
Report from Dagstuhl Seminar 22062

Computation and Reconfiguration in Low-Dimensional
Topological Spaces
Maike Buchin∗1, Anna Lubiw∗2, Arnaud de Mesmay∗3,
Saul Schleimer∗4, and Florestan Brunck†5

1 Faculty of Computer Science, Ruhr-Universität Bochum, DE.
maike.buchin@rub.de

2 Cheriton School of Computer Science, University of Waterloo, CA.
alubiw@waterloo.ca

3 LIGM, CNRS, Univ. Gustave Eiffel, ESIEE Paris, Marne-la-Vallée, FR.
arnaud.de-mesmay@univ-eiffel.fr

4 Mathematics Institute, University of Warwick, Coventry, GB.
s.schleimer@warwick.ac.uk

5 IST Austria – Klosterneuburg, AT. florestan.brunck@ist.ac.at

Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 22062 “Computation
and Reconfiguration in Low-Dimensional Topological Spaces”. The seminar consisted of a small
collection of introductory talks, an open problem session, and then the seminar participants
worked in small groups on problems on reconfiguration within the context of objects as diverse as
elimination trees, morphings, curves on surfaces, translation surfaces and Delaunay triangulations.
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This seminar was proposed as a followup to the Dagstuhl Seminars 17072: “Applications
of Topology to the Analysis of 1-Dimensional Objects” and 19352: “Computation in Low-
Dimensional Geometry and Topology”. The goal of these seminars was to bring together
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18 22062 – Computation and Reconfiguration in Low-Dimensional Topological Spaces

researchers from different communities who are working on low-dimensional topological spaces
(curves, embedded graphs, knots, surfaces, three-manifolds), in order to foster collaborations
and synergies. Indeed, while the mathematical study of these objects has a rich and old
history, the study of their algorithmic properties is still in its infancy, and new questions and
problems keep coming from theoretical computer science and more applied fields, yielding a
fresh and renewed perspective on computation in topological spaces.

The success of previous seminars demonstrated that research in low-dimensional topology
is very active and fruitful, and also that there was a strong demand for a new seminar
gathering researchers from the various involved communities, namely geometric topology
and knot theory, computational geometry and topology, all the way to graph drawing and
trajectory analysis.

For this iteration we placed a particular emphasis on topics related to geometric and
topological reconfiguration: How can one structure be changed into another? How far
apart are two structures? Such questions lie at the heart of various geometric problems
such as computing the Fréchet distance as a way to quantify curve similarity, or morphing
between two versions of a common graph. In many cases, the combinatorics and the geometry
of a reconfiguration space also emerged as important objects of study: examples include
associahedra, the flip graphs of triangulations, and the curve complexes in geometric topology.

The seminar started with four overview talks given by researchers in geometric topology,
computational geometry, topological dynamics, and graph drawing to motivate and propose
open problems that would fit the diverse backgrounds of participants and the specific focus
on reconfiguration chosen for this year’s workshop. This was followed by an open problem
session where we gathered fifteen open problems, some of which were circulated in advance
of the meeting. The remainder of the week was spent actively working on solving these
problems in small groups.

The Covid pandemic prevented many participants from attending the seminar physically,
and the entirety of the seminar took place in a hybrid setting, with most working groups
featuring both online and physical participants. In order to coordinate the progress, we
used Coauthor, a tool designed for by Erik Demaine (MIT), which greatly facilitated the
collaborations, and also allowed participants to have a record of the work when the seminar
concluded. We also held two daily progress report meetings, allowing people to share progress
and allow people to switch groups. In addition to the traditional hike, a virtual social
meeting was held on Gather.town to foster interactions between the online and the physical
participants.

We now briefly describe the problems that have been worked on, with a more in-depth
survey of the problems and the progress being done being featured farther down in this
Dagstuhl Report. Some more open problems that have been proposed but not worked on are
also listed at the end of the document.

Two groups worked on questions pertaining to reconfiguring curves in the plane and
on surfaces. The group 4.1 investigated problems inspired by nonograms, where one aims
at introducing switches at intersections of curves in the plane to remove so-called popular
faces. The group 4.5 looked at the reconfiguration graph obtained under the action of local
moves on minimal closed (multi-)curves on surfaces, and whether such multi-curves could be
realized as the set of geodesics of some hyperbolic metric on the surface.

A different flavor of surfaces was studied by the group 4.4, who investigated how square-
tiled surfaces could be transformed under the action of shears of cylinder blocks.
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The working group 4.2 studied the longstanding problem of the computational complexity
of evaluation the rotation distance between elimination trees in graphs. A different flip graph,
namely the one of order-k Delaunay triangulations was the topic of study of group 4.7.

Finally, two groups worked on motion of discrete objects in different contexts. The group
4.3 initiated a generalization of the classical theory of morphings of planar graph when one
allows the morph to go through a third dimension. The group 4.6 investigated Turning
machines, which is a simple model of molecular robot aiming to fold into specific shapes.

All in all, the seminar fostered a highly collaborative research environment by allowing
researchers from very diverse backgrounds to work together on precise problems. While
the hybrid setting proved to be a significant challenge, the quality of the equipment at
Dagstuhl and the online tools that were used provided a practical way for all the participants
to interact and to make progress on problems related to reconfiguration in geometric and
topological settings.

22062
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3 Overview of Talks

3.1 Playing Puzzles on Square-Tiled Surfaces
Hugo Parlier (University of Luxembourg – Esch-sur-Alzette, Luxembourg, hugo.parlier@uni.lu)

License Creative Commons BY 4.0 International license
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Joint work of Hugo Parlier, Paul Turner, Mario Gutierrez, Reyna Juarez, Mark Bell, Lionel Pournin

This talk will be about a project aiming to illustrate geometry through puzzles. The puzzles
are played on (square-tiled) surfaces, and have natural configuration graphs with a geometry
of their own. These graphs are reminiscent of combinatorial graphs used in the study of
moduli spaces of surfaces which can be visualized in similar ways.

The puzzles were created together with Paul Turner, and brought to life together with
Mario Gutierrez and Reyna Juarez. The pictures of moduli spaces were created with Mark
Bell and Lionel Pournin.

References
1 Parlier, Hugo; Pournin, Lionel, Modular flip-graphs of one-holed surfaces. Eur. J. Comb. 67,

158-173 (2018).

3.2 Flip Graphs and Polytopes
Jean Cardinal (Université Libre de Bruxelles – Bruxelles, Belgique, cardinaljean@gmail.com)

License Creative Commons BY 4.0 International license
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We present various families of flip graphs that are skeletons of polytopes. We begin with
the ubiquitous Associahedron, whose skeleton is the flip graph of triangulations of a convex
n-gon and the rotation graph of binary trees with n − 1 leaves. We then introduce graph
associahedra, an elegant generalization of associahedra whose skeleton is the rotation graph of
so-called elimination trees on a given simple connected graph G. Next, we review well-known
properties of the flip graph of acyclic orientations of a graph G, the skeleton of the graphical
zonotope of G. We then proceed to show that graphical zonotopes and graph associahedra
have a common generalization called hypergraphic polytopes, whose skeletons are flip graphs
of acyclic orientations of a given hypergraph.

For each family of flip graphs, we mention old and new results on flip distance and
Hamiltonicity properties, emphasizing the computational aspects: How hard is it to compute
the flip distance between two given objects? Does there exist an efficient Gray code for listing
these objects, one flip at a time?

References
1 Alexander Postnikov: Permutohedra, associahedra, and beyond. International Mathematics

Research Notices, 6:1026–1106, 2009.
2 Thibault Manneville and Vincent Pilaud: graph properties of graph associahedra. Séminaire

Lotharingien de Combinatoire 73 (2015), Article B73d
3 Marcelo Aguiar and Federico Ardila: Hopf monoids and generalized permutahedra,

arXiv:1709.07504, 2017.
4 Carolina Benedetti, Nantel Bergeron, John Machacek: Hypergraphic polytopes: combinat-

orial properties and antipode. arXiv:1712.08848, 2017.
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5 Jean Cardinal, Stefan Langerman, Pablo Pérez-Lantero: On the diameter of tree associahedra.
Electron. J. Comb. 25(4): P4.18, 2018.

6 Prosenjit Bose, Jean Cardinal, John Iacono, Grigorios Koumoutsos, Stefan Langerman:
Competitive online search trees on trees. SODA 2020: 1878-1891.

7 Jean Cardinal, Lionel Pournin, Mario Valencia-Pabon: Bounds on the diameter of graph
associahedra. LAGOS 2021: 239-247. (arXiv:2106.16130).

8 Jean Cardinal, Arturo I. Merino, Torsten Mütze: Combinatorial generation via permutation
languages. IV. Elimination trees. CoRR abs/2106.16204 (2021). Extended abstract in SODA
2022.

3.3 Geometry of Large Genus Flat Surfaces and Open Problems on
Square-Tiled Surfaces

Élise Goujard (University of Bordeaux – Bordeaux, France, elise.goujard@u-bordeaux.fr)
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Joint work of Delecroix, Vincent; Zograf, Peter; Zorich, Anton
Main reference Vincent Delecroix, Elise Goujard, Peter Zograf, Anton Zorich: “Large genus asymptotic geometry of

random square-tiled surfaces and of random multicurves”, arXiv, CoRR, Vol. abs. 2007.04740, 2020.
URL http://dx.doi.org/10.48550/ARXIV.2007.04740

In this talk we present some results (joint work with Vincent Delecroix, Peter Zograf and
Anton Zorich) on the geometry of large genus surfaces and related problems on square-
tiled surfaces. The study of the SL(2,R)-dynamics and the geometry of the moduli space
of translation surfaces allows to prove equidistribution of square-tiled surfaces with fixed
combinatorics in the strata and uncorrelation between horizontal and vertical combinatorics
[2], as well as large genus asympstotics for the distribution of cylinders for instance [1].
Some results about the statistics of random square-tiled surfaces with no constraints on the
singularities (especially for half-translation square-tiled surfaces) are still open.

