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Preface

This volume contains the papers presented at DNA 28: the 28th International Conference on
DNA Computing and Molecular Programming. The conference was held during August 8-12,
2022, at the University of New Mexico, Albuquerque, New Mexico, USA, and was organized
under the auspices of the International Society for Nanoscale Science, Computation, and
Engineering (ISNSCE). The DNA conference series aims to draw together researchers from
the fields of mathematics, computer science, physics, chemistry, biology, and nanotechnology
to address the analysis, design, and synthesis of information-based molecular systems.

Papers and presentations were sought in all areas that relate to biomolecular computing,
including, but not restricted to: algorithms and models for computation on biomolecular
systems; computational processes in vitro and in vivo; molecular switches, gates, devices, and
circuits; molecular folding and self-assembly of nanostructures; analysis and theoretical models
of laboratory techniques; molecular motors and molecular robotics; information storage;
studies of fault-tolerance and error correction; software tools for analysis, simulation,and
design; synthetic biology and in vitro evolution; and applications in engineering, physics,
chemistry, biology, and medicine.

Authors who wished to orally present their work were asked to select one of two submission
tracks: Track A (full paper) or Track B (one-page abstract with supplementary document).
Track B is primarily for authors submitting experimental or theoretical results who plan
to submit to a journal rather than publish in the conference proceedings. We received 38
submissions for oral presentations: 14 submissions to Track A and 24 submissions to Track B.
Each submission was reviewed by at least four reviewers. The Program Committee accepted 9
papers for Track A (64%) and 14 papers for Track B (58%). We also received 50 submissions
for Track C (poster), of which four were selected as additional oral presentations by the
Program Committee. This volume contains the papers accepted for Track A.

We express our sincere appreciation to our invited speakers: Andrew Ellington, Jessica
Flack, Elisa Franco and Matthew Patitz. We thank all of the authors who contributed papers
to these proceedings, and those who presented papers and posters during the conference.
Last, but by no means least, the editors are especially grateful to the members of the Program
Committee and the additional invited reviewers for their hard work in reviewing the papers
on a tight deadline and for providing insightful and constructive comments to the authors.

Thomas Ouldridge
Shelley Wickham

August 2022

28th International Conference on DNA Computing and Molecular Programming (DNA 28).
Editors: Thomas E. Ouldridge and Shelley F. J. Wickham

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de




Organization

Steering Committee

Anne Condon (Chair)
Masami Hagiya
Natasha Jonoska
Chengde Mao

Satoshi Murata

John H. Reif
Grzegorz Rozenberg
Rebecca Schulman
Friedrich Simmel
David Soloveichik
Andrew J. Turberfield
Erik Winfree

Damien Woods

Hao Yan

28th International Conference on DNA Computing and Molecular Programming (DNA 28).

University of British Columbia
University of Tokyo

University of Southern Florida
Purdue University

Tohoku University

Duke University

University of Leiden

Johns Hopkins University
Technical University Munich

The University of Texas at Austin
Physics, University of Oxford
California Institute of Technology
Maynooth University

Arizona State University

Editors: Thomas E. Ouldridge and Shelley F. J. Wickham

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xii Organization

Program Committee

Shelley Wickham (co-chair) University of Sydney
Thomas Ouldridge (co-chair) Imperial College London

Pekka Orponen
Shinnosuke Seki
Trent Rogers
Sung Ha Park
Shalin Shah
Dongsheng Liu
Abeer Eshra
Damien Woods
Rakesh Mukherjee
Ho-Lin Chen
David Doty
David Soloveichik
Wooli Bae

James Lathrop
Constantine Evans
Masami Hagiya
Robert Schweller
Satoshi Murata
Jaimie Stewart
Matthew Patitz
Chenxiang Lin
Lulu Qian

Manoj Gopalkrishnan

Joseph Schaeffer
Grigory Tikhomirov
Jonathan Bath
Petr Sule

Lorenzo Di Michele
Stefan Badelt

Luca Cardelli
Andrew Turberfield
Chris Thachuk

Fei Zhang

Lorenzo Rovigatti
William Shih
Dominic Scalise
Yuan-Jyue Chen
Cody Geary
Satoshi Kobayashi
Eyal Nir

Anne Condon

Aalto University

The University of Electro-Communications
Maynooth University
Sungkyunkwan University
Bloomberg

Tsinghua University

Maynooth University

Maynooth University

Imperial College London

National Taiwan University
University of California, Davis

The University of Texas at Austin
University of Surrey

Towa State University

Maynooth University

The University of Tokyo

University of Texas Rio Grande Valley
Tohoku University

California Institute of Technology
University of Arkansas

Yale University

California Institute of Technology
Indian Institute of Technology Bombay
Google Health

University of California, Berkeley
University of Oxford

Arizona State University

Imperial College London
University of Vienna

University of Oxford

University of Oxford

University of Washington

Rutgers University

Sapienza University of Rome
Harvard University

Johns Hopkins University
Microsoft

Aarhus University

The University of Electro-Communications
Beer Sheva University of the Negev
University of British Columbia



Organization O:xiii

Additional Reviewers for Tracks A and B

Siddharth Agarwal Univeristy of California, Los Angeles

Andrew Alseth
Olivier Bournez
Xiangxiang Guan
Daniel Hader
Shogo Hamada
Ibuki Kawamata
Huajie Liu

Dawn Nye

Yuki Suzuki
Yusuke Takezawa
Tao Zhang

Chao Zhou

University of Arkansas
Ecole Polytechnique
Chinese Academy of Science
University of Arkansas
Tohoku University

Tohoku University

Tongji University

Towa State University

Mie University

University of Tokyo

Yantai University

Chinese Academy of Sciences

DNA 28



0:xiv

Organization

Organizing Committee for DNA 28

Matthew Lakin (Co-Chair)
Darko Stefanovic (Co-Chair)
David Arredondo

Peter Davenport

Jeremy Edwards

Steven Graves

Tracy Mallette

University of New Mexico
University of New Mexico
University of New Mexico
University of New Mexico
University of New Mexico
University of New Mexico

University of New Mexico



Organization O:xv

Sponsors

International Society for Nanoscale Science, Computation, and Engineering
Department of Computer Science, University of New Mexico

Vice President for Research, University of New Mexico

School of Engineering, University of New Mexico

National Science Foundation

New Mexico Consortium

Santa Fe Institute

Integrated DNA Technologies

Tllumina

New Mexico INBRE

DNA 28






Fast and Robust Strand Displacement Cascades
via Systematic Design Strategies

Tiernan Kennedy'! &
Paul G. Allen School of Computer Science & Engineering,
University of Washington, Seattle, WA, USA

Cadence Pearce! &
Paul G. Allen School of Computer Science & Engineering,
University of Washington, Seattle, WA, USA

Chris Thachuk? &
Paul G. Allen School of Computer Science & Engineering,

University of Washington, Seattle, WA, USA
—— Abstract

A barrier to wider adoption of molecular computation is the difficulty of implementing arbitrary
chemical reaction networks (CRNs) that are robust and replicate the kinetics of designed behavior.
DNA Strand Displacement (DSD) cascades have been a favored technology for this purpose due
to their potential to emulate arbitrary CRNs and known principles to tune their reaction rates.
Progress on leakless cascades has demonstrated that DSDs can be arbitrarily robust to spurious
“leak” reactions when incorporating systematic domain level redundancy. These improvements in
robustness result in slower kinetics of designed reactions. Existing work has demonstrated the kinetic
and thermodynamic effects of sequence mismatch introduction and elimination during displacement.
We present a systematic, sequence modification strategy for optimizing the kinetics of leakless
cascades without practical cost to their robustness. An in-depth case study explores the effects of
this optimization when applied to a typical leakless translator cascade. Thermodynamic analysis of
energy barriers and kinetic experimental data support that DSD cascades can be fast and robust.

2012 ACM Subject Classification Applied computing — Chemistry; Computer systems organization
— Molecular computing

Keywords and phrases DNA strand displacement, Energy barriers, Kinetics
Digital Object Identifier 10.4230/LIPIcs.DNA.2022.1

Funding This work was supported by an NSF grant (CCF 2106695) and a Faculty Early Career
Development Award from NSF (CCF 2143227).

1 Introduction

One goal of molecular programming is to design chemical systems that not only store and
process information, but are able to manipulate matter with nanometer precision, to sense
(bio-) chemical signals from their environment, to perform robust, complex and energy-
efficient computation, and to actuate a physical response. This is not an easy goal. Yet,
inspiring demonstrations of complex, enzyme-free circuits based on DNA strand displacement
(DSD) [26] show the promise of this technology to realize the equivalent of a chemical central
processing unit. While engineered DSD reactions, inspired by strand displacement in genetic
recombination[14, 15], were studied as early as the 1980s [3] the groundwork for modern
engineering of DSD cascades and other more complicated dynamic systems followed nearly
twenty years later [19, 25].

L Authors contributed equally and are listed alphabetically by last name.
2 To whom correspondence may be sent.
© Tiernan Kennedy, Cadence Pearce, and Chris Thachuk;

licensed under Creative Commons License CC-BY 4.0
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Sequence-independent “domain level” strategies have emerged to improve the design of
high fidelity DNA strand displacement reactions and cascades. For example, recent work on
leakless DSD cascades [18, 20, 21] have shown how these systems can be made arbitrarily
robust: the rate of spurious leak reactions — that produce output in the absence of correct
input — can be decreased exponentially by a linear increase to the length of the cascade.
However, this increased robustness comes at a cost: designed reaction pathways have slower
kinetics. This slowdown of desired kinetics can result from longer cascades, from cascades
that are a series of reversible displacements when toehold-sized clamps are employed [20],
and from unproductive reactions attributed to the domains shared between multiple signal
strands within the same cascade (see Figure 1b).

—— Fo
F A ——
_ 0
—_ 0 . = "% /
~\. —_— PR
iv. —_—h
/ —,
il v % _——Fz -_ R
(a) (b)

Figure 1 (a) A visual representation of a toehold mediated strand exchange reaction. I. Initial
system: translator gate with invader strand (red), incumbent strand (red/green), and substrate
strand (black). II. Initial base pair formed between translator toehold and signal strand. III. Toehold
fully bound to signal strand. V. First base pair in translator frays, incurring a free energy penalty
AG),, for branch migration initiation [16, 10]. V. Branch migration occurs: base pairs between the
translator strands are replaced by base pairs between the signal strand and the substrate strand
(black). VI. Branch migration completes: incumbent strand is bound to toehold sized domain on
substrate strand. VII. Incumbent strand dissociates from complex. (b) While systematic redundancy
introduced in leakless cascades inhibits spurious displacement the resulting overlap in sequence
space among complexes introduce new pathways for spurious invasion. Spurious invasion events do
not necessarily lead to spurious displacement (i.e., leak). However, these unproductive pathways
sequester chemical species that are kinetically relevant to the designed reaction pathway decreasing
its effective rate. The fuel complexes Fp, Fi and F> comprise a displacement cascade that mediates
the formal reaction X1 — Y7. Illustrated is the (unproductive) spurious invasion of F; by the cascade
input signal Xi; similarly X; can occlude the toehold of and spuriously invade F5.

In parallel, sequence-dependent strategies that introduce and/or eliminate Watson-Crick-
Franklin [23, 9] base-pairing violations, or “mismatches”, have been studied as an effective
means for tuning the kinetics and thermodynamics of DSD reactions. A study from as early
as 1986 investigated the impact of a single base-pair mismatch as a parameter for engineering
strand displacement reactions [3]. The effects of mismatch elimination (and introduction) in
strand displacement have been widely studied [6, 1, 12] and include a thermodynamic driving
force from mismatch elimination, as well as reaction rate changes that are highly dependent
on the distance of the mismatch position from the site of invasion. Mismatches have been
used both strategically [24, 7] and systematically [11, 13] to alter reaction kinetics [24] and
thermodynamic driving forces [7, 12, 5], as a mechanism for single nucleotide polymorphism
(SNP) identification [8, 17], and as a means to combat leak [13, 11, 7].

While strategies for systematic domain-level optimization of DSD circuits and those for
sequence-level optimization of DSD circuits were developed primarily in parallel, they are not
mutually exclusive. The drawbacks introduced to designed reaction pathways when employing
domain level strategies such as leakless motifs and/or the use of clamp domains, namely
slowed kinetics and/or a reduction in thermodynamic driving force, might be remedied by
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sequence-level strategies. Here we demonstrate a synthesis of these two strategies to arrive
at cascade designs that are robust by virtue of their domain level redundancy, yet have
fast kinetics due to a systematic sequence level optimization strategy based on strategic
mismatch elimination and introduction. By composing the state-of-the-art for domain level
and sequence level design of DSD systems we demonstrate a rich design space for fast
and robust DSD cascades. We support the efficacy of this strategy with theory based on
thermodynamic modeling and preliminary experimental verification.

2 Systematic mismatch strategies for leakless cascades

Due to the domain level redundancy, introduced by leakless cascades in order to combat
leak [18, 20], unproductive invasion is possible — signal strands present initially as input, or

produced via displacement of incumbent strands, can interact with multiple fuel complexes.

For example, Figure 1b illustrates how the input strand X; can spuriously invade fuel complex
F} — not shown is that X; can also spuriously invade fuel complex Fy. While overall these
unproductive invasions are unlikely to cause leak events they do create kinetic slowdown;
a signal strand (transiently) bound to the wrong fuel is signal not currently propagating
through the cascade and is also a source of occlusion of its bound fuel and thus a source of
inhibition of other signal propagation. A confounding factor in kinetic slowdown is the use
of toehold-sized clamps. This design choice has been demonstrated to suppress leak to even
lower rates in leakless cascades [20], but at the cost of thermodynamic driving force since

each designed reaction is based on reversible toehold exchange (see Figure 1a and Figure 5).

To combat these problems we introduce a systematic sequence level modification strategy
to introduce sentinel positions.

» Definition 1 (sentinel position). Any position i such that an intended invader forms a

Watson-Crick-Franklin base pair and every spurious invader introduces a mismatch.

Table 1 Sequence-level strategies to meet design goals. Reasonable choices for parameters a and
[ are discussed in Section 2.1.

Goal Strategy

1. Barrier to spurious toehold binding Sentinel position in each toehold domain

2. Additional barrier to spurious invasion  Sentinel positions “close” to helix ends

3. Additional thermodynamic drive Sentinel positions in each fuel complex

4. Avoid increasing leak No internal loops within a nucleotides of any helix end

No internal loops within 8 nucleotides of each other

Our aim is to systematically create energy barriers that must be encountered early in
any unproductive invasion pathway. Furthermore, these modifications should not be at the
expense of cascade robustness and, when possible, should introduce kinetic improvements
and additional thermodynamic driving force for designed reactions. While the strategy is
generally applicable to any system with redundant domains across a cascade we will focus
on translator cascades for the sake of clarity. Consider the leakless translator cascade with
toehold-sized clamps to emulate the reaction X; — Y7 illustrated in Figure 2 (Step 0). These
additional clamps provably increase the barrier to leak reactions [22], but individual steps
in the cascade are reversible; similarly, the overall cascade is reversible and thus emulates
the reaction X; <> Y7 with forward and reverse rate constants dependent on the strength of

1:3
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forward and reverse toeholds. Can we keep the robustness benefit provided by the redundant
domains and these additional clamps yet drive the cascade forward as if implemented as a
series of “irreversible” reactions without clamps (i.e., with heavily favored forward rates)?
Can we significantly decrease the rates of unproductive reactions? As it turns out these goals
can be simultaneously met.

Step O - given fixed input sequence Step 1 - create unique mismatch between fixed
locate candidate sentinal position input sequence and spurious targets
X1 CCATC ACCCT CACCT TCCCT ARACC Tr‘l‘f‘l: X, ccate accer cace reccr aaace TZ‘TCT:
ACCCT CACCT TCCCT RARCC TCICT CATCT ACTAC ACCCT CACCT TCCCT ARACC TCTCT CATCT ACTAC_
Fo Fo
‘SDJ‘VU 1999¥ OLOOY VOOOV LILOD VWOVOY DIVOV “)CJ“JD 1999Y O199Y YOO LIIOO ¥OWOY OILVWOY
TCCCT AAACC TCICT CATCT ACTAC AACCA CAAAC CCCT ARACC TCTCT CATCT ACTAC AACCA CAAAC
Fi Fi
" 0199 VD99 LI19D VOVOY SINOV I9VID Li09L SINDY V90DV 11999 WOWOY OIYOY LOVLD 1L99L
TCTCT CATCT ACTAC AACCA CAAAC ATACC AAC A‘\,Ak . TCTCT CATCT ACTAC AACCA CAAAC ATACC AACAA‘
> T-G >
Fs Fs
LLIOD VOVOV OILVOV LOVIO 11991 SLILO IVLOD LINDS VWO DIVOV I9VL9 LU9OL DIILO ININD
Fi-t : intended T-A

X, : spurious
Fo-t : spurious

Step 2 - correct sequence for intended invaders  Step 3 - repeat for all candidate positions

X CCATC ACCCT CACCT TCCCT ARACC TCTCT X CCATC ACCCT CACCT TCCCT AAACC TCTCT
1 » »
A->Ce
ACCGT GACCT 7CCCT ARCCC TCTCT CATCT ACTAC ACCCT CATCT TCGCT AACCC TCTCT CATCT ACTAC
N N
> d
990D L999Y OISO VD99V LLL9D VWSV DIVOY 9919 199DY DION YOIV L4190 VOOV SLVOY
A-Te
TCCCT ARICC TCTCT CATCT ACTAC AACCA CARAC 1CCCT ARTCC TCTCT CATCT ACTAC AACCA CAAAC,
Fi Fi

9LIOY V99OV LID9OD YYD IOVIO 11991 OI¥OY WOOOV 1199 ¥OYOY OLVOV IOWIO LIHOL

TCTCT CATCT ACTAC AACCA CAAAC ATACC AACAA TCTCT CATCT ACTAC AACCA CAAAC ATACC AACAA

F, F,

LI¥9D WOVOV OIYOY 1OVID L1991 OILLO L¥IOD LI¥99 VOVOV OLVOY IOVLO LI99L OILLLO I¥19

Figure 2 A general strategy for creating sentinel positions given fixed input and output sequences
of a cascade. (Step 0) A candidate position 7 is identified. (Step 1) Unique mismatches are introduced
into substrate (bottom) strands that intersect ¢ and are not designed to interact with the fixed
input. (Step 2) Sequences are corrected for intended (top strand) invaders. (Step 3) The process
is repeated for candidates intersecting the fixed input. (Step 4 — not depicted) Symmetric process
run to introduce sentinel positions with respect to the output sequence to guard against spurious
invasion in the reverse pathway; see Figure 3 for a complete example with fixed input and output
sequences.

Sentinel positions will introduce mismatches within fuel complexes. Obvious candidate
positions are those intersecting toeholds within a cascade since weakening the toehold binding
of spurious invaders will decrease the rate of unproductive reactions (see Section 3). However,
these positions should not be chosen if they intersect fuel complexes near the end of a helix
as fraying could be exacerbated by introduced mismatches and result in increased rates of
leak. In those cases, positions can be chosen that intersect further away from helix ends
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(e.g. at least a “toehold”-sized domain away). Figure 2 demonstrates how sentinel positions
can be created with respect to a fixed input and output sequence of a cascade. The aim of
this strategy is to internally optimize a cascade that implements a formal reaction without
changing its interface to other system components (i.e., the input sequence it accepts and the
output sequence it produces). We note that any change to the sequences of signal strands has
the potential to create spurious events with other cascades in the system, or create unwanted
secondary structure. These can be incorporated as hard constraints when implementing the
sentinel position design strategy.

X; = Y; (without mismatch strategy) Xy = Y; (with mismatch strategy)
S lccATc ACCCT CACCT TCCCT ARACC tcTciL lccATc ACCCT CACCT TCCCT ARACC Tc'[c'l;
% v v
z
Fo F g(mm)
Fq F 4Cmm)

1]
a
2

F) » F,(mm)
.
5 Y Y
& 1 ©  CATCT ACTAC AACCA CAAAC ATACC AACAA 1 ©  CATCT ACTAC AACCA CAAAC ATACC AACAA
j=]
o
g 1 E——— 1 E——
o
Ay
i o¥oN 1DYID LIoOL HILID IEIDO LIOLL /NSSSOLIVS/ oUVoN IDYID LIoDL DILID RSO LIOLL /NSSSOLIVS/

Figure 3 Domain level and sequence level designs for a X; — Y7 translator without mismatch
strategy (left) and with mismatch strategy (right). Both systems were designed to share the same
input “trigger” strand and same output strand (and reporter). Locations and sequences of mismatch
positions are indicated around gaps in DNA duplexes.

Figure 3 gives a complete example of introducing sentinel positions that optimizes with
respect to both the forward and (undesirable) reverse reaction pathways given a fixed input

and output sequence. This system will serve as our detailed case study in subsequent sections.

2.1 Fragile regions of design space

For a collection of sequence modifications of a given DNA cascade there exist many poor
sequence designs. Modification within a particular cascade may introduce unwanted secondary
structure or introduce spurious interactions with species of another cascade within the same
system. These conflicts can be modelled as hard or soft constraints to be evaluated when
considering a modification candidate. However, there are certain design choices that are likely
to yield poor candidates and can be eliminated from consideration entirely. For example,
choosing a sentinel position too close to the end of a helix will result in increased fraying
that in turn could lead to increased leak rates (see Figure 4a). Similarly, placing neighboring
sentinel positions too close could result in the intervening duplex structure being destabilized

and merging into a large internal loop, again leading to increased leak rates (see Figure 4c).

We parameterize these distances in our overall design considerations.

» Definition 2 («). The minimum distance of any sentinel position from a heliz end (including
nicks).

1:5
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MFE proxy structures at 25.0 C
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Figure 4 Stability of gate complexes and their propensity to fray at helix ends or merge neighboring
mismatches into larger loops for candidate designs can depend on parameters o and S. Three
candidate designs generated with (a) « =2,8=25, (b) a=5,8=5, and (¢c) a =5,8 = 2.

» Definition 3 (3). The minimum distance between neighboring sentinel positions.

Both of these distance parameters can be chosen for a particular cascade or particular
reaction condition based on simple criteria: at what distance do the intended secondary
structures of fuel complexes have unacceptable ensemble defect [4]?

2.2 A naive sentinel design algorithm

Beginning from reference sequences the sentinel modification strategy naturally yields a
naive algorithm: for every possible combination of positions that span the interval covered
by a cascade, such that no position is within distance « of a helix end and no neighboring
positions are within distance 5 of each other, evaluate all sequence modifications that yield
valid sentinel positions and disfavor each spurious invasion relative to designed reactions.
Any candidate design can be rejected for violating user-defined constraints such as propensity
to form undesired intra- or inter-molecular secondary structure, or by containing forbidden
sequence motifs. As we will see in Section 3.3 the space of candidate designs is sufficiently
small in practice that it is tractable to enumerate and evaluate each one, yet the number of
candidate designs that yield improvements, relative to the unmodified cascade, is large.

3 Thermodynamic modeling

The thermodynamic landscapes of conventional strand displacement and exchange reactions
based on our translator system (Figure 3) were modeled using NUPACK [4, 2] at typical
conditions (25°C, 12.5 mmol L=! Mg?*, 50 mmol L= Na™). Free energy values (AG) were
plotted for each step in the conventional pathways for each reaction under study and
incorporated a penalty for branch migration initiation AG,, = 2kcalmol ™! [10, 16]. Unless
otherwise noted we use the structure free energy of an unstructured invader and fuel
complex with a toehold-sized clamp (F), both at 10 nmol L~! concentration, as the reference
microstate defined to have AG = 0kcal mol ™.
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3.1 Toehold-mediated strand exchange (TMSE)

A common strategy to reduce leak in DSD systems is to introduce toehold-sized clamps. With
respect to our translator gate Fy, when moving from a displacement reaction (Figure 5, blue)
to an exchange reaction (Figure 5, black) the structural free energy of the initial microstate
is improved, but at the cost of &~ 6kcalmol™! forward thermodynamic driving force. This
difference (AAGexchange — AAGdisplacement) translates directly from the loss in additional
base-pairs formed via displacement.

While strand exchange is typically thermodynamically neutral, strand exchange in a
translator utilizing the sentinel mismatch strategy is thermodynamically favorable. Consider
the specific comparison in Figure 6. The initial structural free energy of Fs(mm) is higher
than that of Fy, since Fy(mm) has fewer paired bases, as well as mismatches destabilizing
its helix. Both systems pay a concentration-dependent entropic penalty (calculated based
on experimental concentration of each reactant at 10 nmol L=!) when base 1 of the toehold
pairs (microstate IT). Throughout invasion of Fy(mm) by Fi(mm)-t (red pathway) the
system drops in energy each time a mismatch is replaced by a Watson-Crick-Franklin
base pair. After the last mismatch has been replaced, both strand exchange systems
follow essentially the same energy path throughout the remainder of the invasion and
toehold dissociation (microstates VI-VII). Without the mismatch strategy the change in
structural free energy AAG Lo mismatch = —0.71 keal rnol*l7 while with the mismatch strategy
AAG pismaten = —10.71 keal mol 1. Additionally, the reverse reaction of the translator using
the mismatch strategy has a significant uphill energy activation barrier (AAG ey (mismatch) =
19.75 kcal mol_l), while the activation energy for the reverse reaction of the strand exchange
system without mismatches (AAG ev(no mismatch) = 9.75 keal mol_l) is largely due to the
entropic penalty of toehold binding (9.04 kcal mol_l). This additional driving force has been
studied in greater detail in other work [5, 10].

When applied systematically within a cascade, as in our sentinel position design strategy,
mismatches raise the energy barrier for unproductive strand invasions in leakless systems.
Sequence redundancies in the leakless system allow upstream signal strands to partially
invade downstream translators via toehold binding, and subsequent displacement of matching
sequence (see Figure 1). The systematic mismatch strategy ensures that signal strands
will mismatch with every translator except their intended target. Figure 7 shows the
conventional pathways of invasion of Fy(mm) by its intended invader (Fj(mm)-t, blue) and
two other spurious invaders (Fy(mm)-t, green and X5, orange). Note that without systematic
mismatches the conventional invasion pathway for each spurious invader would simply be a
prefix of the intended conventional invasion pathway.

We investigated the effect of the mismatch strategy in greater detail on invasion pathways
of Fy and Fy(mm) when reactants were both at low concentrations (10nmol L~!) and when
both were at high concentrations (10 pmol L=1). For unproductive reactions only the most
favorable spurious invader was considered — that is, the corresponding spurious invader
with the largest overlap with the fuel complex; Fy-t in the control case and Fy(mm)-t when
using the mismatch strategy. In the no mismatch case at low concentration (Figure 8a)
the energy pathway for both invaders is identical until base 20 when the spurious invader
completes its invasion and recovers the branch migration initiation penalty AAG,, (Figure 8b,
microstate IV). In contrast, when the mismatch strategy is employed at low concentration
the spurious invasion pathway (i) necessarily deviates from that of the intended invasion, (ii)
must overcome a higher energy barrier to invasion (Figure 8b microstate III vs microstate
IT), and (iii) terminates at a significantly less favorable resting microstate compared with
the free energy of the intended reaction having made similar invasion progress (Figure 8b
microstate IV).
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Figure 5 (black) The energy landscape for a conventional toehold mediated strand exchange
(TMSE) between complex F» and its intended trigger strand Fi-¢ of Figure 3 (left). (blue) A similar
landscape is shown for a modified F» complex that lacks a toehold-sized clamp thus resulting in a
toehold mediated strand displacement (TMSD) reaction.
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Figure 6 (red) The energy landscape for a conventional toehold mediated strand exchange
(TMSE) between complex F»(mm) and its intended trigger strand Fi(mm)-t that results in two
mismatch elimination events. (black) A similar landscape is shown for F> and invader Fi-t without
a mismatch strategy. Roman numerals reference system microstates described in Figure la.
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(d) High concentration with mismatch strategy.

Figure 8 Comparison of the conventional pathways for intended and spurious invasion without and
with the mismatch strategy — left column and right column, respectively — and at low concentration

(10nmol L.™!) and at high concentration (10 pmolL~") — top row and bottom row, respectively.

Deviating from prior convention, note that the free energies reported in (c) and (d) are relative to
structure free energy of F»(mm) and an unstructured invader.
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Figure 9 The thermodynamic driving force already present in TMSD (blue) can be significantly
increased when intended invaders eliminate multiple mismatches (red).

These same trends hold at higher concentrations (see Figure 8¢ and Figure 8d); however,
there is an important distinction to consider. At the high micromolar concentrations typically
used to increase the speed of leakless strand exchange (1pmol L~1-10 pmol L—1) [22, 21]
the entropic penalty of toehold binding is reduced (microstate II in Figures 8¢ and 8d).
Modeling of translator gate F» at high concentration (Figure 8c) shows that not only is
it equally as favorable for a spurious invader to initiate branch migration as the desired
invader, but that many of the microstates during spurious invasion (e.g., microstate IV)
are energetically favorable to the initial configuration (i.e., microstate I). Therefore, as
the concentration of the non mismatch cascades increase — and thus the thermodynamic
favorability of microstates with occluded toeholds and sequestered signal strands — so too do
the kinetic inhibitions caused by (unproductive) spurious invasions. In contrast, even at high
concentrations, the mismatch strategy remedies these issues by (i) providing an additional
energy barrier to spurious invasion (Figure 8d, microstate III), (ii) ensuring all microstates
of spurious invasion are unfavorable relative to the initial configuration (microstates II-IV
compared with microstate I, Figure 8d), and (iii) maintaining a thermodynamic driving
force (AAGmismateh &~ —10kcal mol_l) for the intended TMSE reaction (Figure 8d, orange,
microstate I to microstate V).

3.2 Toehold mediated strand displacement (TMSD)

In Section 3.2 we consider invasions of a variant of the Fy(mm) fuel complex that lacks
a toehold sized clamp — the first five nucleotides from the 5 end of strand Fy(mm)-b are
truncated. While TMSD already has a significant driving force due to the free energy im-
provement of a toehold’s worth of additional base pairing (AAGho mismateh &~ —6 kecal molfl,
Figure 9) the mismatch strategy offers a means to increase this driving force further
(AAGmismateh =~ —16 keal mol !, Figure 9).
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Figure 10 The sentinel mismatch strategy is compatible with leakless TMSD cascades.

Unlike our TMSE case study, where spurious invasions are unlikely to result in leak
reactions, the spurious invasion of Fy(mm) by invader Fy(mm)-t can reach a microstate
where the incumbent strand Fy(mm)-t is bound by only ten nucleotides (base index 25,
Figure 10) and could therefore be susceptible to experimentally relevant rates of dissocia-
tion. However, the sentinel mismatch strategy can result in designs that kinetically and
thermodynamically disfavor leak in TMSD.For example, in the variant considered here (i)
leak is thermodynamically unfavorable (AAGspurious displacement = 4.52 kcal mol '), and (ii)
the kinetic barrier to spurious displacement is greater than 11 kcal mol L.

3.3 Design space of sentinel mismatch strategy

Beginning from the reference sequences of Figure 5 (left) we used the naive algorithm from
Section 2.2 to generate each of the 685,307 candidate sentinel designs that were valid for
a = f = 5. Thermodynamic properties were evaluated for each candidate including its
minimum among all possible AAGpurious — the net free energy of the microstate representing
the maximum progress of a spurious invasion (e.g., microstate IV in Figure 8b) — and
AAGiransiator — the net free energy of the overall cascade via designed reactions (i.e., a proxy
for its thermodynamic driving force). In our analysis that follows and in the annotations of
Figure 11, our design refers to the sentinel mismatch sequences of Figure 3 (right).

The full design space visualized as a density plot of AAG¢,ansiator for each candidate
design is shown in Figure 11a; this includes the reference sequence design, which contain no
sentinel position, as it is valid by our definition. Note that our design, which we investigated
the thermodynamic properties of in this section and experimentally evaluated and discuss in
the next section, has worse thermodynamic driving force than the average across all valid
candidate designs.

Optimizing for only the driving force of the overall cascade does not necessarily result
in designs that mitigate spurious invasion. In practice, one may wish to optimize for some
trade-off between multiple properties. Figure 11b plots the Pareto frontier of maximizing
the minimum AAGgpurious and minimizing AAG ransiator- Our design is not expected to
be on this front because it contains fewer sentinel positions than are permitted by the
a = f = 5 constraint. Overall, the sentinel mismatch strategy allows further room for
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Figure 11 (a) Density distribution of all valid sentinel design candidates starting from the non
mismatch reference sequences — see Figure 3 (left) — that obey a = 8 = 5 and disfavor spurious
invasion. (b) Pareto frontier for maximizing the minimum AAGspurious — the net free energy of any
spurious invasion in a design — and minimizing AAG¢ransiator — the net free energy of the overall
cascade via designed reactions.

translator optimization and can be broadly applied to generate a rich design space for any
cascade with redundancy. A final design can be chosen based on multiple, user-defined
criteria and constraints utilizing tools such as NUPACK [4] for evaluation.

4  Preliminary Experimental Verification

To demonstrate the efficacy of a systematic domain and sequence level design strategy
for DSD cascades we compared a typical leakless translator as a control to a variant that
incorporates sentinel positions. Our control is a cascade that requires three successive
displacement reactions to translate an input to a sequence independent output and has a
large entropic and enthalpic barrier to leak [20] due to its domain level redundancy and
incorporation of toehold-sized clamps, making it reversible (see Figure 3 (left)). However,
the redundancy within the control cascade creates a number of (unproductive) spurious
invasion pathways. The variant tested incorporates the systematic mismatch strategy of
sentinel positions described in Section 2 (see Figure 3 (right)). Sequences were designed
using NUPACK [2, 4] to verify that all complexes were well-formed, all signal strands were
unstructured, all desired toehold exchange reactions netted &~ 0kcalmol™! in structure free
energy, and sequence motifs that might affect synthesis yield — such as homomeric repeats
— were absent. To facilitate direct comparison between the translator systems with and
without the sentinel strategy both systems were designed to use the same input strand as a
trigger, produce identical sequences as outputs, and to use identical reporter complexes that
consume this output sequence. All designed sequences were ordered from IDT with PAGE
purification; annealed complexes were PAGE purified and concentrations were measured via
UV absorbance and then normalized.
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4.1 Leak reactions

Based on work by Wang et al. [21, 20], because of the levels of redundancy and presence of
toehold-sized clamps, we expected negligible rates of leak in the non-mismatched cascade
(our control). A recent experimental demonstration of a translator with the same domain-
level design, but differing in sequence, had no significant rate of leak even at micromolar
concentrations [22]. However, in order for the sentinel mismatch strategy to provide a valid
remedy to the adverse kinetic effects introduced by domain level strategies that address
robustness, it must itself not re-introduce significant leak. Thus we hoped to find similarly
low levels of leak in both the non-mismatched and mismatched translator cascades.
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Figure 12 Testing the presence of output signal in the absence of valid input (leak) in leakless
translators with and without the sentinel mismatch strategy. (Right) Time-course fluorescence results
when incubating 1 pmol L™! of each fuel complex in a given translator system with 1.5 pmol L*
reporter and no input trigger strands are reported for the non-mismatched and mismatched translator
systems in teal and pink respectively. (Left) Internal standards of the aforementioned systems spiked
with final concentrations of 1pmol L' of strand Fe-t (direct trigger to the reporter) are plotted for
the same interval. All replicates are plotted for each of the experimental conditions tested. Both the
mismatched and non-mismatched systems leaked a maximum of 0.054% of the total possible output
in 2 hours, whereas the high controls triggered at the reporter with 1 pumol L™ F-t reached over
50% completion in the 50 seconds between mixing of reactants and the first fluorescence reading.

To verify leak did not increase when using the mismatch strategy we prepared two sets of
triplicate mixtures: one containing purified Fy, F}, and F5 at final nominal concentrations
of 1 pmol L~! and fluorescent output reporter R, at a final concentration of 1.5 pmol L1,
and the other containing purified Fy(mm), Fy(mm), and Fy(mm) at final concentrations of
1pmolL~! and R; at a final concentration of 1.5umolL~'. Both of these sets of samples
were compared to triplicate measurements of high controls of the same mixtures prepared
with a final concentration of 1 umol L' F,-¢ that directly triggers the output reporter. Each
reaction sample was quickly mixed and observed under time-course fluorescence measurements
every 20 seconds for 2 hours. Raw fluorescence values were then normalized to concentration
using internal low and high controls. With the exception of three data series which were
discarded due to sample evaporation the results across all three replicates are shown in
Figure 12.

From Figure 12 it appears that mismatch introduction did not significantly alter the rate
of leak in our system. While the high control reactions reached above 50% completion in
the 50s interval between the mixture of reaction components and the start of fluorescence
measurements, the untriggered samples for both the non-mismatched and mismatched systems
leaked at most 0.054% in 2 hours.
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4.2 Designed reactions
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Figure 13 Comparing the triggering kinetics of leakless translator systems with and without
the mismatch strategy. Each reaction was conducted with 10nmol L ~! of each translator gate in
the respective cascade and 15nmol L™" of output reporter R;. The z-axis is broken to include only
the beginning of the reaction and the equilibrated endpoints of the reaction. Raw fluorescence
of each reaction was converted to concentration by internal normalization with a low control of
untriggered cascade and high controls of cascade triggered with 10nmol L™! F-t at the reporter.
The normalized output concentrations for each of the three replicates for each experimental condition
were plotted and labeled with their reaction components as given in Figure 3. Clear differences in
reaction half-times between the two systems at each concentration, even considering the variance
across triplicate measurements, suggests that the introduction of mismatches increased the effective
forward rate of the translator system compared to the non-mismatched variant.

In the previous section we presented evidence supporting that our strategy for introducing
systematic sentinel mismatches into leakless translator cascades does not significantly increase
leak relative to the non-mismatched case. This fact alone suggests some flexibility for
sequence design in translator systems and supports a notion of compatibility between
redundancy based leak-reduction and mismatch-based optimization strategies. However, we
also theorized that the mismatch strategy would increase the observed reaction rate of a
translator system by introducing kinetic barriers to unproductive reaction pathways that
temporarily sequester reaction intermediates relevant to the desired reaction rate. To test this
hypothesis, we measured the time-course fluorescence of triplicate samples of mismatched and
non-mismatched translator cascades at 10 nmol L~! gate concentration, 15 nmol L ™! reporter
concentration, and input trigger concentrations of 1nmolL~!, 2nmol L™}, and 3nmol L~!.
Additionally, we recorded triplicate measurements of high controls of each of non-mismatched
and mismatched cascade with gates and reporters at the previous concentrations, and with
10nmol L~ F,-t to directly trigger the reporter. Lastly, we measured untriggered low
control cases of both the mismatched and non-mismatched translator cascades at the same
concentrations previously used.

Based on the results presented in Figure 13, it appears that the sentinel mismatch strategy
accomplished its goal of increasing the forward rate of the X1 — Y1 translator reaction,
without significantly increasing rates of leak. At each of the triggering concentrations, even
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considering the variance across replicates, the reaction halftimes of the mismatched cascades
were clearly lower than those in the non-mismatched cascades. This suggests that the effective
rate constants of reactions when using the sentinel mismatch strategy is larger than in the
non-mismatched case. Additional experiments are required to accurately quantify the effect
of this systematic strategy.

5 Conclusion

We have introduced, analyzed, and given preliminary experimental validation for a systematic
mismatch strategy compatible with leakless DNA strand displacement cascades. By promoting
desired reactions and simultaneously discouraging spurious and unproductive invasions, even
at high concentrations, the combination of domain and sequence level strategies unlocks
a thermodynamic landscape conducive to fast, robust circuits. If this strategy proves
effective broadly, as we expect, it may provide a new design standard for effective DNA
strand displacement reactions and networks. The additional driving force introduced by the
systematic mismatches in a toehold exchange reaction is greater than a comparable toehold-
mediated strand displacement reaction without the strategy. Future experimental work will
include characterization of these thermodynamic and additional kinetic differences. While
we focused our strategy in the context of leakless translators it is applicable to any system
with redundancy of domains between signals in a common cascade; this includes proposals of
leakless architectures capable of implementing arbitrary chemical reaction networks [18]. The
early success of this approach motivates the need for algorithms and design software capable
of elucidating sequence level modifications that best optimize energy barriers of concern in
the context of an entire strand displacement system. We presented a naive algorithm that
can find an optimal design for a particular cascade, but it is unlikely to remain tractable
when considering global constraints across a large system. A natural question is how to
best optimize these sequence level modifications in order to improve overall kinetic rates
of desired reactions without increasing undesirable reaction rates beyond a user-defined
value in an overall system. Finally, what other strategies can be developed to improve
strand displacement systems when combining systematic domain and sequence level design
principles?
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—— Abstract

In this paper, we investigate shape-assembling power of a tile-based model of self-assembly called
the Signal-Passing Tile Assembly Model (STAM). In this model, the glues that bind tiles together
can be turned on and off by the binding actions of other glues via “signals”. In fact, we prove our
positive results in a version of the model in which it is slightly more difficult to work (where tiles are
allowed to rotate) but show that they also hold in the standard STAM. Specifically, the problem we
investigate is “shape replication” wherein, given a set of input assemblies of arbitrary shape, a system
must construct an arbitrary number of assemblies with the same shapes and, with the exception
of size-bounded junk assemblies that result from the process, no others. We provide the first fully
universal shape replication result, namely a single tile set capable of performing shape replication on
arbitrary sets of any 3-dimensional shapes without requiring any scaling or pre-encoded information
in the input assemblies. Our result requires the input assemblies to be composed of signal-passing
tiles whose glues can be deactivated to allow deconstruction of those assemblies, which we also
prove is necessary by showing that there are shapes whose geometry cannot be replicated without
deconstruction. Additionally, we modularize our construction to create systems capable of creating
binary encodings of arbitrary shapes, and building arbitrary shapes from their encodings. Because
the STAM is capable of universal computation, this then allows for arbitrary programs to be run
within an STAM system, using the shape encodings as input, so that any computable transformation
can be performed on the shapes.
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1 Introduction

Artificial self-assembling systems are most often designed with the goal of building structures
“from scratch”. That is, they are designed so that they will start from a disorganized set
of relatively simple components (often abstractly called tiles) that autonomously combine
to form more complex target structures. This process often begins from collections of
only unbound, singleton tiles, or sometimes also includes so-called seed assemblies which
may be small (in relation to the target structure) “pre-built” assemblies that encode some
information which seeds the growth of larger assemblies. This growth occurs as additional
tiles bind to those seed assemblies according to the rules of the system, allowing them to
eventually grow into the desired structures. Examples have been shown in both experimental

© Andrew Alseth, Daniel Hader, and Matthew J. Patitz;

licensed under Creative Commons License CC-BY 4.0
28th International Conference on DNA Computing and Molecular Programming (DNA 28).
Editors: Thomas E. Ouldridge and Shelley F. J. Wickham; Article No. 2; pp. 2:1-2:24

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:awalseth@uark.edu
https://orcid.org/0000-0002-0055-0788
mailto:dhader@uark.edu
mailto:patitz@uark.edu
https://orcid.org/0000-0001-9287-4028
https://doi.org/10.4230/LIPIcs.DNA.2022.2
https://arxiv.org/abs/2206.03908
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2

Universal Shape Replication via Self-Assembly with Signal-Passing Tiles

settings (e.g. [14, 37, 22]), as well as in the mathematical domains of abstract models
(e.g. [34, 32, 7, 12, 10]). However, in the subdomain of algorithmic self-assembly, in which
systems are designed so that the tile additions implicitly follow the steps of pre-designed
algorithms, other goals have also been pursued. These have included, for instance, performing
computations (e.g. [24, 30]), identifying input assemblies that match target shapes [31],
replicating patterns on input assemblies [23, 33|, and replicating (the shapes of) input
assemblies [6, 26, 1, 3, 17]. In this paper, we explore the latter, particularly the theoretical
limits of systems within a mathematical model of self-assembling tiles to replicate shapes.

We use the term shape replication to refer to the goal of designing self-assembling systems
that take as input seed assemblies and which produce new assemblies that have the same
shapes as those seed assemblies [1]. In order for tile-based self-assembling systems to perform
shape replication, dynamics beyond those of the original abstract Tile Assembly Model
(aTAM), introduced by Winfree [36] and widely studied (e.g. [34, 32, 12, 24, 5, 27, 18, 25]),
are required. In the aTAM, tiles attach to the seed assembly and the assemblies which grow
from it, one tile at a tile, and tile attachments are irreversible. A generalization of the aTAM,
the hierarchical assembly model known as the 2-Handed Assembly Model [5, 7], allows for
the combination of pairs of arbitrarily large assemblies, but it too only allows irreversible
attachments. However, for shape replication, it is fundamentally important that at least some
tiles are able to bind to the input assemblies to gather information about their shapes which
is then used to direct the formation of the output assemblies, since binding to an assembly is
the only mechanism for interacting with it. These output assemblies eventually must not
be connected to the input assemblies if they are to have the same shapes as the original
input assemblies. This requires that at some point tile bindings can be broken. A number
of theoretical models have been proposed with mechanisms for breaking tiles apart, for
example: glues with repulsive forces [29, 26], subsets of tiles which can be dissolved at given
stages of assembly [1, 11], tiles which can turn glues on and off [28, 20] (a.k.a. signal-passing
tiles), and systems where the temperature can be increased to cause bonds to break [7, 35].
Within these models, previous results have shown the power of algorithmic self-assembling
systems to perform shape replication. In [6], they used glues with repulsive forces, and
in [1] they used the ability to dissolve away certain types of tiles at given stages during the
self-assembly process, and each showed how to replicate a large class on two-dimensional
shapes. In [17], signal-passing tiles were shown to be capable of replicating arbitrary hole-free
two-dimensional shapes if they are scaled up by a factor of 2. The results of [3] deal with the
replication of three-dimensional shapes, and will be further discussed below.

The results of this paper are the first which provide for shape replication of all 3-
dimensional shapes with no requirement for scaling those shapes. Additionally, although
in [3] all three-dimensional shapes can be replicated at the small scale factor of 2, there
it is necessary for the input assemblies to have relatively complex information embedded
within them (in the form of Hamiltonian paths through all of their points being encoded
by their glues). In our results, the input assemblies require no such embedded information.
Furthermore, the model used in [3] is more complex, allowing not only for hierarchical
assembly and signal-passing tiles, but also for tiles of differing shapes, and glue bindings that
are flexible and thus allow for assemblies to reconfigure by folding. For the results of this
paper, we have not only limited the dynamics to those of the Signal-Passing Tile Assembly
Model (STAM), but have even placed an additional restriction on the model. Rather than
assigning fixed orientations to tiles, in the model we use and call the STAM? (i.e. the
“STAM with rotation”) tiles and assemblies are allowed to rotate. This allows us to consider
an even more general, and difficult, version of the shape replication problem. Namely, the
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Figure 1 Schematic depiction of shape replication: (Left) An input assembly, (Middle) The
assembly resulting from the encoding process which deconstructs the input assembly and encodes its
shape, (Right) The assembly created by the decoding process, which uses the encoding as its input.

input assemblies in our constructions have glues of a single generic type covering their entire
exteriors, and there is no distinction between a north-facing glue and an east-facing glue, for
instance, as there is in the standard STAM. This makes several aspects of working with such
generic input assemblies more difficult, but it is notable that our constructions need only
trivial, simplifying modifications to work in the standard STAM and that our positive results
thus also hold for the STAM. We show that there is a “universal shape replicator” which is a
tileset in the STAM® that can be used in conjunction with any set of generic input assemblies
and will cause assemblies of every shape in the input set to be simultaneously produced
in parallel. This is the first truly universal shape replicator for two or three dimensional
shapes!. Furthermore, we break our construction into two major components, a “universal
encoder” and a “universal decoder” (see Figure 1 for a depiction). The universal encoder
is capable of taking generic input assemblies and creating assemblies that expose binary
sequences that encode those shapes, and the universal decoder is capable of taking assemblies
exposing those encodings and creating assemblies of the encoded shapes. Due to the Turing
universality of this model, this also allows for the full range of all possible computational
transformations to occur between the encoding and decoding, and thus enables the generation
of any transformations of the shapes of the input assemblies, such as creating scaled versions
or complementary shapes.

In order for our universal shape replication construction to operate, the input assemblies
must be created from signal-passing tiles which are capable of turning off their glues and
dissociating from the assemblies. This allows for the assemblies to be “deconstructed”, and
we prove that this is necessary in order to replicate arbitrary shapes, specifically those which
have enclosed or narrow, curved cavities, and this is intuitively clear since otherwise there
would be no way to determine which locations in the interior of an input shape are included
in the shape, and which are part of an enclosed void. Our proof that it is also impossible
to replicate shapes with curved, but not enclosed, cavities further exhibits the additional
difficulty of working within the STAM® model which allows tile rotations.

While our universal shape encoder, decoder, and replicator achieve the full goal of the
line of research into shape replication, and also provide the ability to augment shape-building
with arbitrary computational transformations, we note that the results are highly theoretical
and serve more generally as an exploration of the theoretical limits of self-assembling systems.
The tilesets are relatively large and require tiles with large numbers of signals, and although
the input assemblies are not required to have complex information embedded within them,
a trade-off that occurs compared with the results of [3] is that our constructions make use

! Note that while replicating two-dimensional shapes, which consist of points in a single plane, our
construction will utilize three dimensions.
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of a large amount of “fuel”. That is, a large number of tiles are used during various phases
but they are only temporary and aren’t contained within the target assemblies and thus
are “consumed” by the construction process. Despite the complexity of these theoretical
constructions, we think that several modules and techniques developed may be of future
use within other constructions (e.g. our “leader election” procedure which is guaranteed to
uniquely select a single corner of an input assembly’s bounding prism, to serve as a staring
location for our encoding procedure within a constant number of assembly steps despite the
lack of directional information provided by such an assembly), and also that these results
may lead the way to similarly powerful but less complex constructions that may eventually
achieve a level of being physically plausible to construct.

This paper is organized as follows. In Section 2 we provide an overview of the STAMZ%
and definitions. In Section 3 we state our main theorem and supporting lemmas, and discuss
the constructions that prove them. In Section 4 we briefly describe some of the computational
transformations that could be used to augment our constructions, and in Section 5 we prove
deconstruction is necessary for shape replication of certain classes of shapes. Due to space
constraints, full details can be found in [4] and the Appendix contains more details of the
STAM?® and a series of subconstructions that appear throughout the constructions.

2 Definitions

In this section we provide definitions of the model used, and also for several of the terms
used throughout the paper.

2.1 Overview of the STAME model

Here we provide only a high-level overview of the STAM® model since it is so similar to the
standard STAM model [28]. A full definition can be found in Section A.1 of the Appendix.
The STAM?® is based on the STAM, which is based on the 2-Handed Assembly Model (a.k.a.
Hierarchical Assembly Model), in which the fundamental components are tiles which have
glues on their sides that allow them to bind together. Here, tiles are 3-dimensional unit cubes.
Each glue has a string label and an integer strength, and glues can bind to each other when
they are adjacent and have the same strength and have complementary labels (which we
denote using “*”, e.g. “I;” and “I3”). There is a system parameter 7 € Z* which determines
the strength threshold that must be reached for tiles to bind together. Individual tiles may
bind, and also any pair of assemblies (groups of previously bound tiles, also called supertiles)
may bind if they can bind with at least 7 strength summed across bonds and don’t have
overlapping tiles. Tiles and assemblies are free to rotate and don’t have fixed orientations.
The glues of tiles may be assigned signals which fire when those glues form bonds. These
signals can turn glues on the same tile either on or off. The time between which a signal
is fired and the glue it targets changes its state is nondeterministic. Each signal can fire
only one time, no matter how many times its glue may form bonds. Turning glues off may
cause previously 7-stable assemblies (ie. those where all subassemblies are connected by > 7
strength) to break apart. When our constructions cause tiles to turn off glues and dissociate
from assemblies, we often use the term dissolve since the tile is “removed” from the assembly,
although it is not technically dissolved. A system in the STAMZ® is a triple (T, S, 7) where T
is a set of tile types, S is an initial state consisting of a multiset of tiles and input (or seed)
assemblies and their counts (which may be infinite). 7 is the binding threshold as previously
discussed. An assembly sequence is a (possibly infinite) series of discrete steps beginning fron
the initial state of a system that may include (super)tile bindings, changes in glue states, or
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Figure 2 Example of a bent cavity, assuming that the planes on the sides into and out of the
page were also filled in, leaving a single-cube-wide path into the interior of the shape.

breaking of assemblies. The producible assemblies of a system T, denoted A[T], are those
which can result from the steps of some assembly sequence. The terminal assemblies, denoted
Ap[T] are those which can be produced but for which no other valid actions may occur.

