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Abstract
We study constraint automata that accept data languages on finite string values. Each transition
of the automaton is labelled with a constraint restricting the string value at the current and the
next position of the data word in terms of the prefix and the suffix order. We prove that the
emptiness problem for such constraint automata with Büchi acceptance condition is NL-complete.
We remark that since the constraints are formed by two partial orders, prefix and suffix, we cannot
exploit existing techniques for similar formalisms. Our decision procedure relies on a decidable
characterization for those infinite paths in the graph underlying the automaton that can be completed
with string values to yield a Büchi-accepting run. Our result is - to the best of our knowledge - the
first work in this context that considers both prefix and suffix, and it is a first step into answering
an open question posed by Demri and Deters.
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1 Introduction

Motivated by applications in formal verification, automated reasoning and databases, logics
and automata over infinite alphabets are in the focus of active and broad research activities in
theoretical computer science. A typical example for logics over infinite alphabets is constraint
linear temporal logic, CLTL for short [2, 10, 11, 9, 6, 5, 14]. CLTL extends classical LTL
with a finite set of variables ranging over the domain of some infinite relational structure
like (N; =) or (Q;<). Atomic formulas in CLTL are constraints in terms of the variables and
the relation symbols from the structure; atomic formulas can be combined with Boolean
operations and the usual temporal modalities. Models of CLTL formulas are data words, that
is, infinite sequences of data values coming from the domain of the relational structure. For
instance, the CLTL formula G(Xx < x) over the relational structure (Z;<) states: “globally,
the value of the variable x at the next position is smaller than the value of x at the current
position”. The data word 4, 3, 2, 1, 0,−1,−2, . . . is a model of this formula. Note that the
same formula has no model if instead of (Z;<) we evaluate the formula over the relational
structure (N;<) – this to illustrate that deciding the satisfiability of a given formula in this
logic heavily relies on the considered relational structure.

A natural counterpart to CLTL are constraint automata [7, 15, 28, 19]. Like CLTL,
constraint automata are parameterized over a relational structure. Transitions are labelled
with constraints in terms of the variables of the automaton and the relation symbols from the
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structure; the satisfaction of the constraints along a transition determines the behaviour of
the automaton. Constraint automata generalize Büchi automata and accept data languages,
that is sets of data words. Following the classical automata-theoretic approach by Vardi and
Wolper, one can reduce the satisfiability problem for CLTL to the non-emptiness problem
for constraint automata (cf. [29, 14]). We remark that constraint automata are very much
related to the well known class of register automata [17, 24, 13, 4, 8].

For CLTL, constraint automata, and other formalisms parameterized over relational
structures, a lot of remarkable results concerning satisfiability, model-checking, and the
emptiness problem have been achieved, see [14] for a recent survey. This includes results for
specific relational structures – for instance, the satisfiability problem for CLTL over (Z;<) is
PSPACE-complete [2, 10] – but there are also noteworthy unifying approaches that capture
logics and automata over certain classes of, e.g., linear orders [28, 6, 5] or oligomorphic data
domains [3].

In contrast to linear orders, relatively little is known about relational structures where the
domain equals the set of strings A∗ over some fixed (finite or countably infinite) alphabet A,
and relations defined over A∗, like the prefix order or the subsequence order. While relational
structures over linear orders are useful for analysing systems that manipulate counters or
constrain real-timed variables, relational structures over strings are interesting for reasoning
about systems that manipulate pushdown stacks, queues, or other data structures that
involve strings. Reasoning on string variables has a long tradition in theoretical computer
science, with roots in algebra and combinatorics on words, and recent developments in the
area of string constraint solving (see [1] for a recent survey). Several works concern first-order
(FO) logics over finite strings [20, 18, 16, 21]. Thereof, a recent undecidability result [16]
for the Σ1-fragment of FO logic over (Σ∗;≤sub, (=w)w∈Σ∗), where Σ is a finite alphabet
and ≤sub denotes the subsequence order over Σ∗, immediately implies the undecidability of
the satisfiability problem for CLTL over that structure. Regarding the relational structure
(A∗;<p,=, (=w)w∈A∗), where <p is the prefix order over A∗, we know: the satisfiability
problem for constraint LTL is PSPACE-complete (by an interesting reduction to the same
problem for (N;<,=, (=n)n∈N)) [9]. The emptiness problem for constraint automata is
PSPACE-complete [19]. On the other hand, a unifying, model-theoretic approach for a large
family of temporal logics, including ECTL∗, which is applicable to linear orders, fails for the
prefix order over finite strings [5].

Demri and Deters proposed to study the satisfiability problem for CLTL when evaluated
over the structure (A∗;<p, <s,=, (=w)w∈A∗) with both the prefix and the suffix order [9].
This enables us to express properties like “the beginning of the content of a string is equal
to the end of some other string”. Using the obvious symmetry between the prefix order
and the suffix order, one can conclude that the above mentioned results for the prefix order
hold for the relational structure where <p is replaced by <s [9]. However, the situation
changes drastically when both <p and <s are in the relational structure. For instance,
the FO theory on the prefix order alone is decidable [27], but becomes undecidable for the
relational structure containing both prefix and suffix (this follows from the undecidability
result for the FO theory for the substring (infix) order [20], and the fact that the substring
order is FO-definable using prefix and suffix). For finite strings over a finite alphabet, it
has been remarked in [9] that the Σ1-fragment of FO logics is decidable, using an algorithm
based on the word equation approach by Makanin [22, 26]. It is thus far from clear whether
satisfiability for CLTL, or, equivalently, the emptiness problem for constraint automata, is
decidable or not. The techniques used in other works for, e.g. the prefix order alone, or
linear orders, turn out to be not applicable at all.
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In this paper, we prove that the emptiness problem for constraint automata over prefix
and suffix is decidable in NL if the automaton uses only a single variable. This is a standard
restriction, comparable to one-counter automata [12] or single-clock timed automata [25].
Our decision procedure relies on a reduction to reachability queries on the finite graph
underlying the automaton, and it applies to finite strings over both finite and countably
infinite alphabets. We may also test whether the string equals the empty string (similar to a
zero test in one-counter automata). We further obtain NL-completeness for the emptiness
problem for single-register automata over this relational structure. Last but not least, our
result implies PSPACE-completeness for the satisfiability of CLTL for the case that the
formulas in CLTL only use a single variable.

