
pages 420–434. Springer, Berlin, Heidelberg, Berlin, Heidelberg, 2007. doi:10.1007/
978-3-540-74915-8_32.

25 Jasper Hugunin. Why not W? In 26th International Conference on Types for Proofs and
Programs (TYPES 2020), 2020. doi:{10.4230/LIPIcs.TYPES.2020.8}.

TYPES 2021

https://doi.org/10.1006/inco.2001.2951
https://doi.org/10.1145/3434331
https://doi.org/10.4230/LIPIcs.TYPES.2015.5
https://doi.org/10.4230/LIPIcs.TYPES.2015.5
https://doi.org/10.1145/3209108.3209197
https://doi.org/10.1145/3209108.3209197
https://doi.org/10.1007/3-540-52335-9_47
https://doi.org/10.1007/3-540-52335-9_47
https://doi.org/10.1007/3-540-61780-9_66
https://doi.org/10.1016/S0304-3975(96)00145-4
https://doi.org/10.1016/S0168-0072(02)00096-9
https://doi.org/10.1145/3373718.3394765
https://doi.org/10.1007/978-3-540-24849-1_14
https://doi.org/10.1017/S0305004112000394
https://doi.org/10.1017/S0305004112000394
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/j.apal.2005.05.022
https://doi.org/10.1007/3-540-44622-2_21
https://doi.org/10.1006/inco.1998.2725
https://doi.org/10.1007/978-3-540-74915-8_32
https://doi.org/10.1007/978-3-540-74915-8_32
https://doi.org/{10.4230/LIPIcs.TYPES.2020.8}.

10:22 Quantitative Polynomial Functors

26 Ambrus Kaposi and András Kovács. Signatures and induction principles for higher inductive-
inductive types. Log. Methods Comput. Sci., 16(1), 2020. doi:10.23638/LMCS-16(1:10)2020.

27 Ambrus Kaposi, András Kovács, and Thorsten Altenkirch. Constructing quotient inductive-
inductive types. Proc. ACM Program. Lang., 3(POPL):2:1–2:24, 2019. doi:10.1145/3290315.

28 András Kovács and Ambrus Kaposi. Large and infinitary quotient inductive-inductive types.
In Holger Hermanns, Lijun Zhang, Naoki Kobayashi, and Dale Miller, editors, LICS ’20: 35th
Annual ACM/IEEE Symposium on Logic in Computer Science, Saarbrücken, Germany, July
8-11, 2020, pages 648–661. ACM, 2020. doi:10.1145/3373718.3394770.

29 Neelakantan R. Krishnaswami, Pierre Pradic, and Nick Benton. Integrating Linear and De-
pendent Types. ACM SIGPLAN Notices, 50(1):17–30, 2015. doi:10.1145/2775051.2676969.

30 Peter Lefanu Lumsdaine and Michael Shulman. Semantics of higher inductive types.
Mathematical Proceedings of the Cambridge Philosophical Society, 169(1):159–208, 2020.
doi:10.1017/S030500411900015X.

31 Conor McBride. I Got Plenty o’ Nuttin’. In Lecture Notes in Computer Science, volume 9600,
pages 207–233. Springer Verlag, 2016. doi:10.1007/978-3-319-30936-1_12.

32 Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III. Quantitative program
reasoning with graded modal types. Proceedings of the ACM on Programming Languages,
3(ICFP):110:1–110:30, 2019. doi:10.1145/3341714.

33 Uday S. Reddy. A linear logic model of state. Manuscript, 1993.
34 Jan M. Smith. The independence of Peano’s fourth axiom from Martin-Löf’s type theory

without universes. Journal of Symbolic Logic, 53(3):840–845, 1988. doi:10.2307/2274575.
35 Tomáš Svoboda. Additive pairs in quantitative type theory. Master thesis, Charles University

Prague, 2021. doi:20.500.11956/127263.
36 The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of

Mathematics. https://homotopytypetheory.org/book, Institute for Advanced Study, 2013.
37 Philip Wadler. Linear types can change the world! In M. Broy and C. Jones, editors,

Programming Concepts and Methods. North Holland, 1990.

https://doi.org/10.23638/LMCS-16(1:10)2020
https://doi.org/10.1145/3290315
https://doi.org/10.1145/3373718.3394770
https://doi.org/10.1145/2775051.2676969
https://doi.org/10.1017/S030500411900015X
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1145/3341714
https://doi.org/10.2307/2274575
https://doi.org/20.500.11956/127263
https://homotopytypetheory.org/book

Types and Terms Translated: Unrestricted
Resources in Encoding Functions as Processes
Joseph W. N. Paulus # Ñ

University of Groningen, The Netherlands

Daniele Nantes-Sobrinho # Ñ

University of Brasília, Brazil
Imperial College London, UK

Jorge A. Pérez # Ñ

University of Groningen, The Netherlands

Abstract
Type-preserving translations are effective rigorous tools in the study of core programming calculi.
In this paper, we develop a new typed translation that connects sequential and concurrent calculi; it
is governed by type systems that control resource consumption. Our main contribution is the source
language, a new resource λ-calculus with non-collapsing non-determinism and failures, dubbed uλ ⊕.
In uλ ⊕, resources are split into linear and unrestricted; failures are explicit and arise from this
distinction. We define a type system based on intersection types to control resources and fail-prone
computation. The target language is sπ, an existing session-typed π-calculus that results from
a Curry-Howard correspondence between linear logic and session types. Our typed translation
subsumes our prior work; interestingly, it treats unrestricted resources in uλ ⊕ as client-server session
behaviours in sπ.

2012 ACM Subject Classification Theory of computation→ Type structures; Theory of computation
→ Process calculi

Keywords and phrases Resource λ-calculus, intersection types, session types, process calculi

Digital Object Identifier 10.4230/LIPIcs.TYPES.2021.11

Related Version Online appendix with omitted proofs and further examples:
Full Version: http://arxiv.org/abs/2112.01593 [18]

Funding Research partially supported by the Dutch Research Council (NWO) under project No.
016.Vidi.189.046 (Unifying Correctness for Communicating Software).

Acknowledgements We are grateful to the anonymous reviewers for their constructive feedback.

1 Introduction

Context. Type-preserving translations are effective rigorous tools in the study of core
programming calculi. They can be seen as an abstract counterpart to the type-preserving
compilers that enable key optimisations in the implementation of programming languages.
The goal of this paper is to develop a new typed translation that connects sequential and
concurrent calculi, and is governed by type systems that control resource consumption.

A central idea in the resource λ-calculus is to consider that in an application M N the
argument N is a resource of possibly limited availability. This generalisation of the λ-calculus
triggers many fascinating questions, such as typability, solvability, expressiveness power,
etc., which have been studied in different settings (see, e.g., [1, 3, 16, 7]). In established
resource λ-calculi, such as those by Boudol [1] and by Pagani and Ronchi della Rocca [16], a
more general form of application is considered: a term can be applied to a bag of resources
B = *N1 + · . . . · *Nk+, where N1, . . . , Nk denote terms; then, an application M B must take
into account that each Ni may be reusable or not. Thus, non-determinism is natural in

© Joseph W. N. Paulus, Daniele Nantes-Sobrinho, and Jorge A. Pérez;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Types for Proofs and Programs (TYPES 2021).
Editors: Henning Basold, Jesper Cockx, and Silvia Ghilezan; Article No. 11; pp. 11:1–11:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:j.w.n.paulus@rug.nl
https://www.rug.nl/staff/j.w.n.paulus/
https://orcid.org/0000-0002-1711-9361
mailto:dnantess@imperial.ac.uk
https://www.mat.unb.br/~dnantes
https://orcid.org/0000-0002-1959-8730
mailto:j.a.perez@rug.nl
https://www.jperez.nl
https://orcid.org/0000-0002-1452-6180
https://doi.org/10.4230/LIPIcs.TYPES.2021.11
http://arxiv.org/abs/2112.01593
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Unrestricted Resources in Encoding Functions as Processes

resource λ-calculi, because a term has now multiple ways of consuming resources from the
bag. This bears a strong resemblance with process calculi such as the π-calculus [15], in
which concurrent interactions are intrinsically non-deterministic.

There are different flavors of non-determinism. Over two decades ago, Boudol and
Laneve [2, 3] explored connections between a resource λ-calculus and the π-calculus. In
their setting, an application M B would branch, i.e., M could consume a resource Nj in B

(with j ∈ {1, . . . k}) and discard the other k − 1 resources in a non-confluent manner; this is
what we call a collapsing approach to non-determinism. On a different direction, Pagani and
Ronchi della Rocca [16] proposed λr, a resource λ-calculus that implements non-collapsing
non-determinism, whereby all the possible alternatives for resource consumption are retained
together in a sum, ensuring confluence. They investigated typability and characterisations
of solvability in λr, but no connection with the π-calculus was established. In an attempt
to address this gap, our previous work [17] identified λ ⊕, a resource λ-calculus with non-
collapsing non-determinism, explicit failure, and linear resources (to be used exactly once),
and developed a correct typed translation into a session typed π-calculus [5]. The calculus λ ⊕,
however, does not include unrestricted resources (to be used zero or many times).

This Paper. Here we introduce a new λ-calculus, dubbed uλ ⊕, its intersection type system,
and its translation into session-typed processes. Our motivation is twofold: to elucidate the
status of unrestricted resources in a functional setting with non-collapsing non-determinism,
and to characterise unrestricted resources within a translation of functions into processes.
Unlike its predecessors, uλ ⊕ distinguishes between linear and unrestricted resources. This
distinction determines the semantics of terms and especially the deadlocks (failures) that
arise due to mismatches in resources. This way, uλ ⊕ subsumes λ ⊕, which is purely linear
and cannot express failures related to unrestricted resources.

Distinguishing linear and unrestricted resources is not a new insight. This idea goes back
to Boudol’s λ-calculus with multiplicities [1], where arguments can be tagged as unrestricted.
What is new about uλ ⊕ is that the distinction between linear and unrestricted resources
leads to two main differences. First, occurrences of a variable can be linear or unrestricted,
depending on the kind of resources they should be substituted with. This way, e.g., a linear
occurrence of variable must be substituted with a linear resource. In uλ ⊕, a variable can
have linear and unrestricted occurrences in the same term. (Notice that we use the adjective
‘linear’ in connection to resources used exactly once, and not to the number of occurrences of
a variable in a term.) Second, failures depend on the nature of the involved resource(s). In
uλ ⊕, a linear failure arises from a mismatch between required and available (linear) resources;
an unrestricted failure arises when a specific (unrestricted) resource is not available.

Accordingly, the syntax of uλ ⊕ incorporates linear and unrestricted resources, enabling
their consistent separation, within non-collapsing non-determinism. The calculus allows
for linear and unrestricted occurrences of variables, as just discussed; bags comprise two
separate zones, linear and unrestricted; and the failure term failx1,··· ,xn explicitly mentions
the linear variables x1, . . . , xn. The (lazy) reduction semantics of uλ ⊕ includes two different
rules for “fetching” terms from bags, and for consistently handling the failure term.

We equip uλ ⊕ with non-idempotent intersection types, extending the approach in [17]:
in uλ ⊕, intersection types account for more than resource multiplicity, since the elements
of the unrestricted bag can have different types. Using intersection types, we define a class
of well-formed uλ ⊕ expressions, which includes terms that correctly consume resources but
also terms that may reduce to the failure term. Well-formed expressions thus subsume the
well-typed expressions that can be defined in a sub-language of uλ ⊕ without the failure term.

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 11:3

The calculus uλ ⊕ can express terms whose dynamic behaviour is not captured by prior
works. This way, e.g., the identity function I admits two formulations, depending on whether
the variable occurrence is linear or unrestricted. One can have λx.x, as usual, but also the
unrestricted variant λx.x[i], where “[i]” is an index annotation (similar to a qualifier or a
tag), which indicates that x should be replaced by the i-th element of the unrestricted zone of
the bag. The behaviour of these functions will depend on the bags that are provided as their
arguments. Similarly, we can express variants of ∆ = λx.xx and Ω = ∆ ∆ whose behaviours
again depend on linear or unrestricted occurrences of variables and bags. Consider the term
∆7 = λx.(x[1](1 ⋆ *x[1] +! ⋄ * x[2]+!)), where we use “⋆” to separate linear and unrestricted
resources in the bag, and “⋄” denotes concatenation of unrestricted resources. Term ∆7 is an
abstraction on x of an application of an unrestricted occurrence of x, which aims to consume
the first component of an unrestricted bag, to a bag with an empty linear zone (denoted 1)
and an unrestricted zone with resources *x[1]+! and *x[2]+!. The self-application ∆7∆7
produces a non-terminating behaviour and yet ∆7 itself is well-formed (see Example 20).

Both uλ ⊕ and λ ⊕ are logically motivated resource λ-calculi, in the following sense: their
design has been strongly influenced by sπ, a typed π-calculus resulting from the Curry-Howard
correspondence between linear logic and session types in [5], where proofs correspond to
processes and cut elimination to process communication. As demonstrated in [5], providing
primitive support for explicit failures is key to expressing many useful programming idioms
(such as exceptions); this insight is a leading motivation in our design for uλ ⊕.

To attest to the logical underpinnings of uλ ⊕, we develop a typed translation (or encoding)
of uλ ⊕ into sπ and establish its correctness with respect to well-established criteria [9, 14].
As in [17], we encode λ ⊕ into sπ by relying on an intermediate language with sharing
constructs [10, 8, 13]. A key idea in encoding uλ ⊕ is to codify the behaviour of unrestricted
occurrences of a variable and their corresponding resources in the bag as client-server
connections, leveraging the copying semantics for the exponential “!A” induced by the Curry-
Howard correspondence. This typed encoding into sπ justifies the semantics of uλ ⊕ in terms
of precise session protocols (i.e., linear logic propositions, because of the correspondence).

In summary, the main contributions of this paper are: (1) The resource calculus uλ ⊕
of linear and unrestricted resources, and its associated intersection type system. (2) A
typed encoding of uλ ⊕ into sπ, which connects well-formed expressions (disciplined by
intersection types) and well-typed concurrent processes (disciplined by session types, under
the Curry-Howard correspondence with linear logic), subsuming the results in [17].

2 uλ
⊕: Unrestricted Resources, Non-Determinism, and Failure

Syntax. We shall use x, y, . . . to range over variables, and i, j . . ., as positive integers, to
range over indices. Variable occurrences will be annotated to distinguish the kind of resource
they should be substituted with (linear or unrestricted). With a slight abuse of terminology,
we may write “linear variable” and “unrestricted variable” to refer to linear and unrestricted
occurrences of a variable. As we will see, a variable’s annotation will be inconsequential for
binding purposes. We write x̃ to abbreviate x1, . . . , xn, for n ≥ 1 and each xi distinct.

TYPES 2021

11:4 Unrestricted Resources in Encoding Functions as Processes

▶ Definition 1 (uλ̂ ⊕). We define terms (M, N), bags (A, B), and expressions (M,N) as:

(Annotations) [∗] ::= [i] | [ℓ] i ∈ N

(Terms) M, N ::= x[∗] | λx.M | (M B) | M⟨⟨B/x⟩⟩ | failx̃

(Linear Bags) C, D ::= 1 | * M + ·C
(Unrestricted Bags) U, V ::= 1! | * M +! | U ⋄ V

(Bags) A, B ::= C ⋆ U

(Expressions) M,N ::= M | M + N

To lighten up notation, we shall omit the annotation for linear variables. This way, e.g., we
write (λx.x)B rather than (λx.x[ℓ])B.

Definition 1 introduces three syntactic categories: terms (in functional position); bags
(multisets of resources, in argument position), and expressions, which are finite formal sums
that denote possible results of a computation. Below we describe each category in details.

Terms (unary expressions):
Variables: We write x[ℓ] to denote a linear occurrence of x, i.e, an occurrence that
can only be substituted for linear resources. Similarly, x[i] denotes an unrestricted
occurrence of x, i.e., an occurrence that can only be substituted for a resource located
at the i-th position of an unrestricted bag.
Abstractions λx.M of a variable x in a term M , which may have contain linear
or unrestricted occurrences of x. This way, e.g., λx.x and λx.x[i] are linear and
unrestricted versions of the identity function. Notice that the scope of x is M , as usual,
and that λx.(·) binds both linear and unrestricted occurrences of x.
Applications of a term M to a bag B (written M B) and the explicit substitution
of a bag B for a variable x (written ⟨⟨B/x⟩⟩) are as expected (cf. [1, 3]). Notice that
in M⟨⟨B/x⟩⟩ the occurrences of x in M , linear and unrestricted, are bound. Some
conditions apply to B: this will be evident later on, after we define our operational
semantics (cf. Fig. 1).
The failure term failx̃ denotes a term that will result from a reduction in which there
is a lack or excess of resources, where x̃ denotes a multiset of free linear variables that
are encapsulated within failure.

A bag B is defined as C ⋆ U : the concatenation of a bag of linear resources C with a bag
(actually, a list) of unrestricted resources U . We write *M+ to denote the linear bag that
encloses term M , and use *M+! in the unrestricted case.

Linear bags (C, D, . . .) are multisets of terms. The empty linear bag is denoted 1. We
write C1 · C2 to denote the concatenation of C1 and C2; this is a commutative and
associative operation, where 1 is the identity.
Unrestricted bags (U, V, . . .) are ordered lists of terms. The empty unrestricted bag is
denoted as 1!. The concatenation of U1 and U2 is denoted by U1 ⋄U2; this operation is
associative but not commutative. Given i ≥ 1, we write Ui to denote the i-th element
of the unrestricted (ordered) bag U .

Expressions are sums of terms, denoted as
∑n

i Ni, where n > 0. Sums are associative
and commutative; reordering of the terms in a sum is performed silently.

▶ Example 2. Consider the term M := λx.(x[1] * x + ⋆ * y[1]+!), which has linear and
unrestricted occurrences of the same variable. This is an abstraction of an application that
contains two bound occurrences of x (one unrestricted with index 1, and one linear) and
one free unrestricted occurrence of y[1], occurring in an unrestricted bag. As we will see, in
M (C ⋆ U), the unrestricted occurrence “x[1]” should be replaced by the first element of U .

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 11:5

The salient features of uλ ⊕– the explicit construct for failure, the index annotations on
unrestricted variables, the ordering of unrestricted bags – are design choices that will be
responsible for interesting behaviours, as the following examples illustrate.

▶ Example 3. As already mentioned, uλ ⊕ admits different variants of the usual λ-term
I = λx.x. We could have one in which x is a linear variable (i.e., λx.x), but also several
possibilities if x is unrestricted (i.e., λx.x[i], for some positive integer i). Interestingly,
because uλ ⊕ supports failures, non-determinism, and the consumption of arbitrary terms of
the unrestricted bag, these two variants of I can have behaviours that may differ from the
usual interpretation of I. In Example 11 we will show that the six terms below give different
behaviours:

M1 = (λx.x)(*N + ⋆U)
M2 = (λx.x)(*N1 + ·*N2 +⋆U)
M3 = (λx.x[1])(*N + ⋆1!)

M4 = (λx.x[1])(1 ⋆ *N +! ⋄U)
M5 = (λx.x[1])(1 ⋆ 1! ⋄ U)
M6 = (λx.x[i])(C ⋄ U)

We will see that M1, M4, M6 reduce without failures, whereas M2, M3, M5 reduce to failure.

▶ Example 4. Similarly, uλ ⊕ allows for several forms of the standard λ-terms such as
∆ := λx.xx and Ω := ∆∆, depending on whether the variable x is linear or unrestricted:
1. ∆1 := λx.(x(*x + ⋆1!)) consists of an abstraction of a linear occurrence of x applied

to a linear bag containing another linear occurrence of x. There are two forms of
self-applications of ∆1, namely: ∆1(*∆1 + ⋆1!) and ∆1(1 ⋆ *∆1+!).

2. ∆4 := λx.(x[1](*x+⋆1!)) consists of an unrestricted occurrence of x applied to a linear bag
(containing a linear occurrence of x) that is composed with an empty unrestricted bag.
Similarly, there are two self-applications of ∆4, namely: ∆4(*∆4 + ⋆1!) and ∆4(1 ⋆ *∆4+!).

3. We show applications of an unrestricted variable occurrence (x[2] or x[1]) applied to an
empty linear bag composed with a non-empty unrestricted bag (of size two):

∆3 = λx.(x[1](1 ⋆ *x[1] +! ⋄ * x[1]+!))
∆5 := λx.(x[2](1 ⋆ *x[1] +! ⋄ * x[2]+!))

∆6 := λx.(x[1](1 ⋆ *x[1] +! ⋄ * x[2]+!))
∆7 := λx.(x[2](1 ⋆ *x[1] +! ⋄ * x[1]+!))

Applications between these terms express behaviour, similar to a lazy evaluation of Ω:
Ω5 := ∆5(1 ⋆ *∆5 +! ⋄ * ∆5+!)
Ω5,6 := ∆5(1 ⋆ *∆5 +! ⋄ * ∆6+!)

Ω6,5 := ∆6(1 ⋆ *∆5 +! ⋄ * ∆6+!)
Ω7 := ∆7(1 ⋆ *∆7 +! ⋄ * ∆7+!)

The behaviour of these terms will be made explicit later on (see Examples 13 and 14).

Semantics. The semantics of uλ ⊕ captures that linear resources can be used only once, and
that unrestricted resources can be used ad libitum. Thus, the evaluation of a function applied
to a multiset of linear resources produces different possible behaviours, depending on the way
these resources are substituted for the linear variables. This induces non-determinism, which
we formalise using a non-collapsing approach, in which expressions keep all the different
possibilities open, and do not commit to one of them. This is in contrast to collapsing
non-determinism, in which selecting one alternative discards the rest.

We define a reduction relation −→, which operates lazily on expressions. Informally, a
β-reduction induces an explicit substitution of a bag B = C ⋆ U for a variable x, denoted
⟨⟨B/x⟩⟩, in a term M . This explicit substitution is then expanded depending on whether the
head of M has a linear or an unrestricted variable. Accordingly, in uλ ⊕ there are two sources
of failure: one concerns mismatches on linear resources (required vs available resources); the
other concerns the unavailability of a required unrestricted resource (an empty bag 1!).

To formalise reduction, we require a few auxiliary notions.

▶ Definition 5. The multiset of free linear variables of M, denoted mlfv(M), is defined below.
We denote by [x] the multiset containing the linear variable x and [x1, . . . , xn] denotes the
multiset containing x1, . . . , xn. We write x̃ ⊎ ỹ to denote the multiset union of x̃, and ỹ and
x̃ \ y to express that every occurrence of y is removed from x̃.

TYPES 2021

11:6 Unrestricted Resources in Encoding Functions as Processes

mlfv(x) = [x] mlfv(x[i]) = mlfv(1) = ∅
mlfv(C ⋆ U) = mlfv(C) mlfv(M B) = mlfv(M) ⊎mlfv(B)
mlfv(*M+) = mlfv(M) mlfv(λx.M) = mlfv(M)\{x}

mlfv(M⟨⟨B/x⟩⟩) = (mlfv(M) \ {x}) ⊎mlfv(B) mlfv(*M+ · C) = mlfv(M) ⊎mlfv(C)
mlfv(M + N) = mlfv(M) ⊎mlfv(N) mlfv(failx1,··· ,xn) = [x1, . . . , xn]

A term M (resp. expression M) is called linearly closed if mlfv(M) = ∅ (resp. mlfv(M) = ∅).

▶ Notation 6. We shall use the following notations.
N ∈ M means that N occurs in the sum M. Also, we write Ni ∈ C to denote that Ni

occurs in the linear bag C, and C \Ni to denote the linear bag obtained by removing one
occurrence of Ni from C.
#(x, M) denotes the number of (free) linear occurrences of x in M . Also, #(x, ỹ) denotes
the number of occurrences of x in the multiset ỹ.
PER(C) is the set of all permutations of a linear bag C and Ci(n) denotes the n-th term
in the (permuted) Ci.
size(C) denotes the number of terms in a linear bag C. That is, size(1) = 0 and
size(*M + ·C) = 1 + size(C). Given a bag B = C ⋆ U , we define size(B) as size(C).