» Definition 1. Given an STAM® system T = (T, S,7), we say that it finitely completes
with respect to a set of terminal assemblies & if and only if there exists some constant ¢ € N
such that, if in the initial configuration S, each element of S was assigned count c, in every
possible valid assembly sequence of T, every element of & is produced.

A system which finitely completes with respect to assemblies & is guaranteed to always
produce those assemblies as long as it begins with enough copies of the (super)tiles in its
initial configuration, i.e. it cannot follow any assembly sequence which would consume one
or more (super)tiles needed to form those assemblies before making them.

» Definition 2. A shape is a non-empty connected subset of Z3, i.e. a connected set of unit
cubes each of which is centered at a coordinate v € Z3. A finite shape is a finite connected
subset of Z°.

In this paper, we consider shapes to be equivalent up to rotation and translation and
unless stated otherwise explicitly, we will use the word shape to refer only to finite shapes.

» Definition 3. Given a shape s, a bounding box is a rectangular prism in Z3 which
completely contains s. The minimum bounding box is the smallest such rectangular prism.

» Definition 4. Given a shape s, we use the term enclosed cavity in s to refer to a set of
connected points in Z3 that are not contained in s and for which no path in Z3 exists that
does not intersect at least one point in s and gets infinitely far from all points in s.

» Definition 5. Given a shape s, we use the term bent cavity in s to refer to a set of
connected points in Z3 contained inside of the minimum bounding box of s, by, but not
contained within s itself, such that it includes some points which can be reached by straight
lines in Z> beginning from points in by, and some points which cannot be reached by straight
lines in Z3 beginning from points in bs.

See Figure 2 for an example of a bent cavity.

» Definition 6. We define a shape encoding function f. as a function which, given as input
an arbitrary shape s, returns a unique finite set E of binary strings, each unique for the
shape s, such that there exists a shape decoding function, fy and fq(e) = s for alle € E.

The shape encoding function we will define by construction in the proof of Lemma 14
will generate a set of binary strings for each input shape s such that each string encodes the
points of the shape starting from a different reference corner and rotation of a bounding box.
That can lead to up to 24 unique binary strings (for 3 rotations of each of 8 corners) for
most shapes, but less for those with symmetry.

2:5
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» Definition 7. Given a shape S and a point p = (x,y,z) € S, we define the neighborhood of p
in S to be the set SN{(z+1,y,2), (x—1,vy, 2), (z,y+1,2), (x,y—1, 2), (z,y, 2+1), (x,y,2—1) }.
We also say that neighborhoods are equivalent up to rotation, so there is 1 neighborhood
containing 1 point, 2 with 2 points, 2 with 3 points, 2 with 4 points, 1 with 5 points, and 1
with 6 points.

» Definition 8. We define a uniformly covered assembly as an assembly o where every
exposed side of every tile has the same strength 1 glue which is on. Additionally, if s is the
shape of o, we require that for every 2 points p,q € s with the same neighborhood, a tile of
the same type is located in both locations p and q in c.

A uniformly covered assembly has the same glue all over its surface, with no glues
marking special or unique locations, and has the same tile type in each location with the
same neighborhood, so such an assembly can convey no information specific to particular
locations, orientation, etc.

» Definition 9. We define a deconstructable assembly as an assembly where (1) all neigh-
boring tiles are bound to each other by one or more glues whose strengths sum to > 7, and
(2) each tile contains the glue(s) and signal(s) necessary to allow for all glues binding it to
its meighbors to be turned off.

In the following definitions, we will use the term junk assembly to refer to an assembly
that is not a “desired product” of a system, but which is a small assembly composed of tiles
which were used to facilitate the construction but are now terminal and cannot interact any
further.

» Definition 10 (Universal shape encoder). Let S be the set of all finite shapes, let f. be a
shape encoding function, let ¢ € N be a constant, and let E be a tileset in the STAME. If, for
every finite subset of shapes S’ C S, there exists an STAM™ system Es = (E,05/,7), where
g consists of infinite copies of assemblies of each shape s € S’ and also infinite copies of
the singleton tiles from E, such that (1) for every shape s € S’ there exists at least one binary
string bs € fe(s) and there exist infinite terminal assemblies of Egr that contain glues in the
on state on the exterior surfaces of those assemblies that encode by (which we refer to as
an assembly encoding s), (2) every terminal assembly is either an assembly encoding some
s €5 ora “junk assembly” whose size is bounded by ¢, and (3) no non-terminal assembly
grows without bound, then we say that E is a universal shape encoder with respect to f..

» Definition 11 (Universal shape decoder). Let S be the set of all finite shapes, let f. be a
shape encoding function, let ¢ € N be a constant, and let D be a tileset in the STAM™. If, for
every finite subset of shapes S' C S, there exists an STAM™ system Dg = (D, os:,T), where
og consists of infinite copies of assemblies each of which encode a shape s € S" with respect
to fe, and also infinite copies of the singleton tiles from D, such that (1) for every shape
s € S’ there exist infinite terminal assemblies of shape s, (2) every terminal assembly is
either an assembly of the shape of some s € S" or a “junk assembly” whose size is bounded by
¢, and (8) no non-terminal assembly grows without bound, then we say that D is a universal
shape decoder with respect to f.

» Definition 12 (Universal shape replicator). Let S be the set of all finite shapes and let R
be a tileset in the STAM®, and let ¢ € N be a constant. If, for every finite subset of shapes
S" c S, there exists an STAME system Rs = (R,05/,T), where os/ consists of infinite
copies of assemblies of each shape s € S" and also infinite copies of the singleton tiles from
R, such that (1) for every shape s € S’ there exist infinite terminal assemblies of shape s,
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(2) every terminal assembly is either an assembly of the shape of some s € S" or a “junk
assembly” whose size is bounded by c, (3) the number of assemblies of each shape s € S’
grows infinitely, and (4) no non-terminal assembly grows without bound, then we say that R
is a universal shape replicator.

3 3D Shape Replication

In this section, we state our main result, namely that there is a tileset in the STAM® which
is capable of replicating arbitrary shapes. This is formally stated in Theorem 13, and our
proof works by providing modular constructions capable of encoding and decoding arbitrary
sets of shapes which are given by Lemma 14 and Lemma 15, respectively, and then discussing
how they can be combined to replicate shapes.

» Theorem 13. There exists a tileset R in the STAM® which is a universal shape replicator,
such that for the systems using R (1) all input assemblies are uniformly covered, (2) the
constant ¢ which bounds the size of the junk assemblies equals 4, and (3) they finitely complete
with respect to a set of terminal assemblies with the same shapes as the input assemblies.

» Lemma 14. There exist a shape encoding function f., and a tileset E in the STAME
which is a universal shape encoder with respect to f,, such that for the systems using E (1)
all input assemblies are uniformly covered, (2) the constant ¢ which bounds the size of the
Jjunk assemblies equals 4, and (3) they finitely complete with respect to a set of terminal
assemblies which encode the shapes of the input assemblies.

» Lemma 15. There exist a shape decoding function fq, and a tileset D in the STAME
which is a universal shape decoder with respect to fq, such that for the systems using D (1)
the constant ¢ which bounds the size of the junk assemblies equals 8 and (2) they finitely
complete with respect to a set of terminal assemblies with the same shapes as those encoded
by the input assemblies.

3.1 Universal shape encoding

Here we describe the process by which a set of arbitrary shapes S = {s1,...,s,} can be
encoded in the STAMZ® using a universal shape encoding tileset £. We define our STAM '
system Eg to be the triple (F,Xg, 7 = 2) where Xg is our initial system state consisting of all
tiles in E, each with an infinite count, and additionally consists of a set A = {aq,...,an} of

uniformly covered, deconstructable assemblies such that the shape of a; is s; fori =1,...,n.

The assemblies of A are called our shape assemblies and are made only of tiles from a fixed
subset of E called shape tiles. Note that the glues and signals defined in these shape tiles
are not used to encode any information regarding the structure of our shape assemblies; any
shape specific information is inferred during the encoding process and the shape tiles simply
contain the necessary glues and signals to perform basic tasks required for the encoding
process, none of which are specific to any particular part of the shape assemblies.

The encoding process described below can largely be broken down into 3 steps. First, a
bounding box is constructed around the shape assemblies using special tiles which are distinct
from the shape tiles. Then, one of the corners of the box is elected non-deterministically to
be the leader corner to provide an origin point which will represent the first tile location
of our encoding. Finally, from the leader corner, the shape will be disassembled tile-by-tile
during which an encoding assembly will be constructed, recording for each disassembled tile
whether it is part of the shape or not (i.e. a “filler” tile used to assist the construction).
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Figure 3 Filler tile binding to a concave site. Once a filler tile attaches cooperatively, signals
activate glues on the filler tile and adjacent tiles. These glues ensure that the filler tile is attached
with strength 2 on all sides. These glues are activated sequentially and once both are in the on
state, signals activate output glues on all other sides of the filler tile. Once these signals activate,
the supertile has 1 fewer concave site and the filler tile behaves as though it is just another tile on
the supertile. While depicted in 2D for clarity, this occurs in 3D during our construction, but the
idea is the same.

Figure 4 Growth of the inner shell around a bounding box (illustrated in gray). Growth begins by
the attachment of corner gadgets (red). Cooperative binding with the corner gadgets and bounding
box allow edge tiles to attach (yellow). Cooperation between the edge tiles and the bounding box
then allows filler verification tiles (blue) to grow which are used to fill in the faces of the inner shell.
The process by which these verification tiles bind to the bounding box ensures that there are no
gaps or protrusions on the bounding box surface.

3.1.1 Bounding box assembly construction and verification

The first step in our encoding process begins by forming a bounding box assembly through
the attachment of special tiles, called filler tiles, to a shape assembly. These filler tiles
cooperatively bind to 2 diagonally adjacent tiles of our shape assembly in order to fill out
any concave portions. (See Figure 3.) When a filler tile attaches to an assembly, signals are
fired from the newly bound glues which activate additional glues between the filler tile and
shape assembly. These new glues ensure that the filler tile is bound strongly on each face to
the shape assembly. Glues are then activated on the other faces of the filler tile to further
allow additional filler tiles to attach. Eventually, after sufficiently many filler tiles have
attached, there will be no more locations in which another filler tile can attach. There are
often many ways in which this can occur for any shape assembly, but the resulting bounding
box assembly will always be a minimal bounding box of our shape. It should be noted that
it’s possible that not every location within the bounding box is filled. This can occur if the
original shape had enclosed cavities, but can also occur because the attachment of filler tiles
can create additional cavities as they attach. This is not a problem and it will always be
possible for filler tiles to complete the outer surface of the bounding box.

In order to verify that the bounding box is fully formed, a shell of tiles is grown around
our assembly. This shell, which we call the inner shell, is able to complete only if and only if
the assembly is a fully formed bounding box. Figure 4 illustrates the high-level construction
of the inner shell around a fully formed bounding box. Growth of the inner shell begins
with the attachment of corner gadgets to our assembly. These corner gadgets then allow
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Figure 5 Once filler verification has successfully occurred on a surface of our bounding box,
outer shell tiles attach to the edge tiles and corner gadgets on that surface to form a rectangle.
Between the corners of these rectangles, outer corner gadgets can cooperatively bind. Once the
corner gadgets have attached sufficiently to the outer shell tiles and the necessary connectivity
conditions have been met, inner shell tiles are dissolved from between the outer shell and bounding
box assembly. Illustrated using a cross-section view, the detachment of these tiles leaves us with
a detached bounding box assembly that is too large to fit in the gaps of the outer shell, but too
small to touch more than one interior corner of the outer shell simultaneously. Because of this, the
bounding box assembly can then bind to an interior corner of the outer shell, but only on one corner,
which is then elected leader.

for the cooperative attachment of edge tiles along the edges of the bounding box. Inside
the region bounded by the edge tiles, special tiles called filler verification tiles cooperatively
bind to the surface of the bounding box. If the surface of the bounding box assembly is not
complete or contains gaps or protrusions to which additional filler tiles can bind, special
gadgets called detector gadgets are able to bind to the erroneous edge tile or verification tile.
This attachment causes a signal to fire which propagates along the erroneous tiles and causes
them to deactivate their glues and detach.

3.1.2 OQuter Shell Construction

Whenever the filler verification process is completed on a surface of the bounding prism,
signals activate glues on the corner gadgets of that surface which initiate the growth of an
outer shell (see Figure 5). This outer shell consists of a rectangle of tiles which grows along
the edge tiles of the inner shell underneath. Between these outer shell rectangles on each
face of a bounding box, special corner gadgets called outer corner gadgets bind with 3 outer
shell tiles on the corners of the assembly. Once an outer corner gadget attaches, signals are
propagated along outer shell and outer edge tiles to adjacent outer corner gadgets. When
enough of these signals are detected, the inner shell underneath the outer shell is dissolved
and glues on the corners of the bounding box assembly called candidate glues are activated.
These glues are complementary to glues presented on the inside corners of the outer shell.
Because the inner shell dissolved, the bounding box assembly is free to move around inside
of the outer shell, but since it is too big to fit through the gaps on the outer shell, it cannot
escape. Additionally, since the outer shell is 1 tile bigger than the bounding box on each side,
even though all corners of the two are complementary, only one of them will be able to bind.
When one nondeterministically does, it is elected “leader” and the outer shell is dissolved.

3.2 Shape encoding

Following the process of leader election on a bounding box, we are presented with a single
corner with unique glues exposed indicating a leader tile. Here we describe the tiles of
which allow for the universal shape encoding function f, to be implemented on the shape
contained in a bounding box. We use the term wvozels to reference the locations of Z* in the
bounding box.

2:9
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At a high level, the encoding of a shape s; € S is generated by a process which visits
each voxel inside of the bounding box sequentially, and transfers the information of whether
the voxel is inhabited by a filler tile or a shape tile to an encoding assembly. Because leader
election chooses a corner non-deterministically, there may be multiple encoding assemblies
corresponding to each shape. We say that ®; is the finite set of encodings of shape s; and
define ® = & U--- U ®,,. For convenience we use ¢; to refer to any one encoding of s; in ®;
and note that the process is essentially identical for the others.

The first step in the process is for an encoding corner gadget to bind to the corner elected
as leader, and then construct a set of helper tiles around the bounding box called the shell.
Deconstruction is then carried out in slices, where each slice is the set of voxels contained
in a 2D plane of the bounding box. The starting voxel contains the tile elected leader (see
Figure 6a) and the orientation of the binding of the encoding corner gadget arbitrarily
defines the orientation of the slices. For ease of explanation, once an orientation has been
chosen by the attachment of the encoding corner gadget, we choose the x and y directions to
correspond to the axes along a slice and the z direction to be the axis perpendicular to x and
y into the bounding box from the leader. Specifically, each xy plane of the bounding box
constitutes one slice. The end result of the encoding process is a rectangular prism assembly
of height 1 where the each tile corresponds to a unique location of the bounding box in Z3,
and whose glues represent whether or not each location contains a shape tile (represented by
a 1), or empty space inhabited by a filler tile or otherwise (represented by 0). Additionally,
information about the order in which tiles were deconstructed is included in ¢; for purposes
of decoding and defining the width of a row. For a full description of the tiles and their
functionality, see [4], and see Figure 6 for a schematic depiction of part of the process.

(a) The binding of the encoding gadget (b) (Left) Placement of recognizer tile allows for growth of path of
(black) allows for creation of the shell tiles which extend the encoding structure and place both direction
(fuchsia, purple) around the bounding and encoding tile (Right) After tiles are placed on the encoding
box (red). Once the shell is complete, structure, tiles used to place the encoding tiles are dissolved into
deconstruction can begin by the addi- size 1 junk and the encoding process continues by placing a new
tion of recognizer tiles (yellow). recognizer in the order of encoding.

Figure 6 Tile type calculation and description of tile types used in shape decoding.

We provide a description of how the information provided by the location of tiles in a
bounding box is encoded into binary values. Beginning with the origin point (0,0,0), we
read the tile type information for each tile in the first row sequentially by incrementing the
x-coordinate; for example, the second tile read is in the voxel with coordinates (1,0, 0). Once
all tiles in the current row have been read, we jump to the next row up. By this process of
visiting every tile in a slice in a “zig-zag” pattern, we are able to encode the information
regarding any slice of a bounding box sequentially. Figure 7 demonstrates the encoding of a
3Xx4x5 (zxy X z) bounding box.
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12 11 8

Figure 7 (Right) An example 3 x 4 x 5 shape, (Left) The first two rows of its encoding assembly.

The first (closest) row encodes the direction followed for each row of a slice, and the second row
encodes the presence of a shape tile or filler tile in each location. Yellow tiles represent ‘0’, red tiles
represent “1”. Shape tiles and ‘4’ direction growth are encoded as 0, fill tiles and ‘-’ are encoded
as 1. The encodings of additional slices only need a single row each, since the growth direction is
shared across rows of consecutive slices.

The very first row of the encoding subassembly contains the information regarding the
direction of the growth in our zig-zag pattern, and as a byproduct we also are able to easily
retrieve the width of the rows of tiles. We compare the = values in the coordinates (z,y, 2)
between the first tile of a row and the last tile of a row by subtracting the x value between
the two such that Az = T1.6t — Thest. If a tile is contained in a row where Az > 0 we denote
this growth in the positive (‘+’) direction. Alternatively, if Az < 0 we denote this growth in
the negative (‘-’) direction.

The STAMZ system €5 = (E,X5,7 = 2) generates the set of encoding assemblies ®
with a junk size of 4. &g finitely completes, as each of the sub-constructions to carry out

the encoding f. require a finite number of steps (and thus, finite tile count) to complete.

The final property which must hold is that regardless of the number of distinct shapes of
input assemblies, the shapes of all will be correctly replicated. By our construction, there
are never exposed glues on the surfaces of any pair of assemblies that each contain an input
assembly that would allow them to bind to each other. Since junk assemblies produced by
any assembly sequence are also unable to negatively interact with other assemblies, a system
whose input assemblies have multiple shapes will behave simply as the union of individual
systems which each have one input assembly shape, creating terminal assemblies of all of
(and only) the correct shapes. Thus we prove Lemma 14 (with full details in [4]).

3.3 Shape Decoding

We now describe the tileset D which functions as a universal shape decoder. The STAM#
system for shape decoding is defined as Dg = {D,Xg,T = 2}. Xg includes infinite copies of
the tiles of D and the set ® of encoding structures generated from £g. The shape decoding
process and tile types required can be broken into 3 main sets of tiles. We describe the
process for a single ¢ € ® and note that the process proceeds identically for each encoding
simultaneously. First, base tiles initiate the decoding process by binding to ¢ at a unique
starting location. Base tiles also provide the remaining tile types to build an assembly which
is guaranteed to be connected by at least strength 2 to the encoding structure. Second,

2:11
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we construct the shape and filler tiles and describe how encoded information allows for an
assembly sequence of shape tiles guaranteed to be connected to their neighbors in the encoded
shape. Third, we have a set of tiles which read the encoding of filler and shape tiles (decoder
tiles), and allow for the sequential placement of shape and filler tiles based on their location
in the encoding of a shape. In the tileset D, we use a decoding process which places tiles in
the exact same order as the encoding process built the encoding assembly ¢ as described in
Figure 7. For a full description of the tiles and their functionality, see [4].

3.3.1 Retrieving Encoded Information

Two pieces of information are explicitly encoded in ¢. The bulk of the tiles in the encoding
correspond to identifying if a location in a shape corresponds to empty space, or a tile of
the shape. The second piece of information provided in the first row of the encoding is the
the direction of growth; this can be utilized in two manners. First, the direction of growth
provides to the system the types of tiles to be utilized to reach the point encoded, as growth
processes vary significantly between “4” direction growth (encoded as a 0) and “-” direction
growth (encoded as a “1”). Secondly, when the direction of growth encoded changes from 0
to 1 or 1 to 0, this indicates to the system when a tile is to be placed into a new row. This
information is required to ensure that we can grow a slice such that each tile is guaranteed to
be connected to its neighbor, and so tile faces are assigned the appropriate glues. Figure 8a
demonstrates the tile bindings allowing information to be retrieved from an encoding.

Directional tile

(a) An example of the information which is gathered
from the encoding structure. The directional tile
gathers information regarding the growth type of
tile location encoded. The direction change detector
gadget (white) which detects that growth type ‘0’
shifts to growth type ‘1, indicating a change of row
and necessitating a direction change tile. The de-
coder tile, once glues are available to cooperatively
bind to the encoding structure and the directional
tile, determines that the tile in the current location
is a shape tile. Backing tiles allow for the sensing
of the first row.

(b) An example of normal row growth and direction
change tiles used by the decoding process to build
a slice. These tile types map to both shape and fill
tiles. (1) and (4) are standard row growth tiles for
‘+’ and ‘-’ direction growth, respectively. (2) and
(5) are row end tiles for ‘+” and ‘-’ direction growth;
they open cooperative binding sites which allow for
tiles (3) and (6) to bind and change the direction of
growth. Signal activation arrows demonstrate the
order in which faces of shape tiles are determined
to be either bound to a neighboring shape tile or
have a fill tile adjacent to the face.

Figure 8 Tile type calculation and description of tile types used in shape decoding.

3.3.2 Proof of Universal Shape Decoding Correctness

We summarize the decoding process and show that during this process, the shapes which
were encoded in the set of input encoding assemblies ® are correctly assembled. We first
consider the decoding process of a single encoding assembly ¢ € ® and note that a similar
process happens for all encoding assemblies simultaneously without interfering one another.
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Our decoding process begins by building a base of tiles connected to ¢. This base holds
the shape as it is being constructed and is used to help ensure the connectivity of the shape
as it is being constructed. The decoding process is performed in iterations, where during
each iteration a row of ¢ is scanned tile-by-tile and a corresponding 2D slice of the shape
is constructed. Each slice is constructed starting from the bottom (smallest y coordinate)
to the top (largest y coordinate), with tiles attaching in a zig-zag manner, as illustrated in
Figure 7. Each slice of the assembled shape corresponds to a unique z coordinate so for
convenience we call the slice whose z coordinate is 7, 0;. As each slice is assembled, tiles are
placed in each location of the slice, even those locations that will not be part of the final
shape, though these will be removed during the assembly of the next slice.

The first slice o1 can be assembled naively, but during the assembly of each following
slice, tiles which will not be part of the final shape on the previous slice must be removed.
This is done as follows. Suppose that slice o; (i > 1) is currently being assembled. Before a
tile ¢; is placed in a location (z,y,1), a gadget is used to determine the type of the tile (see
Figure 8b for examples of the 6 main tile types) t;_1 at location (z,y,i — 1) (i.e. the tile
with the same x and y coordinates on the previous slice). If this ¢;_; is part of the final
shape, then ¢; is placed and signals are used to activate strength 2 glues between ¢; and t;_1;
otherwise, if ¢;_; is not part of the final shape, it is removed before ¢; is placed. Regardless
of the type of tile ¢;_1, when t; is placed, glues are activated which connect ¢; to all adjacent
tiles on the same slice. Once the final slice is assembled, a final zig-zag pass is made in the
next z coordinate to remove all tiles from the last slice which are not part of the final shape.

It is also important to note that the base, on which the shape is being assembled, also
forms a ceiling above the slices being assembled. This ceiling helps ensure that tiles on the
top row of each slice are able to remain attached to the assembly during construction. It
should be clear that during this decoding process (1) each tile that belongs to the final shape
is placed in its correct location, and (2) that those tiles of a slice which are not part of the
final shape will be removed from the assembly during the assembly of the next slice; However,
because tiles are removed during the process, we must show that none of these removals can
cause parts of the assembly to unintentionally detach. We state this as Lemma 16. The
proof of this can be found in [4]

» Lemma 16. Let ¢ be an encoding assembly which encodes the shape s. During the decoding
process above, as slice o; (i > 1) is being assembled, no tile in slices o1,...,0;_1 which are
part of the final shape assembly can detach.

Given the set of input encoding structures ®, the STAM¥ system Dy = {D, Xs, 7 = 2}
produces a set of terminal supertiles S = {s1,...,s,} in parallel with a maximum junk size
of 3. Dg finitely completes, as for the production of the set of shapes s € S from input
encoding structures ® a finite number of tiles are required for each encoding structure to
produce a terminal assembly. We can guarantee this as each encoding produces a single
terminal shape, as the encoding of the shape dissolves into size 1 junk after the terminal
shape has decoded. By our construction, there are never exposed glues on the surfaces of
any pair of assemblies that each contain an input encoding that would allow them to bind
to each other. Since junk assemblies produced by any assembly sequence are also unable
to interact with other assemblies, a system whose input assemblies have multiple shapes
will behave simply as the union of individual systems which each have one input assembly
shape, creating terminal assemblies of all of (and only) the correct shapes. Thus we prove
Lemma 15.
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Since we have shown the existence of universal encoding and universal decoding tilesets,
we have the basis to demonstrate a universal shape replicator and prove Theorem 13. Due to
the modularity of the constructions of Lemmas 14 and 15, at a high level we simply generate
a new tileset R = F U D. A few minor changes must occur to satisfy Definition 12; the full
proof can be found in [4].

4 Beyond Shape Replication

The constructions used to prove Theorem 13 were intentionally broken into separate, modular
constructions proving Lemmas 14 and 15 and thus providing a universal shape encoder and
a universal shape decoder. This is not only useful for proving their correctness, but also for
allowing for computational transformations to be performed on the encodings of input shapes
in order to instead produce output shapes based on those transformations. Like even the
much simpler aTAM, the STAM (and STAM®) are Turing universal, meaning any arbitrary
computer program can be executed by systems in these models. Thus, given any program
that can perform a computational transformation of the points of a shape and output points
of another shape, tiles that execute that program (for instance, by simulating an arbitrary
Turing machine in standard ways, e.g. [30, 24]) can receive as input the binary encodings of
arbitrary shapes (after their creation by the universal shape encoder), transform them in any
algorithmic manner, and then assemblies of the shapes output by those transformations can
be produced (using the universal shape decoder).

-

(a) (b) (c)

Figure 9 (a) An example shape, (b) The same shape at scale factor 2, (¢) A shape which is
complementary to the top surface of the shape in (a).

Due to space constraints, we do not go into great detail about the opportunities that
such constructions provide. Instead, we mention just a few of the possibilities (and depict
some in Figure 9) while noting that the possibilities are technically infinite:

1. Scaled shapes: a system could be designed to produce assemblies that have the shapes of
input assemblies scaled by either a built-in constant factor (including negative, to shrink
the shapes), or instead with another type of input assembly that specifies the scaling
factor, allowing for a “universal shape scaler”.

2. Inverse shapes: a system could be designed to produce assemblies that have the inverse,
i.e. complementary, shapes of input assemblies (assuming the complements are connected,
and restricting to a bounding box size since the complement of any finite shape is infinite).

3. Pattern matching: a system could be designed to inspect input assembly shapes for
specific patterns and to either produce assemblies that signal the presence of a target
pattern, or instead assemblies that are complementary to, and can bind to, the surfaces
of assemblies containing those patterns.
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Although such constructions are highly theoretical and quite complex, and thus unlikely in
their current forms to be practically implementable, they provide a mathematical foundation
for the construction of complex, dynamic systems that mimic biological systems. One possible
example is an “artificial immune system” capable of inspecting surfaces, detecting those
which match (or fail to match) specific patterns, and creating assemblies capable of binding
to those deemed to be foreign, harmful, or otherwise targeted. As mentioned, there are
infinite possibilities.

5 Impossibility of Shape Replication Without Deconstruction

In this section, we prove that in order for a system in the STAM® to encode and/or replicate
shapes which have enclosed or bent cavities (see Definitions 4 and 5), the input assemblies

must have the potential for tiles to be removed. To do so, we first utilize a theorem from [2].

» Theorem 4 (from [2]). Let U be an STAM* tileset such that for an arbitrary 3D shape S,
the STAM* system T = (U,0g,7) with dom og = S, T is a shape self-replicator for S and
og is non-porous. Then, for any r € N, there exists a shape S such that T must remove at
least r tiles from the seed assembly og.

Theorem 4 from [2] applies to the STAM* (see Section A.3). However, the STAMZ is
simply a restricted version of the STAM™* which only allows tiles to be a single shape, that
of a unit cube, and does not allow flexible glues. Since all assemblies in the STAM?® are
non-porous (i.e. free tiles cannot pass through the tiles of an assembly or the gaps between
bound tiles) and the STAM® has more restrictive dynamics than the STAM*, the proof of
this result, which shows the impossibility of self-replicating assemblies with enclosed cavities
without removing tiles, suffices to prove the following corollary (stated using the terminology
of this paper) as well.2 Note that this proof holds even if an input assembly is not uniformly
covered, but its glues are instead allowed to encode information about the shape.

» Corollary 17. There exist neither a universal shape encoder nor a universal shape replicator
in the STAM™ for the class of shapes with enclosed cavities whose assemblies are not
deconstructable.

(a) (b) (©)

(d)

Figure 10 (a) and (b) Partial depictions of a pair of shapes which cannot be correctly en-
coded/replicated without a deconstructable input assembly. Each consists of a 5 X 5 X 4 cube with a
4-cube-long bent cavity. For each, the green, purple, blue, and yellow locations indicate the empty
locations that make the bent cavity. The rest of the 5 X 5 x 4 cube locations would be filled in with
red cubes (some have been omitted to make the cavity locations visible). (c) and (d) The shapes of
assemblies that could grow into the bent cavities.

Our next theorem deals with shapes having bent cavities.

2 The proof can be found in [2], and we omit duplicating it here due to space constraints.
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» Theorem 18. There exist neither a universal shape encoder nor a universal shape replicator
in the STAMT for the class of shapes with bent cavities whose input assemblies are uniformly
covered but are not deconstructable.

We prove Theorem 18 by contradiction. Therefore, let f. be a shape encoding function
and assume FE is a universal shape encoder with respect to fe, and let ¢ be the constant
value which bounds the size of the junk assemblies. (Nearly identical arguments will hold
for a universal shape replicator.) Define the shapes s; and sy as shown in Figures 10a and
10b, i.e. each is a 5 x 5 x 4 cube with a bent cavity that goes into the cube to a depth of 3,
then turns one of two directions for each. Note importantly that the well is offset from the
center of the cube such that s; and sy are not rotationally equivalent. Since F is assumed
to be a universal shape encoder, there must exist two STAM® systems &, = (E,01,7) and
&y = (E,09,7), where o1 consists of infinite copies of tiles from E and infinite copies of
uniformly covered assemblies in the shape of s1, and o9 consists of infinite copies of tiles
from F and infinite copies of uniformly covered assemblies in the shape of sy as follows.

&1 must produce terminal assemblies which encode shape s; but must not produce
terminal assemblies which encode shape sz, since no assembly of shape ss is included in its
input assemblies. Similarly, £ must produce terminal assemblies which encode shape so but
not s;. Let @ be an assembly sequence in & which results in a terminal assembly encoding
shape s;. We now show that every action of & must be valid, in the same ordering, in & but
using an input assembly of shape ss. This is because the exact same glues will be exposed
by the input assemblies of shapes s; and ss in the same relative locations with the slight
difference of relative rotations of the innermost locations of the bent cavities of each from
the adjacent cavity locations. Assuming that, in &, tiles attach into all locations of the bent
cavity (if only the location shown in yellow remains empty the same argument will hold, and
if both the locations shown in yellow and blue remain empty then there is absolutely no
difference in any aspect of the assembly sequence in & and the argument immediately holds),
this results only in the relative orientations of at most the bottom two tiles being turned 90
degrees relative to the tile immediately above them (i.e. the tile in the purple location in
Figure 10). Since tiles in the STAMZ® are rotatable, with no distinction for directions, there
is no mechanism for tiles in the purple locations of assemblies shown in Figures 10c and 10d
from distinguishing from each other (via tile types, glues, or signals). Tiles of the same types
which bind into those locations in & must also be able to do so in the assembly sequence of &;
using the exact same glues and firing the exact same signals (if any). Thus & must be a valid
assembly sequence in & as well. This means that an assembly encoding the shape of s; is
also created as a terminal assembly in &. Note that if the constant ¢ is greater than the size
of the shapes s and sy (i.e. 5% 5 %4 —4 = 96), then we can simply increase their dimensions
until they are larger than ¢ (but still contain the same bent cavities) and the argument still
holds and the incorrectly produced assemblies cannot be considered “junk” assemblies. This
is a contradiction that E is a universal shape encoder with respect to f. and constant c.
Since no assumptions were made about E other than it being a universal shape encoder, no
such E can exist. By slightly altering the argument for a universal shape replicator R, and
generating terminal assemblies of shapes s; and sy (rather than their encodings), the same
argument holds to show no universal shape replicator exists. Thus Theorem 18 is proven.
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A  Technical Appendix

A.1 Definition of the STAME model

Here we provide a definition of the model used in this paper, called the STAM® (i.e. the
“STAM with rotation”), which is based upon the 3D Signal-passing Tile Assembly Model
(STAM) [15] (and similar to the model in [20, 21]). The STAM is itself based upon the
2-Handed Assembly Model (2HAM) [7, 9], also referred to as the “Hierarchical Assembly
Model”, which is a mathematical model of tile-based self-assembling systems in which
arbitrarily large pairs of assemblies can combine to form new assemblies.

A glue is an ordered pair (I, s), where | € X7 U{s* : s € ¥} is a non-empty string, called
the label, over some alphabet X, possibly concatenated with the symbol “*”, and s € ZT is a
positive integer, called the strength. A glue label [ is said to be complementary to the glue
label 1*.

A tile type is a mapping of zero or more glues, along with glue states and possibly signals,
which will be defined shortly, to the 6 faces of a unit cube. A tile is an instance of a tile
type, and is the base component of the STAM®. Each tile type is defined in a canonical
orientation, but tiles can be in that orientation or any rotation which is orthogonal to it (i.e.
they are embedded in Z3).

Every glue can be in one of three glue states: {on,latent,off}. If two tiles are placed
next to each other, and their adjacent faces have glues g1 = (I, s) and g2 = (I*, s), then those
glues can form a bond whose strength is s. We require any copies of glues with the label [, or
its complement [*, in any given system have the same strength (e.g. it is not allowed to have
one glue labeled [ with strength 1 and another labeled [ or {* with strength 2).

A signal is a mapping from a glue g5 (the source glue) to an ordered pair, (g:, s), where
g+ (the target glue) is a glue on the same tile as g5 (possibly g itself) and s € {on, off}. If
and when g, forms a bond with its complementary glue on an adjacent tile, the signal is
fired to change the state of g; to state s. Each glue of a tile type can be defined to have zero
or more signals assigned to it. Each signal on a tile can fire at most a single time. When a
glue is fired, the state of the target glue is not immediately changed, but the pair (g;, s) is
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added to a queue of pending signals for the tile containing its glues. When a pending glue
is selected for completion (in a process described below), then the state of g; is changed to
s if and only if its current state is so and (so,s) € {(on, off), (latent,on), (latent, off)}.
That is, the only valid glue state transitions are on to off, or latent to on or off.

A supertile is (the set of all translations and rotations of) a positioning of one or more
connected tiles on the integer lattice Z3. Two adjacent tiles in a supertile can form a bond
if the glues on their abutting sides are complementary and both are in the on state. Each
supertile induces a binding graph, a grid graph whose vertices are tiles, with an edge between
every pair of bound tiles whose weight is the strength of the bound glues. A supertile is
T-stable if every cut of its binding graph cuts edges whose weights sum to at least 7. That
is, the supertile is 7-stable if at least energy 7 is required to separate the supertile into two
parts. Assembly is another term for a supertile, and we use the terms interchangeably, to
mean the same thing.

Each tile has a tile state that contains the current state of every glue as well as a (possibly
empty) set of pending signals and a (possibly empty) set of completed signals. Every supertile
consists of not only its set of constituent tiles, but also their tile states, and a set bonds that
have formed between pairs of glues on adjacent tiles.

A system in the STAM® is an ordered triple (T, S, 7) where T is a finite set of tiles called
the tileset, S is a system state which consists of a multiset of supertiles that each have a count
(possibly infinite), and 7 € ZV is the binding threshold (a.k.a. temperature) parameter of the
system which specifies the minimum strength of bonds needs to hold a supertile together. In
the initial state of a system, no tiles have pending signals, all pairs of adjacent glues which
are both complementary and in the on state in all supertiles have formed bonds and any
signals which would have been fired by those bonds are completed, and all distinct supertiles
are assumed to start arbitrarily far from each other (i.e. none is enclosed within another).
By default (and unless otherwise specified), the initial state contains an infinite count of all
singleton tiles in T'.

A system evolves as a (possibly infinite) series of discrete steps, called an assembly
sequence, beginning from its initial state. Fach step occurs by the random selection and
execution of one of the following actions:

1. Two supertiles currently in the system, o and 3, are translated and/or rotated without
ever overlapping so that they can form bonds whose strengths sum to at least 7. The
count of the newly formed supertile is increased by 1 in the system state and the counts of
each of a and § are decreased by 1 (if they aren’t co). In the newly created supertile, from
the entire set of pairs of glues which can form bonds, a random subset whose strengths
sum to > 7 is selected and bonds formed by those glues are added to the set of bonds
that have formed for that supertile. Additionally, for each glue which forms a bond, all
signals for which it is a source glue, but which aren’t already pending or completed, are
added to the set of pending signals for its tile.

2. For any supertile currently in the system, from the set of pairs of glues which can form
bonds but haven’t, a glue pair is selected and a bond formed by those glues is added to
the set of bonds that have formed for that supertile. Additionally, for each glue which
forms that bond, all signals for which it is a source glue, but which aren’t already pending
or completed, are added to the set of pending signals for its tile.

3. For any supertile currently in the system, a pending signal is selected from the set of
pending signals of one of its tiles. If the action specified by that signal is valid, the state
of the target glue is changed to the state specified by the signal. The signal is removed
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from the set of pending signals and added to the set of completed signals. If the action is
not valid (i.e. the pair specifying the current state of the target glue and the desired end
state is not in {(on, off), (latent,on), (latent, off)}), then the signal is just removed
from the pending set and added to the completed set, and there is no change to the target
glue.

4. For a supertile 7y currently in the system for which there exists one or more cuts of < 7
(which could be the case due to one or more glues changing to the off state), one of

those cuts is randomly selected and +y is split into two supertiles, a and 3, along that cut.

The count of v in the system state is decreased by one (if it isn’t oo) and the counts of «
and f are increased by one (if they aren’t 0o).

Given a system T = (T, .5, 7), a supertile is producible, written as a € A[T], if it either is
contained in the initial state S or it can be formed, starting from S, by any series of the
above steps. A supertile is terminal, written as o € Ag[T], if it is producible and none of
the above actions are possible to perform with it (and any other producible assembly, for list
item 1).

Note that tiles are not allowed to diffuse through each other, and therefore a pair of
combining supertiles must be able to translate and/or rotate without ever overlapping into
positions for binding. It is allowed, though, for two supertiles, a and 3, to translate and/or
rotate into locations which are partially enclosed by another supertile « before binding,
potentially creating a new supertile, ¢, which would not have been able to translate and/or
rotate into that location inside v, without overlapping -y, after forming. However, although
the model allows for supertiles to assemble “inside” of others, in order to strengthen our
results we do not utilize it for the constructions of our positive results, but its possibility
does not impact our negative result.

A.2 STAM?® Gadgets and Tools

Throughout our results we repeatedly make use of several small assemblies of tiles, referred
to as gadgets, and patterns of signal activations to accomplish tasks such as keeping track of
state, removing specific tiles, and passing information across an assembly. In this section we
describe several of these gadgets and signal patterns so that they can later be referenced
during our construction. We intend that this section also serve as a basic introduction by
example to the dynamics of signal tile assembly.

Detector Gadgets

Detector gadgets are used to detect when a specific set of tiles exist in a particular configuration
relative to one another in an assembly. For a detector gadget to work, the tiles to be detected
need to each be presenting a glue unique to the configuration to be detected. The strength
of these glues should add to at least the binding threshold 7, but the total strength of any
proper subset of the glues should not. If two or more tiles then exist in the configuration
expected by the detector gadget, the gadget can cooperatively bind with the relevant glues.
Upon binding, any signals with the newly bonded glues as a source will fire. These signals
can be in the “detected tiles” or in the detector itself and can be used to initiate some other
process based on the condition that the tiles exist in the specified configuration. More often
than not, it’s also desirable for signals within the detector gadget to deactivate its own glues
so that it does not remain attached to the assembly after the detection has occurred.
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Figure 11 A simple detector gadget example.

Detector gadgets can exist in many forms depending on the configuration to detect, but
the most simple is a single tile. Illustrated in Figure 11 is a simple detector gadget designed
to detect 2 diagonally adjacent tiles, each presenting a strength-1 glue of type d towards a
shared adjacent empty tile location. In this case, 7 = 2 and the detected tiles are designed to
activate their x glues upon a successful detection. In general, detector gadgets can be made
up of more than 1 tile. Duples of tiles can be used for instance to detect immediately adjacent
tiles each presenting some specific glue on the same side. For detector gadgets consisting
of more than 1 tile, the component tiles must be designed to have unique 7-strength glues
between them so that the components can bind together piece-wise to form the whole gadget.
Because all of the glues presented for the detection are needed to reach a cumulative strength
of 7, only after it is fully formed will it be able to detect tiles and thus partially assembled
detector gadgets will not erroneously perform partial detections. It is assumed in our results
that signals within a detector gadget itself will cause the gadget to dissolve after a detection.

Figure 12 A corner gadget example.

Corner Gadgets

Corner gadgets are a specific type of detector gadget which are used primarily for facilitating
the attachment of other tiles on the surface of some assembly. Corner gadgets can either be
2D, consisting of 3 tiles arranged in a 2 x 2 square with one corner missing, or 3D, consisting
of 7 tiles arranged in a 2 x 2 X 2 cube with one of the corners missing. Because of this
shape, a corner gadget is able to cooperatively bind to any single tile of an assembly with 2
accessible, adjacent faces. These faces must be presenting specified glues whose cumulative
strength is at least 7, but neither individually is. Illustrated in Figure 12 is the side view
of a 2D corner gadget attaching to an assembly. After the attachment, it is then possible
for additional tiles to cooperatively bind along the surface of the assembly. This behavior is
useful for initiating the growth of shells of tiles around an assembly as will be seen in our
later construction.

Like with detector gadgets, signals fired from the binding of a corner gadget can also be
used to initiate other tasks, though special care needs to be taken for 3D corner gadgets
when 7 = 2. Because a 3D corner gadget has 3 interior faces which can have glues to bind
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with a tile on the corner of an assembly, it is often desirable to fire signals from all 3 of
these glues; however, because only 2 glues are necessary to meet the binding threshold when
7 = 2, the third may not form a bond immediately. If it is planned for the corner gadget
to eventually detach, then it is crucial that any signals causing the corner gadget to detach
cannot fire until all 3 of the interior glues have first bound. This can often be accomplished
using sequential signaling as described below.

Figure 13 Sequential signaling example.

Sequential Signaling

By carefully adding additional helper glues and signals to a tile or tiles, we can ensure that
signals in our tiles are fired in a specific order or ensure that a certain set of glues has
successfully bound before certain signals are fired. The way in which this is done depends

on the exact situation, but as an example consider the situation illustrated in Figure 13.

In this situation we want the green tile to cooperatively bind to the assembly via glues of
type a and b. Once this happens, we want to first activate additional glues of type u and v
between the green tile and assembly so that each side of the green tile is attached to the
assembly with strength 2, then we want glues of type x on the other sides of the green tile to
activate. The arrangement of signals illustrated in Figure 13 guarantees that the x glues
cannot activate before both the u and v glues do, since the signals which activate the x glues
are dependent on the glues v and v. A similar arrangement of signals and glues is used to
implement gadgets called filler tiles in our construction.

Tile Conversion

It is often useful for tiles to change behavior after receiving a specific signal. This can be
done by having signals activate a new set of glues on the tile and deactivate old ones. This
can be thought of as converting the tile into a different type of tile, but it’s important to
note that this process cannot happen indefinitely nor arbitrarily. Every tile conversion has
to be prepared in the signals and latent glues of the tile and once those signals fire, they
cannot fire again. It is possible for a tile to convert to another several times, but such a tile
must have the necessary glues and signals for each conversion separately. It is also often
possible achieve this behavior by detachment of one tile and attachment of another in the
same location, though special care needs to be taken so that no other tiles can attach in the
location during the conversion.

Tile Dissolving

For any arbitrary set of glues on a tile, we use the term dissolving to refer to the process
of initiating signals which turn all possible glues to the off state We note that due to the
asynchronous nature of the model that no guarantee can be made with regards to the order

2:23

DNA 28



2:24

Universal Shape Replication via Self-Assembly with Signal-Passing Tiles

of the processing of the signals. A tile breaks apart from its supertile once a strength 7 bond
no longer exists between itself and its neighbors. However, other glues may be active when
the tile does so, leading to the possibility of undesired binding due to exposed glues in the
on state with pending off signals, unless special care is made to avoid this.

A.3 STAM* overview

The 3D Signal-passing Tile Assembly Model* (3D-STAM*; or simply STAM*) was introduced
in [3] as a generalization of the STAM [28, 15, 16, 23] in which (1) tiles are 3D cubes rather
than 2D squares, (2) multiple tile shapes are allowed in the same system, (3) tiles are allowed
to flip and rotate (similar to [8, 19]), and (4) glues are allowed to be defined as either rigid
(as in the aTAM, STAM, etc.) or flexible (as in [13]) so that even after being bound, tiles
and subassemblies are free rotate with respect to tiles and subassemblies to which they are
bound by bending or twisting around a “joint” in the glue.



A Coupled Reconfiguration Mechanism for
Single-Stranded DNA Strand Displacement
Systems

Hope Amber Johnson &
The University of British Columbia, Vancouver, Canada

Anne Condon &

The University of British Columbia, Vancouver, Canada

—— Abstract

DNA Strand Displacement (DSD) systems model basic reaction rules, such as toehold-mediated
strand displacement and 4-way branch migration, that modify complexes of bound DNA strands.
DSD systems have been widely used to design and reason about the correctness of molecular programs,
including implementations of logic circuits, neural networks, and Chemical Reaction Networks. Such
implementations employ a valuable toolkit of mechanisms — sequences of basic reaction rules — that
achieve catalysis, reduce errors (e.g., due to leak), or simulate simple computational units such as
logic gates, both in solution and on surfaces. Expanding the DSD toolkit of DSD mechanisms can
lead to new and better ways of programming with DNA.

Here we introduce a new mechanism, which we call controlled reconfiguration. We describe one
example where two single-stranded DSD complexes interact, changing the bonds in both complexes
in a way that would not be possible for each independently on its own via the basic reaction
rules allowed by the model. We use coupled reconfiguration to refer to instances of controlled
reconfiguration in which two reactants change each other in this way. We note that our DSD model
disallows pseudoknots and that properties of our coupled reconfiguration construction rely on this
restriction of the model.

A key feature of our coupled reconfiguration example, which distinguishes it from mechanisms
(such as 3-way strand displacement or 4-way branch migration) that are typically used to implement
molecular programs, is that the reactants are single-stranded. Leveraging this feature, we show
how to use coupled reconfiguration to implement Chemical Reaction Networks (CRNs), with a
DSD system that has both single-stranded signals (which represent the species of the CRN) and
single-stranded fuels (which drive the CRN reactions). Our implementation also has other desirable
properties; for example it is capable of implementing reversible CRNs and uses just two distinct
toeholds. We discuss drawbacks of our implementation, particularly the reliance on pseudoknot-
freeness for correctness, and suggest directions for future research that can provide further insight
on the capabilities and limitations of controlled reconfiguration.
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1 Introduction

1.1 Summary

An important task in the field of molecular programming is to develop effective molecular
programming languages, and to develop an effective abstraction hierarchy. Ideally, human-
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without further human input to a molecular implementation at the bottom level. A strong
candidate pair of layers is the Chemical Reaction Network (CRN) model and its implementa-
tion with DNA Strand Displacement (DSD) systems. CRNs are a particularly well-studied
abstract model of well-mixed chemical systems, in which many interesting programs can be
and have been written [2, 3, 28, 36, 41]. Moreover, arbitrary CRNs can be transformed into
DSD systems that implement the original CRN [7, 10, 30, 37, 39].

However, while we now have a good understanding of the capabilities and limitations
of CRNs, we cannot say the same for DSD systems. Most DSD systems [35] use one of
two simple mechanisms, three-way toehold exchange or four-way strand exchange, and the
range of alternative mechanisms that could be used when designing DSD systems that
simulate CRNs or other molecular programs is not well understood. We believe a more
formal understanding of DSD would aid in the design process, exploring more — and possibly
more efficient — ways of getting things done with DSD systems. Some work has been done
toward this goal [4, 21, 23, 26, 29]. In the process of trying to improve formal understanding,
we discovered a new mechanism in an unexplored area of the DSD design space. In this paper
we present this new mechanism, show how it can be used to implement arbitrary CRNs, and
discuss its further implications for understanding DSD.

We describe further background information, then we discuss our contribution, a new
DSD mechanism we call controlled reconfiguration and its subclass coupled reconfiguration.
This new mechanism has a number of properties fundamentally different from typical existing
DSD mechanisms, including the use of single-stranded signals and fuels, and a stronger than
usual dependence on the assumption of pseudoknot-freeness. We discuss the implications and
challenges arising from those, including the ability of coupled reconfiguration to implement
arbitrary CRNs.

1.2 Background

Our work revolves around DNA Strand Displacement (DSD): certain behaviors of DNA
strands that have been used to build useful molecular devices, including logic circuits and
neural networks [11, 31], DNA walkers on surfaces [43, 45], and many other things [35]. In
one particularly powerful use, DSD can implement arbitrary Chemical Reaction Networks [7,
10, 30, 37, 39]. Figure 1 gives an example of a DSD implementation of a single reaction;
details of the implementation are described further in Section 2. As in this example, DSD
systems often rely on fuels, complexes of multiple DNA strands in a specific configuration
which have to be made by an external process.

The Chemical Reaction Network (CRN) model is an abstract description of chemical
dynamics that is widely used as a language for programming molecules. We focus on
stochastic CRNs, which describe how counts of molecular species evolve when molecules
react in a well-mixed solution. Stochastic CRNs are closely related to population protocols,
a programming model in distributed systems [1, 2]. Simple CRNs (or population protocols)
can compute approximate majority [3], simulate a 3-peak oscillator [39], or simulate boolean
circuits [28]. In fact, CRNs can simulate Turing machines, albeit with a small probability
of error [36]. However, the class of functions computable by CRNs without error is quite
limited, being just the semilinear functions [1, 2, 9, 17, 27, 33]. Consequently, polymer
systems [8, 24, 25, 30, 40] and surface CRNs [12, 32] have been proposed as more powerful
molecular programming languages, capable of simulating Turing machines without error.

Importantly, arbitrary CRNs can, in theory, be “compiled” into physically realizable
DSD systems [37], and in fact all of the CRN models listed above have DSD implementa-
tions [12, 30, 32]. These compilation schemes provide an abstraction hierarchy for molecular
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Figure 1 DSD implementation of a CRN reaction A + B — C, adapted from Chen et al. [10].
The implementation consumes various fuel strands and complexes (in rounded boxes) to convert
signal strands (labeled) A and B into the signal strand C. The implementation is a sequence of
primitive reactions, as listed in Figure 2. For example, at the top left, the fuel Joinap reacts with
the signal A, first by binding of toehold domains ta and ta™ (primitive reaction b), followed by 3-way
strand displacement (primitive reaction ms), producing complex Joinap-1 and the strand with long
domain a followed by toehold tb. In a more general system with multiple reactions, the fuels (and
initial signals) must all be produced by an external source.

programming, analogous to compiling high-level languages into assembly and machine lan-
guages in traditional programming. CRNs are at the top level of the hierarchy, experimental
DNA systems at the bottom, and formal DNA systems in the middle.