References
1 V. Delecroix, é. Goujard, P. Zograf, A. Zorich, Large genus asymptotic geometry of random

square-tiled surfaces and of random multicurves , arXiv:2007.04740.
2 V. Delecroix, é. Goujard, P. Zograf, A. Zorich, Enumeration of meanders and Masur-Veech

volumes. Forum Math. Pi 8 (2020), e4, 80 pp.

3.4 Morphing Graph Drawings
Fabrizio Fratti (Roma Tre University – Rome, Italy, frati@dia.uniroma3.it)

License Creative Commons BY 4.0 International license
© Fabrizio Fratti

A morph between two geometric shapes is a continuous transformation of one shape into the
other. Morphs are useful in many areas of computer science, including Computer Graphics,
Animation, and Modeling. This talk surveys known results and algorithms on morphing
graph drawings.

The first part of the talk is devoted to morphing algorithms for planar straight-line
drawings. Contraction-based algorithms [1, 2], coefficient-interpolation-based algorithms [4],
and one-coefficient-at-a-time algorithms [7] are described. The running time and the resolution
of the described morphing algorithms are discussed.
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The second part of the talk deals with other graph drawing styles. In particular, morphs
between non-planar graph drawings [3], three-dimensional morphs [5], and upward morphs [6]
are discussed

References
1 S.S. Cairns, Deformations of plane rectilinear complexes, “The American Mathematical

Monthly”, volume 51, 5, 247–252, Mathematical Association of America, 1944.
2 Soroush Alamdari and Patrizio Angelini and Fidel Barrera-Cruz and Timothy M. Chan

and Giordano Da Lozzo and Giuseppe Di Battista and Fabrizio Frati and Penny Haxell
and Anna Lubiw and Maurizio Patrignani and Vincenzo Roselli and Sahil Singla and Bryan
T. Wilkinson, How to Morph Planar Graph Drawings, SIAM J. Comput., volume 46, 2,
824–852, 2017.

3 Patrizio Angelini and Michael A. Bekos and Fabrizio Montecchiani and Maximilian Pfister,
On Morphing 1-Planar Drawings, 47th International Workshop on Graph-Theoretic Concepts
in Computer Science (WG), Lecture Notes in Computer Science, 12911, 270–282, Springer,
2021.

4 Michael S. Floater and Craig Gotsman, How to morph tilings injectively, Journal of Com-
putational and Applied Mathematics, volume 101, 1, 117-129, 1999, doi:10.1016/S0377-
0427(98)00202-7.

5 Elena Arseneva and Prosenjit Bose and Pilar Cano and Anthony D’Angelo and Vida
Dujmovic and Fabrizio Frati and Stefan Langerman and Alessandra Tappini, Pole Dancing:
3D Morphs for Tree Drawings, J. Graph Algorithms Appl., volume 23, 3, 579–602, 2019,
https://doi.org/10.7155/jgaa.00503.

6 Giordano Da Lozzo and Giuseppe Di Battista and Fabrizio Frati and Maurizio Patrignani
and Vincenzo Roselli, Upward Planar Morphs, Algorithmica, volume 82, 10, 2985–3017,
2020, https://doi.org/10.1007/s00453-020-00714-6, doi:10.1007/s00453-020-00714-6.

7 Jeff Erickson and Patrick Lin, Planar and Toroidal Morphs Made Easier, 29th International
Symposium on Graph Drawing and Network Visualization (GD), Lecture Notes in Computer
Science, Springer, 2021.

4 Working Groups

4.1 Reconfiguring Popular Faces
Florestan Brunck (Institute of Science and Technology, Austria, florestan.brunck@ist.ac.at)
Hsien-Chih Chang (Dartmouth College, USA, hsien-chih.chang@dartmouth.edu)
Maarten Löffler (Utrecht University, the Netherlands, m.loffler@uu.nl)
Tim Ophelders (Utrecht University & TU Eindhoven, the Netherlands, t.a.e.ophelders@uu.nl)
Lena Schlipf (Universität Tübingen, Germany, lena.schlipf@uni-tuebingen.de)

License Creative Commons BY 4.0 International license
© Florestan Brunck, Hsien-Chih Chang, Maarten Löffler, Tim Ophelders, Lena Schlipf

Let A be a set of curves which lie inside the area bounded by a closed curve F , called the
frame. All curves in A are either closed or they are open with a start and end point on F .
We refer to A as a curve arrangement, see Figure 1a. We consider only simple arrangements,
where no three curves meet in a point, and all intersections are transversal crossings (no
tangencies). The arrangement A can be seen as an embedded multigraph whose vertices
are crossings between curves and whose edges are curve segments. A subdivides the region
bounded by F into faces. We call a face popular when it is incident to multiple curve segments
belonging to the same curve in A (see Figures 1b-c).

https://doi.org/10.7155/jgaa.00503
https://doi.org/10.1007/s00453-020-00714-6
https://creativecommons.org/licenses/by/4.0/
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(a) (b) (c) (d) (e)

Figure 1 (a) An arrangement of curves inside a frame. (b) The red curve is incident to the
top right face in two disconnected segments, making the face popular. (c) All popular faces are
highlighted. (d) A set of switches. (e) A possible reconfiguration after which no more faces are
popular.

▶ Proposition 1. We do not like popular faces.

Now, let a switch be a local area in which we are allowed to reroute the curves of A (see
Figures 1d-e).

▶ Problem 4.1. Given a curve arrangement and a set of switches, can we reconfigure the
curves so as to remove all, or as many as possible, popular faces? And can we minimize the
number of switch operations?

Once we are given a set of switches, the question above is essentially combinatorial.
Now suppose the switches are not given in advance, but we allow curves to be reconfigured
whenever they are “sufficiently close” to each other.

▶ Observation 1. If all intersections are switches, then it is possible to remove all popular
faces.

Proof. Simply set every switch to any non-intersecting state. Then each curve bounds a
single face on each side, and thus no face is popular. ◀

▶ Problem 4.2. Is there a reasonable way to geometrically determine a set of switches? And
how does this influence the complexity of Problem 4.1?

Finally, suppose that our curves have fixed parts and flexible parts. That is, each curve is
a smooth concatenation of pieces, each of which is either fixed or flexible. Fixed pieces may
never be altered. Flexible pieces may be changed.

▶ Problem 4.3. Given a curve arrangement with fixed and flexible pieces, can we reconfigure
the flexible parts of the curves so as to remove all popular faces? Can we stay as close to the
original arrangement as possible?

Motivation & Background

Our question is motivated by the problem of generating curved nonograms. Nonograms, also
known as Japanese puzzles, paint-by-numbers, or griddlers, are a popular puzzle type where
one is given an empty grid and a set of clues on which grid cells need to be colored. A clue
consists of a sequence of numbers specifying the numbers of consecutive filled cells in a row
or column. A solved nonogram typically results in a picture (see Figure 2 (a)). There is
quite some work in the literature on the difficulty of solving nonograms [1].

Van de Kerkhof et al. introduced curved nonograms, a variant in which the puzzle is
no longer played on a grid but on any arrangement of curves [4] (see Figure 2b). In curved
nonograms, a clue specifies the numbers of filled faces of the arrangement in the sequence
of faces that are incident to a common curve on one side. Van de Kerkhof et al. focus on

22062
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Figure 2 Two nonogram puzzles in solved state. (a) A classic nonogram. (b) A curved nonogram.
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Figure 3 Three types of curved nonograms of increasing complexity [4], shown with solutions.
(a) Basic puzzles have no popular faces. (b) Advanced puzzles may have popular faces, but no
self-intersections. (c) Expert puzzles have self-intersecting curves. We can observe closed curves
(without clues) in (a) and (c).

heuristics to automatically generate such puzzles from a desired solution picture by extending
curve segments to a complete curve arrangement. Van de Kerkhof et al. observe that curved
nonograms come in different flavours of increasing complexity – not in terms of how hard it
is to solve a puzzle, but how hard it is to understand the rules (see Figure 3). They state
that it would be of interest to generate puzzles of a specific complexity level; their generators
are currently not able to do so other than by trial and error.

Basic nonograms are puzzles in which each clue corresponds to a sequence of unique faces.
The analogy with clues in classical nonograms is straightforward.
Advanced nonograms may have clues that correspond to a sequence of faces in which
some faces may appear multiple times because the face is incident to the same curve
(on the same side) multiple times. When such a face is filled, it is also counted multiple
times; in particular, it is no longer true that the sum of the numbers in a clue is equal
to the total number of filled faces incident to the curve. This makes the rules harder to
understand, and thus advanced nonograms are only suitable for more experienced puzzle
freaks.
Expert nonograms may have clues in which a single face is incident to the same curve on
both sides. They are even more confusing than advanced nonograms.

It is not hard to see that expert puzzles correspond exactly to arrangements with self-
intersecting curves. The difference between basic and advanced puzzles is more subtle; it
corresponds exactly to the presence of popular faces in the arrangement.
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Figure 4 Some examples of real puzzles (without the clues) with all popular faces highlighted.

One possibility to generate nonograms of a specific complexity would be to take an
existing generator and modify the output. Recently, de Nooijer [2] investigated how this
might be done by inserting a new curve into the arrangement; see also [3]. Problems 1-3
explore a different approach, geared towards the generation of basic puzzles. Of course,
another interesting question is what can be done to generate advanced puzzles.

▶ Problem 4.4. How do Problems 1-3 change when the goal is only to remove all self-
intersections?

Results

In this section, we present NP-hardness results and bring a negative answer to both Problem
4.1 and its self-intersection variant (Problem 4.4). We begin by examining the self-intersection
problem and derive Theorem 1, from which we later reduce our original question about the
removal of popular faces, as well as subsequent extensions concerning the minimal number of
switch operations required. The organisation of our results is summarized in Fig. 5.

Base Results.

▶ Theorem 1. Given a curve arrangement and a prescribed set of switches, it is NP-hard to
decide whether it is possible to configure the switches such that the resulting arrangement has
no self-intersections.

The proof of Theorem 1 is ultimately a reduction from 3-SAT, but involves an intermediate
reduction through a naturally related problem, which we call the permuter problem.

