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—— Abstract

In an upward-planar L-drawing of a directed acyclic graph (DAG) each edge e is represented as a
polyline composed of a vertical segment with its lowest endpoint at the tail of e and of a horizontal
segment ending at the head of e. Distinct edges may overlap, but not cross. Recently, upward-planar
L-drawings have been studied for st-graphs, i.e., planar DAGs with a single source s and a single
sink ¢ containing an edge directed from s to ¢. It is known that a plane st-graph, i.e., an embedded
st-graph in which the edge (s, t) is incident to the outer face, admits an upward-planar L-drawing if
and only if it admits a bitonic st-ordering, which can be tested in linear time.

We study upward-planar L-drawings of DAGs that are not necessarily st-graphs. On the
combinatorial side, we show that a plane DAG admits an upward-planar L-drawing if and only if it
is a subgraph of a plane st-graph admitting a bitonic st-ordering. This allows us to show that not
every tree with a fixed bimodal embedding admits an upward-planar L-drawing. Moreover, we prove
that any acyclic cactus with a single source (or a single sink) admits an upward-planar L-drawing,
which respects a given outerplanar embedding if there are no transitive edges. On the algorithmic
side, we consider DAGs with a single source (or a single sink). We give linear-time testing algorithms
for these DAGs in two cases: (i) when the drawing must respect a prescribed embedding and (ii)
when no restriction is given on the embedding, but the DAG is biconnected and series-parallel.
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1 Introduction

In order to visualize hierarchies, directed acyclic graphs (DAGs) are often drawn in such
such a way that the geometric representation of the edges reflects their direction. To this
aim upward drawings have been introduced, i.e., drawings in which edges are monotonically
increasing curves in the y-direction. Sugiyama et al. [21] provided a general framework for
drawing DAGs upward. To support readability, it is desirable to avoid edge crossings [20, 23].
However, not every planar DAG admits an upward-planar drawing, i.e., an upward drawing
in which no two edges intersect except in common endpoints. A necessary condition is
that the corresponding embedding is bimodal, i.e., all incoming edges are consecutive in the
cyclic sequence of edges around any vertex. Di Battista and Tamassia [12] showed that a
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(a) DAG G. (b) Planar L-drawing. (c) Upward-planar L-drawing of

G —{S,t}.

Figure 1 (a) A single-source series-parallel DAG G. (b) A planar L-drawing of G. (c) An
upward-planar L-drawing of G without the edge {5, t}.

DAG is upward-planar if and only if it is a subgraph of a planar st-graph, i.e., a planar
DAG with a single source and a single sink that are connected by an edge. Based on this
characterization, it can be decided in near-linear time whether a DAG admits an upward-
planar drawing respecting a given planar embedding [5, 8]. However, it is NP-complete
to decide whether a DAG admits an upward-planar drawing when no fixed embedding is
given [16]. For special cases, upward-planarity testing in the variable embedding setting can
be performed in polynomial time: e.g. if the DAG has only one source [6, 9, 19], or if the
underlying undirected graph is series-parallel [14]. Furthermore, parameterized algorithms
for upward-planarity testing exist with respect to the number of sources or the treewidth of
the input DAG [11].

Every upward-planar DAG admits a straight-line upward-planar drawing [12], however
such a drawing may require exponential area [13]. Gronemann introduced bitonic st-orderings
for DAGs [17]. A plane st-graph that admits a bitonic st-ordering also admits an upward-
planar drawing in quadratic area. It can be tested in linear time whether a plane st-graph
admits a bitonic st-ordering [17], and whether a planar st-graph admits a planar embedding
that allows for a bitonic st-ordering [1, 10]. By subdividing some transitive edges once, every
plane st-graph can be extended such that it admits a bitonic st-ordering. Moreover, the
minimum number of edges that have to be subdivided can be determined in linear time,
both, in the variable [1] and the fixed embedding setting [17].

In an L-drawing of a directed graph [4] each edge e is represented as a polyline composed
of a vertical segment incident to the tail of e and a horizontal segment incident to the head
of e. In a planar L-drawing, distinct edges may overlap, but not cross. See Fig. 1b for
an example. The problem of testing for the existence of a planar L-drawing of a directed
graph is NP-complete [10]. On the other hand, every upward-planar DAG admits a planar
L-drawing [3]. A planar L-drawing is upward if the lowest end vertex of the vertical segment
of an edge e is the tail of e (see Fig. 1c). A planar st-graph admits an upward-planar
L-drawing if and only it admits a bitonic st-ordering [10].