While the powerful models above have DSD implementations, we don’t yet fully understand
the capabilities and limitations of DSD systems. For example, consider the difficulties in
building large DSD systems. So far, experimentally demonstrated DSD systems are usually
small. CRN implementations, for example, have been demonstrated for CRNs of 3-4 species
and reactions [10, 39]. Logic circuits and winner-take-all circuits specifically designed to
scale up to larger systems have reached 6-gate circuits [31] and 100-input winner-take-all
circuits [11]. Srivinas et al. have examined the effect of “leak” on DSD systems, which
would get larger as systems try to scale up [39]. In particular, more complex fuels are less
reliable. The previous examples of scaled-up circuits minimize error by using fuels of at
most 2 strands [11, 31, 44]. “Leakless” gates have been proposed that would minimize this
problem [42, 48], but this has not yet led to reliable large-scale CRN implementations. For this
reason we are interested in understanding the capabilities of DSD better, to determine whether
even simpler fuels can be used to do more complex tasks such as CRN implementations.
We have some previous work exploring ways to formally implement CRNs with 2-stranded
fuels [21, 23], but this also has not yet led to experimentally demonstrated large-scale
CRN implementations. Existing DSD systems based on single-stranded fuels, such as the
hybridization chain reaction [16] or assembly of multi-armed junctions [50], aggregate strands
into large, multi-stranded complexes that mostly don’t come apart, and so are not suitable
for CRN simulation. To explore new DSD mechanisms that could be used for simulation of
CRNs and other molecular programming models, we turn to formal DSDs.

Two examples of formal DSD models are Visual DSD [26, 29] and Peppercorn [4, 5].
These models ignore some aspects of experimental DNA systems, such as the actual sequence
of bases in a DNA strand, and instead model strands as sequences of domains. The models
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Figure 2 The four primitive reactions, or basic steps, of our DSD model, similar to those used by
Petersen et al. [29] and our previous work [21]. Top half: the typical diagram format used in DSD,
image adapted from our previous work [21]. The four primitive reactions shown are: domain binding
(b), toehold (i.e., short domain) unbinding (u), 4-way branch migration of long domains (m4) and
three-way branch migration of long domains (ms). Bottom: the same reactions in the circle diagram
format we will use throughout this work. Circles indicate strands, with domains labeled; arrows
indicate 3’ ends; lines or arcs between domains indicate bonds. The crossed-out dashed bonds in the
u reaction indicate that the reaction only happens if no such bonds exist. Regions represented by

. may or may not include strand breaks.

also specify how DNA complexes are formed and modified via primitive reactions, or basic
steps that involve binding and/or unbinding of domains. The different models broadly agree
on the four primitive reactions, shown in Figure 2, but differ on some details. Given an
initial set of complexes, the set of DNA complexes that can be enumerated from the initial
set using the four primitive reactions, plus the associated reactions, comprise the species and
reactions of a CRN which is referred to as the enumerated CRN.

This also allows formal verification that a DSD implementation of an original CRN is
correct by comparing the enumerated and original CRNs. Definitions of “correct” implement-
ation include pathway decomposition [34] and CRN bisimulation [22] as well as some others,
and the whole process can be automated by the Nuskell compiler [5]. But formalization also
allows abstract reasoning about the model, for example, our previous work proved that no
DSD system can implement CRNs with a particular, very restrictive, set of properties [21].

Formal models define the four basic steps, but most work with DSD is done on the
level of what Peppercorn calls condensed reactions [4, 21], short sequences of basic steps
that “usually” occur as a unit. In fact, most DSD systems [35] use a variant of the same,
simple condensed reaction, toehold-mediated 3-way branch migration, with a few exceptions.
But while the set of basic steps is defined by the model, the space of possible condensed
reactions is much less limited and not well explored. New condensed reactions might allow
DSD systems with simpler fuels that are less prone to leak, or we might find a proof that the
existing mechanisms are the simplest possible methods for doing complex tasks.
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1.3 Our contributions

In this work, we describe a fundamentally new class of condensed reactions, which we call
controlled reconfiguration, and a subclass we call coupled reconfiguration. This controlled
reconfiguration mechanism relies on assumptions made in the formal model that haven’t been
tested experimentally, so whether it will work is uncertain. However, if the mechanism works
as intended, it would enable a fully general CRN implementation using only single-stranded
complexes as fuels, as opposed to the multi-stranded complexes of existing methods.

In Section 2, we define the CRN and DSD models that we use throughout the paper. In
Section 3 we show the controlled reconfiguration and coupled reconfiguration mechanisms
that are the subject of this paper. In Section 4 we show how coupled reconfiguration can be
used to implement arbitrary CRNs, and give the sketch of a proof that the implementation
is formally correct according to CRN bisimulation [22]. In Section 5 we discuss the ways in
which controlled reconfiguration relies on the no-pseudoknots assumption of the model, and

what can be learned from it even if that assumption turns out not to hold for physical DNA.

Finally, Section 6 contains further discussion and conclusions.

2 Chemical Reaction Networks and DNA Strand Displacement
Systems

We first describe Chemical Reaction Networks (CRNs), and then describe our formalization
of DNA Strand Displacement (DSD) systems, which is a particular type of Chemical Reaction
Network. We conclude by comparing our DSD system formalization with other variants in
the literature.

Chemical Reaction Networks describe how states of a system of molecules change as a
result of reactions. Let S be a set of molecular species. A state s is a multiset of species; we’ll
represent such multisets as functions s : S — N mapping species to nonnegative integers, so
s(o) is the number of copies of o in multiset s. We also represent a multiset, such as s, using
summation notation: Za:s(a)>0 s(o)o. We use 0 to denote the empty multiset. A reaction is
a tuple (r,p, k), where the reactants r and products p are multisets of species and k is a
positive real number, called the reaction rate constant. We write reaction (r,p, k) as

Z r(a)ag Z p(o)o.

o:r(o)>0 o:p(o)>0

The reaction is unimolecular if r has size 1, and bimolecular if r has size 2 (where n copies
of a single species o counts as size n). Sometimes we omit the rate constant, when it is not
pertinent to the constructions presented. For example, if S = {A, B,C}, r is the multiset
containing two A’s and one C, and p is the multiset containing one B, then we can write
the reaction (r,p) (ignoring the rate constant) as

2A+C — B.

Formally, a Chemical Reaction Network (CRN) is a pair (S, R), where § is a finite set
of species and R is a finite set of reactions involving the species in S. Reaction (r,p) is
applicable to state s if s(o) > r(o) for all 0 € S, and the result of the reaction is the state
s —r+ p. If both (r,p) and (p,r) are in R, we say that the reaction (r,p) is reversible and

we write
Z r(o)o = Z p(o)o.
o:r(o)>0 o:p(o)>0
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Our formalization of DNA Strand Displacement (DSD) systems is similar to several
variants in the literature [5, 21, 26, 29, 38] and we note below where our model diverges from
others. A DSD system is specified as a finite multiset of complexes, and a set of four DSD
primitive reactions, or basic steps.

A complex is a sequence of strands that are connected by bonds. Fach strand is a sequence

of domains, where each domain has an identity, or label, taken from some finite set. For

each domain identity x in the set, there is also a complement, z* with (z*)* = x, and
bonds of a complex are always between domains with complementary identities. Domains
can be long or short, and we refer to short domains as toeholds. Two consecutive domains
on the same strand are adjacent. See Figure 2 for a visual representation of a complex:
strands are arranged along a half-circle, with the sequence of strand domains in clockwise
order, and an arc connects each pair of bound (complementary) domains. Complexes

must be pseudoknot free: there is some ordering of strands along the circumference of a

circle in which no bonds cross. (This ordering is in fact unique, see [14]).

Primitive reactions, or basic steps, transform complexes while maintaining pseudoknot-

freeness, and are of four types (also shown in Figure 2):

Binding (b): A bond is added between a pair of complementary domains. The domains
may be in the same complex or in two different complexes; in the latter case the bond
forms one new complex from the two participating complexes.

Toehold unbinding (u): A bond between a toehold ¢ and its complement t* is removed.
This rule can only be applied if there is no bond between a pair of domains d and d*
that are adjacent to t and t* respectively. Toehold unbinding applied to a complex
produces either one or two complexes.

3-way branch migration (m3): A bound long domain switches partners. That is, a
complex in which long domains x; and x5 are bound, and domain x3 with same label
as xp is unbound, is transformed so that zs and z3 are bound and z; is unbound.
This rule can be applied only when there is a bond between (complementary) domains
respectively adjacent to x5 and xs.

4-way branch migration (my4). Two pairs of bound long domains swap partners. That
is, a complex in which domain z; is bound to x5 and domain x3 is bound to x4, where
z1 and x3 have the same domain label (and so z2 and x4 have the complementary
domain label) is transformed so that z; is bound to x4, and x5 is bound to x3. This
rule can be applied only when there is a bond between domains adjacent to x; and x4,
plus a bond between domains adjacent to x5 and x3.

The following sequences of steps (sometimes called motifs [23]) appear often, acting as a

unit, in our mechanisms and many others:

Toehold-mediated 3-way strand exchange (tzs). One pair of toeholds binds (b). The
two toeholds were adjacent to a pair of bound domains x, x* and an unbound domain
x, respectively, which are now able to branch migrate (ms). The previous bond was
adjacent to a pair of toeholds on the other side and preventing them from unbinding,
but now they are able to do so (u).

Two-toehold-mediated 4-way strand exchange (tx4). Two pairs of toeholds bind in
either order, in such a way that a four-way junction is formed (b,b). The four-way
junction then branch migrates (m4). The previous bonds in the four-way junction
were each adjacent to a pair of toeholds on the opposite side, which are now capable
of unbinding in either order (u,u).

(Both of those motifs are reversible as long as the initial toehold binding(s) is/are
reversible, and in fact the reverse of each one is an instance of the same motif. Concrete
examples of the motifs occur in Figures 3 and 4.)
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The four basic steps are often grouped into condensed reactions, sequences of one bimolecu-
lar step followed by as many unimolecular steps as necessary until no further meaningful
unimolecular steps are possible [4, 21]. The tx3 and tz4 motifs, for example, are often used
as entire condensed reactions [23, 35], but can also be used as parts of larger condensed
reactions. We don’t use the details of this definition much, but the mechanisms we present
in Section 3 are in fact condensed reactions.

Let C be a set of complexes. The DSD system enumerated from C, using the set of
reaction rules {b,u, ms, my}, is the smallest CRN (S, R) such that any complex in C is a
species in &, any application of DSD reaction rules b, u, m3 or my4 to reactants in S is a
reaction in R, and the products of each such reaction are species in S.

We end this section by summarizing differences between our DSD system formalization
and other formalizations in the literature. A key point is that our definition enforces
pseudoknot-freeness: no reactions may introduce pseudoknots. The DSD systems of Badelt
et al. [5], Johnson [21], and Petersen et al. [29] also enforce pseudoknot-freeness, but those of
Lakin et al. [26] and Spaccasassi et al. [38] allow pseudoknotted complexes. We emphasize
that our constructions in the following sections would not be correct in a model that includes
pseudoknots. We discuss the implications of our pseudoknot-freeness constraint further in
Section 5.

Another difference is that in some models [21, 26], toeholds can mediate 3-way strand
displacement even when not adjacent to the long domains that bind; rather the toeholds
can be “adjacent” to the reaction in a weaker sense than we use it here [29], or in fact be
“remote” [20, 21]. We also do not include yet other DNA strand displacement reactions that
have been used in experimental work, such as cooperative strand displacement [51]. None of
these additions to the model are needed for our purposes. In contrast with pseudoknots, we
believe that our correctness arguments can be adapted even if the model is generalized in
these ways.

3 Controlled reconfiguration and coupled reconfiguration

We present a class of mechanisms that we call controlled reconfiguration, and a subclass we
call coupled reconfiguration. The mechanisms work in the formal DSD model as defined in
Section 2, but have not yet been tested experimentally. In particular, these methods depend
on the assumption that domains cannot bind if it would create a pseudoknot, which is one
of the more questionable assumptions. Whether this mechanism describes the behavior of
real DNA strands, or whether it is better interpreted as an exploration of the formal model,
is discussed properly in Section 5. All further discussion until then is assuming everything
functions as described in the model.

Figure 3 shows an example of a controlled reconfiguration mechanism. The long strand,
as a single copy by itself, has two stable configurations, and cannot switch between them; all
the free X* and Y* domains that could start the reconfiguration are themselves blocked off
by existing bonds, and the interaction necessary to do so would be a pseudoknot. The short
strand displaces the bond between Z domains, triggering a sequence of steps each involving
a domain “freed” by the previous displacement. Eventually, the same Z bond is re-formed
and the short strand is released, with the long strand having reconfigured. Intuitively, the
bonds function as locked doors, preventing what’s behind them from interacting with what’s
outside, until unlocked with a key hidden behind the previous door.

The controlled reconfiguration mechanism is an example, and proof-of-concept, of how
one strand can control the reconfiguration of another. However, in the mechanism in Figure 3,
the “control” strand only allows the reconfiguring strand to freely switch between its two
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Figure 3 A simple controlled reconfiguration mechanism. ¢ is a short domain, X, Y, and Z are
long. Each step in the figure is a tx3 motif. The net effect is that the long strand changes from
the configuration in the top left to the configuration in the bottom left, using the short strand as a
catalyst, while the long strand could not change configuration on its own.

configurations. Neither the control strand nor any other part of the system knows which
configuration the reconfiguring strand is in, so it can’t, for example, force the strand into
a desired configuration and then proceed to the next task. This limits its usability as a
module in larger systems. For that, we would want a mechanism where two different strands
simultaneously serve as the control for each other’s reconfiguration, in such a way that either
both can change or neither can change, but not just one or the other. Figure 4 shows the
coupled reconfiguration mechanism, which we will use for our formal CRN implementation.

In the coupled reconfiguration mechanism, each strand has a pair of A;, A} domains and
a pair of As, A3 domains, but crossed over such that (excluding pseudoknots) only one pair
can be bound at once, and it cannot reconfigure on its own. Further, there is a pair of G
(“guard”) domains that, by their bond, prevent random other strands from interacting with
the domains inside the strand. The “left” and “right” strands are asymmetric in the toehold
identities, and one left and one right strand can come together and exchange G bonds by a
txz4 motif. This opens each strand up to interacting with the other. (Two left strands or two
right strands do not have complementary external toeholds, so such pairs cannot interact.)
Then, if one of the strands was in the A; configuration and the other in the Ay configuration,
they can go through a process of exchanging bonds that eventually leads to both strands
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Figure 4 The coupled reconfiguration mechanism. Long domains are given by name while
toeholds are represented by symbols. Space domains don’t interact with anything, but prevent some
spurious interactions. A left and a right strand can join together to reconfigure via a tz4 motif on G
domains, and separate when the reconfiguration is done by reversing the tzs4 motif. Then a sequence
of txs motifs lets each strand enable the reconfiguration of the other, one strand moving from the
A configuration to the As configuration and the other doing the opposite. The mechanism is fully
reversible, but the strands can only separate if either both strands have changed configuration or
neither has.

having swapped configurations. The G bonds can then reverse the tx4 motif to separate
again, but this can only happen when either both have reconfigured or neither has. Any left
and right strand in the same configuration can join together, but no further reaction can
happen except for separating unchanged.

The reaction as shown in Figure 4 is fully reversible, but can be made irreversible by
adding any of the following four toeholds: a t* after the A} on the left strand or after the
A7 on the right strand makes the reaction only go forward (clockwise around the diagram
shown), while a ¢ before the As on the left strand or before the A; on the right strand
makes the reaction only go backward. In either case, the strand the toehold is added to
becomes unreactive after the reaction, while the other strand is still capable of further coupled
reconfigurations (with counterpart strands that don’t have the added toehold).
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The coupled reconfiguration reaction can be abstracted as Ay ;+ Ay, = A;;+ A2 . Since
each configuration has a different bond, there are regions of each strand that are covered in
one configuration and uncovered in the other, and different (left and/or right) strands can
share the A1, Ay domain identities while having different content in the conditionally covered
regions. This mechanism turns out to be powerful enough to implement arbitrary CRNs.

We think of “controlled reconfiguration” more generally as any DSD reaction where two
or more complexes interact and separate, where (at least) one of the complexes at the end is
made up of the same strands in a different configuration, such that the reconfiguration could
not have happened in that complex on its own. The example in Figure 3 is in particular
“catalytic controlled reconfiguration”, where the complex that controls the reconfiguration
is itself unchanged. Then “coupled reconfiguration” more generally is where two or more
complexes interact and separate, where (at least) two of the complexes at the end have
reconfigured in a way that each one could not on its own, and further such that the reaction
could have reconfigured both complexes or neither, but not only one of them. Then the
mechanisms we presented were examples of controlled and coupled reconfiguration, but other
examples exist. In particular, Zhang and Winfree have presented a mechanism that meets
this definition of controlled reconfiguration, but is neither catalytic nor coupled [52].

4 Implementing CRNs with coupled reconfiguration

The coupled reconfiguration mechanism enables different strands to, in a certain intuitive
sense, pass information to each other by reconfiguring. This is sufficient to implement,
among other things, arbitrary CRNs. In Section 4.1 we discuss how to combine coupled
reconfiguration reactions to implement CRNs. In Section 4.2 we give an argument for formal
correctness of this method according to CRN bisimulation [22].

4.1 The mechanism of a reaction

We first consider the reaction A+ B = C, which is sufficient to implement arbitrary reversible
CRNs (and arbitrary CRNs, if both directions are available as irreversible reactions). We
use what in Section 3 we referred to as “right” strands as species strands that represent
the abstract species, with species A getting a unique pair of long domains A; and As, and
corresponding to right strands with the (toeholds omitted) sequence G A; Ay AT A5 G*.
Such a strand in the configuration with A; domains bound to each other represents the
species A, and we call the strand in that configuration the signal strand Agp. The same
strand in the Ay configuration is called A g, and represents nothing. Species B and C' get
unique domains By, By, C1, and Cs, according to the same pattern.

To implement the reaction we use what in Section 3 we called “left” strands as gate strands.
Where r refers to the reaction A + B = C, the gate strand will interleave the domains for
A, B, and C' in the order shown in Figure 5. To implement the forward reaction, the gate
strand starts in configuration " fors with bonds Az, By, and C;. A coupled reconfiguration
reaction with Aopn produces r Afor where the By bond is exposed. This then reacts with
Bon to produce 7p,qs covering up the A; bond but exposing the C; bond. That allows a
reaction with Coﬁ” producing Cop and rp, .., where the B3 and A3 domains are covered by
the Cs bond. Thus, the gate consumes a signal A and B and produces a signal C', where each
step covering up the previous step and uncovering the next step ensures that they can only
be done in that order. The reverse reaction is implemented by the reverse of this process,
starting with 7y, ... and eventually producing T for-



H. A. Johnson and A. Condon

Figure 5 Simulation of the reaction r = A+ B = C. Each reaction represents an instance of the
coupled reconfiguration sequence shown in Figure 4. Spacer domains separate each long domain and
its flanking toeholds from those of the adjacent domain, to prevent certain unintended interactions.
Species are given names with solid boxes for signal strands, dashed boxes for fuel strands, and no
boxes for intermediate (other) strands.

4.2 Correctness of the mechanism

To prove our mechanism correct, we use CRN bisimulation [22]. Here, however, we only give
a sketch of the process. First, we can describe the DSD system as a CRN, the implementation
CRN, compared to the formal CRN that it allegedly implements. To do that we enumerate
the possible interactions between strands in our DSD system, according to the rules in
Section 2.

The complexes in the system include some designated as fuels, namely " for and 7
for each reaction r, and A g for each species A, and some designated as signals, namely
Aon for each species A. Fuels are assumed to be always present in “enough” quantity (and
how to achieve that is left as an exercise for the experimenter), while signals represent
the corresponding formal species. The interactions between strands fall into the following
categories:

Spurious toehold bindings that don’t lead to an my step between G domains.

“Nuisance” interactions between a gate strand and a species strand that have no intended,

and no possible, productive reaction.

Productive reactions between strands intended to interact.
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Figure 6 A nuisance interaction between r¢ .. and Bon. Any gate strand and any signal strand

for
can bind and open up the G domains, but only pairs intended to react can meaningfully reconfigure.

In this example, " for and Bon can bind, open G domains, and even do toehold exchange (represented

by dashed lines) on the By domains, but further interaction with B domains is blocked by the A2
bond. The only possible continuation is for the reaction to eventually reverse itself and separate
back into T for and Bon unmodified.

In the first category, arbitrary sequences of b and u steps between strands on external toeholds
can happen, but can only make a meaningful change if they eventually form a binding of
two toeholds that enables an my step on G domains. Otherwise, the strands involved
will all eventually unbind unchanged. This can form arbitrarily large (and increasingly
unlikely) chains, which to formally treat requires the techniques of Polymer Reaction Network
bisimulation [24]; this can be done, but we don’t include it here.

In the second category, any gate strand and any species strand can bind on two toeholds
and open the G domains in a txy motif. But they can only do a coupled reconfiguration
reaction if the gate strand has the domains corresponding to the species strand in the opposite
configuration (e.g. a gate strand with a By bond interacting with a species strand with a B
bond) and none of those domains on the gate strand are blocked by any other bond. Any
other combination may start, but cannot finish, a coupled reconfiguration reaction, and can
only eventually separate into the original unmodified strands. Figure 6 gives an example of
such an interaction.

The third category is the reactions shown in Figure 5. Effectively, this means the set of
reachable complexes is the set of things shown in that figure; intermediate states between
them; and spurious bindings from the first two categories. Modeling the system with the
condensed reaction model [4, 21] allows us to treat the first and second categories as trivial,
abstract away from the intermediates, and describe the implementation CRN for the formal
reaction A + B = C as follows:

Tfor T Aon = T afor + Aoﬁ
Tafor T Bon = repack T Boff

Tcback T Coﬁ = Tpack T Con
Since fuels are always present (or always producible), bisimulation and other verification
methods often work with an implementation CRN where fuels are removed:

Aon =1, for
T afor T Bon = Tepack
cback = Con

CRN bisimulation involves an interpretation of implementation species as (multisets of) formal
species, usually denoted m; here m(Aon) = A, m(Bon) = B, m(Con) = C, m(r yfo,) = A,
and m(r,p,er) = C. We see that: (a) any implementation reaction, when interpreted, is
either trivial or A+ B = C'; (b) any non-signal implementation species (TAfOT and 7o pack)
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can turn into the signal species (Aon, Bon, or Cop) for its interpretation; and (c) the signal
species can implement any reaction that their corresponding formal species should be able to
do. These are the conditions of modular CRN bisimulation [22].

Because of the modularity condition [22], and because our comments on (lack of) crosstalk
reactions apply between modules as well as within a module, an arbitrary number of reactions
of the form A + B = C can be implemented by combining the implementations for each
one. Because arbitrary reversible CRNs can be implemented up to CRN bisimulation by
reactions of the form A+ B = C and CRN bisimulation is transitive [22], this mechanism can
implement arbitrary reversible reactions. To implement an irreversible CRN, use the method
mentioned in Section 3 to make coupled reconfiguration irreversible by adding a toehold to

the gate strand: alter T afor T Bon = Tapgek for A+ B — C and Cop — T;xfor + Bonp for

C — A+ B (where 7":4 for is the altered version of r Afor that can interact meaningfully with
Aoﬁ‘ but not Bon)

5 Pseudoknots and questioning the model

Whether any mechanism, written on paper, will actually work in the lab, is always a question.
But controlled reconfiguration, in particular, depends on an assumption of the DSD model
that hasn’t been particularly well tested: the assumption that if a step would form a
pseudoknot, that step can’t happen. So while it’s possible that controlled reconfiguration
will work experimentally as we presented it, it’s reasonably likely that it won’t. However,
there are reasons why, even if it doesn’t work as presented in unmodified DNA, the fact that
it exists in the model of DSD is still important for the study and design of DSD systems.

Traditionally the “no-pseudoknots” assumption was not a belief that pseudoknots don’t
happen, but a belief that we don’t want to use them. RNA pseudoknots appear in many
biological examples [46], and DNA nanotechnology applications such as tile assembly [18],
DNA origami [13], and RNA origami [19] use fundamentally pseudoknotted structures. How-
ever, pseudoknotted structures are much less well understood: pseudoknots introduce steric
contributions to energy that aren’t modeled by the standard, nearest-neighbor models [49],
and even with an energy model, predicting pseudoknotted structures is computationally
harder [15].

For this reason, most engineered DSD systems [35] are designed such that the intended
pathway does not involve pseudoknots, but also there are no non-trivial unintended pathways
even when allowing pseudoknots, so that the mechanism works as intended whether or not
pseudoknots are possible. In contrast, the coupled reconfiguration pathway has plenty of
unintended pathways that would be possible if pseudoknots were possible, and works only
under the assumption that they are not.

The first thing this result does is illustrate a difference between the model and how
actual DNA behaves, suggesting ways to refine the model. For example, we might want
to formally add the condition that the intended pathway has to exclude pseudoknots, but
unintended pathways with pseudoknots break the system. CRN bisimulation [22] suggests
one way to formalize this: the permissive condition is checked with pseudoknots banned and
the delimiting condition is checked with pseudoknots allowed. So this result suggests that it
would be worth investigating whether coupled reconfiguration, or single-stranded fuel-based
CRNs in general, are possible or provably impossible in such a model.

Another interpretation of our result is that if some molecule behaves like it does in this
model, then controlled reconfiguration can be used with that molecule. Even if unmodified
DNA at standard experimental conditions forms these pseudoknots, there may be an artificial
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nucleic acid, or unrelated biomolecule with strand displacement-like behavior, that doesn’t. If
a single-stranded-fuel-based CRN implementation proves to be a particularly useful molecular
device, it may be worth trying to find or design such a molecule.

Possibly relevant to this question are the experimental results of Zhang and Winfree’s
switchable DNA catalyst [52]. There, the catalyst switches between two states based on an
input, where a hypothetical pseudoknotted spontaneous switching pathway exists. However,
in that example one state is favored over the other with a one-directional non-pseudoknotted
spontaneous switching pathway, and can only be held in the less favorable state when an
additional strand is bound. So the experimental results may be a useful starting point for
investigation, but are not conclusive in any direction on their own.

Finally, treating DSD as a model of computation, we’d like to know both how compu-
tationally powerful DSD is, and which features of the model give it which powers. This
result shows us that the model with pseudoknots completely disallowed can do coupled
reconfiguration, which is powerful enough to implement CRNs with single-stranded fuels. It
further suggests that the ability to treat bonds as logical blockers or locked doors, preventing
the two sides from interacting, is what gives the model that power.

6 Discussion and conclusions

We have introduced the mechanisms of controlled reconfiguration and coupled reconfiguration,
and shown how they can be used to construct single-stranded CRN implementations. We
discussed how the questionable assumption of pseudoknot-freeness means that the mechanism
might not work as designed, but its existence in the model would likely have interesting
implications. If the mechanism does work, either as designed or something similar, it would
have a number of challenges as well as a number of benefits for DSD system design in general.
Here we discuss some of the larger challenges, some of the larger benefits, and some possible
aspects for further investigation.

Internal toeholds

In the model, we’ve assumed that mg and my steps only happen if there are bound domains
adjacent to the future reaction, usually toeholds, and that u steps can happen whenever
there are no adjacent domains holding the toeholds together, even if the unbinding doesn’t
separate complexes. Both of those are not well explored, and different models have made
different assumptions [21, 29]. We note that, first of all, our mechanism doesn’t depend
on toehold identities to prevent reactions from happening, so it should work in a model
where internal mg steps don’t need immediately adjacent toeholds, such as the one from
[21]. Second, the concept of “toehold” in general is a domain of the right length to bind and
unbind reversibly, and by doing so, hold things together long enough for ms3 and m, steps
to happen. When the binding is between otherwise separate complexes, that length is 4-6
bases [53]. Internally, the length may be the same 4-6 bases, or may be more like 2 bases,
but whatever length it happens to be, that length is the one we would use for the internal
toeholds.

Simulating reaction rate constants

Our constructions in Sections 3 and 4 do not address how to specify rate constants for the
reactions of the DSD system that simulates a CRN, so as to ensure consistency with the rate
constants of the CRN. Soloveichik et al. [37] explain how this can be done within reasonable
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timescales, for their DSD simulation of a CRN, through toehold design and accounting for
buffering effects. While the details of their simulation are quite different from ours, the
key principles of their approach should also apply to our construction. We note also that
many useful CRNs have the nice property of being rate independent in the sense that their
correctness does not depend on specific reaction rate constants [6, 9, 47].

Fuel synthesis

Our construction uses single-stranded fuels, compared to the double-stranded or larger fuels
of typical DSD systems. Synthesis of single strands is typically easier than synthesis of
multi-stranded complexes [31]. However, a challenge is to ensure that each fuel strand is
in its specified secondary structure, which is one of two or more stable (pseudoknot-free)
structures for the strand. It might be possible to take advantage of co-transcriptional folding
to ensure that fuel complexes have the correct structures, or it might be possible to filter out
strands with incorrect structures by hybridization to a surface via a free long domain.

Single-stranded DSD

Existing single-stranded DSD systems involve single strands interacting with each other and
aggregating [16, 50]. In contrast, the typical CRN implementation [37] involves reactions
where (usually) one strand interacts with a larger complex, eventually staying bound and
releasing (usually) one other strand, where either the new complex or the new strand (or
both) is a meaningful signal that goes on to interact with the rest of the system. In particular,
in those systems, most complexes are the only “stable” configuration of the strands that
make them up. With single-stranded fuels that are meant to stay single-stranded, this clearly
isn’t possible, otherwise there would be no meaningful reactions. But if the single strands
had multiple configurations that they could switch between on their own, that wouldn’t
implement bimolecular A + B = C logic. So the novelty of coupled reconfiguration, and
its ability to implement that logic, is why it makes single-stranded non-aggregative DSD
systems possible.

Locality and impossibility

In our previous work on impossibility in DSD systems [21], one of the important steps was a
locality theorem: that, with the restrictions in that result (notably including forbidding ms
steps), if a sequence of unimolecular steps breaks a four-way junction, then eventually reforms
the same four-way junction with the same domains, then the same result can be gotten by a
sequence of steps that never breaks the junction. The coupled reconfiguration mechanism
shows by counterexample that without those restrictions, and assuming pseudoknots can’t be
formed, the same statement would not hold. In our previous work, this theorem showed that
with those restrictions, CRNs with 2-stranded fuels were impossible; with the assumptions in
this work, coupled reconfiguration makes CRNs with single-stranded fuels possible. Further,
to our knowledge controlled reconfiguration is the first DSD mechanism that involves a bond
being initially present, broken, then reformed, with an effect that was not possible without
breaking that bond. So we suspect that this concept of locality is interesting, and worth
investigating whether other such mechanisms exist, especially ones that don’t depend on
pseudoknots being unable to be formed.
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Expanding the DSD toolbox

We’ve expanded the DSD toolbox by introducing controlled reconfiguration and coupled
reconfiguration, and shown its application to reversible DSD simulation of reversible CRN,
in a way that is easily adapted also to non-reversible CRNs. Our implementation scheme also
has the following desirable properties defined in our previous work [21]: systematic with O(1)
toeholds, physically reversible, and using only bimolecular condensed reactions, and we have
already shown that it is systematically correct under modular CRN bisimulation and uses
single-stranded fuels. There are a number of CRN implementations that each fail a different
one of the desirable conditions [23], and the coupled reconfiguration-based implementation
fails a condition which was not listed but is also desirable, the condition of not relying on
the assumption that pseudoknots don’t happen. So it would be interesting to investigate
whether there is a variant of coupled reconfiguration, or another implementation scheme,
that fulfills the same conditions without relying on that assumption.

Further, the coupled reconfiguration mechanism reveals a capability of the current model
of DSD that physical DNA strands may or may not have, either in the mechanism as we
presented it or in a different mechanism with similar properties. If it does, then we would
like to see if the advantages of the scheme enable physical DSD implementations with less
error than existing schemes. Whether it does or not, it would be interesting to investigate
the importance of the assumption that pseudoknots don’t happen, and how it affects the
power of DSD systems.
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1 Introduction

Combinatorial Metamorphic Materials

The structure of a device determines its function. It is interesting to ask how we might
manufacture combinatorial metamorphic devices that can take on many different forms and
functions in response to a wide range of triggers. As metamorphic devices are capable of
achieving a wide range of potential functions, they allow users to choose a function fit for
a particular task and to alter the shape of the device to access that function. Because one
such structure could be transformed into a large set of target devices, a single metamorphic
structure can be stored or carried in place of a large set of traditional devices. These reasons
make metamorphic devices more flexible and versatile than their traditional counterparts.
These advantages have stimulated researchers from a range of communities to explore the
design and construction of metamorphic devices[1, 3, 17, 21] for applications such as soft
robotics[10, 21] and even quantum computing][5].

DNA-co-polymerized Hydrogels as Metamorphic Materials

Here we consider a means to construct metamorphic devices in which specific biochemical
cues, DNA sequences, trigger the shape change of specific hydrogel domains[2]. Each hydrogel
domain contains DNA crosslinks that allow the material to expand into swollen state upon
activating the domain with a specific DNA sequence (growing actuators) and contract into
shrunken state upon de-activation with another DNA trigger (shrinking actuators). To
understand how we might use these types of materials to create metamorphic structures, we
ask how to design material structures from 4 sets of the following active materials: hydrogels
with a specific set of DNA crosslinks, growing actuators and shrinking actuators (Figure 1).
Using multistage photolithography[2, 8, 18] to assemble these materials should allow us
fabricate metamorphic devices that react to biomolecular signals with high specificity.

Growing Actuator I Growing Actuator III
e e
+— +—
Il system I Shrinking Actuator I Shrinking Actuator III

system IT N7\ I\ \ N

B System III

Growing Actuator II i
System TV g Growing Actuator IV
e )
+— —
Shrinking Actuator II Shrinking Actuator IV

Figure 1 DNA-co-polymerized hydrogel. A set of 4 different materials that can be enlarged
and contracted by DNA signal. Exposure to its shrinking signals prompts a material to enter its
shrunken state, while exposure to its growing signal prompts a material to enter its swollen state.
The signals are orthogonal (each affects only its target material and not others). Each material’s
expanded and shrunken states are of somewhat different sizes.



K. Chen and R. Schulman

Metamorphic Multi-state Digit Transformer

DNA-co-polymerized hydrogels whose size can be bidirectionally controlled by DNA signals
bring forth the possibility of building complex metamorphic materials. To explore this
concept, we seek to investigate whether it would be possible to use the materials in Figure 1
to design a metamorphic digit transformer. We ask how one might build metamorphic
devices using the 4 active materials with orthogonal DNA actuation systems and a passive
material without a DNA actuation system. Each actuator system drives a specific domain
into swollen state upon activation, and shrunken state when inactive. As a result, the device
is multi-stable and has 16 possible states (24 = 16) when all DNA actuators are used. Our
goal is to find a design where as many of its final outputs as possible resemble the shape of
different digits from 0 to 9. We consider concatenated segments of bilayer hydrogel segments
as a design space. The overall outline of this process is shown in Figure 2. Because these
devices must be fabricated using multistage photolithography, the resulting designs must be
consistent with this mode of fabrication, which imposes physical limits on the design space.
Each bilayer segment will typically be on order 500um in height and 250pm in width. In
order for the curvature of the resulting structures to be governed by curvature along the
lengthwise, segmented axis, the overall length of the structure must be significantly longer
than either the structure’s width or height. Lithography also limits the sizes of the segments
to be between 50pm and 5000um, below which size resolution becomes difficult to control,
and above which would require a larger light source and mask. Moreover, we want to limit
the number of distinct fabrication steps required, as difficulties such as alignment, device
lift-off, and transfer increase rapidly with the number of fabrication steps.

F

0

Material Library Material Design I
! | -~
i i —
Passive Material Assembly

Dummy System into different Actuation into
Active Material material designs I different states |
B System —_— I —_— Combinatory Metamorphosis Material
System I1 - Multistate Digit Transformer
M System III
System IV l . 7 ‘ )

s ij’

Figure 2 Building a metamorphic digit transformer from DNA-co-polymerized hydrogels. A
metamorphic digit transformer is a stack of bilayers of DN A-co-polymerized hydrogels. The digit
transformer would be able to change its shape into the shape of different digits upon the activation
of different biochemical actuation programs, which switch the conformation of the structure between
one of multiple stable states.

Machine Learning and Genetic Algorithm for Material Discovery

Finding a design for a structure with a large number of different forms is a challenge. This
challenge increases as the number of design objectives (i.e. stable states) increases, and
tighter physical and manufacturing limits are imposed. The design space, consisting of the
types, arrangements, and lengths of hydrogel segments is too large to search through wvia trial
and error, and the conflicting nature of the constraints also makes structured design methods
challenging to consider. Inspired by how machine learning and artificial intelligence techniques
have been transformative in different areas of material design and discovery[9, 11, 14, 20],
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we seek to design digit transformer devices by developing a computational material discovery
method. The method we describe mimics Darwinian evolution[4, 19] (through the use of
a genetic algorithm) and combines numeric simulation[15] with state-of-the-art machine-
learning models[16]. The resulting system simulates and autonomously evolves generations of
material design variants in-silico to find designs for devices that satisfy the multiple design
objectives[7] we created (Figure 2).

2 Methods

2.1 Material Simulation

To develop a geometric simulation platform for our DNA-co-polymerized hydrogel, we
considered predicted values of changes in contour length (AL) and radii of curvature (RoC)
during the expansion and contraction of bilayers consisting of different combinations of
actuator types. The simulation of the material starts with defining a straight bilayer
structured hydrogel with specified length and actuator pattern. We then look up the different
values for RoC and AL given the target actuated state. The final folded shape is then
calculated using the segment length, derived RoC and AL for each segment (Figure 3, top).
We assume there is little stress along the horizontal axis and that the shape of the resulting
structure is achieved by a linear “stack” of different segments then concatenate with one
another to form a smooth curve (Figure 3, bottom).

Material Object Simulation (Single Segment)

~
AN
Swell // 5 ReC
Blue Material
LN a
« — — —> ~ g
L —_

Material Object Simulation (Multi-Segments)

Swell
Blue Material

—>

Figure 3 Simulation of DNA-co-polymerized bilayer hydrogel segment(s). The shape of a folded
single segment is determined by the segment’s length and the two types of actuators that make up
the segment and their actuation states (expanded or contracted), as the states determine the overall
values for the change in radius of curvature and contour length. Here, the bilayer studied has system
I (blue) in its contracted state in the bottom segment and system II (pink) in its expanded state in
the top segment. In a device with multiple segments, simulation is done with the assumption that
there exists little stress between the segments so that the final conformation is the integrated sum of
each single segment simulated independently.

2.2 Simulation of Device Curving

To construct a simulated “device,” we create a list of segment lengths and a matrix of
actuator types and their states. This design is encoded as a list S of segment lengths and a
list P that encodes the actuator pattern (top then bottom) within each segment.

S ={Ly,Ly,....L,} (1)
P ={{X11, X12, ., Xin}, { Xo1, Xo2, ..., Xon } } (2)
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where
X e€{0,1,2,3,4}

with 0 representing the passive system and 1 to 4 representing the 4 active materials.

A device’s design is determined by simulating the curving of the device in all 16 possible
states (where each of the four actuator types is in each of the two distinct states). An
example of the possible states of a typical design is shown in Figure 4.

Simulated Output

Input Design 510N 52 ON

Output

Simulation

Figure 4 Example of a simulation of a device’s curving in each of its 16 states. Shown are
the input design and a map of the predicted output shapes. In the input section, different colors
represent different actuators and the length of each bilayer segment is shown to the segment’s right.
The output diagrams show the predicted device shapes of all 16 possible actuation states. The
label above each image specifies the actuator state (S2 designates system II, and so on, while ON
designates the swollen state and OFF designates the shrunken state). For scoring purpose, the
shapes are plotted in 28-by-28-pixels-images that are treated with a Gaussian blur filter (o = 1).

2.3 Deep Learning Model for Design Selection

To efficiently automate the scoring and selection process for design optimization, we train
a convolutional neural network (CNN) classifier[13] to distinguish the digit-similarity of
the predicted geometric outputs. We use the Tensorflow library and train the model using
a combinatory dataset consisting of the MNIST dataset[6] and an artificial dataset. We
label twenty-four thousand images generated with the simulation platform manually to build
an artificial dataset and add an additional class (class “10”) for images that do not look
digit-like and instead look like random squiggles. This additional class helps the model
recognize bad shapes and images that the hydrogel device most often bends into. We train
a sequential convolutional neural network consisting of two 2D convolutional layers (with
30 and 15 filters) with 2D max-pooling layers following each convolutional layer, and three

fully connected layers (with 128, 50, and 11 nodes) and train on the combinatory data-set.

The relu activation is used in all layers except for the final classification layer, where the
softmax function is used. We used the adam optimizer[12] with categorical cross-entropy
loss function and trained for 50 epochs. This model is then used to score and select ideal
outputs that resemble digits. During the scoring and selection process, we rotate the images
to explore the full potential of the designs.
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Simulated Output

S2 ON

Selected Output

1 (ALL OFF) 2 (S1&S3 & S4) 4 (n.a.)

S1&S2 &S3
CNN / a’
Scoring Score: 1.000 [l Score: 1.000

ey _>
5 (S2 & S3) 6 (S2 ON) 7 (S1 & S3) 8 (S1 & 52) 9 (n.a.)

Score: 0.999 Score: 1.000 Score. 0.994 Score: 0.998 .

Figure 5 Example of design output scoring and selection. After the simulation, 16 images are
generated and scored by the CNN to determine whether each represents a digit or not. Note that
the final classification layer of the CNN model has 11 nodes where the first 10 represent the score (or
probability) of resemblance to digit from 0 to 9. The 11-th value represents the value of resemblance
to non-digit-like images. We use the max value of each class to represent the result of each image and
discard the result if the 11-th value is the maximum - meaning the CNN model determines that this
image is highly unlikely to represent any digits. Thus, only images with “max digit probability” are
selected after the scoring and selection process of the CNN model.(Note that notations for simulated
outputs are same as shown in Figure 4.)

S2 & S3

S1& S4 S2 & S4

ALL ON

S14&S3&S54 S2&S3&S4

2.4 Genetic Algorithm

We develop a genetic algorithm to evolve the material designs autonomously. The algorithm
works by initiating a large batch of random designs with a fixed population size. At
each iteration, the whole population is simulated and scored with the convolutional neural
network(CNN) and a multi-objective loss function to determine the fitness score of each
design.

2.4.1 Loss Function - Fitness Evaluation

We tried a variety of different loss function to track and optimize design:

Fitness Evaluation on Digit Quality Alone

We initially started the algorithm based on a simple loss function where only the digit quality
is tracked and scored. This, however, leads to issues where designs that form a wide range
of “mediocre digits” cannot compete with designs that form only a few number of “perfect
digits”, and we lose these designs throughout the evolution trajectory. While it is more likely
for these “mediocre designs” to evolve and grow into designs that can fold into all digits, this
loss function reduces the survival chance for them and thus are not ideal for the search.

9
fitness = Zlog(l - W) (3)

=0

where

V;: the score of each digits where ¢ € {0,1,2,...,10}
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Fitness Evaluation on Digit Diversity and Quality

Moving forward, we improved the loss function so that we evaluate the performance based
on the diversity of the digits formed as well as the quality of different digits. The diversity is
evaluated with «, where we count how many digits a design formed. To calculate « for each
design, we iterate through the classification results of the outputs and count how many of
them are classified as digits (with softmaz-ed classification value ranging from 0 to 9). « is
the number of non-repeating digits formed. The quality of different digits is evaluated and
stored in the list V, and V; = 0 when the ith digit is not found. With this method we are
more likely to find better designs and this loss function is used throughout the rest of the
paper.

9
fitness = Z log(1.0001 — V;) - « (4)
i=0

where:

Vi: the score of each digits where ¢ € {0, 1,2, ..., 10}
a: diversity coefficient, the number of digits formed

2.4.2 Mutation Function

Once the whole population is scored, the population is then sorted according to the calculated
fitness and 80% of the population is eliminated. The survivor designs are then delivered to a
mutation function where we use the single-parent-mutation method to preserve the gene of
each design and produce offspring. Each survivor design produces four offspring and sent
with their offspring to the next generation to compete. This way the size of the population
remains fixed throughout the evolution process. The iteration cycle continues until we reach
the maximum generation limit.

Mutation Function - Vanilla Form

Mutation function is where we determine how the genetic information of the parent design
is passed down to the offspring. The gene G in our designs consists of two matrices, the
segment list S and the actuator pattern matrix P, such that G = G(S, P). In the vanilla
form of the mutation function, we randomly update either the S or P to mutate the genetic
information, where each has a 50% chance of mutation. For the S-mutation offspring, we
randomly assign new S while preserving the P. For the P-mutation offspring, we randomly
swap out 50% of the genes within the pattern while preserving the S. Note that instead of
swapping out all the genes, only 50% of them are mutated to ensure enough of the genetic
information is maintained.

Mutation Function - With Fabrication Limit

Additionally, we use a more advanced mutation function that accounts for the fabrication
complexity to ensure that the converging designs are within reasonable physical limits. The
form of the function looks pretty similar to the vanilla form above except for additional
fabrication step calculation. We define the fabrication steps as the steps needed to pattern
these gels with the photolithography setup. The steps needed depends on the sum of different
actuators on each side of the gel. For example, if we have a design that has actuator [1, 2,
1, 3, 1] on the one side and [4, 2, 2, 4, 2] on the other, it takes 3 steps to pattern the first
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side given 3 different actuators used and 2 steps on the other. The total fabrication steps
would be five to pattern these devices. The new mutation function now calculates the steps
needed when the P is updated and rejects the P if it exceeds the maximum step allowed.
The function would then reassign P and check and iterate until it converges on a new P that
satisfies the fabrication limit.

Listing 1 Pseudo-code of the deep-learning guided genetic algorithm.

initialize first generation of designs

for i in range(generation_limit):
fitness scoring with CNN model and loss function

eliminate 80% of the population
mutate survivors and generate descendants

Finally, we select the top 5 survivor designs to be the optimum converged designs in each
evolution tree.

2.5 Search Evaluation

At the end of every evolution tree, the 5 final converged designs are saved and manually
scored for an objective scoring; this is to mediate the possibility of false-positives from the
convolutional neural net and to assure that the final outputs are digit-like to both machines
and human. Figure 6 shows an example of the evaluation process, where each image gets
a score of 1 (labeled with a green box) if it looks like a perfect digit, 0.5 (labeled with a
blue box) if it looks similar but not perfect and 0 if unrecognizable. This is used as the final
subjective-matrix to ensure the convergence of the model is reasonable.

Selected Output

Final Score: 5.5
0.0 x 4
0.5 x 1
1.0 x5
5.5

5 (S2 & S3)

. ” .

+ o+

Figure 6 Example of manual(human-scored) evaluation. All converged outputs are manually
scored to provide a final score for each design. In the example, the design forms 5 perfect digits
(marked in green), 1 recognizable digit (marked in blue) and is unable to form other digits (marked
in red). The final score is thus 1 x 5 + 0.5 x 1 = 5.5.

3 Results and Discussions

We then deployed the algorithm on the search for an optimal design. During the search,
we seek to explore the parameter space and learn the effect of different hyper-parameters
including - degree of freedom, design scale, search duration, and fabrication limit on the
ability to find optimal design. As the searching process itself is stochastic and no independent
event is repeatable, we evaluate the search of each condition with 3 separate evolution trees
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and aggregate the information to avoid an independent event being an outlier. After the
search, all converged designs are manually scored to assure the accuracy of evaluation. The
distribution of final scores is used as a final metric, along with the loss trajectory, to help us
determine whether a condition is ideal or not.

3.1 Degree of Freedom: Number of Segments

We first seek to learn the effect of how the number of segments affects the material’s ability
in finding digit transformer designs. During the search, we fixed the parameter of the total
length to be roughly 8000um and the search duration to be 100 generations. We ran the
search of different segment lengths from 2 to 100 with 3 separate evolution trees for each
condition. The result of the loss trajectory is shown in Figure 7 as an objective matrix
to evaluate the effect of different segment numbers from the machine’s perspective. The
manually scored results of the converged designs of each condition are shown in Figure 8 as
a subjective matrix for evaluation.

1e6

2 segs

6 segs

12 segs
= 15 segs
— 30 segs

100 segs

Generation

Figure 7 Loss trajectory of search on different segment number.

The number of segments is analogous to the degree of freedom of the system. More
segments means there are more knobs to tune during the search and, theoretically speaking,
better performance of the algorithm. The result, however, shows that this is only true within
a certain extent. There exists a sweet-spot, and exceeding this region actually impales the
ability to find good designs, as shown in Figure 8. We believe that this is because we are
also increasing the complexity of the problem when we raise the number of segments used in
the search, and after a certain amount of freedom is introduced, the benefit of having more
knobs is out-weighted by the increase in complexity. Currently, our method and algorithm
are unable to find good designs when the system is too complex. From this we learn the
importance of maintaining the balance between degree of freedom and problem complexity
when we are solving a problem with models.

3.2 Design Scale

Next we seek to learn the effect of the design scale on search performance. During the search,
we fixed the parameter of number of segments used to 12 and the search duration to 100
generations. We ran the search of different total length scale from 800um to 80,000um with
3 separate evolution trees for each condition. The result of the loss trajectory is shown in
Figure 9 as an objective matrix to evaluate the effect of different segment numbers from
the machine’s perspective. The manually scored results of the converged designs of each
condition are shown in Figure 10 as a subjective matrix for evaluation.

4:9

DNA 28



4:10

Exploring Material Design Space with a Deep-Learning Guided Genetic Algorithm

10 < o

Manual Score
(=]
o]
153
o

2 6 12 15 30 100
Number of Segments Used

Figure 8 Score distribution of search on different segment number.

-1.0 —— 800 um
2 4,000 um
g7 —— 8,000 um
80,000 um

Generation

Figure 9 Loss trajectory of search on different length scale.

During the search, we learned that the length scale played an important role in the
performance and that there also exists a sweet spot in the length scale when searching for an
optimal design. We found out that when the length scale of the material is too small, the
devices are unable to bend into large angles as the folding power the actuators provide is
not enough. This limits the outputs of the devices to be simply straight or slightly bent 1s,
and stops the algorithm from finding interesting designs. This is why the short length scale
condition (800um) only get score 1s in Figure 10, and we can see the algorithm is unable to
optimize anything at all inspecting the loss trajectory in Figure 9. The search only starts
becoming interesting and meaningful when the scale is large enough at 4,000pm, but the
performance starts to decrease again when the scale becomes too large. This is because the
devices are also more likely to misfold into undesired “random squiggles” when they are too
long, which also corresponds to the folding power the actuators provide and the problem
we are trying to solve. With this search we are able to locate the ideal length range for our
devices given our actuator power and our target objectives.

3.3 Search Duration

Another parameter we changed during the search is the duration of the evolution. We fixed
the parameter of number of segments used to be 12, the length scale to be 8,000um, and
search duration to be 150 generations with 3 separate evolution trees. We harvest and
save the top 5 designs every 30 generations so we can track the manual scores at different
evolution stages. The result of the loss trajectory is shown in Figure 11 as an objective matrix
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Figure 10 Score distribution of search on different length scale.

to evaluate the effect of different segment numbers from the machine’s perspective. The
manually scored results of the converged designs of each condition are shown in Figure 12 as
a subjective matrix for evaluation.

led

0.0 1

—0.5 1

—1.0 1

@ —1.5 1

—2.0 1

—2.5 1

-3.5 = r - : : : T .
0 20 40 60 80 100 120 140
Generation

Figure 11 Loss trajectory of search on different search duration.

Here, we learn that designs start becoming meaningful quite early in the search, this
makes sense as the algorithm is programmed to preserve all good designs found along the
evolution path. The search also starts converging toward the minimum at around 90 to 120
generations, which is also why we set most search durations to 100 in other conditions. A
more interesting point, however, is that we do not want the search to go on infinitely either.
While the loss stopped decreasing after a certain amount of generations passed, we also
observed a decrease in “gene diversity” when the search became too long. Here, we define
“genes” G(S, P) as the component that makes up the design input - the segment list S and
pattern matrix P. We found out that as the search becomes too long, the genes especially in
P start to become less diverse, with many survivors sharing similar P and the search process
becoming a randomized S swapping search with little optimization going on. Moving forward,
it may be helpful in future searches to add a gene diversity evaluation tracker within the
search and program the mutation rate to change adaptively in response to the gene diversity.
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Figure 12 score distribution of search on different search duration.

3.4 Fabrication Limit

Finally, we investigated how fabrication limit affects the search performance, as it is also
vital that the designs found should not exceed the physical patterning limit. Currently, we
are imposing a 6 step limitation on the search, as exceeding this value increases the difficulty
patterning the devices. During the search, we fixed the length scale to be 8,000um and
search duration to be 100 generations with 3 separate evolution trees for the two conditions -
6-segment designs and 12-segment designs. We compared the results with the same conditions
shown above to learn how fabrication limit affects the search performance.