▶ Definition 7 (Head). Given a term M , we define head(M) inductively as:

head(x) = x head(M B) = head(M) head(λx.M) = λx.M

head(x[i]) = x[i] head(failx̃) = failx̃ head(M⟨⟨B/x⟩⟩) =

{
head(M) if #(x, M) = size(B)
fail∅ otherwise

▶ Definition 8 (Head Substitution). Let M be a term such that head(M) = x. The head
substitution of a term N for x in M , denoted M{|N/x|}, is inductively defined as follows
(where x ̸= y):

x{|N/x|} = N (M B){|N/x|} = (M{|N/x|}) B (M ⟨⟨B/y⟩⟩){|N/x|} = (M{|N/x|}) ⟨⟨B/y⟩⟩

When head(M) = x[i], the head substitution M{|N/x[i]|} works as expected: x[i]{|N/x[i]|} =
N as the base case of the definition. Finally, we define contexts for terms and expressions:

▶ Definition 9 (Evaluation Contexts). Contexts for terms (CTerm) and expressions (CExpr)
are defined by the following grammar:

(CTerm) C[·], C ′[·] ::= ([·])B | ([·])⟨⟨B/x⟩⟩ (CExpr) D[·], D′[·] ::= M + [·]

Reduction is defined by the rules in Fig. 1. Rule [R : Beta] induces explicit substitutions.
Resource consumption is implemented by two fetch rules, which open up explicit substitutions:

Rule [R : Fetchℓ], the linear fetch, ensures that the number of required resources matches
the size of the linear bag C. It induces a sum of terms with head substitutions, each
denoting the partial evaluation of an element from C. Thus, the size of C determines the
summands in the resulting expression.
Rule [R : Fetch!], the unrestricted fetch, consumes a resource occurring in a specific
position of the unrestricted bag U via a linear head substitution of an unrestricted
variable occurring in the head of the term. In this case, reduction results in an explicit
substitution with U kept unaltered. Note that we check for the size of the linear bag C:
in the case #(x, M) ̸= size(C), the term evolves to a linear failure via Rule [R : failℓ]
(see Example 12). This is another design choice: linear failure is prioritised in uλ ⊕.

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 11:7

[R : Beta]
(λx.M)B −→M⟨⟨B/x⟩⟩

head(M) = x C = *N1+ · · · · · *Nk+ , k ≥ 1 #(x, M) = k
[R : Fetchℓ]

M⟨⟨C ⋆ U/x⟩⟩ −→M{|N1/x|}⟨⟨(C \N1) ⋆ U/x⟩⟩+ · · ·+ M{|Nk/x|}⟨⟨(C \Nk) ⋆ U/x⟩⟩

head(M) = x[i] #(x, M) = size(C) Ui = *N+!

[R : Fetch!]
M ⟨⟨C ⋆ U/x⟩⟩ −→M{|N/x[i]|}⟨⟨C ⋆ U/x⟩⟩

#(x, M) ̸= size(C) ỹ = (mlfv(M)\ x) ⊎mlfv(C)
[R : Failℓ]

M⟨⟨C ⋆ U/x⟩⟩ −→
∑

PER(C)

failỹ

#(x, M) = size(C) Ui = 1! head(M) = x[i]
[R : Fail!]

M⟨⟨C ⋆ U/x⟩⟩−→M{|fail∅/x[i]|}⟨⟨C ⋆ U/x⟩⟩

ỹ = mlfv(C)
[R : Cons1]

(failx̃) C ⋆ U −→
∑

PER(C)

failx̃⊎ỹ

#(z, x̃) = size(C) ỹ = mlfv(C)
[R : Cons2]

failx̃ ⟨⟨C ⋆ U/z⟩⟩ −→
∑

PER(C)

fail(̃x\z)⊎ỹ

M −→ M′
[R : ECont]

D[M] −→ D[M′]
M −→

∑k

i=1 M ′
i[R : TCont]

C[M] −→
∑k

i=1 C[M ′
i]

Figure 1 Reduction rules for uλ ⊕.

Four rules show reduction to failure terms, and accumulate free variables involved in
failed reductions. Rules [R : Failℓ] and [R : Fail!] formalise the failure to evaluate an explicit
substitution M⟨⟨C ⋆ U/x⟩⟩. The former rule targets a linear failure, which occurs when the
size of C does not match the number of occurrences of x. The multiset ỹ preserves all free
linear variables in M and C. The latter rule targets an unrestricted failure, which occurs
when the head of the term is x[i] and Ui (i.e., the i-th element of U) is empty. In this
case, failure preserves the free linear variables in M and C excluding the head unrestricted
occurrence x[i] which is replaced by fail∅.

Rules [R : Cons1] and [R : Cons2] describe reductions that lazily consume the failure term,
when a term has failx̃ at its head position. The former rule consumes bags attached to it
whilst preserving all its free linear variables; the latter rule consumes explicit substitution
attached to it whilst also preserving all its free linear variables. The side condition #(z, x̃) =
size(C) is necessary in Rule [R : Cons2] to avoid a clash with the premise of Rule [R : Failℓ].
Finally, Rules [R : ECont] and [R : TCont] state closure by the C and D contexts (cf. Def. 9).

Notice that the left-hand sides of the reduction rules in uλ ⊕ do not interfere with each
other. As a result, reduction in uλ ⊕ satisfies a diamond property: for all M ∈ uλ ⊕, if there
exist M1,M2 ∈ uλ ⊕ such that M −→ M1 and M −→ M2, then there exists N ∈ uλ ⊕ such
that M1 −→ N←−M2 (see [18] for more details).

▶ Notation 10. As usual, −→∗ denotes the reflexive-transitive closure of −→. We write
N −→[R] M to denote that [R] is the last (non-contextual) rule used in the step from N to M.

TYPES 2021

11:8 Unrestricted Resources in Encoding Functions as Processes

▶ Example 11 (Cont. Example 3). We illustrate different reductions for λx.x and λx.x[i].
1. M1 = (λx.x)(*N + ⋆U) concerns a linear variable x with an linear bag containing one

element. This is similar to the usual meaning of applying an identity function to a term:
(λx.x)(*N + ⋆U) −→[R:Beta] x⟨⟨*N + ⋆U/x⟩⟩ −→[R:Fetchℓ] x{|N/x|}⟨⟨1 ⋆ U/x⟩⟩ = N⟨⟨1 ⋆ U/x⟩⟩,
with a “garbage collector” that collects unused unrestricted resources.

2. M2 = (λx.x)(*N1 + · * N2 + ⋆U) concerns the case in which a linear variable x has a single
occurrence but the linear bag has size two. Term M2 reduces to a sum of failure terms:
(λx.x)(*N1 + · * N2 + ⋆U) −→[R:Beta] x⟨⟨*N1 + · * N2 + ⋆U/x⟩⟩ −→[R:Failℓ]

∑
PER(C)

failỹ

for C = *N1 + · * N2+ and ỹ = mlfv(C).
3. M3 = (λx.x[1])(*N + ⋆1!) represents an abstraction of an unrestricted variable, which

aims to consume the first element of the unrestricted bag. Because this bag is empty, M3
reduces to failure:
(λx.x[1])(*N + ⋆1!) −→[R:Beta] x[1]⟨⟨*N + ⋆1!

/x⟩⟩ −→[R:failℓ] failỹ,

for ỹ = mlfv(N). Notice that 0 = #(x, x[1]) ̸= size(*N+) = 1, since there are no linear
occurrences of x in x[1].

▶ Example 12. To illustrate the need to check “size(C)” in [R : Fail!], consider the term
x[1]⟨⟨*M + ⋆1!

/x⟩⟩, which features both a mismatch of linear bags for the linear variables to
be substituted and an empty unrestricted bag with the need for the first element to be
substituted. We check the size of the linear bag because we wish to prioritise the reduction
of Rule [R : Failℓ]. Hence, in case of a mismatch of linear resources we wish not to perform a
reduction via Rule [R : Fail!]. This is a design choice: our semantics collapses linear failure
at the earliest moment it arises.

▶ Example 13 (Cont. Example 4). Self-applications of ∆1 do not behave as an expected
variation of a lazy reduction from Ω. Both ∆1(*∆1 + ⋆1!) and ∆1(1 ⋆ *∆1+!) reduce to failure
since the number of linear occurrences of x does not match the number of resources in the
linear bag: ∆1(*∆1 + ⋆1!) −→ (x(*x + ⋆1))⟨⟨*∆1 + ⋆1!

/x⟩⟩ −→ fail∅.

The term ∆4(1⋆*∆4+!) also fails: the linear bag is empty and there is one linear occurrence
of x in ∆4. Note that ∆4(*∆4 + ⋆ * ∆4+!) reduces to another application of ∆4 before failing:

∆4(*∆4 + ⋆ * ∆4+!) = (λx.(x[1](*x + ⋆1!)))(*∆4 + ⋆ * ∆4+!)

−→[R:Beta] (x[1](*x + ⋆1!))⟨⟨*∆4 + ⋆ * ∆4+!
/x⟩⟩

−→[R:Fetch!] (∆4(*x + ⋆1!))⟨⟨*∆4 + ⋆ * ∆4+!
/x⟩⟩

−→∗ fail∅⟨⟨*x + ⋆1!
/y⟩⟩⟨⟨*∆4 + ⋆ * ∆4+!

/x⟩⟩

Differently from [17], there are terms in uλ ⊕ that when applied to each other behave similarly
to Ω, namely Ω5,6, Ω6,5, and Ω7 (Example 4).

▶ Example 14 (Cont. Example 4). The following reductions illustrate different behaviours
provided that subtle changes are made within uλ ⊕-terms:

An interesting behaviour of uλ ⊕ is that variations of ∆ can be applied to each other
and appear alternately (highlighted in blue) in the functional position throughout the
computation – this behaviour is illustrated in Fig. 2:

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 11:9

* *

∆5(1 ⋆ *∆5 +! ⋄ * ∆6+!) ∆5 . . . ⟨⟨1 ⋆ *∆5 +! ⋄ * ∆6+!
/x⟩⟩

*
∆6 . . . ⟨⟨1 ⋆ *∆5 +! ⋄ * ∆6+!

/x⟩⟩ ∆6 . . . ⟨⟨1 ⋆ *∆5 +! ⋄ * ∆6+!
/x⟩⟩

*

. . .

Figure 2 An Ω-like behaviour in uλ ⊕ (cf. Example 14).

Ω5,6 = ∆5(1 ⋆ *∆5 +! ⋄ * ∆6+!)
= (λx.(x[2](1 ⋆ *x[1] +! ⋄ * x[2]+!)))(1 ⋆ *∆5 +! ⋄ * ∆6+!)

−→[R:Beta] (x[2](1 ⋆ *x[1] +! ⋄ * x[2]+!))⟨⟨1 ⋆ *∆5 +! ⋄ * ∆6+!
/x⟩⟩

−→[R:Fetch!] (∆6(1 ⋆ *x[1] +! ⋄ * x[2]+!))⟨⟨1 ⋆ *∆5 +! ⋄ * ∆6+!
/x⟩⟩

−→[R:Beta] (y[1](1 ⋆ *y[1] +! ⋄ * y[2]+!)⟨⟨(1 ⋆ *x[1] +! ⋄ * x[2]+!)/y⟩⟩⟨⟨1 ⋆ *∆5 +! ⋄ * ∆6+!
/x⟩⟩

−→[R:Fetch!] (x[1](1 ⋆ *y[1] +! ⋄ * y[2]+!)⟨⟨(1 ⋆ *x[1] +! ⋄ * x[2]+!)/y⟩⟩⟨⟨1 ⋆ *∆5 +! ⋄ * ∆6+!
/x⟩⟩

−→[R:Fetch!] (∆5(1 ⋆ *y[1] +! ⋄ * y[2]+!)⟨⟨(1 ⋆ *x[1] +! ⋄ * x[2]+!)/y⟩⟩⟨⟨1 ⋆ *∆5 +! ⋄ * ∆6+!
/x⟩⟩

−→ . . .

Applications of ∆7 into two unrestricted copies of ∆7 behave as Ω producing a non-
terminating behaviour. Letting B = 1 ⋆ *x[1] +! ⋄ * x[1]+!, we have:
Ω7 = (λx.(x[2](1 ⋆ *x[1] +! ⋄ * x[1]+!)))(1 ⋆ *∆7 +! ⋄ * ∆7+!)

−→[R:Beta] (x[2](1 ⋆ *x[1] +! ⋄ * x[1]+!))⟨⟨1 ⋆ *∆7 +! ⋄ * ∆7+!
/x⟩⟩

−→[R:Fetch!] (∆7(1 ⋆ *x[1] +! ⋄ * x[1]+!))⟨⟨1 ⋆ *∆7 +! ⋄ * ∆7+!
/x⟩⟩

−→[R:Beta] (y[2](1 ⋆ *y[1] +! ⋄ * y[1]+!))⟨⟨B/y⟩⟩⟨⟨1 ⋆ *∆7 +! ⋄ * ∆7+!
/x⟩⟩

−→[R:Fetch!] (x[1](1 ⋆ *y[1] +! ⋄ * y[1]+!))⟨⟨B/y⟩⟩⟨⟨1 ⋆ *∆7 +! ⋄ * ∆7+!
/x⟩⟩

−→[R:Fetch!] (∆7(1 ⋆ *y[1] +! ⋄ * y[1]+!))⟨⟨B/y⟩⟩⟨⟨1 ⋆ *∆7 +! ⋄ * ∆7+!
/x⟩⟩

−→ . . .
Later on we will show that this term is well-formed (see Example 20) with respect to the
intersection type system introduced in § 3.

3 Well-Formed Expressions via Intersection Types

We define well-formed uλ ⊕-expressions by relying on a non-idempotent intersection type
system, based on the system by Bucciarelli et al. [4]. Our system for well-formed expressions
subsumes the one in [17]: it uses strict and multiset types to check linear bags; moreover, it
uses list and tuple types to check unrestricted bags. As in [17], we write “well-formedness”
(of terms, bags, and expressions) to stress that, unlike usual type systems, our system can
account for terms that may reduce to the failure term (cf. Remark 22).

▶ Definition 15 (Types for uλ ⊕). We define strict, multiset, list, and tuple types.

(Strict) σ, τ, δ ::= unit | (π, η)→ σ

(Multiset) π, ζ ::=
∧

i∈I σi | ω

(List) η, ϵ ::= σ | ϵ ⋄ η

(Tuple) (π, η)

TYPES 2021

11:10 Unrestricted Resources in Encoding Functions as Processes

A strict type can be the unit type or a functional type (π, η)→ σ, where (π, η) is a tuple
type and σ is a strict type. Multiset types can be either the empty type ω or an intersection
of strict types

∧
i∈I σi, with I non-empty. The operator ∧ is commutative, associative,

non-idempotent, that is, σ ∧ σ ̸= σ, with identity ω. The intersection type
∧

i∈I σi is the
type of a linear bag; the cardinality of I corresponds to its size.

A list type can be either an strict type σ or the composition ϵ ⋄ η of two list types ϵ and
η. We use the list type ϵ ⋄ η to type the concatenation of two unrestricted bags. A tuple type
(π, η) types the concatenation of a linear bag of type π with an unrestricted bag of type η.
Notice that a list type ϵ ⋄ η can be recursively unfolded into a finite composition of strict
types σ1 ⋄ . . . ⋄ σn, for some n ≥ 1. In this case the length of ϵ ⋄ η is n and that σi is its i-th
strict type, for 1 ≤ i ≤ n.

▶ Notation 16. Given k ≥ 0, we write σk to stand for σ ∧ · · · ∧ σ (k times, if k > 0) or for
ω (if k = 0). Similarly, x̂ : σk stands for x : σ, · · · , x : σ (k times, if k > 0) or for x : ω (if
k = 0). Given k ≥ 1, we write x! : η to stand for x[1] : η1, · · · , x[k] : ηk.

▶ Notation 17 (η ∝ ϵ). Let ϵ and η be two list types, with the length of ϵ greater or equal to
that of η. Let us write ϵi and ηi to denote the i-th strict type in ϵ and η, respectively. We
write η ∝ ϵ meaning the initial sublist, whenever there exist ϵ′ and ϵ′′ such that: i) ϵ = ϵ′ ⋄ ϵ′′;
ii) the size of ϵ′ is that of η; iii) for all i, ϵ′

i = ηi.

Linear contexts range over Γ, ∆, . . . and unrestricted contexts range over Θ, Υ, They are
defined by the following grammar:

Γ, ∆ ::= - | x : σ | Γ, x : σ Θ, Υ ::= - | x! : η | Θ, x! : η

The empty linear/unrestricted type assignment is denoted “-”. Linear variables can
occur more than once in a linear context; they are assigned only strict types. For instance,
x : (τ, σ)→ τ, x : τ is a valid context: it means that x can be of both type (τ, σ)→ τ and τ .
In contrast, unrestricted variables can occur at most once in unrestricted contexts; they are
assigned only list types. The multiset of linear variables in Γ is denoted as dom(Γ); similarly,
dom(Θ) denotes the set of unrestricted variables in Θ.

Judgements are of the form Θ; Γ |= M : σ, where the left-hand side contexts are separated
by “;” and M : σ means that M has type σ. We write |= M : σ to denote - ; - |= M : σ.

▶ Definition 18 (Well-formed uλ ⊕ expressions). An expression M is well-formed (wf, for
short) if there exist Γ, Θ and τ such that Θ; Γ |= M : τ is entailed via the rules in Fig. 3.

We describe the well-formedness rules in Fig. 3.
Rules [F : varℓ] and [F : var!] assign types to linear and unrestricted variables, respectively.
Rule [F : var!] resembles the copy rule [6] where we use a linear copy of an unrestricted
variable x[i] of type σ, typed with x! : η, and type the linear copy with the corresponding
strict type ηi which in this case the linear copy x would have type equal to σ.
Rules [F : 1ℓ] and [F : 1!] assign types to the empty linear/unrestricted bag: 1 has type ω,
whereas 1! has an arbitrary strict type σ. Arbitrariness is allowed since the substitution
of an unrestricted variable for 1! leads to a fail term (Rule [R : Fail!]), which has an
arbitrary strict type.
Rule [F : abs] assigns type (σk, η) → τ to an abstraction λz.M , provided that the
unrestricted occurrences of z may be typed by the unrestricted context containing z! : η,
the linear occurrences of z are typed with the linear context containing ẑ : σk, for some
k ≥ 0, and there are no other linear occurrences of z in the linear context Γ.

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 11:11

[F:varℓ] Θ; x : σ |= x : σ
Θ, x! : η; x : ηi, ∆ |= x : σ

[F:var!]
Θ, x! : η; ∆ |= x[i] : σ

[F:1ℓ] Θ; - |= 1 : ω

[F:1!]
Θ; - |= 1! : σ

Θ, z! : η; Γ, ẑ : σk |= M : τ z /∈ dom(Γ)
[F:abs]

Θ; Γ |= λz.M : (σk, η)→ τ

Θ; Γ |= M : (σj , η)→ τ

Θ; ∆ |= B : (σk, ϵ) η ∝ ϵ
[F:app]

Θ; Γ, ∆ |= M B : τ

Θ, x! : η; Γ, x̂ : σj |= M : τ

Θ; ∆ |= B : (σk, ϵ) η ∝ ϵ
[F:ex-sub]

Θ; Γ, ∆ |= M⟨⟨B/x⟩⟩ : τ

Θ; Γ |= C : σk Θ; - |= U : η
[F:bag]

Θ; Γ |= C ⋆ U : (σk, η)
Θ; Γ |= M : σ Θ; ∆ |= C : σk

[F:bagℓ]
Θ; Γ, ∆ |= *M + ·C : σk+1

Θ; - |= M : σ
[F:bag!]

Θ; - |= *M+! : σ

Θ; - |= U : ϵ Θ; - |= V : η
[F: ⋄ bag!] Θ; - |= U ⋄ V : ϵ ⋄ η

dom(Γ) = x̃
[F:fail]

Θ; Γ |= failx̃ : τ

Θ; Γ |= M : σ Θ; Γ |= N : σ
[F:sum]

Θ; Γ |= M + N : σ

Θ; Γ |= M : σ x ̸∈ dom(Γ)
[F:weak]

Θ; Γ, x : ω |= M : σ

Figure 3 Well-formedness rules for uλ ⊕ (cf. Def. 18). In Rules [F:app] and [F:ex-sub]: k, j ≥ 0.

Rules [F:app] and [F:ex-sub] (for application and explicit substitution, resp.) use the
condition η ∝ ϵ (cf. Notation 17), which captures the portion of the unrestricted bag that
is effectively used in a term: it ensures that ϵ can be decomposed into some ϵ′ and ϵ′′, such
that each type component ϵ′

i matches with ηi. If this requirement is satisfied, Rule [F:app]
types an application M B given that M has a functional type in which the left of the
arrow is a tuple type (σj , η) whereas the bag B is typed with tuple (σk, ϵ). Similarly,
Rule [F:ex-sub] types the term M⟨⟨B/x⟩⟩ provided that B has the tuple type (σk, ϵ) and
M is typed with the variable x having linear type assignment σj and unrestricted type
assignment η.

▶ Remark 19. Differently from intersection type systems [4, 16], in Rules [F:app] and [F:ex-sub]
there is no equality requirement between j and k, as we would like to capture terms that
fail due to a mismatch in resources: we only require that the linear part of the tuples are
composed of the same strict type, say σ. As a term can take an unrestricted bag with
arbitrary size we only require that the elements of the unrestricted bag that are used have
a “consistent” type, i.e., the type of the unrestricted bag satisfies the relation ∝ with the
unrestricted fragment of the corresponding tuple type.
There are four rules for bags:

Rule [F : bag!] types an unrestricted bag *M+! with the type σ of M . Note that *x+!,
an unrestricted bag containing a linear variable x, is not well-formed, whereas *x[i]+! is
well-formed.
Rule [F : bag] assigns the tuple type (σk, η) to the concatenation of a linear bag of type
σk with an unrestricted bag of type η.
Rules [F : bagℓ] and [F: ⋄ bag!] type the concatenation of linear and unrestricted bags.
Rule [F:1!] allows an empty unrestricted bag to have an arbitrary σ type since it may be
referred to by a variable for substitution: we must be able to compare its type with the
type of unrestricted variables that may consume the empty bag (this reduction would
inevitably lead to failure).

TYPES 2021

11:12 Unrestricted Resources in Encoding Functions as Processes

As in [17], Rule [F:fail] handles the failure term, and is the main difference with respect to
standard type systems. Rules for sums and weakening ([F : sum] and [F : weak]) are standard.

▶ Example 20 (Cont. Example 14). Term ∆7 := λx.x[2](1 ⋆ *x[1] +! ⋄ * x[1]+!) is well-formed,
as ensured by the judgement Θ; - |= ∆7 : (ω, σ′ ⋄ (σj , σ′ ⋄ σ′)→ τ)→ τ , whose derivation is
given below:

Π3 is the derivation of Θ, x! : η; - |= *x[1]+! : σ′, for η = σ′ ⋄ (σj , σ′ ⋄ σ′)→ τ .
Π4 is the derivation: Θ, x! : η; - |= x[2] : (σj , σ′ ⋄ σ′)→ τ

Π5 is the derivation: Θ, x! : η; x : ω |= (1 ⋆ *x[1] +! ⋄ * x[1]+!) : (ω, σ′ ⋄ σ′)
Therefore,

Π5 Π4 σ′ ⋄ σ′ ∝ σ′ ⋄ σ′
[F:app]

Θ, x! : η; x : ω |= x[2](1 ⋆ *x[1] +! ⋄ * x[1]+!) : τ
[F:abs]

Θ; - |= λx.(x[2](1 ⋆ *x[1] +! ⋄ * x[1]+!))︸ ︷︷ ︸
∆7

: (ω, η)→ τ

Well-formed expressions satisfy subject reduction (SR); see [18] for a full proof.

▶ Theorem 21 (SR in uλ ⊕). If Θ; Γ |= M : τ and M −→M′ then Θ; Γ |= M′ : τ .

Proof. By structural induction on the reduction rules. We proceed by analysing the rule ap-
plied in M. An interesting case occurs when the rule is [F : Fetch!]: Then M = M ⟨⟨C ⋆ U/x⟩⟩,
where U = *N1 +! ⋄ · · · ⋄ *Nl+! and head(M) = x[i]. The reduction is as follows:

head(M) = x[i] Ui = *Ni+!
[R : Fetch!]

M ⟨⟨C ⋆ U/x⟩⟩ −→M{|Ni/x[i]|}⟨⟨C ⋆ U/x⟩⟩

By hypothesis, one has the derivation:

Θ, x! : η; Γ′, x̂ : σj |= M : τ

Π
Θ; · |= U : ϵ Θ; ∆ |= C : σk

[F:bag]
Θ; ∆ |= C ⋆ U : (σk, ϵ) η ∝ ϵ

[F:ex-sub]
Θ; Γ′, ∆ |= M⟨⟨C ⋆ U/x⟩⟩ : τ

where Π has the form
Θ; · |= N1 : ϵ1[F:bag!]

Θ; · |= *N1+! : ϵ1 · · ·
Θ; · |= Nl : ϵl[F:bag!]