Our Contribution. We characterize in Theorem 2 the plane DAGs admitting an upward-
planar L-drawing as the subgraphs of plane st-graphs admitting a bitonic st-ordering. We
first apply this characterization to prove that there are trees with a fixed bimodal embedding
that do not admit an upward-planar L-drawing (Theorem 3). Moreover, the characterization
allows to test in linear time whether any DAG with a single source or a single sink admits
an upward-planar L-drawing preserving a given embedding (Theorem 5).
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We further show that every single-source acyclic cactus admits an upward-planar L-
drawing by directly computing the x- and y-coordinates as post- and pre-order numbers,
respectively, in a DFS-traversal (Theorem 4). The respective result holds for single-sink
acyclic cacti. Finally, we use a dynamic-programming approach combined with a matching
algorithm for regular expressions to decide in linear time whether a DAG with a single source
or a single sink has an embedding admitting an upward-planar L-drawing if it is biconnected
and series-parallel (Theorem 7). Observe that a plane st-graph does not necessarily admit
an upward-planar L-drawing if the respective graph with reversed edges does. This justifies
studying single-source and -sink graphs independently. Full details for proofs of statements
marked with (x) can be found in the full version of the paper [2].

2 Preliminaries

For standard graph theoretic notations and definitions we refer the reader to [22].

Digraphs. A directed graph (digraph) G = (V, E) is a pair consisting of a finite set V of
vertices and a set E of edges containing ordered pairs of distinct vertices. A vertex of a
digraph is a source if it is only incident to outgoing edges and a sink if it is only incident to
incoming edges. A walk is a sequence of vertices such that any two consecutive vertices in the
sequence are adjacent. A path is a walk with distinct vertices. In this work we assume that
all graphs are connected, i.e., that there is always a path between any two vertices. A cycle
is a walk with distinct vertices except for the first and the last vertex which must be equal.
A directed path (directed cycle) is a path (cycle) where for any vertex v and its successor v in
the path (cycle) there is an edge directed from w to v. In the following, we only consider
acyclic digraphs (DAGs), i.e., digraphs that do not contain directed cycles. A DAG is a tree
if it is connected and contains no cycles. It is a cactus if it is connected and each edge is
contained in at most one cycle.

Drawings. In a drawing (node-link diagram) of a digraph vertices are drawn as points in
the plane and edges are drawn as simple curves between their end vertices. A drawing of
a DAG is planar if no two edges intersect except in common endpoints. A planar drawing
splits the plane into connected regions — called faces. A planar embedding of a DAG is the
counter-clockwise cyclic order of the edges around each vertex according to a planar drawing.
A plane DAG is a DAG with a fixed planar embedding and a fixed unbounded face.

The rotation of an orthogonal polygonal chain, possibly with overlapping edges, is defined
as follows: We start with rotation zero. If the curve bends to the left, i.e., if there is a
convex angle to the left of the curve, then we add 7/2 to the rotation. If the curve bends
to the right, i.e., if there is a concave angle to the left of the curve, then we subtract m/2
from the rotation. Moreover, if the curve has a 27 angle to the left, we handle this as two
concave angles and if there is a 0 angle to the left, we handle this as two convex angles. The
rotation of a simple polygon — with possible overlaps of consecutive edges — traversed in
counterclockwise direction is 2.

Single-source series-parallel DAGs. Series-parallel digraphs are digraphs with two distin-
guished vertices, called poles, and can be defined recursively as follows: A single edge is a
series-parallel digraph. Given k series-parallel digraphs Gy, ..., Gy (components), with poles
v, Ui, © = 1,..., k, a series-parallel digraph G with poles v and u can be obtained in two
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(a) DAG not upward-planar. (b) Decomposition-tree. (c) Embedding not
upward-planar.

Figure 2 a) A bimodal single-source series-parallel DAG that is not upward-planar b) with its
decomposition-tree. ¢) A single-source series-parallel DAG with an embedding that is not upward-
planar. However, the DAG with a different embedding is upward-planar.

ways: by merging v1,...,v, and uq, ..., uk, respectively, into the new poles v and w (parallel
composition), or by merging the vertices u; and v;11, ¢ = 1,...,k — 1, and setting u = u
and v = vy, (series composition). The recursive construction of a series-parallel digraph is
represented in a decomposition-tree T'. We refer to the vertices of T as nodes. The leaves
(vertices of degree one) of the decomposition-tree are labeled (3 and represent the edges. The
other nodes (inner nodes) are labeled P for parallel composition or S for series composition.
No two adjacent nodes of T" have the same label. Fig. 2b shows the decomposition-tree of
the graph in Fig. 2a. Let u be a node of T. We denote by T'(11) the subtree rooted at p and
by G(u) the subgraph of G corresponding to T'(u), i.e., the subgraph of G formed by the
edges corresponding to the leaves of T'(u). The vertices of G(p) that are different from its
poles are called internal. Given an arbitrary biconnected digraph G, it can be determined in
linear time whether it is series-parallel, and a decomposition-tree of G can be computed also
in linear time [18]. Moreover, rooting a decomposition-tree of a biconnected series-parallel
digraph G at an arbitrary inner node yields again a decomposition-tree of G.