The Permuter Problem and its Reduction from 3-SAT. Consider the straight-line-edges
drawing of the complete bipartite graph Kk,k in the plane, with bi-partition I and O (referred
as its inputs and outputs) such that I and O are evenly distributed on opposite sides of a
rectangle R. Fixing the same linear order on the vertices of I and O, the k-permuter Πk,σ is
the matching of Kk,k associated to the permutation σ of [n]. An instance of the permuter
problem consists of a finite collection {Πki , σi}i∈[n] of ki-permuters, realised in the plane
using an associated collection {Ri}i∈[n] of rectangles, together with a finite collection of
paths {Pi}i∈[m], such that:
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Minimizing Num-
ber of Switches

Minimizing Num-
ber of Switches

Prescribed Set of
Switches

Prescribed Set of
Switches

Overlaying a Grid

Bruxelles Waffle

Liège Waffle

Removing Self-Intersections

Removing Popular Faces

Permuter Problem

3-SAT

Figure 5 The flow of successive reductions underlying our NP-hardness proofs.

Figure 6 An instance of the k-permuter problem with a 4-permuter and a 5-permuter, assigned
with the permutations σ1 = Id and σ2 = (12534). There are 3 resulting closed loops: one simple
(green) and two self-intersecting (blue and brown).

Every element of {Pi}i∈[m] has both its endpoints in one of the k-permuters (possibly
the same, and possibly both inputs/outputs).
Every input and output of every permuter is connected to a unique element of {Pi}i∈[m].
For all i ∈ [m], for all j ∈ [n], Pi ∩ Rj = ∅.

By construction, every path of {Pi}i∈[m] belongs to a unique closed loop. The Permuter
problem then consists in deciding whether or not there exists a choice of n permutations
σ1, σ2, . . . , σn of [k1], [k2], . . . , [kn] such that each resulting loop is simple (see Fig. 6).

▶ Claim 1. The Permuter problem is NP-hard.
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xi xi xj xj xk xk

xi∨xj∨xk

Figure 7 A single 3-clause in the reduction from 3-SAT to the Permuter problem.

Proof. The proof is by reduction from 3-SAT. We shall use two types of gadgets: 2-permuters
for variable assignment and 3-permuters for clause verification (see Fig. 7). For simplicity,
each k-permuter is depicted by a black box on the diagram, where the value of k is made
clear by the number of incoming/outgoing paths. Each different colour in the figure indicates
a different variable. The thick or thin dashed lines on the top, bottom and middle-left part
of the diagram indicate respectively the false and true literals of each variable. While the
thick and think solid lines in the middle-right section of the diagram indicate respectively
the true or false assignment of each variable. Given a Boolean formula with n variables, we
construct 2n non-crossing semi-circular arcs. We replicate this construction twice to form
the top and bottom parts of the diagram. In the middle, we show a single clause gadget,
involving two 3-permuters. To simulate the two logical OR of the clause, we proceed as
follows: if the corresponding 3-clause involves the variables xi, xj and xk, we select the wire
corresponding to their desired truth value in the clause (i.e. thick for xi, thin for x̄i) and
“drag” them towards the gadget to intersect the same single path chosen among the three
paths linking the output of the first 3-permuter to the inputs of the second. By construction,
there does not exist a valid permutation assignment to the two 3-permuters which avoids all
possible self-intersections with the three black paths if and only if xi, xj and xk all have the
wrong truth assignment. Furthermore, to the right of the 3-clause gadget, we have weaved
the incoming paths of the first and the outgoing paths of the second in such a way that, if
the composition of the two 3-permuters were not the identity, at least one of the resulting
closed loop would self-intersect. Thus each such pair of 3-permuters cannot “cheat” and
has to compose to the identity. As a consequence, for each of the variables involved, the
composition of its two 2-permuters must also be the identity. By construction, there are
then exactly two ways of ensuring this is the case: either both 2-permuters are the identity
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x1 x1 x2 x2 x3 x3

x1∨x2∨x3

x4 x4 x5 x5 x6 x6

x4∨x5∨x6

Figure 8 The instance of the Permuter problem created for the Boolean formula (x1 ∨ x2 ∨ x3) ∧
(x4 ∨ x5 ∨ x6).

themselves (setting the variable to be true), or both of them correspond to the transposition
(12) swapping the inputs (setting the variable to be false). Fig. 8 shows the instance created
for the Boolean formula (x1 ∨ x2 ∨ x3) ∧ (x4 ∨ x5 ∨ x6). ◀

The Permuter Problem Reduces to the Self-Intersection Problem.

▶ Claim 2. The problem of configuring a given set of switches to avoid self-intersections
reduces from the Permuter problem.

Proof. The proof of the claim proceeds as follows: we first construct self-intersection gadgets
to simulate 2-permuters, take note of the fact that Sn is generated by transpositions and show
how to use 2-permuters to construct general k-permuters. The construction for 2-permuters
is presented on Fig. 9: the inputs and outputs are connected by two curves weaved into
a double coil structure with two intersections, one of which is a switch. The 3 resulting
configurations are shown on the figure; only the leftmost two are free of self-intersections.

To simulate a general k-permuter, we introduce the gadget described on Fig. 10. We
begin with a k by k square and evenly distribute k inputs and outputs on its top and
bottom edges, respectively. For all i ∈ [n], the top i-th input is connected to the bottom
(n − i)-th output by the path of slope −1 which gets reflected into a path of slope 1 upon
meeting the left edge of the square. We then insert a total of k(k−1)

2 2-permuter: one at
every site where two paths intersect inside the square. While many configurations of this
gadget are redundant and yield the same permutation, a short inductive argument shows
that it is indeed able to simulate any permutation on k elements. The base case is simply
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=

Figure 9 Constructing a 2-permuter using two “doubly-coiled” curves. The grey disk indicates the
only switch available, the yellow disk highlights the self-intersection forbidding the third possibility
given by the switch.

1 2 3 k − 1k. . . k − 2

Figure 10 Constructing a k-permuter, using k(k−1)
2 2-permuters.

the 2-permuter we previously described. Assume then by induction that the version of our
gadget with k − 1 inputs and outputs can successfully simulate all permutations of [k − 1].
Note that any permutation σ of [k] can be written as the composition of a permutation of
[k − 1] followed by the insertion of the element k into one of the k positions before or after
one of the k − 1 permuted elements. It is thus enough to show that the addition of the last
“row” of k 2-permuters (highlighted in pink) can simulate this last insertion step. Labelling
the (k − 1) 2-permuters of the (k − 1)-th row according to the direction indicated on Fig. 10,
we insert the element k in position i (before the i-th element) by setting all the 2-permuters
from positions i to k to swap their inputs, and the remaining i 2-permuters to the identity.
This effectively shifts all the elements with positions greater than i by 1 (the permuters
reroute their corresponding wires to the segment of slope 1 instead of −1) as we sequentially
shift the element k to the left i times (the permuters successively let the k-th input path
“slide” on the last path of slope −1). ◀

Extensions

We now extend the result from Theorem 1 in several ways, to prove that the problem remains
hard when we wish to minimize the number of switch operations, or when the goal is to
remove all popular faces rather than self-intersections.

The idea is always to locally alter the reduction in a way that does not affect its global
properties.

Minimizing the number of switches. In the previous section, we had a prescribed set of
switches; indeed, this is necessary since if we are allowed to switch everywhere, then we can
always remove all self-intersections by Observation 1.

However, now consider the scenario in which we wish to minimize the number of switch
operations, or, in the decision version, we wish to test for a given k whether there exists a
sequence of k switch operations such that the resulting arrangement has no self-intersections.
In this scenario, we may or may not have a prescribed set of switches.
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(a) (b) (c)

Figure 11 The Bruxelles waffle. (a) A crossing between two different curves. (b) We adapt both
of the curves so they intersect c2 times. (c) Any sequence of local switches to emulate a global
switch must be of length at least c or lead to a self-intersection.

The idea is to emulate the construction from Section 4.1, but to replace every self-
intersection in the construction which is not a switch by a waffle gadget. Such a gadget is
built in such a way that even if every intersection in the gadget is a switch, the number of
switches required to change its global state is more than a parameter c. If we then choose
c > k, the result follows since essentially we are never allowed to switch these gadgets.

The Bruxelles Waffle

In this section, we describe the Bruxelles waffle (in contrast to the Liège waffle which we
describe in Section 4.1). The construction is illustrated in Figure 11.

Here we describe the construction in words.

▶ Lemma 2. In a Bruxelles waffle, any sequence of fewer than c switches must result in
an arrangement with either the same combinatorial structure as the original, or at least one
self-intersection.

Proof. Assume that after fewer than c switches, no self-intersections remain. We need to
show that opposite terminals lie on the same strand. Assume for a contradiction that opposite
terminals do not lie on the same strand. Then the left terminal lies on the same strand as
either the top or the bottom terminal. Without loss of generality (by rotational symmetry of
the gadget) assume that the left terminal lies on the same strand as the bottom terminal.

Because there are c rows, at least one row has not undergone any switch, and the
horizontal path in that row has a single color. Because there are no self-intersections, all
strands crossing the row vertically have a color different from the horizontal path of the row.
Removing the row splits the gadget into a part above and a part below the row, and the
left and right endpoints of the horizontal path connect to different such parts. The strand
containing the horizontal path of the row cannot be closed up without crossing the row, so
the strand connects a terminal below and a terminal above the row. That is, it connects the
bottom or left terminal to the top or right terminal. This contradicts our assumption that
the bottom and left terminals lie on the same strand. ◀

We conclude:

▶ Theorem 3. Given a curve arrangement and an integer k, it is NP-hard to decide
whether there exists a sequence of k switches such that the resulting arrangement has no
self-intersections.



Maike Buchin, Anna Lubiw, Anaud de Mesmay, Saul Schleimer, and Florestan Brunck 33

(a) (b)

Figure 12 Overlaying a grid. (a) None of the popular faces are the result of a self-intersection.
(b) After superimposing a fine enough grid whose non-empty cells are of type (1) or (2), any popular
face is now necessarily caused either by a self-intersection or a switch incident to two strands of the
same colour.

Removing popular faces. Next, we consider the problem of removing all popular faces
rather than only the self-intersections (that is, the aim is to produce a basic nonogram rather
than an advanced one).