Le6 6 Segments Lot 12 Segments
0.0 0.0
= With Lim = With Lim
0.5 No Lim -0.5 No Lim

-2.5 \'v“&w‘, " -2.5 “:“*\\ﬂ

-3.0 -3.0 MW

3.5 T T T T — 3.5 T T T T T T

[} 20 40 60 80 100 0 20 40 60 80 100
Generation Generation

Figure 13 Loss trajectory of search on different fabrication limit.

We showed that the fabrication limit imposed does not drastically change the behavior or
the performance of the search in our given conditions. While the limit does slightly decrease
the performance of the optimal designs for the 12-segment search, we do think it is still
possible to find a design that can fold into all digits given more evolution trees deployed for
a wider and larger search. It is therefore encouraging that we now have a computational
material discovery method that can autonomously learn and evolve the material designing
process while considering real-world physical limitations.

4 Conclusion

Here, we demonstrate the development of a computational material discovery method for
a multi-stable soft material with orthogonal actuators and automate the multi-objective
optimization process with a genetic algorithm and integration of a deep-learning model. We
show that we are able to efficiently explore the large parameter space and learn the effect
of different variables. We also show that we can impose real-world physical constraints to
discover reasonable designs.
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Figure 14 Score distribution of search on different fabrication limit.

In future work, one could expand the dimension of the simulation platform to handle more

complex material actuation simulation. Building on this structure, it could also be possible

to develop an advanced discovery platform that can optimize the functions of DNA-actuated
hydrogel designs for tasks such as building locomotive robots.
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—— Abstract

A DNA stack nano-device is a bio-computing system that can read and write molecular signals
based on DNA-DNA hybridisation and strand displacement. In vitro implementation of the DNA
stack faces a number of challenges affecting the performance of the system. In this work, we apply
probabilistic model checking to analyse and optimise the DNA stack system. We develop a model
framework based on continuous-time Markov chains to quantitatively describe the system behaviour.
We use the PRISM probabilistic model checker to answer two important questions: 1) What is the
minimum required incubation time to store a signal? And 2) How can we maximise the yield of
the system? The results suggest that the incubation time can be reduced from 30 minutes to 5-15
minutes depending on the stack operation stage. In addition, the optimised model shows a 40%
increase in the target stack yield.
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1 Introduction

DNA computing is an emerging field that aims to use DNA, biochemistry, and molecular
biology to construct information-processing devices. Since its first appearance where DNA
was used for encoding the directed Hamiltonian path problem [1], the approach has been
applied to design a wide range of biocomputing applications such as molecular computational
circuits [7, 22], DNA storage technologies [9, 21], and synthetic controllers [8]. In [20], we
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presented the design and in wvitro implementation of a DNA stack nano-device that can read
and write molecular signals in a last-in first-out way. The stack data structure is implemented
as a linear chain of partially complementary DNA strands which are used to represent both
data and read/write operations. The operations are achieved via DNA-DNA hybridisation
and strand displacement of complementary toehold domains. Although experimental results
show a generally successful implementation, the system still faces a number of challenges
affecting the performance of the resulting stack. That is in particular due to the presence of
unwanted interactions among the biochemical species that implement the system.

To improve the performance of the DNA stack system, we propose the use of probabilistic
model checking [4, 17] in the stack design process. Probabilistic model checking is a formal
verification technique for modelling and analysing stochastic (probabilistic) systems. A
benefit of the technique is the ability to exhaustively explore finite-state probabilistic models,
typically Markov chains or variants. Since all possible behaviours of the system are analysed,
the result is more reliable (and faster in some cases) than stochastic simulation where one
simulation run follows a single possible trajectory of the system. Although probabilistic model
checking was originally applied to software verification, the technique has been successfully
used in biological settings as well [6, 14, 15, 19]. By quantitatively evaluating properties
such as “what is the probability for the system to reach steady-state within 10 minutes”, we
are able to predict the behaviour and optimise the design of a complex biochemical system.

In this work, we develop a probabilistic model framework based on continuous-time
Markov chains (CTMCs) for describing the DNA stack system presented in [20]. We address
two important challenges of the system: how to minimise the incubation time, and how
to maximise the yield of the target stack. A set of properties based on the Continuous
Stochastic Logic (CSL) are defined to quantitatively and rigorously analyse the dynamic
behaviour of the DNA stack model. By model checking these properties we optimise the
experimental protocol for constructing the DNA stack in wvitro. The probabilistic model
checker PRISM [18] is used for the model development and analysis.

The rest of paper is organised as follows: Section 2 briefly introduces the concept of
the DNA stack system, its experimental implementation, and CTMC-based probabilistic
model checking. Section 3 describes the computational model of the DNA stack system,
while Section 4 presents several validation and model checking results. Section 5 discusses
experimental validation of the model checking results and concludes the paper.

2 Background
2.1 DNA stack system

We give here a brief overview of the DNA stack system — more details can be found
in [12, 16, 20]. A computational stack is an abstract data type that serves as a linear
collection of data elements, with two main operations: push (adds an element to the head of
collection) and pop (removes from the head of the collection and returns the most recently
added element). Because of this LIFO (Last In, First Out) feature, stacks are much used for
enforcing sequential access to data.

A DNA stack is a molecular implementation of the stack data structure where the data
elements that are stored, as well as the operations needed to operate the stack, are engineered
via a set of single stranded DNA strands, also called “DNA data operators”; DNA data
operators use both sequence and (partial) secondary structures information to achieve the
functionality by mimicking their computational counterpart. The construction of a DNA stack
structure is achieved via DNA-DNA hybridization and strand displacement of complementary
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Figure 1 Schematic of the DNA stack nano-device.

toehold domains. In a DNA stack implementation, the push operation prepares the stack for
receiving an element, while pop undoes that. To record an element in the DNA stack, one
performs a push operation followed by a data recording operation. To reverse this, a specific
read operation is applied that removes the last element added, followed by a pop operation
which undoes push and returns the stack to its initial state.

Figure 1 gives a schematic representation of a DNA stack system that performs two
push and two pop operations for the data elements dataX (X) and dataY (Y). Six distinct
DNA data operators were developed with their unique toehold domains which can be fully
complementary (A and A*, B and B*, etc.). In addition to the toehold domains, each type of
DNA data operator has an unique hairpin motif for the data storage. These hairpins do not
participate in hybridisation or branch migration; they simply represent Os and 1s (although,
potentially, they could each store or encode more complex data).

The process to record an element starts from an empty stack, which is represented by

hybridised linker and start strands (LS) with the linker attaching to streptavidin beads.

The first push DNA data operator (P) is added to irreversibly hybridise with the empty
stack via the exposed toehold domain A. The stack is now in its data state (LSP), and
the corresponding reaction for this operation can be written as LS + P kA, ISP, The
LSP species now has a single open toehold region BC that can accept dataX (or dataY)

DNA data operator via the reaction: LSP + X kse, 1.SPX. The process can be repeated by
adding any number of push and then data DNA data operator. The reading process proceeds
in a reversed way. Starting from a constructed stack, e.g., LSPXPY, the read DNA data
operator peels the last recorded dataY DNA data operator off the stack by hybridisation
at the exposed domain A and then three-way branch migration with domains BC. This
operation forms the LSPXP stack and a read-dataX (RX) double stranded helix which does
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not expose any single stranded domain and will not participate in further DNA interactions —
the corresponding reaction is LSPXPY +R b, LSPXP + RX. Similarly, the pop DNA data
operator (Q) peels off the exposed push DNA data operator, thus making the stack ready for
another read (or write). The reaction also produces a double stranded helix push-pop (PQ):

LSPXP + Q -2 LSPX + PQ.

2.2 Experimental methods

The experimental protocols for the DNA stack are detailed in [20]. Briefly, 400 uL of Sepharose
beads (Cytiva) are incubated and washed to remove the storage ethanol. Then 300nM of
linker is added to the Sepharose beads and incubated at 25°C for 30 minutes. After the
incubation is completed the species is washed (using a solvent of filtered 1X Tris EDTA(TE))
and the sample is centrifuged for 5s at max RPM. The supernatant is then carefully removed.
The process is repeated for each sequential DNA data operator in the order push, data DNA
data operator and so on, until the releaser is added to remove the constructed stack from
the Sepharose beads. The stack is then analyzed via polyacrylamide gel electrophoresis.

The wash event performed prior to each DNA data operator addition aims to eliminate
supernatants such as RX, PQ, P, X, etc. It is worth to notice that due to nonspecific binding
to beads, the supernatant cannot be perfectly removed by the washing. Therefore, some of
these residues can trigger side reactions to form undesired species in the next stack operation,
which may harm the target stack production. For example, in the recording process of adding
the second push DNA data operator , the stack LSPXP can also hybridise with residual
dataX DNA data operator added in the previous step. Together with the new push DNA
data operator P, different types of undesired polymers, such as LSPXPX, LSPXPXP, PXPX
and others, can be formed in the chemistry.

2.3 Probabilistic model checking

Probabilistic model checking [4, 17] is a powerful technique for analysing systems that exhibit
stochastic behaviour. Unlike classical model checking [10] which can only provide qualitative
answers, i.e., the system either satisfies or violates a given property, probabilistic model
checking can reason quantitatively about the probability that the property is true (or false).
To probabilistically model check a system, two inputs are required: a probabilistic system
model and the specification of a temporal property about the system behaviour. In this
section, we introduce the DNA stack system model, and the language utilised for specifying
the temporal properties.

2.3.1 Level-based CTMC

Continuous-time Markov chains (CTMCs) are a well-known stochastic model utilised for
describing and analysing reaction networks [13]. Traditionally, the CTMC state is a population
vector giving the number of molecules of each species. This representation, however, is
infeasible for many real-life biological systems, which usually have large molecular numbers.
In such cases, the size of the underlying CTMCs become huge: the so-called state-space
explosion problem. Level-based CTMCs were introduced to model systems in a more abstract
and efficient way [2, 6]. In a level-based CTMC, each state is characterised by molecular
concentrations, discretised into a number of levels. In this paper we use a similar idea, but
instead of concentrations levels we utilise molecular count levels for a more explicit state-space
representation.
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» Definition 1 (Level-based CTMC). A level-based continuous time Markov chain is a tuple
(N, S, Sy, R) where N is the molecular count level number, S is a finite set of states; So C S
is the set of initial states; and R : S x S — Rxq is the transition rate matriz. Moreover,
each state s € S is a tuple s = (ny, N, ...ng) for a fired k € N (number of species), where
n; : 0 < n; < N is the molecular count level for the i-th species.

Thus, given a maximum molecular count M for all species, each level n; represents the
molecular count intervals [0, 1), [& 2. &) (N — 1) 3L N . M7 (level-based CTMCs
are useful when M > N, hence by taking N to be a power of 10 prevents any rounding
issues). Level-based CTMCs can be directly derived from stochastic reaction models — for
deterministic models one can convert concentrations and rate constants as usual, or directly
use concentration levels [2, 6]. Consider a simple reaction A + B —£, C with the stochastic
rate constant k, and a possible state s = (na, ng, nc) of species’ molecular count levels. The

M

transition rate is calculated as %’W where R = .

2.3.2 Continuous Stochastic Logic

Continuous Stochastic Logic (CSL) [3, 5] is a formal notation to express probabilistic temporal
properties of CTMCs and other dynamical systems. Formulae in CSL can be classified into
state and path formulae:

State formula ® == true | a | =@ | PAD | Puplp] | Ssaple]
Path formula ¢ == X'® | dU'®

where a € AP is an atomic proposition over the states of a CTMC, p € [0, 1] is a probability
threshold, e {<, <,>,>}, and I is an interval of R>¢. State formulae are evaluated over
states of a CTMC, while path formulae are evaluated over paths (or executions/traces) of a
CTMC. Formulae Prqp[p] and Syqp[p] are transient-state and steady-state CSL properties,
respectively. In this work, we only consider transient-state properties since our DNA stack
has a finite reaction time. A CTMC state s satisfies Poqp[¢] if the probability of all the paths
starting from s and satisfying ¢, satisfies the bound 1 p. There are two types of operators
in a path formula: the next operator where X'® is true if ® is satisfied in the next state
of the path and at a time point ¢ € I, and the until operator where ®; U ®, is true if ®,

is satisfied at some time point within interval I, and that ®; is true up until that point.

Additional path operators can be derived as:

the eventually operator F (future) where F/® := true U'®, and

the always operator G (globally) where G/® := —~FI-®
Intuitively, F'® expresses that ® is eventually satisfied at some time point within I, whereas
a path satisfies G'® if ® is true at every time point in I. (See [5] for the formal CSL
semantics.)

3 Modelling DNA stack system

3.1 Workflow overview

We have extended the PRISM model checker by implementing an iterative workflow! to
model the process of the DNA stack system (Figure 2). PRISM offers a high-level modelling
language for describing system behaviour. Following the styles defined in [11, 6], we developed

1 Source code available at https://github.com/shelllbw/mcSTACK.
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Figure 2 CTMC-based workflow for modelling the DNA stack system.

a set of level-based PRISM reaction models (RMs) covering the possible reactions in each

DNA operation step. Starting from the first RM which describes the reactions after first

adding push DNA data operator , the workflow is as follow:
Construct CTMC based on mathbfi" RM: if i = 0, the initial state for generating
the first CTMC is defined as an assumed state of the DNA chemistry such that some
initial steps have been performed (see Appendix for details). Otherwise, the initial states
are obtained from the result of the previous step. Here we use the explicit PRISM engine
for building CTMCs as our model has a potentially large state space, but only a small
fraction of which is actually reachable. The engine takes less than 10s to build a CTMC
with 100 states on a 3.4 GHz Intel Core i5 processor with 12GB memory — much faster
than the MTBDD engine which takes hours.
Compute transient probability: the transient probability at the end of the incubation
time is calculated for each CTMC state. Each state represents a possible molecular level
that the system can reach at the end of incubation.
Perform wash event: the transient states and their probabilities are modified in order
to model the wash event. Washing is assumed to be an instantaneous event. All the state
variables corresponding to the bead-bound species (e.g., LSP, LSPX) have their value N
changed to (1 — p) N, where p € [0,1] is the constant fraction of beads lost on each wash.
All the state variables corresponding to the non bead-bound supernatant species (e.g., X,
RX, PQ) have their value N’ changed to ¢ N’ B,,,, which models the survival from wash
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event due to non-specifically bind to beads. Here ¢ € [0, 1] is the constant fraction of
supernatant solution transferred through the wash cycle to the next reaction stage, and
By, = (1 — p)™ is the normalised mass of beads remaining where n is the index of the
current wash. Moreover, states with the same value after the modification are merged
and their probabilities accumulated.

Generate initial state of (i+1)*® RM: in addition to the wash event, transient
states are further manipulated for constructing the next RM. This includes extending the
states with new variables (i.e., new species formed in the next reaction stage) with the
corresponding state values (i.e., initial level of newly added DNA data operators). To
reduce the state space size, a cut-off probability of 107° is introduced so that only states
with relatively high probability are considered as initial states in the next step.

3.2 Reaction models

The major challenge of model checking DNA stack systems is the state space explosion
problem. A stack system with several operations can potentially generate huge numbers of
reachable states after only a few iterations. It is therefore important not only to consider the
reaction models that we developed are able to describe system behaviour, but also to make
sure a reasonable state space size can be maintained for the model analysis. To alleviate the
problem, we have applied several methods.

As discussed in Section 3.1, states with low probability (smaller than 10~°) will not be
considered as initial states for constructing the next CTMC. Since all reactions in the system
are considered as irreversible and the incubation time is sufficiently long, a small portion of
the state space often takes a large probability. In most cases, with a 10~° cut-off probability
we are able to preserve at least 98% of the total probability with no more than 20 states after
6-8 iterations. Level-based RM and CTMC are applied to further reduce the state space

size. To achieve a good precision, a maximum level of 100 (N = 100) is used in this work.

Thus, given a maximum concentration M of 300nM (or equivalently = 27,100 molecules in a
volume of 1.5 x 10713 L), each level represents 3nM (271 molecules) of a DNA species.

A coarse-grained RM framework is developed aiming to capture essential reactions in
each operation step. Since in this work we are interested in the formation of the target stack,
each model consists of two types of reactions: a main reaction which can form the target
DNA stack species, and a set of side reactions that can directly or indirectly react with the
species in the main reaction, thereby reducing the production of the target stack. Let us
consider the following operation sequence as an example:

add push DNA data operator P § add dataX DNA data operators X g add push DNA data
operator P

where we assume the initial species in the chemistry are bead-bound linker-starter LS and
starter S. We can write a unique RM for each incubation stage after adding each new DNA
data operator:

RM1 (add push DNA data operators P):

LS + P =2, LSP (target), S+P Lo, gp

RM2 (add dataX DNA data operators X):

5:7
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1) LSP+ X 2% LSPX (target),

(1)

(2) P+X 2% Ps, X+P 45 Wo,

(3) X + Po -2 Wo, P+ Wo 2% Po, Wo 2% Po, Po—25 Wo,
(4)

LSPX + P X4, 1S5, LSP + Wo 2% 1LSo, LSPX + Po 4. LSo

and RM3 (add push DNA data operators P):

(1) LSPX +P 2, LSPXP (target),

(2) P+X X% Py, X+P 45 Wo,

(3) X + Po =25 Wo, P+Wo 2% Ps, Wo 2% Po, Po 25 Wo,
(4) LSPXP + X <% 1Ss, LSPX +Po —25LSo, LSPXP + Wo <2< LSo

where o denotes all possible polymers constructed by P and X (PXP, PXPX, PXPXP,...).
The first reaction in each RM is the main reaction which produces target stack species (i.e.,
LSP in RM1, LSPX in RM2, and LSPXP in RM3), while the rest are side polymerisation
reactions. In each main reaction, the initial concentrations of new-added reactant (X or P)
is always higher than those pre-existing reactant (LS, LSP or LSPX) due to the wash in
previous step. Therefore, a considerable amount of the newly added reactants that cannot
take part in the reactions and survive from wash events would remain in the chemistry.
During the incubation stage of the next operation step, these residues or the o polymer they
formed negatively affect the production rate of target stacks (i.e., side reactions (2)-(4) in
RM2 and RM3). In particular, reactions (2) and (3) are hybridisation of non bead-bound
supernatants to o polymers, and reactions (4) are hybridisation of bead-bound stack and
supernatants. In the model, we do not explicitly represent the detailed structure of o
polymers as it generates RM with infinite reactions. Instead, we only show their left-most
(start) region which determines the capability to hybridise with the stack species in the
main reactions. In this way, the RM complexity is greatly reduced. There are two types
of o polymers that can be formed under such representation: the one starting with push
P DNA data operator (Po) and the one starting with data W DNA data operator (Wo).
Both of them are able to hybridise with the stack species in the main reaction inhibiting the
production of target stacks.

On the other hand, some reactions are not considered in our RM framework either because
the molecular level of their reactants stays at zero, or they do not harm the production of
target stacks. For example, two o polymers with complementary start and end region may
hybridise and form a longer polymer: PoW + PoP —— PoP. Such reaction in fact reduces
the polymer concentration and thereby benefits the production of target stacks. By ignoring
those reactions, we assume that our RM is always the “worst” case for the target stacks’
formation, and thus the lower bound of their concentration is guaranteed.

We can use the same idea to build RMs for the read and pop operation steps. Popping
the last added push DNA data operator and then reading the dataX DNA data operator
yield the following RMs:
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RM4 (add pop DNA data operators Q):

(1) LSPXP + Q —25 LSPX + PQ (target),
(2) LSPX +P 24 LSPXP, P+ Q <2< pQ

and RM5 (add read DNA data operators R):

) LSPX +R —%5 LSP + RX (target), LSP + Q —25 LS+ PQ,
) Q+R X% R, R+Q 225 1Q

3) R+TQ1{B;C>TR, Q+TRk—A>TQ, TRk—AM'Q, TQkB—C>TR
) LSPX + 7R <% 1S5 + RX + PQ

Similar to the RMs for push and write steps, the production of target stack species (LSPX
in RM4, and LSP in RM5) are affected by both main reactants and side reactions. The
residual species surviving wash events (i.e., P in RM4, and Q in RM5) can either directly
hybridise with target stack or indirectly react with them via 7 polymers which trigger chain
annihilation reactions [20], namely (4) in RM5. It is worth noting that the occurrence of
chain annihilation reactions is determined by the right-most (end) region of 7 polymer. Thus
the right-most region of 7 is considered explicitly during the polymer formation, which
produces either 7R or 7Q (i.e., reactions (2) in RM5).

3.3 Model example

To illustrate how the CTMC-based DNA stack model works, consider the below operation
sequence:

add push DNA data operator P g add dataX DNA data operator X g add push DNA data
operator P .

The corresponding RMs are the RM1-RM3 illustrated above. To start, the initial state of
RML1 is set as:

(LS=81, P=100, S=2, LSP=0, SP=0)

which corresponds to LS = 243nM, P = 300nM and S = 6nM (lower LS concentration is
caused by the wash events in set-up process). The supernatant survival rate ¢ is set as 0.2,
and the loss rate of bead-bound species p is 0.1. The incubation time of each step is 30
minutes. Moreover, we only consider transient states with probability greater than 107> as
initial states for the next RM. With the above conditions, a level-based CTMC is built from
RM1 with 246 states and 408 transitions, and after incubation the transient probability (>
107?) for the following state is

(LS=0, P=17, S=0, LSP=81, SP=2) = 0.9999999436478932.

The state shows that after incubation all copies of LS contributed to forming LSP, but there
are still 17 levels of P remained in the chemistry. Then the wash event is performed by
removing 80% (¢ = 0.2) of the supernatant species P and SP, and 10% (u = 0.1) of the
(bead-bound) target stack LSP.
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To construct the next CTMC, the states are also extended with new variables representing
the new species introduced by RM2. Moreover, variable X is set to 100, meaning that 300nM
of new dataX DNA data operators is added to the chemistry. State variables corresponding
to the species LS, S and SP will not be considered as their concentration levels will remain
zero, giving the following initial state and probability:

(P=3, LSP=73, X=100, LSPX=0, LSo = 0,Pc = 0, Wo = 0) = 0.9999999436478932.

The CTMC built from RM2 and the above initial state consists of 5,782 states and 20,108
transitions. The transient probability shows that after incubation there are 25 states with
probability greater than 1075, with the total probability greater than 99.99%. By performing
a wash event and state extension, 7 initial states are generated for building the third CTMC
that adds push DNA data operators (RM3):

(P=100, LSPX=66, X=3, LSPXP=0, LSo = 0, Po = 0, Wo = 0) = 0.01657086916873019
(P=100, LSPX=65, X=3, LSPPX=0, LSc = 0, Po = 0, Wo = 0) = 0.12083719755305258
(P=100, LSPX=64, X=3, LSPXP=0, LS = 0,Po = 0, Wo = 0) = 0.17053834871599782
(P=100, LSPX=63, X=3, LSPXP=0, LSo = 0, Po = 0, Wo = 0) = 0.03350530289916429
(P=100, LSPX=63, X=4, LSPXP=0, LSo = 0, Po = 0, Wo = 0) = 0.36343236468968576
(P=100, LSPX=64, X=4, LSPXP=0, LSc = 0, Po = 0, Wo = 0) = 0.26484767882197474
(P=100, LSPX=65, X=4, LSPXP=0, LSc = 0, Po = 0, Wo = 0) = 0.03026448265945934

The resulting CTMC has 46,500 states and 180,110 transitions, and completes this simple
example.

4 Results

In this section, we apply our CTMC-based framework to model a 2-signal DNA stack system
that manipulates two data elements, X and Y. The model will be first validated against
stochastic simulation of a rule-based model implementing the same system. Then we apply
probabilistic model checking technique to analyse and optimise the system.

4.1 Modelling and validating a 2-signal DNA stack system

The 2-signal DNA stack system pushes two data elements dataX (X) and dataY (Y) to the
stack, and then performs two pop operations to read out the recorded data:

add push DNA data operators P g add dataX DNA data operators X g add push DNA data
operators P g add dataY DNA data operators Y g
add read DNA data operators R g add pop DNA data operators Q g add read DNA data
operators R g add pop DNA data operators Q

The reaction models of the above eight operation steps are detailed in the Appendix. A
maximum molecular level N = 100 is applied, and a fixed 300nM (100 levels) of each DNA
data operators is added to the chemistry at the beginning of each operation step. For each
step, we evaluate the mean level of the target stack after 30 minutes of incubation time.
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Figure 3 Comparison of the PRISM CTMC-based model and stochastic simulation of the rule-
based DNA stack model: mean concentration of the target stacks after 30 minutes of incubation
time for each reaction step for different values of ¢; p = 0.1 in all cases.

Table 1 Performance of CTMC-based model and rule-based stochastic simulation: state space
and transition size for all eight operation steps, total state space probability in the last step, and
CPU times for model checking (MC) and stochastic simulation (SS).

States Transitions  Total probability ~CPU time (MC) CPU time (SS)

$=01 33x10" 1.1x10° 99.87% 1.5 mins 1.8 mins
$=02 28x10° 1.2x10° 99.59% 39 mins 2.2 mins
$=03 28x10° 1.5x107 98.77% 5.1 hours 2.7 mins
¢ =033 4.0x10° 2.2x107 98.43% 8.0 hours 2.9 mins

The green bars in Figure 3 show the results of the CTMC-based model with fixed = 0.1
and various ¢ values. It can be observed that the mean level of the target stacks decrease
gradually w.r.t both the operation step and the increase in ¢. This is not only because 10%
of the stack species are removed during each wash event, but also because residues (e.g.,
strands P, X, R) that survived the wash accelerate side reactions. As a result, the level of
the target stack (LS) drops to 26 in the last step when ¢ = 0.33 is applied. In contrast, since
less residue survives when ¢ = 0.1, there are 34 levels of the target stack (LS) produced in
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the last step. Some performance statistics are reported in Table 1. The size of the state
space grows significantly with ¢, and the computation takes 8 hours when ¢ = 0.33. Despite
the large state space, in all cases more than 98% of the total probability reaches the last
step when a 107° cut-off probability is used in each step.

Due to the simplifications applied to the RMs, behaviours such as polymer-polymer
hybridisation are not considered in the CTMC-based model. It is therefore interesting to
compare the results of our model with the results of the more detailed model. We compare
our CTMC-based model against stochastic simulation of a rule-based model implementing
the same system [20]. The rule-based model covers 20 DNA strand polymerisation and
displacement rules. The comparison is shown in Figure 3. The stochastic simulations are run
with 100 replicates for each case. Overall there is a good agreement between the two models.
In the CTMC-based model, since we simplify the RMs by guaranteeing the lower bound of
target stack, the mean level is always lower than that of the stochastic simulation. With
¢ = 0.1, however, such difference is negligible (less than 1% in the last step). This is due to
the small amount of residues survived from wash, which reduces the occurrence of the side
reactions. With ¢ = 0.33 more residues are in the chemistry, thus the difference between
the two models increases to 4%. The performance of the stochastic simulations is given in
Table 1. Although a single simulation takes 1-3 mins to finish, a much longer time (normally
a few hours) is needed to collect enough replicates for computing statistically reliable results.

4.2 Optimising incubation time

Due to reaction irreversibility, the level of the target stack can eventually reach a stable
value if there is no other species with which it can react. Knowing the time to reach such
a stable state is important as it helps to determine the minimum incubation time. This
is particularly useful for large DNA stack systems, which may involve tens of operation
steps. In this section, we will analyse our probability CTMC-based model to optimise the
incubation time of each DNA operation step. The 2-signal system developed in the previous
section is considered. The operations of push, write, pop, and read are achieved by adding
a fix amount (300nM) of each of the respective DNA data operators. Based on in witro
experiment measurements [20], ¢ and p are set as 0.33 and 0.1, respectively.

To optimise the incubation time, we use the probabilistic model checker PRISM to
quantitatively verify the following CSL property:

Propl : P_s[ G>r ‘target_spec_stable’ | .

Intuitively, the property asks: “What is the probability that the target stack reaches a stable
level from time T onwards?” The condition “target_spec_stable” depends on the reactions of
a given operation step. For example, for the RM2 of Section 3.2, the property becomes:

Propl(RM2) : P—;[ G>7 (LSP=0AP =0APoc =0) ]

That is, the target stack LSPX reaches its stable level when all the main reactant LSP
is transformed, and there is neither push DNA data operators P nor Po polymers in the
chemistry (LSP, X, P, and Po are the species that can affect the production of LSPX). The
main reactant X is not considered in the property as it has higher level than LSP. Thus,
the property can always be satisfied at some time-unit as LSP, P, and Po can eventually be
consumed by X-ended species. Using the same idea, we can re-write Prop! for any reaction
network. For example, the yield of target species LS in RM5 in Section 3.2 is determined by
LSPX, Q and 7Q. The corresponding property is:

Propl(RM5) : P—2[ G>7 (LSPX=0AQ=0A7T7Q=0)].
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Figure 4 (a) Heatmap for the satisfaction probability of PropI for target species of the 2-signal
DNA stack over a range of time units 7', from 60 (1 min) to 1,500 (25 min). Cells with black
border indicate the suggested incubation time for each operation step. (b) Gel electrophoresis for a
2-signal DNA stack operation with a 30 minutes incubation. For each lane the target species has an
asterisk next to it. Every other unlabeled species is a byproduct. Specifically: Lane 1: NEB low
Molecular ladder (see Appendix for details); Lane 2: S; Lane 3: SP; Lane 4: SPX; lane 5: SPXP;
Lane 6: SPXPX; Lane 7: SPXPX+R; Lane 8: SPXPX+RQ; and Lane 9: SPXPX+4+RQR. (c) Gel
electrophoresis for a 2-signal DNA stack with the variable incubation timings taken from the schema
optimised by probabilistic model checking.

Figure 4 (a) shows the probability distribution of Prop! with incubation time 7T ranging
from 60 units (1 min) to 1500 units (25 min). The highlighted cells correspond to properties
with the lowest reaction time T as well as having at least 99% satisfaction probability. From
the result, it is suggested that an incubation time of 10-15 min is required for the first four
operation steps. This is because at these stages the concentration levels of the reactants in the
main reactions are relatively high and also close to each other. However, the incubation time
can be reduced to 5 min in the following steps, as there is a significant difference in the levels
of the reactants, which causes a rapid consumption of reactants with lower concentration.

Experimental validation of the model checking result is given in Figure 4 (b) and (c).
A full stack operation for the 2-signal system is performed with 30 minutes incubation
time (Figure 4 (a)), and the variable incubation time suggested from the model checking
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((Figure 4 (b)). As can be seen, in addition to the target species at each operation stage
(asterisks), multiple unwanted species also exist. This is in particular the case during the
reading process (lanes 7-10) with the increase of side reaction rates. However, the two images
show a qualitative agreement, indicating that a similar performance can be achieved with
optimised incubation time.

4.3 Improving target stack yield

The results in Section 4.1 show that high ¢ values (fraction of supernatants surviving the
washing) can significantly reduce the yield of the target stack. This is due to the large amount
of undesired DNA species (e.g., push DNA data operators P in RM2) that survives from the
wash event and increase the rate of side reactions, which compete with the main reactions.
Enhancing wash efficiency and decreasing ¢ is difficult to achieve in vitro. However, we may
still be able to minimise the concentration of undesired species by controlling the amount of
each new DNA data operator added to the chemistry at each step. Consider the 2-signal
system with ¢ = 0.33, where a fixed 300nM of each DNA data operators is added at each
step. The main reaction in the second step “adding dataX” is LSP + X Kne, 18PX. Initially,
there is around 210nM of LSP in the system. Adding 300nM of dataX DNA data operators
results in a large portion of these new DNA data operators not being able to react with LSP.
Instead, they become undesired species in the next step, which in turn negatively affects
the yield of the target stack LSPXP. Therefore, if we reduce the amount of these new dataX
DNA data operators, a higher yield of the target stack would be expected.

In this section, we employ the CSL logic and PRISM to maximise the yield of the target
stack by tuning the amount of each DNA data operator added at each step. The idea is to
first compute a maximum target stack yield when adding a sufficient amount of the DNA
data operators (in our case, 300nM). Taking the result as a reference value, we gradually
decrease the amount of DNA data operators added until reaching a minimum value for which
the system can still produce the desired level of target stack. We use the following CSL

property:
Prop1(C) : P>g.99] F[1800,1800] target_spec > C'| .

Informally, PropI(C) means that “Given a molecular level C, the probability of target
stack reaching such level after 30 minutes is greater than 99%.” We apply the property for
1 < C <100, and take the maximal C' which satisfies the property as the reference level Cis:

Cret = Max{C | Propl(C)A1< C <100} .

Figure 5(a) gives an example of determining the reference level for the step “adding
dataX” (RM3). When adding 100 levels (300nM) of dataX, the property Propl(C) : P>q.99]
F[1800,1800] LSPX > C ] is false for C' = 71 (213nM) and beyond, and is true for C'= 70
(210nM) and below, indicating that the system can produce a maximum level of 70 LSPX
with 99% probability. Thus we take 70 as the reference level Ciof. Now, the following CSL
property is employed to find the optimised addition concentration:

Prop2 : P>g.99] F[1800,1800] target_spec > Chet | -

The property evaluates whether the system can yield with high probability (> 99%) at least
Cret levels of the target stack at 30 minutes. In order to find the optimal level, we model
check the system with different initial states (i.e., smaller levels) until Prop2 is false. In this
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Figure 5 Optimising DNA addition levels (step “adding dataX” (RM3)) using probabilistic model
checking. Panels: (a) Evaluating Prop1(C) for C = {60,70,71,72,73} when adding 300nM dataX;
(b) Evaluating Prop2 with reduced initial level of dataX, from 72 to 80. Yellow bars: satisfaction of
properties; lines: satisfaction probabilities.

way we find the minimal initial level that satisfies the reference level of target stack Crer. In
Figure 5(b) we evaluate Prop2 using the reference level obtained in (a) for a range of initial
levels. The result suggests that adding 78 levels (234nM) of dataX is the minimum value for
which the system produces the same amount of LSPX when adding 300nM of dataX. The
optimised value, however, can avoid up to 64nM of dataX remaining in the chemistry, which
can harm the system yield in the next step.

We applied our approach to optimise the 2-signal system with ¢ = 0.33 and p = 0.1. We
compare the mean level of target stacks in the optimised system with the standard system
with fixed concentrations, as shown in Figure 6. In the last step, the yield of target stack in
the optimised system is 40% higher than the yield of the standard system.

5 Conclusion and future work

In this work, we applied probabilistic model checking to model and optimise a DNA stack
nano-device. An iterative CTMC-based workflow is developed within the PRISM probabilistic
model checker to model the system. Each iteration describes a single DNA operation step:
add new DNA data operator, incubation, and wash. The initial state of the (i 4+ 1)** step is
determined by the model checking result (transient probability) of the i step. Level-based
CTMCs and simplified reaction models are applied to reduce the state space size. We have
used our framework to develop a 2-signal DNA stack system model. The model is validated
against stochastic simulation of a rule-based model implementing the same system. We use
probabilistic model checking to formally analyse and optimise our 2-signal system. Results
suggest that when a fix amount (300nM) of each DNA data operator are added in each
operation step, an incubation time of 10-15 minutes is required for the first several operation
steps, while for the following steps the incubation time can be reduced to 5 minutes. We have
experimentally validated the result by comparing the gel electrophoresis obtained from the
optimised and unoptimised (30 min incubation time) systems. We also applied probabilistic
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Figure 6 Mean level of target stacks after adding a fixed 300nM of each DNA data operator in
each operation step (yellow bars) vs. adding the optimised level (green bars). The values on top of
the green bars are the actual (optimised) levels added to the systems.

model checking to maximise the yield of target stacks by optimising the amount of DNA
data operators added at each reaction step: our optimised model shows a 40% increase in
target stack yield.

Experimental validation on improving the yield of DNA nanostructures is an ongoing
work. The major challenges of the validation are two-fold. First, the concentration difference
between the optimised and unoptimised protocols in some cases (i.e., LSP and LSPX in
Figure 6) is small, which makes the analysis of the results difficult. For example, it is hard
to figure out whether the differences in the experimental output are caused by the model
creating the correct schematic or the stochastic nature of pipetting error. Second, the model
is influenced by two main parameters: ¢ and . Both these factors exhibit a large influence
over the model and are difficult to optimise and control in the experimental setting. There
are two strategies that we could implement in future to potentially solve these problems.
One approach to explore the pipetting stochasticity would be to use a liquid handling robot
to carry out the operations instead of a manual pipette, as robots have much higher accuracy
than human operators and are not prone to fatigue and other factors. It may also improve
the bead loss and washing efficiency. Another strategy to mitigate the bead loss could be to
use another DNA nanostructure to tether the device instead of beads. Finally, an enzymatic
wash could be explored to reduce the noise and in turn the off target species by digesting
potential byproducts and leaving on the target species intact.
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A  Complete reaction models for 2-signal DNA stack system

RM1 (add push data operators P):

LS + P —2, LSP (target), S+ P —25SP

RM2 (add dataX data operators X):

1) LSP+ X X2 LSPX (target),

kpc

X + Po 2 Wo, P+ Wo 2% Po, Wo X% Po, Po 525 Wo,

(1)
(2) P+X % Ps, X+P -2 Wo,
(3)
(4)

4) LSPX +P X 1So, LSP+Wo 22% 1Ss, LSPX + Po =25 LSo

RM3 (add push data operators P):

1) LSPX +P -2, LSPXP (target),

ch 1(BC

X + Po 4 Wo, P+ Wo % Po, Wo X2 Py, Po 225 Wo,

(1)
(2) P+X %P, X+P 25 Wo,
(3)
(4)

4) LSPXP + X £2% 1S5, LSPX +Po 25 LSs, LSPXP + Wo <2< 1So

where the bi-molecular rate constants were found to be approximately K4 ~ Kpc =
3 x 104 Ms™ !, and Kapc ~ 2.5 x 10°M~1s~!. The bi-molecular strand displacement rate
constants K7 and K> were assumed equal to hybridisation constants K4 and Kp¢ respectively,
due to the long 28nt “tocholds” of the strand displacement reaction [20]. Moreover, the chain
annihilation reactions were approximated as a single step bimolecular reaction whose rate
constant was set to the rate constant of the initial hybridisation event as an upper bound i.e,
kﬁham = k‘A and k‘fghélm = kBC-
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RM4 (add dataY data operators Y):

1) LSPXP +Y 22 LSPXPY (target),

kpc

3 Y+Pak—A>WU, P—i—WUkB;C>PU, Wo —= Po, Pak—A>Wa,

(1)
2) P+Y X% ps, Y 4+P 5 W,
(3)
(4)

LSPXPY + P X4, 1.Ss, LSPXP + Wo X% 180, LSPXPY 4+ Wo 2, [.So

RMS5 (add read data operators R):

(1) LSPXPY + R L3 LSPXP + RY (target),
(2) LSPXP+Y X< LSPXPY + RY, R+Y “2E% RY

RM6 (add pop data operators Q):

(2) Q+R-"%7R, R+Q -2 7Q
3) R+7Q Moy R, Q+7R 5 7Q, TR 7Q, 7Q X% IR

chain chain
(4) LSPXP +7Q %, 1Ss + RX + PQ, LSPX + 7R 2 LSs + RX + PQ

(1) LSPXP +Q -2 LSPX + PQ (target), LSPX +R —3 LSP +RX, LSP+ Q -2+ LS+ PQ

RMTY (add read data operators R):

1) LSPX +R - LSP + RX (target), LSP +Q —25 LS + PQ,

(1)
2) Q+R %S 7R, R+Q 25 7Q
(3)
(4)

chain

4) LSPX 4+ 7R *2, [.So + RX + PQ

R+7Q —>ch TR, Q+ 7R —>kA 7Q, TR —>kA TQ, TQ —>ch TR

RMS8 (add pop data operators Q):

(1) LSP + Q =25 LS + PQ (target)
2) Q+RE% 7R, R+Q -5 1Q

3) R+7Q Koo, TR, Q+7R K, 7Q, TR K, TQ, TQ keey R

B Determine initial state of CTMC for RM1

The initial state for generating CTMC from the first reaction model is assumed the following

steps have been performed:

100 levels of (300nM) linker DNA data operators incubate with 100ul sepharose beads
for sufficient time. It’s assumed that all the DNA data operators can irreversible bind to
beads which yields 100 levels of bead-bounded L stacks.

A wash event is perform by assuming p percent of the L stacks is removed. Given p = 0.1,
90 levels of L remain in the chemistry after the wash.
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Figure 7 Examples of a hypothesised “chain annihilation” multi-stage reaction (left), and P, X
polymer formation (right).

= 100 levels of start DNA data operators are added to hybridise with L. It is assumed that
the irreversible linker-start reaction proceeded to 100% completion over the incubation
time producing 90 levels of LS with 10 levels of supernatant S remain in the chemistry.

= A second wash event is perform by removing 10% LSP stacks, and 80% S (assuming
¢ = 0.2). The result (i.e, LS = 81, S = 2) will be used as the initial state in the first
CTMC.

C Experimental Validation

Table 2 DNA sequences for in vitro validation [20].

Strand Symbol Length Domains |Primary Sequence 5' - 3'

Start S 50 Al* CACACTATTTCCCTTCTACCCGCCCTATCTCATCTCTCATCTCATCTTAA

Push P 56 A*BC |ATAGGGCGGGTAGAAGGGAAATAGTGTGATCCAGTTATT ATAGTTTTGAAGCGTAT
Write X 56 A C*B* |CACACTATTTCCCTTCTACCCGCCCTATATACGCTTCAAA ACTATAATAACTGGAT
Read r 56 B CA*  |ATCCAGTTATTATAGTTTTGAAGCGTATATAGGGCGGGTA GAAGGGAAATAGTGTG
Pop q 56 C*B* A |ATACGCTTCAAAACTATAATAACTGGATCACACTATTTCCC TTCTACCCGCCCTAT
Linker k 33 ml GAGAGAGATGATTAAGATGAGATGAGAGATGAG

Releaser |z 33 *m* CTCATCTCTCATCTCATCTTAATCATCTCTCTC
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For the sake of simplification, we only use data X to build stack in the experiments. This
is because stacks are identified by their length, and it’s unable to distinguish X stack (e.g,
LSPXPX) and Y stack (e.g, LSPXPY) at the current settings as they are different in hairpin
only. Such simplification, however, would not affect our model checking results, as the model
excludes the situation that non-target stack becomes target stack in the later operation steps.

The Vgel simulator [20] is used to create a computer-generated image of what the DNA
stack model output would like post releasing the stack from the beads. An example Vgel
image is given in Figure 8. This Vgel can be combined with the species output to create a
labelled image as we know the lengths of the strands when combined together to be: when
signals are being pushed to the stack

SP: 50 + 56 = 106

SPX: 50 + 56 + 56 = 162

SPXP: 50 + 56 + 56 + 56 = 218

SPXPX: 50 + 56 + 56 + 56 = 274
When signals are being read from the stack or popped the length should drop by 56

SPXPXR: 274 - 56 = 218

SPXPXRQ: 218 - 56 = 162

SPXPXRQR:162 - 56 = 106
Note that Linker is not part of this calculation as this creates its own complex of length 33.
There are also other complexes which are formed by side reactions.
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Figure 8 Full stack operation 30 minutes. A comparison of the gel electrophoresis and Vgel
for a full stack operation with a 30 minute incubation. For each lane the target species has an
asterisk next to it. Every other unlabeled species is a byproduct. Gel electrophoresis image: Lane 1:
NEB low molecular ladder; Lane 2: S; Lane 3: SP; Lane 4: SPX; Lane 5: SPXP; Lane 6: SPXPX;
Lane 7: SPXPXR; Lane 8: SPXPXRQ; and Lane 9:SPXPXRQR. Electrophoresis conditions: Gel:10
% Novex TBE Gel 1X TBE @200V for 35minutes Staining dye: Sybr Gold Concentrations: all DNA
data operators were nominally 300nM Vgel image:Lane 1: NEB low molecular ladder. Lane 2: S;
Lane 3: SP; Lane 4: SPX; Lane 5: SPXP; Lane 6: SPXPX; Lane 7: SPXPXR; Lane 8: SPXPXRQ);
and Lane 9: SPXPXRQR.
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Figure 9 Variable timing as per the generated schema. A comparison of the gel electro-
phoresis and Vgel for a full stack operation with the incubation timings taken from the schema
supplied by the model. For each lane the target species has an asterisk next to it. Every other
unlabeled species is a byproduct. Gel electrophoresis image: Lane 1: NEB low molecular ladder;
Lane 2: S; Lane 3: SP; Lane 4: SPX; Lane 5: SPXP; Lane 6: SPXPX; Lane 7: SPXPXR; Lane 8:
SPXPXRQ); and Lane 9: SPXPXRQR. Electrophoresis conditions: 10% Novex TBE Gel in a buffer
of 1X TBE @200V for 35minutes. Staining dye: Sybr Gold Concentrations:all DNA data operators
were nominally 300nM Vgel image: Lane 1: NEB low molecular ladder; Lane 2: S; Lane 3: SP; Lane
4: SPX; Lane 5: SPXP; Lane 6: SPXPX; Lane: 7: SPXPXR; Lane 8: SPXPXRQ); and Lane 9:
SPXPXRQ.
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—— Abstract

This paper is about turedos, which are Turing machines whose head can move in the plane (or in
a higher-dimensional space) but only in a self-avoiding way, by putting marks (letters) on visited
positions and moving only to unmarked, therefore unvisited, positions. The turedo model has been
introduced recently as a useful abstraction of oritatami systems, which where established a few years
ago as a theoretical model of RNA co-transcriptional folding. The key parameter of turedos is their
lookup radius: the distance up to which the head can look around in order to make its decision of
where to move to and what mark to write. In this paper we study the hierarchy of turedos according
to their lookup radius and the dimension of space using notions of simulation up to spatio-temporal
rescaling (a standard approach in cellular automata or self-assembly systems). We establish that
there is a rich interplay between the turedo parameters and the notion of simulation considered.
We show in particular, for the most liberal simulations, the existence of 3D turedos of radius 1
that are intrinsically universal for all radii, but that this is impossible in dimension 2, where some
radius 2 turedo are impossible to simulate at radius 1. Using stricter notions of simulation, intrinsic
universality becomes impossible, even in dimension 3, and there is a strict radius hierarchy. Finally,
when restricting to radius 1, universality is again possible in dimension 3, but not in dimension 2,
where we show however that a radius 3 turedo can simulate all radius 1 turedos.

2012 ACM Subject Classification Theory of computation — Models of computation; Theory of
computation — Formal languages and automata theory

Keywords and phrases Turedos, intrinsic universality, Higher-dimensional Turing machines,
Oritatami systems

Digital Object Identifier 10.4230/LIPIcs.DNA.2022.6

1 Introduction

The field of biomolecular computing has given rise to several theoretical models that describe
growing process of (molecular) assemblies governed by local interaction or gluing rules. One
of the most studied one, the abstract Tile Assembly model (aTAM) [19], describes a process
where the growth can happen anywhere asynchronously. It was successfully implemented
in vitro as DNA self-assembly [18]. In oritatami systems, introduced more recently [9, 8]
and inspired from RNA origami [11, 7], the growth happens at a unique given point of
the assembly and in a sequential manner. Despite their obvious differences as models of
biomolecular systems, they share common features as computational models. Both are
limited by the fact that they can only grow shapes (and not erase them), but both were
shown capable of embedding universal computations in different ways [10, 12, 3, 14, 19].
Recently, it was also shown through new results on oritatami systems that the infinite limit
shapes both models can generate from finite seeds have the same computational complexity
and the same possible densities of occupied position in the plane [17]. The key ingredients of
these new results were, on one hand, the introduction of a new model, called turedo, which
abstracts away low level details of oritatami systems and is easier to program, and on the
other hand, a proof that oritatami systems can simulate a large family of turedos. This
underlines the interest of turedos but also the surprising capabilities of models of sequential
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growth process in the plane. The present work is entirely focused on the turedo model and
aims at better understanding its limitations and its expressive power as a growth process
and computational model.

Turedos. Intuitively, a turedo is a Turing machine whose head can move in the plane or
in the 3-dimensional space but only in a self-avoiding way, i.e. without going back to a
previously visited position. More precisely, the turedo’s head can only move to empty or
unmarked positions, and it must put a mark on each visited position when leaving it. The
key ingredient of a turedo, and what makes its main computational power, is its lookup
radius: when deciding a move and what mark to put on the visited position, the turedo has
access to the local configuration of marks around its position, up to some finite distance.
Like any Turing machine, a turedo also has a set of internal head states. Without entering
into details, an oritatami system consists of a “molecule” made of “beads” that can attract
each other. The molecule grows at each step following a periodic bead sequence and folds as
follows: the § most recently produced beads are free to move around to look for the position
that maximizes the number of bonds they can make with each other ; then the first (oldest)
bead among the § most recent ones is fixed according to that position, a new free bead is
added and the process iterates. This behavior can be realized in a turedo of radius 6 + 1.
The main result of [17] is that oritatami of delay 3 can simulate turedos of radius 1. In fact,
turedos also naturally capture variants of oritatami systems: for instance, one can imagine
negative (repulsive) bonds in the process of maximizing gluing strength, or add local rules
forbidding two bead types to be neighbor of each other. Therefore negative results on turedos
become negative results on oritatami systems, but also potential variants of them.

Simulations and universality. The main question we address here is how the capabilities
of turedos change with their radius and what is the role of the dimension of space. We are
interested in qualitative differences and don’t compare turedos move by move and cell by
cell. We rather use a notion of simulation allowing spatio-temporal rescaling, similar to the
one used in cellular automata [4, 1], in aTAM [6, 5, 16] or in the simulation result of turedo
by oritatamis [17]. Intuitively a cell can be simulated by a block of cells, and a step by a
finite number of steps. We are naturally interested in hierarchy results (existence of turedos
that can’t be simulated by lower radius ones), or on the contrary by universality results
(existence of turedos that can simulate all turedos or a large class of them). For instance, the
existence of intrinsically universal systems in the aTAM model was much studied and it was
shown that it crucially depends on natural parameters of the model [6, 16, 5, 13]. However,
as natural as it might seem, a formal notion of simulation is never a neutral choice when
tackling these questions [1, 4, 2]. Thus, in addition to the parameters of the turedo model
we also study the influence of the notion of simulation itself. For this we identify various
ingredients, in particular the possibility of fuzz, i.e. the tolerance allowed for the simulating
turedo to visit some regions of space close to the ongoing assembly that represent empty cells
of the simulated turedo and have therefore not yet been visited by it. Note that a similar
notion of fuzz appeared in the intrinsic universality results on aTAM [5]. We end up with
three notions of simulation: the rigorous, the fuzzless and the liberal ones.

Our contributions. After formalizing all the concepts mentioned so far (Section 2), we
establish a surprisingly diverse general picture of the capabilities of turedos of simulating
each other. Separating the negative results (Section 3) from the positive ones (Section 4),
our results are the following:
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1. under fuzzless simulation, intrinsic universality is impossible whatever the dimension,
there is a radius hierarchy, and actually the impossibility strikes at radius 2: no turedo
can fuzzlessly simulate all radius 2 turedos (Theorem 5);

2. when restricting to radius 1, rigorous intrinsic universality is possible in dimension 3
(Theorem 11), but not in dimension 2 (Theorem 6);

3. however, we built a 2D turedo of radius 3 which is able to rigorously simulate all 2D
turedo of radius 1 (Theorem 10);

4. for liberal simulations, we establish intrinsic universality in dimension 3 and a complete
hierarchy collapse at radius 1 (Corollary 13);

5. finally we show that there is a 2D turedo of radius 2 which is impossible to simulate at
radius 1, even under liberal simulations (Theorem 9).

Besides the above results, our contribution also lies in the constructions and proof
techniques. For instance, the negative result 5 is based on a general lemma for 2D turedos of
radius 1, which bounds the quantity of information (using Kolmogorov complexity) that can
be carried from the seed to another connected component of the plane when the plane is
divided by a 4-connected path. As another example on the constructive side, result number
3 above uses a novel construction technique (called heat sink trick) that fully exploits the
potential of radius 3 and could be used in any place where two unbounded streams of
information have to be crossed. Finally, in Section 5, we discuss various questions left open
and present what we believe are promising future research directions.