In the following, we assume that G is a series-parallel DAG with a single source (sink) s.
If G has more than one edge, we root the decomposition-tree T" at the inner node incident to
the Q-node corresponding to an edge incident to s. This implies that for any node u of T' no
internal vertex of G(u) can be a source (sink) of G(1) and at least one of the poles of G(1)
is a source (sink) of G(u).

It follows from [6] that every single-source series-parallel DAG is upward-planar if each
vertex is incident to at most one incoming or at most one outgoing edge. However, even in
that case, not every bimodal embedding is already upward-planar, see Fig. 2c. Moreover,
not every single-source series-parallel DAG is upward-planar, even if it admits a bimodal
embedding, see Fig. 2a. The reason for that is a P-node p with two children p; and ps such
that a pole N of G(u) is incident to an incoming edge in G — G(1), and to both incoming
and outgoing edges in both, G(p1) and G(pz2). Bimodal single-source series-parallel DAGs
without this property are always upward-planar [2].

Given an upward-planar drawing of G with distinct y-coordinates for the vertices, we
call the pole of G(u) with lower y-coordinate the South pole of G(u) and the other pole
the North pole of G(u). Observe that the South (North) pole of G is the unique source
(sink) s. If u is a P-node with children gy, ..., pe, then the South pole of G(u;),i=1,...,¢
is the South pole of G(u). Finally, if 4 is an S-node with children p1, ..., ue, then observe
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(a) Valley. (b) Fixed. (c) Variable.

Vj4+1

Figure 3 (a) Forbidden configuration for bitonic st-orderings. (b+c) Single-source series-parallel
plane DAG that does not admit an upward-planar L-drawing since it contains a valley, in case (c) in
any upward-planar embedding.

that at most one among the components G(u;), i = 1,...,¢ can have more than one source
(sink) — otherwise G’ would have more than one source (sink). The South (North) pole of all
other components is their unique source (sink).

Bitonic st-ordering. A planar st-graph is a planar DAG with a single source s, a single
sink ¢, and an edge (s,t). An st-ordering of a planar st-graph is an enumeration 7 of the
vertices with distinct integers, such that 7(u) < m(v) for every edge (u,v). A plane st-graph
is a planar st-graph with a planar embedding in which the edge (s, t) is incident to the outer
face. Every plane st-graph admits an upward-planar drawing [12].

For each vertex v of a plane st-graph, we consider the ordered list S(v) = (v, va,...,v)
of the successors of v as they appear from left to right in an upward-planar drawing. An
st-ordering of a plane st-graph is bitonic, if there is a vertex vy, in S(v) = (v1,v2,..., k)
such that 7(v;) < 7(vig1), ¢ =1,...,h — 1, and 7(v;) > 7(vi41), ¢ = h,...,k — 1. We say
that the successor list S(v) = (v1,va,...,vx) of a vertex v contains a walley if there are
1 <@ < j <k such that there are both, a directed v;-v;_1-path and a directed v;-v;4-path
in G. See Fig. 3. Gronemann [17] characterized the plane st-graphs that admit a bitonic
st-ordering as follows.

» Theorem 1 ([17]). A plane st-graph admits a bitonic st-ordering if and only if the successor
list of mo vertex contains a valley.

3 Upward-Planar L-Drawings — A Characterization

A plane st-graph admits an upward-planar L-drawing if and only it admits a bitonic st-
ordering [10]. We extend this result to general plane DAGs and discuss some consequences.

» Theorem 2. A plane DAG admits an upward-planar L-drawing if and only if it can be
augmented to a plane st-graph that admits an upward-planar L-drawing, i.e., a plane st-graph
that admits a bitonic st-ordering.

Proof. Let G be a plane DAG. Clearly, if an augmentation of G admits an upward-planar
L-drawing, then so does G. Let now an upward-planar drawing of G be given. Add a directed
triangle with a new source s, a new sink ¢, and a new vertex x enclosing the drawing of G.
As long as there is a vertex v of G that is not incident to an incoming or outgoing edge,
shoot a ray from v to the top or the right, respectively, until it hits another edge and follow
the segment to the incident vertex — recall that one end of any segment is a vertex and one
end is a bend. The orientation of the added edge is implied by the L-drawing. The result is
an upward-planar L-drawing of a digraph with the single source s and the single sink . <«
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Figure 4 DAGs that do not admit an upward-planar L-drawing even though they do not contain
a valley. Dashed edges indicate augmentations and are not part of the DAG.

