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—— Abstract

It is well known [16] that up to isomorphism a graph G is determined by the homomorphism counts
hom(F,G), i.e., by the number of homomorphisms from F to G where F' ranges over all graphs.
Moreover, it suffices that F' ranges over the graphs with at most as many vertices as G. Thus, in
principle, we can answer any query concerning G with only accessing the hom(-, G)’s instead of G
itself. In this paper, we deal with queries for which there is a hom algorithm, i.e., there are finitely
many graphs Fi,..., Fr such that for any graph G whether it is a YEs-instance of the query is
already determined by the vector homp, ..., r, (G) := (hom(F1,G),...,hom(F,G)).

We observe that planarity of graphs and 3-colorability of graphs, properties expressible in monadic
second-order logic, have no hom algorithm. On the other hand, queries expressible as a Boolean
combination of universal sentences in first-order logic FO have a hom algorithm. Even though it
is not easy to find FO definable queries without a hom algorithm, we succeed to show this for the
non-existence of an isolated vertex, a property expressible by the FO sentence Vx3yExy, somehow
the “simplest” graph property not definable by a Boolean combination of universal sentences. These
results provide a characterization of the prefix classes of first-order logic with the property that each
query definable by a sentence of the prefix class has a hom algorithm.

For adaptive hom algorithms, i.e., algorithms that might access a hom(F;11,G) with Fjyq
depending on hom(F},G) for 1 < j <4 we show that three homomorphism counts hom(-, G) are
sufficient and in general necessary to determine the (isomorphism type of) G. In particular, by three
adaptive queries we can answer any question on G. Moreover, adaptively accessing two hom(-, G)’s
is already enough to detect an isolated vertex.

In 1993 Chaudhuri and Vardi [6] showed the analogue of the Lovasz Isomorphism Theorem for
the right homomorphism vector of a graph G, i.e, the vector of values hom(G, F) where F' ranges
over all graphs characterizes the isomorphism type of G. We study to what extent our results carry
over to the right homomorphism vector.
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On Algorithms Based on Finitely Many Homomorphism Counts

1 Introduction

In [16], one of the first papers on graph homomorphisms, Lovész proved that graphs G and H
are isomorphic if and only if for all graphs F' the number hom(F, G) of homomorphisms from F
to G is equal to the number hom(F, H) of homomorphisms from F' to H. Recently, this result
has attracted a lot of attention in various contexts, e.g., algorithms and complexity [3, 9],
machine learning [2, 14], and logic [1, 15]. Among others, it provides a powerful reduction of
problems concerning graph structures to questions on the number of homomorphisms.

Lovasz’ result says that the infinite vector hom(G) := (hom(F, G))F a graph determines the
graph G up to isomorphism. For a class C of graphs set hom¢(G) := (hom(F, G)) pec. Using
Lovasz’ Cancellation Law [17] (see Theorem 7.9) it is easy to see that for some classes C,
including the class of 3-colorable graphs and the class of graphs that can be mapped
homomorphically to an odd cycle, homc(G) already determines G up to isomorphisms. A
further example: the class of 2-degenerate graphs has this property [12]. For other natural
classes of graphs, ﬁc (G) does not have the full power of distinguishing non-isomorphic
graphs but characterizes interesting graph properties (e.g., see [10]).

We turn to results more relevant for the algorithmic problems we are interested in.
Actually Lovasz’ proof shows that in order to determine the isomorphism type of G it is
sufficient to consider the homomorphism counts hom(F, G) for the graphs F' with at most as
many vertices as G. As a consequence, given an oracle to hom(G), we might answer any query
by first recovering G and then computing the query on G. However, such a naive algorithm
requires exponentially many entries in hom(G), i.e., hom(F,G) for all isomorphism types
of graphs F with at most as many vertices as (G, rendering any practical implementation
beyond reach. _

There are queries that can be answered very easily using hom(G), e.g., to decide whether G
has a clique of size k, all we need to know is hom (K}, G) where K, is the complete graph
on k vertices. So ideally, one would hope that to answer a query on G it suffices to access
}m(G) for finitely many fixed graphs independent of G.

The question of using hom(G) to answer queries algorithmically has been raised before.
In [9] Curticapean et al. observed that counting (induced) subgraphs isomorphic to a
fixed graph F' can be reduced to computing appropriate linear combinations of subvectors
of hom(G). Thereby they introduced the so-called graph motif parameters. Using this
framework, they were able to design some algorithms faster than the known ones to count
various specific subgraphs and induced subgraphs. These results can be understood as
answering counting queries using hom(-, G)’s. More explicitly, Grohe [15] asked whether it is
possible to answer any ck H_query in polynomial time by accessing hom(F, G) for graphs F of
tree-width bounded by k. Here, C*™! denotes counting first-order logic with k1 variables [5].
Observe that without the polynomial time constraint such an algorithm exists because graphs
G and H cannot be distinguished by C**1 if and only if hom(F, G) = hom(F, H) for finitely
many graphs F' of tree-width bounded by k [12] (see also [10]).