The idea is to globally overlay the construction from Section 4.1 with a sufficiently fine
grid of perpendicular lines, in which none of the intersections with these new lines are
switches. We construct our grid in such a way that each non-empty grid cell either has:
(1) A single arc traversing it and connecting distinct sides of the cell.
(2) Two arcs crossing exactly once (or meeting at a switch) and connecting opposite sides of

the cell.

Additionally, we note that in our reduction of the self-intersection problem from the
Permuter problem, configurations with no self-intersections have the added property that no
switches involve two strands that belong to a single curve. To see this, it is enough to look
at the design of 2-permuters: if both strands involved in their unique switch belonged to the
same curve, then the upper crossing of their double-coil design would be a self-intersection.
Because of this property, it is clear that once the grid is overlaid, all remaining popular faces
are due to self-intersections (see Fig. 12). Therefore, in order to remove all popular faces we
need to remove all self-intersections, and this is also sufficient.

We conclude:

▶ Theorem 4. Given a curve arrangement and a prescribed set of switches, it is NP-hard to
decide whether it is possible to configure the switches such that the resulting arrangement has
no popular faces.

Removing popular faces with a minimum number of switches. Finally, we consider the
setting where every intersection is an allowed switch. In this setting we wish to remove all
popular faces using a minimum number of switches. The idea is similar to that in Section 4.1,
but we will need to use a different gadget that ensures we cannot perform any switches (since
having self-intersections does not necessarily imply there are no popular faces). To this end,
we introduce the Liège waffle.

The Liège Waffle

In this section, we describe the Liège waffle. It is illustrated in Figure 13.
Essentially, we overlay c new closed curves on the two (crossing) terminal strands, such

that each of the new curves is incident to each of the four unbounded faces, and that the
disk bounded by the curve contains the crossing between the two terminal strands.
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(a) (b) (c)

Figure 13 The Liège waffle. (a) A crossing between two different curves. (b) We insert a sequence
of c new curves. (c) Any sequence of local switches to emulate a global switch must be of length at
least c or lead to a popular face.

▶ Lemma 5. In a Liège waffle, any sequence of fewer than c switches must result in an
arrangement with either the same combinatorial structure as the original, or at least one
popular face.

Proof. If we change the global connectivity, then one of the four unbounded faces will
globally have two strands of the same curve; say the top left face (Figure 13 (c)). In order for
this face to not be popular, these two strands must be consecutive along the curve. Initially,
all intersections incident to the face are crossing, so they must all be uncrossed. There are
c + 1 such intersections, so we need at least c + 1 switches. ◀

We conclude:

▶ Theorem 6. Given a curve arrangement and an integer k, it is NP-hard to decide whether
there exists a sequence of k switches such that the resulting arrangement has no popular faces.
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Problem description

Given a simple connected graph G = (V, E), an elimination tree on G is obtained by selecting
a root r ∈ V , and defining the subtrees of r as elimination trees on the connected components
of G \ {r}. (Note that G \ {r} can be connected, in which case r has a single child in
the elimination tree.) There is a surjective mapping from the set of permutations Sn to
elimination trees on an n-vertex graph: define r as the vertex of the current subgraph that
has minimum index in the permutation [21]. Elimination trees are natural generalizations of
binary search trees, which are obtained by letting G be a path on n vertices [38, 33].

Just like in binary search trees, one can define a rotation operation on elimination trees.
Two elimination trees differ by a rotation if there exist two permutations that generate
them, and which differ by a single adjacent transposition [50]. The rotation graph between
elimination trees of a graph G is the skeleton of a polytope known as the graph associahedron
of G [43, 44]. We consider the following computational problem:
Input: A simple connected graph G, two elimination trees T1, T2 on G, and an integer k.
Question: Can T1 be transformed into T2 using at most k rotations?

What is the complexity of this problem? Is it NP-hard?

The motivation here is the longstanding open question of the complexity of computing the
rotation distance between two binary trees, a fixed-parameter version of the above problem
in which G is an n-vertex path.

Directions

Complexity of tree-depth. The tree-depth td(G) of a graph G is the minimum height of
an elimination tree on G. Maybe the following result and its proof (see Pothen [56]) could
be of some use in a hardness proof for the rotation distance.

▶ Theorem 1. Deciding the tree-depth of a graph G is NP-hard.

Proof. We reduce from the complete balanced subgraph problem in a bipartite graph. In
this NP-hard problem, we wish to find the largest induced Kt,t in a given bipartite graph G.
Let us denote the maximum size t by CBS(G). We claim that for the complement Ḡ of a
bipartite graph G,

td(Ḡ) = |V (G)| − −CBS(G).
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X

Y

MKX,Y

Figure 14 Our gadget corresponding to an edge {x, y}.

Hardness follows from the claim. The claim can be proved by observing that elimination
trees on the complement of a bipartite graph have a special structure: only one vertex has
more than one children, and this vertex has exactly two children. Hence elimination trees
have an “inverted Y” shape. The shortest branch has length CBS(G). ◀

▶ Conjecture 1. Rotation distance between elimination trees on a graph G is NP-hard, even
if G is the complement of a bipartite graph.

Edge gadget. In an attempt to prove NP-completeness, we considered the design of a
gadget that allows to implement a binary choice.

Suppose we want to reduce from vertex cover. We need an edge gadget, such that the
edge is covered when at least one of its endpoint is selected. The idea is to build a gadget
graph G which has two sets of vertices X and Y and two elimination trees T1 and T2 for
this graph, such that on any geodesic between T1 and T2, all vertices in X are removed first
(this is interpreted as “one endpoint of the edge is selected in the vertex cover”), or (this is
a logical or, not an exclusive or) all vertices in Y are removed first (this is interpreted as
“the other endpoint of the edge is selected in the vertex cover”). We need to design an edge
gadget so that not removing X or Y first is very bad, and removing X or Y or X + Y first
is equally good and optimal, and any other order of removing them is not optimal.

Let us define the gadget Ĝe for an edge e as follows, see also fig. 14: Ĝe is a graph on
two independent sets X and Y , each composed of m/k vertices, and a third independent
set M = {1, 2, . . . , m}. In what follows, k is a function of m, to be decided later (maybe
something like

√
m). The first vertex of X is connected to the first k vertices of M , the

second to the next k vertices, and so on. The same goes for Y . Finally, we add all edges of
the complete bipartite graph between X and Y , see fig. 14.

Now define two elimination trees T1 and T2 on this gadget. T1 first eliminates all vertices
of M in the order 1, 2, . . . , m, then vertices of X. Then all vertices of Y are siblings in the
tree. In T2, we first eliminate vertices of M in order m, m − 1, . . . , 1, then Y , then X.

▶ Lemma 2. The rotation distance between T1 and T2 is O(m2/k).

Proof. Move all vertices of X up. This costs (roughly)

|X| · |M | = n

k
· m

rotations. Now we are left with m/k connected components, each a star of k + 1 vertices.
Now reorder the vertices of each star in 2k rotations each, costing

m

k
· 2k

rotations overall. Now push X back down, past all vertices of M , in again m
k · m rotations,

taking care that the vertices of M are in reverse order (as in T2). Finally, all vertices of X

need to move down past all vertices of Y , costing |X| · |Y | = m2/k2 rotations. The total is

2m

k
· m + m

k
· 2k + m2/k2 = 2m2

k
+ o(m2/k) ◀
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Figure 15 Combining edge gadgets: graph.
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Figure 16 Combining edge gadgets: elimination tree.

It remains unclear whether copies of this gadget can be combined in a reduction; see
Figures 16 and 16 for an example.

Reduction from token swapping. An alternative base problem would be the following (see
Aichholzer et al. [55]). The input is a tree on n nodes, and two configurations (initial and
final) where n distinct tokens are situated at the nodes. The goal is to get the tokens from
their initial positions to their final positions (i.e. to effect the given permutation of tokens).
The reconfiguration operation is a swap that exchanges the two tokens at the endpoints of
an edge. In other words, we have the permutation group generated by the transpositions
determined by the edges of the tree. The question is: Can you get from the initial to the
final configuration with at most k swaps?

What are the similarities?
working in a tree
the reconfiguration graph is regular (from any configuration, there are n − 1 possible
“flips”)
the NP-hardness proof for token swapping on a tree uses ideas like the ones being suggested
above: an “obvious” solution involves lots of flips and the only way to reduce the number
of flips is to use a carefully structured solution that controls the movement.

Token swapping on a path is the same as rotation distance for elimination sequences of
a clique. So they have an easy common case. The proof that token swapping on a tree is
NP-complete is really long and hard [55].

Other open problems. The rotation distance problem can be specialized into possibly easier
problems by restricting the types of possible input graphs G. The following cases might be
relevant:
G is a star. The rotation distance problem is in P(Lionel and Jean).
G is a path. This is the famously open problem of computing the rotation distance between

two binary search trees.
G is a broom. Can this be proved polynomial-time equivalent to the case of a path?
G is a tree. Same question as for brooms.
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A morph is a continuous transformation between two given drawings of the same graph.
A morph is required to preserve specific topological and geometric properties of the input
drawings. For example, if the input drawings are planar and straight-line, the morph is
required to preserve such properties throughout the transformation. A morphing problem
often assumes that the input drawings are “topologically equivalent”, that is, they have the
same “topological structure”. For example, if the input drawings are planar, they are required
to have the same rotation system (i.e., the same clockwise order of the edges incident to each
vertex) and the same walk bounding the outer face; this condition is obviously necessary
(and it turns out, also sufficient) for a planarity-preserving morph to exist between the given
drawings. A linear morph is a morph in which vertices move along straight-line segments,
from their initial to their final position, at uniform speed. A piecewise-linear morph consists
of a sequence of linear morphs, each of which is called a step (see Figure 17).
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Figure 17 A piece-wise linear morph consisting of two steps.

Figure 18 Two planar straight-line drawings of the same n-vertex planar graph that require Ω(n)
steps to be morphed into each other (in 2D).

We focused on the design of algorithms and bounds for morphing two-dimensional graph
drawings in the three-dimensional space by means of few morphing steps. It is well-known
that, given any two (topologically-equivalent) planar straight-line drawings of the same
n-vertex planar graph, there exists a morph with O(n) steps that transforms one drawing
into the other one. In the plane, this bound is worst-case optimal [1].