Observe that every series-parallel st-graph admits a bitonic st-ordering [1, 10] and, thus,
an upward-planar L-drawing. This is no longer true for upward-planar series-parallel DAGs
with several sources or several sinks. Figs. 3b and 3c show examples of two single-source
upward-planar series-parallel DAGs that contain a valley. There are even upward-planar
series-parallel DAGs with a single source or a single sink that do not admit an upward-planar
L-drawing, even though the successor list of no vertex contains a valley.

Consider the DAG G in Fig. 4a (without the dashed edge). G has a unique upward-planar
embedding. Since no vertex has more than two successors there cannot be a valley. Assume
G admits a planar L-drawing. By Theorem 2 there should be an extension of G to a
plane st-graph G’ that admits a bitonic st-ordering. But the internal source w can only be
eliminated by adding the edge (v, w). Thus w is a successor of v in G’. Hence, the successor
list of v in G’ contains a valley. By Theorem 1, G’ is not bitonic, a contradiction.

Now consider the DAG G in Fig. 4b (without the dashed edge). G has two symmetric
upward-planar embeddings: with the curved edge to the right or the left of the remainder of
the DAG. We may assume that the curved edge is to the right. But then an augmentation to a
plane st-graph G’ must contain the dashed edge, which completes a valley at the single source
and its three rightmost outgoing edges. By Theorem 1, G’ is not bitonic, a contradiction.

A planar L-drawing is upward-leftward [10] if all edges are upward and point to the left.

» Theorem 3 (Trees). Every directed tree admits an upward-leftward planar L-drawing, but
not every tree with a fized bimodal embedding admits an upward-planar L-drawing.

Proof. If the embedding is not fixed, we can construct an upward-planar L-drawing of the
input tree by removing one leaf v and its incident edge e, drawing the smaller directed tree
inductively, and inserting the removed leaf into this upward-leftward planar L-drawing. To
this end let u be the unique neighbor of v. We embed e as the first incoming or outgoing
edge of u, respectively, in counterclockwise direction, and draw v slightly to the right and
below u, if e is an incoming edge of u, or slightly to the left and above u, if e is an outgoing
edge of v. This guarantees that the resulting L-drawing is upward-leftward and planar.
When the embedding is fixed, we consider a family of plane trees T}, k > 1, proposed
by Frati [15, Fig. 4a], that have 2k vertices and require an exponential area ©(2%/2) in any
embedding-preserving straight-line upward-planar drawing; see Fig. 4c. We claim that, for
sufficiently large k, the tree T} does not admit an upward-planar L-drawing. Suppose, for
a contradiction, that it admits one. By Theorem 2, we can augment this drawing to an
upward-planar L-drawing of a plane st-graph G with n = 2k + 3 vertices. This implies
that G admits a bitonic st-ordering [10]. Hence, G (and thus T}) admits a straight-line
upward-planar drawing in quadratic area (2n — 2) x (n — 1) [17], a contradiction. <
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(a) Cactus with post- and pre-order numbers as coordinates. (b) Augmentation.

Figure 5 (a) Single-source acyclic cactus. The dashed edges are the last edges on a left path cycles.

(b) A new sink ¢ and the dashed edges augment a plane single-source DAG to a plane st-graph.

4 Single-Source or -Sink DAGs with Fixed Embedding

In the fixed embedding scenario, we first prove that every single-source or -sink acyclic cactus
with no transitive edge admits an upward-planar L-drawing and then give a linear-time

algorithm to test whether a single-source or -sink DAG admits an upward-planar L-drawing.

» Theorem 4 (Plane Single-Source or Single-Sink Cacti). Every acyclic cactus G with a single
source or single sink admits an upward-leftward outerplanar L-drawing. Moreover, if there
are no transitive edges (e.g., if G is a tree) then such a drawing can be constructed so to
maintain a given outerplanar embedding.

Proof. We first consider the case that G has a single source s. Observe that then each
biconnected component C' of G (which is either an edge or a cycle) has a single source, namely
the cut-vertex of G that separates it from the part of the DAG containing s. This implies
that C also has a single sink (although G' may have multiple sinks, belonging to different
biconnected components). In particular, if C' is a cycle, it consists of a left path P, and a
right path P, between its single source and single sink. By flipping the cycle C' — maintaining
outerplanarity — we can ensure that P, contains more than one edge. Note that this flipping
is only performed if there are transitive edges. Consider the tree T' that results from G by
removing the last edge of every left path.

We perform a depth-first search on T starting from s where the edges around a vertex
are traversed in clockwise order. We enumerate each vertex twice, once when we first meet it
(DFS-number or preorder number) and once when we finally backtrack from it (postorder
number). To also obtain that each edge points to the left, backtracking has to be altered
from the usual DFS: Before backtracking on a left path P, of a cycle C, we directly jump to

the single source s¢ of C' and continue the DFS from there, following the right path P, of C.