Our contributions

In this paper we study what Boolean queries (equivalently, graph properties) can be answered
using a constant number of homomorphism counts. More precisely, let C be a class of graphs
closed under isomorphism. We ask: are th_e;e graphs Fi, ..., Fj such that for any graph G
whether G € C can be decided knowing homp, g, (G) := (hom(F1, G), ..., hom(Fy, G)).
In Section 4 we observe that this is the case if C can be defined by a sentence of first-order
logic (FO) that is a Boolean combination of universal sentences. For d > 1 this includes the
class of graphs of maximum degree d, of tree-depth [7] exactly d, and the class of graphs of



Y. Chen, J. Flum, M. Liu, and Z. Xun

SC-depth [8] exactly d (but also the classes where we replace “exactly d” by “at most d”).

On the negative side, in Section 6 we show that for any £k > 1 and any Fi, ..., Fj there are
graphs G and H such that

— —
homp, . . p (G) =homp g (H) and G contains an isolated vertex but H does not.

That is, any hO—I>1'1F1’_”, F,(G) is not sufficient to detect the existence of an isolated vertex
in G. This is our technically most challenging result; it requires non-trivial arguments using
linear algebra. We introduce some of the tools and construction methods needed in this
proof already in Section 5, thereby showing the corresponding result for the class of planar
graphs and the class of 3-colorable graphs.

A graph G has no isolated vertex if it satisfies the FO-sentence Vr3yExy. Thus we know
for what quantifier-prefix classes of FO-sentences all queries definable by a sentence of the
class can be answered by homp, g, (G) for some F, ..., Fy independent of G.

Answering a query using homp, . g, (-) can be phrased as an algorithm checking this
query with non-adaptive access to hom(G) on entries Fi,..., Fy. It is also very natural to
allow access to }m—n>1(G) to be adaptive. Informally, on input G an adaptive hom algorithm
still queries some hom(Fy,G), ..., hom(Fy,G), but for i = 0,...,k — 1 the choice of F;;q
might depend on hom(Fy, G), ..., hom(F;, G) (see Definition 7.2 for a precise description). It
turns out that adaptive hom algorithms are extremely powerful. In Section 7 we first present
an adaptive hom algorithm with two accesses to hom(G) that can decide whether G has no
isolated vertices. Even more, the algorithm is able to compute the number of vertices of G
of degree k for each k£ > 0. So in particular, it can decide whether G is regular. Furthermore,
in Section 7 we provide an adaptive hom algorithm that queries three entries in hom(G) and
determines (the isomorphism type of) G. Hence, it can answer any question on G. The
downside of this algorithm is its superpolynomial running time, while all the aforementioned
hom algorithms run in polynomial time (when provided with access to hom(G)). For graph
classes that are relevant in applications it is a challenging task to study whether there is
an algorithm where the size of the corresponding F’s are polynomial in the size of G. We
conjecture that there is no polynomial time algorithm that can reconstruct a graph G only
accessing hom(G) (even without the requirement of a constant number of accesses).

Results in [1] may be interpreted as saying that often proper subvectors of the right
homomorphism vector hom(G) := (hom(G, F))F a graph Of a graph G are not so expressive
as the corresponding subvectors of the (left) homomorphism vector. For our topic, the finite
subvectors, in Section 8 we prove that our two “positive results” on hom algorithms (namely,
Theorem 4.4 on Boolean combinations of universal sentences and Theorem 7.4 on the power
of 3 adaptive hom algorithms) fail for the finite right subvectors. Even when the result is the
same (e.g., there is no right hom algorithm showing the non-existence of isolated vertices)
the proof and its complexity can be quite different.

Due to space limitations for some proofs we refer to the full version of the paper.

2 Preliminaries

We denote by N the set of natural numbers greater than or equal to 0. For n € N let
[n] :={1,2,...,n}.

For graphs we use the notation G = (V(G), E(G)) common in graph theory. Here V(G)
is the nonempty set of vertices of G and E(G) is the set of edges. We only consider finite,
simple, and undirected graphs and briefly speak of graphs. To express that there is an edge
connecting the vertices u and v of the graph G, we use (depending on the context) one of the
notations uv € E(G) and {u,v} € E(G). For graphs G and H with disjoint vertex sets we
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denote by G U H the disjoint union of G and H, i.e., the graph with vertex set V(G)UV (H)
and edge set E(G)U E(H). If the vertex sets are not disjoint, we tacitly pass to isomorphic
copies with disjoint vertex sets. Similarly, U ic1G; denotes the disjoint union of the graphs
G; with ¢ € I. For a graph G and ¢ > 1 we denote by /G the disjoint union of £ copies of G.

For n > 1 we denote by K, a clique with n vertices, by P, a path of n vertices, and by
C,, a cycle of n vertices.

For graphs G and H by G = H we express that G and H are isomorphic. All classes of
graphs considered in this paper are closed under isomorphism.

» Definition 2.1. Let G and H be graphs and f : V(G) — V(H). The function f is a
homomorphism if uv € E(G) implies f(u)f(v) € E(H) for all u,v € V(G). It is an embedding
(or monomorphism) if f is a homomorphism that is one-to-one. We call f an epimorphism
if f is a homomorphism, the range of f is V(H), and for every u'v' € E(H) there are
u,v € V(G) such that wv € E(G) and f(u) =, f(v) =v'. We get the definitions of strong
homomorphism, strong embedding, and strong epimorphism by additionally requiring in the
previous definitions that (vv € E(G) <= f(u)f(v) € E(H)) for all u,v € V(G).