Θ; · |= *Nl+! : ϵl[F: ⋄ bag!]
Θ; · |= *N1 +! ⋄ · · · ⋄ *Nl+! : ϵ

with Γ = Γ′, ∆. Notice that if ϵi = δ and η ∝ ϵ then ηi = δ. It can be shown that there
exists a derivation Π1 of Θ, x! : η; Γ′, x̂ : σj |= M{|Ni/x[i]|} : τ . Therefore, we have:

Θ, x! : η; Γ′, x̂ : σj |= M{|N1/x[i]|} : τ

Θ; · |= U : ϵ Θ; ∆ |= C : σk

[F:bag]
Θ; ∆ |= C ⋆ U : (σk, ϵ) η ∝ ϵ

[F:ex-sub]
Θ; Γ′, ∆ |= M{|Ni/x[i]|}⟨⟨C ⋆ U/x⟩⟩ : τ

◀

▶ Remark 22 (Well-Formed vs Well-Typed Expressions). Our type system (and Theorem 21)
can be specialised to the case of well-typed expressions that do not contain (and never reduce
to) the failure term. In particular, Rules [F:app] and [F:ex-sub] would need to check that
σk = σj , as failure can be caused due to a mismatch of linear resources. A difference between
well typed and well formed expressions is that the former satisfy subject expansion, but the
latter do not: expressions that lead to failure can be ill-typed yet failure itself is well-formed.

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 11:13

uλ ⊕ uλ̂ ⊕ sπ
L · M◦

§ 4.3 § 4.4

J · Ku

Figure 4 Our two-step approach to encode uλ ⊕ into sπ.

4 A Typed Encoding of uλ
⊕ into Concurrent Processes

We encode uλ ⊕ into sπ, a session π-calculus that stands on a Curry-Howard correspondence
between linear logic and session types (§ 4.1). We extend the two-step approach that we
devised in [17] for the sub-calculus λ ⊕ (with linear resources only) (cf. Fig. 4). First, in § 4.3,
we define an encoding L · M◦ from well-formed expressions in uλ ⊕ to well-formed expressions
in a variant of uλ ⊕ with sharing, dubbed uλ̂ ⊕ (§ 4.2). Then, in § 4.4, we define an encoding
J · Ku (for a name u) from well-formed expressions in uλ̂ ⊕ to well-typed processes in sπ.

We prove that L · M◦ and J · Ku satisfy well-established correctness criteria [9, 14]: type
preservation, operational completeness, operational soundness, and success sensitiveness
(cf. [18]). Because uλ ⊕ includes unrestricted resources, the results given here strictly
generalise those in [17].

4.1 sπ: A Session-Typed π-Calculus
sπ is a π-calculus with session types [11, 12], which ensure that the endpoints of a channel
perform matching actions. We consider the full process framework in [5], including constructs
for specifying labelled choices and client/server connections; they will be useful to codify
unrestricted resources and variables in uλ ⊕. Following [6, 19], sπ stands on a Curry-Howard
correspondence between session types and a linear logic with dual modalities/types (NA and
⊕A), which define non-deterministic session behaviour. As in [6, 19], in sπ, cut elimination
corresponds to communication, proofs to processes, and propositions to session types.

Syntax. Names x, y, z, w . . . denote the endpoints of protocols specified by session types.
We write P{x/y} for the capture-avoiding substitution of x for y in process P .

▶ Definition 23 (Processes). The syntax of sπ processes is given by the grammar below.

P, Q ::= 0 | x(y).P | x(y).P | x.li; P | x.casei∈I{li : Pi} | x.close | x.close; P

| (P | Q) | [x↔ y] | (νx)P | !x(y).P | x?(y).P
| x.some; P | x.none | x.some(w1,··· ,wn); P | (P ⊕Q)

Process 0 denotes inaction. Process x(y).P sends a fresh name y along x and then continues
as P . Process x(y).P receives a name z along x and then continues as P{z/y}. Process
x.casei∈I{li : Pi} is a branching construct, with labelled alternatives indexed by the finite
set I: it awaits a choice on x with continuation Pj for each j ∈ I. Process x.li; P selects on
x the alternative indexed by i before continuing as P . Processes x.close and x.close; P are
complementary actions for closing session x. We sometimes use the shorthand notations y[]
and y[]; P to stand for y.close and y.close; P , respectively. Process P | Q is the parallel
execution of P and Q. The forwarder process [x↔ y] denotes a bi-directional link between
sessions x and y. Process (νx)P denotes the process P in which name x is kept private
(local) to P . Process !x(y).P defines a server that spawns copies of P upon requests on x.
Process x?(y).P denotes a client that connects to a server by sending the fresh name y on x.

TYPES 2021

11:14 Unrestricted Resources in Encoding Functions as Processes

x(y).Q | x(y).P −→ (νy)(Q | P) x.some; P | x.some(w1,··· ,wn); Q −→ P | Q
Q −→ Q′ ⇒ P ⊕Q −→ P ⊕Q′ x.close | x.close; P −→ P

x.li; Q | x.casei∈I{li : Pi} −→ Q | Pi !x(y).Q | x?(y).P −→ (νx)(!x(y).Q | (νy)(Q | P))
(νx)([x↔ y] | P) −→ P{y/x} (x ̸= y) P ≡ P ′ ∧ P ′ −→ Q′ ∧Q′ ≡ Q⇒ P −→ Q

Q −→ Q′ ⇒ P | Q −→ P | Q′ P −→ Q⇒ (νy)P −→ (νy)Q
x.none | x.some(w1,··· ,wn); Q −→ w1.none | · · · | wn.none

Figure 5 Reduction for sπ.

The remaining constructs come from [5] and introduce non-deterministic sessions which
may provide a session protocol or fail. Process x.some; P confirms that the session on x will
execute and continues as P . Process x.none signals the failure of implementing the session on
x. Process x.some(w1,··· ,wn); P specifies a dependency on a non-deterministic session x. This
process can either (i) synchronise with an action x.some and continue as P , or (ii) synchronise
with an action x.none, discard P , and propagate the failure on x to (w1, · · · , wn), which
are sessions implemented in P . When x is the only session implemented in P , there is no
tuple of dependencies (w1, · · · , wn) and so we write simply x.some; P . Finally, process P ⊕Q

denotes a non-deterministic choice between P and Q. We shall often write
⊕

i∈{1,··· ,n} Pi

to stand for P1 ⊕ · · · ⊕ Pn. In (νy)P and x(y).P the occurrence of name y is binding, with
scope P . The set of free names of P is denoted by fn(P).

Semantics. The reduction relation of sπ specifies the computations that a process performs
on its own (cf. Fig. 5). It is closed by structural congruence, denoted ≡, which expresses basic
identities for processes and the non-collapsing nature of non-determinism (cf. [18]).

The first reduction rule formalises communication, which concerns bound names only
(internal mobility), as y is bound in x(y).Q and x(y).P . Reduction for the forwarder process
leads to a substitution. The reduction rule for closing a session is self-explanatory, as is the
rule in which prefix x.some confirms the availability of a non-deterministic session. When
a non-deterministic session is not available, x.none triggers this failure to all dependent
sessions w1, . . . , wn; this may in turn trigger further failures (i.e., on sessions that depend
on w1, . . . , wn). The remaining rules define contextual reduction with respect to restriction,
composition, and non-deterministic choice.

Type System. Session types govern the behaviour of the names of a process. An assignment
x : A enforces the use of name x according to the protocol specified by A.

▶ Definition 24 (Session Types). Session types are given by

A, B ::= ⊥ | 1 | A⊗B | A O B | ⊕i∈I {li : Ai} | Ni∈I{li : Ai} | !A | ?A | NA | ⊕A

The multiplicative units ⊥ and 1 are used to type closed session endpoints. We use A⊗B to
type a name that first outputs a name of type A before proceeding as specified by B. Similarly,
A O B types a name that first inputs a name of type A before proceeding as specified by B.
Then, !A types a name that repeatedly provides a service specified by A. Dually, ?A is the
type of a name that can connect to a server offering A. Types ⊕i∈I{li : Ai} and Ni∈I{li : Ai}
are assigned to names that can select and offer a labelled choice, respectively. Then we have
the two modalities introduced in [5]. We use NA as the type of a (non-deterministic) session
that may produce a behaviour of type A. Dually, ⊕A denotes the type of a session that may
consume a behaviour of type A.

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 11:15

[Tid]
[x↔ y] ⊢ x:A, y:A; Θ

[T1]
x.close ⊢ x : 1; Θ

P ⊢ ∆; Θ[T⊥]
x.close; P ⊢ x:⊥, ∆; Θ

P ⊢ ∆, y : A; Θ Q ⊢ ∆′, x : B; Θ[T⊗]
x(y).(P | Q) ⊢ ∆, ∆′, x : A⊗B; Θ

P ⊢ ∆, y : C, x : D; Θ[TO]
x(y).P ⊢ ∆, x : C O D; Θ

P ⊢w̃ : N∆, x : A; Θ[T⊕x
w̃
]

x.some
w̃

; P ⊢ w̃:N∆, x:⊕A; Θ
P ⊢ ∆, x : A; Θ[TNx

d]
x.some; P ⊢ ∆, x : NA; Θ

[TNx]
x.none ⊢ x : NA; Θ

P ⊢ N∆; Θ Q ⊢N∆; Θ[T⊕]
P ⊕Q ⊢ N∆; Θ

P ⊢ ∆, x : Ai; Θ[T⊕i]
x.li; P ⊢ ∆, x : ⊕i∈I{li : Ai}; Θ

Pi ⊢ ∆, x : Ai; Θ (∀i ∈ I)
[TN]

x.casei∈I{li : Pi} ⊢ ∆, x : Ni∈I{li : Ai}; Θ

P ⊢ ∆; x : A, Θ[T?]
P ⊢ ∆, x :?A; Θ

P ⊢ y : A; Θ[T!]
!x(y).P ⊢ x :!A; Θ

P ⊢∆, y : A; x : A, Θ[Tcopy]
x?(y).P ⊢ ∆; x : A, Θ

Figure 6 Typing rules for sπ.

The two endpoints of a session should be dual to ensure absence of communication errors.
The dual of a type A is denoted A. Duality corresponds to negation (·)⊥ in linear logic [5].

▶ Definition 25 (Duality). Duality on types is given by:

1 = ⊥ ⊥ = 1 A⊗B = A O B ⊕i∈I{li : Ai} = Ni∈I{li : Ai} ⊕A = NA

!A =?A ?A =!A A O B = A⊗B Ni∈I{li : Ai} = ⊕i∈I{li : Ai} NA = ⊕A

Judgements are of the form P ⊢ ∆; Θ, where P is a process, ∆ is the linear context, and Θ is
the unrestricted context. Both ∆ and Θ contain assignments of types to names, but satisfy
different substructural principles: while Θ satisfies weakening, contraction and exchange, ∆
only satisfies exchange. The empty context is denoted “·”. We write N∆ to denote that all
assignments in ∆ have a non-deterministic type, i.e., ∆ = w1:NA1, . . . , wn:NAn, for some
A1, . . . , An. The typing judgement P ⊢ ∆ corresponds to the logical sequent for classical
linear logic, which can be recovered by erasing processes and name assignments.

Typing rules for processes in Fig. 6 correspond to proof rules in linear logic; we discuss
some of them. Rule [Tid] interprets the identity axiom using the forwarder process. Rules [T1]
and [T⊥] type the process constructs for session termination. Rules [T⊗] and [TO] type
output and input of a name along a session, resp. The last four rules are used to type process
constructs related to non-determinism and failure. Rules [TNx

d] and [TNx] introduce a session
of type NA, which may produce a behaviour of type A: while the former rule covers the case
in which x : A is indeed available, the latter rule formalises the case in which x : A is not
available (i.e., a failure). Given a sequence of names w̃ = w1, . . . , wn, Rule [T⊕x

w̃
] accounts for

the possibility of not being able to consume the session x : A by considering sessions different
from x as potentially not available. Rule [T⊕] expresses non-deterministic choice of processes
P and Q that implement non-deterministic behaviours only. Finally, Rule [T⊕i] and [TN]
correspond, resp., to selection and branching: the former provides a selection of behaviours
along x as long as P is guarded with the i-th behaviour; the latter offers a labelled choice
where each behaviour Ai is matched to a corresponding Pi.

TYPES 2021

11:16 Unrestricted Resources in Encoding Functions as Processes

The type system enjoys type preservation, a result that follows from the cut elimination
property in linear logic; it ensures that the observable interface of a system is invariant under
reduction. The type system also ensures other properties for well-typed processes (e.g. global
progress, strong normalisation, and confluence); see [5] for details.

▶ Theorem 26 (Type Preservation [5]). If P ⊢ ∆; Θ and P −→ Q then Q ⊢ ∆; Θ.

4.2 uλ̂
⊕: An Auxiliary Calculus With Sharing

To facilitate the encoding of uλ ⊕ into sπ, we define uλ̂ ⊕: an auxiliary calculus whose
constructs are inspired by the work of Gundersen et al. [10], Ghilezan et al. [8], and Kesner
and Lengrand [13]. The syntax of uλ̂ ⊕ only modifies the syntax of terms, which is defined
by the grammar below; variables x[∗], bags B, and expressions M are as in Definition 1.

(Terms) M, N, L ::= x[∗] | λx.(M [x̃← x]) | (M B) | M⟨|N/x|⟩ | MTU/xW

| failx̃ | M [x̃← x] | (M [x̃← x])⟨⟨B/x⟩⟩

We consider the sharing construct M [x̃ ← x] and two kinds of explicit substitutions: the
explicit linear substitution, written M⟨|N/x|⟩, and the explicit unrestricted substitution, written
MTU/xW. The term M [x̃← x] defines the sharing of variables x̃ occurring in M using the
linear variable x. We shall refer to x as sharing variable and to x̃ as shared variables. A linear
variable is only allowed to appear once in a term. Notice that x̃ can be empty: M [← x]
expresses that x does not share any variables in M . As in uλ ⊕, the term failx̃ explicitly
accounts for failed attempts at substituting the variables in x̃.

We summarise some requirements. In M [x̃ ← x], we require: (i) every xi ∈ x̃ occurs
exactly once in M and that (ii) xi is not a sharing variable. The occurrence of xi can appear
within the fail term failỹ, if xi ∈ ỹ. In the explicit linear substitution M⟨|N/x|⟩, we require:
the variable x has to occur in M ; x cannot be a sharing variable; and x cannot be in an
explicit linear substitution occurring in M ; all free linear occurrences of x in M are bound. In
the explicit unrestricted substitution MTU/xW, we require: all free unrestricted occurrences
of x in M are bound; x cannot be in an explicit unrestricted substitution occurring in M .
This way, e.g., M ′⟨|L/x|⟩⟨|N/x|⟩ and M ′⟨|U ′/x|⟩⟨|U/x|⟩ are not valid terms in uλ̂ ⊕.

The following congruence will be important when proving encoding correctness.

▶ Definition 27. The congruence ≡λ for uλ̂ ⊕ on terms and expressions is given by the
identities below.

MTU/xW ≡λ M, x ̸∈M

(MB)⟨|N/x|⟩ ≡λ (M⟨|N/x|⟩)B, x ̸∈ fv(B)
(MB)TU/xW ≡λ (MTU/xW)B, x ̸∈ fv(B)

(MA)[x̃← x]⟨⟨B/x⟩⟩ ≡λ (M [x̃← x]⟨⟨B/x⟩⟩)A, xi ∈ x̃⇒ xi ̸∈ fv(A)

M [ỹ ← y]⟨⟨A/y⟩⟩[x̃← x]⟨⟨B/x⟩⟩ ≡λ (M [x̃← x]⟨⟨B/x⟩⟩)[ỹ ← y]⟨⟨A/y⟩⟩,
xi ∈ x̃⇒ xi ̸∈ fv(A),
yi ∈ ỹ ⇒ yi ̸∈ fv(B)

M⟨|N2/y|⟩⟨|N1/x|⟩ ≡λ M⟨|N1/x|⟩⟨|N2/y|⟩, x ̸∈ fv(N2), y /∈ fv(N1)
MTU2/yWTU1/xW ≡λ MTU1/xWTU2/yW, x ̸∈ fv(U2), y /∈ fv(U1)

C[M] ≡λ C[M ′], with M ≡λ M ′

D[M] ≡λ D[M′], with M ≡λ M′

The first rule states that we may remove unneeded unrestricted substitutions when the
variable in concern does not appear within the term. The next three identities enforce that
bags can always be moved in and out of all forms of explicit substitution, which are useful
manipulate expressions and to form a redex for Rule [R : Beta]. The other rules deal with
permutation of explicit substitutions and contextual closure.

Well-formedness for uλ̂ ⊕, based on intersection types, is defined as in § 3; see [18].

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 11:17

LxM• = x Lx[i]M• = x[i] L1M• = 1

L1!M• = 1! Lfailx̃M• = failx̃ LM BM• = LMM• LBM•

L * M +! M• = *M+! L * M + ·CM• = *LMM• + ·LCM• LC ⋆ UM• = LCM• ⋆ LUM•

LU ⋄ V M• = U ⋄ V LM⟨|N/x|⟩M• = LMM•⟨|LNM•/x|⟩ LMTU/xWM• = LMM•TLUM•/xW

Lλx.MM• = λx.(LM⟨x1, · · · , xn/x⟩M•[x1, · · · , xn ← x]) #(x, M) = n, each xi is fresh

LM⟨⟨C ⋆ U/x⟩⟩M• =

∑

Ci∈PER(LCM•)

LM⟨x̃/x⟩M•⟨|Ci(1)/x1|⟩ · · · ⟨|Ci(k)/xk|⟩TU/xW, if #(x, M) = size(C) = k

LM⟨x1, · · · , xk/x⟩M•[x1, · · · , xk ← x]⟨⟨LC ⋆ UM•
/x⟩⟩, if #(x, M) = k ≥ 0

Figure 7 Auxiliary Encoding: uλ ⊕ into uλ̂ ⊕.

4.3 Encoding uλ
⊕ into uλ̂

⊕

We define an encoding L · M◦ from well-formed terms in uλ ⊕ into uλ̂ ⊕. This encoding relies
on an intermediate encoding L · M• on uλ ⊕-terms.

▶ Notation 28. Given a term M such that #(x, M) = k and a sequence of pairwise
distinct fresh variables x̃ = x1, . . . , xk we write M⟨x̃/x⟩ or M⟨x1, · · · , xk/x⟩ to stand for
M⟨x1/x⟩ · · · ⟨xk/x⟩, i.e., a simultaneous linear substitution whereby each distinct linear occur-
rence of x in M is replaced by a distinct xi ∈ x̃. Notice that each xi has the same type as
x. We use (simultaneous) linear substitutions to force all bound linear variables in uλ ⊕ to
become shared variables in uλ̂ ⊕.

▶ Definition 29 (From uλ ⊕ to uλ̂ ⊕). Let M ∈ uλ ⊕. Suppose Θ; Γ |= M : τ , with dom(Γ) =
lfv(M) = {x1, · · · , xk} and #(xi, M) = ji. We define LMM◦ as

LMM◦ = LM⟨x̃1/x1⟩ · · · ⟨x̃k/xk⟩M•[x̃1 ← x1] · · · [x̃k ← xk]

where x̃i = xi1 , · · · , xji
and the encoding L ·M• : uλ ⊕ → uλ̂ ⊕ is defined in Fig. 7 on uλ ⊕-terms.

The encoding L · M◦ extends homomorphically to expressions.

The encoding L·M◦ converts n occurrences of x in a term into n distinct variables x1, . . . , xn.
The sharing construct coordinates them by constraining each to occur exactly once within a
term. We proceed in two stages. First, we share all linear free linear variables using L · M◦:
this ensures that free variables are replaced by shared variables which are then bound by
the sharing construct. Second, we apply the encoding L · M• on the corresponding term. The
encoding is presented in Fig. 7: L · M• maintains x[i] unaltered, and acts homomorphically over
concatenation of bags and explicit substitutions. The encoding renames bound variables with
bound shared variables. As we will see, this will enable a tight operational correspondence
result with sπ. In [18] we establish the correctness of L · M◦.

▶ Example 30. We apply the encoding L · M• in some of the uλ ⊕-terms from Example 3: for
simplicity, we assume that N and U have no free variables.

L(λx.x) * N + ⋆UM• = Lλx.xM•L * N + ⋆UM• = λx.x1[x1 ← x] * LNM• + ⋆LUM•

L(λx.x[1])1 ⋆ *N +! ⋄UM• = L(λx.x[1]M•L1 ⋆ *N +! ⋄UM• = (λx.x[1][← x])1 ⋆ *LNM• +! ⋄LUM•

4.4 Encoding uλ̂
⊕ into sπ

We now define our encoding of uλ̂ ⊕ into sπ, and establish its correctness.

TYPES 2021

11:18 Unrestricted Resources in Encoding Functions as Processes

▶ Notation 31. To help illustrate the behaviour of the encoding, we use the names x, xℓ, and
x! to denote three distinct channel names: while xℓ is the channel that performs the linear
substitution behaviour of the encoded term, channel x! performs the unrestricted behaviour.

▶ Definition 32 (From uλ̂ ⊕ into sπ: Expressions). Let u be a name. The encoding J · Ku :
uλ̂ ⊕ → sπ is defined in Fig. 8.

Every (free) variable x in an uλ̂ ⊕ expression becomes a name x in its corresponding sπ
process. As customary in encodings of λ into π, we use a name u to provide the behaviour of
the encoded expression. In our case, u is a non-deterministic session: the encoded expression
can be effectively available or not; this is signalled by prefixes u.some and u.none, respectively.

We discuss the most salient aspects of the encoding in Fig. 8.
While linear variables are encoded as in [17], the encoding of an unrestricted variable x[j],
not treated in [17], is much more interesting: it first connects to a server along channel x

via a request x!?(xi) followed by a selection on xi.lj , which takes the j-th branch.
The encoding of λx.M [x̃← x] confirms its behaviour first followed by the receiving of a
channel x. The channel x provides a linear channel xℓ and an unrestricted channel x! for
dedicated substitutions of the linear and unrestricted bag components.
We encode M (C ⋆ U) as a non-deterministic sum: an application involves a choice in the
order in which the elements of C are substituted.
The encoding of C ⋆ U synchronises with the encoding of λx.M [x̃← x]. The channel xℓ

provides the linear behaviour of the bag C while x! provides the behaviour of U ; this
is done by guarding the encoding of U with a server connection such that every time a
channel synchronises with !x!(xi) a fresh copy of U is spawned.
The encoding of *M + ·C synchronises with the encoding of M [x̃← x], just discussed.
The name yi is used to trigger a failure in the computation if there is a lack of elements
in the encoding of the bag.
The encoding of M [x̃← x] first confirms the availability of the linear behaviour along
xℓ. Then it sends a name yi, which is used to collapse the process in the case of a failed
reduction. Subsequently, for each shared variable, the encoding receives a name, which
will act as an occurrence of the shared variable. At the end, a failure prefix on x is used
to signal that there is no further information to send over.
The encoding of U synchronises with the last half encoding of x[j]; the name xi selects
the j-th term in the unrestricted bag.
The encoding of M⟨|N/x|⟩ is the composition of the encodings of M and N , where we
await a confirmation of a behaviour along the variable that is being substituted.
MTU/xW is encoded as the composition of the encoding of M and a server guarding the
encoding of U : in order for JMKu to gain access to JUKxi

it must first synchronise with
the server channel x! to spawn a fresh copy of U .
The encoding of M + N homomorphically preserves non-determinism. Finally, the encod-
ing of failx1,··· ,xk simply triggers failure on u and on each of x1, · · · , xk.

▶ Example 33. [Cont. Example 3] We illustrate the encoding J · K on the uλ̂ ⊕-terms/bags
occurring in M1 = λx.x1[x1 ← x](*LNM• + ⋆LUM•) as below:

Jλx.x1[x1 ← x]Kv = v.some; v(x).x.some; x(xℓ).x(x!).x[]; Jx1[x1 ← x]Kv

J * LNM• + ⋆LUM•Kx = x.somelfv(*LNM•+); x(xℓ).(JLNM•Kxℓ | x(x!).(!x!(xi).JLUM•Kxi | x[]))

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 11:19

JxKu = x.some; [x↔ u]
Jx[j]Ku = x!?(xi).xi.lj ; [xi ↔ u]

Jλx.M [x̃← x]Ku = u.some; u(x).x.some; x(xℓ).x(x!).x.close; JM [x̃← x]Ku

JM [x̃← x]⟨⟨C ⋆ U/x⟩⟩Ku =
⊕

Ci∈PER(C)

(νx)(x.some; x(xℓ).x(x!).x.close; JM [x̃← x]Ku | JCi ⋆ UKx)

JM(C ⋆ U)Ku =
⊕

Ci∈PER(C)

(νv)(JMKv | v.someu,lfv(C); v(x).([v ↔ u] | JCi ⋆ UKx))

JC ⋆ UKx = x.somelfv(C); x(xℓ).
(
JCKxℓ | x(x!).(!x!(xi).JUKxi | x.close)

)
J*M+ · CKxℓ = xℓ.somelfv(*M+·C); xℓ(yi).xℓ.someyi,lfv(*M+·C); xℓ.some; xℓ(xi).