We leave open the decidability status for the case where equality with arbitrary finite
strings over A and/or constraints involving more than one variable are allowed, that is, by
now we cannot fully answer the question raised by Demri and Deters. We remark that
both extensions may be harmful: for instance, while emptiness is decidable for one-counter
automata [12], it is undecidable for two-counter automata [23]; while the Σ1-fragment of FO
logic for finite strings over a finite alphabet with the subsequence order without constants is
decidable [20], it is undecidable as soon as we allow constants in the relational structure [16].

2 Preliminaries

A relational signature σ = {R1, R2, . . . } is a countable set of relation symbols. Each symbol
Ri is associated with some non-negative arity ki. A relational structure over σ, or σ-structure
for short, is a tuple D = (D;RD

1 , R
D
2 , . . . ), where D is the domain of the structure, and

RD
i ⊆ Dki is the interpretation of the symbol Ri in D. We will often omit the symbol D in

RD
i and simply write Ri instead.

We use Σ to denote a finite alphabet, N as a countably infinite alphabet, and A as finite
or countably infinite alphabet. We use A∗ to denote the set of finite strings over A. The
symbol ε denotes the empty string, and we use A+ to denote the set A∗ \ {ε} of non-empty
strings over A. Given u, v ∈ A∗, we say that u is a strict prefix (strict suffix, respectively)
of v, written u <p v (u <s v, respectively), if v = u · u′ (v = u′ · u, respectively) for some
u′ ∈ A+. We say that u and v are incomparable with respect to the prefix order, written u⊥pv,
if u = w · a · u′ and v = w · b · v′ for some w ∈ A∗, a, b ∈ A such that a ̸= b, and u′, v′ ∈ A∗.
Incomparability with respect to the suffix order, written u⊥sv, is defined analogously.

Let σps be the signature consisting of the binary symbols <p, <s, and =. In this paper,
we are interested in the σps-structures (Σ∗;<p, <s,=) and (N∗;<p, <s,=), where, in both
structures, <p and <s are interpreted as the prefix and the suffix order over the set of strings
over Σ and N, respectively, and = is interpreted as the identity. If the context is clear, we
may write Σ∗ and N∗ to denote the respective structures, and A∗ to denote any of these
structures.

Constraint automata are generalizations of Büchi automata that are parameterized by
σ-structures, where σ is a relational signature. The transitions are labelled with Boolean
combinations of atomic formulas, called constraints, in terms of the relations of the σ-structure.
A constraint automaton processes data words. A data word is a finite or infinite sequence
d1, d2, d3 . . . , where di ∈ D is a data value from the domain of the σ-structure. A transition
of a constraint automaton can be taken if the current and the next data value of the processed
data word satisfy the constraint labelling the transition.

In the following, we assume that constraint automata are parameterized by the σps-
structures Σ∗ or N∗, and the transitions are labelled by Boolean combinations of atomic
formulas of the form z ▷◁ z′, where z, z′ ∈ {x, y} and ▷◁∈ σps. Intuitively, x stands for
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ℓ0 ℓ1 ℓ2 ℓ3
x⊥py ∧ x⊥sy

y <p x ∧ y⊥sx

x = y

y <p x ∧ y <s x

y <p x ∧ y⊥sx

x⊥py ∧ x <s y

Figure 1 Example of a constraint automaton over A∗

the string at the current position, and y stands for the string at the next position of the
processed data word. For the sake of readability we will restrict the labels of the transitions
to be maximally consistent. Formally, we define Ψ to be the set of formulas ψ(x, y) of the
following form:

x = y, x <p y ∧ x <s y, x <p y ∧ x⊥sy, x⊥py ∧ x <s y
y <p x ∧ y <s x, y <p x ∧ y⊥sx, y⊥px ∧ y <s x, x⊥py ∧ x⊥sy.

Each of these formulas is called constraint. Constraints that contain the formula y <p x
or y <s x are called reducing as they reduce the length of the string at the next position
with regard to the string at the current position. All other constraints except for x = y are
called generous, because they allow for infinitely many choices of the string value at the next
position. The satisfaction relation |= is defined in the obvious way. For instance, if ψ is of
the form x <p y ∧ x <s y, then we have N∗ |= ψ(0, 01210) and Σ∗ ̸|= ψ(a, abab).

A constraint automaton over a σps-structure A∗ is a tuple A = (L, ℓin,Lacc, E), where

L is a finite set of locations (control states);

ℓin ∈ L is the initial location;

Lacc ⊆ L is the set of accepting locations; and

E ⊆ L×Ψ× L is the set of edges.
A path of A is a finite or infinite sequence ℓ0, ℓ1, ℓ2, . . . of locations satisfying, for all i ≥ 1,
(ℓi−1, ψi, ℓi) ∈ E for some constraint ψi ∈ Ψ. We may sometimes also write ℓ0

ψ1−−→ ℓ1
ψ2−−→

ℓ2, . . . to indicate the precise edges that are used. A finite path ℓ0
ψ1−−→ ℓ1

ψ2−−→ ℓ2 . . .
ψn−−→ ℓn is

stable if ψi is of the form x = y for all 1 ≤ i ≤ n; it is generous if there exists some 1 ≤ i ≤ n
such that ψi is generous. A path as above is a cycle starting in ℓ0 if ℓ0 = ℓn.