We denote by HOM(G, H) the set of homomorphisms from G to H, thus hom(G, H) :=
|[HoM(G, H)| is the number of homomorphisms from G to H. Similarly, we define
s-HoM(G, H) and s-hom(G, H) for strong homomorphisms and use corresponding nota-
tions for the other notions of morphisms. Finally, AUT(G) and aut(G) denote the set of
automorphisms of G and their number, respectively.

The equalities (1) and (2) are easy to verify and will often be used tacitly. For graphs Fy,
Fy, and G and xyz € {hom, emb},

hOHl(F1 UFQ,G) :hom(Fl,G) -hom(Fg,G), (1)

if G is connected, then xyz(G, Fy U Fy) = xyz(G, F1) + xyz(G, F). (2)
Once and for all we fix an enumeration

FYF) R, ... (3)

of graphs such that each graph is isomorphic to exactly one graph in the list and such that
i < j implies F? < F ]Q. Here for graphs F and G by F < G we mean that

V) < IV(G)] or ([V(F)|=I|V(G)|and |[E(F)| < [E(G))).
In particular, FY is a graph whose vertex set is a singleton. We repeatedly use:

» Theorem 2.2 (Lovész Isomorphism Theorem [16]). Let G and H be graphs. If hom(F,G) =
hom(F, H) for all graphs F with |V(F)| < min{|V(G)|, |V(H)|}, then G and H are iso-
morphic, i.e., the finite vector hom(F,G))p a graph with |V(F)| < |v(c)| determines G up to
isomorphism.

3 Algorithms accessing morphism counts

For what classes C of graphs is there a finite set F of graphs such that the membership of any
graph G in C is determined by the values hom(F, G) where F ranges over F? This question
leads to the following definition.



Y. Chen, J. Flum, M. Liu, and Z. Xun

» Definition 3.1. Let C be a class of graphs. A hom algorithm for C (with a constant number
of non-adaptive accesses to homomorphism counts) consists of a k > 1, graphs Fi, ..., Fy,
and an X C N* such that for all G,

G e C < (hom(Fy,G),...,hom(Fy,G)) € X.

We then say that the hom algorithm decides C. Analogously we define the notions of emb
algorithm, s-hom algorithm, and s-emb algorithm.

Often we use the following fact, whose proof is immediate: A class C can be decided by a
hom algorithm if and (E’) if there is a finite set F = {F},..., Fi} of graphs such that for all
G and H (recall that homp(G) = (hom(F1,G),. .., hom(Fy, G))),

home(G) = home(H) implies (G € C <= H € C).

» Remark 3.2. If the set X in Deﬁrii}tion 3.1 is decidable, then we easily extract an actual
algorithm for C with an oracle to hom(G). However the previous equivalence only holds for
arbitrary X. Nevertheless, all our positive results have decidable X’s. We use the current
definition to ease presentation, and also to make our negative result, namely Theorem 6.1,
stronger. Let C have a hom algorithm as in Definition 3.1. Then the set X can be chosen to
be decidable if and only if C is decidable.

» Examples 3.3.

(a) By taking k = 1, a graph F whose vertex set is a singleton, and an arbitrary set X C N,
we get a hom algorithm for the class of graphs whose number of vertices is in X. In
particular, for an undecidable X we get an undecidable class of graphs with a hom
algorithm.

(b) Theorem 2.2 shows that every class that only contains finitely many graphs up to
isomorphism can be decided by a hom algorithm.

(c) By passing from k > 1, Fy,...,Fy,and X CNF to k > 1, Fy,..., Fy, and NF\ X, we
see that with every class C also the class C®™P := {G | G ¢ C} has a hom algorithm.

By Definition 3.1 we have four types of algorithms (hom, emb, s-hom, s-emb). The following

proposition shows that a class has an algorithm of one type if and only if it has an algorithm

of any other type. This allows us to speak of a query algorithm accessing morphism counts

(or query algorithm for short) if in the given context it is irrelevant to what type we refer.

» Proposition 3.4. For a class C of graphs the following five statements are equivalent.

(a) There is a hom algorithm for C.

(b) There is an emb algorithm for C.

(c) There is an s-hom algorithm for C.

(d) There is an s-emb algorithm C.

(e) There is a hom algorithm for C¢, the class of graphs that are complements of graphs in C
(the complement of a graph G is the graph G¢ = (V(G),{wv | u # v and w ¢ E(G)}).

The equivalence (a) < (b) and (¢) < (d) are well known (e.g., see the proof of the Lovisz

Isomorphism Theorem in [15]). It uses the fact that every h € HOM(F, G) can be written as

h = f o g, where for some graph F’ we have g € EPI(F, F’) and f € EMB(F’,G). Clearly,

F’' < F (as otherwise EPI(F, F’) = (}). Hence.