(xi.somelfv(M); JMKxi | JCKxℓ | yi.none)
J1Kxℓ = xℓ.some∅; xℓ(yn).(yn.some; yn.close | xℓ.some∅; xℓ.none)
J1!Kx = x.none

J * N +! Kx = JNKx

JUKx = x.caseUi∈U{li : JUiKx}
JM⟨|N/x|⟩Ku = (νx)(JMKu | x.somelfv(N); JNKx)
JMTU/xWKu = (νx!)(JMKu | !x!(xi).JUKxi)
JM [← x]Ku = xℓ.some.xℓ(yi).(yi.someu,lfv(M); yi.close; JMKu | xℓ.none)

JM [x1, · · · , xn ← x]Ku = xℓ.some.xℓ(y1).
(
y1.some∅; y1.close; 0 |

xℓ.some; xℓ.someu,(lfv(M)\x1,··· ,xn); xℓ(x1).JM [x2, · · · , xn ← x]Ku

)
JM + NKu = JMKu ⊕ JNKu

Jfailx1,··· ,xkKu = u.none | x1.none | · · · | xk.none

Figure 8 Encoding uλ̂ ⊕ into sπ (cf. Def. 32).

JLM1M•Ku = Jλx.x1[x1 ← x] * LNM• + ⋆LUM•Ku

= (νv)(Jλx.x1[x1 ← x]Kv | v.someu,lfv(LNM•); v(x).([v ↔ u] | J * LNM• + ⋆LUM•Kx))

= (νv)(v.some; v(x).x.some; x(xℓ).x(x!).x[]; xℓ.some.xℓ(y1).(y1.some∅; y1[]; 0 |

xℓ.some; xℓ.someu; xℓ(x1).xℓ.some.xℓ(y2).(y2.someu,x1 ; y2[]; Jx1Kv | xℓ.none)) |
v.someu,lfv(LNM•); v(x).([v ↔ u] |

x.somelfv(LNM•); x(xℓ).(xℓ.somelfv(LNM•); xℓ.somey1,lfv(*LNM•+);

xℓ.some; xℓ(x1).(x1.somelfv(LNM•); JLNM•Kx1 | y1.none | xℓ.some∅; xℓ(y2).

(y2.some; y2[] | xℓ.some∅; xℓ.none)) | x(x!).(!x!(xi).JLUM•Kxi | x[]))))

We now encode intersection types (for uλ̂ ⊕) into session types (for sπ).

▶ Definition 34 (From uλ̂ ⊕ into sπ: Types). The translation J·K in Figure 9 extends as follows
to a context Γ = x1:σ1, · · · , xm:σm, v1:π1, · · · , vn:πn and a context Θ = x!

1:η1, · · · , x!
k:ηk:

JΓK = x1 : NJσ1K, · · · , xm : NJσmK, v1 : Jπ1K(σ,i1), · · · , vn : JπnK(σ,in)

JΘK = x!
1 : Jη1K, · · · , x!

k : JηkK

This encoding formally expresses how non-deterministic session protocols (typed with “N”)
capture linear and unrestricted resource consumption in uλ̂ ⊕. Notice that the encoding of
the multiset type π depends on two arguments (a strict type σ and a number i ≥ 0) which
are left unspecified above. This is crucial to represent failures in uλ̂ ⊕ as typable processes

TYPES 2021

11:20 Unrestricted Resources in Encoding Functions as Processes

JunitK = N1
JηK = &ηi∈η{li; JηiK}

J(σk, η)→ τK = N(J(σk, η)K(σ,i) O JτK)

J(σk, η)K(σ,i) = ⊕((JσkK(σ,i))⊗ ((!JηK)⊗ (1)))

Jσ ∧ πK(σ,i) = N((⊕⊥)⊗ (N⊕ ((NJσK) O (JπK(σ,i)))))
= ⊕((N1) O (⊕N((⊕JσK)⊗ (JπK(σ,i)))))

JωK(σ,i) =

{
N((⊕⊥)⊗ (N⊕⊥))) if i = 0
N((⊕⊥)⊗ (N⊕ ((NJσK) O (JωK(σ,i−1))))) if i > 0

Figure 9 Encoding of intersection types into session types (cf. Def. 34).

in sπ. For instance, given (σj , η)→ τ and (σk, η), the well-formedness rule for application
admits a mismatch (j ̸= k, see [18]). In our proof of type preservation, the two arguments of
the encoding are instantiated appropriately. Notice also how the client-server behaviour of
unrestricted resources appears as “!JηK” in the encoding of the tuple type (σk, η). With our
encodings of expressions and types in place, we can now define our encoding of judgements:

▶ Definition 35. If M is an uλ̂ ⊕ expression such that Θ; Γ |= M : τ then we define the
encoding of the judgement to be: JMKu ⊢ JΓK, u : JτK; JΘK.

The correctness of our encoding J · Ku : uλ ⊕ → sπ, stated in Theorem 37 (and detailed
in [18]), relies on a notion of success for both uλ ⊕ and sπ, given by the ✓ construct:

▶ Definition 36. We extend the syntax of terms for uλ̂ ⊕ and processes for sπ with ✓:
(In uλ̂ ⊕) M ⇓✓ iff there exist M1, · · · , Mk such that M −→∗ M1 + · · · + Mk and
head(M ′

j) = ✓, for some j ∈ {1, . . . , k} and term M ′
j such that Mj ≡λ M ′

j.
(In sπ) P ⇓✓ holds whenever there exists a P ′ such that P −→∗ P ′ and P ′ contains an
unguarded occurrence of ✓ (i.e., an occurrence that does not occur behind a prefix).

We now state operational correctness. Fig. 10 illustrates the relation between completeness
and soundness that the encoding satisfies: solid arrows denote reductions assumed, dashed
arrows denote the application of J · Ku, and dotted arrows denote the existing reductions that
can be implied from the results.

We remark that since uλ̂ ⊕ satisfies the diamond property, it suffices to consider complete-
ness based on a single reduction (N −→M). Soundness uses the congruence ≡λ in Def. 27.
We write N −→≡λ

N ′ iff N ≡λ N1 −→ N2 ≡λ N ′, for some N1, N2. Then, −→∗
≡λ

is the
reflexive, transitive closure of −→≡λ

. For success sensitivity, we decree J✓Ku = ✓. We have:

▶ Theorem 37 (Operational Correctness). Let N and M be well-formed uλ̂ ⊕ closed expressions.
(a) (Type Preservation) Let B be a bag. We have:

(i) If Θ; Γ |= B : (σk, η) then JBKu |= JΓK, u : J(σk, η)K(σ,i); JΘK.
(ii) If Θ; Γ |= M : τ then JMKu |= JΓK, u : JτK; JΘK.

(b) (Completeness) If N −→M then there exists Q such that JNKu −→∗ Q ≡λ JMKu.
(c) (Soundness) If JNKu −→∗ Q then Q −→∗ Q′, N −→∗

≡λ
N′ and JN′Ku ≡ Q′, for some

Q′,N′.
(d) (Success Sensitivity) M ⇓✓ if, and only if, JMKu ⇓✓.

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 11:21

Operational Completeness

uλ̂ ⊕: N M

sπ: JNKu Q ≡ JMKu
*

J · Ku J · KuThm 37 (b)

Operational Soundness

N N′*

JNKu Q Q′ ≡ JN′Ku

J · Ku J · KuThm 37(c)

* *

≡λ

Figure 10 An overview of operational soundness and completeness for J · Ku.

Proof. All items are proven by structural induction; a detailed proof can be found in [18].
Below we present the most interesting case in the proof of soundness: the case when
N = M(C ⋆ U). Then,

JNKu = JM(C ⋆ U)Ku =
⊕

Ci∈PER(C)

(νv)(JMKv | v.someu,lfv(C); v(x).([v ↔ u] | JCi ⋆ UKx)).

The proof then proceeds by induction on the number of reduction steps k that can be
taken from JNKu, i.e, JNKu −→k Q. We will consider the case when k ≥ 1, where for some
process R and non-negative integers n, m such that k = n + m, we have the following:

JNKu −→m
⊕

Ci∈PER(C)

(νv)(R | v.someu,lfv(C); v(x).([v ↔ u] | JCi ⋆ UKx)) −→n Q

There are several cases to analyse depending on the values of m and n, and the shape of M . We
consider m = 0, n ≥ 1 and M = (λx.(M ′[x̃← x]))⟨|N1/y1|⟩ · · · ⟨|Np/yp|⟩TU1/z1W · · · TUq/zqW,
where p, q ≥ 0. Then, JNKu can perform the following reduction:

JNKu −→∗
⊕

Ci∈PER(C)

(νỹ, z̃, x)(x.some; x(xℓ).x(x!).x[]; JM ′[x̃← x]Ku | Q′′ | JCi ⋆ UKx) (:= Q3)

where Q′′ defines the encoding of explicit substitutions within the encoded subterm M .
Notice that:

N = (λx.(M ′[x̃← x]))⟨|N1/y1|⟩ · · · ⟨|Np/yp|⟩TU1/z1W · · · TUq/zqW(C ⋆ U)
≡λ (λx.(M ′[x̃← x])(C ⋆ U))⟨|N1/y1|⟩ · · · ⟨|Np/yp|⟩TU1/z1W · · · TUq/zqW

−→M ′[x̃← x]⟨⟨(C ⋆ U)/x⟩⟩⟨|N1/y1|⟩ · · · ⟨|Np/yp|⟩TU1/z1W · · · TUq/zqW = M

where the congruence holds assuming the necessary α-renaming of variables. Finally, one
can verify that JMKu = Q3, and the result follows. ◀

▶ Example 38. Recall again term M1 from Example 3. It can be shown that LM1M• −→∗

LNM•TLUM•/x!W. To illustrate operational completeness, we can verify preservation of reduc-
tion, via J · K: reductions below use the rules for sπ in Figure 5 – see Figure 11.

5 Concluding Remarks

Summary. We have extended the line of work we developed in [17], on resource λ-calculi
with firm logical foundations via typed concurrent processes. We presented uλ ⊕, a resource
calculus with non-determinism and explicit failures, with dedicated treatment for linear

TYPES 2021

11:22 Unrestricted Resources in Encoding Functions as Processes

JLM1M•K =

(νv)(v.some; v(x).x.some; x(xℓ).x(x!).x[]; xℓ.some.xℓ(y1).(y1.some∅; y1[]; 0 |

xℓ.some; xℓ.someu; xℓ(x1).xℓ.some.xℓ(y2).(y2.someu,x1 ; y2.[]; Jx1Kv | xℓ.none)) |

v.someu,lfv(LNM•); v(x).([v ↔ u] | x.somelfv(LNM•); x(xℓ).(xℓ.somelfv(LNM•); xℓ(y1).

xℓ.somey1,lfv(*LNM•+); xℓ.some; xℓ(x1).(x1.somelfv(LNM•); JLNM•Kx1 | y1.none | xℓ.some∅;

xℓ(y2).(y2.some; y2[] | xℓ.some∅; xℓ.none)) | x(x!).(!x!(xi).JLUM•Kxi | x[]))))

−→3 (νx)(x.some; x(xℓ).x(x!).x[]; xℓ.some.xℓ(y1).(y1.some∅; y1[]; 0 | xℓ.some; xℓ.someu;

xℓ(x1).xℓ.some.xℓ(y2).(y2.someu,x1 ; y2[]; Jx1Ku | xℓ.none)) | (x.somelfv(LNM•); x(xℓ).

(xℓ.somelfv(*LNM•+); xℓ(y1).xℓ.somey1,lfv(*LNM•+); xℓ.some; xℓ(x1).(x1.somelfv(LNM•); JLNM•Kx1 |

y1.none | xℓ.some∅; xℓ(y2).(y2.some; y2[] | xℓ.some∅; xℓ.none)) | x(x!).(!x!(xi).JLUM•Kxi | x[]))))

−→2 (νx, xℓ)(x(x!).x.[]; xℓ.some.xℓ(y1).(y1.some∅; y1[]; 0 | xℓ.some; xℓ.someu; xℓ(x1).

xℓ.some.xℓ(y2).(y2.someu,x1 ; y2[]; Jx1Ku | xℓ.none)) | (xℓ.somelfv(LNM•); xℓ(y1).

xℓ.somey1,lfv(LNM•); xℓ.some; xℓ(x1).(x1.somelfv(LNM•); JLNM•Kx1 | y1.none | xℓ.some∅; xℓ(y2).

(y2.some; y2[] | xℓ.some∅; xℓ.none)) | x(x!).(!x!(xi).JLUM•Kxi | x[]))))

−→ (νx, xℓ, x!)(x[]; xℓ.some.xℓ(y1).(y1.some∅; y1[]; 0 | xℓ.some; xℓ.someu; xℓ(x1).xℓ.some.

xℓ(y2).(y2.someu,x1 ; y2[]; Jx1Ku | xℓ.none)) | (xℓ.somelfv(LNM•); xℓ(y1).xℓ.somey1,lfv(LNM•);

xℓ.some; xℓ(x1).(x1.somelfv(LNM•); JLNM•Kx1 | y1.none |

xℓ.some∅; xℓ(y2).(y2.some; y2[] | xℓ.some∅; xℓ.none)) | !x!(xi).JLUM•Kxi | x[])))

−→ (νxℓ, x!)(xℓ.some.xℓ(y1).(y1.some∅; y1.[]; 0 | xℓ.some; xℓ.someu; xℓ(x1).

xℓ.some.xℓ(y2).(y2.someu,x1 ; y2.[]; Jx1Ku | xℓ.none)) | (xℓ.somelfv(LNM•); xℓ(y1).

xℓ.somey1,lfv(LNM•); xℓ.some; xℓ(x1).(x1.somelfv(LNM•); JLNM•Kx1 | y1.none |

xℓ.some∅; xℓ(y2).(y2.some; y2[] | xℓ.some∅; xℓ.none)) | !x!(xi).JLUM•Kxi)))

−→ (νxℓ, y1, x!)(y1.some∅; y1[]; 0 | xℓ.some; xℓ.someu; xℓ(x1).xℓ.some.xℓ(y2).

(y2.someu,x1 ; y2[]; Jx1Ku | xℓ.none) | (xℓ.somey1,lfv(LNM•); xℓ.some; xℓ(x1).(x1.somelfv(LNM•);

JLNM•Kx1 | y1.none | xℓ.some∅; xℓ(y2).(y2.some; y2[] | xℓ.some∅; xℓ.none)) | !x!(xi).JLUM•Kxi))

−→∗ (νx1, x!)(x1.some; [x1 ↔ u] | x1.somelfv(LNM•); JLNM•Kx1 | !x
!(xi).JLUM•Kxi)

−→∗ (νx!)(JLNM•Ku | !x!(xi).JLUM•Kxi)

= JLNM•TLUM•/x!WKu

Figure 11 Illustrating operational correspondence, following Example 38.

and unrestricted resources. By means of examples, we illustrated the expressivity, (lazy)
semantics, and design decisions underpinning uλ ⊕, and introduced a class of well-formed
expressions based on intersection types, which includes fail-prone expressions. To bear witness
to the logical foundations of uλ ⊕, we defined and proved correct a typed encoding into the
concurrent calculus sπ, which subsumes the one in [17]. We plan to study key properties for
uλ ⊕ (such as solvability and normalisation) by leveraging our typed encoding into sπ.

J. W. N. Paulus, D. Nantes-Sobrinho, and J. A. Pérez 11:23

Related Work. With respect to previous resource calculi, a distinctive feature of uλ ⊕ is its
support of explicit failures, which may arise depending on the interplay between (i) linear
and unrestricted occurrences of variables in a term and (ii) associated resources in the bag.
This feature allows uλ ⊕ to express variants of usual λ-terms (I, ∆, Ω) not expressible in
other resource calculi.

Related to uλ ⊕ is Boudol’s work on a λ-calculus in which multiplicities can be infinite [1, 3].
An intersection type system is used to prove adequacy with respect to a testing semantics.
However, failing behaviours as well as typability are not explored. Multiplicities can be
expressed in uλ ⊕: a linear resource is available m times when the linear bag contains m

copies of it; the term fails if the corresponding number of linear variables is different from m.
Also related is the resource λ-calculus by Pagani and Ronchi della Rocca [16], which

includes linear and reusable resources; the latter are available in multisets, also called bags.
In their setting, M [N !] denotes an application of a term M to a resource N that can be
used ad libitum. Standard terms such as I, ∆ and Ω are expressed as λx.x, ∆ := λx.x[x!],
and Ω := ∆[∆!], respectively; different variants are possible but cannot express the desired
behaviour. A lazy reduction semantics is based on baby and giant steps: whereas the first
consume one resource at each time, the second comprises several baby steps; combinations of
the use of resources (by permuting resources in bags) are considered. A (non-idempotent)
intersection type system is proposed: normalisation and a characterisation of solvability are
investigated. Unlike our work, encodings into the π-calculus are not explored in [16].

References

1 Gérard Boudol. The lambda-calculus with multiplicities (abstract). In Eike Best, editor,
CONCUR ’93, 4th International Conference on Concurrency Theory, Hildesheim, Germany,
August 23-26, 1993, Proceedings, volume 715 of Lecture Notes in Computer Science, pages 1–6.
Springer, 1993. doi:10.1007/3-540-57208-2_1.

2 Gérard Boudol and Cosimo Laneve. The discriminating power of multiplicities in the lambda-
calculus. Inf. Comput., 126(1):83–102, 1996. doi:10.1006/inco.1996.0037.

3 Gérard Boudol and Cosimo Laneve. lambda-calculus, multiplicities, and the pi-calculus. In
Proof, Language, and Interaction, Essays in Honour of Robin Milner, pages 659–690, 2000.

4 Antonio Bucciarelli, Delia Kesner, and Daniel Ventura. Non-idempotent intersection types for
the lambda-calculus. Logic Journal of the IGPL, 25(4):431–464, 2017.

5 Luís Caires and Jorge A. Pérez. Linearity, control effects, and behavioral types. In Hong-
seok Yang, editor, Programming Languages and Systems - 26th European Symposium on
Programming, ESOP 2017, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceed-
ings, volume 10201 of Lecture Notes in Computer Science, pages 229–259. Springer, 2017.
doi:10.1007/978-3-662-54434-1_9.

6 Luís Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In
CONCUR 2010 - Concurrency Theory, 21th International Conference, CONCUR 2010, Paris,
France, August 31-September 3, 2010. Proceedings, pages 222–236, 2010. doi:10.1007/
978-3-642-15375-4_16.

7 Maurizio Dominici, Simona Ronchi Della Rocca, and Paolo Tranquilli. Standardization in re-
source lambda-calculus. In Proceedings 2nd International Workshop on Linearity, LINEARITY
2012, Tallinn, Estonia, 1 April 2012., pages 1–11, 2012. doi:10.4204/EPTCS.101.1.

8 Silvia Ghilezan, Jelena Ivetic, Pierre Lescanne, and Silvia Likavec. Intersection types for
the resource control lambda calculi. In Theoretical Aspects of Computing - ICTAC 2011 -
8th International Colloquium, Johannesburg, South Africa, August 31 - September 2, 2011.
Proceedings, pages 116–134, 2011. doi:10.1007/978-3-642-23283-1_10.

TYPES 2021

https://doi.org/10.1007/3-540-57208-2_1
https://doi.org/10.1006/inco.1996.0037
https://doi.org/10.1007/978-3-662-54434-1_9
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.4204/EPTCS.101.1
https://doi.org/10.1007/978-3-642-23283-1_10

11:24 Unrestricted Resources in Encoding Functions as Processes

9 Daniele Gorla. Towards a unified approach to encodability and separation results for process
calculi. Inf. Comput., 208(9):1031–1053, 2010. doi:10.1016/j.ic.2010.05.002.

10 Tom Gundersen, Willem Heijltjes, and Michel Parigot. Atomic lambda calculus: A typed
lambda-calculus with explicit sharing. In 28th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2013, New Orleans, LA, USA, June 25-28, 2013, pages 311–320,
2013. doi:10.1109/LICS.2013.37.

11 Kohei Honda. Types for dyadic interaction. In Eike Best, editor, CONCUR ’93, 4th In-
ternational Conference on Concurrency Theory, Hildesheim, Germany, August 23-26, 1993,
Proceedings, volume 715 of Lecture Notes in Computer Science, pages 509–523. Springer, 1993.
doi:10.1007/3-540-57208-2_35.

12 Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language primitives and
type discipline for structured communication-based programming. In Chris Hankin, editor,
Programming Languages and Systems - ESOP’98, 7th European Symposium on Programming,
Held as Part of the European Joint Conferences on the Theory and Practice of Software,
ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998, Proceedings, volume 1381 of Lecture
Notes in Computer Science, pages 122–138. Springer, 1998. doi:10.1007/BFb0053567.

13 Delia Kesner and Stéphane Lengrand. Resource operators for lambda-calculus. Inf. Comput.,
205(4):419–473, 2007. doi:10.1016/j.ic.2006.08.008.

14 Dimitrios Kouzapas, Jorge A. Pérez, and Nobuko Yoshida. On the relative expressiveness of
higher-order session processes. Inf. Comput., 268, 2019. doi:10.1016/j.ic.2019.06.002.

15 Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, I. Inf.
Comput., 100(1):1–40, 1992. doi:10.1016/0890-5401(92)90008-4.

16 Michele Pagani and Simona Ronchi Della Rocca. Solvability in resource lambda-calculus. In
C.-H. Luke Ong, editor, Foundations of Software Science and Computational Structures, 13th
International Conference, FOSSACS 2010, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010.
Proceedings, volume 6014 of Lecture Notes in Computer Science, pages 358–373. Springer,
2010. doi:10.1007/978-3-642-12032-9_25.

17 Joseph W. N. Paulus, Daniele Nantes-Sobrinho, and Jorge A. Pérez. Non-deterministic
functions as non-deterministic processes. In Naoki Kobayashi, editor, 6th International
Conference on Formal Structures for Computation and Deduction, FSCD 2021, July 17-24,
2021, Buenos Aires, Argentina (Virtual Conference), volume 195 of LIPIcs, pages 21:1–21:22.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.FSCD.2021.21.

18 Joseph W. N. Paulus, Daniele Nantes-Sobrinho, and Jorge A. Pérez. Types and Terms
Translated: Unrestricted Resources in Encoding Functions as Processes (Extended Version).
CoRR, abs/2112.01593, 2021. arXiv:2112.01593.

19 Philip Wadler. Propositions as sessions. In Peter Thiemann and Robby Bruce Findler, editors,
ACM SIGPLAN International Conference on Functional Programming, ICFP’12, Copenhagen,
Denmark, September 9-15, 2012, pages 273–286. ACM, 2012. doi:10.1145/2364527.2364568.

https://doi.org/10.1016/j.ic.2010.05.002
https://doi.org/10.1109/LICS.2013.37
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1016/j.ic.2006.08.008
https://doi.org/10.1016/j.ic.2019.06.002
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1007/978-3-642-12032-9_25
https://doi.org/10.4230/LIPIcs.FSCD.2021.21
http://arxiv.org/abs/2112.01593
https://doi.org/10.1145/2364527.2364568

Size-Based Termination for Non-Positive Types in
Simply Typed Lambda-Calculus
Yuta Takahashi #

Ochanomizu University, Tokyo, Japan

Abstract
So far, several typed lambda-calculus systems were combined with algebraic rewrite rules, and the
termination (in other words, strong normalisation) problem of the combined systems was discussed.
By the size-based approach, Blanqui formulated a termination criterion for simply typed lambda-
calculus with algebraic rewrite rules which guarantees, in some specific cases, the termination of
the rewrite relation induced by beta-reduction and algebraic rewrite rules on strictly or non-strictly
positive inductive types. Using the inflationary fixed-point construction, we extend this termination
criterion so that it is possible to show the termination of the rewrite relation induced by some rewrite
rules on types which are called non-positive types. In addition, we note that a condition in Blanqui’s
proof can be dropped, and this improves the criterion also for non-strictly positive inductive types.

2012 ACM Subject Classification Theory of computation → Equational logic and rewriting; Theory
of computation → Type theory

Keywords and phrases termination, higher-order rewriting, non-positive types, inductive types

Digital Object Identifier 10.4230/LIPIcs.TYPES.2021.12

Funding Yuta Takahashi: This work is supported by JSPS KAKENHI Grant Number JP21K12822.

Acknowledgements I want to thank Frédéric Blanqui and Ralph Matthes for valuable discussions
on size-based termination and non-strictly positive inductive types, respectively. I also thank the
anonymous reviewers for their comments which improved the earlier version of this paper.