A state of A is a pair (ℓ, w), where ℓ ∈ L and w ∈ A∗ is the current value of the
string variable. We postulate a labelled transition relation → over the set L ×A∗ of states
of A, as follows: (ℓ, w) → (ℓ, w′) if there exists a transition (ℓ, ψ(x, y), ℓ′) ∈ E such that
A∗ |= ψ(w,w′). A run of A is a finite or infinite sequence of transitions of A. A run
(ℓ0, w0) −→ (ℓ1, w1) −→ (ℓ2, w2) . . . is initialized if ℓ0 = ℓin. A run is Büchi-accepting if it is
initialized and it contains infinitely many locations in Lacc. We define the language of A by
L(A) = {(w0w1w2 · · · | (ℓ0, w0) −→ (ℓ1, w1) −→ (ℓ2, w2) . . . is a Büchi-accepting run of A}.

For an example, consider the constraint automaton A = ({ℓ0, ℓ1, ℓ2, ℓ3}, ℓ0, E, {ℓ1}) over
N∗, where E is as depicted in Figure 1. A finite initialized run of this automaton is
(ℓ0, 20) −→ (ℓ1, 346345346343) −→ (ℓ2, 34634534634)→ (ℓ3, 34634)→ (ℓ2, 346) (cf. Example 6).

The emptiness problem for constraint automata is to decide, given a constraint automaton
A, whether L(A) = ∅. In section 4, we prove that this problem is NL-complete.
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3 Rewriting Operation

For deciding the emptiness problem, we will prove the existence of string values that satisfy
the constraints that occur in a given path. During the process of defining such string values,
we will need to change already defined string values using a rewriting operation. In this
section, we define this operation and prove some important properties.

Recall that A denotes a finite or countably infinite alphabet. Given w ∈ A∗ and two
non-empty strings u, u′ ∈ A+, we define the left-to-right rewriting operation of u to u′ in
w, denoted by w[u ← u′]▷, to be the string that is obtained from w by replacing, from
left to right, every occurrence of u in w by u′. Formally, assume w = a1a2 . . . an and
define, recursively, w[u ← u′]▷ := w if aiai+1 . . . ai+|u|−1 ̸= u for all 1 ≤ i ≤ n (that
is, u does not occur in w), w[u ← u′]▷ := a1 . . . ai−1 · u′ · ((ai+|u| . . . an)[u ← u′]▷) if
1 ≤ i ≤ n is the minimal index such that aiai+1 . . . ai+|u|−1 = u. Note that if u occurs
in a1 . . . ai−1 · u′, then u is not replaced in any further steps of the recursive definition.
For instance, 1100210[10 ← 1]▷ = 11021. We define completely analogously the right-
to-left version of this operation, that is, w[u ← v]◁ := w if u does not occur in w, and
w[u ← v]◁ := ((a1 . . . ai−1)[u ← u′]▷) · u′ · ai+|u| . . . an, if i ≥ 1 is the maximal index
such that ai . . . ai+|u|−1 = u. Note that w[u ← v]▷ may be different from w[u ← v]◁; for
instance, w = 111, u = 11 and v = 0 yields w[u ← v]▷ = 01 and w[u ← v]◁ = 10. It
is easy to see that this is the case if there exist two overlapping occurrences of u in w.
Formally, we say that u is overlapping in w if there exist 1 ≤ i < j < i+ |u| ≤ n such that
aiai+1 . . . ai+|u|−1 = ajaj+1 . . . aj+|u|−1 = u. The proof of the following lemma is simple.

▶ Lemma 1. For all w ∈ A∗ and u, u′ ∈ A+, if u is not overlapping in w, then we have
w[u← u′]▷ = w[u← u′]◁.

In Subsection 4.1 we will guarantee that the rewriting operation is only applied to strings
w and u such that u is not overlapping in w, so that the left and right versions of rewriting
yield the same string. The reason why we still define both the left and right version of
rewriting is that certain properties of the prefix order – stated in the next lemma – can be
proved very conveniently using the left-to-right rewriting operation, and the same properties
can be proved symmetrically for the suffix order using the right-to-left rewriting operation
(Lemma 3).

▶ Lemma 2. For all u, u′ ∈ A+ with u <p u′, for all w,w′ ∈ A∗, and for all ▷◁∈ {=, <p,⊥p}
we have

w ▷◁ w′ ⇐⇒ w[u← u′]▷ ▷◁ w′[u← u′]▷.

Proof. Let u, u′ ∈ A+ be such that u <p u′, that is, there exists some u′′ ∈ A+ such that
u′ = u · u′′. Let w,w′ ∈ A∗ be of the form w = a1a2 . . . am and w′ = a′

1a
′
2 . . . a

′
n. Let N

and N ′, respectively, be the number of (non-overlapping, from left to right) occurrences of
u in w and w′, respectively. The proof is by induction on the sum i := N + N ′. For the
induction base, assume i = 0. But then w[u← u′]▷ = w and w′[u← u′]▷ = w′, so that the
claim clearly holds. For the induction step, suppose that the claim holds for all 0 ≤ j < i.
We prove the claim for i. We distinguish three cases:
1. N = i and N ′ = 0. By N = i > 0, w contains u. Since u <p u′, also w[u← u′]▷ contains

u. By N ′ = 0, w′ does not contain u and w′[u ← u′]▷ = w′, so that w′[u ← u′]▷ does
not contain u either. Using this, it is easy to see that none of the following cases can
hold: w = w′, w <p w

′, w[u ← u′]▷ = w′[u ← u′]▷ and w[u ← u′]▷ <p w′[u ← u′]▷. So
let us prove w⊥pw′ ⇐⇒ w[u ← u′]▷⊥pw′. For this suppose w[u ← u′]▷ is of the form

MFCS 2022
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b1b2 . . . bq. Let 1 ≤ d ≤ e ≤ m be such that ad . . . ae = u is the first occurrence of u in
w. By u <p u

′, bd . . . be = u is also the first occurrence of u in w[u ← u′]▷, and hence
a1 . . . ae = b1 . . . be. We hence obtain

w⊥pw′

⇐⇒ ∃k ≤ e such that a1 . . . ak−1 = a′
1 . . . a

′
k−1 and ak ̸= a′

k

⇐⇒ ∃k ≤ e such that b1 . . . bk−1 = a′
1 . . . a

′
k−1 and bk ̸= a′

k

⇐⇒ w[u← u′]▷⊥pw′

where k ≤ e holds by the fact that u is not contained in w′.
2. N = 0 and N ′ = i. By N = 0, w does not contain u and hence neither does w[u← u′]▷

as w[u← u′]▷ = w. By N ′ = i > 0, w′ contains u. Using this, it is easy to see that the
following two cases cannot hold: w = w′ and w[u← u′]▷ = w′[u← u′]▷. The proof for
w⊥pw′ ⇐⇒ w⊥pw′[u← u′]▷ is symmetric to the proof in the previous case. So let us
prove w <p w

′ ⇐⇒ w <p w
′[u← u′]▷. For this let w′[u← u′]▷ be of the form b′

1 . . . b
′
q.