———— - epi(F, F') - emb(F’, G), (4)

where the sum ranges over all isomorphism types of graphs F’/ with F/ < F and the
corresponding equation for s-hom and s-emb.
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As in the literature we did not find a proof of the equivalence (a) < (c), the main tool in
our proof of Theorem 4.4, we present proofs of the equivalences (a) < (c) and its consequence
(a) & (e) in the full version of the paper.

» Remark 3.5. The proof of the equivalences of (a) to (e) show: If for C we have a query
algorithm of one type based on graphs Fi, ..., Fj, and m := max{|V(F;)| | i € [k]}, then for
any other type we can compute finitely many graphs, all with at most m vertices, that are
the graphs of a query algorithm for C of this other type.

4 FO-definable classes with query algorithms

We start by showing that every class of graphs that excludes a finite set of graphs as induced
subgraphs has a query algorithm. Of course, the complement and the union of such classes
again have such an algorithm. In terms of first-order logic this means that every class
axiomatizable by a Boolean combination of universal sentences has a query algorithm.

For a finite set F of graphs we define the class FORB(F) by

Fora(F) := {G | G has no induced subgraph isomorphic to a graph in F}.

We say that a class C of graphs is definable by a set of forbidden induced subgraphs if there
is a finite set F with C = FOrB(F).

Examples of classes definable by a set of forbidden induced subgraphs are classes of
bounded vertex cover number (attributed to Lovédsz), of bounded tree-depth [11], or even of
bounded shrub-depth [13]. All these classes have a query algorithm:

» Lemma 4.1. FEvery class of graphs definable by a set of forbidden induced subgraphs can
be decided by a query algorithm.

Proof. If C = FORB((), we set k = 1, let F be an arbitrary graph, and take X := N. Assume
now that C = FORB(F) with F = {F1,..., F.} and k > 1. Then, for X = {(0,0,...,0)} C N¥,

GeC <« (semb(Fy,G),...,s-emb(F;,G)) € X.
Hence, k, F, ..., Fy, and X constitute an s-emb algorithm for C. <

The following lemma shows that the universe of classes with query algorithms is closed under
the Boolean operations. Part (a) was already mentioned as Examples 3.3 (¢c). We omit the
straightforward proof.

» Lemma 4.2.
(a) If C has a query algorithm, then so does {G | G ¢ C}.
(b) If C and C' have query algorithms, then CNC" and CUC' have query algorithms.

Recall that formulas o of first-order logic FO for graphs are built up from atomic formulas
x =y and Fxy (where z,y are variables) using the Boolean connectives —, A, and V and
the universal V and existential 3 quantifiers. A sentence is a formula without free variables
(i.e., all variables of ¢ are in the scope of a corresponding quantifier). If ¢ is a sentence, we
denote by C(p) the class of graphs that are models of .

An FO-formula is universal if it is built up from atomic and negated atomic formulas
by means of the connectives A and V and the universal quantifier V. If in this definition we
replace the universal quantifier by the existential one, we get the definition of an existential
formula. The following result is well known (e.g., see [18]).
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» Lemma 4.3. Let C be a class of graphs. Then C is the class of graphs definable by a
universal sentence if and only if C is definable by a set of forbidden induced subgraphs.

By Lemma 4.1 — Lemma 4.3 we get:

» Theorem 4.4. If the FO-sentence p is a Boolean combination of universal sentences, then
there is a query algorithm for C(¢p).

» Remark 4.5. The class C(3) of 3-regular graphs (each vertex has exactly 3 neighbors)
is an example of a class decidable by a query algorithm, definable in FO but not by a
Boolean combination of universal sentences. Indeed, using the following steps we get a query
algorithm deciding whether a graph G belongs to C(3).

We check whether G € C(< 3), i.e., whether each vertex has at most 3 neighbors. Note
that C(< 3) is definable by a universal sentence. Hence there is a hom algorithm for
C(< 3), say consisting of k > 1, Fy,..., Fy, and X<3 (C NF).
We query hom (K7, G) in order to get n := |V(G)|.
We query hom(P,, G), i.e., the number of homomorphisms from the path P» of two
vertices to G. Then, G is 3-regular if and only if hom (P, G) = 3 - n.
Hence, we have a hom algorithm for C(3) counsisting of k + 2, Fy,..., Fy, K1, Py, and X
where X consists of all tuples (ni,...,ng,n,3n) with (n1,...,n;) € X<g and n > 1.
The class C(3) is definable in FO by

VxVyl...Vy4Hz1...EZ3(—\( /\ yi;éyj/\/\Emyi)/\( /\ zi;ézj/\/\Exzj)).

1<i<j<4 ic[4] 1<i<j<3 je3]

If it would be definable by a Boolean combination of universal sentences, then it would be
also definable by a sentence ¢ of the form ¢ = dzy ... 3x,,Vy1 ... Vyep with m, ¢ € N and
with quantifier-free ¢. Let G be a graph with more than m + 1 vertices that is the disjoint
union of copies of the clique Ky. Of course, G is 3-regular. Hence, G is a model of ¢. In
particular, there are vertices uy, . .., u,, that satisfy in G the formula Vy; ... Vyeb(z1, ..., Tm)
if we interpret x1 by ui, ..., Tm by upy,. Choose a vertex u € V(G) \ {u1,...,un}. Then,
G \ u, the graph induced by G on V(G) \ {u}, is still a model of ¢ but not 3-regular.