2 Definitions

We denote by N the set of natural numbers (including 0), by Ny the positive ones, and by Z
the set of integers. We consider turedos on Z% for d = 2 or 3 (and in particular, we don’t use
the hexagonal lattice on the plane, mostly to simplify notations and dimension change). We
fix a blank symbol L used to represent empty positions and common to all turedos. The ball
of radius r in dimension d, denoted By(r), is the set of positions reachable in r elementary
moves (moves along vector of the canonical base of Z?) from the origin. B4(1) will always be
the set of possible head moves in dimension d. We denote by c¢[z; S] the pattern of shape S
around position z in configuration ¢, i.e. the map 2’ € S+ ¢ ..

» Definition 1 (Turedo). A turedo of dimension d and radius r is a triple T = (A, Q,9)
where A is its finite alphabet with L € A, Q) is its finite set of head states and

§:Q x AP 5 @ x A\ {1} x By(1)

is its local transition map. A global state of T is a triple (¢,z,q) € Gr = AZ' % 79 % Q
specifying a configuration, a position and a head state. The global transition map
Fr . Gr — Gr associated to T is defined by:

Fr(e,z,q) = (c,2,9) ifc(z) # L orc(z+p) # L
o (2 +p,q')  else,

where (¢', a, ) = 0(q, ¢[z; Ba(r)]) and configuration ¢’ is defined by ¢/ (z) = a and ¢/ (2") = ¢(2’)
for all 2’ # z.

The domain of a global state (c, z,q) is the set of non-blank positions of ¢ plus the head
position, formally: D(c, z,q) = {z} UUJ{#' : c(z') # L} A global state (c, z,q) is finite if its
domain is finite. We are interested in orbits starting from finite initial global states, called
finite seeds.

DNA 28
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Initial global state Global state after 10 stepsGlobal state after 307 steps

’ L

Figure 1 Example of orbit of the spiral-XOR turedo (example 2) starting from a finite seed.
Green represents 0, yellow represents 1 and white represents L. The head holds a direction (where
the black triangle is pointing to) and its self-avoiding trajectory since the beginning is drawn as a
black path.

» Example 2 (The spiral-XOR turedo). Let A ={1,0,1} and @ = {«+,1,—,1}. The spiral-
XOR turedo has radius 1 and the following local rule. The head holds a direction d € @
and tries to move in that direction and leave behind, as letter of A, the sum modulo 2 of
the states of neighboring (non 1) positions. When it can do the d move, it changes its
internal state (counter-clockwise), when it can’t it takes the first available move (clockwise)
and doesn’t change its state. Of course if there is no neighbor in state L then the turedo
is blocked. The following table shows the local transition map up to rotation of d (the red
arrow can be rotated and all blue arrows are defined relatively to the red arrow):

state | 1st empty neighbor || new state letter move
1 1 (+0) « (1) | Y mod2 | 1 (+0)
0 — (+1) T (4+0) > mod2 | — (+1)
D L (+2) 1(+0) | > mod2 | | (+2)
0 +— (+3) 1 (+0) > mod2 | + (+3)

See Figure 1 for an example of orbit.

The main focus of this paper is to understand the role of radius and dimension in the
computational complexity of turedos. We will denote by TUR4(r) the set of turedos of
dimension d and radius 7, and TURg = J,~; TUR4(7).

Before formalizing simulation, we first need to define block encodings which are ways to
represent global states of a simulated turedo by blocks in the simulator. ~ Any given b € Ni
defines a rectangular block R, = {z € N%: 0 < z; < b; for 1 <i < d} and Z¢ can be tiled by
translated copies of R;, in a regular way by placing them on the sublattice b ® Z¢ where ®
denotes the component-wise product. Each position z € Z¢ can be uniquely decomposed
into z = py(2) + wp(2) where py(2) € b ® Z¢ is the reference point of a block and j(2) € Ry
is an offset inside it.

» Definition 3 (Block encoding). Let us fix a dimension d. Given two pairs of alphabets
and state sets (A1,Q1) and (A2, Q2) with L € A1 N Ay, a block encoding of global states
g1 = A%d x 7% x Q1 into Gy = Agd x 7% x Qo is given by a block size b € Ni and two partial
onto maps:

the headless block decoding map «: D, C Ag”b — A, wverifying L% € D, and

a(Lfr)y =1,

the head block decoding map 3 : Dg C A?b X Ry X Qo — Q1 X Ay
A global state (¢, z,q) € Gy is valid for the encoding if it is made only of patterns from D,
far from the head and Dg around the head, precisely if: (c[pp(2); Rp), tv(2),q) € Dg and
clpp(2'); Ry) € Dy for all 2’ € 7% such that py(2') # pp(2).
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Finally, the global decoding map I' associates to any valid global state (ca,22,q2) € Go
a global state (¢1,21,q1) € G1 defined by application of decoding maps o or 8 on each block
according to the presence of the head in the block, i.e. :

b® 21 = pu(22),

(q1,c1(21)) = Blealpo(21); Rol,s pn(22), g2),

c1(2) = a(ca[pp(22); Ry]) for all z # 2.

The map a and S being partial and onto intuitively means that not all global states
are valid, and that any global state of A%d x 7% x @1 can be encoded. Note that the
headless block decoding map o always decodes blank blocks L% as blank state L. Denote
by Dy(ca, 22, q2) the block domain of global state (ca, 22,¢2) which is the set of blocks that
are not entirely blank, i.e. Dy(c2, 22,q2) = {2 : b ® 2z = py(22) or c2[b @ 2; Ry] # LT}

We can now define simulations precisely using block encodings. Intuitively, we require
the simulator to be able to reproduce any orbit of the simulated turedo starting from a finite
seed, and using a (fixed) finite number of steps to simulate one step. Since we want the
initial seed of the simulator to be neutral and without any pre-computed information about
the future of the simulated orbit, we ask that its block domain correspond to the domain of
the simulated seed.

» Definition 4 (Simulation). Let d be a fized dimension. We say that a d-dimensional turedo
T, simulates a d-dimensional turedo Ty if there is a block encoding of Gr, into Gr, of bock
size b and global decoding map T, and a time scaling factor k € Ny, such that for each finite
global state (c1,21,q1) € G, and each global state (ca, 22, q2) € Gr, verifying:

corresponding block domain: D(c1, z1,q1) = Dy(ca, 22, G2),

correct encoding: (c1,21,q1) = ['(c2, 22,q2),
then it holds Vt € D\I,F:tp1 (c1,21,q1) = F(F%(CQ, 22,q2)). Such simulations are the base upon
which we define three variants (two restrictions and one generalization).

We say that a simulation is fuzzless if the headless block decoding map is such that
a(u) = L <= u= LT ie. that the only block coding 1 is LT,

We say that a simulation is rigorous if the movements of the head of T,
i simulating orbits strictly remains inside blocks corresponding to the simulated
head position of Ty, even at intermediate steps, precisely: if 2% denotes the head
position of Fp (c1,z1,q1) and z5 that of Fp (co,22,q2), it holds for all t' with
kt <t <k(t+1):25 € 0@zt +Ry)U(b® 2T + Ry).

Finally, o liberal simulation s a generalized simulation where we only
ask that for each finite global state (c1,z1,q1) € Gr, there exists a global state
(c2, 22,q2) € G, with corresponding block domain and correct encoding such that it holds
Vt € N, thwl (Cl, 21, ql) = F(F%;(Cg, 29, qg)).

Liberal simulations can have fuzz and make non-rigorous head movements. Note
that fuzzless simulations are equivalent to simulations where the block domain in
the simulator orbit remains identical to the domain of the simulated orbit, precisely:
YVt e N: Db(F%(CQ,ZQ,qg)) = D(F%l(cl,zl,ql)).

Note also that a rigorous simulation is necessarily fuzzless because the head of the simulator
has no opportunity, even at intermediate time steps, to visit blocks not corresponding to
the domain of the simulated configuration. The power of fuzzless simulations compared to
rigorous ones is to allow the head to go back to blocks that were previously visited. Thus the
head can potentially retrieve information from non adjacent blocks that were written a long
time ago. With rigorous simulation on the contrary, the head has only access to adjacent
blocks during a simulation cycle.
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Figure 2 Differences in allowed head movements in rigorous, fuzzless and liberal simulations with
2 x 2 blocks. The colors have the following meaning: in red the positions or blocks which are not
empty initially, in yellow the positions or blocks coding a non-_L letter during the orbit; in white the
positions or blocks coding 1 ; in black the movement of the head.

We denote by < the liberal simulation, by <pgj the fuzzless simulation and by <pg
the rigorous simulation. =~ Among many properties of these simulation relations, we are
particularly interested in universality: the capacity of a single turedo to simulate a whole
set of turedos. Given a dimension d and a radius r, we denote by Z/{glS (r) the set of turedos
T € TUR, such that for any 77 € TURy(r) it holds T" < T. We denote by Z/{GlS the set of
turedos T' € TURy such that for any 77 € TURy it holds 7" < T. We use similar notations
for simulation relations <g and <pgy,.

3 Separation Results

3.1 No Fuzz, no Fun

The fuzzless condition gives much importance to larger radii, simply because a turedo’s head
surrounded by blocks coding L cannot read information far away without moving inside
these blocks and thus creating fuzz. The following theorem exploits this obvious limitation to
show two immediate consequences: first, there is a radius hierarchy (new behaviors appear at
radius 7 + 1 that cannot be simulated at radius r) and thus no general fuzzless universality;
second, universality is impossible even at radius 2: any turedo (whatever its radius) will fail
to simulate some radius-2 turedo. The dimension plays no role in these results.

» Theorem 5. For any d > 2 and r > 1, we have the following:
there is Tr41 € TURg(r + 1) such that for allT,. € TUR4(r), Tr41 Lrr Tr ; in particular,
UGre =9.
for any T, € TURy4(r) there exists To € TUR4(2) such that To £rr, T ; in particular,
UdSFL(r) =0 for any r > 2.

3.2 Dimension 2 and Radius 1: the Jordan Curve Burden

A turedo’s head in dimension 2 always moves drawing a 4-connected path. When the turedo
has radius 1, it has no way to read information across such a path (while it could with a larger
radius). Therefore head movements for turedos of radius 1 turn into potential information
barriers. The precise way in which this simple observation affects the simulation power of
such turedos depends on the type of simulation considered.

Let us first consider rigorous simulations. Any turedo T (whatever its radius) can
obviously do the following elementary copy-and-move operation (see Figure 3):

move to the right to some position z;

read the letter a present at position z + (1,0);

then move to position z + (0, 1) and leave behind letter a at position z.
In particular, if the head continues its way and later arrives at position z — (0,1) from the
south, it can read the information a copied at position z.
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Figure 3 Example of a copy-and-move operation (on the left) and its rigorous simulation by a
turedo of radius 1 with 3 x 3 block size (on the right). The color convention is as follows: in red the
letters present in the seed, in dark yellow the initial position of the head, and in light yellow, the
positions visited by the head during the orbit. The only position on the south side of the middle
block that can depend on a is the lower right corner, marked with a X.
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Figure 4 Behavior of turedo 7" on the seed o (@, 2,a). The red and blue colors indicate letters
present in the seed. The dark yellow color indicates the initial position of the head and light yellow
cells represent the path of the head until the last step of the orbit. The orange cell correspond to

the position of the head before moving left or right according to the result of the test a Z as.

However, if we suppose that some T7 € TURg(1) simulates T' under rigorous simulations
with block size b, the movement of its head inside block b ® z to simulate the above copy-
and-move step must be the following (see Figure 3):

coming from the left side of the block, it draws some path inside it until it reaches the

right border (if not it cannot read any information from the adjacent block to the right);

then it must move north, otherwise it would be trapped in the south part of the blocks

by the 4-connected path drawn so far that connects the left and right sides of the block;

it must finally escape through the north side.
This head movement is such that at most 1 letter of T is written on the south side of block
b ® z after having had the opportunity to read some information from the adjacent block
that encodes letter a. In particular, if 77 has smaller alphabet than T this is not enough to
completely encode a on the south side of block b ® z. So, this is a limitation that has to be
dealt with if later in the simulation the head arrives from the south and has to read from
the south side of block b ® z. A single copy-and-move is not enough to get a contradiction
because the simulation of T} could be organized so as to transport the complete information
about a along the way and have it on hands already when arriving at the south of block
b ® z. However, by repeating such copy-and-move steps, one can saturate the simulator and
show the following theorem that states that there is no universal turedo of radius 1 among
turedos of radius 1 for rigorous simulations.

» Theorem 6. For any T € TURy(1) there is T' € TURy(1) such that T L T. In
particular Us" (1) N TURy(1) = 0.

Proof. Let @ be the state set of 7', A be the alphabet of T" and consider any alphabet A,
with m = |A| < |AL| = m4. Then it is straightforward to construct a turedo 77 € TUR4(1)
of alphabet A" = Ay U{], -, 1} that has the following behavior (see Figure 4):
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for any n € N, any @ = (ag,...,a,) € Aiﬂ, a’ € Ay and 0 <14 < n, consider the finite
seed o(d,4,a’) with head in position (0,0), a; in position (35 +2,0) for 0 < j <n, o
in position (3¢ + 1,—3) and | in positions (3(n + 1) +2,0) and (3(n+ 1) +2,—1), + in
position (3(n + 1) + 2, —2) and finally 1 at position (37, —2);
from such a seed, T” starts a sequence of n + 1 copy-and-move steps that results in having
a copy of a; at position (3j +1,0) for 0 < j < n; the end of this phase occurs at time
step 5(n 4 1) and the head reaches position (3(n + 1),0);
then T” reaches the first | and follows the move indications of arrows (down, down, left),
until it reaches the up arrow, and moves from position (3¢ + 1, —2) to (3i +1,—1);
finally, at position (37 + 1, —1) it moves right if a; = a’ and left otherwise (it can do so
because it has copied the value of @’ when leaving position (3i + 1, —2)).
Let’s call £, ; the time step at which occurs this final left or right move (¢, ; only depends on
i and n): at time ¢, ;, the head of 7" must be either at position (37, —1) or (3¢ +2,—1). Thus
T’ implements on seed o(d,i,a’) the test of whether a; = a’. We are going to show that T
cannot simulate 7" under rigorous simulations. Suppose by contradiction that T <z T with
block size b and time scaling factor k. Given n € N and 0 < i < n, denote by A,, C 72 the
set of positions that are on the right side of block b ® (3(n + 1),0) (the block corresponding
to the position reached by T” at the end of the copy-and-move sequence as detailed above).
Denote by B;.,, C Z? the set of positions that are on the south side of block b ® (3i + 1,0).
Finally, denote by C;,, C Z? the set of positions made of the union of blocks (3i + 1, —3),
(3i,—-2), 3(n+1)+2,0), B(n+1)+2,-1), (3(n+ 1) 4+ 2, —2) (i.e. those corresponding to
position a’ or an arrow {J, <+, 1} in the seed o(d,,a’)). Consider now n € N, @, ¢ € A’_f_“
a' € Ay and 0 < i < n, and take any two global states g; and go of T that correctly simulate
the orbits of 7" on seed o(d,,a’) and o (¢, i, a’) respectively and that are identical on C; ,,
Considering time step to(n) = 5k(n + 1) corresponding to the end of the copy-and-move
sequence, if global states T (™) (g;) and T (") (gy) are identical on domains A,, and B; ,, and
have the same head state, then both orbits must make the same final decision to move to
the left block or the right block at the final time step kt, ;, precisely: the head in global
state T*'ni(g1) is in the same block as the head in global state T*ni(gy) (and it must be
either b® (3i,—1) or b® (3i + 2, —1)). Indeed, by the property of rigorous simulations and
the behavior of 77, the only positions with content written before to(n) that the head of T
can possibly read between time step to(n) and kt,, ; are positions in A,, U B; , U C; ,, so the
orbit starting from step to(n) is completely determined by the content of the configuration
in that domain and the internal state of T at time ¢o(n).

> Claim 7. There must exist n € N, 0<i<n, @€ AT’l, a' € Ay and Ce A:L_H with
a; = c; for all j <4 and a; # ¢;, and two global states g; and go of 1" that correctly simulate
seeds o(d@,4,a’) and o (G, i, a’) respectively, and also such that 7% (™ (g;) and T* (") (g,) have
same head state and are identical on domain A, U B; , U C; .

Proof of the claim. In this proof, we fix for each a € A, a unique block of A% that encodes
it, and for any seed of 7" we only consider a unique global state of T that simulates it. First,
there are only a bounded number (bound in n) of possible content of a configuration on
domain A,, and state of T, so for each n there must exist © € A4 and g € Q, a set X,, C AT
of size Q(m’}) such that for each 0 <i < n and each @ € X,,, the corresponding global state
g of T simulating 7’ on seed o (@, i,n), is such that T (™ (g) is equal to u on domain A,, and
with head state q.

Second, we claim that for large enough n there must be some i and a prefix
ag,...,a;_1 € Ai such that there are at least m + 1 choices of a; € A4 such that ag,...,q;
can be completed into an element @ € X,,. Indeed, otherwise we would have |X| < m”™ which
would contradict the fact that | X| € Q(m!) for large enough n since m < m..
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Now consider the set of global states that simulates the seeds o(d,i,a’) where @ € X,
are the m + 1 completed vectors from the common prefix ag,...,a;_1, and ¢’ € A, . They
are identical on the blocks corresponding to the common prefix aq,...,a;_1 of the seed they
simulate. As already said, these global states at step to(n) are also identical on domain A,
and have same head state. Moreover, on domain B; ,, and still at step to(n), they agree
because of the common prefix aq, ..., a;_1, except possibly on the lower-right corner where
they can take at most m different values (see Figure 3 and discussion at the beginning of
this section). We deduce that among the m + 1 choices for a;, at least 2 must correspond
to global states that completely agree on B;,. Denote by a’ and ¢’ these two choices and
consider @ and ¢ to be the vectors completing the prefixes ag,...,a;_1,a’ and ag,...,a;_1,c
respectively. The claim follows by choosing seeds o(d, 4,a’) and o(¢,i,a’). <

The theorem follows from the claim by contradiction: as shown above, global states g; and
g2 force the same behavior of T starting from time to(n), but at the same time their orbits
should not end up in the same block because they simulate seeds of T’ that do not have the
same answer to the final equality test. |

We will now establish a strong separation between TUR2(1) and TUR2(2) even under
liberal simulations. We first establish a lemma expressing bounds on information leakage
between two regions separated by a 4-connected path. It is formulated using Kolmogorov
complexity. Recall that the (plain) Kolmogorov complexity of a string u € {0,1}* is the
length of the shortest program that outputs w, more precisely the length of the shortest
v € {0,1}* such that a suitable fixed universal Turing machine outputs « on input v (see
[15]). For any X C Z? and any (partial) configuration ¢ € Q¥ of finite domain, we denote
by K (c) its Kolmogorov complexity, which is the Kolmogorov complexity of the finite binary
string u that encodes ¢ as a list of pairs (z,¢(z)) such that ¢(z) # L given in lexicographical
order.

» Lemma 8. Let Cy € N be some constant and T € TURz(1). Then there is another constant
C € N with the following property. Consider any 4-connected path p of Z? that divides Z? in 2
or more connected components, and any finite global state s € Gy with head at position (0,0),
and whose domain D(s) lies entirely in one of the connected components defined by p, denoted
Ag. Suppose moreover that for some n € N, the orbit from global state s to global state
(c,z,q) = F}(s) is such that the head visits path p at most Cy times. Then, the restriction
of ¢ to the complement of Ay has "small’ Kolmogorov complexity: K(cjz2\a,) < Clog(n).

Note that if the seed s has "large’ Kolmogorov complexity, for instance Q(n), then n steps
are far from enough to transmit all the information about s to another connected component
under the hypothesis of the lemma. The power of this lemma lies in the fact that constant C
does not depend on the path p nor on the seed s. In particular, one can choose p depending
on s to apply the lemma. Turedos of radius 2 can overcome the limitation of Lemma 8
because they can transmit information over a path without writing on it. It turns out that
this is enough to separate TUR2(2) from TUR3(1) even under liberal simulations.

» Theorem 9. There is Ty € TUR4(2) such that for any Ty € TURy(1): To £ T7.

Proof. Let’s consider the turedo To € TUR4(2) that behaves as follows on a seed made of a
vertical word u of length n (see Figure 5):
it copies u to the right by making zigzags and does this n times (it implements a unary
counter initialized to the length of u while making copies);
it then moves one cell to the right without making copies (and thus leaving an empty
column above);
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Figure 5 Orbit of turedo 7> starting from a seed w of length n (in red) with the head initially in
the position shown in dark yellow. The last part of the orbit is shown in orange.

it then does again n copies of u by zigzag while moving to the right (note that the first
copy can be done because T has radius 2);

at the end of the last copy it goes around the last bloc of n copies by the north side until

it encounters the empty column and then goes down into it until it is blocked.

Denote by zx and zg the northmost and southmost positions of the last sequence of n south
moves of the head (see Figure 5), and by ¢ty and tg the respective time steps at which the
head is at position zy and zg. Note that tg is O(n?) and it is the final step of the orbit
considered here.

Now suppose by contradiction that there is some T; € TURy(1) such that T < T3.
Denote by k the time rescaling factor and b the block size involved in this simulation. Let’s
suppose that n is large enough (to be given precisely later) and that « has large Kolmogorov
complexity, let’s say Q(n). Consider a global initial state s; for T; from which starts a
correct simulation of the run of T5. When the simulation reaches step kty, the head of T} is
inside bloc b ® zx and there must be a finite 4-connected path p1,...,p,, of empty positions
from this position to some position inside bloc b ® zg because T has to simulate the state
changes made by 77 between steps ¢ty and tg along the vertical segment of positions from
zn to zg. Let p denote the infinite path that extends p1, ..., p,, infinitely to the north from
p1 and infinitely to the south from p,,.

We claim that there is a bound Cy depending only on 73, b and k, but not on n and
neither on u, such that the run of 7T} starting from global state s; until time step kty crosses
at most C times path p. First, by choice of p1,--- ,pm, such crossings can only happen
at positions of p that are either at the north of p; or at the south of p,,. The simulation
is liberal, so the head of T} has some freedom of move but it must always remain at a
bounded distance from the block corresponding to the simulated head position of 75 during
intermediate steps, precisely: if the head of T is at position z at time step t, then the head
of T1 must be inside block b ® z at time step kt and therefore at distance at most k& of block
b ® z during time steps between kt and k(¢ + 1). A position is therefore potentially reachable
by T3 before time step kty only if it is at distance at most k from a block b ® z such that
position z in the run of T is visited before time step ¢n. The key observation is that in
the run of 75, there are only finitely many positions that are visited before time ¢y and at
distance less than k£ from either zy or any position at the north of it, or from zg or any
position at the south of it. From this we deduce that p\ {p1,...,pm} is crossed a bounded
number of times Cjy by the head of T before time step kty. The claim that p is crossed at
most Cy times before time step kty follows since {p1,...,pm} are by definition empty before
this time step.



S. Nalin and G. Theyssier

Finally, note that path p1,...,p, cannot move away more than distance k£ from blocks
b® zy to b® zg, so if n is large enough, the domain of s is guaranteed to lie entirely inside
the left connected component Ay of Z2\ p. Similarly, the blocks containing the encoding
of the rightmost copy of u must lie entirely inside 72\ Ag. In particular, the configuration
c of Ty reached at step kty must be such that K(cjz2\4,) € (n) by choice of u. However,
Lemma 8 applied at step kty to T1 and p gives: K(cjz2\4,) < Clog(kts) € O(log(n)) which
is a contradiction for large enough n. <

4  Universality Results

4.1 Radius 3 in 2D under Rigorous Simulations: the Heat Sink Trick

transition table  buffer a € A, buffer _tr tabl
T

e e e i =—=———em

:ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ
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13

Figure 6 Behavior, in one block, of the presented 2D radius 3 turedo T3 € L{2§R(1). The light
blue rectangles represent the information to read of the neighboring cells. In this example, a letter
of Ay is encoded by 3 letters of As. We can see the 2 padding cells, the transition table (here of
arbitrary small size for readability of the figure), the buffer of size 12 (to contain 4 letters of Aq
encoded), the padding, the letter of the block encoded by 3 letters of A3 repeated 4 times each and
again the the padding, the buffer, the table and the last 2 padding cells. The arrows represent the
path followed by the turedo, entering the block in the bottom left of the figure. The blue part reads
the content of the adjacent blocks, the grey one allows for turning, the orange one is where the
computing takes place, the red one fetches the computed letters (and writes them on the faces that
will not be visited again before exiting the block) and the green one finishes to write the letters and
exits to the next block.

Theorem 6 shows that no turedo of radius 1 can be universal for TUR(1) under rigorous
simulations. We show that this is however possible with radius 3. In order to achieve
universality, four key behaviors must be performed by our turedo at each simulation step. It
needs to read all necessary information of neighboring blocks, compute the next simulation
step, write the computed letter and exit the current block (entering the correct next one).
Figure 6 illustrate those behaviors. To rigorously simulate a turedo of radius 1, it seems
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natural to perform the 3 behaviors interacting with neighbors on the edge of the block, each
on its layer, motivating a radius 3. But as we are dealing with universality, the so called
necessary information is not only the letters of neighboring blocks but also the transition
table defining the simulated turedo. Carrying this information has a direct impact on the
width of the reading and writing layer, we propose an intertwined zigzag to merge the space
occupied by those two, keeping the radius 3 and taking full advantage of it.

» Theorem 10. U7 (1) N TURy(3) # 0.

Proof. We show that there is T3 € TUR»(3) such that for all ) € TURq(1): Ty <g T3.
Denote T3 = (As,Q3,03). Let’s take T3 € TUR2(1) some 2D turedo, 71 = (A41,Q1,61),
a configuration c¢; € A%Q and describe how T3 simulates it with square blocks R, ,) and
n = 0 mod 4. We first focus on the organization of transmittable information in a given block
B, i.e. the transition table §; and the letter a; € Ay in this position in ¢;. To be accessible
to the neighboring blocks, this information is present on the outside edges of B, repeated on
each edge such that B(0,i) = B(i,n—1) = B(n—1,n—1—14) = B(n—1—14,0). Considering
a partial onto letter decoding map v : A5* — A; with m € N, the organization on one edge of
B is the following. The first two positions B(0,0) and B(0, 1) are empty or irrelevant, then
the next 3m|A;| positions from B(0,2) to B(0,3m|A;|+ 1) are the encoding of the transition
table with v (which we assume to be a multiple of 4 without loss of generality). Positions
B(0,3m|A;| +2) to B(0,m(3|A1] +4) + 1) are reserved for a buffer in which 4 letters will be
encoded (the ones contained in the 4 neighboring blocks). Then m(3|A;|+4)+2 positions are
empty or irrelevant, from B(0,m(3|A1]|+4) +2) to B(0,2m(3|A1|+4)+3), to allow the block
to be spacious enough for the computation. Following that is written u € A3™ such that
u(4i+ k) = v(aq)(3) for all 0 < k < 4 (the redundancy is present to ensure proper reading
later). Then again, from B(0,2m(3]|A;| 4+ 6) + 4) to B(0,3m(3|A1| +4) + 2m + 5) is some
irrelevant padding followed by the 4m sized buffer, the 3m|A;| sized transition table and 2
irrelevant position, finishing at B(0,m(12|A;1| 4+ 20) + 7). An illustration of this distribution
is represented in figure 6.

Let’s now describe the behavior of T3 in a block to achieve universality. As all necessary
information to compute is contained in a m(3|A1| + 4) letters long word on Az, we base
our construction on two types of zigzags of this size : the square and the heat sink. A
square gadget of even size k is a back and forth k/2 times of a k sized line during which
the content of the original line is replicated on each four sides of the created square. This
copy is possible thanks to the radius of T3 being greater than 2. Its main use is to keep and
spread information while cornering. A heat sink gadget is a zigzag with each back and forth
being spaced by 2. The radius 3 of T3 allows the heat sink to still copy information from
the previous zag during a zig. Its purpose is to acquire and transmit data laterally while
being intertwined with another heat sink. Both gadget and the simulation of a block are
illustrated in figure 6 to illustrate the following explanation.

T5 enters a block B at position B(0,2) (or B(2,n — 1), B(n,n —3), B(n — 3,0) up to
rotation), it first continues forward by 2 (until reaching B(2,2)) then turns 90° counter-
clockwise and starts a square gadget, initialized by the copy of the transition table and empty
buffer available at distance 3. Those squares will be performed at each corners of the block
with in between a heat sink which will both transmit the transition table already collected
earlier and approach the outside edge of the neighboring block at distance 3, reading its
information and filling the buffer. (The heat sink has access to only half of this information
but it has been taken care of by the redundancy detailed earlier). Once the information of all
four neighboring blocks collected, right after the last letter has been read, 75 turns toward
the center of the block, using the space left by the padding, performing one more square
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gadget. With a big enough transition table and a well chosen encoding, computing the next
transition of 77 can be performed in a square the size of the buffer and transition table
encoded. As the only way to leave the center of the block is now a path of width 1, T3 must
transmit its computation before rejoining the edge of the block. It does so with a zigzag that
follows along the the inside of the reading heat sink. This information is then retrieved by
the writing process, with a heat sink intertwined with the reading one. The writing process
writes on the edge of the block on the faces before the exit one and at distance 1 after. When
following a square gadget, it copies the transition table and writes an empty buffer (which is
possible because the square not only corners but copies information on all its sides), when
following a reading gadget, it creates a heat sink gadget of its own, fetching the computed
information and writing it on the face of the block. Lastly, once all the writing has been
done, T3 finishes filling its block by going back to the exit edge, following the writing path
which had been shifted to the inside by 1 to allow for this, copying everything from the
reading path to effectively write it on the edge making it attainable and finally T3 exits the
block at distance 2 from the corner. <

4.2 The Power of Third Dimension and Liberal Simulations

Having a third dimension available allows for a lot more freedom to simulate a turedo. Let
us first focus on TURg3(1) and rigorous simulations. In dimension 2 we had to use the heat
sink trick to gather all required information and we used a radius of 3 to accommodate for a
reading, a writing and an exiting layer. The third dimension allows us to shrink the radius to
1 thanks to its crossing capabilities. The trick to achieve this is to have a marker to indicate
if the neighboring block is empty or not, to prevent trying to read in spaces where the turedo
will have to write later on.

» Theorem 11. ;" (1) N TUR3(1) # 0.

Proof. We show that there is T' € TUR3(1), T = (4, @, J), such that for all 77 € TUR;3(1):
T <gr T. Denote T' = (A’,Q’,¢"). For a block B, the transmittable information is organized
on the faces as follow. In the center of each faces, a marker is written, indicating that
information is present. On the face of the block facing the next block (the exit face), added
to the presence marker, is an empty cross of width 1 with only at its end a stop marker
indicating the end the block. Surrounding it is a cross of width 3 in which is written the
transition table and a buffer big enough to accommodate for the encoding of 6 letters of A’
and one state from @’ (with the size of the transition table and the buffer plus 1 left before
writing). On the face of the block facing other empty blocks, the same crossing pattern is
used to only write the presence marker and the computed letter at distance 2 of the center
of the face. See figure 7 for this organization on an example.

T has the following behavior in a block, also illustrated in figure 7. First, T performs a
reading phase : entering a block by the middle of a face, it travels straight to the edge of the
face until reading the stop marker. We assume T entering by the middle of the face as it
truly enters at distance one of the middle but this shift of one position in one direction can
be remembered and corrected immediately after entering. This allows T to turn and go back
toward the center, reading the transition table and the buffer. All this information gathered,
T follows a fixed path composed of shrinking zigzags, staying in the planes formed by the 3D
cross centered in the block (hence the peculiar way we place information, to reserve space for
this path). Doing so, it reaches the center of each face while carrying the transition table and
filling the transition buffer when a presence marker is read. As the order in which the faces
are visited is fixed, T can store in its head state which neighboring blocks are empty. This
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Figure 7 One block of the presented 3D radius 1 turedo T € L[;R(l). At this stage T' comes
from the block above, the front and left blocks are also non-empty and the others are empty. T will
exit the block by entering the next block at its right. On the right is represented the disposition of
information. The light blue cubes are information to read in adjacent blocks and the red ones are
information written by T in the considered block. In this example, a letter of A’ is encoded by 2
letters of A, the transition table is of arbitrary small size for readability and they are written in a
cross on the faces of blocks. On the left is the behavior of T" in the same considered block, in blue is
the reading phase (building also a skeleton), in orange the computation phase, in red the writing
phase and in green the exit phase.

reading phase has the added benefit to have created a skeleton in the block, enabling easy
travel for the following phases. Next T enters the computing phase consisting of a square
zigzag, using the transition table and the now filled buffer carried previously and so present
in all the branches of the centered 3D cross. Once the next step of the simulation computed,
T can carry the letter to encode following the skeleton and write it on all previously identified
faces except the exit one. The last phase, the exit one, consists in carrying the encoded letter
to the exit face, retrieve on the centered 3D cross the transition table and the buffer (reset
with the new state and letter of the computed transition) and writing all this information as
previously presented thanks to square and triangular zigzags. Finally T exits to the next
block, at distance one of the center of the face (to get around the reading skeleton). |

The combination of 3D and liberal simulations allows to shrink the radius of any turedo
to 1. In this construction, the computation of simulated transitions is done internally in the
simulating turedo’s head. The challenging part however is in acquiring the states of distant
neighbors. Thankfully the liberal nature of the simulation allows travel through empty blocks
and the 3D enables crossing paths without intersection. Still, a rigorous organization is
needed in order to prevent overlapping.

» Theorem 12. For any radius r and any T, € TURg3(r) there is Ty € TUR3(1) such that
T. <Ty.

Proof. Let r € Ny and T, € TUR3(r), T, = (Ar,Qr,0,). We build 71 = (A41,Q1,1),
with @, big enough to encode in one state a position z € Z2 modulo 2r of each dimension
and the |Bs(r)| neighboring letters. This allows for an instant computation of J, once
all needed information is gathered. Let b be the block size, the critical aspect of this
simulation is for T7 to visit all blocks b ® 2’ with 2’ € z + B3(r) for each simulation step.
Therefore we have to assign non intersecting exploration paths for all positions at distance
less than 2r. To achieve this, we define C = {0, ...,8r% — 1} a set of colors and we assign the
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color (21 mod 2r) + 27 (22 mod 2r) + 472(z3 mod 27) to the block b ® (21, 22, 23). By taking
b= 8r31 + 7 with [ € N, in each block, for each color ¢ € C, we can reserve tubes of width
[ following the edges of a centered cube of edges of length lc 4+ 1 and the direct extension
of said edges to the face of the block (see figure 8b). This creates reserved spaces for each
color consisting of centered nested cubes. Those cubes fill a space of 83, we add 1 to have
a proper center and 6 to have some padding near the faces of the blocks (we will discuss its
necessity later). Note that [ actually doesn’t need to be large, I = 10 is enough. On each
face of the block b ® z, the letter a € A, C A; is repeated in a cross pattern (see 8a).

o

(a) The letter a € A, C A1 is (b) Reserved space for the (c) One face of a block.
repeated on all faces in a cross exploration path of color ¢ € C.
pattern.

Figure 8 Representation of the reserved space for color ¢ in block b ® z. In red are the tubes of
width [ on the edges of the centered cube of edges of length lc 4+ 1. In green are the extensions of
said tubes, allowing to reach the reserved space for color ¢ in the neighboring blocks, completing the
exploration path of color ¢ (8b). Those extensions also allow the exploration path to access the blue
cross containing the letter of position z in the configuration (to either read or write)(8c).

Fr (¢, zr, qr) is simulated as follow. Assuming T; knows the color ¢ € C of block b ® z,.
(which is possible as its position in all directions modulo 2r is stored in its head state), we
can define a reference starting position to explore the neighboring blocks by ordering the
directions of Bs(1). Moreover, this ordering allows to decide a depth-first exploration of the
blocks b ® 2’ with 2’ € Bs(r) passing through each block at most seven times. Once the
exploration done, back in block b ® z, the head of T contains all necessary information to
compute 4, and all that remains to do is to write the computed letter in a cross pattern on
the faces of the block. This is possible following a eulerian path, crossing only on the center
of the faces, hence the padding of 2 defined earlier. The 1 padding left is for 77 to align itself
with its next color (which is possible since it knows its current color and has computed to in
which block to go next). <

By combining Theorem 11 and Theorem 12, we get the existence of an intrinsically
universal 3D turedo for liberal simulations as expressed in the following corollary.

» Corollary 13. Us N TURs3 # 0.

5 Discussion

The problem tackled in this work depends on three parameters (radius, dimension, simulation).
Our results give a rather clear picture of the simulation hierarchies in 3D, but we left several
open question in the 2D case, in particular: is there a turedo in TURg(2) which is universal
for TUR2(1) under rigorous simulations? what if we allow liberal simulations? Actually even
Theorem 6 raises questions: the simulation impossibility makes a crucial use of non-connected
seeds, does this impossibility remain if we just look at simulations of orbits starting from
connected seeds?
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In this work we chose the square lattice in 2D (to simplify and as we also consider the 3D
case) whereas oritatami are mostly considered on the hexagonal lattice. We don’t expect any
significant difference on the simulation hierarchy result by changing from square to hexagonal
lattice on a given model (either turedos or oritatami). However, it is not clear that the delay
hierarchy for oritatami behaves like the radius hierarchy for turedos. In particular, we don’t
know if an analog of Theorem 10 holds for oritatami. The key difference between a large
radius turedo and a large delay oritatami is that the turedo can gather information locally
across obstacles, while the oritatami can only probe information around that can be reached
by a path of empty positions (because it can only probe by trying to position a small strand
of beads).

We end this paper by suggesting the following two directions in order to better understand
the gap between turedos and oritatami systems: what if we restrict turedos to ’see’ only
neighboring positions that can be reached through a path of r empty positions? and what
if we enrich oritatami systems by a more general 'magnetic’ attraction law between beads
where pairs of distant beads can still contribute to the total amount of attraction that the
free strand at the end of the molecule is trying to maximize (let’s say by a quadratic decrease
with distance up to some radius)?
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A Proof of Theorem 5

Proof. We prove the result for d = 2, the argument can be generalized to higher dimension
straightforwardly (by completing 2D configurations by L everywhere else).

For the first item, simply consider a turedo T,;1 € TUR2(r + 1) that has the following
behavior when the head in position (0,0) has only L letters at the north and at the south of
its current position: read the letters at positions (r 4+ 1,0) and (0,7 + 1) and move to the
north is they are equal and to the south otherwise. Consider any turedo T, € TURg2(r) and
any block size b € Ni. To simulate T} fuzzlessly, T, has to move either to block b ® (0, 1)
or block b® (0,—1) depending on blocks b ® (r + 1,0) and b® (0,r + 1) without entering
into any other neighboring block: this is impossible, because with radius r turedo T, can’t
have any information about either b® (r + 1,0) or b® (0,7 + 1) before making a decisive
move (by entering inside either b® (0,1) or b ® (0, —1)) so it will fail to correctly simulate
the orbit of at least one seed.
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The second item can be proved similarly, using a pumping trick on the alphabet: for any
fixed T, € TURg(r) with alphabet of cardinal k, choose T5 € TUR4(2) with an alphabet
strictly larger than k™ so that at least one dimension of the block size b of any potential
simulation of T by T, has to be at least r 4+ 1 (otherwise there is simply no way to code all
letters of Ty on different blocks of size b). Then, choosing T3 to have the same behavior as
T,+1 above, we get the same contradiction: there is a direction of b, let’s say the vertical
one, which overwhelms the radius r of T;. so T,, won’t be able to read the content of block
b® (0,2) before making a decisive move and will therefore fail to correctly simulate at least
one orbit. |

B Proof of Lemma 8

Proof. We show that ¢|z2\ 4, can be computed from the following description D:
the finite list of positions on p that are visited by the head during the n first steps of the
run starting from s;
the list of events corresponding to each such position z given as a triple: time at which
the head leaves position z, letter written at that step, and move made by the head at
that step.
This description is of size O(log(n)) because both positions z and time steps occurring in
the above lists are bounded by n by definition (recall that the head is initially at (0,0)).
Because T is of radius 1 and p is 4-connected, each time the head of the turedo is neither
in Ap nor on p, the local transition does not depend on the current configuration on domain
Ap. A Turing machine can therefore compute ¢|z2\ 4, from this description by maintaining
the following partial information step by step:
the current configuration restricted to domain 72\ Ay,
the partial information on the head position z: the exact position if z & Ay or the state
“undefined” else.
This information is straightforward at the initial step since D(s) C Ag so the head is in Ag
and the configuration is 1 everywhere outside Ay. The partial information at step n is
enough to give ¢|z2\ 4, and it is updated from one step 7 to the next i+ as follows:
if the partial information on the head at step i is undefined and time step 7 + 2 does not
appear in the lists of D, then don’t change the partial information (the head is in Ag and
won’t move to p at step i + 1);
if the head information is undefined but step i 4+ 2 appears in D, then updates the head
position to the position on p that corresponds to the item stamped by time steps i + 2 in
D;
if the head position is on p then some item in the list of D must be stamped by time step
i+ 1 and gives all the information to update both the head position and the configuration
on p;
finally if the head position is neither in Ay nor on p, then the knowledge of the current
configuration restricted to domain 72\ Ay is enough to update the partial information
(position and partial configuration). <
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—— Abstract

Bournez, Fraigniaud, and Koegler [6] defined a number in [0,1] as computable by their Large-
Population Protocol (LPP) model, if the proportion of agents in a set of marked states converges
to said number over time as the population grows to infinity. The notion, however, restricts the
ordinary differential equations (ODEs) associated with an LPP to have only finitely many equilibria.
This restriction places an intrinsic limitation on the model. As a result, a number is computable by
an LPP if and only if it is algebraic, namely, not a single transcendental number can be computed
under this notion.

In this paper, we [ift the finitary requirement on equilibria. That is, we consider systems with
a continuum of equilibria. We show that essentially all numbers in [0,1] that are computable by
bounded general-purpose analog computers (GPACs) or chemical reaction networks (CRNs) can
also be computed by LPPs under this new definition. This implies a rich series of numbers (e.g.,
the reciprocal of Euler’s constant, 7/4, Euler’s v, Catalan’s constant, and Dottie number) are all
computable by LPPs. Our proof is constructive: We develop an algorithm that transfers bounded
GPACs/CRNs into LPPs. Our algorithm also fixes a gap in Bournez et al’s construction of LPPs
designed to compute any arbitrary algebraic number in [0,1].
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1 Introduction

1.1 GPAC/CRN Computable Number

The computation of real numbers provides a theoretical benchmark for an abstract model’s
computational power. In 1936, Turing [32] considered computable numbers while researching a
discrete model now known as the Turing machine. Then, Shannon [30] introduced the general-
purpose analog computer (GPAC) to the world. The GPAC is a mathematical abstraction of
Bush’s differential analyzer. Bush [8] developed this machine to obtain numerical solutions
of ordinary differential equations (ODEs). After much revision [29, 27, 18, 17], we can now
characterize GPACs by polynomial initial value problems (PIVPs):
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frore y

where p is a vector of multivariate polynomials, x is a vector of variables, and xq is its
initial value. Bournez et al. [7] have shown that GPACs are provably equivalent to Turing
machines in terms of computability and complexity. Chemical reaction networks (CRNs),
as a restricted form of GPACs, are widely used in molecular programming applications.
The deterministic semantic of CRNs usually assumes well-mixed solutions and mass-action
kinetics. CRN dynamics can be modeled by polynomial systems with extra constraints [21]
(see the preliminary section for more details). Although the constraints could seemingly
weaken the computational power of CRNs, they are able to simulate GPACs. Hence, the
CRN model is also Turing complete [13]. The key idea is to encode every variable = (possibly
having negative values) in a GPAC by the difference between a pair of positive variables zT
and 2~ in the copycat CRN. That is, z(t) = 2t (¢t) — 2~ (¢) for all ¢ > 0.

A straightforward idea to “compute” a number « by a GPAC/CRN is to designate a
variable x such that x(t) — « as t — oo. Further down this line, Huang et al. defined the
class of real-time computable real numbers by chemical reaction networks [24], wherein the
real-time computability notion essentially requires z(t) to converge exponentially fast to
«a. Huang et al. then demonstrate that GPACs and CRNs compute the same class of real
numbers in real-time [23]. Notably, famous transcendental numbers like e and 7 are among
this class. Later, Huang [22] added Euler’s v and Dottie number (the unique real root of the
equation cos(z) = z) to the list. Note that in order to get a meaningful measure of time,
in Huang et al’s work, all variables in ODEs associated with GPACs or CRNs are bounded.
Hence, the notion of time aligns with the time parameter ¢ of the ODEs since no more than
a linear speedup is allowed. This notion prevents the so-called Zeno phenomena [19] caused
by inordinate speedup. Another, perhaps equivalent, metric is the arc length of x(t). A
complexity theory [7] of analog computation can then be built upon this metric.

Also, note that the notion Huang et al. used has a descriptive nature: the initial values
are all zero, and rate constants are integrals (rationals). Hence, one can only encode a finite
amount of information in the initial value and rate constant. In this sense, a system that
computes a number « also gives a finite description of «. This idea will prove crucial for
later discussions.

1.2 Large Population Protocols

Population protocols (PPs) [2] can be treated as special CRNs with two inputs, two outputs,
and a unit rate constant per reaction. Observe that population protocols conserve the
population since interactions do not change agent counts. This property imposes a vital
constraint on the population: the sum of all agents remains constant. After normalization,
we can say that this sum is one without loss of generality.

Classical PPs are concerned with computing predicates over their input configuration in
a discrete, stochastic setting. Therefore, computing real numbers does not make sense under
this setting. In a series of papers [3, 5, 6], Bournez et al. developed a setting they termed
a Large-Population Protocol (LPP). LPPs are a new analytical setting rather than a new
computational model. They are still population protocols, but their behaviors are analyzed
as the population grows to infinity. Bournez et al. aimed for asymptotic results independent
of the initial configuration. Our approach departs from theirs in that dependence on initial
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values is considered. Note that we should approach with caution when defining what is
meant by “initial configuration” since LPPs need to talk about different population sizes
along the way.

The LPP setting provides a playground for computing real numbers by population
protocols: a number v € [0,1] is said to be computable by an LPP if the proportion of agents
in a set of marked states converges to v over time as the population grows to infinity. An
additional requirement is that the ODE induced by the balance equation of the LPP must
have finitely many equilibria. This condition enforces (exponential) stability and detaches
the dependence on initial values.

43

Bournez et al. specifically asked[6] “.. is it possible to compute solutions of trigonometric

equations? E.g., can we design a protocol insuring that, asymptotically, a ratio 7 of the
nodes are in some prescribed state?” Their answer is negative. They proved that, under their
definition, LPPs compute exactly the algebraic numbers in [0,1]. Closely related is a result
by Fletcher et al. [15], where a class of numbers, called Lyapunov numbers, are found to be
the set of algebraic numbers. It is not a coincidence: both works involve ODEs with either
finitely many or isolated equilibria. Hence, Tarski’s quantifier elimination over real closed
fields can be performed. Alternatively, one can find more modern elimination algorithms
involving Grobner bases in standard algebraic geometry texts [10, 31].

Why is there a gap between LPPs (cannot compute transcendentals) and GPAC/CRN
(can compute e and )7 The following example helps explore the question.

» Motivating Example. Let F(t) = Le¢ =1, B(t) = Le~*, and G(t) be a function such that

its derivative “cancels” with E and F’s derivative. We have the first-order system and the
corresponding chemical reaction network:

F'=—2rp F+E-23G+E
ODE: {p —_F CRN/PP: * *
E—G.
G'=2FE+E

It is evident that with initial values F(0) = 3, E(0) = 1, and G(0) = 0, the solution
of F(t) — 1e™! as t — oo. Correspondingly, in the LPP setting, if we let F(0) = [§ ],
E(0) = | 4], and G(0) = 0 for a population of size N, we can observe from the experimental
results in Figure 1 that the proportion of F' gets very close to %e‘l when N becomes larger. In
fact, the so-called Kurtz’s Theorem [26], which says ODE solution F(t) equals the proportion
random variable F(V )(t) /N almost surely when N goes to infinity, guarantees the limit is
%e‘l. Although the CRN in the above example is not technically a PP, we can translate it
into a probabilistic PP (Construction 1, see also [11], Theorem 1). We maintain the protocol
in the current form for simplicity. J

So the above LPP can “compute” %e‘l, a transcendental number! Is it a counter-example

to Bournez et als algebraic result? Not really. Since the system of ODEs in the example has

the whole F-G plane (with E = 0) as equilibria, the system has a continuum of equilibria.

Note that the key reason GPACs/CRNs in [23] can compute transcendentals is that they are
systems with a continuum of equilibria.

1.3 Computing with a Continuum of Equilibria

The Motivating Example invites us to extend the notion of LPP-computable numbers: We can
drop the finitary requirement on equilibria and therefore include systems with a continuum
of equilibria. The seminal work [4] by Sanjay and Bernstein provides an in-depth study of
this type of system.

7:3
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Simulation of% Probabilistic Protocol

N =102 N=10* N =10°

Proportion
M- Tmm

LN

2 4 6 8 10 2 a 6 8 10 2 4 6 8 10

Time (N interactions)

Figure 1 We use the ppsim Python package [11] to simulate our motivating example (transformed
into a probabilistic PP). This figure demonstrates that the transcendental number %efl can be
traced by the proportion of a species as the population size grows.

The move has several consequences. An immediate one is that computation now depends
on initial values: since the equilibria “stick together”, we need the initial values to determine
which equilibrium the system converges to. Another one is stability: we lose asymptotic
stability. As pointed out in [4], “.. Since every neighborhood of a non-isolated equilibrium
contains another equilibrium, a non-isolated equilibrium cannot be asymptotically stable.
Thus asymptotic stability is not the appropriate notion of stability for systems having a
continuum of equilibria.” However, it is inaccurate to immediately conclude that such systems
must be fragile and sensitive to perturbations. Indeed, Sanjay and Bernstein investigated
semistability, a more appropriate notion of stability for these systems.

We now state our new finding under the extended notion of LPP-computable numbers.

» Main Theorem. LPPs compute the same set of numbers in [0,1] as GPACs and CRNs.

Our proof is constructive: We give an explicit algorithm to translate a bounded GPAC or
CRN into an LPP. A critical step is the construction of a cubic form (homogeneously degree
3 polynomial) system that conserves the population. Then, we transform the system from the
cubic form into the quadratic form. Finally, the system can be rewritten as a probabilistic
population protocol.

The key feature of our construction is that we always guarantee the system is either
CRN-implementable or PP-implementable. Bournez et al. constructed a system in [6] that
claimed to compute any algebraic number. While their system is a GPAC, it is not a PP in
general. As a by-product, our construction fixes this flaw.

Related work

Besides Bournez et al’s work [6, 3, 5], Gupta, Nagda, and Devaraj [20] develop a framework for
translating a subclass of differential equation systems into practical protocols for distributed
systems (stochastic CRNs in most cases and, in some examples, population protocols). They
also restated Kurtz’s theorem and considered a large-population setting. The subclasses they
considered are complete and completely partitionable, which means the derivatives of the
system sum to zero, and any term (monomial) T occurs as a pair {+7, —T'} in the system, a
very nice property to have. Doty and Severson [11] provided an algorithm to translate CRNs
that consist solely of unimolecular (X — Y) and bimolecular reactions (X +Y — Z + W)
to PPs. Those reactions correspond to an ODE system’s linear terms (e.g., ) and quadratic
terms (e.g., zy). Their assumption, however, restricts the application of their algorithm from
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more general GPACs. Firstly, the CRNs they considered preserve populations. Constant
terms in GPACs , which correspond to reactions like ) — X, change the population. Another
consideration is the treatment of square terms. Some quadratic systems can not be directly
written as a CRN with bimolecular reactions (i.e. if positive square terms like 22 occur in
a’). Later in this paper, we will discuss how the deep entanglement of the two (constant
terms and squared terms) makes translating a general GPAC into a PP very difficult.

Our construction does not make any assumptions in the above work on GPACs, except
that all variables are bounded.

The rest of this paper is organized as follows. Section 2 discusses preliminaries as well as
some notations and conventions necessary to present our main result; Section 3 includes the
main theorem, a four-stage constructive proof, and a few immediate corollaries. Section 4
provides some concluding remarks and discussion on future directions.

2 Preliminaries

We review some key definitions and basic facts in this section.

2.1 GPACs, CRNs, Population Protocols, and Their ODE
Characterization

We have discussed that GPACs can be characterized by polynomial initial value problems
(PIVPs) in the previous section. To align with the ODE descriptions of GPACs, we will use
the ODE characterization of CRNs and PPs throughout this paper. This choice clarifies the
discussion of our construction and proof in the coming sections.