1 Introduction

1.1 Background
Since the works [12, 21], several typed λ-calculus systems were combined with algebraic
rewrite rules, and the termination (i.e., strong normalisation) problem of the combined
systems was discussed: for instance, simply typed λ-calculus [11, 15, 18, 9], polymorphic
λ-calculus [12, 21, 17], λΠ-calculus [10], the Calculus of Constructions [25, 7, 8], λ-cube [4],
pure type systems [5, 6]. Rewrite rules can make each of these systems more expressive and
efficient, and a termination criterion for a combined system provides a sufficient condition
for the termination of the rewrite relation (i.e., the reduction relation) in this system. Of
course, there are several non-terminating and interesting combined systems, but here we are
interested in terminating systems only.

The performance of a combined system depends on not only its type discipline but also
the range of rewrite rules whose termination is guaranteed. For instance, while Jouannaud-
Okada’s work [17] handles polymorphic λ-calculus and Blanqui-Jouannaud-Okada’s work [11]
does not, the termination criterion in the latter shows the termination of the recursion
principle for the Brouwer ordinal type, which cannot be shown by the criterion in the
former. The Brouwer ordinal type is a type of well founded trees and a typical example
of strictly positive inductive types. Later, Blanqui ([9]) extended the criterion in [11] so
that non-strictly positive inductive types can be dealt with. Though the setting of [11, 9] is
simply typed λ-calculus, the termination criteria in [11, 9] are powerful enough to deal with
several inductive types which are discussed in the literature on type theory.

© Yuta Takahashi;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Types for Proofs and Programs (TYPES 2021).
Editors: Henning Basold, Jesper Cockx, and Silvia Ghilezan; Article No. 12; pp. 12:1–12:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:takahashi.yuta@is.ocha.ac.jp
https://orcid.org/0000-0002-5214-7077
https://doi.org/10.4230/LIPIcs.TYPES.2021.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Size-Based Termination for Non-Positive Types in Simply Typed Lambda-Calculus

1.2 Aim
We extend the termination criterion in [9] further by making it possible to verify the
termination of the rewrite relation induced by some rewrite rules on types which are called
non-positive types. When we denote arrow types by T ⇒ U , a non-positive type in simply
typed λ-calculus means a sort (i.e., a basic type) B with a constructor c : T1 ⇒ · · · ⇒ Tn ⇒ B
such that B occurs in some Ti negatively. As shown in [20, 22, 7], there are some non-positive
types such that their recursion principles induce non-termination. This indicates the difficulty
in finding a terminating example of recursion principles for non-positive types. However,
if one considers rewrite rules which are different from recursion principles, one can think
of some rewrite rules on non-positive types whose rewrite relation should be shown to be
terminating. It is desirable to extend the criterion in [9] in this respect.

1.3 Approach
The approach of [9] to a termination criterion uses computability predicates with size
annotations. Roughly speaking, its termination criterion is formulated in the following way:
first, an interpretation I of sorts is defined, and a computability predicate is assigned to
each type T by extending this interpretation. A computability predicate is a set of terms
which satisfies several desirable properties for the purpose of termination proofs. In this first
step, the most crucial task is the construction of I. For any sort B, I(B) is defined by using
computability predicates annotated by ordinals: I(B) is equal to sup{SB

a | a < h} for some
limit ordinal h and some ordinal-indexed family (SB

a)a<h of computability predicates, where
SB
a ⊆ SB

b holds for any a, b with a ≤ b. This kind of ordinal-indexed family of computability
predicates is called a stratification, and the ordinal a in SB

a represents the size of terms in
SB
a . The interpretation I is extended to all types by defining I∗(B) := I(B) and

I∗(T ⇒ U) := I∗(T)⇒∗ I∗(U) := {t | ts ∈ I∗(U) for any s ∈ I∗(T)}.

Next, a termination criterion is presented, and it is shown that if a given rewrite system
satisfies the termination criterion, then any term t of type T belongs to the computability
predicate I∗(T) assigned to T ; this implies that every rewrite sequence from t terminates,
hence the correctness of the termination criterion is verified.

As explained in [9], the above notion of size is useful for showing the termination of
subtraction and division on the natural number type N:

sub x 0→ x sub 0 y → 0 sub (s x)(s y)→ sub x y
div 0 (s y)→ 0 div (s x) (s y)→ s (div (sub x y) (s y))

The termination of the rewrite relation induced by these rules is not straightforward: it is
not obvious to guarantee that the argument sub x y of the function call div (sub x y) (s y) is
“smaller than” s x of div (s x) (s y). But the stratification (SN

a)a<h with size annotation to
constructors and function symbols enables to assign sizes to terms so that the size of sub x y
is not greater than the size of x, and the size of s x is greater than the size of x by one.

The main obstacle in extending this approach in [9] to non-positive types is as follows.
Recall that, roughly speaking, a positive inductive type is a sort B which occurs in the types
of arguments of its constructors only positively. For any interpretation I of sorts and any
type T , let [B : X , I]∗T be the interpretation of T obtained from the sort-interpretation I′

defined as follows: I′(C) := X if C = B, otherwise I′(C) := I(C). Then, a crucial fact for the
method of [9] is that if B occurs in T only positively, then [B : X1, I]∗T ⊆ [B : X2, I]∗T holds

Y. Takahashi 12:3

whenever X1 ⊆ X2 holds. This monotonicity property enables one to define a stratification
S0 ⊆ S1 ⊆ · · · ⊆ Sa ⊆ · · · in the bottom-up way, but this property does not always hold if B
occurs in T negatively.

We remove this obstacle by using the inflationary fixed-point construction ([24]), which
does not assume the monotonicity of operators for fixed points as explained in [1]. This
construction provides the following obvious monotonicity to any ordinal-indexed family
(Sc)c<h of computability predicates: if a ≤ b holds then

⋃
c≤a([B : Sc, I]∗T) ⊆

⋃
c≤b([B :

Sc, I]∗T) holds, where B may occur in T negatively. A trade-off is that, for non-positive
types, we need to reformulate a size-based termination argument with pre-fixed points only.

Our construction of computability predicates for non-positive types enables us to extend
the accessibility condition of the termination criterion in [9]. The extended accessibility
condition can be explained as follows: let B be a non-positive type with a constructor
c : T1 ⇒ · · · ⇒ Tn ⇒ B, and x be a variable of type Ti in which B occurs negatively. In
addition, suppose that x also occurs in the right-hand side r of some rewrite rule f l1 · · · ln → r.
Then, the extended accessibility says that x must occur in some lj (1 ≤ j ≤ n) and the path
from the position of x in lj to the position of lj consists of finitely many full applications
of some constructors, where an n-ary constructor c is said to be fully applied if c takes n
arguments t1, . . . , tn. For instance, a variable g satisfies the extended accessibility if lj = c g
holds with g : B⇒ B and c : (B⇒ B)⇒ B, because we encounter only the full application
of c in the path from the position of g in lj to the position of lj . It is crucial that, in this
example, our accessibility condition permits the type B ⇒ B of g to include a negative
occurrence of B, which is not permitted by the accessibility condition in [9]. Together with
one more revision of the termination criterion in [9], our accessibility condition provides the
difference between this criterion and our termination criterion.

In addition, we note that a condition in Blanqui’s proof can be dropped, and this improves
the criterion with regard to non-strictly positive inductive types such as the one appearing in
Hofmann’s extract function for the breadth-first traversal of trees (see, e.g., [19]). Specifically,
we drop a condition on a typing rule for the computability closure in [9]. This enables
us to guarantee the termination of Hofmann’s extract function, while it is, to the best of
our knowledge, an open question whether the criterion in [9] guarantees the termination of
Hofmann’s extract function.

To sum up, our contributions are twofold: first, we extend the termination criterion
in [9] by means of the inflationary fixed-point construction so that it is possible to show
the termination of the rewrite relation induced by some rewrite rules on non-positive types.
Second, we also improve this criterion with regard to non-strictly positive inductive types by
verifying that a condition of a typing rule for the computability closure in [9] can be dropped.

1.4 Outline
In Section 2, we provide several preliminary definitions, and recall the facts needed in the
later sections. Next, in Section 3, computability predicates with size annotations are defined.
Finally, in Section 4, we formulate a termination criterion and prove the computability of
typed terms with rewrite rules satisfying this criterion.

2 Preliminaries

For any finite sequence e⃗ of some elements, we denote the length of e⃗ by |e⃗|. The empty
sequence is denoted by ϵ. Given a non-empty and countable set S of sorts, we define the set
T of types by induction: (1) S ⊆ T, and (2) if T, U ∈ T holds then T ⇒ U ∈ T holds. The

TYPES 2021

12:4 Size-Based Termination for Non-Positive Types in Simply Typed Lambda-Calculus

arrow symbol ⇒ is treated as right associative, and we often abbreviate T1 ⇒ · · · ⇒ Tn ⇒ U

by T⃗ ⇒ U with |T⃗ | = n. The set L of terms is defined as follows: let V be a countably
infinite set of variables, C be a countable set of constructors, and F be a countable set of
function symbols such that V,C,F are pairwise disjoint. Then, (1) V ∪ C ∪ F ⊆ L, (2) if
T ∈ T, x ∈ V and t ∈ L hold then λxT t ∈ L holds, and (3) if t, u ∈ L holds then tu ∈ L holds.
Below we identify two α-equivalent terms. We also adopt Barendregt’s variable condition:
no variable occurs both as a free one and as a bound one in a term, and all bound variables
in a term are distinct. The set of all free variables in a term t is denoted by FV(t). We treat
the term application tu as left associative, and often abbreviate tu1 · · ·un as tu⃗ with |u⃗| = n.
When X1 and X2 are sets of terms, we define X1 ⇒∗ X2 := {s ∈ L | st ∈ X2 for any t ∈ X1}.
The powerset of L is denoted by ℘(L). As usual, a position in an expression such as a term
is a string of positive integers (see, e.g., [3]). The subexpression of e at position p is denoted
by e|p, and we denote by e[e′]p the expression obtained by replacing the subexpression of e
at position p with e′. In addition, we denote by Pos(e, e′) the set of all positions p in e′ with
e′|p = e.

Mappings from C ∪ F to T are denoted by Θ and treated as sets of pairs. We often write
s : T whenever (s, T) ∈ Θ, i.e., Θ(s) = T holds for a given Θ. For any s ∈ C ∪ F with
Θ(s) = T1 ⇒ · · · ⇒ Tn ⇒ B for some sort B, we put rs := n. A typing environment is a
mapping from a finite set of variables to a set of types. Typing environments are denoted by
Γ,∆ and treated as sets of pairs. In this paper, typing rules are the ones of simply typed
λ-calculus:

(s, T) ∈ Θ ∪ Γ
Γ ⊢ s : T

Γ ⊢ s : T ⇒ U Γ ⊢ t : T
Γ ⊢ st : U

Γ ∪ (x, T) ⊢ u : U
Γ ⊢ λxTu : T ⇒ U

A substitution is a mapping θ from V to L such that dom θ := {x ∈ V | θ(x) ̸= x} is
finite. Define FV(θ) :=

⋃
{FV(θ(x)) | x ∈ dom θ}. Any substitution θ is extended to L

by stipulating θ(tu) := θ(t)θ(u) and θ(λxTu) := λxT θ(u). We write θ(t) as tθ, and always
assume that no bound variable in t belongs to dom θ ∪ FV(θ), by using α-conversion if
necessary.

We say that a pair (l, r) of terms is a rewrite rule and write it as l → r if there are a
function symbol f ∈ F, a finite sequence l⃗ of terms, a typing environment ∆ and a type T
such that

l = f l⃗, FV(r) ⊆ FV(l) and ∆ ⊢ l : T hold,

(Subject Reduction) for any Γ and any U , if Γ ⊢ l : U holds then Γ ⊢ r : U holds.
If R is a set of rewrite rules, we define the rewrite relation →R on L as follows: t→R s holds
if and only if t = u[lθ]p and u[rθ]p = s holds for some term u, some substitution θ, some
position p in t and some l → r ∈ R. We define →:=→R ∪ →β , where t→β s holds if and
only if t = u0[(λxTu1)u2]p and u0[u1{(x, u2)}]p = s hold for some terms u0, u1, u2 and some
position p in u0. For any term t and any set X of terms, define → (t) := {u ∈ L | t → u}
and →(X) :=

⋃
{→(t) | t ∈ X}. We say that → is finitely branching if →(t) is finite for any

t ∈ L. A term t is normal if there is no term t′ such that t→ t′ holds. We denote by SN the
set of all terms t which have no infinite rewrite sequence t→ t1 → t2 → · · · .

When ≤ is a quasi ordering, we write e1 ≤ e2 & e2 ≤ e1 as e1 ∼= e2. Let R,R1, . . . , Rn

be relations. We write x⃗Rprody⃗ if and only if |x⃗| = |y⃗| holds and there is an integer i with
xiRyi and xj = yj for any j ̸= i. We write x⃗(R1, . . . , Rn)lexy⃗ if and only if |x⃗|, |y⃗| ≥ n and
there is an integer i such that xiRiyi and xj = yj holds for any j < i.

Y. Takahashi 12:5

Hereafter, we suppose that the following is given:
a non-empty and countable set S of sorts,
a countably infinite set V of variables, a countable set C of constructors, a countable set
F of functional symbols and a mapping Θ : C ∪ F→ T,
a set R of rewrite rules.

▶ Definition 1 (Interpretations of Types). Let I : S⇀ ℘(L) be a partial function from S to
℘(L). We define a partial function I∗ : T⇀ ℘(L) as follows:

I∗(B) := I(B) if I(B) is defined, otherwise I∗(B) is undefined.
I∗(T ⇒ U) := I∗(T)⇒∗ I∗(U) if both I∗(T) and I∗(U) are defined, otherwise I∗(T ⇒ U)
is undefined.

We write I∗
1(T) = I∗

2(S) if and only if both I∗
1(T) and I∗

2(S) are defined and equal.

For any partial function I : S ⇀ ℘(L), we denote by [B : X , I] the partial function
I′ : S⇀ ℘(L) such that

I′(C) =

X , if C = B,
I(C), if C ̸= B and I(C) is defined,
undefined, else.

For the purpose of this paper, the distinction of positive positions and negative positions
in a type is crucial. We denote the set of all positions in a type T by Pos(T).

▶ Definition 2. For any T ∈ T, we define the sets Pos+(T) and Pos−(T) by induction:
Pos+(B) := {ϵ}, Pos−(B) := ∅.
Poss(T ⇒ U) := {1p | p ∈ Pos−s(T)} ∪ {2p | p ∈ Poss(U)} for each s ∈ {+,−} with
−+ := − and −− := +.

We call Pos+(T) the set of all positive positions in T , and Pos−(T) the set of all negative
positions in T . Moreover, for any B ∈ S and any T ∈ T, we define Poss(B, T) := Pos(B, T)∩
Poss(T) for each s ∈ {+,−}.

A non-positive type is a sort B with a constructor c : T1 ⇒ · · · ⇒ Tn ⇒ B such that for
some i (1 ≤ i ≤ n), Pos−(B, Ti) is non-empty.

The following fact is known:

▶ Proposition 3 ([7]). For any sort B, if I is defined for any sort occurring in T except
B and Pos(B, T) ⊆ Pos+(B, T) holds, then [B : X , I]∗(T) : ℘(L) → ℘(L) is monotone with
respect to X , that is, if X1 ⊆ X2 holds then [B : X1, I]∗(T) ⊆ [B : X2, I]∗(T) holds.

The notion of computability predicate we use is a standard one, as the definition below
shows. A term t is neutral if t has one of the following forms: (1) xs⃗, (2) (λx.t)us⃗, (3) f t⃗,
where |⃗t| ≥ max{|⃗l| | f l⃗→ r ∈ R for some r} holds.

▶ Definition 4 (Computability Predicates). A computability predicate is a set S of terms
satisfying
S ⊆ SN,
→(S) ⊆ S,
if t is neutral and →(t) ⊆ S holds, then t ∈ S holds.

Note that for any computability predicates X1 and X2, X1 ⇒∗ X2 is a computability
predicate. In Section 3, we will use the following lemma (for a proof, see [9, Lemma 1]) to
define computability predicates with size annotations.

TYPES 2021

12:6 Size-Based Termination for Non-Positive Types in Simply Typed Lambda-Calculus

▶ Lemma 5. If → is finitely branching and Q is a non-empty set of computability predicates
with (Q,⊂) well ordered, then

⋃
Q is a computability predicate.

The definition of computability predicates with size annotations will proceed along the
hierarchy of ordinals; for this purpose, we use the notion of stratification defined below. We
denote ordinals by a, b, c, d, and the first uncountable cardinal by h.

▶ Definition 6 (Stratifications). A stratification is an ordinal-indexed family (Sa)a<c of sets
of terms for some c ≤ h. For any term t ∈

⋃
a<c Sa, we define the ordinal oS(t) as the least

ordinal b such that t ∈ Sb holds. We say that a stratification S = (Sa)a<c is monotone if
and only if Sa ⊆ Sb holds for any a, b with a ≤ b < c.

Let S = (Sa)a<h be a monotone stratification. Since any set of terms is countable, there
is a countable ordinal a such that Sa = Sc holds for any c > a. We denote the least ordinal
satisfying this property by m(S). Moreover, let S = (Sa)a<c be a monotone stratification, and
suppose that I is defined for any sort occurring in T except B with Pos(B, T) ⊆ Pos+(B, T).
Then, by Proposition 3, ([B : Sa, I]∗(T))a<c is a monotone stratification. We denote this
monotone stratification by [B : S, I]∗(T).

One can prove the lemma below as in Lemma 3.(1) of [9].

▶ Lemma 7. Let S = (Sa)a<h be a monotone stratification such that every Sa is a comput-
ability predicate, and assume that → is finitely branching. If t ∈ Sm(S) and t→ t′ hold, then
t′ ∈ Sm(S) and oS(t) ≥ oS(t′) hold.

In the rest of this paper, we always assume that a given rewrite relation → is finitely
branching.

3 Construction of Computability Predicates with Size Annotations

In this section, we define computability predicates with size annotations. Specifically, we
first define the notion of size function (Definition 9), which controls the size-information of
computability predicates. Next, given arbitrary size functions, we define stratifications by
size functions (Definition 10). It is these stratifications that form a family of computability
predicates with size annotations, and this family provides each sort with a computability
predicate as its interpretation. Then, this interpretation of sorts is extended to all types in a
straightforward way.

We fix an arbitrary well founded ordering <S on S, and denote the reflexive closure of
<S by ≤S. Therefore, ≤S is a partial ordering: there is no pair (B1,B2) of sorts such that
B1 ≤S B2, B2 ≤S B1 and B1 ≠ B2 hold. Since ≤S is a partial ordering, we can adopt the
following definition of inductive types and non-strictly positive inductive types: a sort B is an
inductive type if for any constructor c : T1 ⇒ · · · ⇒ Tn ⇒ B of B and any i with 1 ≤ i ≤ n,
Pos(B, Ti) ⊆ Pos+(B, Ti) holds. An inductive type B is strictly positive if for any constructor
c : T1 ⇒ · · · ⇒ Tn ⇒ B of B and any argument Ti of c with Ti = Ti,n1 ⇒ · · · ⇒ Ti,nj

⇒ Ui

(j ≥ 0), B does not occur in any of Ti,n1 , . . . , Ti,nj . A non-strictly positive inductive type is
an inductive type not being strictly positive.

▶ Definition 8 (Arguments of Constructors). Let <S be a well founded ordering on sorts, and
Ti be the i-th argument of the constructor c : T⃗ ⇒ B. Then,
1. Ti is recursive iff Pos(B, Ti) is not empty,
2. Ti is negative iff Pos−(B, Ti) is not empty and for any C, either Pos(C, Ti) is empty or

C ≤S B holds,

Y. Takahashi 12:7

3. Ti is accessible iff Pos(B, Ti) ⊆ Pos+(B, Ti) holds and for any C, either Pos(C, Ti) is
empty or C ≤S B holds.

In order to make our stratifications well-defined (Definition 10 below), hereafter we
assume that for any sort B, B has no constructor which has some non-negative and non-
accessible argument. For instance, when C >S B holds, a constructor c# : C⇒ B of a sort
B has a non-negative and non-accessible argument C. If we admit c# then there exists an
argument T (i.e., C) of c# which includes an occurrence of a sort C with C >S B, and this
breaks our definition of stratifications by size functions. Therefore, we may assume without
loss of generality that for any constructor c : T⃗ ⇒ B, there are natural numbers nc, pc, qc

(nc, pc, qc ≥ 0) satisfying the following (if needed, we permute the arguments of c):
for any i ∈ {1, . . . , nc}, the i-th argument Ti of c is negative,
for any j ∈ {nc + 1, . . . , pc}, the j-th argument Tj of c is accessible and recursive,
for any k ∈ {pc + 1, . . . , qc}, the k-th argument Tk of c is accessible and non-recursive,
and there is a sort occurring in Tk only positively,
for any l ∈ {qc + 1, . . . , rc}, the l-th argument Tl of c is accessible and non-recursive, and
there is no sort occurring in Tl only positively.

When Θ(c) = T⃗ ⇒ B holds, T⃗ ⇒ B always has the following structure:

T1 ⇒ · · · ⇒ Tnc︸ ︷︷ ︸
negative arguments

⇒ Tnc+1 ⇒ · · · ⇒ Tpc︸ ︷︷ ︸
accessible and recursive arguments

⇒

Tpc+1 ⇒ · · · ⇒ Tqc ⇒ Tqc+1 ⇒ · · · ⇒ Trc︸ ︷︷ ︸
accessible and non-recursive arguments

⇒ B.

For instance, if C <S B and Θ(c) = (B ⇒ C) ⇒ (C ⇒ B) ⇒ C ⇒ (C ⇒ C) ⇒ B hold,
then we have nc = 1, pc = 2, qc = 3 and rc = 4. On the other hand, if C <S B and
Θ(c) = (C⇒ B)⇒ (C⇒ C)⇒ B hold, then nc = 0, pc = 1, qc = 1 and rc = 2 hold. Notice
that if pc = 0 holds then nc = 0 holds, and similar implications hold for qc and rc.

The size-information of stratifications is controlled by size functions, which compute an
ordinal as the size of c t⃗ from ordinals attached to t1, . . . , tqc as their sizes.

▶ Definition 9 (Size Functions). For any constructor c : T⃗ ⇒ B, a size function (Σc, B⃗c) for
c consists of a function Σc : hqc → h and sorts Bc

1, . . . ,Bc
qc such that

for any i ∈ {1, . . . , pc}, Bc
i = B holds, and

for any i ∈ {pc + 1, . . . , qc}, Bc
i occurs in Ti with Pos(Bc

i , Ti) ⊆ Pos+(Bc
i , Ti) and Bc

i <S B.

We often denote a size function (Σc, B⃗c) by Σc. If B ∈ S holds, then we define
CB := {(c, t⃗, T⃗) | c ∈ C, c : T⃗ ⇒ B, |⃗t| = |T⃗ |},
CB

→∗(t) := {(c, t⃗, T⃗) ∈ CB | t→∗ c t⃗}, where →∗ is the reflexive and transitive closure of
→.

Note that for any (c, t⃗, T⃗) ∈ CB, we do not require ti : Ti.
Below we define stratifications by size functions, and these stratifications form the

interpretation J of sorts, which assigns a computability predicate to each sort. Notice that
we use the inflationary fixed-point construction (see, e.g., [24, 1, 2]) in the case of negative
arguments of constructors.

▶ Definition 10 (Stratifications by Size Functions). Assume that a size function is provided
with each constructor. For any sort B, we define the stratification SB and the value J(B) of
the function J from S to ℘(L) by induction on >S. Suppose that SC and J(C) are defined for
any sort C <S B. We first define SB

a by induction on a ∈ h: SB
0 is defined as the set of all

terms t ∈ SN such that for any (c, t⃗, T⃗) ∈ CB
→∗(t),

TYPES 2021

12:8 Size-Based Termination for Non-Positive Types in Simply Typed Lambda-Calculus

pc = 0,
for any i ∈ {1, . . . , qc}, ti ∈ J∗(Ti), and
Σc(oSc,1(t1), . . . , oSc,qc (tqc)) = 0, where Sc,i is a stratification ([Bc

i : SBc
i

a , J]∗(Ti))a<h for
any i ∈ {1, . . . , qc}.
We abbreviate oSc,1(t1), . . . , oSc,qc (tqc) as oSc (⃗t).