By the previous remark the question arises whether every class C(¢) for an FO-sentence ¢

of the formVx; ...Vz,,3y; ... Jye with quantifier free ¥ can be decided by a query algorithm.

We will see that already for the simple formula Va3yExzy of this type, the class C(VaIyExy),
i.e., the class of graphs not containing isolated vertices, has no query algorithm.

5 Planarity and 3-colorability

As just mentioned we want to show that no query algorithm detects the existence of an
isolated vertex. In this section we prove the corresponding result for planarity, where some
easy tools and construction methods relevant in the much more involved proof for isolated

vertices are used. Essentially by a similar proof one can show the same result for 3-colorability.

Note that the class of planar graphs and the class of 3-colorable graphs are definable in
monadic second-order logic but not in first-order logic.

By the following lemma a class has no query algorithm if there is no emb algorithm for
this class that only uses connected graphs:

» Lemma 5.1. Let C be a class of graphs. Assume that for every finite set K' of connected
graphs there are graphs G and H such that (a) and (b) hold.

32:7
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(a) GeCand H ¢ C.

(b) For all F' € K’ we have emb(F’,G) = emb(F', H).

Then there is no hom algorithm for C, i.e., for every finite set K of graphs there are graphs
G and H such that (¢) and (d) hold

(c) GeCand H ¢ C.

(d) For all F' € K we have hom(F,G) = hom(F, H).

Proof. By (1), hom(F! U F?2, F?) = hom(F!, F3) - hom(F?2, F®) holds for arbitrary graphs
F1, F? 3. Thus, if the class of connected components of graphs in a finite set K satisfies (d)
for some G and H, then K satisfies (d), too. Hence, we can assume that the graphs in K are con-
nected. Let n:= max{|V(F)| | F € K} and K' := {F? | i > 1, |V(F?)| < n, F? connected}.
By assumption we know that there are graphs G and H such that (a) and (b) hold for K'.
Now we recall (4), i.e.,

If F' is connected, then epi(F, F’) > 0 implies that F’ is connected, too. That is, the values
hom(F,G) for F € K are determined by the values of emb(F’,G) for F’ € K’. Therefore, (d)
holds by (b). <

» Theorem 5.2. The class P of planar graphs and the class C(3-col) of 3-colorable graphs
have no query algorithm.

Proof. Here we only present the proof for P. For a contradiction, by Lemma 5.1 we can
assume that there is an emb algorithm for P that uses the finite set F of connected graphs.
By induction on n := |F|, we show that this cannot be the case. Let |F| =1, i.e., F = {F}
for some connected F. Set k := |V(F)| + 4. Clearly, K ¢ P and both, emb(F, F) and
emb(F, K}), are nonzero. If F' is planar, we set (recall that for a graph G and p € N by pG
we denote the disjoint union of p copies of G),

G:=emb(F,K;)F and H :=emb(F,F)K

By (2), emb(F, G) = emb(F, K )-emb(F, F) = hom(F, H) and G € P, H ¢ P, a contradiction.
If F is not planar, we set G := K7 and take as H a topological minor of K, in which every edge
in K}, is subdivided into 1 + |(V(F')| edges. Then H ¢ P but emb(F,G) = 0 = emb(F, H),
again a contradiction.

Now assume |F| > 2. If F contains no planar graphs, we essentially can proceed as in the
preceding case. So assume that F contains a planar graph. Choose a “minimal” (w.r.t. <)
planar graph F' € F and set F' := F\ {F}. By minimality, emb(F’, F') = 0 for all planar
F’' € F'. As there is no embedding from a non-planar graph to a planar graph, we have
emb(F’, F) = 0 for all F/ € F’. By induction hypothesis, there are Go and Hy satisfying the
desired properties with respect to F'. If emb(F, Go) = emb(F, Hy), then we can simply take
G := Gy and H := Hy. Otherwise, assume first that emb(F, Gy) < emb(F, Hy). We set

G := aut(F)Go U (emb(F, Hy) — emb(F,Gy))F and H := aut(F)H,.

Hence, G € P, H ¢ P, and emb(F,G) = emb(F,H) (by (2)). In case emb(F,Gy) >
emb(F, Hy) we argue similarly. <
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6 No query algorithm detects isolated vertices

» Theorem 6.1. The class C(VzIyExy) of graphs without isolated vertices has no query
algorithm.

In the proof given in the full version of the paper we use some tools already used in the
preceding section:
By Lemma 5.1 it suffices to show that C(Vx3yFExy) has no emb algorithm that only uses
connected graphs.
If C is one of the classes P or C(Vz3yEzy), then the disjoint union |J ;¢;G; of a family
(Gy)ieq of graphs is in C if and only if each G; is in C.
By (2), for graphs Fy and F5, p,q > 1, and a connected graph G, we have

emb(G, pFy U gFy) = pemb(G, F1) + gemb(G, F»),

i.e., emb(G,pFy U qF%) is a linear combination of emb(G, F}) and emb(G, F5).
Furthermore note:

Let G be a connected graph with more than one vertex. If the graph F” is obtained from

the graph F by adding a set of isolated vertices, then emb(G, F’) = emb(G, F).