We start with a few notations and conventions in this paper.

» Notation (Variable Vector). We use the notation x(t) = (x1(t), z2(t), -+ ,x,(t)) to denote
a vector of variables in (usually the solution of) an ODE system, where n € N is the vector’s
dimension and the parameter t is regarded as “time” in the system. The first component 1
1s usually designated for tracing the number we wish to compute.

A typical definition of a CRN or PP specifies a pair (S, R), with S being the set of
species or states and R being the set of reactions or interactions between states. In general,
a reaction for an abstract CRN looks like X +Y LENS e + W + Z, where k is the reaction
constant. There is no restriction on the number of reactants (input) or products (output).
Reactions in population protocols, however, are strictly limited to those with two inputs and
two outputs: X +Y - W + Z.

The so-called deterministic mass-action semantic of a CRN defines a polynomial differen-
tial system, which governs the CRN’s dynamics. One can find descriptions of this semantic
in many works of literature (e.g., [23]). We will use these polynomial differential systems
directly throughout the paper.

» Convention. We manipulate our use of the variable vector: when the context is clear,
we simply say (x,x'), or x itself is a GPAC (CRN, PP), without specifying the associated
polynomial differential system x'(t) = (24 (t), -,z (¢)). If we don’t specify the initial values
that means we assume them to be zero. We would assume the correspondence between a
variable x and the species X that it describes. In some cases, we will call a variable x a

species and X = (x1,%2, -+ ,T,) a set of species.

Now, we introduce notation and terminology for polynomials.
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» Notation (Positive Polynomials). We denote PT C Q[x| = Q[z1,- - ,2y,] the set of mul-
tivariable polynomials with positive (rational) coefficients for each monomial (terms). For
instance, T1To + x3 + 1 € Pt, while x129 — x5 + 1 ¢ PT.

» Notation (Variable Occurrence in a Polynomial or Monomial). Let p be a polynomial (or
monomial) and x be a variable, we use the convenient notation x € p to express T occurs
m p.

Homogeneous polynomials play a fundamental role in our construction. We call them forms

for short.

» Terminology (Forms). In mathematics, “form” is another name for homogeneous polynomi-
als. A quadratic form is a homogeneous polynomial of degree two, for example, 422 +2xy—3y?;
a cubic form is a homogeneous polynomial of degree three, for example, x> + 3x2y + 3xy? +1>.

» Terminology (Conservative Systems). A conservative system has a (non-trivial) quantity
that is constant along each solution. In this paper, we call a system that maintains constant

total mass, i.e., a system x = (x1,x9, -+ ,x,) thatl satisfies
n
S
i=1

a conservative system.

We say a function f(t) is implementable (generable) by a GPAC (CRN, LPP) if there
exist a GPAC (CRN, LPP) and a variable (species, state) z in it, such that f(t) = z(t) for
all t. We choose the word implementable over generable (as in [18]) to reflect the idea that
we program a GPAC (CRN, LPP) to implement a function.

» Definition 1 (GPAC-implementable Functions [18]. See also Definition 3 in [13].). A function
f 1 Rso = R is GPAC-implementable if it is the first component i.e. x1, of the x(t) =

(x1,22, -+ ,xy) solution for the following differential equation:
!/ — t
X=p(xt) g 2)
x(0) = xo,

where p is a vector of multivariate polynomials and x is a variable vector with x¢ as its
initial value.

Note that if a variable = has initial value a, we can introduce a new variable y = x — a to
make y(0) = 0. Therefore, without loss of generality, we often assume x(0) = 0 in this paper.

» Theorem 2 (CRN-implementable Functions [21], Theorem 3.1 and 3.2). A function is
CRN-implementable if and only if it is GPAC-implementable with further restriction such

that the derivative of each component x; in its variable vector x = (x1,Za, - ,Z,) s of the
form
T =p—qv;, wherep, q€PT. (3)

The restriction is rooted in reaction modeling: a negative term in z’ means to destroy some
molecular x at some rate. However, a reaction cannot destroy a non-reactant, so x must
appear as a reactant in the reaction. Such restriction extends to Population Protocols
together with some extra constraints.
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» Corollary 3 (PP-implementable Functions). A function is PP-implementable, if and only if
i. it is CRN-implementable, i.e., there is a CRN (x,x’) computing it.

ii. forall z; inx = (r1,22, -+, %), ¥, does not possess a positive xf term.

iii. X' is a quadratic form system, and

iv. X' is conservative.

Proof. For the “only if” direction, all conditions other than condition (ii) are clear. To see
that z can not have an z2, we consider two X;’s on the left-hand side of a reaction. The
reaction can not increase the amount of X, since that would require at least k 4+ 1 X;’s as
products on the right-hand side. As a result, a positive 27 term can not occur in z/. See
Theorem 16 for the “if” direction of the proof. <

In this paper, we will also call a CRN containing only unimolecular reactions of the form
X — Y a unimolecular population protocol (UPP). Similarly, a CRN containing only
termolecular reactions of the form X +Y + 27 — U + V + W is called a termolecular
population protocol (TPP). In general, a k-PP is a CRN that contains only reactions of the
form X7 4+ .-+ Xz — Y1 + -+ - + Y. Generally, we have the following characterization.

» Corollary 4 (k-PP-implementable Functions). A function is k-PP-implementable, if and
only if
i. it is CRN-implementable, i.c., there is a CRN (x,x’) computing it.
ii. for all x; in x, = does not possess a positive =¥ term.
iii. x’ is homogeneously degree k, and
iv. X' is conservative.

From above, we see that turning a GPAC into a PP means having to dance with more
and more chains. We must carefully appease all restrictions, which makes the translation
process difficult.

We first revisit some useful concepts regarding PPs.

2.2 Probabilistic Large-Population Protocols

» Definition 5 (Balance Equations [6]). Let (Q, R) be a large-population protocol, where Q is
the state (species, variables) set and R is a set of reaction rules, each with two reactants and
two products. The balance equation of a deterministic LPP is a function b : Rl — RI€|
such that

TEEND M CEN T DEY ARACAETN)) (1)

(q1,92)€Q? (g3,94)€Q?

where Oq, 45,9500 = 1 if (q1,92) = (g3,94), and 0 otherwise; (eq)qeq is the canonical base of
RICl and x4, 1s the proportion of the population in state g;.

The balance equation is a description of the system’s dynamics. Intuitively, it says whenever
¢1 and g2 bump into each other, if there is a reaction (q1,¢2) — (g3,¢4) in the PP, then
the pair (g1, ¢2) turns into (g3, q4); otherwise, we interpret (g, ¢2) as a null reaction and
the agents remain unchanged. We adopt an asymmetric interpretation of reactions in PPs
throughout the paper. That is, the ordered pairs (¢;,¢;) and (g;,¢;), when used as reactants,
do not necessarily result in the same products. The assumption is not essential: the choice is
to align with the existing literature (e.g., [6]) for convenience.

The above balance equation is for deterministic PPs, where 04, 4,.45.q, 15 €ither O or 1.

It is more convenient to use probabilistic transition rules in many scenarios. We introduce
probabilistic LPPs (PLPPs).

77
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» Definition 6 (Probabilistic LPP (PLPP) [6]). A PLPP is an LPP with transition rules in
the form

qi 45 — 0G5 k1 qk Qi

and for every (q;,q;) € Q*, we have
for every (qr, q1) € Q*, iy € Q and a; ;> 0, and

E Qi = 1.

(qr,q1)
The balance equation remains mostly the same as Equation (4). To simplify the notations,
we often take @ = [n] = {1,2,--- ,n} and will still use ¢; or use terms like “state i” when

referring to a state.

)= X (w(a-or X et (5)

(4.5)€[n]? (k,1)€[n]?

The ODE associated with a PLPP can be written as

dx

= _p 6

> = b(), (6)
where x = (z1(t),- -+ ,zn(t)) € R™ is a variable vector and its i-th component, x;, tracks the
proportion of the total population in state i over time ¢. We will often call x = (z1, 22, -+ , xy)
or x an LPP (PLPP). 4

A simple observation results directly from the definition of LPP or PLPP.

» Observation 7 (“The one trick"). Let x = (x1,x2, - ,&,) be an LPP or PLPP, then

Z €Xr; = 1.
i€[n

]

Although obvious, the above is the single most important observation in this paper. Many
constructions and proofs rely on it. This observation is frequently used to re-write the
constant term in an ODE. We will rewrite a constant c in either of the following ways,
depending on our needs:

c=c-1l=c(x1+ - +zp),or

c=c-1-1=clx1+ - Fau)(x1+ -+ zpn). J

» Observation 8. The r-th component of Equation (6) has the form

dx,
dt

— f(x) - 2a,, (7)

where f(x) is a quadratic form in PT.

An intuitive way to think about equation 7:
The term —2x, represents all reactions that consume x,. A complete set of rules for a
PP must include all combinations of pairs (z,, ), or (2, x,), where k iterates through
all [n]. These combinations sum to —2z,.
The f(x) represents all reactions that produce xz,. This observation is critical in the
constructive proof of our main theorem.

We now give a formal definition of LPP-computable numbers.
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2.3 Large-Population Protocol Computable Numbers: Revisited

We extend the definition from [6]. Note that the definition also applies to large-population
unimolecular protocols (LPUPs).

» Definition 9. A real number v is said to be computable by an LPP (PLPP, LPUP) if there
exists an LPP (PLPP, LPUP) such that x(t) = (z1(t), x2(t), -+, z,(t)) € [0,1]" and

Jim > wi(t) =v,

ieM
where M C {1,--- ,n} represents the subset of states marked in x. Moreover, all the
states x; must be initialized to some positive rational r; € Q N [0,1], in the sense that
limy o0 xEN) (0) = r;, when xEN) (0) is the initial fraction of state i at the stage when the

population is N.

A major change is our removal of the finitary requirement on equilibria. A note originally
in [6] discusses the rationale for the requirement of finitely many equilibria. This assumption
is needed to “avoid pathological cases, in particular the case of idle systems q ¢ — q ¢’ for
all ¢ and ¢'. Indeed, in idle systems, all initial states are equilibria, and such a system would
compute any real of [0,1], depending on the initial configuration.”

This pathological behavior could occur, if one is allowed to initialize the system with
any real numbers. However, we can prevent this case by restricting the initial configuration
to rational numbers. Also note that by forcing the initial counts of a species X to be a
fraction of the total population N, we exclude those systems (e.g.,[12, 1]) that crucially
depend on small counts in a very large population. These systems are not modeled correctly
by ODEs. For instance, one can not initialize X to have 100 molecules. Any state initialized
to a constant amount will be a fraction that approaches zero, as N grows to infinity. In our
definition, such X will be initialized to have zero molecules for a fixed N.

» Remark. It is worth noting the above setup satisfies the assumptions of Kurtz’s Theorem [26].

Therefore, the long-term behavior of an LPP is governed by an ODE, which is induced by
its balance equation. As a result, in this paper, we often blur the boundary between the
continuous semantics (by ODE) and stochastic semantics when discussing limiting behavior.
See Section 4 for initial discussion on further investigation on the two semantics.

For the rest of the paper, whenever we mention LPP computable number, we mean the
extended notion defined above, unless specified otherwise.

2.4 Basic Results
2.4.1 Large-Population UPPs Compute Only Rationals

As a toy case study, we investigate the class of numbers computable by large-population
unimolecular protocols (LPUP). We find that unimolecular protocols have limited power.

» Lemma 10. A number is LPUP-computable if and only it is rational.

Proof. Suppose v =% € [0, 1] is a rational number. Lemma 3 of Bournez et al. [6] constructs

an LPP with ¢ states such that each state converges % for an exponentially stable equilibrium.

We modify their construction to obtain a unimolecular LPP. Let X = {X3,...,X,} be
the state set and the transitions be of the form X; — X(; mod q)41 (see Figure 2 for a
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visualization). Then each state will converge to L To compute v, mark states X1, ... , Xp.
Thus, there exists a deterministic unimolecular LPP that computes v. (Alternatively, one
could initialize an idle system with the desired rationals, since now the extended notion of
LPP-computable number allows a continuum of equilibria and rational intial values.)
Suppose a deterministic unimolecular protocol P computes some number v € [0,1]. Then
there is a graph G corresponding to the reactions of P such that nodes are states and directed
edges are transitions. The deterministic nature ensures that self-loops exist only if a node is
isolated from all other nodes. Since each node has the outdegree 1, G is a functional graph.
Functional graphs are a set composed of rooted trees attached to a cycle ([14], page 129; or
see Figure 3 for an example). Traversing the graph from any starting point will eventually
lead to being stuck in a cycle. The proportion of mass that flows into a cycle will become
uniformly distributed among the cycle’s finite number of nodes, computing a rational number.
Thus, deterministic unimolecular protocols compute rational numbers. <

Note that the above lemma can be extended to probabilistic unimolecular protocols, but we
omit this work for the sake of simplicity.

Figure 2 Visualization of transitions in a uni- Figure 3 Example of a Functional Graph.
molecular protocol.

2.4.2 Product Protocols and Multiplication

We will show that LPP-computable numbers are closed under multiplication. The proof
is done through product protocols. Since our Main Theorem shows that LPP-computable
numbers are essentially GPAC-computable, many other arithmetic operations can be done by
taking a detour via GPACs. However, the resulting protocols are not so intuitive. In addition,
the product protocol is an important technique for our later construction in Section 3.

» Lemma 11 (Product of LPP-computable Numbers is LPP-computable). Let P, and P,
be LPPs that compute o and [ respectively. Denote their respective state wvectors by
x = (21,22, ,2n) and 'y = (y1,Y2, - ,Ym), @nitial configurations by x(0) and y(0),
and differential systems by x' and y’. Assume any differential equation in x' ory’ is a
quadratic form. Then there exists an LPP, P,, that computes the product af3.

Proof. Let p,,, 4z, Py, qy, € PT. Then we can write } = p,, — xiq,, for all 2 € x’. Since

x} is a quadratic form, p,, is a quadratic form and ¢, is a linear form. This notation
generalizes to yi € y’ as well. Introduce new state variables z; ; := z;y; for all (z;,y;) € xxy
where X is the Cartesian product (view x and y as sets). Then we have the state vector
z=(211,21,2,2215- - -, Zn,m)- Suppose My C x and My C y are the marked states. For each

zij = ;y; € z, mark z; ; if x; € My and y; € M,,. For the initial values, let z(0) = x(0)-y(0).
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Simulation of Multiplication

Factor ' Factor 2 Product 12

— x1 —n 211

21,2

NS
EITINS

— 221
— 222

Proportion

2 4 6 8 10 2 a 6 8 10 2 2 6 8 10

Time (N interactions)

Figure 4 With ppsim, we can simulate a product protocol with input LPPs x and y that compute

% and % Note that the factor LPPs originate from [5], and the product LPP is a result of
applying Lemma 11. These simulations affirm the closure of LPPs under multiplication.

To obtain the differential system z’, perform the following steps. First, differentiate
z;j = (2;y;). By the chain rule, we have

/

zi 5 = (ziy) = iy + 2y

Next, substitute the equations for z} and y; Then, we have the cubic form,

Zz/',j =Y (pxi, - xiqxi) + xi(py;‘ - yquj)'
Apply the one-trick (Proposition 7) to obtain a homogeneously degree four polynomial such

that every term is exactly degree two in variable x and exactly degree two in variable y. We
have,

=y (Z yk> (Po, — Tida,) + i (Z wk) (Py, — Yity,)-
k=1

k=1
After expanding the polynomial, group the positive and negative terms. Note that we can
factor x;y; from the collection of negative terms, which yields

m n m n
Zi = <Z YYDz, + Z kaipyj> — (ziy;) <qu Z Yk T Qy, Z%) .
k=1 k=1 k=1 k=1

By substituting z; ; for the factored z;y;, we have

m n m n
;= <Z YkYiDa, + Y xkxipyj> — 2 (qgc,; S uktay, Y xk) :
k=1 k=1 k=1 k=1

which satisfies condition (7) from Corollary 3.

Let p.,, = (Y11 YkYiDa: + Dopq TkiDy, ). Without loss of generality, consider P, =
ZZL:1 YkY;Pz,- Note that every monomial in pzw_ is of the form z,x,y;yr where z,z, is a
monomial in p,,. Then we can substitute either z, ;z, 1 or 2z, 12, ; for each z,z,y;y; in
P, ,- Since z7 is not a valid monomial of p;,, we will not have 27; in p, .. Thus, p,, ; is a
quadratic form in variable z that satisfies condition (i¢) of Corollary 3.

Let o, = (Gus dopey Yk + dy; Dop—y @x). Without loss of generality, consider ¢Z, = =

Gz, Dpey Y- Note that every monomial in g7,  is of the form z,yy, where ,, is a monomial
/!

in gz,. Then we can substitute 2, j for each z,y; in qa, - Thus, we can rewrite 2

as
%= Pay — %l
where z; ; is a quadratic form and meets all conditions of Corollary 3.
Hence, we have defined the state set, initial configuration, and differential system of a
PP-implementable protocol that computes af. |
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3 Translating Bounded GPACs into PPs

3.1 Construction Overview

We will prove our main theorem in this section. It suffices to show that LPPs can simulate
GPACs. Since one can transform a bounded GPAC into a bounded CRN with zeroed
initial values [23], it is sufficient to consider only this type of CRN. We develop a four-stage
algorithm that translates CRNs into LPPs.

Input: A CRN that computes a target number a. We now enter a cascade of transforma-

tions:

Stage 1: into a CRN-implementable quadratic system,

Stage 2: into a TPP-implementable cubic form system,

Stage 3: into a PP-implementable quadratic form system, and

Stage 4: into a PLPP.

3.2 Basic Operations

First, we discuss some basic operations as building blocks for our constructive proof. The
notations used are as described in the preliminary section. The naming of operations “e-trick”
and “A-trick” (the use of the Greek letters e and \) originates in the proof of Lemma 5 in [6].

» Operation 1 (Constant Dilation, “e-trick”). Let x(t) be the solution to the ODE x'(t) =
p(x(t)) and e € Q" a positive constant, then x(et) is the solution to the ODE

X' (t) = ep(x(t))-

The operation is essentially a change of variable ¢ — et and a direct result of the chain rule.

The behavior of the ODE system will not change; it only alters the flow of time. Indeed, ¢ in

the new system corresponds to et of the original system. In our construction, we will use this

operation to shrink the coefficient of an ODE system. The operation can be seen in [11, 6].
We can do a more general change of variable (composition.)

» Operation 2 (Time Dilation ([28], Theorem 3) ). Let x(t) be the solution to the GPAC
x(t) = p(x(t)), g(t) be a GPAC-implementable function, and G(t) = fg g(s)ds, then x(G(t))
is the solution to the GPAC

In our construction, we must choose g(t) such that its integral satisfies

G()|t=0o = /000 g(8)ds = 0.

and we call such a G(t) as “nonterminating time”.

A time dilating operation, as above, controls the flow of time with the function g(t). More
accurately, ¢ in the new system corresponds to G(t) = fg g(s)ds of the original system.
If we want the new system to mimic the old system’s limiting behavior (i.e., to achieve
the value lim;_, o, x1(t)), we must guarantee G(c0) = co. Thus, time in the new system
is nonterminating and can go to infinity in the eyes of the old system. Otherwise, the
new system would terminate somewhere in the middle, relative to the old system. To
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obtain nonterminating time, it is enough to consider functions that converge slowly, e.g.,

g(t) = %th Alternatively, one could ensure g is bounded from below, i.e., g(t) > ¢ > 0, for
some constant c.
Time dilation for CRNs can be found in [25] (page 15, Theorem 3.7). N

Next, we introduce an operation that shrinks variables to [0,1].

» Operation 3 (Variable Shrinking, or “A-trick”). Let x = (21,2, -+ ,&y) be a bounded CRN
that computes a number « in [0,1]. That is, lim;—, o x1(t) = . To transform the CRN into
a LPP, we must ensure all other components, some of which may not not converge, fall in
[0,1] for allt. We can pick a 0 < X < 1 sufficiently small and a constant ¢ > 0 such that

$1+)\($2+"'+$n)<1—c.

This is possible since all variables are bounded. Then we
make a change of variables: xo < Axa, -+ , T,  Axy, and
introduce a new variable xo(t) such that xo(t) + x1(t) + - -+ 2, (t) =1 by
1. initialing xo(0) = 1 (recall 2;(0) =0 fori=1,--- ,n), and
2. adding the ODE for zo: xfy = — Y ., @
Note that x1 remains unchanged in the operation, so it still computes «. J

The biggest challenge in translating a CRN into an LPP is: the CRN does not necessarily
preserve population, while the LPP requires it. In fact, our input CRN initializes at zero.
However, x; needs to compute some number « as all other components remain positive
throughout time; evidently, not preserving the population. A straightforward idea to “balance”
the system, is to introduce a variable zq, such that its derivative cancels all changes to the
population size by other variables. That is, z(, = — > 1, 2.

However, the resulting z( is not CRN-implementable in general. As a result, it is not
transformable to an LPP. The rationale is clear in the derivative of ;. In general, z} has the
form

xj =p; —q;-x;, where p,q €PT.

A typical p; would contain at least one monomial m. Evidently, xq & m since the variable x
is newly introduced. Then m will contribute to a negative term in z{, and z¢ ¢ m, making
o not CRN-implementable and, in turn, not PP-implementable. That is why Bournez et
al’s construction in [6] (Lemma 2) fails to produce a population protocol in general. To
address the this issue, we purposefully multiply xo with every x} and introduce the following
operation.

» Operation 4 (Balancing Dilation, or “Garbage Collection” (“g-trick”)). Let x =
(1,29, - ,x,) be a CRN-computable system, (i.e., every component x; is CRN-computable).
Then the following operation (multiplying an unknown variable xo determined by an ODE)
produces a conservative CRN-implementable system.

xt = (pi —q; i) xy, forie{l,--- n}

Th=—Y i, T
What makes the operation different from a normal time dilation operation is, the function
Zo is not known in advance: It needs to adjust/customize according to the system it is
dilating. In our construction, we also need to combine the operation with the A-trick to
achieve nonterminating time. This operation also turns a non-conservative system into a
conservative CRN-implmentable one.

We will present our construction in the following subsections.
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3.3 Stage 1: Conversion to CRN-implementable Quadratic Systems
The following is a CRN version of [9] (Theorem 1).

» Theorem 12. Any solution of a CRN is a solution of a CRN-implementable system of
degree at most two.

With this result, we can assume a CRN’s associated polynomial system is quadratic with out
loss of generality.

3.4 Stage 2: Conversion to TPP-implementable Cubic Form Systems

» Theorem 13. Any solution of a quadratic CRN is a solution of a TPP-implementable
cubic form system.

We sketch the proof here. Please see the appendix for more detail.

Proof. Given a quadratic CRN x = (z1,%9, -+ ,Z,), we first apply the A-trick to “make
room” for a new variable xg. That is, we choose a 0 < A < 1 and a constant 0 < ¢ < 1, such
that x1 + A(xa + -+ - + x,,) < 1 — ¢. Then apply the one-trick and balancing dilation to get a
cubic form:
1. Introduce a new variable z
2. Rewrite each p; (quadratic), ¢; (linear) in z} = p; — ¢; - z; to forms:

for a linear monomial in p; of the form a - z;, apply the “one”-trick and rewrite it as

azj > p_oTh-

for a constant term in p; of the form a, rewrite it as a - (3, _qzk) - (O peo Tk)-

for a constant term a in ¢;, rewrite it as a - ZZ:O Tk.

We call the resulting forms P; and @); respectively.

3. Apply balancing dilation with zy. The new system looks like

xf = (P, — Qix;) - xg, fori=1---,n 2;(0) =0, fori=1,---,n
, 0, and
To=— i T z0(0) =
It is a TPP-implementable cubic form system. See the appendix for a full proof. |

» Remark 14. Note that in the above proof z( is bounded from below, away from zero. We

can observe that:

1. The variable xq starts from 1 and remains greater than ¢ > 0 for all ¢. It will not introduce
new equilibria.

2. The new system has at most a linear slowdown compared to the old system, since
fot z(0) dt > fot cdt = ct.

The variable z( acts like a source, distributing the total mass (sum = 1) to all other variables

(initialized at 0).

3.5 Stage 3: Conversion to PP-implementable Quadratic Form Systems

» Theorem 15. A number computable by a TPP-implementable function given by Stage 2
can be computed by the sum of a finite set of PP-implementable functions.

Proof. Sketch of the proof. We utilize the self-product of the TPP-implementable cubic
form system. Let x = (zq, 1, - ,Z,) be the system resulting from the previous stage that
computes a real number o with initial values g = 1 and 0 otherwise. We consider the

system (z; ;) , where z; ; = x; -z; and [n+1] = {0,1,--- ,n}. Let 290(0) = 1 and

(i,9)€[n+1]
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0 otherwise. The marked set M, = {z; ;|0 < j < n}. Then we can verify the z-system is
PP-implementable and the sum of the marked variables traces a. Check the appendix for a
full proof. <

3.6 Stage 4: Converting PP-implementable Quadratic Form Systems to
PLPPs

In this subsection, we turn the PP-implementable quadratic form given as a result of the
previous stage into a PLPP. The following construction is from the proof of Lemma 5 in [6].

» Construction 1. Let x = (21,22, - ,z,) be a PP-implementable quadratic form. We
denote the derivative x; as

x;:p’b_qth 7'217277”7 (8)

where p; is a quadratic form and q; is a linear form.

We will apply the e-trick (Operation 1) to shrink the coefficient of the above system, where
e € Q is an undetermined parameter. In order to align with the form in Equation (7), we
add and subtract a term 2x;. Now the system has the form

I;:€(p1_QZzZ)+2$Z_2xZ7 Z:172a , 1. (9)
= fi(x), denote f;(x) =e(p; — qix;) + 2x;. (10)

We then use the one-trick to rewrite f;(x) = e(p; — qix;) + 2x; Z?:l xj. Note that the term

brings in 2x;x; for j =1,--- ,n. We will then pick ¢ sufficiently small

1. to ensure the 2x;x; terms dominate the monomials in —qx; such that f;(x) € Pt for all
1.

2. and to ensure

2
Em#k C(xjxlﬁfi) <1 and M <

. < 5 <1 (11)

where C(z;xx, f;) denotes the coefficient of xjzy in fi, and i,j,k € {1,--- ,n}.

Neat, we construct a rule set for a PLPP. For an ordered pair (z;,xr) and a term
a; jkxjTr 1 fi(x) we do the following:

If j =k, add a rule (xj, ;) — 5 (24, 25);

otherwise, add two rules (x;,xy) — 2 (x5, ;) and (xg, x5) — T (24, 25);

In the above rules, if s =Y, a; i <1 for an order pair (k,1), we add an idle reaction

(xjaxk) — (1 - S)(Cﬂj,.’tk);

If o term x;xy appears in fi(x), it implies that the pair (x;,xx) will produce x;. We use the
all-in greedy strategy, that is, we produce two z;’s and let the pair (x,x;) do the same. So
we need to divide the coefficient o j i by 4 for j # k; yet, when k = j we don’t have a flipped
order pair, so we only divide the coefficient by 2.

There need to make sure that the rule set generated above forms a PLPP.

» Theorem 16. Let x = (x1, %2, ,xy) be a quadratic system satisfying > . x; = 1. Then
it can be turn into a PLPP by Construction 1 if and only if it is PP-implementable.

Proof. See appendix. <
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The following theorem can help in transforming a PLPP to an LPP.

» Theorem 17 ([6], Lemma 4). Let v € [0, 1] , and assume that there exists a PLPP computing
v, with rational probabilities. Then there exists a (deterministic) LPP computing v.

Note that although the above theorem is based on the original notion of LPP-computable

number with the finite-equilibria constraint, the construction in the proof of the theorem still

correctly encodes the balance equation. So the theorem also holds under the new definition.
We therefore finish the proof of our main theorem.

» Main Theorem. LPPs compute the same set of numbers in [0,1] as GPACs and CRNs.
» Corollary 18. Algebraic numbers are LPP computable.

Proof. Algebraic numbers are computable computable by a GPAC [6] (Lemma 5) so they
are also LPP-computable by the main theorem. |

The above corollary fix the gap in Bournez et al’s construction.

» Corollary 19. Famous math constants 7, e~ !, Euler’s v, Dottie number, and Catalan’s
constant are LPP-computable.

This result answers Bournez et al’s question about whether solutions of trigonometric
equations (Dottie number) and 7 are “computable” asymptotically by population protocols.

4  Conclusion and Discussion

In this paper, we extend the notion of LLP-computable numbers and connect it with
GPAC/CRN-computable numbers. Moreover, we show that LLPs and GPACs/CRNs es-
sentially compute the same set of real numbers. The result, to some degree, says LPPs, or
more straightforwardly, population protocols with the mass-action semantic, can simulate
GPACs in some way. We would ask a natural question: What is the next “weak” or minimal
(according to some measure) model that can simulate GPACs? Unimolecular protocols are
provably incapable since they only compute rational numbers. However, a model discussed
in [16], which can be viewed as a two-state (“black” or “white”) k-PP with restrictions on
reactions (the product of a reaction must either be all black or all white), can compute
algebraic numbers such as 3_2\/5 but not rational numbers like % Diving into the sub-models
of population protocols and characterizing the power spectrum will be an interesting avenue
for further exploration.

The ODE systems we used to compute transcendental numbers have a continuum of
equilibria. We have not addressed the semistability nor the system’s convergence rate in this
paper. Regarding the latter, since our construction essentially rewrites the system with a

new set of auxiliary variables, the system’s solutions in some sense remain the same, except
for the linear slowdown introduced in Stage 2. It is hoped that an LPP’s convergence rate is
similar to the input CRN. If an input CRN converges exponentially fast to a number «a, we
desire the translated LPP also converges (exponentially) fast. We would need a thorough
stochastic analysis along this line in future work.

The definition of GPAC/CRN-computable numbers and LPP-computable numbers have
a major difference: We can trace a real number by a set of variables in an LPP, rather than
one, as in a GPAC/CRN. Currently, the proof of our main theorem relies on using a set of
marked variables. Our question: Is the difference intrinsic? Or can we compute the same set
of numbers using one variable?
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Another area of exploration is protocols with a large population (tending to infinity) that

also have “scarce” variables with a limited population. The behaviors of these systems, due
to the existence of the scarce variables, can not be governed by Kurtz’s theorem. Therefore,
a new analytic tool or theoretical benchmark (probably not a computable number) awaits

development.

Our construction in Section 3 is not optimal. To implement the translation algorithm

in a software package, one would want to have a better algorithm for Stage 1. To apply
the A-trick, one needs to know the bounds of the variables, which would require numerical
methods. A theory to predict the bounds is desired but difficult to achieve due to the
non-linear nature of ODEs.
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A  Optional Technical Appendix

Proof of Observation 8. Take the x, component in Equation (6). We have

dx,

-3 (o) 5 ()

j€ln] j€ln]

+ Proj, (Zi,je[n] (xixj Dok ien) Yk (€x + 61))) ;

= —2z, + f(x), by Observation 7.
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where f(x) = Proj, <Zw’€[n] (xixj 2okien) Yokt (€x + el))> and Proj,.(-) is the r-th

component a vector. This completes the proof. |

Proof of Theorem 12. Let x = (z1,22, - ,%,) be a CRN, then each z; has the form
¥, = p; — q;x, where p;, q; € P*. We in introduce variables (we call them v-variables) for
each monomial as follows:

Viy oo qy, = T2 - 2in,
Specially, vi9,... 0 = @1, V0,1,0,-.,0 = T2, and so on. Note that we can rewrite p; and ¢; in
each z with the v-variables and denote them as P; and @;. We can see that P; and @Q; are
of degree one in terms of the v-variables.

Consider the system that contains the collection of all v, ... ;, ’s. Notice that

k=1
n
= szh =1, in (Pk - Qkxk)
k=1
n n
= Pubiy it iy — Z Qr(Tk iy i =1, i)
k=1 —
n
= Zpk’l}il’...’ikfl’“. (ZQk) Vi, yig e yim e
k=1
Note that the v-system is a CRN-implementable system with degree less than two. |

Proof of Theorem 13. Let x = (x1,...,2,) be a quadratic CRN-implementable system.
Then we have x} = p; —x;q; such that p;,¢; € PT fori = 1,...,n. Since the CRN is quadratic,
it follows that deg(p;) < 2 and deg(q;) <1 fori=1,...,n.

First, apply the A-trick to shrink variables zo,...,z,. Choose 0 < A <1 and a constant
0 <c<1,suchthat 1 + AM(z2 + -+ + x,) < 1 — ¢. Then perform the change of variables:
To < AT, , Ty < ATp.

Next, we introduce a new variable o such that > ;z; = 1. Use this summation and the
“one-trick” to ensure that every term in «} is quadratic for i = 1,...,n. Once each 2/, ..., 2,
is a quadratic form, we signify these changes by writing x} = P szZ where P;, Q; € PT.
Note that P; is a quadratic form and Q; is a linear form.

We can now perform time dilation with zy. As a result, we have the cubic form system,

= - Z?:1 ;

where we let 29(0) =1 and z;(0) =0 for ¢ = 1,...,n. Note that Pyzo, Q;xo € PT and z; is

{;—(P Qix;) -xg, fori=1,...,n
/
Zy

in every negative term of 2 for i = 1,...,n. Some algebraic manipulation reveals that
n n n
= - Z Z (P — Qi) - xo = Z(Qiﬂﬁiwo — Pixg).
i=1 i=1 i=1

Clearly, Q;xo, P;xg € PT and z¢ is in every negative term of xj,. Thus, x’ is CRN imple-
mentable.
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Since z is a factor of every term in the cubic form x’ , 27 is not a positive term of z for
i=1,...,n. For the case of z{, recall that the positive terms of 2, come from the negative
terms of x},...,z,. Given that every negative term of x} will have z; as a factor, every

positive term of z{, will have at least one x; # x¢ as a factor. Thus, 23 cannot occur as a

positive term in xj.
Hence, we have satisfied Corollary 4 to obtain a TPP-implementable cubic form system.
<

Proof of Theorem 15. Let x = (z9,1,...,2,) be the TPP-implementable cubic form
system from Stage 2. Then we have

o= {x;— (P, — Qiz;) -z, fori=1,....n
where 1 computes some « and the system is initialized such that 2¢(0) = 1 and 0 otherwise.

We construct our proof based on the “one trick” given by Observation 7,

n

Zmi~ixj:1o1:1.
j=0

=0

We begin by defining a new variable vector, z. Introduce new variables z; ; = x;x; for all
(x;, ;) € x x x. To compute «, define the marked states as M, = {z1,; | 0 <j < n}. Given
x(0), let 29,0(0) = 1 and 0 otherwise.

Now, we find z’. For all z; ; € z we have z; ; = (zi7;)" = ¥jz; + 2,2, where z}, 2} € x'.
Recall that x" consists of cubic forms. Therefore, zjz; + z;2 is a quartic form in variable
x. It follows from a change of variables from x to z that z; ; is a quadratic form. For each
z; j € z, we check conditions (7) and (i) of Theorem 3. There are three non-trivial cases.

Case 1: Assume z; ; = x;x; such that ¢ # 0 and j # 0. Then by the chain rule and
substitution of x’, we have

2z = vy 4 il = (0P — 2i20Qq) - x5 + i - (o Py — 2520Q;).
We then distribute and group terms by their sign to obtain:
z;] = (zjw0P; + w00 Pj) — (w32520Q; + 2i1;00Q;5)
Note that we can factor (mixj) from every negative term,
zij = (xjxo P + 2w Py) — (2325)(v0Qi + 0Q;)-
1.5 = (@0l + 2o Py) — (i25)(20Qs + 20 Q;)
= (20, Pi + 20,iPj) — i j - (x0Qi + £0Q;)

z

and the terms P;, P;j, £0Q;, and x¢Q; can be further written into linear form of {z; ; }: ;’s.
We will not repeat these argument in the rest of the proof, though.

The above implies z; ; is a factor of every negative term. Also, since xy can be factored
from every positive term, we cannot have a positive zf ; (recall that i, j are nonzero). Thus,
conditions (¢) and (i7) are satisfied.

Case 2: Assume zp ; such that j # 0. From the chain rule and substituting equations
from x’, we have

n

20,5 = TT; + ToT = Z(%‘%Qi —2oP) -z + 20 (0P — 220Q);5)
i=1
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Distribute and group terms by their sign to obtain,

n n
/ 2 2
205 = TP+ Y wiwzoQi — (z;25Q; + Y wow; P

i=1 i=1

Note that we can factor (zoz;) from every negative term,

Zé’j = 1'(2)Pj + Zl’ile'[)@i - ((Ejl’o)(onj + ZP’)

i=1 i=1

which implies 2o ; is a factor of every negative term. Suppose a positive term in zé, ; has
the monomial (zoz;)?. By carefully choosing the change of variable (i.e., choose z; jz0 0, not
23 ;), we satisfy condition (i4). If there is no positive term in 2 ; with the monomial (zoz;)?,
then condition (7¢) is met. Then, both conditions (i) and (i7) are met.

Case 3: Assume zp9. With the chain rule and substitution, we have

n
20,0 = 2T0 - T( = 22 - Z(IOIiQi —zoF)
im1

Distributing and grouping terms by their sign yields,

Since 2 can be factored from every negative term, condition (i) is satisfied. Since i =1,...,n,
it follows that x; # x¢. Thus, condition (i) is satisfied.

In summary, we have defined the states z, marked states M, initial configuration z(()),
and differential system z’. Furthermore, for each z| ; € z' we have established: each z] i s
a quadratic form, z; ; can be written to avoid a p0s1t1ve 22 ; in 2] ;, and the existence of
2;,; in every negative term of zi’ ;- Hence, a TPP-implementable cubic form system can be

transformed into a PP-implementable system that computes «. |

Proof of Theorem 16. The “only if” part is clear. Therefore, it suffices to show the “if”
direction. We adopt the same symbols and notations as in Construction 1. Recall that we
denote fi(x) = e(pi — gizi) + 22; ) ;_, ;. Consider an arbitrary ordered pair (z;,z). We
need to show that in the construction:
1. The selection of ¢ satisfying the two conditions is always possible.
2. The rule set generated by the construction forms an PLPP. Specifically, for the ordered
pair (z;, ), we must show that > | «; jx =1 and «;; > 0 for all . That is, the
o ;1's form a discrete probability measure with j, k fixed.
We break the proof into two cases:
Case j # k: The term z,xy, occurs in f;(x) from two sources.
Case 1: xjz), € e(p; — ¢;x;). The coefficients of such terms for all ¢ must sum to zero,
since the system is assumed to be PP-implemetable.
Case 2: zjzy € 2z;(x1+- - - +x,). We have two sources: z;x occurs in f;(x) as a term

in2z;(z1+- - xx+- - +x,) and similarly in f(x) as a term in 2z (214 - x4+ - +Ty).

The sum of these coefficients is 4. Note that the coefficients are divided by 4 in the
construction, which ensures the resulting sum of o ;  is one. One can verify that the
selection of € is always possible under this case.

Case j = k: For term 7, which occurs in f;(x), there are two subcases:

7:21

DNA 28



7:22

Computing Real Numbers with LPPs Having a Continuum of Equilibria

i # j: Then acf € ep; and the coefficient must be positive.

1 = j: Then a:? =a? € —eq+ 2x; Y ,_, =k and coefficient is less than 2. (m? = z? can

not occur in ep since the system is PP-implementable.)

Recall that when constructing the rule set, the coefficients are divided by 2. As a result,
generated oy ;'s are positive and less than 1. Due to the system’s conservative nature, the
coefficients #7 in e(p; — giw;) for i’s in {1,--- ,n} will sum to zero. Since the 2z; ;'
term introduces a 21‘? term, the resulting coefficient sum for xf is 2. In the construction,
these coefficients are always divided by 2 to generate o ; in f;(x). Thus, the Y | a;; = 1.
One can then verify that the selection of ¢ is feasible.

In contrast, assume the system is not PP-implementable. Then there is an 22 € ep;
with a positive coefficient. Once combined with the term 2z? € 2z; ZZ:I T), the sum of
coefficients will be greater than two. Then dividing by 2 will generate an o;; > 1, which is
not permitted by PLPPs. Hence, the selection of ¢ is not feasible in this case. <

Proof of Corollary 19. The first four numbers are GPAC/CRN computable (see [22]). Note
that all real-time computable numbers by CRNs in [23] are computable in this paper. One
just need to disregard the real-time constraint. Then by our main theorem, they are also
LPP computable. It suffices to show that Catalan’s constant is GPAC computable. We use
the formula G = § [~ —t—dt. We have

cosht

(e e] t t —t

G= / ————dt, since cosh(t) = etre
o e +et 2
e 1
= tee ) ————dt.
L et e
We let
. , o2t

R=t-e7", E=e" V=

€ ) € ) 1 + 672t,

and

G(t)z/o (te_t)~ﬁdt:/o R-(1-V)dt.

Taking derivatives against t, we get

G'=R(1-V) G(0) =0
R'=E—-R R(0)=0
E'=-E E(0)=1
V= (1-V)? (-2E?), V(0) =3

Therefore Catalan’s constant can be computed by the above PIVP. Note that the system’s
non-zero initial values can be transformed into a system with zeroed initial values ([23],
Theorem 3). Hence by our Main Theorem, Catalan’s constant is LPP computable. |
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—— Abstract

The amoebot model [Derakhshandeh et al., SPAA 2014] has been proposed as a model for program-
mable matter consisting of tiny, robotic elements called amoebots. We consider the reconfigurable
circuit extension [Feldmann et al., JCB 2022] of the geometric (variant of the) amoebot model that
allows the amoebot structure to interconnect amoebots by so-called circuits. A circuit permits the
instantaneous transmission of signals between the connected amoebots. In this paper, we examine
the structural power of the reconfigurable circuits.

We start with some fundamental problems like the stripe computation problem where, given any
connected amoebot structure S, an amoebot u in S, and some axis X, all amoebots belonging to axis
X through u have to be identified. Second, we consider the global mazximum problem, which identifies
an amoebot at the highest possible position with respect to some direction in some given amoebot
(sub)structure. A solution to this problem can then be used to solve the skeleton problem, where a
(not necessarily simple) cycle of amoebots has to be found in the given amoebot structure which
contains all boundary amoebots. A canonical solution to that problem can then be used to come up
with a canonical path, which provides a unique characterization of the shape of the given amoebot
structure. Constructing canonical paths for different directions will then allow the amoebots to set
up a spanning tree and to check symmetry properties of the given amoebot structure.

The problems are important for a number of applications like rapid shape transformation, energy
dissemination, and structural monitoring. Interestingly, the reconfigurable circuit extension allows
polylogarithmic-time solutions to all of these problems.
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1 Introduction

The amoebot model [6, 4] is a well-studied model for programmable matter [15] — a substance
that can be programmed to change its physical properties, like its shape and density. In
the geometric variant of this model, the substance (called the amoebot structure) consists of
simple particles (called amoebots) that are placed on the infinite triangular grid graph and
are capable of local movements through ezxpansions and contractions.

Inspired by the nervous and muscular system, Feldmann et al. [8] introduced a recon-
figurable circuit extension to the amoebot model with the goal of significantly accelerating
fundamental problems like leader election and shape transformation. As a first step, they

© Andreas Padalkin, Christian Scheideler, and Daniel Warner;

37 licensed under Creative Commons License CC-BY 4.0
28th International Conference on DNA Computing and Molecular Programming (DNA 28).
Editors: Thomas E. Ouldridge and Shelley F. J. Wickham; Article No. 8; pp. 8:1-8:22

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:andreas.padalkin@upb.de
https://orcid.org/0000-0002-4601-9597
mailto:scheideler@upb.de
https://orcid.org/0000-0002-5278-528X
mailto:dwarner@upb.de
https://orcid.org/0000-0002-9423-6094
https://doi.org/10.4230/LIPIcs.DNA.2022.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2

The Structural Power of Reconfigurable Circuits in the Amoebot Model

(a) (b) (c) (d)

Figure 1 Feldmann et al. [8] have proposed joint movements to the amoebot model where an
expanding amoebot is capable of pushing other amoebots away from it, and a contracting amoebot is
capable of pulling other amoebots towards it. (a) and (b) show a joint expansion (from left to right)
resp. a joint contraction (from right to left) of the yellow amoebots. The left side of (b) shows stripe
A(S,u, N) (see Section 1.3). The stripe can expand without causing any conflicts. (c) and (d) show
exemplary conflicts. (c) If the yellow amoebots contract, the red amoebots will collide. In order to
avoid the collision, the red amoebots have to contract as well. (d) If the yellow amoebots expand,
the amoebot structure will tear apart. In order to maintain all connections, the red amoebots have
to expand as well.

showed that leader election, consensus, compass alignment, chirality agreement, and various
shape recognition problems can be solved in at most O(logn) time. This paper continues
this line of work by considering a number of additional problems:

First, we consider the stripe computation problem where, given any connected amoebot
structure .S, an amoebot v in S, and some axis X, all amoebots belonging to axis X through
u have to be identified. Second, we consider the global maximum problem, which identifies
an amoebot at the highest possible position with respect to some direction in some given
amoebot (sub)structure. A solution to this problem can then be used to solve the skeleton
problem, where a (not necessarily simple) cycle of amoebots has to be found in the given
amoebot structure which contains all boundary amoebots. A canonical solution to that
problem can then be used to come up with a canonical path, which provides a unique
characterization of the shape of the given amoebot structure. Constructing canonical paths
for different directions will then allow the amoebots to set up a spanning tree and to check
symmetry properties of the given amoebot structure.

The problems have a number of important applications. The stripe computation problem
is important to avoid conflicts in joint amoebot contractions and expansions (see Figure 1),
which is critical for rapid shape transformation. A spanning tree is an important step
towards energy distribution from amoebots with access to energy to amoebots without
such access [5], and canonical skeleton paths as well as symmetry checks are important for
structural monitoring and repair.

1.1 Geometric Amoebot Model

In the geometric amoebot model [4], a set of n amoebots is placed on the infinite regular
triangular grid graph Ga = (V, E) (see Figure 2a). An amoebot is an anonymous, randomized
finite state machine that either occupies one or two adjacent nodes of Ga, and every node of
G is occupied by at most one amoebot. If an amoebot occupies just one node, it is called
contracted and otherwise expanded. Two amoebots that occupy adjacent nodes in G are
called neighbors. Amoebots are able to move through contractions and ezpansions. However,
since our algorithms do not make use of movements, we omit further details and refer to [4]
for more information.
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Figure 2 (a) shows an amoebot structure S. The dotted lines indicate the triangular grid Ga.

The nodes indicate the amoebots. The arrows show their chirality and compass orientation. The
red edges indicate the graph Gs. (b) and (c) show an amoebot structure with k = 2 external links
between neighboring amoebots. The amoebots are shown in gray. The nodes on the boundary are
the pins, and the ones within the amoebots the partition sets. An edge between a partition set @
and a pin p implies p € Q. Each color indicates another circuit. (a) and (b) are taken from [8]. (d)
shows the cardinal directions. The thick arrows indicate the cardinal directions along the main axes,
and the thin ones the cardinal directions perpendicular to the main axes.

Each amoebot has a compass orientation (it defines one of its incident edges as the
northern direction) and a chirality (a sense of clockwise or counterclockwise rotation) that
it can maintain as it moves, but initially the amoebots might not agree on their compass
orientation and chirality. In this paper, we assume that all amoebots share a common
compass orientation and chirality. This is reasonable since Feldmann et al. [8] showed that all

amoebots are able to come to an agreement within the considered extension (see Section 1.4).

Let the amoebot structure S C V be the set of nodes occupied by the amoebots. By
abuse of notation, we identify amoebots with their nodes. We say that S is connected iff
Gy is connected, where Gg = Ga|s is the graph induced by S. In this paper, we assume
that initially, S is connected and all amoebots are contracted. Also, we assume the fully
synchronous activation model, i.e., the time is divided into synchronous rounds, and every
amoebot is active in each round. On activation, each amoebot may perform a movement
and update its state as a function of its previous state. However, if an amoebot fails to
perform its movement, it remains in its previous state. The time complexity of an algorithm
is measured by the number of synchronized rounds required by it.

1.2 Reconfigurable Circuit Extension

In the reconfigurable circuit extension [8], each edge between two neighboring amoebots
u and v is replaced by k edges called external links with endpoints called pins, for some
constant k > 1 that is the same for all amoebots. For each of these links, one pin is owned
by w while the other pin is owned by v. In this paper, we assume that neighboring amoebots
have a common labeling of their incident external links.

Each amoebot u partitions its pin set P(u) into a collection Q(u) of pairwise disjoint
subsets such that the union equals the pin set, i.e., P(u) = UQEQ(M) Q. We call Q(u) the pin
configuration of u and @ € Q(u) a partition set of u. Let Q = J, g Q(u) be the collection
of all partition sets in the system. Two partition sets are connected iff there is at least one
external link between those sets. Let L be the set of all connections between the partition
sets in the system. Then, we call H = (Q, L) the pin configuration of the system and any
connected component C' of H a circuit (see Figure 2b). Note that if each partition set of Q
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is a singleton, i.e., a set with exactly one element, then every circuit of H just connects two
neighboring amoebots. However, an external link between the neighboring amoebots » and
v can only be maintained as long as both v and v occupy the incident nodes. Whenever two
amoebots disconnect, the corresponding external links and their pins are removed from the
system. An amoebot is part of a circuit iff the circuit contains at least one of its partition
sets. A priori, an amoebot u may not know whether two of its partition sets belong to the
same circuit or not since initially it only knows Q(u).

Each amoebot u can send a primitive signal (a beep) via any of its partition sets @ € Q(u)
that is received by all partition sets of the circuit containing @) at the beginning of the next
round. The amoebots are able to distinguish between beeps arriving at different partition
sets. More specifically, an amoebot receives a beep at partition set @) if at least one amoebot
sends a beep on the circuit belonging to @, but the amoebots neither know the origin of
the signal nor the number of origins. Note that beeps are enough to send whole messages
over time, especially between adjacent amoebots. We modify an activation of an amoebot as
follows. As a function of its previous state and the beeps received in the previous round,
each amoebot may perform a movement, update its state, reconfigure its pin configuration,
and activate an arbitrary number of its partition sets. The beeps are propagated on the
updated pin configurations. If an amoebot fails to perform its movement, it remains in its
previous state and pin configuration, and does not beep on any of its partition sets.

In this paper, we will utilize the dual graph of the triangular grid graph, i.e., a hexagonal
tesselation, to visualize amoebot structures (see Figure 2c). Thereby, we reduce each
external link to a single pin. Furthermore, in order to improve the comparability of circuit
configurations, we add pins to each side of the hexagon.

1.3 Problem Statement and Our Contribution

Let D,, = {N,ENE,ESE,S,WSW,WNW} be the set of all cardinal directions along the
axes of Ga, and D, = {E,SSE,SSW,W, NNW, NNE} the set of all cardinal directions
perpendicular to the axes of Ga (see Figure 2d). In the following, we state the considered
problems.

First, we consider the stripe computation problem. Let X(v,d) C V denote the nodes of
G that lie on the axis through the node v € V into the cardinal direction d € D,, U D,.
For R C V, we call the set A(R,v,d) = RN X(v,d) a stripe of R (see Figure 1b). Note
that a stripe is not necessarily connected. Let an amoebot v € S and a cardinal direction
d € D, U D, be given, i.e., each amoebot v € S knows the cardinal direction d and whether
v = u. The goal of each amoebot v € S is to determine whether v € A(S,u,d). Our stripe
algorithm solves the stripe computation problem after O(logn) rounds.

Second, we consider the global mazima problem. Let a cardinal direction d € D,,, UD,, and
a non-empty set R C S be given, i.e., each amoebot v € S knows the direction d and whether
v € R. The goal of each amoebot v € S is to determine whether v € argmin, ¢ fq(R, w)
where f4(R,w) denotes the number of amoebots in R that lie in direction d from amoebot
w. We call argmin,, . f4(R, w) the set of global maxima of R with respect to d. Our global
mazxima algorithm solves the global maxima problem after O(log2 n) rounds w.h.p.}

Third, we consider the (canonical) skeleton problem. An amoebot u is a boundary amoebot
iff it is adjacent to an unoccupied node in V' \ S. Otherwise, we call u an inner amoebot. A
(potentially non-simple) cycle of amoebots is a skeleton iff the cycle contains all boundary

L An event holds with high probability (w.h.p.) if it holds with probability at least 1 — 1/n° where the
constant ¢ can be made arbitrarily large.
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amoebots in S. Note that the skeleton may contain inner amoebots. An amoebot structure
computes a skeleton C' iff each amoebot knows its predecessor and successor for each of its
occurrences in C. The goal of the skeleton problem is to compute an arbitrary skeleton.