Let 1 ≤ d ≤ e ≤ n be such that a′
d . . . a

′
e = u is the first occurrence of u in w′. By u <p u′,

b′
d . . . b

′
e = u is also the first occurrence of u in w′[u← u′]▷, and hence a′

1 . . . a
′
e = b′

1 . . . b
′
e.

We hence obtain
w <p w

′

⇐⇒ a1 . . . am = a′
1 . . . a

′
m

⇐⇒ a1 . . . am = b′
1 . . . b

′
m

⇐⇒ w <p w
′[u← u′]▷

where the second equivalence holds because m < e (as otherwise u would be contained
in w).

3. N > 0 and N ′ > 0. Let 1 ≤ d ≤ e ≤ m be such that ad . . . ae = u is the first occurrence
of u in w, and similarly, let 1 ≤ d′ ≤ e′ ≤ n be such that a′

d′ . . . a′
e′ = u is the first

occurrence of u in w′. In other words, we can write

w = a1 . . . ad−1 · u · v and w′ = a′
1 . . . a

′
d′−1 · u · v′,

where v = ae . . . am and v′ = a′
e′ . . . a′

n. By definition and u′ = u · u′′, we have

w[u← u′]▷ = a1 . . . ad−1 · u · u′′ · (v[u← u′]▷)

and

w′[u← u′]▷ = a′
1 . . . a

′
d′−1 · u · u′′ · (v′[u← u′]▷).

We distinguish four cases:
a. a1 . . . ad−1 · u = a′

1 . . . a
′
d′−1 · u. This implies

w ▷◁ w′ ⇐⇒ v ▷◁ v′ and w[u← u′]▷ ▷◁ w′[u← u′]▷ ⇐⇒ v[u← u′]▷ ▷◁ v′[u← u′]▷

for ▷◁∈ {<p,=,⊥p}. The sum M + M ′ of the occurrences of u in v and v′ must be
strictly smaller than i. By induction hypothesis,

v ▷◁ v′ ⇐⇒ v[u← u′]▷ ▷◁ v′[u← u′]▷.

Hence the result.
b. a1 . . . ad−1 · u <p a′

1 . . . a
′
d′−1 · u. This contradicts the minimality of d′, and hence this

case cannot happen.
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c. a′
1 . . . a

′
d′−1 · u <p a1 . . . ad−1 · u. This contradicts the minimality of d, and hence this

case cannot happen.
d. a1 . . . ad−1 · u⊥p a′

1 . . . a
′
d′−1 · u. Hence there exists some 1 ≤ j ≤ min(d − 1, d′ − 1)

such that a1 . . . aj−1 = a′
1 . . . a

′
j−1 and aj ̸= a′

j . This immediately implies w⊥pw′ and
also w[u← u′]▷⊥p w′[u← u′]▷, hence the result. ◀

A proof for the following lemma can be done symmetrically to the proof of Lemma 2.

▶ Lemma 3. For all u, u′ ∈ A+ and w,w′ ∈ A∗, if u <s u′, then w ▷◁ w′ if, and only if,
w[u← u′]◁ ▷◁ w′[u← u′]◁ for all ▷◁∈ {=, <s,⊥s}.

The following lemma will be crucial in Subsection 4.1.

▶ Lemma 4. For all v, w ∈ A∗ and u, u′ ∈ A+, if u is not overlapping in v, u is not
overlapping in w, u <p u′, and u <s u

′, then A∗ |= ψ(v, w) if, and only if, A∗ |= ψ(v[u ←
u′]▷, w[u← u′]▷) for all ψ ∈ Ψ.

Proof. The proof is an easy case distinction depending on the form of ψ. We give the proof
for ψ being of the form x <p y ∧ x⊥sy.

N∗ |= ψ(v, w)
⇐⇒ v <p w and v⊥sw (by definition)
⇐⇒ v[u← u′]▷ <p w[u← u′]▷ and v⊥sw (by Lemma 2)
⇐⇒ v[u← u′]▷ <p w[u← u′]▷ and v[u← u′]◁⊥sw[u← u′]◁ (by Lemma 3)
⇐⇒ v[u← u′]▷ <p w[u← u′]▷ and v[u← u′]▷⊥sw[u← u′]▷ (by Lemma 1)
⇐⇒ N∗ |= ψ(v[u← u′]▷, w[u← u′]▷) (by definition)

The proofs for the other cases are completely analogous. ◀

4 Deciding Emptiness for Constraint Automata over N∗

In this section, we solve the emptiness problem for constraint automata over N∗. We start in
the next subsection with presenting an algorithm that returns for every finite sequence of
constraints ψ1, . . . , ψn a sequence of string values w0, w1, . . . , wn such that N∗ |= ψi(wi−1, wi)
for all 1 ≤ i ≤ n. The sequence ψ1, . . . , ψn may correspond to the sequence of constraints
occurring in a finite path π = ℓ0

ψ1−−→ . . .
ψn−−→ ℓn of a constraint automaton A, and by

constructing string values w0, w1, . . . , wn we actually prove that π can be completed to a
finite run (ℓ0, w0) ψ1−−→ . . .

ψn−−→ (ℓn, wn) of A. This already implies NL-membership of the
reachability problem for constraint automata (Corollary 8).