Recall that in (3) we fixed the enumeration F{, F, ... of graphs that contains a copy of every
isomorphism type and respects the relation <. Here we let Hy, Ho, ... be the subsequence of
FP, FY, ... consisting of the connected graphs.

For i > 1 let o; := (emb(H;, H;));>1 be the vector containing the emb-values of H;, for
connected graphs. We sketch the idea underlying the proof of Theorem 6.1. The central
idea can be vaguely expressed by saying that for each n > 1 there is an r,, € N such that
appropriate “subvectors” of length r, of r,-many of the a;, ..., «, are linearly independent
vectors of the vector space Q™ and hence, a basis of Q™. In particular, every further vector
of Q™ is a linear combination of these vectors. Furthermore, r, tends to infinity when n
increases.

For an arbitrary emb algorithm with connected graphs we must show the existence of
graphs G and H, one with isolated vertices the other one without, that cannot be distinguished
by this emb algorithm. We use the tools mentioned above to construct such graphs using
the knowledge about the linear independence or linear dependence of some tuples of vectors
obtained in the first steps of the proof.

7 Adaptive hom algorithms

For r > 1 let S, denote the star of r vertices, i.e., a graph that consists of a vertex of degree
r — 1 (the center of the star) and r — 1 vertices of degree 1, all neighbors of the center. For
a vertex u of a graph we denote by deg(u) its degree. Note that deg(u) = 0 means that u
is isolated. The proof in the full paper of the following result is built on the well-known
equality (see e.g., [4, 15]) obtained by looking at the value of the center of a star under a

homomorphism: hom(S,, G) = 3=, ¢y () deg(v)" .

» Proposition 7.1. Let G be a graph and d; := |{u € V(G) | deg(u) = i}| fori > 0. If
n = |V(G)|, then hom(Sy.10g n, G) determines dy,...,dn_1.

In Section 6 we showed that there is no query algorithm that decides whether a graph G
is in C(Vz3yFExy), i.e., whether dy = 0 for G. However, Proposition 7.1 shows that for a
graph G with n vertices this can be decided by querying hom(Sy.10g ., G). Thus, we have an
algorithm for C(Vax3yFExy) consisting of two homomorphism counts:
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query n := hom(F?,G) (= |V(G)]),

query hom(Sy.10g n, G).
That is, the selection of the graph for the second homomorphism count, in our case Sy.10g n,
depends on the answer to the first query. This leads to the notion of adaptive hom algorithm.
Recall that FP, FY, ... is an enumeration of all graphs (up to isomorphism) respecting <.

» Definition 7.2. Let C be a class of graphs and k£ > 1. A k adaptive hom algorithm for C
consists of a function g : {#} U Uiepr—1) N? — N and a subset X of N¥ such that for all G,

GeC <= (ny,...,ng) € X,

where n; := hom(FgO(m), G), ng == hom(FgO(m),

then say that C can be decided by a k adaptive hom algorithm.

Q), ..., ng = hom(F?

g(ni,n2,...;nk_1)’

G). We

The main result of this section:
» Theorem 7.3. Every class C can be decided by a 3 adaptive hom algorithm.
To get this result we show:

» Theorem 7.4. Forn > 1 there exist graphs Fy (= F1(n)) and Fy (= Fa(n)) such that for
all graphs G and H with n vertices,

hom(Fi,G) =hom(Fy,H) and hom(Fs,G) =hom(Fy, H) imply G = H.

In fact, by this result for any class C of graphs, we get the 3 adaptive hom algorithm
that for a graph G queries

hom(FY, G); set n := hom(FY, G)

hom(Fi(n),G) and hom(Fs(n), G)
(where Fy(n) and Fz(n) are the graphs of Theorem 7.4) and has as set X the set

X :={(n,hom(Fy(n), H),hom(Fy(n),H)) |n>1, H € C, and |V(H)| = n}.

» Corollary 7.5. For graphs G and H, if ng := hom(FY,G) = hom(F?, H),
hom(F}(ng), G) = hom(Fy(no), H), and hom(Fs(ng), G) = hom(Fz(ng), H), then G = H.

Hence, by “3 adaptive hom counts” we can characterize the isomorphism type of any
graph. It is not possible to do this by two queries, more precisely (for a proof see the full

paper):

» Theorem 7.6. There is no so € N such that for some function g : N — N and all graphs G

and H, if ng := hom(FY ,G) = hom(F2 , H) and hom(FgO(nO),G) = hom(Fg(no),H), then
G=H.

We turn to a proof of Theorem 7.4. An important tool will be the following lemma.

» Lemma 7.7. Let n > 1 and K be a finite set of graphs. We can construct a graph Fx such
that for all G and H with exactly n vertices we have hom(Fk, G) = hom(Fk, H) if and only
if G and H satisfy at least one of the conditions (a) and (b).