Only once we have backtracked from the single sink to of C', we give each vertex on P,
excluding s¢, a postorder number and then we continue backtracking on P,. See Fig. 5a.

Let the y-coordinate of a vertex be its preorder number and let the x-coordinate be its
thus constructed postorder number. Since each vertex has a larger preorder- and a lower
postorder-number than its parent, the drawing is upward-leftward. In [2] we prove that
it is also planar and preserves the embedding, which was updated only in the presence of
transitive edges.
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Now consider the case that G has a single sink. Flip the embedding, i.e., reverse the linear
order of the incoming (outgoing) edges around each vertex. Reverse the orientation of the
edges, construct the drawing of the resulting single-source DAG, rotate it by 90 degrees in
counter-clockwise direction, and mirror it horizontally. This yields the desired drawing. <«

General DAGs. Two consecutive incident edges of a vertex form an angle. A large angle in
an upward-planar straight-line drawing is an angle greater than m between two consecutive
edges incident to a source or a sink, respectively. An upward-planar embedding of an upward-
planar DAG is a planar embedding with the assignment of large angles according to a
straight-line upward-planar drawing. For single-source or single-sink DAGs, respectively, a
planar embedding and a fixed outer face already determine an upward-planar embedding [6].

An angle is a source-switch or a sink-switch, respectively, if the two edges are both
outgoing or both incoming edges of the common end vertex. Observe that the number A(f)
of source-switches in a face f equals the number of sink-switches in f. Bertolazzi et al. [5]
proved that in biconnected upward-planar DAGs, the number L(f) of large angles in a
face f is A(f) — 1, if f is an inner face, and A(f) + 1, otherwise, and mentioned in the
conclusion that this result could be extended to simply connected graphs. An explicit proof
for single-source or -sink DAGs can be found in [2].

» Theorem 5. Given an upward-plane single-source or single-sink DAG, it can be tested in
linear time whether it admits an upward-planar L-drawing.

In the following, we prove the theorem for a DAG G with a single source s; the single-sink
case is discussed in [2]. In an upward-planar straight-line drawing of G, the only large angle
at a source-switch is the angle at s in the outer face. Thus, in the outer face all angles at
sink-switches are large and in an inner face f all but one angle at sink-switches are large.
For an inner face f, let top(f) be the sink-switch of f without large angle. See Fig. 5b.

» Lemma 6. Let G be a single source upward-planar DAG with o fized upward-planar
embedding, let f be an inner face, and let v be a sink with a large angle in f. Every plane
st-graph extending G contains a directed v-top(f )-path.

Proof. Consider a planar st-graph extending G. In this graph there must be an outgoing
edge e of v towards the interior of f. Let w be the head of e. Follow a path from w on the
boundary of f upward until a sink-switch v’ is met. If this sink-switch is top(f), we are
done. Otherwise continue recursively by considering an outgoing edge e’ of v’ toward the
interior of f. Eventually this process terminates when top(f) is reached. |

Proof of Theorem 5, single-source case. Let G be an upward-planar single-source DAG
with a fixed upward-planar embedding. Let G’ be the DAG that results from G by adding
in each inner face f edges from all sinks with a large angle in f to top(f) and by adding a
new sink ¢ together with edges from all sink-switches on the outer face. We will show that G
admits an upward-planar L-drawing if and only if G’ does. This implies the statement, since
testing whether G’ admits a bitonic st-ordering can be performed in linear time [17].

Clearly, if G’ O G admits an upward-planar L-drawing, then so does G. In order to prove
the other direction, suppose that G has an upward-planar L-drawing. In order to prove that
G’ admits an upward-planar L-drawing, we show that it is a planar st-graph that admits a
bitonic st-ordering [10]. To show this, we argue that G’ is acyclic, has a single source and a
single sink, and the successor list of no vertex contains a valley by Theorem 1.
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Figure 6 The different types of a path between the poles. (a,b) South types; (c-h) North types.

Namely, the edges to the new sink ¢ cannot be contained in any directed cycle. Furthermore,
by Theorem 2, there is an augmentation G” of G such that (a) G” is a planar st-graph and
such that (b) G” admits an upward-planar L-drawing. By Lemma 6, the edges added into
inner faces of G either belong to G” or are transitive edges in G”. Thus, G’ is acyclic.

Since G’ does not have more sources than G, there is only one source in G’. Each sink has
a large angle in some face. Thus, in G’ each vertex other than ¢ has at least one outgoing edge.
Therefore, G’ is a planar st-graph.