We remark that for infinite sequences of constraints ψ1, ψ2, . . . it is not the case that we
can always find string values w0, w1, . . . satisfying N∗ |= ψi(wi−1, wi). Consider for instance
the sequence (x⊥py ∧ x⊥sy) (y <p x ∧ y⊥sx)ω (cf. Figure 1). The constraint y <p x ∧ y⊥sx
is reducing and requires the strings in the ω-sequence to become shorter infinitely often,
which is impossible. In Subsection 4.2 we give a characterization for when infinite paths
can be extended to infinite runs, which, together with the results obtained before, yields a
decision procedure for the emptiness problem.

For the rest of this section, let A = (L, ℓin,Lacc, E) be a constraint automaton over N∗.
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4.1 Extending Finite Paths to Finite Runs
The main part of this subsection is dedicated to prove the following result.

▶ Proposition 5. For every sequence ψ1, . . . , ψn of constraints in Ψ and non-empty string
win ∈ N+, we can define non-empty strings w0, w1, . . . , wn ∈ N+ such that N∗ |= ψi(wi−1, wi)
for all 1 ≤ i ≤ n. Moreover, if ψ1 is generous, then w0 = win.

Let ψ1, . . . , ψn be a finite sequence of constraints in Ψ, and let win be an initial non-empty
string value. The idea is to construct, one after the other, string values that satisfy the
constraints. During the process, formerly defined string values may need to be rewritten
using the left-to-right-rewriting operation defined in Section 3 (so that w0 may not be equal
to the input string win). We take advantage of the fact that we have an unbounded supply of
“fresh” letters as we operate on the infinite alphabet N: we can assign string values in such
a way that constraints that are satisfied before a rewriting still hold true after a rewriting.
Given a string w ∈ N∗, we let max(w) be the maximal number occurring as a letter in w if
w ̸= ε and max(w) = 0 otherwise.

For 1 ≤ i ≤ n, suppose we have already defined string values wi−1
0 , wi−1

1 , . . . , wi−1
i−1

such that N∗ |= ψj(wi−1
j−1, w

i−1
j ) for all 1 ≤ j < i, where w0

0 = win. Define Mi =
max{wi−1

0 , . . . , wi−1
i−1}+ 1, so that Mi is a “fresh” letter not occurring in any of the already

defined string values. Depending on the form of ψi, we define wi0, w
i
1, . . . , w

i
i such that

N∗ |= ψj(wij−1, w
i
j) for all 1 ≤ j ≤ i. We consider the following cases:

1. ψi is of the form x = y. Define wii = wi−1
i−1, and wij = wi−1

j for all 0 ≤ j < i.
2. ψi is of the form x <p y ∧ x <s y. Define wii = wi−1

i−1 ·Mi · wi−1
i−1, and wij = wi−1

j for all
0 ≤ j < i.

3. ψi is of the form x <p y ∧ x⊥sy. Define wii = wi−1
i−1 ·Mi, and wij = wi−1

j for all 0 ≤ j < i.
4. ψi is of the form x⊥py ∧ x <s y. Define wii = Mi ·wi−1

i−1, and wij = wi−1
j for all 0 ≤ j < i.

5. ψi is of the form y <p x ∧ y <s x. Define wii = wi−1
i−1, and for all 0 ≤ j < i define

wij = wi−1
j [wi−1

i−1 ← wi−1
i−1 ·Mi · wi−1

i−1]▷.
6. ψi is of the form y <p x ∧ y⊥sx. Define wii = wi−1

i−1 ·Mi, and for all 0 ≤ j < i define
wij = wi−1

j [wi−1
i−1 ← wi−1

i−1 ·Mi · wi−1
i−1]▷.

7. ψi is of the form y⊥px ∧ y <s x. Define wii = Mi · wi−1
i−1, and for all 0 ≤ j < i define

wij = wi−1
j [wi−1

i−1 ← wi−1
i−1 ·Mi · wi−1

i−1]▷.
8. ψi is of the form x⊥py ∧ x⊥sy. Define wii = Mi and wij = wi−1

j for all 0 ≤ j < i.

▶ Example 6. Let us illustrate the construction with the sequence ψ1, ψ2, ψ3 and win = 3,
where ψ1 = ψ3 = (y <p x ∧ y⊥sx), and ψ2 = (y <p x ∧ y <s x). For i = 1, we are in
case 6. We have M1 = 4 and obtain w1

1 = w0
0 ·M1 = 34 and w1

0 = w0
0[3 ← 343]▷ = 343.

Clearly N∗ |= ψ1(w1
0, w

1
1). For i = 2, we are in case 5 and define w2

2 = w1
1 = 34. We further

rewrite w2
1 = w1

1[34 ← 34534]▷ = 34534, and w2
0 = w1

0[34 ← 34534]▷ = 345343. So even
after rewriting, we have N∗ |= ψi(w2

i−1, w
2
i ) for i = 1, 2. For i = 3, we are again in case 6.

We obtain w3
3 = 346; w3

2, w3
1 and w3

0, respectively, are rewritten to 34634, 34634534634 and
346345346343, respectively. All constraints are indeed satisfied.

Let us state an important property of the construction, which will be key for the correctness
of the construction.

▶ Invariant 7. For every 0 ≤ i ≤ n and every 0 ≤ j ≤ i, wii is not overlapping in wij.

Proof. The proof is by induction on i. The induction base, i = 0, is trivial. So assume that
the claim holds for all 0 ≤ k < i. We prove it for i. We consider different cases, based on the
form of ψi. Let 0 ≤ j < i (the case j = i is trivial).
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1. Suppose we are in cases 1, 2, 3, 4, or 8, that is, wij = wi−1
j (no rewriting happens). In

case 1, wii = wi−1
i−1, we can apply the induction hypothesis to obtain the result. In the

remaining four cases, the string wii contains the letter Mi, which, by definition, does not
occur in wi−1

j . Hence wii cannot occur at all in wi−1
j .