(a) There exist F,F' € K such that hom(F,G) =0 and hom(F', H) = 0.

(b) For all F € K, hom(F,G) =hom(F, H).
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Proof. The idea of the construction is best seen by assuming K = {F}, F»} (iterating the
following process one gets the general case). We set r := nlV(FI As [V(G)| = n, we know
that hom(Fy, G) < r. We set Fx := Fy; UrFy. By (1) for every graph F,

hom(Fk, F') = hom(F, F) - hom(Fs, F))". (5)

Hence, if (a) or (b) hold, then hom(Fk,G) = hom(Fk, H). Conversely, assume z :=
hom(Fk,G) = hom(Fk,H). If z = 0, then (a) must hold by (5). If z = 1, then
hom(F;,G) = hom(F;, H) = 1 for i € [2] and (b) holds. Otherwise, z > 2. Let F := G or
F := H and set  := hom(Fy, F') and y := hom(F5, F'). Let p be a prime number with p|z
(i.e., p divides z). Choose the maximum k such that p*|z. Write k in the form k = £-r +m

with 0 < m < r. As z=x -y" and = < r, the factor p™ appears in = and the factor p* in y.

This determines x and y; they do not depend on the F' € {G, H} chosen. <

If the alternative (b) holds, we can replace in a hom algorithm the set K of graphs by the
single graph Fk. The previous lemma doesn’t help too much if the alternative (a) holds. To
overcome this alternative essentially we consider the bipartite graphs and the non-bipartite
graphs separately. For this purpose we recall the definition and some simple facts on bipartite
graphs.

A graph G is bipartite if there is a partition V(G) = X UY such that each edge has one end
in X and one end in Y. The next lemma contains some simple facts on bipartite graphs.

» Lemma 7.8. Let G be a graph. Then:

(a) G is bipartite <= hom(G, Py) # 0.

(b) If G is connected and bipartite, then hom(G, Py) = 2.

(c) G is bipartite <= hom(G, H) # 0 for all graphs H with at least one edge.

(d) G is bipartite <= G does not contain a cycle of odd length.

(e) If G is bipartite and F is not, then hom(F,G) = 0.

(f) If G is bipartite, then G is determined (up to isomorphism) by the values hom(F, G) for
the bipartite graphs F with F < G (by the Lovdsz Isomorphism Theorem and part (e)).

For graphs G and H the product Gx H of G and H is the graph with V(G x H) := {(u,v) |
ueV(G), veV(H)} and E(G x H) := {{(u,v), (W, v")} | {u,v'} € E(G) and {v,v'} €
E(H)}. One easily verifies that for any graph H,

hom(F,G x H) = hom(F,G) - hom(F, H). (6)
Besides the simple facts on bipartite graphs mentioned above, we also need a deep result:

» Theorem 7.9 (Lovasz Cancellation Law [17]). A graph H is not bipartite if and only if
F x H=G x H implies F =2 G for all graphs F and G.

The following lemma contains a further step for the proof of Theorem 7.4.

» Lemma 7.10. Let n > 2 and t be the smallest natural number with n < 2t. We set (recall
that C,, denotes a cycle of length m)

Ki := {F | hom(F,Cat41) > 0 and |V (F)| < (2t +1)%}. (7)

For graphs G and H with |V (G)| = |V(H)| = n, if hom(F,G) = hom(F, H) for all F € K,
then G = H.
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Proof. Assume G % H. By Lemma 7.8 (d), C241 is not bipartite. Thus, by the Lovész
Cancellation Law G X Coy1 2 H X Ca411 As G X Copy1 has n- (2t +1) vertices, by the Lovdsz
Isomorphism Theorem (see Theorem 2.2) there is a graph F with |[V(F)| <n-(2t+1) <
(2t + 1)? such that

hom(F, G X 02t+1) 7é hom(F,H X C2t+1)' (8)

If F is not in Ky, then hom(F, Cy:41) = 0 and thus by (6) we get a contradiction to (8).
Hence, F' € K; and so by assumption, hom(F, G) = hom(F, H). However, this contradicts (8)
(use again (6)). <

Proof of Theorem 7.4. The case n = 1 is trivial. Assume n > 2. Let again ¢ be the smallest
natural number with n < 2¢ and K; be defined by (7). For the class Ky;p of bipartite graphs
in K; let F} be the graph constructed in Lemma 7.7 for Ky, (i.e., F1 = FKbip)- As the disjoint
union of bipartite graphs is bipartite, the proof of Lemma 7.7 shows that Fj is bipartite. Let
F5 be the graph constructed in Lemma 7.7 for the class K; \ Kp;p. We show that for graphs
G and H with |V(G)| =|V(H)| =n,

hom(F;, G) = hom(F;, H) for i € [2] implies G = H.