When a = b + 1 holds, we define SB
a as the set of all terms t ∈ SN such that for any

(c, t⃗, T⃗) ∈ CB
→∗(t),

for any k ∈ {1, . . . , nc}, tk ∈
⋃

c≤b[B : SB
c , J]∗(Tk),

for any k ∈ {nc + 1, . . . , pc}, tk ∈ [B : SB
b , J]∗(Tk),

for any i ∈ {pc + 1, . . . , qc}, ti ∈ J∗(Ti), and
Σc(oSc,1(t1), . . . , oSc,qc (tqc)) ≤ b + 1, where
Sc,k is a stratification (

⋃
d≤c[B : SB

d , J]∗(Tk))c≤b for any k ∈ {1, . . . , nc},
Sc,k is a stratification ([B : SB

c , J]∗(Tk))c≤b for any k ∈ {nc + 1, . . . , pc} and
Sc,k is a stratification ([Bc

k : SBc
k

c , J]∗(Ti))c<h for any k ∈ {pc + 1, . . . , qc}.
As above, we abbreviate oSc,1(t1), . . . , oSc,qc (tqc) as oSc (⃗t).

When a is a limit ordinal, we define SB
a :=

⋃
b<a SB

b . Finally, we put SB := (SB
a)a<h and

J(B) := SB
m(SB). To justify the definition of J(B), we show that SB is monotone in Lemma

11.(2) below.

Note that in the definition above we used induction on >S and subinduction on a ∈ h.
By the hypothesis of subinduction, we can assume in the case of a = b+ 1 that SB

c is already
defined for any c ≤ b. For any sort B, any set X of terms and any type T , we abbreviate
[B : X , J]∗(T) as [B : X]T , and t ∈ J∗(T) as t ∈ T for any term t. The lemma below
shows that for any sort B, the stratification SB is monotone, and each SB

a is a computability
predicate.

▶ Lemma 11. The following statements hold.
1. Let P,Q be two arbitrary sets of triples (c, t⃗, T⃗) of a constructor, a finite sequence of

terms and a finite sequence of types. If P ⊆ Q holds then {t ∈ SN | CB
→∗(t) ⊆ P} ⊆ {t ∈

SN | CB
→∗(t) ⊆ Q} holds.

2. For any sort B, SB is monotone.
3. For any sort B and any a < h, SB

a is a computability predicate.

Proof.
(1.) Straightforward.
(2.) We show by induction on b that if a ≤ b holds then SB

a ⊆ SB
b holds. When b is 0 or

a limit ordinal, the assertion is obvious. Let b = c + 1 be the case. First, we show
SB
c ⊆ SB

c+1. Let t ∈ SB
c be the case. By the definition of SB, oSB(t) cannot be a limit

ordinal, hence either t ∈ SB
0 or t ∈ SB

c0+1 holds for some ordinal c0 < c. Here we consider
the latter case only (the former case is similar). In this case, there are sets Pc0+1 and
Pc+1 such that for any d ∈ {c0 + 1, c + 1}, we have SB

d = {u ∈ SN | CB
→∗(u) ⊆ Pd} and

Pd is the set of all (c, t⃗, T⃗) such that
for any k ∈ {1, . . . , nc}, tk ∈

⋃
c≤d−1[B : SB

c]Tk,
for any k ∈ {nc + 1, . . . , pc}, tk ∈ [B : SB

d−1]Tk,
for any i ∈ {pc + 1, . . . , qc}, ti ∈ Ti, and
Σc(oSc (⃗t)) ≤ d.

Y. Takahashi 12:9

By the assertion 1. above, it suffices to verify that Pc0+1 ⊆ Pc+1 holds. Assume that
(c, t⃗, T⃗) ∈ Pc0+1 holds. First, we have tk ∈

⋃
b≤c[B : SB

b]Tk for any k ∈ {1, . . . , nc} by
c0 < c. Moreover, for any k ∈ {nc + 1, . . . , pc}, we have SB

c0
⊆ SB

c by IH, hence we
have tk ∈ [B : SB

c]Tk by Pos(B, Tk) ⊆ Pos+(B, Tk) and Proposition 3. It is obvious that
Σc(oSc (⃗t)) ≤ c + 1 holds, so we have Pc0+1 ⊆ Pc+1. Therefore, SB

c ⊆ SB
c+1 holds. Then,

by IH, one can see that if a ≤ c + 1 holds then SB
a ⊆ SB

c+1 holds.
(3.) By induction on a. Since the case of a = 0 is similar to the case of successors, we consider

the cases of successors and limits only. As we have seen in the proof of the assertion
2. above, there is a set Pb+1 such that we have SB

b+1 = {t ∈ SN | CB
→∗(t) ⊆ Pb+1}.

One can show as in [9, Lemma 6] that for any set P of triples of a constructor, a
finite sequence of terms and a finite sequence of types, {t ∈ SN | CB

→∗(t) ⊆ P} is a
computability predicate. Therefore, SB

b+1 is a computability predicate. If a is limit,
then SB

a =
⋃

b<a SB
b holds, and each SB

b with b < a is a computability predicate by IH.
Since ((SB

b)b<a,⊂) is a well ordering by the monotonicity of SB, SB
a is a computability

predicate by Lemma 5 and the assumption that → is finitely branching. ◀

Following [1], one can say that SB
m(SB) is a pre-fixed point in the following sense: for any

(c, t⃗, T⃗) such that
c : T⃗ ⇒ B holds, |⃗t| = |T⃗ | holds and c t⃗ is normal,
for any k ∈ {1, . . . , nc}, tk ∈

⋃
c≤m(SB)[B : SB

c]Tk,
for any k ∈ {nc + 1, . . . , pc}, tk ∈ [B : SB

m(SB)]Tk,
for any i ∈ {pc + 1, . . . , qc}, ti ∈ Ti, and
Σc(oSc (⃗t)) ≤ m(SB) + 1,

we have c t⃗ ∈ SB
m(SB). Hereafter, we often abbreviate t ∈ SB

m(SB) as t ∈ SB.
The statements 1–3 of the lemma below are used in the proof of its statement 4, while

the statement 4 will be used in the proof of Lemma 13 below.

▶ Lemma 12. The following statements hold:
1. t ∈ SB

0 holds iff t ∈ SB holds and for any (c, t⃗, T⃗) ∈ CB
→∗(t), Σc(oSc (⃗t)) = pc = 0 holds.

2. t ∈ SB
a+1 holds iff

t ∈ SB holds,
for any (c, t⃗, T⃗) ∈ CB

→∗(t), Σc(oSc (⃗t)) ≤ a + 1 holds, and for any k ∈ {1, . . . , pc},
oSc,k (tk) ≤ a holds.

3. If (c, t⃗, T⃗) ∈ CB and c t⃗ ∈ SB holds, then we have oSB(c t⃗) ≥ Σc(oSc (⃗t)) and oSB(c t⃗) >
oSc,k (tk) for any k ∈ {1, . . . , pc}.

4. Let δ be the function on h such that δ(a) = a + 1 if a is a limit ordinal, and δ(a) = a

otherwise. If t ∈ SB holds, then we have oSB(t) = δ(sup(R ∪ S ∪ T)) with
R = {oSB(t′) | t→ t′},
S = {oSc,k (tk) + 1 | (c, t⃗, T⃗) ∈ CB, t = c t⃗, 1 ≤ k ≤ pc},
T = {Σc(oSc (⃗t))} with (c, t⃗, T⃗) ∈ CB and t = c t⃗.

Proof.
(1.) (=⇒) Obvious. (⇐=) Since t ∈ SB holds, we have t ∈ SB

a with a = oSB(t). Then, by
definition, we have t ∈ SN, and for any (c, t⃗, T⃗) ∈ CB

→∗(t) and any i ∈ {pc + 1, . . . , qc},
ti ∈ Ti holds. Therefore, we have t ∈ SB

0 because Σc(oSc (⃗t)) = 0 holds.
(2.) (=⇒) Obvious. (⇐=) If pc = 0 holds then we immediately have t ∈ SB

a+1 by assumption.
Suppose that pc ≥ 1 holds. We have t ∈ SB

c+1 with c + 1 = oSB(t), so t ∈ SN holds. If
(c, t⃗, T⃗) ∈ CB

→∗(t) holds, then for any i ∈ {pc + 1, . . . , qc}, ti ∈ Ti holds. Moreover, we
have oSc,k (tk) ≤ a for any k ∈ {1, . . . , pc}. Therefore, tk ∈

⋃
b≤a[B : SB

b]Tk holds for any

TYPES 2021

12:10 Size-Based Termination for Non-Positive Types in Simply Typed Lambda-Calculus

k ∈ {1, . . . , nc}, and tk ∈ [B : SB
a]Tk holds for any k ∈ {nc + 1, . . . , pc}. Then, t ∈ SB

a+1
holds because we have Σc(oSc (⃗t)) ≤ a + 1.

(3.) One can see that oSB(c t⃗) is either 0 or a successor a + 1. If oSB(c t⃗) = 0 holds, then
c t⃗ ∈ SB

0 holds and so we have oSB(c t⃗) = 0 ≥ Σc(oSc (⃗t)) by definition. If oSB(c t⃗) = a + 1
holds, then c t⃗ ∈ SB

a+1 holds and so we have oSB(c t⃗) = a + 1 ≥ Σc(oSc (⃗t)) by definition.
Next, we show that oSB(c t⃗) > oSc,k (tk) holds for any k ∈ {1, . . . , pc}. If oSB(c t⃗) = 0
holds, then pc = 0 holds and so the assertion holds vacuously. Let oSB(c t⃗) = a + 1 be
the case, and take a natural number k ∈ {1, . . . , pc}. If k ≤ nc holds, then we have
tk ∈

⋃
b≤a[B : SB

b]Tk and so oSc,k (tk) ≤ a holds. Otherwise we have tk ∈ [B : SB
a]Tk,

hence oSc,k (tk) ≤ a holds as well.
(4.) We put a := sup(R∪ S ∪ T) and b := oSB(t). First, we show b ≥ δ(a). Let t→ t′ be the

case, then we have b ≥ oSB(t′) by Lemma 7. We have b ≥ sup(S ∪ T) by the statement
3. above, hence b ≥ a. Since b cannot be a limit ordinal, if a is a limit ordinal then
b > a holds, so b ≥ δ(a) holds. Otherwise, we have b ≥ a = δ(a).
Next, we show δ(a) ≥ b. It suffices to show t ∈ SB

δ(a). Since t ∈ SB holds, we have
t ∈ SN, and for any (c, t⃗, T⃗) ∈ CB

→∗(t) and any i ∈ {pc + 1, . . . , qc}, ti ∈ Ti holds.
δ(a) = 0: let (c, t⃗, T⃗) ∈ CB

→∗(t) be the case. By the statement 1. above, it suffices to
show pc = 0 and Σc(oSc (⃗t)) = 0. First, consider the case of t = c t⃗. Then, S must be
empty and so pc = 0 holds. Moreover, we have Σc(oSc (⃗t)) = 0 by sup(T) = 0. Next,
let t → t′ →∗ c t⃗ be the case. Then, we have oSB(t′) = 0 and so t′ ∈ SB

0 holds. It
follows that pc = 0 and Σc(oSc (⃗t)) = 0 hold, because (c, t⃗, T⃗) ∈ CB

→∗(t′) holds.
δ(a) = c + 1: let (c, t⃗, T⃗) ∈ CB

→∗(t) be the case. By the statement 2. above, it suffices
to show that Σc(oSc (⃗t)) ≤ c + 1 holds and oSc,k (tk) ≤ c holds for any k ∈ {1, . . . , pc}.
Consider the case of t = c t⃗ first. We have Σc(oSc (⃗t)) = sup(T) ≤ c + 1. Moreover,
for any k ∈ {1, . . . , pc}, we have oSc,k (tk) + 1 ≤ sup(S) ≤ a ≤ c + 1. Next, let
t → t′ →∗ c t⃗ be the case. We have t′, c t⃗ ∈ SB because SB

m(SB) is a computability
predicate. By Lemma 7 and the statement 3. above, we have

Σc(oSc (⃗t)) ≤ oSB(c t⃗) ≤ oSB(t′) ≤ c + 1.

For any k ∈ {1, . . . , pc}, we have

oSc,k (tk) < oSB(c t⃗) ≤ oSB(t′) ≤ c + 1

by Lemma 7 and the statement 3. again. Therefore, we have t ∈ SB
δ(a). ◀

By using Lemma 12.(4) as in the proof of [9, Corollaries 1 and 2], one can prove the
following lemma, which is a key lemma for our termination criterion (Theorem 24 below).

▶ Lemma 13. Let c be a constructor, and assume that Σc is strictly extensive with respect to
recursive arguments of c, i.e., ai < Σc(⃗a) holds for any a⃗ and any i ∈ {1, . . . , pc}. Moreover,
we suppose that Σc(⃗a) is not a limit ordinal for any a⃗.
1. For any (c, t⃗, T⃗) ∈ CB such that c t⃗ ∈ SB holds and c t⃗ is normal, we have oSB(c t⃗) =

Σc(oSc (⃗t)).
2. If Σc is monotone, then for any (c, t⃗, T⃗) ∈ CB with c t⃗ ∈ SB, we have oSB(c t⃗) = Σc(oSc (⃗t)).

4 Computability of Well-Typed Terms

In this section, we first define the notion of annotation for constructors (Definition 17).
An annotation for constructors determines the corresponding size functions (Definition 18),
so one can define stratifications by size functions and the interpretation J of sorts along

Y. Takahashi 12:11

Definition 10 above whenever an annotation for constructors is given. Next, we define the
notion of annotations for function symbols (Definition 20). Finally, we give our termination
criterion, namely, a sufficient condition for the termination of → which consists of several
criteria concerning annotations for constructors and function symbols (Theorem 24).

First of all, we recall accessible subterms in [9], and define a variant of these terms called
quasi-accessible subterms.

▶ Definition 14 (Accessible Subterms and Quasi-Accessible Subterms). Assume that a family
(Σc, B⃗c)c∈C of size functions is given. We say that a triple (u, U,C) is accessible in a tuple
(t, T,B) and write (u, U,C) ⊴a (t, T,B) if and only if either 1. or 2. below is satisfied:
1. (u, U,C) = (t, T,B).
2. There are a tuple (c, t⃗, T⃗) ∈ CB and an integer k ∈ {nc + 1, . . . , qc} such that t = c t⃗,

T = B and (u, U,C) ⊴a (tk, Tk,Bc
k) hold.

We say that (u, U,C) is quasi-accessible in (t, T,B) and write (u, U,C) ⊴qa (t, T,B) if and
only if either 1. above or 2’. below is satisfied:
2’. There are a tuple (c, t⃗, T⃗) ∈ CB and an integer k ∈ {1, . . . , qc} such that t = c t⃗, T = B

and (u, U,C) ⊴qa (tk, Tk,Bc
k) hold.

Note that if (u, U,C) ⊴qa (t, T,B) holds by the condition 2’ above, then either (u, U,C) ⊴a
(t, T,B) holds or there are finitely many distinct tuples (u1, U1,C1), . . . , (un, Un,Cn) (n ≥ 1)
such that (un, Un,Cn) ⊴a · · · ⊴a (u1, U1,C1) = (t, T,B) holds with un = c t⃗ and we have
u = tk for some negative argument k of c. In other words, ⊴qa \ ⊴a (i.e., the difference of
⊴qa and ⊴a) holds at most once at the beginning. For instance, consider two constructors c0 :
(B⇒ B)⇒ B, c1 : B⇒ B and a variable x : B⇒ B. Then, (x,B⇒ B,B) ⊴qa (c1 (c0 x),B,B)
holds by the condition 2’, and we have (x,B⇒ B,B) ⊴qa (c0 x,B,B) ⊴a (c1 (c0 x),B,B) in
this case. As this example shows, if one has (u, U,C) ⊴qa (t, T,B) or (u, U,C) ⊴a (t, T,B)
with (u, U,C) ̸= (t, T,B), then T = B must hold by definition. That is why ⊴qa \ ⊴a holds
at most once: if U is a type of some negative argument of a constructor for C and we have
(u, U,C) ⊴qa (t, T,B), then U ̸= C must hold.

▶ Lemma 15. Assume that a family (Σc, B⃗c)c∈C of size functions is given. If (u, U,C) ⊴a
(t, T,B) and t ∈ T hold then u ∈ U holds.

Proof. The assertion is trivial if (u, U,C) = (t, T,B) holds, so assume that there are a tuple
(c, t⃗, T⃗) ∈ CB and an integer k ∈ {nc + 1, . . . , qc} with t = c t⃗, T = B and (u, U,C) ⊴a
(tk, Tk,Bc

k). Since c t⃗ ∈ T = B holds, we have c t⃗ ∈ SB
a for some a which is zero or a successor

ordinal. If k > pc holds, then we immediately have tk ∈ Tk by definition. If k ≤ pc holds,
then tk ∈ [B : SB

b]Tk holds for some b with a = b + 1. By Proposition 3, we have

[B : SB
b]Tk ⊆ [B : SB

m(SB)]Tk = Tk,

so we have tk ∈ Tk also in this case. Therefore, we have u ∈ U by IH. ◀

Size algebras enable us to annotate constructors and function symbols in a way which
estimates the sizes of their inputs and outputs.

▶ Definition 16 (Size Algebras). A size algebra consists of
a set A = T (F, V) of F-terms built from a set V of size variables α, β, . . . and a set F of
size function symbols f, g, . . . of fixed arity with V ∩ F = ∅,
a quasi ordering ⩽A on A and a strict ordering <A⊆⩽A such that for each R ∈ {⩽A, <A}
and any substitution φ : V→ A, if aRb holds then aφRbφ holds,

TYPES 2021

12:12 Size-Based Termination for Non-Positive Types in Simply Typed Lambda-Calculus

a function fh : hn → h for each size function symbol f ∈ F of arity n such that for any
valuation µ : V→ h, if a ⩽A b (resp. a <A b) holds then aµ ≤ bµ (resp. aµ < bµ) holds,
where αµ := µ(α) and (f a1 . . . an)µ := fh(a1µ, . . . , anµ).

Size algebras are denoted by A. A size algebra A is monotone if and only if for any f ∈ F, if
a⃗(⩽A)prodb⃗ holds then f a⃗ ⩽A f b⃗ holds.

The successor size algebra is the size algebra A which consists of F, <A,⩽A below:
F = C ∪ {s}, where C is a fixed countably infinite set of constants and s is the unary
function symbol. The interpretation sh of s is the successor function on ordinals, and
each constant in C is interpreted in a fixed way.
<A is defined by induction: a <A s a for any a ∈ A, and if a <A b then s a <A s b. The
ordering ⩽A is defined as the reflexive closure of <A.

One can easily see that the successor size algebra actually satisfies the conditions for being
a size algebra. We will use the successor size algebra in applying our termination criterion
below (Examples 27 and 28).

The set TA of annotated types is defined by induction: (1) T ⊆ TA, (2) if B ∈ S and a ∈ A
hold then Ba ∈ TA holds, (3) if U, T ∈ TA holds then U ⇒ T ∈ TA holds. We adopt the
following notations:

Var(e) means the set of all size variables occurring in an expression e,
|T | means the type obtained by removing all annotations in T ,
Annot(T,B, a) means the annotated type obtained by annotating any occurrence of B in
T by a.

In addition, we extend the positive and negative positions in types to annotated types:
Poss(Bb) := {1p | p ∈ Poss(b)} for each s ∈ {+,−},
Pos+(α) := {ϵ}, Pos−(α) := ∅,
if f is of arity 0 then we define Pos+(f) := {ϵ} and Pos−(f) := ∅, otherwise we define

Poss(fb1 . . . bn) := {ip | i ∈ Mon+(f), p ∈ Poss(bi)}∪{ip | i ∈ Mon−(f), p ∈ Pos−s(bi)},

where Mon+(f) (resp. Mon−(f)) is the set of arguments in which f is monotone (resp.
anti-monotone) with respect to ⩽A.

The top-extension of a size algebra A is the set A = A ∪ {∞} with ∞ ̸∈ A. We define as
follows:

B∞ := B for any B ∈ S.
For any a, b ∈ A, a ⩽∞

A b holds if and only if either a ⩽A b or b =∞ holds. In addition,
a <∞

A b holds if and only if either a <A b or a ̸=∞ = b holds.
For any substitution φ : V→ A and any a ∈ A, aφ :=∞ if there is a variable α ∈ Var(a)
with φ(α) =∞, otherwise aφ is defined as the usual substitution.

Below we denote elements of V∪ {∞} by α, β, . . . as well. Then, annotations for constructors
can be formulated as follows:

▶ Definition 17 (Annotations for Constructors). Let A be an arbitrary size algebra. An
annotation for constructors is a family C = (B⃗c,Θ(c))c∈C such that for any c ∈ C with
Θ(c) = T1 ⇒ · · · ⇒ Trc ⇒ B,
1. B⃗c consists of the sorts Bc

1, . . . ,Bc
qc , and

for any i ∈ {1, . . . , pc}, Bc
i = B holds, and

for any i ∈ {pc + 1, . . . , qc}, Bc
i occurs in Ti with Pos(Bc

i , Ti) ⊆ Pos+(Bc
i , Ti) and

Bc
i <S B,

2. Θ(c) = T1 ⇒ · · · ⇒ Trc ⇒ Bσc with σc ∈ A, where Ti = Annot(Ti,Bc
i , α

c
i) if i ∈ {1, . . . , qc},

otherwise Ti = T .

Y. Takahashi 12:13

3. {αc
1, . . . , α

c
pc} ⊆ V, {αc

pc+1, . . . , α
c
qc} ⊆ V∪ {∞}, and the members of {αc

1, . . . , α
c
qc} ∩ V are

either pairwise equal or pairwise distinct,
4. if pc ̸= 0 then Var(σc) ⊆ {α1, . . . , αqc} holds, otherwise σc ∈ V \ {α1, . . . , αqc} holds,
5. Pos(αc

i , σ
c) ⊆ Pos+(αc

i , σ
c) for any i ∈ {1, . . . , qc},

6. αc
i <

∞
A σc holds for any i ∈ {1, . . . , pc}.

We stipulate that an annotation for constructors determines the corresponding size
functions in the following way:

▶ Definition 18 (Size Functions by Annotation). Let an annotation for constructors be given.
For any constructor c, we define the size function Σc induced by this annotation as follows:
put α⃗ := αc

1, . . . , α
c
qc , and suppose that a1, . . . , aqc are arbitrary ordinals less than h. For any

α ∈ Var(σc), we first define the valuation ν as

ν(α) :=

0, if α is distinct from any of α⃗,
ai, if α = αc

i and the members of {α⃗} ∩ V are pairwise distinct,
b, if α = αc

i and the members of {α⃗} ∩ V are pairwise equal,

where b = sup{ai | 1 ≤ i ≤ qc, αc
i ∈ V}. Then, we define

Σc(a1, . . . , aqc) :=
{

0, if σc =∞,
σcν, otherwise.

When an annotation of constructors is given, we have the size function Σc for any
constructor c by the definition above. Then, by Definition 10, we obtain stratifications by
size functions. By using these stratifications with a given valuation µ : V→ h, we interpret
annotated types T ∈ TA as follows:

Bµ := SB
m(SB), and Baµ = SB

aµ,
(U ⇒ V)µ = Uµ⇒∗ V µ.

▶ Lemma 19. Assume that an annotation C for constructors is given.
1. Let c be an arbitrary constructor with pc ̸= 0, and ν, µ be arbitrary valuations from
{α1, . . . , αqc} to h. If αiν ≤ αiµ holds for any i ∈ {1, . . . , qc} with αi ∈ V, then σcν ≤ σcµ

holds.
2. Let Σc be the size function c induced by C. If σc ̸=∞ holds, then ai < Σc(⃗a) holds for

any a⃗ and any i ∈ {1, . . . , pc}.