Since skeletons are not unique, we define a canonical skeleton with respect to a cardinal
direction d € D,,, UD, and a sign s € {4+, —} (abbreviated as (d, s)-skeleton). We defer the
definition to Section 4.1. Let a cardinal direction d € D,, U D,, and a sign s be given, i.e.,
each amoebot v € S knows the cardinal direction d and the sign s. The goal of the canonical
skeleton problem is to compute the canonical skeleton. Our canonical skeleton algorithm
solves the (canonical) skeleton problem after O(log®n) rounds w.h.p.

Our algorithms for the remaining problems are based on skeletons. However, they split
the skeletons into paths that we call skeleton paths. For the canonical skeletons, we define
a canonical skeleton path by specifying a splitting point. Our canonical skeleton algorithm
determines this point in parallel to the computation of the canonical skeleton.

Fourth, we consider the spanning tree problem. A tree is a cycle-free and connected graph.
A spanning tree of an amoebot structure S is a tree T' = (S, Ep) with Ep C E. An amoebot
structure computes a spanning tree T if each amoebot u € S knows whether {u,v} € Er for
each neighbor v € N(u). The goal of the spanning tree problem is to compute an arbitrary
spanning tree. Our spanning tree algorithm solves the spanning tree problem after O(log2 n)
rounds w.h.p.

Finally, we consider the symmetry detection problem. The goal of that problem is to
determine whether the amoebot structure features rotational or reflection symmetries. Our
symmetry detection algorithm solves the the problem after O(log5 n) rounds w.h.p.

1.4 Related Work

The reconfigurable circuit extension was introduced by Feldmann et al. [8]. Note that the
amoebot model [1] and its circuit extension [11, 12, 13, 14] can in principle be realized.

Feldmann et al. [8] have proposed solutions for leader election (see Section 2), consensus,
compass alignment, chirality agreement, and various shape recognition problems. Both, the
alignment of the compasses and the agreement on a chirality requires O(logn) w.h.p. This
makes our assumption of a common compass orientation and chirality reasonable.

To our knowledge the stripe computation, global maxima, (canonical) skeleton, and
symmetry detection problem have not been considered within the standard amoebot model.
However, regarding the global maxima problem, Daymude et al. [2] have considered the
related problem of determining the dimensions of an object (a finite, connected, static set of
nodes) in order to solve various convex hull problems. Their approach can be easily adjusted
to compute the global maxima of the amoebot structure. However, it requires O(n) rounds.

The spanning tree problem is widely studied in the distributed algorithms community,
e.g., [10] (also see the cited papers within the reference). The spanning tree primitive is one
of the most used techniques to move amoebots, e.g., [3, 2, 7, 9]. Beyond that, spanning trees
were applied to distribute energy [5]. However, the construction requires (D) rounds where
D is the diameter of the amoebot structure (e.g., see [3]). Since D = Q(y/n), our solution is
a significant improvement.

2 Preliminaries

In this section, we enumerate important primitives given in previous papers.
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Global Circuit. If each amoebot partitions its pins into one partition set, we obtain a single
circuit that interconnects all amoebots. We call this circuit the global circuit [8].

Leader Election. We make use of a generalized version of the leader election algorithm
proposed by Feldmann et al. [8]:

» Theorem 1. Let C1,...,Cy, be sets of candidates. For eachi € {1,...,m}, let C; be the
circuit that connects all candidates of set C;. Let C; N C; = 0 hold for all i # j. An amoebot
structure elects a leader from each set of candidates after ©(logn) rounds w.h.p.

In the classical leader election problem, the amoebot structure S has to elect a leader
only from the set C; = S.

Chains. We call an ordered sequence C' = (ug, ..., um—1) of m amoebots a chain iff (i) all
subsequent amoebots wu;, u;+1 are neighbors, (ii) each amoebot in C' except ug knows its
predecessor, and (iii) each amoebot in C except u,,—1 knows its successor.

Boundary Sets. We adopt the definition for the boundary sets from [7]: Consider Gy g =
Galv\s- The connected components of Gy g are called empty regions. The number of empty
regions is finite since S is finite. Let Ry, ..., R, denote the empty regions. For i € {1,...,m},
the boundary set B; is the neighborhood of R; in S, i.e., B;={u € S|3v € R; : {u,v} € E}.
There is exactly one infinite empty region since S is finite. We call the corresponding
boundary set the outer boundary set, and the others inner boundary sets. Naturally, each
boundary set can be represented as a (potentially non-simple) cycle.

In order to distinguish inner and outer boundaries, we apply the inner outer boundary
test by Derakhshandeh et al. [7]. They accumulate the angles of the turns while traversing
the cycle of the boundary set once. An outer boundary set results in a sum of 360°, and an
inner boundary set results in a value of —360°. Note that it is sufficient to count the turns
by 60° modulo 5. This allows us to accumulate the sum with constant memory. However,
the traversing requires O(n) rounds. We accelerate the accumulation by the following result
by Feldmann et al. [8]:

» Theorem 2. Let C' = (vg,...,Vm—1) be a chain within the amoebot structure where m € N
denotes the length of the chain. Let k € N be constant. Let x; € {0,...,k — 1} for all
i€{0,...,m —1}. Suppose that for each i € {0,...,m — 1}, amoebot v; knows the value x;.
Then, the chain computes v =3 ;o yzi mod k after O(logm) rounds.

om—1

» Corollary 3. A boundary set can determine whether it is an inner boundary set or the
outer boundary set within O(logn) rounds w.h.p.

Synchronization of Procedures. Sometimes, we want to execute a procedure on different
subsets in parallel, e.g., we apply the inner outer boundary test on all boundary sets at
once. The execution of the the same procedure may take different amounts of rounds for
each subset. The amoebots of a single subset are not able to decide when all subsets have
terminated. In order to synchronize the amoebot structure with respect to the procedures,
the amoebots periodically establish the global circuit. The amoebots of each subset that has
not yet terminated beep on that circuit. The amoebot structure may proceed to the next
procedure once the global circuit was not activated.
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Figure 3 PASC algorithm. Each figure shows the chain at the beginning of the i-th iteration.

The circles indicate the primary (P) and secondary (S) partition sets. The blue bordered amoebot
denotes the reference amoebot u,. Yellow amoebots are active, and gray amoebots are passive. All
primary and secondary partition sets that are part of the primary resp. secondary circuit of u, are
depicted in red resp. cyan.

3 Computing ldentifiers

In this section, we assign identifiers in Z to the amoebots. Let (xg_1,...,20) denote the
two’s complement representation of —xj_q - 2871 + Zi:g x; - 2°. By abuse of notation, we
identify the identifiers with their two’s complement representation. Each amoebot computes
a two’s complement representation of its identifier. In the first subsection, we compute
successive identifiers along chains. In the second subsection, we compute spatial identifiers
with respect to a cardinal direction. In the third subsection, we show two applications for

the identifiers.

3.1 Successive ldentifiers along the Chain

In this section, we compute successive identifiers along a chain with respect to an amoebot
that we call the reference amoebot. Let C' = (uq, ..., um—1) be a chain of amoebots. Let w,
be an arbitrary reference amoebot within the chain, e.g., chosen by position (for example
r =0), or by a leader election. We assign identifiers id¢ ,,. according to the following rules:

idey, (ur) =0 (1)
ide oy, (wit1) =idow, (u;) + 1 for 1 <i<m (2)

Note that id¢ . (u;) =7 —r.

In order to compute the identifiers, we utilize a procedure on the chain of amoebots
proposed by Feldmann et al. [8] that we henceforth refer to as the primary and secondary
circuit algorithm (PASC algorithm). Originally, the algorithm has been used as a subroutine
for Theorem 2.

In the following, we explain how the PASC algorithm works (see Figure 3). So, let
C = (ug,- - ., Um—1) be a chain of m amoebots. If an amoebot occurs multiple (but constantly
many) times, it operates each position independently of each other which is possible by using
sufficiently many pins. Each amoebot is either active or passive. Initially, each amoebot is
active. The algorithm iteratively transforms active amoebots into passive amoebots while
keeping amoebot u, active.

8:7
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At the beginning of an iteration, the amoebots establish two circuits as follows. Each
amoebot has two partition sets that we call the primary and secondary partition set. We
connect the primary and secondary partition sets by the following two rules? (see Figure 3):
(i) If an amoebot is active, we connect its primary partition set to the secondary partition
set of its predecessor, and its secondary partition set to the primary partition set of its
predecessor. (ii) If an amoebot is passive, we connect its primary partition set to the primary
partition set of its predecessor, and its secondary partition set to the secondary partition set
of its predecessor.

We obtain two circuits through all amoebots (see Figure 3). Each amoebot defines the
circuit containing its primary partition set as its primary circuit, and the circuit containing
its secondary partition set as its secondary circuit. Clearly, we obtain two disjoint circuits
along the chain. We refer to [8] for a detailed construction.

After establishing these circuits, the iteration utilizes two rounds. In the first round,
amoebot u, activates its primary circuit. Each active amoebot that has received the beep on
its secondary circuit beeps in the second round on its secondary circuit. These amoebots
become passive amoebots in the next iteration. The algorithm terminates when the second
round is silent. At this point, amoebot u, is the remaining active amoebot. Feldmann et
al. [8] have proven the following lemma:

» Lemma 4. The PASC algorithm terminates in [logm] iterations, resp. O(logm) rounds.

We obtain the identifiers from the PASC algorithm as follows. Let k = [logm] be the
number of iterations. For 0 < i < k, let r; be the first round of the (i + 1)-st iteration. Note
that in each of these rounds, each amoebot of the chain receives a beep either on its primary
circuit or its secondary circuit. Hence, in round r;, amoebot z interprets a beep on the
primary circuit as z; = 0 and a beep on the secondary circuit as z; = 1.

» Lemma 5. The PASC algorithm computes idc .,

3.2 Spatial Identifiers

In this section, we compute identifiers relative to the spatial positions of the amoebots with
respect to a cardinal direction d € D,,, U D,, and a reference amoebot u, € S. Let d’ denote
the direction obtained if we rotate d by 90° counterclockwise, e.g., d = N for d = E. First,
consider d € D,, (see Figure 4a). Let A; = {A(S,v,d") | v € S} denote a set of stripes. We
first assign identifiers to A,. Afterwards, we extend these identifiers to the nodes in S.

Observe that Ay partitions S into disjoint stripes. These stripes form a chain Cy if we
think of the stripes as nodes such that two nodes are adjacent if the corresponding stripes
are neighbors (see Figure 4a). The order of the chain is given by the cardinal direction d:
The successor of a stripe is the neighboring stripe in direction d. Let succ(A) denote the
succeeding stripe of stripe A. Let A, = A(S,u,,d"). We assign identifiers id¢, 4, according
to the following two rules:

ide, 4. (A7) =0
ide, 4, (succ(A)) =ide, 4, (A) + 1 for all A € Ay

Finally, we define idg ., (v) = id¢, 4, (A(S,v,d’)) for all nodes v € S.

2 In comparison to [8], we have adjusted the rules by mirroring the connections.
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(a (b) (c)

Figure 4 Spatial identifiers. (a) show the spatial identifiers with respect to d = E, and (b)
with respect to d = N. Each color indicates a stripe (in S). The white hexagons indicate the
neighborhood of S. The thick boundary indicates the reference amoebot w.. (¢) If we do not include
the neighborhood of S, then amoebot u is unable to determine whether amoebot v belongs to the
preceding stripe (orange) or the stripe preceding its preceding stripe (yellow).

In order to compute the identifiers, we transfer the concept of primary and secondary
circuits from a chain of amoebots to a chain of stripes (compare with Section 3.1): From
a global perspective, each stripe knows its predecessor and its successor, is either active
or passive, and has a primary and secondary partition set. The primary and secondary
partition sets are connected by the following rules: If a stripe is active, its primary partition
set is connected to the secondary partition set of its predecessor, and its secondary partition
set is connected to the primary partition set of its predecessor. If a stripe is passive, its
primary partition set is connected to the primary partition set of its predecessor, and its
secondary partition set is connected to the secondary partition set of its predecessor. There
are no further connections. In order to keep the amoebots within a stripe synchronized, we
additionally require that each amoebot has access to the primary and secondary partition
set of its stripe. In the following, we explain how to construct the circuits that satisfy the
aforementioned properties.

Note that the neighborhood of each amoebot only contains amoebots of the same
stripe, the preceding stripe, and the succeeding stripe. Since we assume common compass
orientation and chirality, each amoebot is able to determine to which stripe each neighbor
belongs. We now define pin configurations that satisfy the aforementioned properties. Each
pin configuration has two partition sets that we call the primary and secondary partition
set. We connect the primary and secondary partition sets of an amoebot to the primary and
secondary partition sets of adjacent amoebots such that the aforementioned properties are
reflected locally. For example, consider two adjacent amoebots u and v such that u belongs
to an active stripe and v belongs to u’s preceding stripe. We connect u’s primary partition
set to v’s secondary partition set, and u’s secondary partition set to v’s primary partition
set. Since we assign the same identifiers to amoebots of the same stripe, we connect their
primary and secondary partition sets, respectively. We obtain two pin configurations: one
for amoebots of active stripes and one for amoebots of passive stripes (see Figure 5).

» Lemma 6. The construction satisfies the aforementioned properties.

Now, we simply apply the PASC algorithm on the chain of stripes to compute id¢, 4.,
i.e., each amoebot v € S computes ide, 4, (A(S,v,d")) that equals idg,,. (v) by definition.

» Lemma 7. The PASC algorithm computes idq.,, for d € D,.
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12 12

ACTIVE PASSIVE (ACT, ACT) (ACT, PAS) (PAS,ACT) (PAS, PAS)

Figure 5 Utilized pin configurations. We utilize the former two pin configurations for d = E.
We utilize the latter four pin configurations for d = N. The first argument denotes the state of the
amoebot’s stripe and the second argument denotes the state of the preceding stripe, respectively.

Next, consider d € D,,. We discuss the necessary modifications in comparison to d € D,,.
Note that an amoebot is unable to locally determine to which stripe its neighbors belong (see
Figure 4c). We therefore perform the PASC algorithm on the union of the amoebot structure
and its neighborhood (see Figure 4b). Note that each neighbor of an amoebot v € S belongs
either to one of the two preceding stripes or to one of the two succeeding stripe.

Each amoebot tracks when the stripes of its neighbors become passive as follows. Recall
that all stripes are initially active. Suppose that each amoebot v € S knows whether (its
stripe and) the stripes of its neighbors are active or passive at the beginning of an iteration
of the PASC algorithm. Hence, v also knows how these stripes are interconnected. Thus, v
can conclude from the signal it receives on the signals received by the stripes of its neighbors
and with that whether these become passive.

There are two reasons for the tracking. First, some of the stripes are not occupied by any
amoebots. The tracking allows each amoebot v € S to activate the correct circuits for each
of its neighbors. Second, the connections between an amoebot and its neighbor of the stripe
preceding its preceding stripe depends on the states of its stripe and its preceding stripe. We
obtain four pin configurations (see Figure 5).

» Lemma 8. The PASC algorithm computes idq,,, for d € D,,.

Note that we can generalize this technique to arbitrary directions as long as the identifiers
within a neighborhood only differ by some constant.

3.3 Applications

We now consider two applications for the identifiers, namely the stripe problem and the
global maxima problem.

First, consider the stripe problem. Our stripe algorithm simply executes the PASC
algorithm with u as the reference amoebot, i.e., u,, = u. Note that this sets the identifier of
u to 0, i.e., idg(u) = 0. By construction, idg,(v) = idg.(v) = 0 holds for all v € A(S, u,d).
We obtain the following theorem.

» Theorem 9. The stripe algorithm solves the stripe computation problem in O(logn) rounds.

Next, consider the global maxima problem. Recall that we compute the global maxima of
a set R C S (see Section 1.3). By construction, argmin ¢ f4(R, w) = argmax ¢ g idq, v, (w)
holds for any reference amoebot w,.. The idea of our global maxima algorithm is therefore to
execute the PASC algorithm and to determine the highest identifier. By choosing an v € R as
the reference amoebot, i.e., u,, = u, we ensure that the maximal identifier is non-negative. In
order to determine the maximum of non-negative numbers, we apply the consensus algorithm
by Feldmann et al. [8] that agrees on the highest input value. First, the amoebot structure
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establishes the global circuit (see Section 2). Each amoebot v € R with id(v) > 0 transmits
its identifier starting from the most significant bit. If a transmitting amoebot observes a
beep in a round it does not beep, it stops its transmission. Only an amoebot with the highest
identifier is able to transmit its identifier until the end.

However, since each amoebot can only store a constant section of its identifier, and
since the PASC algorithm provides the identifiers from the least significant bit to the most
significant bit, we have to partially recompute the identifiers after each bit. In order to
identify the correct bit, we simply use two binary counters where the first counter indicates
the current bit, and the second counter the current iteration of the PASC algorithm. These
can be realized along a chain such that with the help of circuits, the incrementation, the
decrementation, and the comparison only require O(1) rounds. Using a chain along the outer
boundary set ensures a sufficient length of the counters. We obtain the following theorem.

» Theorem 10. The global maxima algorithm computes the global maxima in O(log2 n)
rounds w.h.p.

4  Skeletons

This section deals with (canonical) skeletons. In the first subsection, we canonicalize and
construct the skeletons. In the second and third subsection, we show two applications for
skeletons by showing how to construct spanning trees and how to detect symmetries.

4.1 Canonicalized Construction

The general idea to construct a skeleton is to start with the cycles given by the boundary
sets and to fuse these into a single cycle, i.e., a skeleton (see Figures 6 and 14). In order to
fuse two boundary cycles, we have to determine a path between them. The boundary cycles
are split at the respective endpoints of the path and connected along the path. Note that the
fused cycle uses the path twice. The difficulty lies in finding paths between the boundary
cycles and in avoiding the creation of new cycles. The construction is correct, i.e., we obtain
a single cycle, iff the boundary sets and paths form a tree with the boundary sets as the
nodes and the paths as the edges. In order to obtain a skeleton path, the skeleton is split at
an arbitrary point, e.g., chosen by a leader election.

We now canonicalize the construction of a skeleton and a skeleton path. Recall that we
define the canonical skeleton (path) with respect to a cardinal direction d € D,, U D, and a
sign s € {+, —}. For the canonical skeleton, we have to define how the paths are constructed,
and how the boundary cycles and paths are exactly connected. For the canonical skeleton
path, we have to define the point to split the canonical skeleton. Afterwards, we show how
the amoebot structure computes the canonical skeleton in a distributed fashion.

We start with the construction of the canonical skeleton. Let ps(d, z) denote the direction
obtained if we rotate direction d by x degrees counterclockwise if the sign s is positive, and
clockwise if the sign s is negative. Let d, = d if d € D,, and d, = ps(d, 30) if d € D,. For
each inner boundary set B, we construct a path as follows. First, we compute the global
maxima of B with respect to direction d. Let By denote these global maxima. Then, we
compute the global maximum of By with respect to direction ps(d,90). Let up denote the
global maximum.

» Lemma 11. Amoebot up is adjacent to exactly one node in R, namely the one in direction
ps(dp,180). Further, no amoebot in direction d, of up is adjacent to a node in R.
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Figure 6 (a) shows the initial situation. The red lines indicate the boundary cycles. (b) shows
the (NN, +)-skeleton. The yellow and orange amoebots indicate the global maxima of the boundary
sets. The orange amoebots indicate the starting points of the paths. The blue lines indicate the
paths between the boundary cycles. The node indicates the location where the cycle is split. (c)
shows the spanning tree obtained from the (NN, +)-skeleton. The node indicates the root.

The path starts at up and goes straight in direction d, until it reaches an amoebot vp of
another boundary set. The existence of vp is guaranteed by the outer boundary set. Clearly,
all nodes of the path are occupied by amoebots. Note that the path may be trivial, i.e.,
up = vp. There is only a single case where vpg is part of two boundary sets unequal to B.
In this case, we take the boundary of vp in direction ps(d,,60).

» Lemma 12. The boundary sets and paths form a tree.

It remains to define how the cycles and paths are exactly connected. We define that the
cycle runs along the tree without crossing itself.

Next, consider the construction of the canonical skeleton path. We determine the splitting
point up, by applying the same procedure as for the starting points of the paths on the
outer boundary set Bp. That is, we first compute the global maxima of By with respect to
direction d, and then compute the global maximum of these global maxima with respect to
direction ps(d, 90). If the canonical skeleton visits up, multiple times, we pick a predefined
position with respect to d,, (see Figure 11).

» Lemma 13. The canonical skeleton (path) visits each bond at most twice. Thus, the
canonical skeleton has linear complexity.

In the following, we present our canonical skeleton algorithm that computes the canonical
skeleton and the splitting point for the canonical skeleton path in parallel. Some instructions
are performed on different subsets in parallel. In order to keep the amoebot structure
synchronized, we apply the synchronization primitive (see Section 2). In a preprocessing step,
each boundary set determines whether it is an inner or outer boundary set (see Corollary 3).

The canonical skeleton algorithm follows our construction of the canonical skeleton. In the
first step, we compute the starting points of the paths and the splitting point by performing
the global maxima algorithm on each boundary set B with respect to direction d, and on
each resulting set B, with respect to direction ps(d, 90). However, the computation of the
boundary sets may interfere with each other since the boundary sets may intersect. In order
to circumvent that problem, we add two additional external links and let each boundary set
use the two external links closer to the corresponding empty region (see Figures 7a to 7c).
Note that an amoebot is not able to determine whether two adjacent nodes belong to the
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Figure 7 Computation of the global maxima of each boundary set with respect to d = N. (a)
and (b) show the original construction for the outer and inner boundary set, respectively. The
gray amoebot does not participate in the computation for the inner boundary set. (c) shows the
construction for the computation in parallel. Amoebot w is unaware that two of its adjacent nodes
belong to the same empty region. (d) shows the circuit utilized to identify the paths. The yellow
amoebots are boundary amoebots. The gray amoebots are inner amoebots.

same empty region (see Figure 7c¢). Hence, it can only construct the primary and secondary
circuits along the cycle. Subsequently, it handles each of its occurrences within the cycle
separately. Nonetheless, the adjusted construction still satisfies the necessary properties
given in Section 3.2.

The second step is the computation of the paths from the starting points straight into
direction d,. The canonical skeleton algorithm proceeds as follows. Each inner amoebot
connects all pins of its neighbors in directions d, and ps(d,, 180), and each boundary amoebot

connects all pins to its neighbors in direction d, and ps(d,, 180), respectively (see Figure 7d).

Each starting point without a second boundary activates the circuit to its neighbor in
direction d,. Each amoebot that receives a beep is part of a path from the starting point
straight into direction d,. Finally, we obtain the following theorem:

» Theorem 14. The canonical skeleton algorithm computes a (canonical) skeleton (path) in
O(log® n) rounds w.h.p.

4.2 Spanning Tree

We now show how a skeleton can be utilized to construct a spanning tree. We assume that we
have already computed a (not necessarily canonical) skeleton (see Section 4.1). Our spanning
tree algorithm consists of two phases. We first outline the goal of each phase. In the first
phase, we construct a tree spanning all amoebots of the skeleton path. In the second phase,
we add the remaining amoebots to the tree. Now, consider the first phase. We make use of
the following lemma.

» Lemma 15. Let G = (V, E) be a connected graph. Let m = (v1,...,vy) be a path in G.
Let V' CV be the set of all amoebots on the path m. Let w(v) denote the first edge in w
incident to v. Then, T = (V', E') with E' =, ey (4,3 {7(v)} is a tree.

In order to determine the first occurrence of each amoebot, we apply the PASC algorithm
algorithm on the path with vy as the reference amoebot (see Section 3.1). Each amoebot is
able to determine its first occurrence by simply comparing the identifiers of all its occurrences.
Each amoebot notifies the predecessor of its first occurrence.
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Next, consider the second phase. For each amoebot v not included in the skeleton S\ V|
we add an edge from it to its northern neighbor w to the spanning tree. Note that v is an
inner amoebot such that w has to exist. Otherwise, v would be included in the skeleton.
Each amoebot v € S\ V' notifies its northern neighbor. We obtain the following theorem:

» Theorem 16. Given a skeleton, the spanning tree algorithm computes a spanning tree
after O(logn) rounds. Altogether, it requires O(log? n) rounds w.h.p.

4.3 Symmetry Detection

We now show how to detect rotational symmetries and reflection symmetries. Due to the
underlying infinite regular triangular grid graph Ga, there is only a limited number of
possible symmetries. More precisely, an amoebot structure can only be 2-fold, 3-fold or
6-fold rotationally symmetric, and reflection symmetric to axes in a direction of D,, U D,,.
Moreover, the problem is complicated by the facts that the symmetry point may be an
unoccupied node of Ga or not a node of Ga at all, and that the symmetry axis may not be
occupied by any amoebots.

Recall that we define a canonical skeleton by two parameters: the direction d and the
sign s. Note that rotating the direction results in a rotated construction, and inverting the
sign results in a reflected construction. Hence, a symmetric amoebot structure implies a
symmetric construction of canonical skeletons. The idea of our symmetry detection algorithm
is therefore to compare the canonical skeletons. We compare the skeletons according to the
following observations (compare Figure 8).

» Observation 17. An amoebot structure is 2-fold rotationally symmetric if the (N,+)-
skeleton and the (S, +)-skeleton are symmetric. An amoebot structure is 3-fold rotationally
symmetric if the (N, +)-skeleton and the (ESE,+)-skeleton are symmetric. An amoebot
structure is 6-fold rotationally symmetric if it is 2-fold and 3-fold rotationally symmetric.

Let d € D,, UD, and let d' denote the direction obtained if we rotate d by 90° coun-
terclockwise. An amoebot structure is reflection symmetric to an axis in direction d if the
(d',+)-skeleton and the (d',—)-skeleton are symmetric. Note that due to symmetry, it is
enough to only check half of Dy, U D,.

In order to compare two canonical skeletons, we map each canonical (d, s)-skeleton path
to a unique bit string by having each amoebot on the path store a partial bit string of
constant length encoding the direction of its successor relative to direction d and sign s.
Consequently, the comparison of two canonical skeletons is reduced to the comparison of
the corresponding bit strings of the two skeletons. In the following we show how such a
comparison of two bit strings is possible in polylogarithmic time.

To this end, we consider the string equality problem: Let A = (Ao,...,Am—_1) and
B = (By,...,Bm/—1) be two chains of amoebots with reference amoebots A and By, holding
bit strings a = (ag,...,am—1) and b = (bg, ..., bm—1). We show how a and b can be checked
for equality in time O(log5 m) w.h.p. using probabilistic polynomial identity testing.

We first give a high-level overview of our solution: Since we can compare the length of A
and B by comparing the identifiers ida 4,(Am—1) =m — 1 and idg B,(Bm/—1) = m' — 1 of
the last amoebots of the chains bit by bit with the PASC algorithm (see Section 3.1) in time
O(logm), we can assume m = m/' in the following. Let ¢ € N. Chain A generates a prime
p > 2m and repeats the following procedure: A samples r uniformly at random from [p] and
sends the pair (p,7) to chain B. Chain A computes f,(r) = Y7 " a;r* (mod p), and chain B
computes fy(r) = 75 bir’ (mod p) and sends the result to chain A which outputs “a # b”
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(d,s) = (N,—) (d,s) = (E,+) (d,s) = (E, —-)

Figure 8 Symmetries of an amoebot structure. The amoebot structure is 3-fold rotational
symmetric since the (NN, +)- and the (ESE,+)-skeleton are symmetric, but not 2-fold or 6-fold
rotational symmetric since the (NN, +)- and the (S, +)-skeleton are not symmetric. Further, the
amoebot structure is reflection symmetric to an axis into northern direction since the (N, +)- and
the (N, —)-skeleton are symmetric, but not reflection symmetric to an axis into eastern direction
since the (E,+)- and the (E, —)-skeleton are not symmetric.

if fo(r) # fp(r) and repeats the procedure otherwise. After c[logm] repetitions, A outputs
“a =1b". Note that a = b implies f,(r) = fy(r). From the Schwartz-Zippel lemma follows that

the one-sided error probability for a single repetition is Pr[f,(r) = fo(r) | a # b < m/p < 1/2.

It follows Pr[A outputs “a =b” | a # b] < 1/m°.

We now describe the algorithm in more detail: First, we describe a block primitive that
we use to divide the chain A into blocks of length k& = O(logm) where k = 219821\ = 2]
and [ = [logm] + 2. Note that & > \. We have k < m for m > 44 =: n. From here on we
assume m > 7 (in case m < 7, the chains A and B can simply compare their bit strings
deterministically). Since the PASC algorithm terminates after [logm| iterations, we can
easily determine amoebot Ay by using the PASC algorithm 2 times and forwarding a marker
after every iteration. Then we use the PASC algorithm again, with the following addition
(compare Figure 13): For an amoebot let @) be the partition set on which it received a beep
(either its primary or secondary partition set). An active amoebot (except Ag) splits @ into
singletons. We obtain a circuit between each pair of consecutive active amoebots. Then, Ag
beeps on Q. If Ay receives a beep, the procedure terminates, otherwise we continue with
the next iteration. After termination, exactly the amoebots A;; are active. Since we can
directly compare the bits a; of the amoebots between the last active amoebot and A,,_1
with the corresponding bits b; of chain B in time O(logm), we assume in the following
w.l.o.g. that k | m holds. This enables us to divide the amoebots of A into m/k chains
Ci = (A, ..., Ajiy1)k—1) of length &k with reference amoebot A;.

Now we describe how A generates a prime p > 2m. Chain A samples an [-bit integer
p = (po,-..,pi—2,1) uniformly at random such that A; stores p;. Note that the most
significant bit is fixed to 1 and therefore p € [2!=1,2![, in particular 2m < p < 4m. We check
deterministically whether p is a prime by checking in parallel for all 2 <t < m whether
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t|p (note that |/p| < m): First, p and t = ida 4,(Ai) = ik (using the PASC algorithm)
are stored in the first I amoebots of every chain C; in time O(logm). Then, all chains C;
repeat the following procedure in parallel for at most k times: If ¢ > 2, check whether ¢ | p in
time O(log? m) using binary long division with remainder. Abort the prime testing, if ¢ | p,
otherwise increment ¢.

We repeat the entire procedure at most 3cl? times or until we have successfully sampled a
prime p. The runtime for the prime generation is O(log” m). We now analyse the probability
for the event Ef,; that no prime is generated. Using non-asymptotic bounds on the prime-
counting function, one can show that the fraction of integers in [2/~1, 2! that are prime is at
least 1/(31). Tt follows: Pr[Egq] < (1 —1/(31))3 < 1/e < 1/me

We now address the probabilistic polynomial identity testing, focusing on the computation
of f,(r) for r € [p]. We use the previously determined division of the chain A into blocks
of length k = O(logm). Assume that p, r and e = id4 a,(Aix) = ik are stored in the first
I amoebots of every chain C;. All chains C; repeat the following procedure in parallel for
k times: Compute sV = a.r® (mod p) using modular exponentiation via the right-to-left
binary method. Using binary long multiplication and division with remainder, this step is
possible in time O(log® m). Then, increment e. Once all chains C; have completed the j-th
repetition, we compute the sum of the s(¥) modulo p and store it in the first [ amoebots of
chain A using a generalization of Theorem 2. The summation is possible in time O(log2 m).
The computed sum is then added to a running total modulo p.

Finally, after k repetitions, the result f,(r) is stored in the amoebots Ag, ..., A;—1. The
runtime for the polynomial identity testing is O(log* m).

Note that the size of the outer boundary set is Q(y/n), which is also a lower bound for
the size of a canonical skeleton. Hence, we get the following result:

» Theorem 18. The string equality problem on chains of length O(m) can be solved in
O(log® m) rounds w.h.p. Therefore, the symmetry detection problem can be solved in O(log® n)
rounds w.h.p.

Additionally, we can compute the amoebot occupying the symmetry point and amoebots
on the symmetry axis, but due to the similarity to the applications in Section 3.2, we just
sketch the algorithm. The idea is to identify some symmetric amoebots, e.g., global maxima,
and to compute symmetric identifiers with these as reference amoebots (see Figure 12). We
output all amoebots that receive the same identifier for each reference amoebot.

5 Conclusion and Future Work

In this paper, we have proposed polylogarithmic-time solutions for a range of problems.
First, we have computed spatial identifiers in order to compute a stripe through a given
amoebot and direction, and the global maxima of the given amoebot structure with respect
to a direction. Using these results, we have constructed a canonical skeleton path, which
provides a unique characterization of the shape of the given amoebot structure. Constructing
canonical skeleton paths for different directions will then allow the amoebots to set up a
spanning tree and to check symmetry properties of the given amoebot structure.

Our solutions could be useful for various applications like rapid shape transformation,
energy dissemination, and structural monitoring. The details have to be worked out in future
work. Beyond that, we think that exploring further applications for the spatial identifiers
and the skeleton would be interesting.
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A Overview

An overview of our results is given by Table 1.

Table 1 An overview of our algorithmic results.

Problem Required pins Runtime Section Theorem
Stripe 2 O(logn) Section 3.3 Theorem 9
Global maxima 2 O(log®n) w.h.p. Section 3.3  Theorem 10
Canonical skeleton 4 O(log® n) w.h.p. Section 4.1 Theorem 14
Spanning tree 4 O(log® n) w.h.p. Section 4.2  Theorem 16
Symmetry detection 4 O(log® n) w.h.p. Section 4.3  Theorem 18

B Omitted Proofs

Proof of Corollary 3. In order to accelerate the inner outer boundary test, we apply The-
orem 2. Recall that each boundary set can organize itself into a cycle. We apply Theorem 1
to split the cycle into a chain. Each amoebot knows its predecessor and successor on the
cycle and therefore also within the chain. Let z; denote the angle at amoebot v; and let
k = 5. Finally, note that each boundary has O(n) amoebots since each amoebot has at
most three local boundaries. Thus, the sum of the angles can be accumulated after O(logn)
rounds. |

Proof of Lemma 5. Since the reference amoebot u, activates its primary circuit, it always
receives a beep on its primary circuit. This implies (u,.); = 0 for 0 <4 < k. Thus, Equation 1
holds.

Let y be the successor of . We have to show that Equation 2 holds, i.e., id¢, (y) =
ide y, () + 1. We have two cases: (i) y never becomes passive, and (ii) y becomes passive.
The first case directly implies idc . (z) = (1,...,1) = =1 and id¢ .. (y) = (0,...,0) = 0. For
the second case, let [ denote the iteration where y becomes passive. Hence, y has received a
beep on its primary circuit in the first [ — 2 iterations and a beep on its secondary circuit
in the (I — 1)-st iteration, i.e., y;—1 = 1 and y; = 0 for 0 < ¢ <! — 1. Since y is active, x
has received a beep on its secondary circuit in the first [ — 2 iterations and a beep on its
primary circuit in the (I — 1)-st iteration, i.e., ;1 =0 and x; = 1 for 0 <4 <[ — 1. Since y
is passive from the [-th iteration, x; = y; holds for | < i < k. We obtain

idC,ur(‘r) = (xk—lr"axlaoylv"')l)
idew, (v) = (Ye=1,---,¥1,1,0,...,0) = (xp—1,...,2,0,1,..., 1) +1

since 201 = Y7291 4 1. <

Proof of Lemma 6. For the sake of analysis, we first consider an infinite amoebot structure
where S = V. Afterwards, we transfer the results to arbitrary connected amoebot structures.

Consider a single stripe. Let ACTIVE denote the pin configuration used for amoebots of
active stripes, and PASSIVE denote the pin configuration used for amoebots of passive stripes.
Both pin configurations define a primary and secondary partition set. All amoebots within
the stripe connect their primary and secondary partition sets, respectively (see Figure 9).
We define the union of all primary resp. secondary partition sets within a stripe as the
primary resp. secondary partition set of the stripe. Note that each amoebot has access to
both partition sets and is able to distinguish between them.
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Figure 9 Sections of various stripes of an infinite amoebot structure.
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Figure 10 (a) A section of the infinite amoebot structure. (b) An arbitrary amoebot structure.
The connectivity of the remaining amoebots is preserved.

Next, consider the connections to the preceding stripe. The connections within the
pin configuration ACTIVE are selected in such a way that an active stripe connects its
primary partition set exclusively to the secondary partition set of the preceding stripe, and
its secondary partition set exclusively to the primary partition set of the preceding stripe
(see Figure 9). Similar, the connections within the pin configuration PASSIVE are selected
in such a way that an active stripe connects its primary partition set exclusively to the
primary partition set of the preceding stripe, and its secondary partition set exclusively to
the secondary partition set of the preceding stripe (see Figure 9). Note that there are no
further connections.

The crucial property of our construction is that any two amoebots are connected by
any arbitrary path of amoebots in the same fashion, i.e., either both primary partition sets
are connected to the secondary partition set of the other amoebot, or their primary and
secondary partition sets are connected, respectively (see Figure 10a). This allows us to
remove amoebots without separating the circuits as long as the amoebot structure stays
connected (see Figure 10b). <

Proof of Lemma 7. By Lemma 6, we can apply the primitive of primary and secondary
circuits to the chain of stripes as long as each amoebot knows whether its stripe is active or
passive. This implies that we can perform the PASC algorithm that by Lemma 5, computes
ide, 4, -
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It remains to show that each amoebot knows whether its stripe is active or passive
throughout the execution of the algorithm. Initially, this is trivially true since each stripe
is active. A stripe becomes passive once it receives a beep on its secondary circuit. Each
amoebot of the stripe can observe this beep since by construction, each amoebot has access
to the secondary partition set of its stripe. Thereafter, the stripe stays passive. |

Proof of Lemma 8. The proof works analogously to the one of Lemma 7. <

Proof of Lemma 12. Let rank(B) = min,ep f4(S,w) be the rank of an inner boundary
set B, and let rank(Bp) = —1 be the rank of the outer boundary set Bo (compare to the
definition of the global maxima in Section 1.3). The rank of an inner boundary set is lower
than the rank of another inner boundary set if its global maxima are further in direction d
than the global maxima of the other inner boundary set. Furthermore, the outer boundary
set has a lower rank than all ranks of the inner boundary sets.

We claim that for each inner boundary set B, we construct a path from B to another
boundary set B’ such that rank(B) > rank(B’) holds. Clearly, this relationship cannot be
cyclic. The lemma immediately follows since we construct a path for each inner boundary
set. We prove the claim in the following.

Lemma 11 excludes the possibility of a self-loop, i.e., B # B’ holds. The claim holds
by definition if B’ is the outer boundary set. Suppose that B’ is an inner boundary set.
The claim also holds if the path from up to vp is not trivial since rank(B) = {4(S,up) >
f4(S,vp) > rank(B’) holds.

Suppose that the path is trivial, i.e., ug € B and ug € B’. Let w € R’ be a node adjacent
to up. Note that {4(S,up) > £4(S, w) holds since otherwise, R = R’ and with that B = B’
would hold. We go from w into direction d,, until we reach an amoebot « € B’. Note that
£a(S,w) > £4(S, z) holds since for V' \ Ro, {4 is strictly monotonically decreasing if we go
into direction d,. This amoebot exists since B’ is an inner boundary set. The claim holds
since rank(B) = {4(S,up) > {4(S,w) > £4(S, x) > rank(B’) holds. <

Proof of Lemma 11. Amoebot up has to be adjacent to at least one node in R. Otherwise,
up € B would hold. It is easy to see that if that node would lie in another direction than
ps(dp,180), either up would not be a global maximum of B with respect to d, or up would
not be the global maximum of By with respect to direction ps(d, 90). By the same reasoning,
up would not be a global maximum of B with respect to d if any amoebot in direction d, of
up would be adjacent to a node in R. |

Proof of Lemma 13. The canonical skeleton (path) visits a bond either due to a boundary
cycle or due to one of the paths. Each local boundary (a common unoccupied adjacent node
of the endpoints) adds one visit. Each bond has at most two local boundaries. Each path
adds two visits. Due to Lemma 11, a bond cannot be part of more than one path. A bond
cannot be part of a boundary cycle and a path at the same time since the path would stop
at either endpoints due to the unoccupied adjacent node. Altogether, each bond is visited at
most twice. <

Proof of Theorem 14. The preprocessing step requires O(logn) rounds w.h.p. (see Sec-
tion 2). The first step requires O(log? n) rounds for the computation of global maxima (see
Section 3.3). The second requires O(1) rounds. Altogether, the canonical skeleton algorithm
requires O(log? n) rounds w.h.p. <
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Proof of Lemma 15. In order to prove that T is a tree, we show that T is cycle-free and
connected. Each edge 7(v) = (v',v) implies that v’ appears before v in . Clearly, this
relationship cannot be cyclic.

We prove that T is connected by induction on the path w. The induction base holds
trivially for v;. Suppose that all nodes up to node v; are connected within 7. Consider node
vi41. If it is not the first occurrence of v; 41 on the path, then v;41 is already connected by
induction hypothesis. Otherwise m(v;4+1) = {vs,v;41} € E’. This edge connects v;11 to all
nodes up to node v; since these are connected by induction hypothesis. <

Proof of Theorem 16. The correctness follows from Lemma 15. The first phase requires
O(logn) rounds (see Section 3.1). The second phase requires O(1) rounds. Altogether, the
spanning tree algorithm requires O(logn) rounds. |

C Omitted Figures

Figure 11 Predefined splitting point with respect to dp,. For d, = N, the figure shows all cases
where the canonical skeleton visits up, multiple times. By similar arguments as for Lemma 11,
there are no other cases. The red lines indicate the canonical skeleton. The node indicates the
splitting point.
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Figure 12 Symmetry point and symmetry axis. (a) and (b) show the computation of a symmetry
axis. (c) to (e) show the computation of a symmetry point for a 3-fold or 6-fold rotationally
symmetric amoebot structure. (f) to (i) show the computation of a symmetry point for a 2-fold
rotationally symmetric amoebot structure. In this case, we have to compute two axes so that
the symmetry point lies on the intersection of these. The yellow amoebot indicates the reference
amoebot. The red (and orange) amoebots receive the same identifier for each reference amoebot.
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Figure 13 Block primitive. The figure shows how a chain A with reference amoebot Ag and a
marked amoebot Ay can be divided into blocks of length k > X where k = 2M'°8*1 using the PASC
algorithm (compare Figure 3) with an additional step after each iteration. Here, we have A = 3 and
k = 4. The first line shows the chain at the beginning of the i-th iteration of the PASC algorithm.
The circles indicate the partition sets. The blue bordered amoebot is Ag, and the green bordered
amoebot is Ax. Yellow amoebots are active, and gray amoebots are passive. The second line shows
the configuration resulting from the following additional step: For an amoebot let ) be the partition
set on which it received a beep (depicted in red; either its primary or secondary partition set).
An active amoebot (except Ag) splits @ into singletons. We obtain a circuit between each pair of
consecutive active amoebots. Then, Ao beeps on Q. If Ay receives a beep, the procedure terminates,
otherwise continue with the next iteration. After termination, exactly the amoebots A;j are active.

Figure 14 The figure shows (NNW, +)-skeleton. The yellow and orange amoebots indicate the
global maxima of the boundary sets. The orange amoebots indicate the starting points of the paths.
The blue lines indicate the paths between the boundary cycles. The node indicates the location
where the cycle is split.
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—— Abstract

The amoebot model is a distributed computing model of programmable matter. It envisions
programmable matter as a collection of computational units called amoebots or particles that utilize
local interactions to achieve tasks of coordination, movement and conformation. In the geometric
amoebot model the particles operate on a hexagonal tessellation of the plane. Within this model,
numerous problems such as leader election, shape formation or object coating have been studied. One
area that has not received much attention so far, but is highly relevant for a practical implementation
of programmable matter, is fault tolerance. The existing literature on that aspect allows particles to
crash but assumes that crashed particles do not recover. We proposed a new model [14] in which
a crash causes the memory of a particle to be reset and a crashed particle can detect that it has
crashed and try to recover using its local information and communication capabilities. We present
an algorithm that solves the hexagon shape formation problem in our model if a finite number of
crashes occur and a designated leader particle does not fail. At the heart of our solution lies a
fault-tolerant implementation of the spanning forest primitive, which, since other algorithms in the
amoebot model also make use of it, is also of general interest.
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1 Introduction

The research on programmable matter, first introduced in [16], deals with small simple
particles that locally interact to globally solve a given task like shape formation or coordinated
movement. Many future applications are conceivable, such as smart materials, autonomous
monitoring and repair, and minimal invasive surgery. The amoebot model, introduced in [4],
is a popular model in the context of programmable matter, envisioning particles (or amoebots)
as computational entities on the micro or nano level. Amoebots have only finite memory
and move in a way inspired by amoeba. In this work we extend the amoebot model to
include the aspect of fault tolerance by introducing particle crashes [14]. Crashed particles
can recover using their local information and communication capabilities and thus rejoin
solving the global task at hand. In order to gain initial insights into useful strategies towards
fault tolerance in our model, we examine and solve the hexzagon shape formation problem.
Our solution builds upon two primitives, a propagation primitive and a safety primitive,
which both may be of interest in their own.
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1.1 Related Work

Shape formation in the amoebot model, in particular the hexagon shape formation problem,
was investigated in [6, 7, 10]. The authors of [12] show how a constant number of amoebots can
be used to simulate a Turing-complete entity that can move in the plane during computation
and show how this can be used to form more general shapes than the previously published
algorithms. The hexagon shape formation problem was recently revisited in [2] where it was
shown how to define an algorithm for the problem that is correct in a concurrent setting.

In the literature on the amoebot model, the topic of fault tolerance has received little
attention so far. We are only aware of the following publications: In [11] the authors present
a solution to the line recovery problem in the amoebot model under a semi-synchronous
adversarial scheduler: Initially, n particles, of which f < n — 4 are faulty, are positioned on
a line. The algorithm forms either a single line or two lines of equal size consisting of all
non-faulty particles. Faulty particles may not move or communicate with other particles. An
essential difference to our work is that the faulty particles are predetermined by the initial
configuration, no crashes occur during the execution of the algorithm and faulty particles
cannot recover. The authors of [15] study the Connected Line Recovery problem: The
proposed algorithm lets the non-faulty particles form a line while maintaining connectivity
at all times, regardless of the initial distribution of the faulty particles. It is shown that
a necessary condition for the solvability of the problem is that faulty particles can still
communicate with their neighbours. Here too, however, it is assumed that faulty particles
cannot recover. Daymude et al. present in [3] as an independent partial result the so-called
forest-prune-repair algorithm, an implementation of the spanning forest primitive that copes
with crash failures. Unlike in the present work, the crash failures are permanent there, i.e.,
particles that have crashed once cannot recover. Furthermore the authors assume that the
subgraph induced by the nodes occupied by non-crashed particles is always connected - a
strong assumption not necessary in our model where crashes are temporary.

2 Model

In this section, we introduce our model, which is based on the geometric amoebot model.

Particles. We assume that particles (amoebots) occupy nodes on the triangular lattice
Ga = (Va,En) (Figure 1a). A particle occupies either a single node (contracted particle) or
two adjacent nodes (expanded particle). A node can be occupied by at most one particle
(Figure 1b). Two particles occupying adjacent nodes are called neighbours or connected.
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(a) A section of Ga (b)Example showing con- (c) Two particles with (d) Adjacent particles es-

(black) and its dual, the tracted and expanded different orientations and tablish bonds through the
hexagonal tiling (gray). particles on Ga. common chirality. ports facing each other.

Figure 1 Illustration of some aspects of the geometric amoebot model.
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Global directions. For n € Nlet [n] :={0,1,...,n—1}. A direction is an integer in [6]
that represents a vector in the Euclidean plane. We distinguish between global and local
directions (see below). The global direction 0 corresponds to the vector pointing right in the
triangular lattice G, and the other global directions increase counter-clockwise.

Port labels. A particle has ports for edges between a node it occupies and a neighbouring
node not occupied by it, i.e., a particle has ports for those edges which are incident with
exactly one of the nodes it occupies. A contracted particle has six ports and an expanded
particle has ten ports (Figure 1¢). The ports have unique labels from the particle’s own local
perspective, as follows: A particle p has a fixed orientation O(p) € [6] that is unknown to
it. Particles may have different orientations. We assume that all particles have a common
(counter-clockwise) chirality.! A contracted particle has port labels in [6], an expanded
particle has port labels in [10]. If p is contracted, then the edge pointing in global direction
O(p) gets label 0. If p is expanded, then there may be two edges pointing in global direction
O(p). In this case, the edge pointing in global direction O(p) and pointing “away” from p
(i.e., to a node adjacent to only one of the two nodes occupied by p) gets label 0. From label
0, labels increase counter-clockwise around the particle.

Local directions. In order to be able to recognise whether it is contracted or expanded,
and to be able to convert port labels into local directions, a particle p has a so-called bearing
B(p) € {4,5,6} U {e} which is updated during its movement and can be read by it during its
computation. If p is contracted, then B(p) is e. If p is expanded, then p occupies two nodes
{u,v} € Ea. Let u be the node incident to the edge with port label 0. Then, the bearing
B(p) is the port label of the port furthest from u. For a port label I a particle p can easily
compute the local direction d € [6] of the corresponding port using only ! and the bearing
B(p). In the case of a contracted particle, the label and corresponding local direction are
equal. A local direction d corresponds to the global direction (d + O(p)) mod 6, i.e., O(p)
encodes p’s offset for local direction 0 from global direction 0. For neighbours p and ¢ and a
direction d, € [6] local to p let A(d,,p,q) denote the corresponding direction local to g.

Memory. FEach particle has a constant-size local memory. Due to the constant-size memory
constraint, particles cannot have a unique id and are therefore anonymous. We assume that
a particle has a variable state in its local memory.

Communication. Adjacent particles establish bonds through the ports facing each other (see
Figure 1d). A particle p can determine for a port label [ whether the associated node is empty
or occupied, and if it is occupied by another particle ¢, then p can read ¢’s corresponding
label, read ¢’s bearing and read from and write to ¢’s local memory. This effectively enables
communication between neighbouring particles.

Movement. Particles can move through expansion and contraction: When a particle is
contracted, it can expand into an unoccupied neighbouring node. When a particle is expanded
it can contract into one of the two nodes it currently occupies. Additionally two neighbouring
particles can combine expansion and contraction to perform a coordinated movement: one

1 The assumption is justified: With the hexagon shape formation problem we assume that a unique leader
(SEED particle) is initially available. The SEED could, in the case of non-common chirality, impose its
chirality on all other particles in the system (see also Section 4 in [13])
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particle can contract out of a node while another expands into that node. This so-called

handover helps to maintain connectivity of the particle system. We distinguish between two

operations: Consider a contracted particle p occupying a node u € Va and an expanded

particle ¢ occupying two nodes {v,w} € Ea. If p and ¢ are neighbours, i.e. {u,v} € Ena,

then p may push q into w. Similarly, ¢ may pull p into v. In both cases the result is that p

is expanded and occupies the nodes {u, v} and that ¢ is contracted and occupies the node w.
The bearing of the particles involved in a movement is updated accordingly.

Head and tail. We assume the following implicitly for our algorithm without noting the
implementation in the pseudocode: A particle p has a variable tailDir in its local memory,
which is € if p is contracted and equal to the direction from which p last expanded if p is
expanded. We call the node into which p expanded head and the node from which p expanded
tail. If p is contracted, the node it occupies is called the head. The variable tailDir is kept
up-to-date during movement operations. In the event of a crash, the information stored in
tailDir is lost, so that a particle no longer knows which node previously was its head (or tail).

Scheduling. As is common in the amoebot literature, we will assume a sequential fair
scheduler for the analysis of our algorithm: In every time step ¢ € N the scheduler may either
activate or crash a particle (see below). At any given time at most one particle is active
(sequential activations). Furthermore the interval between any two activations of the same
particle is finite (fairness property). A round is completed as soon as every particle has been
activated at least once. An activated particle may use the operations described above: It can
read its own local memory and that of its neighbours, perform a computation, update its own
memory and the memory of its neighbours and perform at most one movement/handover.
Due to the sequential activation model, atomicity and isolation of these actions is ensured.?