If G and H both have no edge, then clearly G = H. If, say G has an edge but E(H) = 0,
then, as Fy is bipartite, hom(F;, G) # 0 = hom(Fy, H) by Lemma 7.8 (¢c) and E(Fy) # 0.
Hence we can assume that both graphs contain at least one edge. For a contradiction assume
that hom(F;, G) = hom(F;, H) for i € [2] and that G 22 H. Then, by Lemma 7.10 there is a
graph Fy € K; with

hom(Fpy, G) # hom(Fy, H). (9)
Assume first that Fy € Kpip. As G and H contain at least one edge, by Lemma 7.8 (c)
hom(F,G) >0 and hom(F,H) >0,

for every bipartite graph F. In particular, this holds for all graphs F' in Ky;p. Thus,
hom(Fy,G) = hom(F, H) implies the second case in Lemma 7.7, i.e., for every F' € Kp;p,

hom(F,G) = hom(F, H).

In particular, this holds for F' = F, contradicting (9).

Thus Fy € K; \ Kpip. Then hom(Fy, F') = 0 for all bipartite graphs F (by Lemma 7.8 (e)).
Hence, by (9) at least one of G and H must be non-bipartite. By hom(Fs, G) = hom(Fs, H),
Lemma 7.7, and (9) there exist graphs F¢ and FH in K, \ Ky, with

hom(F¢, G) = hom(F¥, H) = 0.

W.l.o.g. suppose that G is not bipartite and thus contains an odd cycle, say of length ¢. Since
£ <n <2t+1, we have hom(Cosy1,Cy) > 0. In fact, one easily verifies that hom(Cy, Cy,) > 0
for odd m and k with m < k. As F¢ € K;, hom(F%, Cy;41) > 0. Therefore, hom(F%, Cy) > 0,
which implies hom(F%, G) > 0, a contradiction. <
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8 Right hom algorithms

In 1993 Chaudhuri and Vardi [6] (see also [1]) showed the analogue of the Lovész Isomorphism
Theorem for the right homomorphism vector of a graph G. More precisely, the vector of
values hom(G, F'), where F' ranges over all graphs, characterizes the isomorphism type of G.
In this section we will see that our main “positive” results on hom algorithms fail for right
hom algorithms (see Proposition 8.2) and that various results that survive use a completely
different proof technique. Note that a graph G is 3-colorable if hom(G, K3) > 0 in contrast
to Theorem 5.2.

» Definition 8.1. A class C of graphs can be decided by a right hom algorithm if and only if
there is a k > 1 and graphs Fi,. .., Fy such that for all graphs G and H,

hom(G, F1) = hom(G, Fy), ..., hom(G, F},) = hom(G, Fy) imply (G € C < H € (),

or equivalently, if in addition to Fi, ..., F}, there is a set X C N* such that for any graph G,
(G € C «= (hom(G, F),...,hom(G, Fy)) € X).

Again one can show that C is decidable if and only if as X can be chosen a decidable set.
It should be clear how we define k adaptive right hom algorithms for a class C of graphs.

The failure in the “right world” of the “positive” results Theorem 4.4 and Theorem 7.3 is
shown by (it should be clear how we define k adaptive right hom algorithms for a class C of
graphs):

» Proposition 8.2. let k > 1. The class K(3) of graphs containing a clique of size 3
(expressible by the existential sentence IxIyIz(Exy A Eyz A Exz)) cannot be decided by a k
adaptive right hom algorithm (and hence not by a right hom algorithm).

Proof. For a graph G we denote by x(G) the chromatic number of G, i.e., the least s such
that G is s-colorable. Clearly, (m < x(G) <= hom(G, K,,) = 0) for the clique K,, with m
elements, and hence, for every graph F,

if |V(F)| < x(G), then hom(G, F') = 0. (10)

For a contradiction, assume that g and X (compare Definition 7.2) witness the existence of
a k adaptive right hom algorithm for C. Then set

n1 := g(0), ns := g(0), n3 := g(0,0),...,nx :=g(0,...,0).

k—1 times

Let s > 3 be bigger than any of the [V (F) )|’s. According to [19] there is a Go ¢ K(3) such
that x(Go) = s. Thus by (10), we have hom(Gy, F)|) = 0,...,hom(Gy, F;), ) = 0 and hence,
(0,0,...,0) ¢ X. However, K, € K(3) and hom(K,, F} ) = 0,..., hom(K,, F} ) = 0, thus
(0,0,...,0) € X, a contradiction. <

Note that Theorem 10 in [1] cannot be applied to show (directly) the existence of an
FO-sentence ¢ with no right hom algorithm. To apply this theorem to such a ¢ we should
have for all graphs G and H, (G = ¢ <= H [ ¢) implies |V(G)| = |V(H)|. One easily
verifies that this condition is not satisfied by any FO-sentence ¢.

We mention a positive result on right hom algorithms (proven in the full version of the
paper).
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» Theorem 8.3. FEvery class C of graphs with the property that there is a bound on the
number of edges of graphs in C has a right hom algorithm.

Finally we remark that some results with nontrivial proofs for hom algorithms are trivial

for right hom algorithms. For example, the following simple proof shows that there is no
right hom algorithm for the class C(Vz3yEzy) of graphs with no isolated vertices.

Let Fi,..., F} be any finite set of graphs and set m := 1 + max{|V(F};)| | ¢ € [k]}. Then,

hom(K,, F;) = 0 = hom(K,, U K3) for every i € [k]. Thus there is no right hom algorithm
that detects an isolated vertex.
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