Is it possible to reduce the number of steps by allowing the morph to exploit a third
dimension? This question was first posed and studied by Arseneva et al. [3]. They proved
that, given any two planar straight-line drawings of the same n-vertex tree, there exists
a crossing-free morph with O(log n) steps that transforms one drawing into the other one.
Whether a crossing-free morph with o(n) steps exists for any two planar straight-line drawings
of the same n-vertex planar graph is the main question that we addressed.

A Lower Bound

We soon realized that a major challenge is how to construct a three-dimensional morph with
o(n) steps between the two planar straight-line drawings that provide the lower bound for
two-dimensional morphs, shown in Figure 18. In fact, we worked towards a proof of the
following conjecture.

▶ Conjecture 2. Every three-dimensional crossing-free morph between the planar straight-line
drawings shown in Figure 18 requires Ω(n) steps, where n is the number of vertices of the
graph.

We came up with the following tentative approach for a proof of Conjecture 2. Consider
two triangles T1 and T2 lying on horizontal planes in 3D, where T1 is above T2. For i = 1, 2,
let ai, bi, and ci be the vertices of Ti. Suppose that a1 is connected to a2, b1 is connected to
b2, and c1 is connected to c2 by means of three strings that spiral around each other Ω(n)
times. This configuration can be reached with a single morphing step from the drawing in
the right part of Figure 18: T1 and T2 are the outermost and innermost triangles, while
the strings represent the colored paths. Then Ω(n) morphing steps seem to be necessary
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to “despiralize” the colored paths, that is, to morph the described geometric object to a
configuration in which the colored paths are vertical. This configuration can be reached with
a single morphing step from the drawing in the left part of Figure 18. Similarly to Alamdari
et al. [1], our strategy to prove the claimed lower bound consists of considering a concept of
“winding number”, which is a measure of the described spiralization, and to prove that each
morphing step changes the winding number only by a constant.

Conclusions

Although effective for tree drawings, the use of a third dimension does not seem to be helpful
for morphing planar straight-line drawings with a sub-linear number of steps. On the other
hand, we devised an approach that allows us to construct a morph between any two (possibly
topologically non-equivalent) drawings of the same n-vertex planar graph with O(n) steps.
Such a morph does not exist when restricting to two dimensions. Immediate future work
includes the formalization of this algorithm and the lower bound described above.
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This working group focuses on some problems on square-tiled surfaces, as the shearing block
game.

Discussed problems

▶ Definition. A square-tiled surface is an oriented compact connected surface obtained by
gluing a finite number of isometric squares along parallel sides by translation (right ↔ left,
up ↔ down).
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Figure 19 A square-tiled surface.

Figure 20 A shear on the bottom left horizontal cylinder.

A cylinder on a square-tiled surface (more generally a translation surface) is a maximal
collection of regular parallel closed geodesics. Cylinders are bounded by conical singularities
of the induced flat metric on the square-tiled surface. On the picture above, the surface has
3 horizontal cylinders, and 2 vertical ones.

The “shearing block game” was suggested by Saul Schleimer and inspired by the talk of
Hugo Parlier on playing puzzles on square-tiled surfaces.

The game goes as follows: Starting from one pattern, is it possible to get to another given
pattern by a series of shears on cylinder blocks?

The layout problem

This game raises a first question: can every square-tiled surface be laid out in the plane?
More precisely, a square-tiled surface made of n squares is conveniently encoded by a pair

of permutations (r, u) ∈ Sn × Sn which record the gluing pattern: we glue to the right of the
square labelled i the square r(i) and above the square labelled i the square u(i) It is also
convenient to think of a square-tiled surface (r, u) ∈ Sn × Sn as an oriented 4-valent graph
G(r, u) where we have oriented edges for each pair (i, r(i)) and (i, u(i)) for i ∈ {1, 2, . . . , n}

Given a square-tiled surface given by two permutations, how to draw it? We would ideally
want to produce a layout in the plane such that
i. the layout is made of unit squares centered on Z2;
ii. all touching squares in the plane should be glued the same way in the surface; and
iii. the layout is connected.
We will call such a layout a hard layout. If we relax condition ii. by cutting slits into the
layout so that some adjacent squares are not adjacent in the surface then we will call such a
layout a soft layout. Some possible variations on the layout are:

soft layout (allowing slits) – It is equivalent to the existence of a spanning tree of G(r, u)
which is isomorphic to a subgraph of Z2 where the r edges are horizontal and the u edges
are vertical (see the right of Figure 21);
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Figure 21 A snake layout (on the left, the extremities of the snake are the squares 3 and 8) , and
a soft layout (on the right) of the surface

r = (1, 22, 16, 2, 17, 23, 13)(3, 19)(4, 18)(5, 10, 21, 20, 9, 15, 24)(6, 11, 12)(7, 14)
u = (1, 5, 19)(2, 23, 14, 11, 22, 4, 7, 20, 12, 15, 10, 6, 18, 8, 17, 9, 16)(13, 21).

hard layout (do not allow slits) – It is equivalent to the existence of a connected subgraph
of G(r, u) which is isomorphic to an induced subgraph of Z2 where the r edges are
horizontal and the u edges are vertical (see the right of Figure 23);
snake layout – Impose that the spanning tree is a path (in particular, the graph G(r, u)
admits a non-oriented Hamiltonian path [4]) (see the left of Figure 21);
staircase layout (only move east or north) – In terms of permutations we want an
enumeration x1, . . . , xn of {1, 2, . . . , n} so that two xi+1 = r(xi) or xi+1 = u(xi) It is
equivalent to an oriented Hamiltonian path in the graph.

Here is an example lying in H(2, 2)odd of a surface with no staircase nor snake layout
(see Figure 22). The structure of the digraph associated to this square-tiled surface makes it
clear that no staircase layout would be possible.

Some surfaces admit a snake layout but no staircase layout, see Figure 23.
There exist examples of square-tiled surfaces (r, u) with no soft layout. For instance the

following square-tiled-surface made of 25 squares has no soft layout:

r = (1, 6, 11, 16, 21)(2, 3, 4, 5)(7, 8, 9, 10)(12, 13, 14, 15)(17, 18, 19, 20)(22, 23, 24, 25)
u = (1, 2)(6, 7)(11, 12)(16, 17)(21, 22)

It can be used as a “gadget” to be plugged in other surfaces but it is not a “generic” gadget
as it imposes too many fixed points.
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Figure 22 The square-tiled surface and its associated digraphs (staircase and snake) for the
permutations

r = (1, 2)(3, 4)(5, 6)
u = (1)(2, 3, 5)(4)(6).

Luke and Vincent coded up some methods that search for and, if one exists, then draws
a staircase/snake/soft layout representation for a square-tiled surface. Luke’s method makes
use of the hamiltonian_path method available inside Sage to find snake and staircase
layouts, while Vincent’s method for finding soft and snake layouts frames the problem as
an integer linear programming problem and utilises Sage’s MixedIntegerLinearProgram
method. The code and some examples can be found in the files https://coauthor.csail.
mit.edu/file/ZwgDps62nDPygpfBW and https://raw.githubusercontent.com/videlec/
Dagstuhl2022/master/Problem8-SquareTiledSurfaces/layout.py.

The structure that exists in the digraphs of the counter examples suggests a choice of
“gadget” to include in higher complexity square-tiled surfaces.

▶ Definition. Let call a bridge a pair of edges e, e′ such that
e goes from u to v

e′ goes from v to u

any path from u to v has to go through e

any path from v to u has to go through e′.

▶ Conjecture 1. Consider the following quotient graph. Its vertices are the vertices adjacent
to bridges in the initial graph and we put an edge between u and v if either

there is a bridge between u and v
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Figure 23 Snake layouts for the surfaces

r = (1, 2)(3, 4)(5, 6) r = (1)(2, 3, 4, 5)(6)
u = (1)(2, 3, 5, 4)(6) u = (1, 2)(3, 6, 5)(4).

Both surfaces do not admit staircase layouts (although the layout on the right would be an east-south
variation of a staircase layout).

there is an oriented path between u and v that does not go through any bridge
Then a Hamiltonian path of the initial graph induces a Hamiltonian path on this quotient
graph.

The general idea was that these bridge structures that appear in the counter-example
can be used to build many more. However, one might expect that bridges are unlikely to
be very common in general. In any case, we expect that having a Hamiltonian path in the
digraph is not likely to be very common.

The experiments of this section lead to the following questions and conjectures:
Fix n and choose (uniformly at random) a pair of permutations r and u from the

symmetric group Sn. You could also add conditions, say on the number of fixed points of the
commutator rur−1u−1 forcing the surface to be more flat/lower genus. This gives a “generic”
square-tiled surface S = S(r, u).

▶ Question 1. As n → ∞ does a random pair (r, u) ∈ Sn × Sn have a soft layout, a staircase
layout, or (stronger still) a staircase layout starting from any of its squares?

▶ Conjecture 2. In that regime, the probability that a square-tiled surface has a soft/snake
layout tends to 1, whereas the probability that a square-tiled surfaces has a positive staircase
layout tends to 0.

The intuition behind these conjectures is that generically r and u have very few short
cycles, and these short cycles tend to be separated. This means that it is very hard to build
a “gadget” (as the example with 25 squares). Here are some ideas for producing a (soft)
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snake layout of generic S: We find all of the horizontal cylinders, sort them by length, layout
the biggest cylinder, attach all of the medium and small cylinders to it (underneath) and
then perform some kind of snake layout with the remaining long cylinders. If this works, it
may help promoting from the soft layout to the hard.

Also, generically the big cycle of say r is too big, so too many cycles (if u) should meet
it, making it impossible to get a positive staircase layout.

▶ Conjecture 3. Deciding whether a given pair (r, u) ∈ Sn × Sn has a soft/hard/staircase-
/snake layout is NP-complete.

▶ Question 2. For a random square-tiled surface and a random spanning tree of that square-
tiled surface, what is the area of the obtained (possibly overlapping) layout? What is the
diameter of the layout? What is the diameter of the spanning tree? What proportion of the
area corresponds to the overlapping part of the layout?