Assume now that there is a face f with a sink w such that the edge (w,top(f)) would
be part of a valley at a vertex v in G’, i.e., assume there are successors v;_1, v;, v, Vj+1 of v
from left to right (with possibly v; = v;) such that there is both, a directed v;-v;_1-path
and a directed vj-v;41-path. Since the out-degree of w in G’ is one, it follows that w # v.
Thus, (w,top(f)) could only be part of the v;-v;_1-path or the vj-v;41-path. But then, by
Lemma 6, there would be such a path in any augmentation of G to a planar st-graph. Finally,
the edges incident to ¢ cannot be involved in any valley, since all the tails have out-degree 1.
Thus, G’ contains no valleys. <

5 Single-Source or -Sink Series-Parallel DAGs with Variable Embedding
The goal of this section is to prove the following theorem.

» Theorem 7. [t can be tested in linear time whether a DAG with a single source or a single
sink admits an upward-planar L-drawing if it is biconnected and series-parallel.

In the following we assume that G is a biconnected series-parallel DAG.

Single Source. We follow a dynamic-programming approach inspired by Binucci et al. [7]
and Chaplick et al. [11]. We define feasible types that combinatorially describe the “shapes”
attainable in an upward-planar L-drawing of each component. We show that these types
are sufficient to determine the possible types of a graph obtained with a parallel or series
composition, and show how to compute them efficiently. The types depend on the choice of
the South pole as the bottommost pole (if it is not uniquely determined by the structure of the
graph, e.g., if one of them is the unique source), and on the type of the leftmost S-N-path Py,
and the rightmost S-N-path Pg between the South-pole S and the North-pole N. Observe
that Py, and Pr do not have to be directed paths.

More precisely, the type of an S-N-path P is defined as follows: There are two South-types
depending on the edge incident to S: L (outgoing edge bending to the left; Fig. 6a) and
R (outgoing edge bending to the right; Fig. 6b). For the last edge incident to the North
pole N we have in addition the types for the incoming edges: W (incoming edge entering
from the left — West; Fig. 6e) and E (incoming edge entering from the right — Fast; Fig. 6f).
For the types R and L we further distinguish whether P passes to the left of N (R¢/Lcc;
Figs. 6¢ and 6d) or to the right of N (R¢/L¢; Figs. 6g and 6h): Let h be the horizontal line
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not right-free not left-free
at N at S
X left-free f right-free
at N at S
left- and right-free at S left- and right-free at N' ©)

(a) ((E,L),(L°, R)) (b) {((R°°,R),(R"°,R)) (c) {((R%, R), (R, R)) (d) Parallel composition.

Figure 7 (a—c) Illustrations for types of a component. (d) A parallel composition of eight compon-
ents of the following types: ((R°,L),(W, L)), (W, L),(W, L)), (W, L),(W, L)), (W,L),(E, L)),
((E,L), (E, L)) single edge, ((E, R), (E, R)) not left-free at N, ((R°, R), (R, R)). The result is of
type <(RCC’ L)v (Rcv R)>

through N. We say that P passes to the left (right) of N if the last edge of P (from S to N)
that intersects h does so to the left (right) of N. Thus, there are six North-types for a path
between the poles: R, L, W, E, R°, L°. The superscripts ¢ and cc stand for clockwise and
counter-clockwise, respectively, to denote the rotation of a path that passes to the left (right)
of N, when walking from N to S. This is justified in the next lemma and depicted e.g., in
Fig. 7a, where the right S-N-path has type L€, since (walking from N to S) it first bends to
the left and then passes to the right of N by rotating clockwise.

» Lemma 8 (x). Let G be a series-parallel DAG with no internal sources. Let an upward-
planar L-drawing of G be given where the poles S and N are incident to the outer face and S is
below N. Let P be a not necessarily directed S-N-path. Let P’ be the polygonal chain obtained
from P by adding a vertical segment pointing from N downward. The rotation of P’ is

m if the type of P at N is in {E, L€, R}.

—m if the type of P at N is in {L°, R, W }.

We say that the type of a path between the poles is (X, x), if X is the North-type and x
is the South-type of the path, e.g., the type of a path that bends right at the South-pole,
passes to the right of the North-pole and ends in an edge that leaves the North-pole bending
to the left is (L€, R), see Pg in Fig. 7a. For two North-types X and Y, we say X <Y if X
is before Y in the ordering [RL“W ER°L¢]. The South-types are ordered L < R. For two
types (X, ) and (Y, y) we say that (X,z) < (Y,y) if X <Y and z < y, and (X, z) < (Y, )
if (X,z)<(Y,y)and X <Y orz <.