Model extension: Particle crashes. In our work we extend the amoebot model by intro-
ducing particle crashes. We assume that the adversarial scheduler may arbitrarily crash
particles. A crash of a particle p has the following effects: The scheduler sets the state in
p’s local memory to cRASHED, enabling p and its neighbours to detect that it has crashed,
and resets the rest of p’s local memory. Note that since the bearing of a particle is not part
of the local memory, it cannot be changed by the scheduler. In our algorithm HexagonFT,
a CRASHED particle detects that it has crashed when it is activated, initialises its memory
and initially switches to the additional ERROR state; this means in particular that a CRASHED
particle is not permanently disabled, but can resume its function after its memory has been
reset. A particle in state CRASHED or ERROR is called faulty. We say a faulty particle recovers
if it becomes non-faulty.

Configuration. The configuration of a particle p € P at the beginning of time step ¢ € N
is the set of nodes V' (p) C Va it occupies (which implicitly gives its bearing B(p)) and its
local memory M (p). The configuration C' = (V(p), M (p))pecp of a system P of n particles
at the beginning of time step ¢ € N describes the configuration of each particle p € P. The
connectivity graph G(C) is the subgraph of G a induced by the nodes occupied by particles
in configuration C. A configuration is called non-faulty if no particles are faulty. A stable
configuration is a configuration that does not change any more with activations.

2 Daymude et al. present a formal framework for achieving atomicity and isolation in the amoebot model
without this assumption [2]. Furthermore, the authors demonstrate the correctness of their version of
the Hexagon algorithm under any unfair asynchronous scheduler. We are confident that the analysis
could also be applied to our algorithm HexagonFT in our extended model.
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Problem description: Hexagon shape formation problem. For any two nodes u,v € Va
the distance §(u,v) € Ny between u and v is defined as the length of a shortest path from
u to v in Ga. For a node v € Va and ¢ € Ny let B(v,4) :={u € Va | 6(u,v) =14 }. We call
a set V C Va a hexagon with centre v € V if there is a k € Ny and a subset S C B(v, k)
such that V = S UJ,., B(v,i). We now define the hexagon shape formation problem HEX:
We assume that the system of particles initially forms a single connected component of
contracted particles, has a unique leader, called the SEED particle, and that all other particles
are IDLE. Furthermore, since we are currently working on a manuscript in which we show
that the leader election problem is solvable in our fault tolerance model, we assume in this
paper that the seeD particle does not crash. The goal is to reach a stable configuration in
which the set of nodes occupied by particles is a hexagon with the SEED in its centre.

3 Algorithm

3.1 Overall Description

General structure. The general structure of our fault-tolerant hexagon shape formation
algorithm HexagonFT is given as pseudocode in Algorithm 1. All pseudocode is written
from the perspective of an activated particle p. As long as no crashes occur, our algorithm
HexagonFT basically behaves like the classical Hexagon algorithm. In Figure 2 we describe
how the hexagon shape formation problem HEX is solved by HexagonFT in the geometric
amoebot model without crashes. In the following Section 3.2, we explain the sub-algorithms
of HexagonFT in detail, in particular how they deal with crashed particles.
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Figure 2 An example run of our hexagon shape formation algorithm HexagonFT with 19 particles
without crashes. Particles have to assume the shape of a hexagon (but for the outer layer, which may
not be completely full). The hexagon is built in a spiral ring in clockwise direction around the SEED as
follows: (a) All particles except of the [ SEED ) are initially IDLE (black dots). (b) Particles adjacent to
finished particles (SEED or RETIRED) become particles (sub-algorithm tryToBecomeRoot), and
particles form parent-child relationships with ROOT or FOLLOWER particles (sub-algorithm
tryToBecomeFollower). (c)—(e) ROOT particles traverse the forming hexagon counter-clockwise
(sub-algorithm performMovement), becoming (sub-algorithm tryToBecomeRetired) when
reaching the position marked by the last RETIRED particle. FOLLOWER particles follow ROOT particles
via a series of handovers (sub-algorithm performMovement).

Variables. The local memory contains the following variables (the initial value is noted

after the variable name):

1. state: General state. Domain: SEED, IDLE, FOLLOWER, ROOT, RETIRED, ERROR, CRASHED.

We call a particle faulty if its state is CRASHED or ERROR and otherwise non-faulty.

2. tailDir: Direction of the tail of a non-faulty particle. Domain: [6] U {€}.
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Algorithm 1 HexagonFT.

1 def HexagonFT(p):

2

3

o

10

11

12

13

14

15

16

17

18

20

21

22

23

24

26

27

28

29

30

31

32

33

34

if p is finished:
return > Finished particles do nothing.
if p.state = CRASHED:
p.initializeAfterCrash()
if p has a neighbour in state CRASHED:

return > Wait until all neighbours in state crasneD are “awake”, i.e. in state
ERROR, and therefore initialized.
if p.state = ERROR:

p.updateFlags() > Update safeFlags and safeState.

> Try state change:
if p can retire:
p.tryToBecomeRetired()
if p.state = RETIRED:
return > p has become retired and therefore does not do anything more.
else if p is in state ERROR, IDLE Or FOLLOWER:
p-tryToBecomeRoot()
if p.state = ROOT:
p.pathToRootState < VALID
else if p.state = IDLE:
p.tryToBecomeFollower ()
else if p.state = ERROR and p.sa feState = SAFE:
p.tryFollowerRecoveryByPropagation()

> Propagation of pathToRootState:

if p.state = FoLLOWER and p.pathT oRootState = INVALIDATE:
p.pathToRootState < INVALID
p.propagatelnvalidate()

else if p.state = rRooT or (p.state = FoLLOWER and p.pathToRootState = vALID):
p.propagateValid()

> Movement:
if p is in state FOLLOWER or ROOT:
p.performMovement|()

. constructionDir, moveDir, followDir: Shape formation specific variables of a non-faulty

particle. Domain: Direction in [6].

. pathToRootState < vaLID: State of an ERROR or non-faulty particle as node on a path

upwards to a ROOT particle. Domain: VALID, INVALID, INVALIDATE.

. safeState < UNDETERMINED, safeFlags[r][d] - UNDETERMINED (round r € [2], direction
d € [6]): The safeState of an ERROR particle is used to determine whether it may become
a FOLLOWER. The safeFlags are used to determine the current value of safeState. Domain:

UNDETERMINED = (), UNSAFE = 1, SAFE = 2.

. hasInvalidated[l] < FaLSE: hasInvalidated]l] of an ERROR particle is TRUE if its neighbour

at port label [ has been invalidated. Domain: FALSE, TRUE.
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Terminology. We introduce some notions: A particle is finished if its state is SEED or RETIRED.

A particle p can retire if it is CONTRACTED and has a finished neighbour ¢ with constructionDir

set to the position of p. We call g (direct) predecessor of p and p (direct) successor of q.

Based on this, the terms predecessor and successor are defined in the canonical way. We
say a FOLLOWER particle p follows a particle ¢, if the node in the direction of p.followDir
relative to the head of p is occupied by q. We call ¢ the parent of p and p a child of q. If q is
expanded and the node in the direction of p.followDir relative to the head of p is occupied
by ¢’s tail, we call p a tail follower of q. Head follower is defined analogously. An expanded
particle has a blocking tail neighbour if it has a tail follower or a neighbour in state IDLE,
ERROR Or CRASHED that is adjacent to its tail.

3.2 Sub-Algorithms

In this section the sub-algorithms of algorithm HexagonFT are presented.

3.2.1 initializeAfterCrash

As soon as a CRASHED particle is activated, its memory is initialized by sub-algorithm
initializeAfterCrash (see Algorithm 2): the state is set to ERROR and the other variables
to default values. To ensure that an activated particle does not read the corrupt memory
of crASHED neighbouring particles, HexagonFT (Line 6) also checks whether the particle has
CRASHED neighbours and only continues execution if it does not.

Algorithm 2 initializeAfterCrash.

1 def initializeAfterCrash(p):

2 > Initialization of crashed particle after crash (“wake up”):

3 p.state <— ERROR

4 p.pathToRootState < INVALID

5 p.safeFlags[r][d] < UNDETERMINED for all rounds r € [2] and all directions d € [6]
6 p.safeState < UNDETERMINED

7 p.hasInvalidated[l] + FaLsE for all port labels [

3.2.2 tryToBecomeRetired

A particle p that has a finished neighbour ¢ with g.constructionDir set to its position can
become RETIRED, if it can successfully determine its constructionDir, i.e. the position for the
next particle to become RETIRED. The sub-algorithm tryToBecomeRetired (see Algorithm 3
and Figure 3) determines whether a particle can become RETIRED, whereby the desired
hexagon shape is successively constructed around the SEeD in a snake-like fashion.

3.2.3 tryToBecomeRoot

A particle in state ERROR, IDLE or FOLLOWER that has a finished neighbour but cannot retire
could potentially become a rooT particle. Sub-algorithm tryToBecomeRoot (see Algorithm 4
and Figure 3) is responsible for changing the state of a particle to rRoor, if possible. roOT
particles move counter-clockwise around the hexagonal retired structure. The auxiliary
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9:8 Fault-Tolerant Shape Formation in the Amoebot Model

Algorithm 3 tryToBecomeRetired.

1 def tryToBecomeRetired(p):

2 if p has the SeeD s as neighbour at direction d,:

3 i < (3 + s.constructionDir — A(dp, p, s)) mod 6 > clockwise index of p with
respect to SEED s

4 ifi=517+4

5 p.state <— RETIRED

6 p.constructionDir + A((s.constructionDir — i — 2) mod 6, s, p)

7 else:

8 d < p’s label for port leading to p’s predecessor

9 Let ¢ be the particle one label counter-clockwise of p’s predecessor at label
dy = (d+ 1) mod6.

10 if ¢q.state = RETIRED:

11 if A(g.constructionDir,q,p) = d4: > exception of the rule

12 p.constructionDir + (d + 2) mod 6

13 else:

14 p.constructionDir < A(q.constructionDir, q, p)

15 p.state <— RETIRED

function computeMovelLabel tries to determine the label in which direction the potential
rOOT particle should move next (and returns e if the label could not be determined due to a
faulty particle). The auxiliary function updateMoveDir tries to update the moveDir of the
potential ROOT particle and returns TRUE on success.
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@ 5" ) (®) = 5=
00D e 000¢C D) @ P DU R ® ® @® (o ®)
00000000 2 = =
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Figure 3 tryToBecomeRetired: (a) Particles of the same colour have the same constructionDir.
A particle beyond the first layer can determine its constructionDir from a specific neighbour from
the previous layer. tryToBecomeRoot: (b) p has a finished neighbour at label lo, and the particle at
label [, is non-finished and non-faulty. p will become a ROOT with its moveDir set to the direction of
l-. (c) Special case: p has successfully determined its moveDir. Since p is inside the retired structure,
it may not become a ROOT, which is ensured by Lines 5-8. (d)—(e) Lines 14-18 prevent that crashing
a cycle of expanded ROOT particles leads to a deadlock.

3.2.4 tryToBecomeFollower

According to the spanning forest primitive an mLE particle that has a ROOT or FOLLOWER
as neighbour, follows it by becoming a FOLLOWER and setting its variable followDir appro-
priately, thereby becoming part of the spanning tree. This is realised by sub-algorithm
tryToBecomeFollower, which is given as pseudocode in Algorithm 5.



l. Kostitsyna, C. Scheideler, and D. Warner

Algorithm 4 tryToBecomeRoot.

1 def tryToBecomeRoot(p):

2 if p is contracted:

3 I, < p.computeMoveLabel()

4 ifl, #e

5 Let s be the finished particle at label I, = (I, + 1) mod 6.

6 d + A(s.constructionDir, s,p)

7 > Check on the basis of s whether p is outside the retired structure:

8 if s is the seED or (d — ;) mod 6 < 2:

9 p.updateMoveDir()

10 p.state <— ROOT

1 else if p is expanded:

12 if p.updateMoveDir():

13 p.state < ROOT

14 else if p has a finished neighbour at label Iy with constructionDir pointing at p:

15 Let [ be the in clockwise direction next label after Iy that does not point to
the same node as (.

16 Update p.tail Dir such that [ is a head label of p.

17 p.moveDir < p’s direction of [

18 p.state <— ROOT

20 def computeMoveLabel(p):

21 if p has a finished neighbour at some label [:

22 Starting at [g let [ be the in clockwise direction first label at whose port there is no
finished particle.

23 if there is no faulty particle at label [ :

24 return /

25 return €

26
27 def updateMoveDir(p):
28 I + p.computeMoveLabel()

29 lfl 7é €:

30 Update p.tail Dir such that [ is a head label of p.
31 p.moveDir < p’s direction of [

32 return true

33 return false

Algorithm 5 tryToBecomeFollower.

1 def tryToBecomeFollower(p):

2 if p has a neighbour ¢ in direction d in state ROOT or FOLLOWER:
3 p.state <— FOLLOWER
1 p.followDir < d
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3.2.5 tryFollowerRecoveryByPropagation

We now discuss the sub-algorithm tryFollowerRecoveryByPropagation (see Algorithm 6),
which tries to repair a crashed particle p that could potentially be a FoLLowER. Our fault-
tolerant solution builds upon two primitives, a safety primitive and a validation primitive,
each of which solves a significant problem: Firstly, we have to make sure that p can actually
be a FOLLOWER, i.e., we have to exclude the possibility that p could be RETIRED. If this is not
ensured, various problematic consequences are possible: among other things, the particles
may become disconnected (see Figure 4), it is not guaranteed that a hexagon will be built,
and it is even possible that the algorithm will no longer terminate. We show that if a particle
is in safeState SAFE, it can in principle become a FOLLOWER. Secondly, we need to ensure
that p choosing a FOLLOWER parent candidate (a FOLLOWER neighbour not following p) does
not lead to disconnection of the particles (see Figure 5). In order to avoid disconnection,
we use a validation mechanism that determines for a faulty particle which of the FoLLOWER
parent candidates it can attach to without closing a cycle. We will see that these are the
previously invalidated FOLLOWER parent candidates in pathToRootState VALID.
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Figure 4 The figure illustrates problems that can arise if it has not been ruled out that a particle
to be repaired could be part of the retired structure. (a) particles have become followers
that pass through the structure of originally retired particles. (b) Some followers followed their root
and thus split the retired structure. The particles are disconnected. (c) Final stable configuration.
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Figure 5 The figure shows that if a crashed particle attaches itself to an arbitrary FOLLOWER
pointing away from it, this can lead to irreversible disconnection of the particles. (a) A particle
has crashed. (b) The crashed particle attaches itself to the wrong of the two possible FOLLOWER
candidates, closing a cycle. (c) Final stable configuration in which the particles are disconnected.

Here, we explain how the validation primitive solves the second problem (compare
Figure 6). The safety primitive for solving the first problem is explained in Section 3.2.6.
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Figure 6 Illustration of the validation primitive. (a) A faulty particle needs to ensure that there
is a path to a RoOT before following a particle. (b) The faulty particle sends INVALIDATE tokens to
possible parent candidates. (c) INVALIDATE is propagated upwards, causing particles on the path
to become . (d)—(e) An INVALIDATE that reaches an ERROR particle is stored by it, an

INVALIDATE that reaches a ROOT is consumed by it. The ROOT generates a token which is
propagated downwards along the INVALID particles. (f)—(g) If the VALID token reaches the crashed
particle, it may connect to the FOLLOWER. The INVALIDATE token previously stored by the
crashed particle will then again be propagated upwards.

Algorithm 6 tryFollowerRecoveryByPropagation.

def tryFollowerRecoveryByPropagation(p):
if p has a neighbour ¢ at label [ with ¢.state = rooT or (gq.state = FOLLOWER and __
g.pathToRootState = vaLip and p.hasInvalidated[l] = TRUE):

> Become a rFoLLOWER following a ROOT or a previously invalidated vaLiD
FOLLOWER parent candidate:
p.state <~ FOLLOWER

Update p.tail Dir such that [ is a head label of p.
p.followDir < p’s direction of [
else:

> Check whether new FOLLOWER parent candidates have emerged in the
neighbourhood in the meantime:

if p has a FOLLOWER parent candidate ¢ at label [ with
p.hasInvalidated[l] = FALSE:
q.pathToRootState <— INVALIDATE
p.hasInvalidated[l] < TRUE

An ERROR particle p in safeState saFE can in principle become a FOLLOWER (see Sec-
tion 3.2.6). In order to determine an admissible FoLLOWER parent candidate, p employs the
following validation mechanism: p invalidates FOLLOWER parent candidates by setting their
pathToRootState to INvALIDATE and keeps track of which neighbours it has already invalidated
in its hasInvalidated array, so that each neighbour is invalidated at most once. Subsequently
the pathToRootState INVALIDATE is propagated “upwards” by followers in the direction of a
tree root, such that the particles on the path upwards become iNnvaLID (safety). A special
case is when a FOLLOWER in pathToRootState INVALIDATE points to an ERROR particle. In this
case, the ERROR particle’s pathToRootState is set to INVALIDATE, but the ERROR particle only
continues to propagate if it is repaired to a FOLLOWER. INVALIDATE is finally consumed by
a tree root after which the pathToRootState vaLip is propagated downwards to the leaves
(liveness). Note that here it is crucial for safety that an ascending INVALIDATE always has
priority over a descending vaLID. The propagation of this validation mechanism is realised
by the two functions propagateInvalidate and propagateValid (see Algorithm 7).

In summary, an ERROR particle p may become a FOLLOWER of a neighbour q if p.safeState =
SAFE and ¢ is a ROOT or a FOLLOWER parent candidate in pathToRootState vALID which was
previously invalidated by p.
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Algorithm 7 propagateInvalidate and propagateValid.

1 def propagateInvalidate(p):

2 if p has a FOLLOWER or ERROR parent q:

3 q.pathToRootState < INVALIDATE

4

s def propagateValid(p):

6 for each FoLLOWER child q of p with q.pathToRootState = INVALID:
7 q.pathToRootState < VALID

3.2.6 updateFlags

We now present the sub-algorithm updateFlags (see Algorithm 8) which implements the
safety primitive mentioned in the previous Section 3.2.5. The safety primitive basically
ensures that particles inside the retired structure (the hexagon built so far) cannot become
FOLLOWER particles. The primitive is explained in Figure 7.
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Figure 7 Illustration of the safety primitive. Crashed particles initially are UNDETERMINED and

will become either (SAFE) or [UNSAFE]. Crashed particles that are connected to a finished particle
via one or two line segments in G become UNSAFE, otherwise SAFE by the propagation of safeFlags.
An UNSAFE particle cannot become a FOLLOWER.

Algorithm 8 updateFlags.

1 def updateFlags(p):
2 if p has a finished neighbour: > Initialize p.safeState based on p’s neighbours:

3 p.safeState <— UNSAFE
1 else:
5 p.safeState < SAFE

7 for each round r € [2]: > Update p.safeFlags and p.safeState for two rounds:

8 for each direction d € [6]:
9 S + { ¢g.safeFlags|r][d,] | ¢ is an ERROR neighbour of p in direction d }
10 p.safeFlags[r][d] < min({p.safeState} U S)

11

12 p.safeState < min { p.safeFlags[r][d] | d € [6] }
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3.2.7 performMovement

FOLLOWER and ROOT particles move according to the rules in sub-algorithm performMovement
(see Algorithm 9), which are essentially the same as the movement rules for the classical
hexagon shape formation algorithm Hexagon, with the following differences: The definition
of a blocking tail neighbour includes faulty particles. This ensures that the contraction of a
particle does not disconnect faulty particles from the rest of the particle system. To ensure
that INVALIDATE does not propagate downwards, a particle cannot push a particle that is in
pathToRootState INvALIDATE. To maintain property F2 for segments (Lemma 4), a pushing
FOLLOWER takes over the pathToRootState of the pushed particle. A rRooT particle can only
move if its moveDir was successfully updated by sub-algorithm updateMoveDir.

Algorithm 9 performMovement.

def performMovement(p):
if p is an expanded FOLLOWER or roOT that has no blocking tail neighbour:
p contracts into its head.
else if p is a contracted tail FOLLOWER of a FOLLOWER or ROOT particle ¢:

if g.pathToRootState # INVALIDATE: > Ensure that INVALIDATE does not
propagate downwards.
p pushes ¢ and updates p. followDir accordingly.

p.pathToRootState < q.pathToRootState
else if p is a contracted rooT and p.updateMoveDir():
if p has no neighbour in direction p.moveDir:
p expands in direction p.moveDir.
else if p has the tail of an expanded rooT in direction p.moveDir:
p pushes in direction p.moveDir.

3.3 Analysis

In this section we show that our algorithm HexagonFT solves the hexagon shape formation
problem HEX, if a finite number of crashes occur. Due to space constraints, most proofs
are given in the appendix in Appendix A.1. We assume w.l.0.g. that the SEED is positioned
on (0,0) € VA and has orientation 0. Our algorithm constructs the hexagon in a spiral
ring around the SEED. A particle that retires sets the direction constructionDir for the next
particle to become RETIRED. The constructionDir for a particle beyond the first layer is
determined by the constructionDir of a specific neighbouring particle in the previous layer
(compare algorithm tryToBecomeRetired and Figure 3a). The following lemma provides
the basis for the correctness of this procedure:

» Lemma 1. For v € Va and d € [6], let n(v,d) € Va denote the neighbour of v in direction
d. The sequence of nodes v; defined inductively by vy = (0,0) € Va, v = n(vg—1,d(vk—1)),
d(vg) = (0,4,3,2,1,0,0,5) for 0 < k <7, d, = d(n(vg—1, (d(vg—1) — 1) mod 6)) for k > 7 is
well-defined, and it holds: For any k > 0 the nodes v, .. .,vi form a spiral ring around the
centre (0,0) such that the set {v;|0 < j <k} forms a hexagon with centre (0, 0).

» Definition 1. For a configuration C let k € N such that for all j € [k] the node v; of the
spiral ring is occupied by a finished or faulty particle, and node viy1 is empty or occupied by
a non-finished or non-faulty particle. We call the set of particles that occupy the nodes v;
for j € [k] the retired structure. A particle inside (outside) the retired structure is called an
interior (exterior) particle. An exterior particle adjacent to an interior particle is called a
boundary particle.
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» Definition 2. Based on a configuration C, we define a directed graph A(C) as follows:
The node set of A(C) is the set of particles. If p is a FOLLOWER following a particle q that is
a FOLLOWER, a ROOT or a faulty exterior particle, then A(C) contains a directed edge from
p to q. If p is a faulty exterior particle and q a neighbour of p that is a FOLLOWER parent
candidate of p, a ROOT or a faulty exterior particle, then A(C) contains a directed edge from
p to q. A simple path or simple circuit p1,...,pg, k > 1 in A(C) from a faulty exterior
particle p1 to a faulty exterior particle py, where all p; for 1 < j < k are FOLLOWER particles,
1s called a segment. We call a particle a tree root if it is a FOLLOWER following an interior
particle, a ROOT or a faulty boundary particle.

3.3.1 Safety

» Lemma 2 (Retired structure).

R1 At any time, all finished particles are interior particles.

R2 At any time, a finished particle occupying a node v; of the spiral ring has its
constructionDir set in the direction of the node vjy1.

R3 An interior particle will always remain an interior particle.

» Lemma 3 (Roots). At any time, the following root property holds: The head of a roOOT
particle is adjacent to an interior particle.

» Lemma 4 (Followers). At any time, the following properties hold:
F1 For a FOLLOWER particle p, there is a simple path in A(C) from p to a tree root.
F2 Ifpy,...,pr is a segment and | the label of py for the port leading to po, then one of the
two following statements holds:
a. pp.state = CRASHED or (p;.state = ERROR and p;.hasInvalidated[l] = raLse) or
b. p;.state = ERrROR and p.haslnvalidated[l] = TrRUE, and one of the three following
statements holds:
i. There exists 1 < j < k such that p;.pathToRootState = iNvALID for all 1 < i < j
and p;j.pathToRootState = INVALIDATE.
ii. p;.pathToRootState = INnvaLp for all 1 < i < k and (pr crashed after p; or
pi-pathToRootState = INVALIDATE)
ili. There exists 1 < j < k such that p;.pathToRootState = INvALID for all 1 < i < j
and p;.pathToRootState = vALID, and there is a simple path in A(C) from p; to a
tree root, on which all faulty particles crashed after py.

» Lemma 5 (Connectivity). At any time, all particles are connected, i.e., G(C) is one
connected component.

» Lemma 6. Every connected component of IDLE particles is connected to at least one
non-IDLE particle.

3.3.2 Liveness: Recovery

» Lemma 7 (Recovery). If a finite number of crashes occur during the execution of algorithm
HexagonFT and m particles are faulty after the last crash, then a non-faulty configuration is
reached within O(mn) rounds after the last crash.

Proof. We show that within O(n) rounds at least one faulty particle recovers. Assume that
at the beginning of round ¢ all faulty particles are in state ERROR. Let C' be the configuration
at the beginning of round ¢. We consider the following cases at the beginning of round ¢,
assuming that there is still at least one faulty particle:
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Case 1: There is a faulty interior particle: Starting at the sgeDp, let p be the first faulty
interior particle in the spiral ring around the segep. Clearly, p will become RETIRED within
one round.

Case 2: There is no faulty interior particle but a faulty boundary particle: Let v be the
first node in the spiral ring around the SeED occupied by a faulty particle p and u the
predecessor node of v in the spiral ring. When p is activated in round ¢, node u is either
empty or occupied by a non-faulty particle. If p is contracted and u occupied by a finished
particle, p retires. Otherwise, p becomes a ROOT.

Case 3: There is no faulty interior or boundary particle but a faulty exterior non-boundary
particle ¢ that has a RoOT or a FOLLOWER as neighbour: We only consider the case that ¢
has a FOLLOWER ¢’ as neighbour. The proof for the case that g has a rRooT as neighbour
is analogous. By F1 there is a simple path in A(C) from ¢’ to a tree root. If there is no
faulty particle on that path, then let p = ¢ and p’ = ¢/, otherwise, let p be the faulty
particle on that path nearest to the tree root and p’ its successor occupying some node u
adjacent to p. Let [ be a port label of p pointing towards u. Let k = 4. Suppose no faulty
particle recovers within kn rounds. By Lemma 5, p is part of a connected component
F' of faulty particles. The component F' does not change within kn rounds since no
particles crash and no faulty particles recover during this period. At the beginning of
round ¢ no particle in F' has a interior or boundary particle as neighbour. This also
does not change within kn rounds, as we assume that no faulty particles recover during
this period. It follows that p.safeState is saFE at the beginning of round ¢ + ¢; for some
t1 < 2n. Note that from round t + ¢; onwards, node v must be occupied by a FOLLOWER
parent candidate for p that lies on a path in A(C) of non-faulty particles up to a tree
root. We can make the following observations: Since no faulty particle recovers within
kn rounds, no new FOLLOWER parent candidates emerge in the neighbourhood of faulty

particles. The pathToRootState INVALIDATE is propagated upwards by FOLLOWER particles.

Therefore, after at most n rounds there are no FOLLOWER particles in pathToRootState
INVALIDATE. It follows, since then the pathToRootState vaLID propagates downwards, that
after at most n further rounds the node u is occupied by a FOLLOWER parent candidate
p" for p in pathToRootState vaLip. Since p.hasInvalidated[l] = TruUE, it follows that p

becomes a FOLLOWER after a total of at most kn rounds, i.e. recovers, a contradiction.

Therefore, at least one faulty particle recovers within kn rounds.

Case 4: There is no faulty interior or boundary particle and no faulty exterior non-boundary
particle that has a ROOT or a FOLLOWER as neighbour but a faulty particle that has an
ipLE neighbour: By Lemma 5, the graph G(C) is connected. Let P be any simple path in
G(C) from the seeD particle to some faulty particle that has an bLE neighbour. Let r
be the first faulty particle on P, i.e. the one closest to the seED on the path P, and let
q be its predecessor. Clearly, ¢ is an ibLE particle and will become non-bLE after O(n)
rounds. If r has not yet recovered by this time, the statement now follows with one of
the previous cases. |

For the upper bound given in Lemma 7, there is a matching (algorithm-depended) lower
bound: If all n particles lie on a line and all particles except the SEED are CRASHED, then the
algorithm HexagonFT needs 2(n?) rounds until a non-faulty configuration is reached.

3.3.3 Termination

We now state our main result:
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» Theorem 1. If a finite number of crashes occur, then the algorithm HexagonFT solves the
hexagon shape formation problem HEX in worst-case O(n?) work (total number of moves
executed by all particles). From the time when no more crashes occur and the configuration
is non-faulty, the algorithm needs O(n) rounds until termination.

4  Conclusion and Future Work

We have shown that our algorithm HexagonFT solves the hexagon shape formation HEX in
our new model. HexagonFT can easily be transferred to other shapes (e.g. square, triangle,
line), and the fault-tolerant implementation of the spanning forest primitive can be used for
algorithms that employ it. We have assumed that there is a unique SEeD particle in the initial
configuration that does not fail. We show that this assumption is justified in a manuscript
in progress in which we prove that the leader election problem can be solved in our fault
tolerance model. Our result is based on the assumption of a finite number of particle crashes.
We have extended our simulation environment AmoebotSim with the fault tolerance model
presented here and implemented our fault-tolerant hexagon shape formation algorithm in it.
In our simulations we observed that HexagonFT terminates successfully even if particle crashes
occur continuously, as long as the rate of crashes is not too high. It could be interesting to
investigate under what assumptions the algorithm terminates, if crashes occur continuously.
Although the upper bound given in Lemma 7 has a matching algorithm-dependent lower
bound, determining a problem-dependent lower bound remains an open problem. It might
be interesting to transfer our ideas to other problems in the amoebot model, for example:
coating problems [9, 5, 8], bridging problems [1] or general shape formation problems. In
view of [11, 15], the question arises, how to deal with particles that permanently crash, i.e.
cannot recover. Further research could investigate model variants, e.g. hybrid models in
which failures can be both temporary and permanent, models in which the system is already
not well-initialised to begin with, and models in the context of self-stabilization. Furthermore,
we propose to investigate how a framework could look like that makes it possible to transform
any algorithm A without error states into an equivalent algorithm A’ with error states that
is robust w.r.t. an adversary as specified above.

—— References

1 Marta Andrés Arroyo, Sarah Cannon, Joshua J Daymude, Dana Randall, and Andréa W Richa.
A stochastic approach to shortcut bridging in programmable matter. Natural Computing,
17(4):723-741, 2018.

2 Joshua J Daymude, Andréa W Richa, and Christian Scheideler. The canonical amoebot
model: Algorithms and concurrency control. In 35th International Symposium on Distributed
Computing, 2021.

3  Joshua J Daymude, Andréa W Richa, and Jamison W Weber. Bio-inspired energy distribu-
tion for programmable matter. In International Conference on Distributed Computing and
Networking 2021, pages 86-95, 2021.

4  Zahra Derakhshandeh, Shlomi Dolev, Robert Gmyr, Andréa W Richa, Christian Scheideler,
and Thim Strothmann. Brief announcement: amoebot—a new model for programmable matter.
In Proceedings of the 26th ACM symposium on Parallelism in algorithms and architectures,
pages 220-222, 2014.

5  Zahra Derakhshandeh, Robert Gmyr, Alexandra Porter, Andréa W Richa, Christian Scheideler,
and Thim Strothmann. On the runtime of universal coating for programmable matter. In
International Conference on DNA-Based Computers, pages 148-164. Springer, 2016.



l. Kostitsyna, C. Scheideler, and D. Warner

6  Zahra Derakhshandeh, Robert Gmyr, Andréa W Richa, Christian Scheideler, and Thim
Strothmann. An algorithmic framework for shape formation problems in self-organizing
particle systems. In Proceedings of the Second Annual International Conference on Nanoscale
Computing and Communication, pages 1-2, 2015.

7  Zahra Derakhshandeh, Robert Gmyr, Andréa W Richa, Christian Scheideler, and Thim
Strothmann. Universal shape formation for programmable matter. In Proceedings of the 28th
ACM Symposium on Parallelism in Algorithms and Architectures, pages 289-299, 2016.

8 Zahra Derakhshandeh, Robert Gmyr, Andréa W Richa, Christian Scheideler, and Thim
Strothmann. Universal coating for programmable matter. Theoretical Computer Science,
671:56-68, 2017.

9  Zahra Derakhshandeh, Robert Gmyr, Andréa W Richa, Christian Scheideler, Thim Strothmann,
and Shimrit Tzur-David. Infinite object coating in the amoebot model. arXiv preprint, 2014.
arXiv:1411.2356.

10  Giuseppe A Di Luna, Paola Flocchini, Nicola Santoro, Giovanni Viglietta, and Yukiko Yamauchi.
Shape formation by programmable particles. Distributed Computing, 33(1):69-101, 2020.

11  Giuseppe Antonio Di Luna, Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Giovanni
Viglietta. Line recovery by programmable particles. In Proceedings of the 19th International
Conference on Distributed Computing and Networking, pages 1-10, 2018.

12 Giuseppe Antonio Di Luna, Paola Flocchini, Nicola Santoro, Giovanni Viglietta, and Yukiko
Yamauchi. Mobile ram and shape formation by programmable particles. In Furopean Conference
on Parallel Processing, pages 343—-358. Springer, 2020.

13 Yuval Emek, Shay Kutten, Ron Lavi, and William K Moses Jr. Deterministic leader election
in programmable matter. arXiv preprint, 2019. arXiv:1905.00580.

14  TIrina Kostitsyna, Christian Scheideler, and Daniel Warner. Brief Announcement: Fault-
Tolerant Shape Formation in the Amoebot Model. In James Aspnes and Othon Michail,
editors, I1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022),
volume 221 of Leibniz International Proceedings in Informatics (LIPIcs), pages 23:1-23:3,
Dagstuhl, Germany, 2022. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik. doi:10.4230/
LIPIcs.SAND.2022.23.

15 Nooshin Nokhanji and Nicola Santoro. Line reconfiguration by programmable particles
maintaining connectivity. In International Conference on the Theory and Practice of Natural
Computing, pages 157-169. Springer, 2020.

16 Tommaso Toffoli and Norman Margolus. Programmable matter: concepts and realization.
Physica. D, Nonlinear phenomena, 47(1-2):263-272, 1991.

A Appendix
A.1 Omitted Proofs

In this section we give all the proofs that have been omitted from the main part due to space
constraints in a rigorous form.

Proof of Lemma 1. Define vgg = (0,0) € Va, doo = 0, dix = (4,3,2,1,0,0)1<k<6 and
d21 = 5. Inductively define n(l,k) = (1 —1,6(l—1)) for Il > 1, k=1, n(l,k) = (I,k — 1)
for 1 >1,1<k<6l,d1=di—1, forl > 2, dyjiqi = dl,l’j(l,l)jL(i,l) forl >2,0<j <5,
2 <i < dijipr = di—yju-ny for 1 > 2,1 <5 <5 v = n(vrp), dery) for I > 1,
1<k <6l 0(ur) = (k) forl >1,1 <k <6l and p(l, k) = n(vrq,k), (dr,r) —1) mod6) for
1>2,1<k<6l, (l,k) # (2,1). By induction the following properties follow: p(l,1) = v;_11
forl > 2, p(l,jl+1) = VI—1,5(1—1)+(i—1) for] >2,0<5<52<i<lp(l,jl+1) = Vi1,5(1-1)
for 1 > 2,1 <j<5anddy = (514,320 1,04 ) <4< for I > 1. This implies
dip = da(p(l,k)) forl >2,1<k<6l (I,k) # (2,1) and that the nodes U1, -, U6 fOT
! > 1 form a single ring of radius [ around the centre (0,0) € VA with corners v; j; for
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1 < j < 6. The nodes in the defined order therefore form a spiral ring around the centre
(0,0), in particular for any ! > 1 and 1 < k < 6l the set of all predecessors of v j, forms a
hexagon with centre (0, 0). <

» Lemma 2 (Retired structure).

R1 At any time, all finished particles are interior particles.

R2 At any time, a finished particle occupying a mnode v; of the spiral ring has its
constructionDir set in the direction of the node vjy1.

R3 An interior particle will always remain an interior particle.

Proof. In an initial configuration the properties hold trivially. Assume the properties hold
for a configuration C. Consider that a particle p becomes retired (Line 13): Assume
that tryToBecomeRetired will change p’s state to RETIRED. Let p be the finished direct
predecessor of p. By R1, p is an interior particle occupying some node v; of the spiral
ring. By R2, p occupies node v;1; of the spiral ring. The structure of the spiral ring is
precisely characterised by Lemma 1 and implemented accordingly in tryToBecomeRetired:
The particles in the first layer of the hexagon are neighbours of the seep. If p has the sEED
as neighbour, then p.constructionDir is uniquely determined by the constructionDir of the
seeD and the position of p relative to the seep (Lines 3-6). If p is a particle beyond the first
layer of the hexagon, then p.constructionDir is, with one exception (Line 12), determined by
the previous layer of the hexagon (Line 14, Figure 3a; the exception is the first particle in the
second layer; the particle is highlighted with a red border). In any case p.constructionDir is
set correctly in the direction of the node v;;o. Therefore, all properties still hold after the
state change. Now we show that an interior particle will always remain an interior
particle: Suppose the contrary. Let ¢; be the first time when an interior particle p gets
activated and subsequently is no interior particle. Since finished particles do nothing and
CRASHED particles become initialized by initializeAfterCrash, we can assume that p is in
state ERROR. Note that all predecessor nodes of the node occupied by p in the spiral ring
around the SEED are occupied by finished or faulty particles. At the end of the activation, p
is no interior particle; we distinguish the following state changes (Line 11):

Case 1: p becomes a rRooT (Line 17): Assume that tryToBecomeRoot will change p’s state
to rooT. Note that p cannot be the successor of the SEED. Since [, # €, p cannot be
entirely surrounded by faulty or finished particles. Let p be the direct predecessor of p in
the spiral ring.

Case a: p is not entirely surrounded by faulty or finished particles: Then, starting at any
finished neighbour of p, all in clockwise direction traversed neighbouring nodes of p up
to and including p are occupied by finished or faulty particles. Since p cannot retire, p
must be faulty. But from this follows [, = €, a contradiction.

Case b: p is entirely surrounded by faulty or finished particles (Figure 3c): By an
analogous argument as in the previous case, the finished particle s (Line 5) must be
the last interior particle in the spiral ring. Since (d — l5) mod 6 < 2, p is one or two
labels counter-clockwise of s.constructionDir w.r.t. s, i.e., p is outside of the retired
structure, a contradiction.

Case 2: p becomes a roLLower (Line 23): Note that the state change in
tryFollowerRecoveryByPropagation only takes place if p.safeState = sare holds. So
we must have p.safeState = sarE after the call of p.updateFlags. By u denote the
node occupied by p and by w the node occupied by the seEp. One of the following two
statements holds:

Case a: There exists a line segment L in G from u to w such that all nodes (except u)
on L are predecessors of u in the spiral ring around the seep.



l. Kostitsyna, C. Scheideler, and D. Warner

Case b: There exists a node v and line segments L1, Ly in G from u to v, and from v
to w, respectively, such that all nodes (except u) on L; and Lo are predecessors of u
in the spiral ring around the SeEED.

We only consider the latter case; in the former case, the proof is analogous. Let p =

P1,-..,p; and pj;,...,pr = SEED be the interior particles occupying the nodes of the line

segments Ly and Lo, respectively. Note that p;y; is a predecessor of p; in the spiral

ring for all 1 <14 < k. To simplify the notation, we assume in the following that local
and global directions correspond. By d; and dy denote the direction of L; and Lo,
respectively. We argue in the following by means of backward analysis: At time ¢; particle
po cannot be finished or in state CRASHED, since otherwise p.safeState # SAFE after the call

of p.updateFlags. Therefore, po must be in state ERROR with ps.safeFlags[1][d1] = SAFE.

Let to be the time before t; when py was last activated. At time t, particle p3 cannot
be finished or in state CRASHED, since otherwise py.safeFlags[1][dq1] # sare. Therefore,
ps must be in state ERROR with ps.safeFlags[1][d1] = saFe. By repeated application
of the argument, it follows that at some time ¢;_;, p; must be in state ERROR with
pj.safeFlags[l][di] = saFE, and therefore p;.safeFlags[0][d2] = sarE. Further repeated
application of the argument finally yields that at some time t;_o, pr—1 must be in
state ERROR with py_1.safeFlags[0][d2] = saFE, contradicting that py_; has the finished
neighbour pj = SEED. |

» Lemma 3 (Roots). At any time, the following root property holds: The head of a ROOT
particle is adjacent to an interior particle.

Proof. In an initial configuration the root property holds trivially. Assume the root property
holds for a configuration C. By C’ denote the successor configuration of C. One can easily
check that a particle p becomes a rRooT by tryToBecomeRoot (HexagonFT: Line 17) only
if it has a finished neighbour ¢, and that tryToBecomeRoot ensures that the head of p is
adjacent to ¢. By R1, ¢ is an interior particle. Therefore, the root property holds for p in
C’. Now let p be a rooT in C. By R3, an interior particle will always remain an interior
particle. Therefore, the root property for p could only be violated in C’ by movement of p
(HexagonFT: Line 32):

Case 1: p is an expanded FOLLOWER or ROOT that has no blocking tail neighbour: Since p
contracts into its head, the root property holds for p in C’.

Case 2: p is a contracted tail FOLLOWER of a FOLLOWER or ROOT particle g: Since p pushes ¢
into its head, the root property holds for ¢ in C".

Case 3: p is a contracted rooT and updateMoveDir(p) succeeds: In both subcases: After
the expansion, the position of p’s head has changed. Due to the choice of label by
computeMoveLabel and making it a head label, p still has a finished (and therefore
interior) particle adjacent to its head in C’, so the root property holds for p in C’. <

» Lemma 4 (Followers). At any time, the following properties hold:
F1 For a FoLLOWER particle p, there is a simple path in A(C) from p to a tree root.
F2 Ifpy,...,pr is a segment and | the label of p1 for the port leading to pa, then one of the
two following statements holds:
a. pp.state = CRASHED or (p;.state = ERROR and p;.hasInvalidated[l] = raLse) or
b. p;.state = ERROR and p.hasInvalidated[l] = TRrRUE, and one of the three following
statements holds:
i. There exists 1 < j < k such that p;.pathToRootState = mvvarm for all 1 < i < j
and p;.pathToRootState = INVALIDATE.
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ii. p;.pathToRootState = INvALID for all 1 < i < k and (px crashed after p; or
pr-pathToRootState = INVALIDATE)

ili. There exists 1 < j < k such that p;.pathToRootState = INvALID for all 1 < i < j
and p;.pathToRootState = vALID, and there is a simple path in A(C) from p; to a
tree root, on which all faulty particles crashed after py.

Proof. In an initial configuration the properties holds trivially. Assume the properties holds
for a configuration C. We show in the following that the properties remain true for the
successor configuration C’ of C resulting from a crash or a configuration change by the
algorithm. Particle crash: Clearly, F1 remains true. For F2 assume that an exterior
particle p crashes and let S = (p1,...,px) be a segment in A(C"). We consider the following
cases:

Case 1: pis not a particle on segment S: Clearly, F2 holds for S in C’.

Case 2: p = py: F2a holds for S in C’.

Case 3: p = pi and p; # pi: It is sufficient to show that in the case of F2b one of the three
properties holds for S in C’.

Case a: p;.pathToRootState = INvALID for all 1 < ¢ < k: F2(b)i holds for S in C’.

Case b: There exists 1 < j < k such that p;.pathToRootState = INvALID for all 1 < < j
and p;.pathToRootState # INvaLD: If p;.pathToRootState = INVALIDATE, then F2(b)i
holds for S in C”. Assume p;.pathToRootState = vaLip. By F1, there is a simple path
P in A(C) from p; to a tree root.

Case: There is no faulty particle on P: F2(b)iii holds for S in C’.

Case: There is a faulty particle on P: Let ¢ be the first faulty particle on P. The path
from py to g in A(C) is a segment for which F2(b)iii holds in C'. Together with the fact
that py crashed after pq, it follows that there is a simple path in A(C") from p; to a
tree root, on which all particles crashed after p;. Therefore, F2(b)iii holds for S in C”.

Initialization of crashed particle: Assume a crASHED particle p of a segment calls

initializeAfterCrash (HexagonFT, Line 5). After the initialization it holds p.state = ERROR

and p.hasInvalidated|l] = raLse for all port labels I. It is immediately apparent that all

properties still hold. State change (HexagonFT, Lines 11-21):

Case 1: p becomes a rRooT or RETIRED: Consider F1: For a FOLLOWER ¢, there is a simple
path in A(C) to a tree root. If a particle p on the path becomes a ROOT or RETIRED, two
cases are possible: the path is shortened or split into two paths, in both cases F1 still
applies. For F2 consider that a particle p of a segment becomes a ROOT or RETIRED. This
results in the segment no longer being a segment, and thus F2 trivially holds.

Case 2: p becomes a FOLLOWER by tryToBecomeFollower: It is obvious that F1 and F2 will
still hold after p has become a FOLLOWER.

State change (HexagonFT, Lines 22-23): p tries to become a FOLLOWER by

tryFollowerRecoveryByPropagation:

Case: if-branch: Let C’ be the successor configuration of C' after p became a FOLLOWER
following q.

Case: g is not on a segment in A(C): By F1, there is a simple path P, = (¢ = ¢, ..., qr),
r >1in A(C) from g to a tree root ¢,. By the definition of a segment, all particles ¢; for
2 < ¢ < r must be non-faulty. Therefore, P, = (p = ¢1,¢ = ¢2,--.,¢,) is a simple path
from p to a tree root in A(C”); in particular, F1 holds for p in C’. Consider F1: Let
P # p be any FOLLOWER particle. By F1, there is a simple path P; in A(C) from p to a
tree root. We only need to consider the case that p lies on P;. Connecting the subpath
of P; from p to p with the path P, results in a path in A(C") from p to a tree root.
Consider F2: Let py,...,pr be a segment in A(C”) and observe that it is also a segment
in A(C). Particle p becoming a roLLOoWER could only have an effect on the validity of
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F2(b)iii: By F2(b)iii, there is a simple path P,, in A(C) from p; to a tree root, on which

all faulty particles crashed after p;. We only need to consider the case that p lies on P,;.

Connecting the subpath of P, from p; to p with the path P, results in a path in A(C")
from p; to a tree root, on which all faulty particles crashed after p;.

Case: g is on a segment p = q1,9 = q2,...,qk, k > 1 in A(C): Note that ¢ is a
FOLLOWER parent candidate of p with ¢.pathToRootState = varip. By F2(b)iii, there
is a simple path P, = (¢ = ¢2,...,q,), 7 > k in A(C) from ¢ to a tree root g,, on which
all faulty particles crashed after p. Therefore, P, = (p = ¢1,4 = g2, .. .,q,) is a simple

path from p to a tree root in A(C"); in particular, F1 holds for p in C’. Consider F1:

Let p # p be any FOLLOWER particle. By F1, there is a simple path P; in A(C) from p to
a tree root. We only need to consider the case that p lies on Ps. Connecting the subpath
of Py from p to p with the path P, results in a path in A(C’) from p to a tree root.

Consider F2: Let S’ = (p1,...,pr) be a segment in A(C").

Case 1: p is not a particle on segment S’: Particle p becoming a FoLLOWER could only have
an effect on the validity of F2(b)iii: By F2(b)iii, there is a simple path P, in A(C) from
p; to a tree root, on which all faulty particles crashed after p;. We only need to consider
the case that p lies on P,,. Connecting the subpath of P, from p; to p with the path P,
results in a path in A(C”") from p; to a tree root, on which all faulty particles crashed
after p;.

Case 2: p is a particle on segment S’: We have p = py» for some 1 < k" < k’. Note that
S = (p1,...,pr) is a segment in A(C). It is sufficient to show that in the case of F2b
one of the three properties holds for S’ in C”.

Case a: F2(b)i holds for S in A(C): Clearly, F2(b)i holds for S’ in A(C").
Case b: F2(b)ii holds for S in A(C): If pyr.pathToRootState = INVALIDATE, then F2(b)ii
clearly holds for S’ in A(C"). If py.pathToRootState # INVALIDATE and pg~ crashed
after py, then F2(b)iii holds for S” in A(C").
Case c: F2(b)iii holds for S in A(C): Clearly, F2(b)iii holds for S” in A(C").
Case: else-branch: It is obvious that the properties will still hold in C”.

Propagation of pathToRootState (HexagonFT, Lines 25—-30): Clearly, F1 remains true.
Furthermore, one can easily check that F2 remains true. Movement (HexagonFT, Line 34):

Clearly, F1 remains true. Only the first else-branch of performMovement may have an effect
on F2. Let p be a contracted tail FOLLOWER of a FOLLOWER or ROOT particle q. Consider
Line 7 of Algorithm 9: After p has pushed g, it occupies the node with its head, which ¢
previously had occupied with its tail. The paths to a tree root that previously ran over
the tail of ¢ now run over the head of p. Therefore and since propagation has already
taken place, p takes on the pathToRootState of q. Together with the fact that the branch
is only executed if q.pathToRootState # INVALIDATE, which ensures that INVALIDATE does not
propagate downwards, this guarantees that F2 still holds after the movement. <

» Lemma 5 (Connectivity). At any time, all particles are connected, i.e., G(C) is one
connected component.

Proof. In an initial configuration all particles are connected. Assume the property holds for
a configuration C. The property could only be violated by a contraction of a particle, which
only occurs in performMovement if p is an expanded FOLLOWER or ROOT that has no blocking
tail neighbour (Line 3 of Algorithm 9). Let ¢ be a neighbour of p before p contracts into its
head and C’ the configuration after p contracted. Since p has no blocking tail neighbour, we
only need to consider the following cases:
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Case 1: ¢ is finished or a rooT By 2 and the definition of a boundary particle, all finished
and boundary particles are connected in C’. By F1, p is connected to a boundary particle
in C’. Since q is finished or, by 3, a boundary particle, in C’, p and ¢ remain connected.

Case 2: ¢ is a FOLLOWER of some particle other than p Similar to the previous case with the
additional observation that, by F1, q is connected to a boundary particle.

Case 3: ¢ is a head follower of p or an IDLE, ERROR or CRASHED particle adjacent to p’s head
Since p contracts into its head, p and ¢ remain connected. |

» Lemma 6. Fvery connected component of IDLE particles is connected to at least one
non-IDLE particle.

Proof. Consider a connected component H of iDLE particles. If H were not connected to a
non-1pLE particle it would follow with 5 that all particles 1DLE, contradicting the fact that
there is always at least one non-idle particle, namely the SeeD. |

The following properties are used in the proof of Theorem 1. As in its proof, we assume
in the following that there is a time ¢t* from which on the configuration is legal.

» Lemma 8. FEventually, every IDLE particle becomes a FOLLOWER, ROOT 0T RETIRED particle.

Proof. Consider a configuration at time ¢ > t*. If there is an 1DLE particle, then by Lemma 6
there exists an IDLE particle p that is connected to a non-IDLE particle. When p is activated,
p becomes a FOLLOWER, ROOT Or RETIRED particle. |

» Lemma 9. FEventually, every expanded particle contracts.

Proof. Consider a configuration at time ¢ > ¢*. By Lemma 8 we can assume that all particles
are non-IDLE. Furthermore, we can assume that all FOLLOWER particles are in path ToRootState
vaLID. Let p be an expanded particle. If p has no tail FOLLOWER, then p can contract. If
p has a contracted tail FOLLOWER or, p is a RoOT and has a contracted rooT with moveDir
set to p’s tail, then p can contract by a handover. If p has an expanded tail FOLLOWER g,
then we can apply this argument recursively for a finite number of steps to conclude that ¢
eventually contracts and therefore also p. |

» Theorem 1. If a finite number of crashes occur, then the algorithm HexagonFT solves the
hexagon shape formation problem HEX in worst-case O(n?) work (total number of moves
executed by all particles). From the time when no more crashes occur and the configuration
is non-faulty, the algorithm needs O(n) rounds until termination.

Proof. By Lemma 7, there is a time from which on the configuration is non-faulty. From

the safety properties in Section 3.3.1 the following statements can be derived:

1. Eventually, every IDLE particle becomes a FOLLOWER, ROOT or RETIRED particle. (Lemma 8)

2. Eventually, every expanded particle contracts. (Lemma 9): This implies in particular
that as long as RoOT particles move, FOLLOWER particles will eventually follow.

3. A roLLOWER that has a finished neighbour becomes a ROOT or RETIRED.

4. A roort will eventually become RETIRED or expand in direction moveDir.

5. All particles eventually become RETIRED.

The proof of these statements is essentially the same as for the analysis of the “classical”

hexagon algorithm (cf. e.g. [7, 8]). Since all particles eventually become RETIRED and RETIRED

particles do nothing, we eventually reach a stable configuration. Together with Lemma 2

this shows that HexagonFT solves HEX. |
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