The shearing block game

The first question raised for the shearing block game was the classification of the orbits for
the shearing block moves. Obviously it does not change the total number of squares, nor the
stratum (characterized by the order of conical singularities of the flat metric) the surface
belongs to. One can check that it also doesn’t change the connected component of this
stratum.

▶ Conjecture 4. The following invariants classify orbits of the shearing block game:
connected component of stratum (Kontsevich-Zorich)
number of squares n

This conjecture was checked by computer experiments (see code at https://github.
com/videlec/Dagstuhl2022) in the following cases:

genus 2:
H(2)hyp up to 30 squares
H(1, 1)hyp up to 18 squares

genus 3:
H(4)hyp up to 12 squares
H(4)odd up to 10 squares
H(3, 1)c up to 10 squares
H(2, 2)hyp up to 10 squares
H(2, 2)odd up to 10 squares
H(2, 1, 1)c up to 10 squares
H(1, 1, 1, 1)c up to 10 squares

If the conjecture is correct, the size of each graph (connecting the different configurations
of a game) is computable in the following way. For each stratum component C there exists a
quasi-modular form whose nth coefficient is the number of square-tiled surfaces in C made of
n squares.

Experimental data for the diameter could also be obtained from surface-dynamics, but
first, let us define formally the graph associated to the game. An edge could represent several
possible moves:
1) one shear in one cylinder (1/ℓ fractional Dehn twist where l is the perimeter of the

cylinder)
2) any number of shears in one cylinder
3) any number of shears in any number of (parallel) cylinders
4) 90 degree rotation
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Numerical experiments give the following sizes and diameters for the graphs with respect
to the choices 1) or 4) for the edges:

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
size 3 9 27 45 90 135 201 297 405 525 693 918 1062 1395 1620 2043 2295 2835 3120 3915 4158 5085 5337

diam. 2 4 13 12 15 13 18 17 19 18 19 19 21 20 21 21 22 21 23 22 24 24 23

Furthermore, we can consider various metrics on these graphs. The initial metric
considered was the natural metric for “slow moves”: an edge representing a single shear of
size one (right or left) in a single cylinder as length 1. There are various suggestions of other
costs:

log(k + 1) for a shear of size k in a single cylinder,
log(k + 1) for a shear of size k on a “stack” horizontal cylinders,
log(k + 1) for a kfold shear in any collection of horizontal cylinders
1 for any horizontal shear in any collection of horizontal cylinders. . .

As we change the metric, the diameter of the graph changes. This raises the following
question:

▶ Question 3. Is there a (natural) definition of a “single move” and a corresponding metric
on the graph that allows to connect two vertices very quickly? Is it possible that two “large”
moves suffice?

Some leads considered to solve the conjecture were the following:
one-cylinder surfaces are easy to play with (in one direction), and we know from [3] how
many such surfaces we have in a given stratum.
the SL(2,Z) orbit closures are connected via the shearing block moves.

This raises the following question:

▶ Question 4. How do SL(2,Z) orbit closures lie inside of the graph? How do they “approach”
each other?

Here are further questions concerning this game played on random surfaces:

▶ Question 5. Consider a random square-tiled surface S in the same setting as before.
What is the size of the component (of the shearing block game) containing a generic S?
(Conjecture: (N !)2/N log(n))
What is the diameter of the component? Can we navigate?
Suppose that we perform random moves to S to get the sequence of surfaces (Sk) with
associated permutations rk and uk Note that the cycle type of the commutator rkukRkUk

is fixed. However, we can still ask: does rk converge to the generic permutation as k

tends to infinity?
How quickly does the random walk (on the component) mix?

An application – if the graph is connected, is this a good way to sample square-tiled surfaces?
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This working group focused on the graph of minimal configurations of a multicurve.

Discussed Problem

Consider a set of curves (a.k.a a multicurve) Γ on a surface S. Here, we consider curves up
to continuous deformations (free homotopy), so that a curve is actually a conjugacy class in
π1(S). We shall only consider primitive curves, that is curves that are not proper powers
of other curves, moreover pairwise distinct in Γ. A configuration of Γ is a choice of a
representative of each curve in Γ so that all their intersections on S are transverse and there
is no triple points. A configuration is considered up to isotopy. A configuration is minimal
if its number of double points is minimal among all possible configurations of Γ.

It is known (see e.g. [10]) that any configuration of Γ can be brought to a minimal one
by elementary moves, a.k.a. shadows of Reidemeister moves. In fact, its was shown that any
two configurations of Γ are related by a monotonic sequence of moves, where the number
double points changes monotonically [3, 13, 2]. In particular, any two minimal configurations
of Γ are related by a sequence of 3-3 moves. The configuration graph of Γ has for vertex
set the set of minimal configurations of Γ and two vertices are connected by an edge if they
are related by a single 3-3 move. The previous remark ensures that this graph is connected.
It follows from Hass and Scott [11] that this graph is finite. There are two natural questions
related to this graph:

What is its size?
What is its diameter?

Following Souto and Vo [14], we can reduce to the case where Γ is filling, i.e. such that
each of its configurations cuts S into topological disks and annuli bounded on one side by
a boundary component of S. Indeed, after putting Γ into minimal configuration [2], one
can construct a subsurface S(Γ) ⊂ S where Γ is filling. S(Γ) is obtained by replacing every
component C of the complement S \ Γ that is not a disk by a set of annuli, with one annulus
per boundary component of C that is not a boundary component of S. (Formally, one needs
to replace C by its metric completion in order to speak of its boundary components). We call
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such an annulus a connecting annulus. The fact that all minimal configurations are related
by 3-3 moves implies that the topology of S(Γ) is independent of the minimal configuration
used to cut S. Now, two multicurves Γ and Γ′ have the same type in S (see below for a
definition) if and only if there is a homeomorphism φ : S(Γ) → S(Γ′) sending Γ to Γ′ (up to
homotopy) such that φ can be extended to a self-homeomorphism of S. This last condition
can be checked easily as follows: Consider the graph GΓ whose vertices are the connecting
annuli in S(Γ) and whose edges correspond to connecting annuli bounding a same component
of S \ S(Γ). We moreover mark every vertex of GΓ with the topological type of the incident
component in S \ S(Γ) (its genus and its total number of boundary components). Then φ

extends to a self-homeomorphism of S if an only if it induces an isomorphism between the
marked graphs GΓ and GΓ′ .

We can thus assume that Γ is filling. In this case any configuration determines a
combinatorial map in the obvious way: the vertex and edges of this map are simply given by
the arrangement of the curves in the configuration, and the faces of the map correspond to
the complementary disks and annuli (one per boundary component of S). These maps are
4-regular as we assume that there is no triple point in a configuration. We can replace the
minimal configurations in the configuration graph by their associated combinatorial maps.
Note that applying a self-homeomorphism of S to a configuration does not change (the
isomorphism class of) its associated combinatorial map. Also note that the configuration
graph is entirely determined by any of its configuration maps, from which we can recover
all the other configurations by 3-3 moves. Say that two multicurves have the same type if
they are in the same orbit of the mapping class group. More formally, this means that there
is a 1-1 correspondence between the two sets of free homotopy classes of curves in the two
multicurves that is induced by some self-homeomorphism of S. Hence, two filling multicurves
have the same type if and only if they have the same configuration graph.

Recently, Souto and Vo [14] described a polynomial time algorithm to detect when two
curves have the same type. Using normal coordinates with respect to a fixed triangulation,
their algorithm enumerates a polynomial number of candidate mapping classes that must
contain a mapping class sending one curve to the other one in case they indeed have the
same type. It remains to check whether any candidate mapping class relates the input curves
to decide if they have the same type. Our study of the graph of minimal configurations is
motivated by an alternative approach to the algorithm of Souto and Vo.

Looking for hyperbolic configurations

Suppose that our surface S is equipped with some Riemannian metric. Freedman et al. [8]
proved that shortening a given curve as much as possible for this metric puts the curve
in minimal configuration1. Conversely, Neumann-Coto [12] proved that every minimal
configuration of a multicurve is in the configuration of shortest geodesics for some Riemaniann
metric. It thus seems natural to encode a configuration by a metric for which it is a minimizer.
Hyperbolic metrics provide an interesting subset of metrics. We say that a configuration of a
multicurve is hyperbolic stretchable or, more simply, hyperbolic, if it can be realized by
homotopic geodesics for some hyperbolic metric. Hass and Scott [11] gave counterexamples
to the fact that every multicurve configuration is hyperbolic. It follows that the graph of
hyperbolic configurations is in general smaller that the whole graph of configurations. The
consideration of hyperbolic configurations raises several questions.

1 In full generality, one should allow the minimal configurations to have crossings with multiplicity larger
than two. A crossing with multiplicity k should count for

(
k
2

)
simple crossings.
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1. One already serves as a conclusion in [4]: Given a multicurve, is there an algorithm to
(construct or) detect configurations that are hyperbolic?

2. Is the graph of hyperbolic configurations of a multicurve connected?
3. How big is the graph of hyperbolic configurations compared to the whole graph of

configurations? What is its diameter?
The answer to the second question should be positive: simply interpolate hyperbolic metrics
associated to two configurations in the Teichmüller space of S. The interpolation path should
be generic in the sense that singular metrics (for which the multicurve has crossings of
multiplicity larger than two) along this path should be isolated and should allow for only
one non-regular crossing of multiplicity exactly three (this requires an argument to claim
that this is indeed the generic situation.). Then, the regular configurations along this path
are related by 3-3 moves, showing the connectivity of the graph of hyperbolic configurations.

We have not studied the third question very much. What should be clear is that the
whole configuration graph can be very big with respect to the number of crossings. As an
indication one may consider the number Ω(2n2/5) of pseudoline arrangements [5], where the
number of crossings is quadratic with respect to the number n of pseudolines.

We now turn to the first question. Unfortunately, determining whether a configuration is
hyperbolic stretchable seems quite hard. We actually prove.

▶ Proposition 2. Given a combinatorial map representing a configuration of a multicurve
on a surface, it is ∃R-hard to decide if the configuration is hyperbolic.

Recall that a problem is ∃R-hard if the Existential Theory of the Reals (ETR) many-one
reduces to it in polynomial-time, and that the problems in ETR are emptiness of semi-
algebraic systems.