Proof.
(1.) Since pc ̸= 0 holds, we have Var(σc) ⊆ {α1, . . . , αqc}. Then, the assertion follows because

Pos(αc
i , σ

c) ⊆ Pos+(αc
i , σ

c) holds for any i ∈ {1, . . . , qc} by the definition of C.
(2.) By the definition of C, if σ ̸=∞ holds then we have αc

i <A σ
c for any i ∈ {1, . . . , pc}. It

follows from the definition of size algebras that αc
iν < σcν holds where ν is the valuation

defined in Definition 18, hence we have ai < Σc(⃗a) for any a⃗ and any i ∈ {1, . . . , pc}. ◀

Without loss of generality, we may assume that for any f ∈ F, there is a natural number
qf ≥ 0 such that the first qf arguments of f are all sorts. We denote the i-th argument of f
by Bf

i for any i ∈ {1, . . . , qf}. Notice that there may be a natural number i ∈ {qf + 1, . . . , rf}
with Ti a sort. Using these notations, we define annotations for function symbols as follows:

▶ Definition 20 (Annotations for Function Symbols). Let A be an arbitrary size algebra. An
annotation F for function symbols consists of a well founded quasi ordering ≤F on F∪C∪V
and a family ((Df

A,⩽
f
A, <

f
A, ζ

f
A), (Df

h,⩽
f
h, <

f
h, ζ

f
h),Θ(f))f∈F which satisfy the following: for any

f ∈ F,

TYPES 2021

12:14 Size-Based Termination for Non-Positive Types in Simply Typed Lambda-Calculus

1. h <F f holds for any h ∈ C ∪ V,
2. Θ(f) = T1 ⇒ · · · ⇒ Trf ⇒ Bσf with σf ∈ A,
3. Ti = Annot(Bf

i,Bf
i, α

f
i) for any i ∈ {1, . . . , qf}, and Ti = Ti for any i ∈ {qf + 1, . . . , rf},

4. Var(σf) ⊆ {αf
1, . . . , α

f
qf} ⊆ V, and αf

1, . . . , α
f
qf are pairwise distinct,

5. for each X ∈ {A, h}, Df
X is a set, ⩽f

X is a quasi ordering on Df
X , <f

X is a well founded
relation with <f

X⊆⩽f
X , and ζ f

X is a mapping from Xqf to Df
X such that

if f ≃F g holds, then (Df
X ,⩽

f
X , <

f
X) = (Dg

X ,⩽
g
X , <

g
X) holds for each X ∈ {A, h},

if a⃗ <g,f
A b⃗ holds, then a⃗µ <g,f

h b⃗µ for any valuation µ : V→ h,
<g,f

h ◦ ≤prod⊆<g,f
h ,

where ◦ denotes the composition of two relations, and for each X ∈ {A, h},
(x1, . . . , xqg) <g,f

X (y1, . . . , yqf) holds iff g ≃F f and ζg
X(x1, . . . , xqg) <f

X ζ f
X(y1, . . . , yqf)

hold.

As an example from [9, Example 3], we consider the subtraction sub ∈ F on natural
numbers: we have Θ(sub) = N⇒ N⇒ N, and the rewrite rules are

sub x 0→ x sub 0 y → 0 sub (s x)(s y)→ sub x y

where 0 : N (zero) and s : N⇒ N (the successor function) are the constructors for N. Using
the successor size algebra, we annotate 0, s and sub as follows:

Θ(0) = Nα, Θ(s) = Nβ ⇒ Nsβ , Θ(sub) = Nγ ⇒ N⇒ Nγ with qsub = 1 and αsub = σsub = γ.

The annotation Θ(sub) indicates that the size of sub x y does not increase from the size of
x. For each X ∈ {A, h}, we take Dsub

X as X, and ζsub
X : X → Dsub

X as the identity function.
In addition, ⩽sub

h and <sub
h are defined as ≤ and < on ordinals, respectively, while we put

⩽sub
A :=⩽A and <sub

A :=<A. The annotation with the identity function is often useful, as we
will see below.

Notice that when both an annotation for constructors and an annotation of function
symbols are given, we have a mapping Θ : C ∪ F→ TA. We adopt similar notations for Θ to
the ones for Θ : C ∪ F→ T.

Below we define two orderings <A and <h on function calls, where a function call is
expressed as a pair (f, ξ) of a function symbol f and a substitution ξ with the domain
{αf

1, . . . , α
f
qf}. Here the substitution ξ provides an instance of function calls by instantiating

the variables αf
1, . . . , α

f
qf .

▶ Definition 21 (The Orderings on Function Calls). Let g, f ∈ F be the case. Assume that
an annotation for function symbols is given and that for each X ∈ {A, h}, two mappings
ξ : {αg

1, . . . , α
g
qg} → X and η : {αf

1, . . . , α
f
qf} → X are given. Then, (g, ξ) <X (f, η) holds iff

either g <F f or (αg
1ξ, . . . , α

g
qgξ) <g,f

X (αf
1η, . . . , α

f
qfη) holds.

The following type system gives a condition of the termination criterion below (see
the condition Subject Reduction and Decreasingness). Roughly speaking, the rule
(app-decr) guarantees that the size of any function call in ht⃗ is strictly less than (f, φ), and
the rule (sub) with the subtyping rules enables us to reason about the subtype relation
between annotated types.

▶ Definition 22 (Typing Rules for the Computability Closure). Assume that annotations for C
and F are given, and let f be a function symbol with a symbolic valuation φ : {α⃗f} → A. The
typing rules for the computability closure of (f, φ) are as follows:
Rule (app-decr). If the following conditions

Y. Takahashi 12:15

1. (h, V⃗ ⇒ V) ∈ Γ ∪Θ,
2. either h ≃F f holds or h <F f holds,
3. either h ∈ F holds and ψ is a symbolic valuation from {α⃗h} → A with (h, ψ) <A (f, φ),

or h ∈ V ∪ C holds and ψ is the empty function,
are satisfied, then the rule

Γ ⊢f
φ t1 : V1ψ · · · Γ ⊢f

φ t|V⃗ | : V|V⃗ |ψ

Γ ⊢f
φ ht⃗ : V ψ

(app-decr)

is a typing rule for the computability closure of (f, φ).
Rules (lam) and (sub). We have the following rules:

Γ, x : U ⊢f
φ t : V

Γ ⊢f
φ λx

U t : U ⇒ V
(lam)

Γ ⊢f
φ t : U U ≤ V
Γ ⊢f

φ t : V
(sub)

where the subtyping rules are as follows:

a ≤∞
A b

Ba ≤ Bb
(size) U ′ ≤ U V ≤ V ′

U ⇒ V ≤ U ′ ⇒ V ′ (prod)
U ≤ U (refl) U ≤ V V ≤ T

U ≤ T (tran)

▶ Remark 23. In [9], the rule (app-decr) has one more condition which states that h is
applied to at least qh arguments whenever h ∈ F and h ≃F f holds. That is, the rule in [9] is
obtained from the rule (app-decr) above by replacing the clause 2. with the clause
2’. either h ≃F f and |V⃗ | ≥ qh holds or h <F f holds.
In fact, this condition is not needed to prove the correctness of the termination criterion
in [9]. If this condition is dropped, then the criterion in [9] guarantees the termination of
Hofmann’s extract function for the breadth-first traversal of trees (see, e.g., [19]) as our
termination criterion does. We will show in Example 27 below that our criterion guarantees
the termination of Hofmann’s extract function. If one keeps the condition 2’, then it is, to
the best of our knowledge, an open question whether the termination of Hofmann’s extract
function can be shown by the criterion in [9].

As an illustration of typing rules for the computability closure, we consider the annotated
rewrite system of sub which we have seen above (see also [9, Example 3]). When the symbolic
valuations ψ and φ are defined as ψ := {(γ, β)} and φ := {(γ, s β)}, respectively, then
(sub, ψ) <A (sub, φ) holds. Thus we have, e.g.,

x : Nβ , y : N ⊢sub
φ x : Nβ(= Nγψ) x : Nβ , y : N ⊢sub

φ y : N(= Nψ)
x : Nβ , y : N ⊢sub

φ sub x y : Nβ

(app-decr) β ≤∞
A s β

Nβ ≤ Nsβ
(size)

x : Nβ , y : N ⊢sub
φ sub x y : Nsβ

(sub)

When an annotation C for constructors and an annotation F for function symbols are
given, we denote the set of all size variables used in C by V(C), and the set of all size
variables used in F by V(F).

In sum, if one provides an annotation for constructors then this annotation determines
a family of size functions, and this family determines a stratification as we have seen in
Section 3. If one also gives an annotation for function symbols, one obtains the typing rules
above for each function symbol f and symbolic valuation φ. Then, in order to prove the
termination of a given rewrite relation →, it suffices to show that our termination criterion
below is satisfied.

TYPES 2021

12:16 Size-Based Termination for Non-Positive Types in Simply Typed Lambda-Calculus

The difference between our termination criterion below and the criterion of [9] consists in
the condition (3) of Accessibility and the condition (2b) of Minimality. Both of these
conditions are added in order to deal with constructors of non-positive types. In particular,
the condition (3) of Accessibility includes the quasi-accessibility, which was defined above
(Definition 14).

▶ Theorem 24 (Termination Criterion). Let C be an annotation for constructors and (Σc)c∈C
be the family of size functions induced by C such that for any c and any a⃗, Σc(⃗a) is not a
limit ordinal. Moreover, let an annotation F for function symbols be given. Then, the rewrite
relation → terminates on the set of all well-typed terms if for each rule f l1 · · · l|⃗l| → r ∈ R
with Θ(f) = T1 ⇒ · · · ⇒ Trf ⇒ Bσf ,
|⃗l| ≥ qf holds,
there is a typing environment Γ : FV(r)→ TA satisfying the following: for any (x, U) ∈ Γ,
there are a term lk (1 ≤ k ≤ |⃗l|), a sort Bx and a size variable αx ∈ V(C) ∪ V(F) with
Pos(x, lk) ̸= ∅ and U = Annot(|U |,Bx, αx),
there is a substitution φ : {α1, . . . , αqf} → A

such that the following conditions are satisfied:
Monotony. For any i ∈ {1, . . . , qf}, Pos(αf

i, σ
f) ⊆ Pos+(αf

i, σ
f) holds.

Accessibility. For any (x, U) ∈ Γ,
1. x = lk and U = Tkφ holds, or
2. Pos(Bx, |U |) ⊆ Pos+(Bx, |U |) holds, Tk is a sort and (x, |U |,Bx) ⊴a (lk, Tk, Tk), or
3. Pos(Bx, |U |) ⊈ Pos+(Bx, |U |) holds, Tk is a sort and (x, |U |,Bx) ⊴qa (lk, Tk, Tk).

Minimality. For any substitution θ such that ljθ ∈ Tj holds for any j ∈ {1, . . . , |⃗l|}, there is
an ordinal valuation ν satisfying
1. for any i ∈ {1, . . . , qf}, αf

iφν = oSBi (liθ) holds, and
2. for any (x, U) ∈ Γ,

a. if Pos(Bx, |U |) ⊆ Pos+(Bx, |U |) holds, then o[Bx:SBx]|U |(xθ) ≤ αxν holds,
b. otherwise o(

⋃
c≤a

[Bx:SBx
c]|U |)a<h

(xθ) = αxν holds.

Subject Reduction and Decreasingness. Γ ⊢f
φ r : T|⃗l|+1 ⇒ · · · ⇒ Trf ⇒ Bσfφ holds.

Proof. Below we show the computability of constructors, the computability of function sym-
bols and the computability of well-typed terms one by one. We first prove the computability
of constructors: for any c ∈ C with Θ(c) = T1 ⇒ · · · ⇒ Trc ⇒ Bσc , any µ : V→ h and any t⃗
with |⃗t| = rc, if ti ∈ Tiµ holds for any i with 1 ≤ i ≤ rc, then c t⃗ ∈ Bσcµ holds. Here we need
to consider constructors of non-positive types, which were not handled by [9]. Let c ∈ C
be the case with Θ(c) = T1 ⇒ · · · ⇒ Trc ⇒ Bσc . In addition, let µ : V→ h be an arbitrary
valuation, and assume that ti ∈ Tiµ holds for any i with 1 ≤ i ≤ rc. Putting t⃗ := t1, . . . , trc ,
we verify c t⃗ ∈ Bσcµ. It is obvious that c t⃗ ∈ SN holds. If pc = 0 holds then we have c t⃗ ∈ SB

0
by Definition 10, hence c t⃗ ∈ Bσcµ follows. Below we assume that pc ̸= 0 holds.

Consider an arbitrary (c, u⃗, T⃗) ∈ CB
→∗(c t⃗). If i ∈ {1, . . . , nc} holds, then we have ui ∈

Tiµ = [Bαi
: SB

αiµ]Tiµ ⊆
⋃

c≤αiµ[B : SB
c]Ti, because ti →∗ ui holds and Tiµ is a computability

predicate. Similarly, for each i ∈ {nc + 1, . . . , qc}, we have ui ∈ Tiµ = [Bi : SBi
αiµ]Ti.

Put a as a := max({Σc(oSc,1(u1), . . . , oSc,qc (uqc))} ∪ {αiµ | 1 ≤ i ≤ qc, αi ∈ V}). Then,
ui ∈

⋃
c≤a[B : SB

c]Ti holds for any i ∈ {1, . . . , nc}, and ui ∈ [Bi : SBi
a]Ti holds for any

i ∈ {nc + 1, . . . , qc} by Proposition 3. Therefore, c t⃗ ∈ SB
a+1 holds and oSB(c t⃗) exists.

If σc =∞ holds then we immediately have c t⃗ ∈ BoSB (c t⃗) ⊆ Bσcµ, so let σc ̸=∞ be the
case. By Lemma 13.(2), we have oSB(c t⃗) = Σ(oS (⃗t)) = σcν, where ν is the valuation defined
in Definition 18. If αiν ≤ αiµ holds for any αi ∈ V∩{α⃗}, then it follows from Var(σc) ⊆ {α⃗}
and Lemma 19.(1) that σcν ≤ σcµ holds. We show that αiν ≤ αiµ holds for any αi ∈ V∩{α⃗}.

Y. Takahashi 12:17

Since we consider the case of σc ̸= ∞, {α⃗} ∩ V must be non-empty. If the members of
{α⃗} ∩ V are pairwise distinct, we have αiν = oSi(ti) ≤ αiµ because ti ∈ Tiµ holds. Assume
that all members of {α⃗} ∩ V are equal. We have

αiν = sup{oSj (tj) | 1 ≤ j ≤ qc, αj ∈ V} = oSk (tk)

for some k with 1 ≤ k ≤ qc by definition. Therefore, αiν = αkν ≤ αkµ = αiµ holds because
we have tk ∈ Tkµ.

Next, we show the computability of function symbols: we verify that for any f ∈ F with
Θ(f) = T1 ⇒ · · ·Trf ⇒ Bσf , any µ : {αf

1, . . . , α
f
qf} → h and any t⃗ with |⃗t| = rf , if ti ∈ Tiµ

holds for any i, then f t⃗ ∈ Bσfµ holds. We show this claim by induction on ((f, µ), t⃗) with
(<h,←prod)lex. Let ti ∈ Tiµ be the case for any i with 1 ≤ i ≤ rf . Since f t⃗ is neutral, it
suffices to show that u ∈ Bσfµ holds for any u with f t⃗→ u. The case of u = f u⃗ and t⃗→prod u⃗

is straightforward. Otherwise, we have
(∗) f l⃗→ r ∈ R, t⃗ = l⃗θu⃗ and u = rθu⃗,
where u⃗ = t|⃗l|+1, . . . , trf holds. Recall that if i ≤ qf holds then Ti is a sort and that if i > qf

holds then Ti = Ti holds. Therefore, for any i ∈ {1, . . . , |⃗l|}, we have liθ ∈ Ti by liθ ∈ Tiµ.
We obtain the following valuation ν by Minimality: for any i ∈ {1, . . . , qf}, αf

iφν = oSBi (liθ)
holds, and for any (x, U) ∈ Γ,
1. if Pos(Bx, |U |) ⊆ Pos+(Bx, |U |) holds, then o[Bx:SBx]|U |(xθ) ≤ αxν holds,
2. otherwise o(

⋃
c≤a

[Bx:SBx
c]|U |)a<h

(xθ) = αxν holds.
We prove the following claims 1–3. The claim 3 will be proved in the same way as [9,
Theorem 1]. On the other hand, the claim 1 is proved without a condition on (app-decr)
which was imposed in [9] (see Remark 23 above), and the claim 2 forces us to consider the
new case where Bx occurs in |U | negatively for some (x, U) ∈ Γ.
1. Correctness of the computability closure: let ν be the valuation given above by

Minimality, and φ be the substitution given by the assumptions of this theorem. Using
subinduction on ⊢f

φ, we show that for any typing environment ∆, any term t, any type T
and any substitution θ′, if (i) ∆ ⊢f

φ t : T holds and (ii) xθ′ ∈ Uν holds for any (x, U) ∈ ∆,
then tθ′ ∈ Tν holds.
We consider the principal case (app-decr) only: let ∆ ⊢f

φ hw⃗ : V ψ be the case, then we have
wiθ

′ ∈ Viψν for any i with 1 ≤ i ≤ |V⃗ | by the hypothesis of subinduction. We put k := |V⃗ |.
If h ∈ V holds, then ψ = ∅ holds and we have hθ′ ∈ (V⃗ ⇒ V)ν by assumption, hence we
have hθ′w⃗θ′ ∈ V ψν. Let h ∈ C be the case, and put V = (U1 ⇒ · · · ⇒ Um ⇒ Cσc). To
show hw⃗θ′ ∈ V ψν, consider arbitrary u1 ∈ U1ψν, . . . , um ∈ Umψν. By the computability
of constructors, we have hw⃗θ′u⃗ ∈ Cσcψν, hence hw⃗θ′ ∈ V ψν holds by definition. Let
h ∈ F be the case, and assume that

V = (U1 ⇒ · · · ⇒ Um ⇒ Cσh), α⃗h = αh
1 , . . . , α

h
qh , α⃗f = αf

1, . . . , α
f
qf

holds. If h <F f holds, then (h, ψν) <h (f, µ) immediately follows from Definition 21.
Otherwise, we have α⃗hψ <h,f

A α⃗fφ by (h, ψ) <A (f, φ). Then, by Definition 20, we
have α⃗hψν <h,f

h α⃗fφν. By the minimality of ν, we have α⃗fφν ≤prod α⃗fµ, so we have
α⃗hψν <h,f

h α⃗fµ by Definition 20 again. Therefore, (h, ψν) <h (f, µ) holds also in this case.
By the hypothesis of the main induction, for any t⃗ with t⃗ = t1, . . . , tk, tk+1, . . . , tk+m,
if ti ∈ Viψν holds for any i with 1 ≤ i ≤ k and tk+j ∈ Ujψν holds for any j with
1 ≤ j ≤ m, then ht⃗ ∈ Cσhψν holds. Therefore, we have hw⃗θ′u⃗ ∈ Cσhψν for any
u1 ∈ U1ψν, . . . , um ∈ Umψν, hence hw⃗θ′ ∈ V ψν holds by definition.

TYPES 2021

12:18 Size-Based Termination for Non-Positive Types in Simply Typed Lambda-Calculus

2. Computability of the matching substitution: we show that xθ ∈ Uν holds for any
(x, U) ∈ Γ, where θ is the substitution given in (∗) and Γ : FV(r) → TA is the typing
environment given by the assumptions of the theorem. Consider an arbitrary (x, U) ∈ Γ,
then there is an integer k, a term lk, a sort Bx and a size variable αx such that all of
them satisfy the assumptions of the theorem. If Pos(Bx, |U |) ⊆ Pos+(Bx, |U |) holds then
we can prove the assertion as in [9, Theorem 1] by using Lemma 15 and Accessibility, so
assume that Bx occurs in |U | negatively. If x = lk holds, then k must be greater than qf

because |U | is not a sort, hence we have

|U | = U = Tk = Tk

and so xθ = lkθ ∈ Tkµ = Uν holds. Let x ̸= lk be the case, and suppose that the position
of xθ in lkθ is p1 · · · pi (i ≥ 1). By Accessibility, we have (x, |U |,Bx) ⊴qa (lk, Tk, Tk).
Therefore, for any subterm t of lkθ whose position in lkθ is ϵ or p1 · · · pj for some j with
0 ≤ j < i, t has the form c w⃗ for some c ∈ C and some w⃗. Let c0 w⃗0, c1 w⃗1, . . . , ci−1 w⃗i−1
be the subterms of positions ϵ, p1, . . . , p1 · · · pi−1 in lkθ, respectively (hence c0 w⃗0 = lkθ).
We put c := ci−1 if i − 1 ̸= 0, otherwise we put c := c0. Then, since lkθ ∈ Tkµ holds,
we have xθ ∈

⋃
c≤a[Bc : SBc

c]|U | for some a by applying Definition 10 repeatedly. By the
minimality of ν, we have xθ ∈ Uν.

3. We show that u ∈ Bσfµ holds. The claims 1. and 2. above show rθ ∈ T|l|+1φν ⇒ · · · ⇒
Trfφν ⇒ Bσfφν. By definition, we have Ti = Ti for any i with |l|+ 1 ≤ i ≤ rf , so we have
rθu⃗ ∈ Bσfφν. If σf =∞ holds then we immediately have Bσfφν = Bσfµ, so let σf ̸=∞ be
the case. Since φ does not assign ∞ to any of α1, . . . , αqf , we have σfφ ̸=∞, so ν(σfφ)
is defined. By Monotony, it suffices to verify αiφν ≤ αiµ for any i with 1 ≤ i ≤ qf , but
this follows from Minimality.

Finally, following [9, Theorem 1], we show the computability of well-typed terms by
induction on ⊢: we show that for any Γ, t, T with Γ ⊢ t : T and any substitution θ, if
xθ ∈ U holds for any (x, U) ∈ Γ, then tθ ∈ T holds. The termination of → follows from the
computability of well-typed terms: if Γ ⊢ t : T holds, then we consider the empty substitution
θ. Since any computability predicate subsumes the set V of variables, we have xθ = x ∈ U
for any (x, U) ∈ Γ, hence t ∈ T ⊆ SN holds.

The case of function symbols: by assumption, we have ⊢ f : Θ(f) with Θ(f) = T1 ⇒ · · · ⇒
Trf ⇒ B and Θ(f) = T1 ⇒ · · · ⇒ Trf ⇒ Bσf . It suffices to verify that f t⃗ ∈ B for any t⃗ ∈ T⃗
with |⃗t| = rf . Define the valuation µ : {α1, . . . , αqf} → h as µ(αi) := m(SBi). Since Ti = Bi

holds for any i ∈ {1, . . . , qf} and Tj = Tj holds for any j ∈ {qf + 1, . . . , rf}, we have tk ∈ Tkµ

for any k ∈ {1, . . . , rf}. By the computability of function symbols, we have f t⃗ ∈ Bσfµ ⊆ B.
The case of constructors: by assumption, we have ⊢ c : Θ(c) with Θ(c) = T1 ⇒ · · · ⇒

Trc ⇒ B and Θ(c) = T1 ⇒ · · · ⇒ Trc ⇒ Bσc . It suffices to verify that c t⃗ ∈ B for any t⃗ ∈ T⃗
with |⃗t| = rc. Define the valuation µ : {α1, . . . , αqc} → h as in the previous paragraph. Let
i ∈ {1, . . . , qc} be the case. We have

ti ∈ Ti = [Bi : Bi]Ti = [Bi : SBi

µ(αi)]Ti,

hence ti ∈ Tiµ holds. Therefore, we have tk ∈ Tkµ for any k ∈ {1, . . . , rc}. By the
computability of constructors, we have c t⃗ ∈ Bσµ ⊆ B. The proofs of the other cases are
standard. ◀

Y. Takahashi 12:19

Below we discuss several examples of rewrite systems. The first and the second (Ex-
amples 25 and 26) are examples of non-terminating rewrite systems with a rule for non-positive
types. The third and the fourth (Examples 27 and 28) contain a non-strictly positive inductive
type and a non-positive type, respectively. We show that the first two examples cannot
satisfy our termination criterion, and that the last two examples satisfy the criterion.

▶ Example 25. We consider the following non-terminating rewrite system with a non-
positive type B, which was discussed in [7]: put S := {B,A}, C := {c} and F := {p}
with Θ(c) = (B ⇒ A) ⇒ B and Θ(p) = B ⇒ B ⇒ A. Define the rewrite system R as
R := {p (c x)→ x} with x ∈ V. If we put ω := λyBp y y, then we have

ω(c ω)→β p (c ω)(c ω)→R ω(c ω)→β · · ·

so this rewrite system R is non-terminating. The system R cannot satisfy our termination
criterion: suppose that R satisfies it. Then, qp ≤ 1 holds and so we have Γ ⊢p

φ x : B⇒ Aσφ

by Subject Reduction and Decreasingness. That is, Bx ̸= B holds and B is not annotated in
U with (x, U) ∈ Γ and U = B⇒ Aσφ. Since x ̸= l1 holds, either (x, |U |,Bx) ⊴a (l1, T1, T1) or
(x, |U |,Bx) ⊴qa (l1, T1, T1) must hold by Accessibility. Note that T1 = B and l1 = c x holds.
If (x, |U |,Bx) ⊴a (l1, T1, T1) holds, this contradicts the fact that x is the first argument of c
and nc = 1 holds. If (x, |U |,Bx) ⊴qa (l1, T1, T1) holds, then we must choose B in U as Bx,
but this contradicts the fact that B in U = B⇒ Aσφ is not annotated.