The type of a component is determined by eight entries, whether the component is a
single edge or not, the choice of the bottommost pole (South pole), the type of P, the
type of Pgr, and additionally four FREE-flags: For each pole, two flags left-free and right-free
indicating whether the bend on Pr, and Pg, respectively, on the edge incident to the pole is
free on the left or the right, respectively: More precisely, let P be an S-N-path and let e be
an edge of P incident to a pole X. We say that e is free on the right (left) at X if e bends
to the right (left) — walking from S to N — or if the bend on e is not contained in an edge
not incident to X. See Figs. 7b and 7c. We denote a type by ((X, ), (Y,y)) where (X, z) is
the type of P, and (Y,y) is the type of Pg without explicitly mentioning the flags or the
choice of the South pole. Observe that ¥ < L¢ if X = R and ((X,z),(Y,y)) is the type
of a component. Fig. 7d illustrates how components of different types can be composed in
parallel.

» Lemma 9 (Parallel Composition (x)). A component C' of type (X, z), (Y, y)) with the given
four FREE-flags can be obtained as a parallel composition of components C1,...,Cy of type
(X1,21), Y1,91)) -, (X, xe), (Ye,ye)) from left to right at the South pole if and only if
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X1=X. V=Y, z1=x, y =y,
C is left(right)-free at the North- and South-pole, respectively, if and only if Cy (Cy) is,
Y, < X, and
C; is right-free if Y; = X; 41 € {R°°, E, R°}
Cit1 is left-free if Y; = X1 € {L°, W, L°}
C; is right-free or Ciyq is left-free if Y; € {L°°, L} and X;41 € {R°, R°} or vice
Versa.
y; = 24401 = L and C; is right-free, or
Yi = Tiv1 = R and Ciy1 is left-free, or
y; = L and x;11 = R and C; is right-free or C;11 is left-free.
and single edges are the first among the components with a boundary path of type (W, R)
and the last among the components with a boundary path of type (E, L).

Sketch of Proof. Since the necessity of the conditions is evident, we shortly sketch how to
prove sufficiency. By construction, we ensure that the angle between two incoming edges is 0
or m and the angle between an incoming and an outgoing edge is 7/2 or 37/2. It remains to
show the following three conditions [10]: (i) The sum of the angles at a vertex is 2, (ii) the
rotation at any inner face is 27, (iii) and the bend-or-end property is fulfilled, i.e., there is

an assignment that assigns each edge to one of its end vertices with the following property.

Let e; and ey be two incident edges that are consecutive in the cyclic order and attached to
the same side of the common end vertex v. Let f be the face/angle between e; and es. Then
at least one among e; and ey is assigned to v and its bend leaves a concave angle in f. <«

Lemma 9 yields a strict order of the possible types from left to right that can be composed
in parallel. Moreover, let o be a sequence of types of components from left to right that can
be composed in parallel and let 7 be a type in ¢. Then Lemma 9 implies that 7 appears
exactly once in ¢ or the leftmost path and the rightmost path have both the same type in 7
and all four free-flags are positive. In that case the type 7 might occur arbitrarily many times
and all appearances are consecutive. Thus, o can be expressed as a simple regular expression
on an alphabet T, i.e., a sequence p of elements in 7 U {*} such that * does not occur as the
first symbol of p and there are no two consecutive * in p. A sequence s of elements in T is
represented by a simple regular expression p if it can be obtained from p by either removing
the symbol preceding a * or by repeating it arbitrarily many times.

Observe that the elements in the simple regular expression p representing o are distinct,
thus, the length of p is linear in the number of types, i.e., constant. In particular, to obtain
a linear-time algorithm to enumerate the attainable types of a series-parallel DAG obtained
via a parallel composition, it suffices to establish the following algorithmic lemma.

» Lemma 10 (Simple Regular Expression Matching (x)). Let T be a constant-size alphabet (set
of types), and p be a constant-length simple reqular expression over T. For a collection C of
items where each C' € C has a set T(C) C T, one can test in O(|C|) time, if there is a selection
of a type from each T(C), C € C that can be ordered to obtain a sequence represented by p.

» Corollary 11. The types of a parallel composition can be computed in time linear in the
number of its children.

In order to understand how the type of a series composition is determined from the types
of the children, let us first have a look at an easy example: Assume that G; and G2 consist
both of a single edge e; and es, respectively, and that the type of both is (W, R). Assume

further that G is obtained by merging the North poles N; and N» of G and G, respectively.
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left- and loftf left- and
right-free not af ;\_f ree right-free
at N at N
right-free
at N
(a) G1 has type L, G2 type L. (b) G1 has type L, G2 type R at Sa.

Figure 8 Different free-flags in the case that the North pole is merged with the South pole.

There are two ways how this can be done, namely e; can be attached to N7 = Ny before e
or after it in the counterclockwise order starting from R and ending at L¢. In the first
case the North type of G is R, in the second case it is R°. Moreover, in the first case G is
left-free but not right-free at the North-pole, while in the second case it is right-free but not
left-free at the South-pole. See Figs. 7b and 7c.