Proof. The proof goes by showing that the stretchability of a pseudoline arrangement in the
plane reduces in polynomial time to the hyperbolic stretchability of a multicurve configuration.
The proposition then follows from Mnëv’s universality theorem implying that the problem
of stretchability of pseudoline arrangements is polynomially equivalent to ETR. See [7] or
a quick overview in [6] for precise statements. Recall that a pseudoline arrangement is a
collection of simple arcs in a disk such that the arc endpoints are on the disk boundary and
such that any two arcs intersect exactly once and transversely.

We give two reductions, transforming an arrangement of n pseudolines into a configuration
of n curves either on a sphere with 4n punctures or on a closed surface of genus 2n.

Reduction to a configuration on a punctured sphere. Consider an instance I1 of stretchab-
ility of an arrangement of n pseudolines. We build an instance I2 of hyperbolic stretchability
of a multicurve configuration such that I1 is positive iff I2 is.

Let D be the disk containing the instance I1. We introduce 4n punctures on the boundary
of D in pairs; each pair surrounds one of the 2n endpoints of the n pseudolines as on the
next figure. We then take a copy D′ of D and attach them together: Think of D as the
Northern hemisphere, D′ as the Southern hemisphere, the boundary of the disks to be the
equator. The punctures coming from the disks are identified so that there are 4n punctures
in total. Each pseudoline is now a closed curve, passing once in the Northern and once in
the Southern hemispheres. The reduction takes trivially polynomial time.

Assume that I1 is positive. We have an arrangement of lines in the Euclidean disk. We
put the 4n punctures on the boundary of the disk, and then consider the 4n-gon whose
vertices are the punctures (so we cut off some small pieces of the disk). Now we view this

22062



52 22062 – Computation and Reconfiguration in Low-Dimensional Topological Spaces

4n-gon as an ideal (hyperbolic) polygon induced by the Klein model of the disk. We take a
copy of this ideal polygon and attach them side by side. This gives a hyperbolic metric on
the 4n-punctured sphere where the arrangement of the closed curves in I2 is realized. (This
is because, when we cut off the disk into a 4n-gon, no intersection between pseudolines has
been removed.) We then relax these closed curves to geodesics in their respective homotopy
classes. If the two punctures surrounding an endpoint of a pseudoline were close enough
together, this doesn’t change the combinatorial arrangement of the curves, because the initial
pseudoline arrangement was in general position. So I2 is positive. (We know that we need
doubly exponential precision for the location of the punctures [9], but we don’t care: after
all we just consider decision problems!)

Conversely, assume that I2 is positive. Consider the corresponding hyperbolic surface with
cusps, S. In S, consider a topological disk D that contains I1 as a topological arrangement.
Consider the Klein model K of the universal cover of S. Lift D (and the pieces of the
lines inside D) in K. The picture in K is a topological disk D̃ and line segments D̃ whose
combinatorial arrangement is exactly the input to I1. Extend these lines to straight line
segments with endpoints on the boundary of D̃; because, in D̃, every pair of segments already
cross (since I1 is a pseudoline arrangement), this extension does not create new crossings. In
other words, if we now view D̃ as a Euclidean disk, our arrangement is now combinatorially
equivalent to I1. So I1 is positive.

Reduction to a configuration on a closed surface. As before we start with an instance
I1 of an arrangement of n pseudolines ℓ1, . . . , ℓn in a disk D. As before, we introduce 4n

punctures on the boundary ∂D of D surrounding the 2n pseudoline endpoints. This divides
∂D into 4n arcs, where one out of every two contains an endpoint. We denote by αi the arcs
that contains an enpoint and by βi the remaining ones. We then take a copy D′ of D and
glue their arcs αi via the identity map. This results in a sphere with 2n boundaries. We
cap off each of these boundaries with a one-holed torus to obtain a configuration of n closed
curves on a closed surface of genus 2n. This ends the construction of our instance I2 for
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hyperbolic stretchability2. The construction trivially takes polynomial time.
Assume that I1 is positive. We have an arrangement of L lines in the Euclidean disk.

Considering the Klein model of the disk this provides an isomorphic arrangement of hyperbolic
lines that we still denote by ℓ1, . . . , ℓn. Let αi be a collection of geodesics as follows.
1. If i ̸= j then αi is disjoint from αj (even at infinity – they do not share an ideal point).
2. αi and ℓi meet in a single point.
3. αi cuts a half plane Hi off of D; the intersection of Hi with the line arrangement L is

exactly one end of ℓi.

Let βi be the common perpendicular to αi and αi+1.

Claim: βi is disjoint from L.
We now cut D along the αi and βi to obtain a hyperbolic right-angled 4n-gon. We double

this 4n-gon and glue the two copies along the αi. We obtain a hyperbolic sphere with 2n

geodesic boundaries as shown below.

Double along orange lines.

We finally cap off the 2n geodesic boundaries with hyperbolic one holed tori. We denote
by S the resulting hyperbolic surface. Let γi be the union of ℓi and its copy; this is a closed
geodesic on S. Clearly, S and the γi certify that I2 is positive.

The reverse implication goes exactly as in the previous reduction on a punctured sphere.
This ends the proof of the proposition.

We can slightly strengthen the proposition by restricting the hardness result to filling
configurations. In order to do so we just need to add 2n + 1 curves to the γi in the previous
construction. One of these curves, λ, goes through all the handles as on the next figure. And
the 2n other curves, µi, cut open each handle. The µi are disjoint from the γi and will thus
be so in any minimal configuration. This allows us to recover the extra 2n + 1 curves without
the need for a marking. ◀

2 An alternative construction consists of taking four copies of D, gluing (cyclically) the jth and (j + 1)th
copies along the αi or along the βi according to the parity of j. The gives a surface of genus 2n − 1
with a configuration of 2n (?) curves.
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In search of a canonical configuration

In view of the hardness result in Proposition 2, the restriction of the configuration graph
to hyperbolic configurations might not be so beneficial from the computational viewpoint.
There is however a surprising benefit to consider hyperbolic configurations. They contain a
preferred, i.e. canonical, configuration (at the expense of allowing degenerate configurations
with crossings of multiplicity higher than two)!

Suppose that S is a (closed, connected, oriented) surface. Suppose that γ is a (simple?)
closed curve in S. For any hyperbolic metric σ on S, we can define ℓγ(σ) to be the length of
the geodesic representative of γ with respect to σ. Thus ℓγ is a function from Teichmuller
space to R. Wolpert proves that ℓγ is convex with respect to the Weil-Petersson metric [15]
and Bestvina et al. with respect to some well chosen Fenchel-Nielsen coordinates [1].

Suppose now that (γi) is a filling collection of curves. Then there is a unique σ that
minimises the sum

∑
i ℓγi . The intersection pattern of the geodesic representatives of the

γi, with respect to σ can therefore be considered a canonical form for the family γi. Note
however that there might be points with more than double intersections in this canonical
form.

We conclude with many questions on this minimising metric.
1. Is the minimising metric algebraic? How do the degree/height of the algebraic numbers

depend on the complexity of the given curves (γi)?
2. Given a hyperbolic metric σ, can we find a collection of curves (γi) having σ as a

minimiser? Written this way the answer is no (countable versus uncountable). We hence
have two questions: – Is any hyperbolic metric σ the minimizer of some *weighted*
collection of curves? Of simple curves? Of two simple curves? – What are the hyperbolic
metrics σ which are minimizers of a collection of curves?

3. Is there such a minimiser in the flat setting? Note that the length function is convex in
the SL(2,R) directions. However, it is hard to believe that it is convex along any linear
deformation (in period coordinates).

4. What happens in the case of the torus (hyperbolic or flat)?
5. Is there a way to get a nice bound on the diameter of the configuration graph using this

approach? A discrete algorithm to find the moves?
6. Perhaps Whitehead’s algorithm is relevant here? We can use Whitehead to find, in

polynomial time, an optimal cut system (cutting the surface into a connected planar
surface). See the exposition of Berge; he describes how to use max-flow-min-cut to search
for the Whitehead automorphisms.

7. There is a combinatorial proof of Nielsen realisation, I believe due to Hensel, Osajda, and
Przytycki.
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Figure 24 A turning machine folding into a Gosper curve.
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The turning machine [1] is a very simple model of a molecular robot whose task is to fold
into a desired shape. Such a machine consists of a number of molecular computing units
(called monomers) that together form a chain. Depending on their states, the monomers
can rotate, thus bending the chain and changing its global structure (see Figure 24). On
his website [2], Woods gives an informal description of the model and has example videos
where turning machines fold into certain shapes. During the workshop, we discussed how to
assign initial states to the monomers such that they can then rotate and bring the chain into
a prescribed shape.

Model. Consider a triangular grid G△ = (V△, E△). A turning machine T is a chain of
monomers in G△. For simplicity, we introduce a system of coordinates on G△ (see Figure 25).
Initially, the monomers of a turning machine form a horizontal chain m1, m2, . . . , mn that
starts from the origin and extends East, that is, monomer mi occupies grid point (i − 1, 0).
We orient the edges of the chain from left to right. For i ∈ {1, 2, . . . , n − 1}, monomer mi

has state si, which is an integer value that indicates how many times the edge leaving mi

needs to rotate.
A turning machine folds by the means of local rotations of monomers. In one step, a

monomer mi with a non-zero state si can rotate its outgoing edge by 60◦ – counterclockwise
if si > 0 and clockwise if si < 0. This results in the suffix of the chain translating by a unit
vector in the triangular grid. We require the chain to not self-intersect, so not all monomers
can rotate at any moment in time. In other words, some monomers can be blocked. When a
monomer rotates, the absolute value of its state decreases by one.