2. Suppose we are in cases 5, 6, or 7, that is, wij = wi−1
j [wi−1

i−1 ← wi−1
i−1 ·Mi ·wi−1

i−1] (rewriting
happens). By induction hypothesis, wi−1

i−1 is not overlapping in wi−1
j . If N is the number

of occurrences of wi−1
i−1 in wi−1

j , we can hence write

wi−1
j = u0 · wi−1

i−1 · u1 · wi−1
i−1 · u2 . . . uN−1 · wi−1

i−1 · uN

for some u0, . . . , uN ∈ N∗. By definition,

wij = u0 · wi−1
i−1 ·Mi · wi−1

i−1 · u1 · wi−1
i−1 ·Mi · wi−1

i−1 · u2 . . . uN−1 · wi−1
i−1 ·Mi · wi−1

i−1 · uN .

In case 5, wii = wi−1
i−1, so that wii does not contain Mi by definition. The only way for

wii to be overlapping in wij is in u0 · wi−1
i−1, in wi−1

i−1 · uk · w
i−1
i−1 for some 1 ≤ k < N , or in

wi−1
i−1 · uN . But this would contradict that wi−1

i−1 is not overlapping in wi−1
j . In case 6,

wii = wi−1
i−1 ·Mi. By definition, wi−1

j does not contain Mi. Hence the only way for wii to
be contained at all in wij is so that no overlap can occur. The reasoning for case 7, where
wii = Mi · wi−1

i−1, is analogous. ◀

Let us finally prove the correctness of the construction, that is, for all 1 ≤ i ≤ n, we
have N∗ |= ψj(wij−1, w

i
j) for all 1 ≤ j ≤ i. The proof is by induction on i. For the base

case i = 1 observe that w1
0 and w1

1 are defined such that N∗ |= ψ1(w1
0, w

1
1). So suppose that

the claim holds for all 1 ≤ k < i. We prove it for i. For j = i, it is again easy to see that
N∗ |= ψi(wii−1, w

i
i). So let 1 ≤ j < i. By induction hypothesis, we have N∗ |= ψj(wi−1

j−1, w
i−1
j ).

Depending on the form of ψi, we either have
wij−1 = wi−1

j−1 and wij = wi−1
j , so that we have N∗ |= ψj(wij−1, w

i
j); or

wij−1 = wi−1
j−1[wi−1

i−1 ← wi−1
i−1 · Mi · wi−1

i−1]▷ and wij = wi−1
j [wi−1

i−1 ← wi−1
i−1 · Mi · wi−1

i−1]▷.
By Invariant 7, wi−1

i−1 is not overlapping in wi−1
j−1, wi−1

i−1 is not overlapping in wi−1
j , and

wi−1
i−1 <p wi−1

i−1 · Mi · wi−1
i−1, and wi−1

i−1 <s w
i−1
i−1 · Mi · wi−1

i−1. By Lemma 4 we obtain
N∗ |= ψj(wij−1, w

i
j).

Setting wi = wni for all 0 ≤ i ≤ n, we are done with the proof of the first claim of
Proposition 5.

Let us prove the second claim and suppose that ψ1 is generous. We prove below that
for all 1 ≤ i ≤ n, wii contains some letter not occurring in wi0. Note that this implies
w0

0 = w1
0 = · · · = wn0 . The proof is by induction on i. For the induction base, set i = 1.

Since ψ1 is generous, we are in one of the cases 2, 3, 4, or 8. Here, w1
1 contains M1,

which, by definition, is not occurring in w0
0, and w1

0 = w0
0. Hence w1

1 contains a letter
not occurring in w1

0. For the induction step, suppose the claim holds for all 1 ≤ j < i.
We prove it for i. Note that depending on the form of ψi, wii is defined as wi−1

i−1, a fresh
letter Mi, or a composition of these two. For wi0, we either have wi0 = wi−1

0 , in which
case the induction hypothesis and/or freshness of Mi immediately establishes the claim,
or we have wi0 = wi−1

0 [wi−1
i−1 ← wi−1

i−1 · Mi · wi−1
i−1]. But by induction hypothesis, wi−1

i−1
contains some letter not occurring in wi−1

0 , so that wi−1
i−1 cannot occur in wi−1

0 and thus
wi−1

0 [wi−1
i−1 ← wi−1

i−1 ·Mi · wi−1
i−1] = wi−1

0 . Hence wii contains some letter not occurring in wi0.
This finishes the proof of Proposition 5.

The (control-state) reachability problem for constraint automata is the problem to decide,
given a constraint automaton A = (L, ℓin,Lacc, E) over N∗ and some target location ℓ ∈ L,
whether there exists a run from (ℓin, w0) to (ℓ, w), for some w0, w ∈ N∗.

MFCS 2022
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▶ Corollary 8. The reachability problem for constraint automata is NL-complete.

Proof. For the upper bound, it suffices to decide whether there exists a path from ℓin to ℓ,
which can be done in NL. If no such path exists, then there exists no run from (ℓin, w0) to (ℓ, w)
for some w0, w ∈ N∗. If such a path, say ℓ0

ψ1−−→ . . .
ψn−−→ ℓn, exists, we use Proposition 5 with

ψ1, . . . , ψn and some win ∈ N+ to obtain w0, w1, . . . , wn ∈ N+ such that N∗ |= ψi(wi−1, wi)
for all 1 ≤ i ≤ n. Then (ℓ0, w0) ψ1−−→ . . .

ψn−−→ (ℓn, wn) is a finite run of A. A reduction from
the reachability problem for finite directed graphs yields the lower bound. ◀

4.2 Characterization for Büchi-accepting Runs
As mentioned above, there are infinite sequences of constraints ψ1, ψ2, . . . for which it may
not be possible to find w0, w1, w2 . . . such that N∗ |= ψ(wi−1, wi) for all i ≥ 1. In the
following proposition, we give a decidable characterization for when an infinite path of A
can be completed with string values to obtain an infinite run of A.