▶ Example 26 (Higher-Order Abstract Syntax for Untyped λ-Calculus). The following is a
non-terminating rewrite system which is obtained from Example 25 above with a minor
change: put S := {B}, C := {abs} and F := {app} with Θ(abs) = (B ⇒ B) ⇒ B and
Θ(app) = B ⇒ B ⇒ B. Then, define the rewrite system R as R := {app (abs g) x → g x}
with {g, x} ⊆ V. If we put ω′ := abs (λyBapp y y), then

app ω′ ω′ = app (abs (λyBapp y y)) ω′ →R (λyBapp y y) ω′ →β app ω′ ω′ →R · · ·

holds, hence this rewrite system R is non-terminating.
We show that the system R cannot satisfy our termination criterion. Assume that R

satisfies the criterion. By Accessibility, we have Bg = B as in Example 25 above, so B must be
annotated in U with (g, U) ∈ Γ, that is, (g,Bαg ⇒ Bαg) ∈ Γ holds. Then, (x,Bαx) ∈ Γ and
αx = αg must hold, because we have ⊢app

φ gx : Bσφ by Subject Reduction and Decreasingness.
By Lemma 11.(3), B0 ⇒ B0 is a computability predicate, hence there exists a variable

z ∈ B0 ⇒ B0 because any variable belongs to B0 ⇒ B0. This implies that abs z ∈ B holds.
We define a substitution θ as θ := {(g, z), (x, abs z)}, then l1θ = abs gθ ∈ B and l2θ = xθ ∈ B
holds. By Minimality, we have a valuation ν such that

o(
⋃

c≤a
Bc⇒Bc)a<h

(z) = o(
⋃

c≤a
Bc⇒Bc)a<h

(gθ) = αgν = αxν ≥ oB(xθ) = oB(abs z)

holds with o(
⋃

c≤a
Bc⇒Bc)a<h

(z) = 0, but this contradicts the definition of the stratification

SB.

In the two examples below, we use the successor size algebra, which was defined above.

▶ Example 27 (Hofmann’s Extract Function for the Breadth-First Traversal of Trees (see, e.g.,
[19])). Let S := {C, L} be the set of sorts, F := {e} be the set of function symbols with
Θ(e) = C ⇒ L, and C := {c} be the set of constructors with Θ(c) = ((C ⇒ L) ⇒ L) ⇒ C.
The following rewrite rule satisfies our termination criterion: e (c x)→ x e with x ∈ V.

TYPES 2021

12:20 Size-Based Termination for Non-Positive Types in Simply Typed Lambda-Calculus

We annotate c as Θ(c) = ((Cα ⇒ L) ⇒ L) ⇒ Csα, and e as Θ(e) = Cβ ⇒ L∞. By
Definition 18, we have the size function Σc induced by this annotation of c. We define
Γ := {x : (Cα ⇒ L) ⇒ L}, Bx := C, αx := α and φ := {(β, s α)}. Then, take ζe

X as the
identity function for each X ∈ {A, h}.
Monotony. Obvious.
Accessibility. We have (x, (C⇒ L)⇒ L,C) ⊴a (c x,C,C).
Minimality. Let θ be a substitution with c xθ ∈ C. We define ν as ν := {(α, a)} with

a := o[C:SC](C⇒L)⇒L(xθ). Then, by Lemma 13, we have βφν = (s α)ν = a + 1 = Σc(a) =
oSC(c xθ).

Subject Reduction and Decreasingness. Put ψ := {(β, α)}, then we have the following
derivation:

x : (Cα ⇒ L)⇒ L ⊢e
φ x : (Cα ⇒ L)⇒ L ⊢e

φ e : Cα ⇒ L (app-decr)

x : (Cα ⇒ L)⇒ L ⊢e
φ x e : L

(app-decr)

where Cα = Cβψ and (e, ψ) <A (e, φ) hold. Note that we have ⊢e
φ e : Cα ⇒ L because we

dropped the condition |V⃗ | ≥ qh in the rule (app-decr) of [9] (see Remark 23 above).

▶ Example 28 (β-Reduction and βη-Reduction of Untyped λ-Calculus). Let S := {B} be
the set of sorts, where B denotes the type of untyped λ-terms. The following rewrite rules
say that absβ is the λ-abstraction for β-reduction and that absβη is the λ-abstraction for
βη-reduction:

app (absβ g) x→ g x app (absβη g) x→ g x absβη (λyBapp x y)→ x

where absβ is a constructor of B, while absβη and app are function symbols. In this way, one
can deal with both of β-reduction and βη-reduction in one rewrite system. Of course, this
rewrite system is not terminating as seen above. On the other hand, consider the set R of
the following rewrite rules:

f (absβ g)→ absβη g f (absβη g)→ absβ g f (app x y)→ app (f x) (f y)

with {g, x, y} ⊆ V. These rules enable us to replace the outermost λ-abstraction for β-
reduction with the one for βη-reduction, and vice versa. We show that the system R satisfies
the termination criterion. Note that absβ , absβη and app are all constructors of B when we
consider the system R. We thus assume that C is given as {absβ , absβη, app} with Θ(absβ) =
(Bγ ⇒ Bγ)⇒ Bsγ , Θ(absβη) = (Bγ′ ⇒ Bγ′)⇒ Bsγ′ and Θ(app) = Bγ′′ ⇒ Bγ′′ ⇒ Bsγ′′ . By
Definition 18, we have the size functions Σabsβ ,Σabsβη and Σapp. Moreover, put F := {f} with
Θ(f) = Bαf ⇒ Bαf , and take ζ f

X as the identity function for each X ∈ {A, h}.
Consider the first rule (the second rule can be handled in the same way). We define

Γ := {g : Bγ′ ⇒ Bγ′}, Bg := B, αg := γ′ and φ := {(αf , s γ′)}.
Monotony. Obvious.
Accessibility. We have (g,B⇒ B,B) ⊴qa (absβ g,B,B).
Minimality. Let θ be a substitution with absβ gθ ∈ B. We define ν as ν := {(γ′, a)} with

a := o(
⋃

c≤b
[B:SB

c]B⇒B)b<h
(gθ). Then, by Lemma 13, we have αfφν = (s γ′)ν = a + 1 =

Σabsβ (a) = oSB(absβ gθ).
Subject Reduction and Decreasingness. We have

g : Bγ′ ⇒ Bγ′ ⊢f
φ g : Bγ′ ⇒ Bγ′

g : Bγ′ ⇒ Bγ′ ⊢f
φ absβη g : Bsγ′

(app-decr)
....

Bsγ′ ≤ B
g : Bγ′ ⇒ Bγ′ ⊢f

φ absβη g : B
(sub)

Y. Takahashi 12:21

Since Bφ = B holds, we are done.

Next, consider the third rule f (appxy)→ app (f x) (f y). We define Γ := {x : Bγ′′ , y : Bγ′′},
Bx := By := B, αx := αy := γ′′ and φ := {(αf , s γ′′)}.
Monotony. Obvious.
Accessibility. We have (x,B,B) ⊴a (app x y,B,B) and (y,B,B) ⊴a (app x y,B,B).
Minimality. Let θ be a substitution with app (xθ) (yθ) ∈ B. We define ν as ν := {(γ′′, b)}

with b := max{oSB(xθ), oSB(yθ)}. Then, we have oSB(xθ) ≤ αxν and oSB(yθ) ≤ αyν.
Moreover, by Lemma 13, we have αfφν = (s γ′′)ν = b + 1 = Σapp(oSB(xθ), oSB(yθ)) =
oSB(app (xθ) (yθ)).

Subject Reduction and Decreasingness. Define ψ := {(αf , γ′′)}. We have the following:

Γ ⊢f
φ x : Bγ′′

Γ ⊢f
φ f x : Bγ′′

(app-decr)
Γ ⊢f

φ y : Bγ′′

Γ ⊢f
φ f y : Bγ′′

(app-decr)

Γ ⊢f
φ app (f x) (f y) : Bsγ′′

(app-decr)

where Bγ′′ = Bαfψ and (f, ψ) <A (f, φ) holds.

5 Concluding Remarks and Future Work

We, in this paper, have extended the termination criterion in [9] so that in some case
the termination of the rewrite relation induced by rewrite rules on non-positive types can
be shown. For this purpose, the inflationary fixed-point construction has been used: the
inflationary fixed-point construction is crucial to the definition of stratifications by size
functions for non-positive types. In addition, we have also improved the criterion in [9] with
regard to non-strictly positive inductive types. We have noted that a condition on a typing
rule for the computability closure can be dropped, and then we have shown the termination
of Hofmann’s extract function for the breadth-first traversal of trees. This example is a
typical case of rewrite systems on non-strictly positive inductive types.

However, a thorough study of rewrite rules on non-positive types is far from being achieved,
since it is dependent type systems that are able to include more impressive examples of
non-positive types. A larger goal is thus to extend our termination criterion to dependent
type systems. Setzer’s Mahlo universe ([23]), which is a universe type with a strong reflection
property in Martin-Löf type theory, is an example of non-positive types in dependent type
systems. Exploring rewrite rules for Setzer’s Mahlo universe would be a crucial step for
further research on combined systems of typed λ-calculus and rewrite rules. For this purpose,
we will examine whether our criterion can be extended to λΠ/R-calculus, and whether
Mahlo universe can be formulated in λΠ/R-calculus. This calculus is a combined system
of the dependent type system λΠ-calculus and rewrite rules. Some termination criteria for
λΠ/R-calculus were already formulated by [10, 16], but, to the best of our knowledge, rewrite
rules on non-positive types in this calculus remain unexplored.

Recently, dependently typed programming languages such as Coq and Agda were combined
with rewrite rules ([13, 14]). Providing these combined languages with termination criteria
would be another crucial step for further research on rewrite rules in dependent type systems,
since rewrite rules and several features from Coq or Agda coexist there. Termination criteria
on strictly or non-strictly positive inductive types in these languages are not sufficiently
examined yet, so we are planning to begin by exploring positive inductive types. In particular,
it should be investigated whether the size-based termination method is applicable to formulate
termination criteria on positive inductive types in these combined programming languages.

TYPES 2021

12:22 Size-Based Termination for Non-Positive Types in Simply Typed Lambda-Calculus

Yet another larger goal is to integrate our work into an automated termination prover
for higher-order rewriting such as Blanqui’s HOT. Since HOT is based on sized types and
computability closure, HOT is most relevant to our work among automated termination
provers.

References

1 Andreas Abel. Type-based termination, inflationary fixed-points, and mixed inductive-
coinductive types. In Proceedings 8th Workshop on Fixed Points in Computer Science, FICS
2012, Tallinn, Estonia, 24th March 2012, pages 1–11, 2012. doi:10.4204/EPTCS.77.1.

2 Andreas Abel and Brigitte Pientka. Well-founded recursion with copatterns and sized types.
J. Funct. Program., 26:e2, 2016. doi:10.1017/S0956796816000022.

3 Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University Press,
1998. doi:10.1017/CBO9781139172752.

4 Franco Barbanera, Maribel Fernández, and Herman Geuvers. Modularity of strong nor-
malization in the algebraic-lambda-cube. J. Funct. Program., 7(6):613–660, 1997. doi:
10.1017/s095679689700289x.

5 Gilles Barthe and Herman Geuvers. Modular properties of algebraic type systems. In
Higher-Order Algebra, Logic, and Term Rewriting, Second International Workshop, HOA
’95, Paderborn, Germany, September 21-22, 1995, Selected Papers, pages 37–56, 1995. doi:
10.1007/3-540-61254-8_18.

6 Gilles Barthe and Femke van Raamsdonk. Termination of algebraic type systems: The
syntactic approach. In Algebraic and Logic Programming, 6th International Joint Conference,
ALP ’97 - HOA ’97, Southampton, UK, Spetember 3-5, 1997, Proceedings, pages 174–193,
1997. doi:10.1007/BFb0027010.

7 Frédéric Blanqui. Definitions by rewriting in the calculus of constructions. Mathematical
Structures in Computer Science, 15(1):37–92, 2005. doi:10.1017/S0960129504004426.

8 Frédéric Blanqui. Inductive types in the calculus of algebraic constructions. Fundamenta
Informaticae, 65(1-2):61–86, 2005.

9 Frédéric Blanqui. Size-based termination of higher-order rewriting. J. Funct. Program., 28:e11,
2018. doi:10.1017/S0956796818000072.

10 Frédéric Blanqui, Guillaume Genestier, and Olivier Hermant. Dependency pairs termination in
dependent type theory modulo rewriting. In 4th International Conference on Formal Structures
for Computation and Deduction, FSCD 2019, June 24-30, 2019, Dortmund, Germany, pages
9:1–9:21, 2019. doi:10.4230/LIPIcs.FSCD.2019.9.

11 Frédéric Blanqui, Jean-Pierre Jouannaud, and Mitsuhiro Okada. Inductive-data-type systems.
Theoretical Computer Science, 272(1):41–68, 2002. doi:10.1016/S0304-3975(00)00347-9.

12 Val Breazu-Tannen and Jean Gallier. Polymorphic rewriting conserves algebraic strong
normalization and confluence. In Giorgio Ausiello, Mariangiola Dezani-Ciancaglini, and
Simonetta Ronchi Della Rocca, editors, ICALP 1989: Automata, Languages and Programming,
pages 137–150, Berlin, Heidelberg, 1989. Springer Berlin Heidelberg. doi:10.1007/BFb0035757.

13 Jesper Cockx. Type theory unchained: Extending agda with user-defined rewrite rules. In
25th International Conference on Types for Proofs and Programs, TYPES 2019, June 11-14,
2019, Oslo, Norway, pages 2:1–2:27, 2019. doi:10.4230/LIPIcs.TYPES.2019.2.

14 Jesper Cockx, Nicolas Tabareau, and Théo Winterhalter. The taming of the rew: a type
theory with computational assumptions. Proc. ACM Program. Lang., 5(POPL):1–29, 2021.
doi:10.1145/3434341.

15 Carsten Fuhs and Cynthia Kop. Polynomial interpretations for higher-order rewriting. In 23rd
International Conference on Rewriting Techniques and Applications (RTA’12) , RTA 2012, May
28 - June 2, 2012, Nagoya, Japan, pages 176–192, 2012. doi:10.4230/LIPIcs.RTA.2012.176.

https://doi.org/10.4204/EPTCS.77.1
https://doi.org/10.1017/S0956796816000022
https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.1017/s095679689700289x
https://doi.org/10.1017/s095679689700289x
https://doi.org/10.1007/3-540-61254-8_18
https://doi.org/10.1007/3-540-61254-8_18
https://doi.org/10.1007/BFb0027010
https://doi.org/10.1017/S0960129504004426
https://doi.org/10.1017/S0956796818000072
https://doi.org/10.4230/LIPIcs.FSCD.2019.9
https://doi.org/10.1016/S0304-3975(00)00347-9
https://doi.org/10.1007/BFb0035757
https://doi.org/10.4230/LIPIcs.TYPES.2019.2
https://doi.org/10.1145/3434341
https://doi.org/10.4230/LIPIcs.RTA.2012.176

Y. Takahashi 12:23

16 Guillaume Genestier. Dependently-Typed Termination and Embedding of Extensional Universe-
Polymorphic Type Theory using Rewriting. PhD thesis, University of Paris-Saclay, France,
2020. URL: https://tel.archives-ouvertes.fr/tel-03167579.

17 Jean-Pierre Jouannaud and Mitsuhiro Okada. Abstract data type systems. Theoretical
Computer Science, 173(2):349–391, 1997. doi:10.1016/S0304-3975(96)00161-2.

18 Cynthia Kop and Femke van Raamsdonk. Dynamic dependency pairs for algebraic functional
systems. Log. Methods Comput. Sci., 8(2), 2012. doi:10.2168/LMCS-8(2:10)2012.

19 Ralph Matthes. Lambda Calculus: A Case for Inductive Definitions. Unpublished lecture
notes, 2000.

20 Nax Paul Mendler. Inductive types and type constraints in the second-order lambda calculus.
Annals of Pure and Applied Logic, 51(1):159–172, 1991. doi:10.1016/0168-0072(91)90069-X.

21 Mitsuhiro Okada. Strong normalizability for the combined system of the typed lambda calculus
and an arbitrary convergent term rewrite system. In Proceedings of the ACM-SIGSAM 1989
International Symposium on Symbolic and Algebraic Computation, ISSAC ’89, Portland,
Oregon, USA, July 17-19, 1989, pages 357–363, 1989. doi:10.1145/74540.74582.

22 Erik Palmgren. On universes in type theory. In Giovanni Sambin and Jan M. Smith, editors,
Twenty Five Years of Constructive Type Theory, Oxford Logic Guides, pages 191–204. Oxford
University Press, 1998.

23 Anton Setzer. Extending Martin-Löf type theory by one Mahlo-universe. Arch. Math. Log.,
39(3):155–181, 2000. doi:10.1007/s001530050140.

24 Christoph Sprenger and Mads Dam. On the structure of inductive reasoning: Circular and
tree-shaped proofs in the µ-calculus. In Foundations of Software Science and Computational
Structures, 6th International Conference, FOSSACS 2003 Held as Part of the Joint European
Conference on Theory and Practice of Software, ETAPS 2003, Warsaw, Poland, April 7-11,
2003, Proceedings, pages 425–440, 2003. doi:10.1007/3-540-36576-1_27.

25 Daria Walukiewicz-Chrząszcz. Termination of rewriting in the calculus of constructions. J.
Funct. Program., 13(2):339–414, 2003. doi:10.1017/S0956796802004641.

TYPES 2021

https://tel.archives-ouvertes.fr/tel-03167579
https://doi.org/10.1016/S0304-3975(96)00161-2
https://doi.org/10.2168/LMCS-8(2:10)2012
https://doi.org/10.1016/0168-0072(91)90069-X
https://doi.org/10.1145/74540.74582
https://doi.org/10.1007/s001530050140
https://doi.org/10.1007/3-540-36576-1_27
https://doi.org/10.1017/S0956796802004641

	p000-Frontmatter
	Preface

	p001-Alhabardi
	1 Introduction
	2 Related Work
	3 Operational Semantics for Bitcoin Script
	3.1 Introduction to Bitcoin Script
	3.2 Operational Semantics

	4 Specifying Security of Bitcoin Scripts
	4.1 Weakest Precondition for Security
	4.2 Formalising Weakest Preconditions in Agda
	4.3 Automatically Generated Weakest Preconditions
	4.4 Equational Reasoning with Hoare Triples

	5 Proof of Correctness of the P2PKH script using the Step-by-Step Approach
	6 Proof of Correctness using Symbolic Execution
	6.1 Example: P2PKH Script
	6.2 Example: MultiSig Script (P2MS)
	6.3 Example: Combining the two Methods

	7 Using Agda to Determine Readable Weakest Preconditions
	8 Conclusion

	p002-Benjamin
	1 Introduction
	2 Structural foundation of dependent type theory
	2.1 The typed syntax approach
	2.2 The raw syntax approach

	3 Introduction to the theory CaTT
	3.1 The theory GSeTT
	3.2 Ps-contexts
	3.3 The type theory CaTT

	4 Formalisation and properties of the theory GSeTT
	4.1 Formal presentation of the theory GSeTT
	4.2 Structure of the dependent type theory
	4.3 Proof-theoretic considerations
	4.4 Familial representability of types

	5 Formalisation and properties of the theory CaTT
	5.1 Globular type theories
	5.2 Ps-contexts and the theory CaTT
	5.3 The theory MCaTT

	6 Conclusion and further work

	p003-Bocquet
	1 Introduction
	2 Background
	2.1 Presheaf categories
	2.2 Categories with Families
	2.3 Strictly stable and weakly stable weak identity types
	2.4 Trivial fibrations and freely generated CwFs

	3 Generic contexts
	3.1 Familially representable presheaves
	3.2 Polynomial sorts
	3.3 Strictification
	3.4 The local universes method

	4 Most general generalizations in free CwFs
	4.1 First-order unification
	4.2 Most general generalizations
	4.3 Strictification

	5 Other type-theoretic structures
	6 Towards full coherence theorems
	A Constructions and proofs

	p004-DeMeo
	1 Introduction
	2 Preliminaries
	2.1 Logical foundations
	2.2 Setoids
	2.3 Setoid functions

	3 Basic Universal Algebra
	3.1 Signatures
	3.2 Algebras
	3.3 Structure preserving maps and isomorphism
	3.4 Lift-Alg is an algebraic invariant
	3.5 Subalgebras
	3.6 Terms

	4 Equational Logic
	4.1 Term identities, equational theories, and the ⊧ relation
	4.2 The Closure Operators H, S, P and V

	5 Free Algebras
	5.1 The absolutely free algebra
	5.2 The relatively free algebra

	6 Birkhoff's Variety Theorem
	6.1 Informal proof
	6.2 Formal proof

	7 Conclusion
	7.1 Discussion
	7.2 Related work

	A Imports from the Agda Standard Library

	p005-DiGianantonio
	1 Introduction
	2 The intersection types
	3 Principal type schemata
	3.1 Relating the typing systems

	4 Principal types and lambda nets
	4.1 Lambda nets
	4.2 From lambda-terms to lambda-nets
	4.3 From principal types to lambda-nets

	5 Applications
	5.1 Typability and strong normalisation
	5.2 Subject reduction
	5.3 Inhabitation
	5.4 Normalisation algorithm for lambda-terms

	6 Final Remarks

	p006-Donko
	1 Introduction
	1.1 Structure of the paper
	1.2 Related work

	2 Type theory
	3 Point-free propositions internally
	4 Point-free propositions externally
	5 Relationship of different notions of being a proposition
	6 The setoid model externally
	7 The setoid model internally
	8 Examples of strict algebraic structures
	9 Summary

	p007-Fellin
	1 Introduction
	2 Syntax and sequent calculi for infinitary logics
	3 From geometric implications to geometric rules
	3.1 Structural rules

	4 Constructive cut elimination
	5 A proof of the infinitary Barr theorem
	6 Conclusion

	p008-From
	1 Introduction
	2 Related Work
	3 Syntax
	4 Semantics
	4.1 Terms
	4.2 Formulas
	4.3 Shifting

	5 Proof System
	5.1 Parameters
	5.2 Instantiation
	5.3 Size
	5.4 Propositional Semantics
	5.5 The Inductively Defined Calculus
	5.5.1 Notation

	5.6 Derived Formulas
	5.6.1 Generalization Rule
	5.6.2 Working with Assumptions

	6 Completeness
	6.1 Consistent Sets
	6.2 Lindenbaum Extension
	6.2.1 Consistency

	6.3 Maximal Sets
	6.4 Saturation
	6.5 Hintikka Sets
	6.5.1 Model Existence
	6.5.2 Saturated MCSs are Hintikka Sets

	6.6 Completeness Theorem

	7 Discussion
	8 Conclusion and Future Work

	p009-Jenkins
	1 Introduction
	2 Background on CDLE
	2.1 Primitives
	2.2 Derived Constructs
	2.2.1 Substitution

	3 n-ary Functions
	3.1 Sketch of the Idea
	3.2 Proof that NaryR is a Functional Relation
	3.3 Computation Laws as Zero-cost Type Coercions

	4 Generic Programming Case Studies
	4.1 A Closed Universe of Strictly Positive Datatypes
	4.2 Arity-generic Map Operation
	4.2.1 Vectors of Types
	4.2.2 ArrTp and nvecMap

	5 Generic Simulation
	5.1 Mendler-style Recursion and Encodings
	5.2 Mendler-style Type Algebras
	5.3 Relational Folds of Type Algebras
	5.3.1 Characterization

	6 Related Work
	7 Conclusion and Future Work

	p010-Nakov
	1 Introduction
	2 Quantitative Type Theory
	2.1 Syntax of Quantitative Type Theory
	2.2 Semantics of Quantitative Type Theory

	3 Data Types in Ordinary Type Theory
	3.1 Initial Algebra Semantics
	3.2 Containers

	4 Quantitative Containers
	4.1 Quantitative Container Functors on the Category of Closed Types and Linear Functions
	4.2 Closure Under Type Formers
	4.3 Elimination Rules and Induction Principles

	5 Quantitative Polynomial Functors
	5.1 A Grammar for Quantitative Polynomial Functors
	5.2 Elimination Rules and Induction Principles
	5.3 Initial Algebras of Finitary Quantitative Polynomial Functors in the Realisability Model

	6 Conclusions and Future Work

	p011-Paulus
	1 Introduction
	2 Unrestricted Resources, Non-Determinism, and Failure
	3 Intersection Types
	4 A Translation into Processes
	4.1 spi: A Session-Typed pi-Calculus
	4.2 An Auxiliary Calculus With Sharing
	4.3 First Step
	4.4 Encoding u lambda^^{lightning}_{oplus} into spi

	5 Concluding Remarks

	p012-Takahashi
	1 Introduction
	1.1 Background
	1.2 Aim
	1.3 Approach
	1.4 Outline

	2 Preliminaries
	3 Construction of Computability Predicates with Size Annotations
	4 Computability of Well-Typed Terms
	5 Concluding Remarks and Future Work