» Lemma 12 (Series Composition). Let Gy and Gy be two series-parallel DAGs with no
internal source that admit an upward-planar L-drawing of a certain type ((X1,z1),(Y1,91))
and (X2, x2), (Ya,y2)), respectively, with the poles on the outer face. Let G be the DAG
obtained by a series combination of G1 and Gy such that the common pole of G1 and G is
not a source in both, Gy and Ga. Then the possible types of G in an upward-planar L-drawing
maintaining the types of G1 and Gy can be determined in constant time.

Proof. Let S; and N;, respectively, be the South and North pole of G;, i = 1,2. We may
assume that S is the South pole of G and, thus, N; is the common pole of G; and Gs.

First suppose that Ny = S5, i.e., that Ny is the North pole of G. It follows that N; cannot
be a source of G;. Then G admits an upward-planar L-drawing if and only if x5 = L and
X1 # R or yo = R and Y] # L€, and the respective FREE-conditions are fulfilled at N3 = Ss.
The South-type of G is the South type of G;. The North-type of G is the North-type of G
except for the FREE-flags, which might have to be updated if the next-to-last edge on the
leftmost or rightmost path, respectively, is already contained in GG; and is an outgoing edge
of Ni. This might yield different North-types concerning the flags. See Fig. 8.

Now suppose that N; = Ny. Then G admits an upward-planar L-drawing if and only if G
can be embedded before Go, i.e., Y1 < X5 and X; < Vs, and not (X; = R and Y> = L) or
G4 can be embedded before Gy, i.e., Yo < X; and X3 < Y7, and not (X2 = R and Y, = L°)
and the respective FREE-conditions are fulfilled at Ny = No. If X3 =Y; = Xo =Y, € {E, W}
then both conditions are fulfilled which might give rise to two upward-planar L-drawings
with distinct labels by adding G2 before or after G; at the common pole. The FREE-flags
might have to be updated if the second edge on the leftmost or rightmost path, respectively,
is already contained in G or if the next-to-last edge on the leftmost or rightmost path,
respectively, is already contained in G; and the type of G at N; equals the respective type
of G5 at N5. Except for the flags, the South-type of G is the South type of G; and the North
type of G yields the North type of G except for the specifications ¢ or cc: First observe that
both, the leftmost path and the rightmost path, either have both type c or both type cc.
Otherwise, G; would be contained in an inner face of G5. The North type of both paths is
indexed c if G5 is embedded before G;. Otherwise, the North type is indexed cc. Regarding
the time complexity, observe that our computation of the set of possible types of G does not
depend on the size of G; and G2, but only on the number of types in their admissible sets.
Since these sets have constant size and the above conditions on the types of G; and G5 can
be tested in constant time, we thus output the desired set in constant time. <
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» Lemma 13. The types of a series composition can be computed in time linear in the
number of its children.

Proof. Let C4,...,Cy be the components of a series component C and let 7(C;),i=1,...,¢
be the set of possible types of C;. For k = 1,...,¢, we inductively compute the set 7; of
possible types of the series combination C* of C1, ..., Cy, where 7, = T(C1). To compute T
for some k = 2,..., ¢, we combine all possible combinations of a type in 7,_1 and a type in
T(Cy) and, applying Lemma 12, we check in constant time which types (if any) they would
yield for C*. Since the number types is constant each step can be done in constant time. <«

Single Sink. For the case that G has a single sink, the algorithmic principles are the same as
in the single-source case. The main difference is the type of an N-S-path P in a component C|
where S and N are the South- and North-pole of C. The North pole of a component is
always a sink and the North-type of P is W or E in this order from left to right. The
South-type is one among E°¢, W€ L, R, E°¢, W< in this order from left to right (according to
the outgoing edges at N), depending on whether the last edge of P (traversed from N to S)
is an incoming edge entering from the left (W) or the right (E), or an outgoing edge bending
to the left (L) or the right (R), and whether the last edge of P leaving the half-space above
the horizontal line through S does so to the right of S (cc) or the left of S (c).

The type consists again of the choice of the topmost pole (North pole), the type of
the leftmost N-S-path, the type of the rightmost N-S-path, the four FREE-flags — which
are defined the same way as in the single source case — and the information whether the
component is a single edge or not.

6 Conclusion and Future Work

We have shown how to decide in linear time whether a plane single-source or -sink DAG
admits an upward-planar L-drawing. A natural extension of this work would be to consider
plane DAGs with multiple sinks and sources, the complexity of which is open. In the variable
embedding setting, we have presented a linear-time testing algorithm for single-source or
-sink series-parallel DAGs. Some next directions are to consider general single-source or -sink
DAGs or general series-parallel DAGs. We remark that the complexity of testing for the
existence of upward-planar L-drawings in general also remains open.
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