▶ Proposition 9. The following three statements are equivalent:
1. There exists a Büchi-accepting run of A.
2. There exists an infinite path π of A satisfying the following conditions:

a. π starts in ℓin,
b. π contains infinitely many occurrences of ℓacc, for some ℓacc ∈ Lacc, and
c. if π contains only finitely many generous constraints, then π contains only finitely

many reducing constraints.
3. There exists a path from ℓin to ℓacc, for some ℓacc ∈ Lacc, and one of the following holds:

a. there exists some stable cycle starting in ℓacc, or
b. there exists some generous cycle starting in ℓacc.

Proof. For the proof from 1. to 2., let (ℓ0, w0) ψ1−−→ (ℓ1, w1) ψ2−−→ . . . be a Büchi-accepting
run of A. Define π to be the infinite path ℓ0

ψ1−−→ ℓ1
ψ2−−→ . . . . Clearly, π satisfies conditions

2.a and 2.b; we prove that condition 2.c also holds. Towards contradiction, suppose that π
contains finitely many generous constraints but infinitely many reducing constraints. Then
there exists some i ≥ 1 such that ψj is reducing or of the form x = y, for all j ≥ i. Note that
this implies |wj | ≥ |wj+1| for all j ≥ i. Moreover, since there are infinitely many reducing
constraints, there exists an infinite sequence i ≤ i1 < i2 < i3 . . . of indices such that ψij is
reducing and hence |wij | > |wij+1|. Since |wj | is finite, this leads to a contradiction.

For the proof from 2. to 1., let π = ℓ0
ψ1−−→ ℓ1

ψ2−−→ . . . be an infinite path of A satisfying
the three conditions stated in 2. Using condition 2.c, we prove that we can complete π
with string values to yield an infinite run of A; that this run is Büchi-accepting, follows by
conditions 2.a and 2.b. We distinguish two cases.

Suppose π contains only finitely many generous constraints. By condition 2.c, π contains
only finitely many reducing constraints. Then there exists some i ≥ 0 such that ψj is of
the form x = y for all j > i. Use Proposition 5 with the sequence ψ1, . . . , ψi and win = 0
to obtain string values w0, w1, . . . , wi ∈ N+ such that N∗ |= ψj(wj−1, wj) for all 1 ≤ j < i.
Then (ℓ0, w0) ψ1−−→ (ℓ1, w1) ψ2−−→ . . .

ψi−→ (ℓi, wi)
ψi+1−−−→ (ℓi+1, wi)

ψi+2−−−→ (ℓi+2, wi)
ψi+3−−−→ . . .

is an infinite run of A.
Suppose that π contains infinitely many generous constraints. Let i1, i2, i3 . . . be the
sequence of all j ≥ 1 such that ψij is generous. Use Proposition 5 with the sequence
ψ1, . . . , ψi1−1 and win = 0 to obtain string values w0, w1, . . . , wi1−1 ∈ N+ such that
N∗ |= ψk(wk−1, wk) for all 1 ≤ k < wi1−1. For every j ≥ 1, use Proposition 5 with the
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sequence ψij , . . . , ψij+1−1 and the initial string value wjin := wij−1 to obtain string values
wij−1, wij , . . . , wij+1−1 ∈ N+ such that N∗ |= ψk(wk−1, wk) for all ij ≤ k < ij+1 − 1. By
the second claim of Proposition 5, since ψij in πj is generous, the initial string value
wij−1 is never rewritten. Hence Πi≥0ρi is an infinite run of A, where ρ0 := (ℓ0, w0) ψ1−−→

(ℓ1, w1) ψ2−−→ . . .
ψi1−1−−−−→ (ℓi1−1, wi1−1), and ρj := (ℓij−1, wij−1)

ψij−−→ (ℓij , wij )
ψij +1
−−−−→

. . .
ψij+1−1
−−−−−→ (ℓij+1−1, wij+1−1) for all j ≥ 1.

For the proof from 2. to 3., let π = ℓ0
ψ1−−→ ℓ1

ψ2−−→ . . . be an infinite path of A satisfying
the three conditions stated in 2. We distinguish two cases:

Suppose π contains only finitely many generous constraints. By condition 2.c, π contains
only finitely many reducing constraints. Then there exists some i ≥ 0 such that ψj is of
the form x = y for all j > i. By condition 2.b, there are infinitely many indices j > i such
that ℓj = ℓacc. Pick two such indices j < k satisfying ℓj = ℓk = ℓacc. We have ℓ0 = ℓin by
condition 2.a, so that clearly, the path ℓ0

ψ1−−→ . . .
ψj−→ ℓj is a path from ℓin to ℓacc, and

the path ℓj
ψj+1−−−→ . . .

ψk−1−−−→ ℓk is a stable cycle starting in ℓacc.
Suppose π contains infinitely many generous constraints. By condition 2.b, there are
infinitely many indices i ≥ 0 such that ℓi = ℓacc, so that we can clearly pick three indices
j, k, n such that 0 ≤ j < k ≤ n, ℓj = ℓn = ℓacc, and ψk is generous. We have ℓ0 = ℓin by
condition 2.a, so that clearly, the path ℓ0

ψ1−−→ . . .
ψj−→ ℓj is a path from ℓin to ℓacc, and

the path ℓj
ψj+1−−−→ . . .

ψk−1−−−→ ℓk is a generous cycle starting in ℓacc.

For the proof from 3. to 2., suppose πin is a path from ℓin to ℓacc for some accepting
location ℓacc ∈ Lacc, and πcyc is a cycle starting in ℓacc. Clearly πin · (πcyc)ω is an infinite
path of A satisfying conditions 2.a and 2.b. If πcyc is stable, then this path contains only
finitely many reducing constraints. If πcyc is generous, then this path contains infinitely
many generous constraints. Hence, condition 2.c holds, too. ◀

▶ Theorem 10. The emptiness problem for constraint automata over N∗ is NL-complete.

Proof. For the upper bound, by Proposition 9, it suffices to decide whether there exists
some ℓacc ∈ Lacc such that there exists a path from ℓin to ℓacc, and one of the following two
conditions hold:

there exists a stable cycle starting in ℓacc, or
there exists some genereous transition (ℓ, ψ(x, y), ℓ′) ∈ E such that there exists a path
from ℓacc to ℓ, and there exists a path from ℓ′ to ℓacc.

All conditions can be checked in NL. A reduction from the emptiness problem for Büchi
automata yields the lower bound. ◀

5 Further Results

5.1 Testing Equality with the Empty String
We extend the signature σps by a new symbol =ε, which is interpreted as equality with the
empty string. This enables us to test whether the string value equals the empty string – very
similar to testing whether the value of a counter in a counter automaton is equal to zero,
or whether the stack of a pushdown automaton is empty. Let us use σpsε to denote this
signature. We can give a decidable characterization for Büchi-accepting runs of A and hence
obtain:
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▶ Theorem 11. The emptiness problem for constraint automata over the extended signature
σpsε with domain N∗ is NL-complete.

5.2 Emptiness for Constraint Automata over Σ∗

The decision procedure for solving the emptiness problem for constraint automata over N∗

relies heavily on the existence of “fresh” letters, of which there are unboundedly many in N.
We can clearly not apply this algorithm if the constraint automaton is over the structure Σ∗,
where Σ is a finite alphabet.

Let σ be a relational signature, and let D1 and D2 be two σ-structures. A mapping
h : D1 → D2 is a σ-embedding if h is injective, and for all symbols R of arity k, and all
a1, . . . , ak ∈ D1, RD1(a1, . . . , ak) holds if, and only if, RD2(h(a1), . . . , h(ak)).

Let Σ = {a, b}. Define the mapping g : N → Σ by n 7→ abna for all n ∈ N, and let
h : N∗ → Σ∗ be its homomorphic extension, that is, h(n1 . . . nk) = g(n1) . . . g(nk) for all
n1, . . . , nk ∈ N, and h(ε) = ε. One can easily see that h is a σpsε-embedding. We can
conclude that a constraint automaton over Σ∗ is a positive instance of the emptiness problem
iff the same constraint automaton over N∗ is a positive instance; thus:

▶ Theorem 12. The emptiness problem for constraint automata over the extended signature
σpsε with domain Σ∗ is NL-complete.

5.3 Emptiness for Single-Register Automata over A∗

Register automata (also known as finite-memory automata) [17, 13, 24] are a very popular
computational model for the analysis of data languages. Like constraint automata, register
automata are parameterized by a σ-structure; in contrast to constraint automata, register
automata are “fed” with some input data word, that is a finite or infinite sequence of data
values in the domain of the σ-structure. The data language accepted by such an automaton
is the set of input data words for which there is an accepting run. Different to the transitions
in constraint automata, the transitions of register automata are labelled with constraints of
the form r ▷◁ d, where r corresponds to one of finitely many registers of the automaton, d
corresponds to the current datum of the input data word, and ▷◁ is a binary relation in σ.
Further, the current input data value can be stored into one of the registers of the automaton
after a transition has been taken.

So far, register automata have mostly been studied for the structure (N; =) and linear
dense orders like (Q;<,=) [17, 24, 13, 4, 8]. The emptiness problem for register automata is
decidable and PSPACE-complete (NL-complete if only one register is used) [13]; the decision
procedure relies on a finite abstraction of the infinite state space induced by the input register
automaton. This abstraction cannot be applied to register automata over σpsε-structures Σ∗

and N∗.
A register automaton with a single register that stores the current input datum in every

transition into the register can actually be regarded as a constraint automaton as defined in
Section 2: the current value of the register r corresponds to the value of the variable x, and
the input datum d corresponds to the value of the variable y at the next position in a run.
However, it might be the case that some of the transitions in the register automaton may
compare the value of the register without storing the input datum into the register. There is
no direct way to translate this into constraint automata as defined above. However, an easy
extension of our model where we compare x with y, but then set the value of y to x, would
make such a translation possible. It can be easily seen that this extension does not cause any
problems when applying the developed decision procedure for solving the emptiness problem,
so that we can conclude:
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▶ Theorem 13. The emptiness problem for single-register automata over the extended
signature σpsε (with domains N∗ or Σ∗) is NL-complete.

5.4 Constraint LTL with a Single Variable over A∗

Our result for constraint automata can be used to partially answer the question raised by
Demri and Deters [9] concerning the decidability status for CLTL over σpsε. More detailed,
we can prove PSPACE-completeness for the fragment of CLTL that only uses a single variable.

Let P be a countably infinite set of propositional variables. The set of formulas in CLTL1
is defined by the following grammar

φ ::= p | ψ | ¬φ | φ ∨ φ | Xφ | φUφ,

where p ∈ P and ψ ∈ Ψ. CLTL1 formulas are evaluated over data words over 2P and A∗.
Formally, let u = (a1, w1)(a2, w2) . . . and i ≥ 1. The satisfaction relation |= is defined as
follows:

(u, i) |= p ⇔ p ∈ ai
(u, i) |= ψ ⇔ A∗ |= ψ(wi, wi+1)

(u, i) |= ¬φ ⇔ not(u, i) |= φ

(u, i) |= φ1 ∨ φ2 ⇔ (u, i) |= φ1 or (u, i) |= φ2

(u, i) |= Xφ ⇔ (u, i+ 1) |= φ

(u, i) |= φ1Uφ2 ⇔ ∃j ≥ i(u, j) |= φ2,∀i ≤ k < j(u, k) |= φ1

We define L(φ) = {u ∈ (2P × A∗)ω | (u, 1) |= φ}. Following the standard translation from
LTL to Büchi automata by Vardi and Wolper [29], one can construct from every formula φ a
constraint automaton Aφ such that L(Aφ) corresponds to L(φ) (cf. [14]). In other words,
deciding the satisfiability of φ can be reduced to deciding the non-emptiness of L(Aφ), so
that we obtain the following result.

▶ Theorem 14. The satisfiability problem for CLTL1 over the extended signature σpsε (with
domains N∗ or Σ∗) is PSPACE-complete.
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