For example, the second monomer from the left in Figure 25(c) can rotate. As a result,
the state of this monomer decreases from 3 to 2 and the subchain to the right of the monomer
translates by the unit vector shown in the figure.

https://creativecommons.org/licenses/by/4.0/
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Figure 25 Figure taken from [1]. Turning machine model. (a) Triangular grid conventions.
A configuration showing a single monomer on the triangular grid G△, along with axes x, y and
w. (b) Local movement (rotation): A monomer in state 3 pointing to the east undergoes three
turning rule applications finishing in state 0 with no more applicable rules. Locally, the monomer
exhibits a rotation motion. (c) Global movement (translation): Left: Example initial configuration.
Middle: A movement rule applied to the second monomer from the left. It decrements its state
to 2 and translates all subsequent monomers by +w⃗. Right: Another state-3 monomer turns. (d)
Blocking: Monomers are not permitted to make movements that would result in a self-intersecting
configuration. The monomer mj is blocked: if it were to move, then mk would move to overlap
with mi.

A turning machine evolves as a continuous-time Markov chain with rotation rules applied
asynchronously. This modeling assumption can be used to analyze the running time of the
folding process. However, for the purposes of this report, we are only concerned with the
order in which the rotation rules are applied. At any moment in time, any monomer with a
non-zero state that is not blocked can be the next one to rotate. Therefore, when analyzing
the folding process, we assume that the sequence of monomers to which the rules are applied
is given by an adversary.

We say that a turning machine successfully folds if eventually all monomers have state 0.
Some Turning Machines can evolve into a state where not all monomers have state 0 but no
monomer can rotate without the chain self-intersecting. We call these states permanently
blocked.

Open problems. Kostitsyna et al. [1] have studied the problem of shape formation by a
turning machine. Given a desired target shape S ⊂ V△, specified by a connected subset of
nodes of the triangular grid, we consider the problem of creating a turning machine that
folds into S. Thus, the goal of the shape formation problem is to assign initial states to the
monomers such that the turning machine always folds into a desired target shape S (up to
a translation / rotation). The paper provides initial results on which classes of shapes can
be folded by Turning Machines. It remains open to expand this class of shapes, or prove
negative results.
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We approached the problem of shape formation from a different angle. Given a turning
machine T , we can easily identify the target shape that T encodes. Observe that the
differences of the values of initial states of the monomers of T uniquely determine the angles
of the chain in the folded state. However, it is challenging to decide whether a given turning
machine T always reaches its final folded state, or even if T sometimes reaches its final folded
state (i.e., there exists a sequence of rotation rule applications to the monomers that leads
to T successfully folding). We know the answer to the question Do all Turning Machines
fold sometimes?, which is no, there exist Turning Machines that can never be folded. We
also know that the question whether a turning machine folds is decidable.

▶ Observation 2. The state space of a turning machine with n + 1 monomers is bounded by
W n · poly(n), where W = maxi{si} − minj{sj} is the size of the range of the initial states
of the monomers. Hence we can decide whether a turning machine always folds by exploring
the (exponential-size) state space.

We conjecture that both of the questions above are NP-hard. During the seminar we have
made partial progress on the way to prove these conjectures.

▶ Conjecture 3. Given a turning machine T , it is NP-hard to decide whether T always folds.

▶ Conjecture 4. Given a turning machine T , it is NP-hard to decide whether T sometimes
folds.

We also considered new tools that may help us to reason about Turning Machines. Below,
we provide some observations that we have proven during the seminar. We finish the report
with some open questions. We say that a turning machine is non-negative if all its monomers
have non-negative states. Given two non-negative Turning Machines T and T ′, we say that
T ′ dominates T if, for each i ∈ {1, 2, . . . , n − 1}, it holds that s′

i ≥ si, where si and s′
i are

the initial states of monomers mi and m′
i of T and T ′, respectively. Here’s our first tool.

▶ Proposition 3. Let T and T ′ be two non-negative Turning Machines such that T ′ domin-
ates T . If T ′ always folds, then T always folds as well.

Note that the same argument does not apply if we have negative initial states. Rotating a
monomer with a negative state (that is, rotating clockwise) in the dominated turning machine
corresponds to rotating all the remaining monomers into the counterclockwise direction of
the dominating turning machine. We can, however, modify the domination definition as
follows.

▶ Definition 1. We say that a turning machine T ′ dominates a turning machine T if, for
each i ∈ {1, 2, . . . , n − 1}, s′

i ≥ si if si > 0 and s′
i ≤ si if si < 0 (if si = 0 then s′

i can take
any value).

One of the questions we would like to explore further is whether we can obtain a result similar
to Proposition 3 for this new definition of domination. Can the property of domination help
us expand the class of Turning Machines for which we can determine whether they always fold,
sometimes fold, or never fold? Another question we leave for further investigation is whether
there are other “domination” properties that can be formulated for sub- or super-chains that
can help answer folding questions.

Conclusions. Kostitsyna et al. [1] initiated the study of the turning machines, a simple model
for a molecular folding robot. The Dagstuhl Seminar provided us with a great opportunity
to expand the range of research questions that can be studied within this model. We have
obtained some preliminary results.
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In this working group we consider a class of triangulations of points in R2 known as higher
Order Delaunay triangulations (HODTs) [2]. Given a set of points S, and a parameter k, an
order-k (Delaunay) triangle is a triangle whose circumcircle contains at most k points from
S. An Order-k (Delaunay) triangulation is one where all triangles are order-k triangles.

The main topic studied is the flip graph of order-k triangulations. A basic aspect to
understand is its connectivity. It is known that it is always connected for k = 0, 1, 2, and
that it may be not connected for k ≥ 3, even for points in convex position. Recently, a bit
more was understood. In particular, in [1], the following was shown. Let G(Tk(S)) be the
flip graph of order-k triangulations of a point set S. Firstly, it was shown that for any k

there exists a point set S in convex position where G(Tk(S)) is disconnected. Moreover,
k − 1 flips are sometimes necessary in order to transform an order-k triangulation of S into
another. Secondly, for any order-k triangulation of a point set in convex position there exists
some other order-k triangulation at distance at most k − 1 in G(T2k−2(S)). Finally, it was
also shown that in case k = 2, 3, 4, 5, for any order-k triangulation of a point set in general
position there exists an order-k triangulation at distance at most k −1 in G(T2k−2(S)). These
results imply that the diameter of the flip graph is O(kn).

Discussed Problems

With the long-term goal of understanding the flip graph of order-k HODTs, we focused on
some simpler and more concrete questions.

In relation to computation, an interesting question is how fast one can compute the flip
distance between two triangulations. Here there are two natural variants of the question: (i)
one can go through any triangulation; (ii) you can only go through order-k triangulations.
We did not make much progress on this front.

A more combinatorial aspect has to do with understanding the structure of fixed edges,
those present in any order-k Delaunay triangulation. It is know that already for k = 2,
the subdivision given by the set of fixed edges can produce polygons that contain holes.
During the workshop we have found examples, also for k = 2, where holes can be nested.
An example with several (non-nested) components for k = 2 was also found, but it contains
many co-circular points. It is unclear whether the same can be achieved if points are in
general position.

22062

https://doi.org/10.1007/s11047-022-09880-8
https://dna.hamilton.ie/2020-09-16-turning-machines.html
https://dna.hamilton.ie/2020-09-16-turning-machines.html
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


60 22062 – Computation and Reconfiguration in Low-Dimensional Topological Spaces

Conclusions

We have made some progress in understanding the structure of fixed edges for k = 2, but
are still far from understanding its flip graph. Results on the flip graph can have direct
application to algorithms, either exact or fixed-parameter tractable. For instance, a practical
fast algorithm to compute flip distance for k = 2 would be very interesting.

References
1 Elena Arseneva, Prosenjit Bose, Pilar Cano, and Rodrigo I. Silveira. Flips in higher order

Delaunay triangulations. In Yoshiharu Kohayakawa and Flávio Keidi Miyazawa, editors,
LATIN 2020: Theoretical Informatics – 14th Latin American Symposium, São Paulo, Brazil,
January 5-8, 2021, Proceedings, volume 12118 of Lecture Notes in Computer Science, pages
223–234. Springer, 2020.

2 Joachim Gudmundsson, Mikael Hammar, and Marc J. van Kreveld. Higher order Delaunay
triangulations. Comput. Geom., 23(1):85–98, 2002.

5 Open Problems

5.1 Representing Graphs by Polygon Contact in 3D
Will Evans (University of British Columbia, Canada, will@cs.ubc.ca)
Alexander Wolff (Universität Würzburg, Germany)
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We are interested in representing graphs as contact graphs of convex polygons in 3D. Adjacency
is represented by vertex contacts. Any two polygons must either be disjoint or they can
share one vertex; see Figure 26. With others, we [1] showed that any graph admits such a
contact representation, but for Kn we need volume O(n4n!). Let vol(n, ∆) be the maximum
volume needed for representing any graph with n vertices and vertex degree at most ∆. We
know that vol(n, 3) = O(n3). The proof was quite tricky, and it seemed to depend a lot on
the fact that triangles behave much more nicely than polygons of larger degree. So what is
vol(n, 4)? What about lower bounds for vol(n, ∆)?

We are also interested in how restrictions on other measures of the graph impact the
volume required for its contact representation. In particular, limiting the rectilinear or book
thickness of the graph, its k-planarity, or its clique number seem to have the potential to
impact this volume.
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(a) the complete bipartite graph K8,8. (b) the square of the 6-cycle, C2
6 .

Figure 26 Examples of contact representations of graphs using polygons in R3.

Figure 27 Diagonal rectangulation (left) and the corresponding pair of binary trees (right).

5.2 Diameter of rectangulation flip graph
Torsten Mütze (University of Warwick, UK, torsten.mutze@warwick.ac.uk)

License Creative Commons BY 4.0 International license
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A diagonal rectangulation is a partition of the unit square into finitely many interior-disjoint
rectangles, such that no four rectangles meet in a point, and every rectangle intersects the
SE-NW-diagonal, drawn dashed in Figure 27. The number of diagonal rectangulations with n

rectangles is given by the Baxter numbers, and they are in bijection to {2413, 3142}-avoiding
permutations, and to pairs of binary trees rooted in the NE and SW corners [2].

We equip the set of all diagonal rectangulations with n rectangles with a flip operation
that either reverses the orientation of two rectangles whose union is a rectangle, or that
rotates one of the arms of a T-join by 90◦, which creates a flip graph Gn; see Figure 28. In
this figure, the first type of flips induces the red edges, and the second type of flips induces
the blue edges. These flips on rectangulations correspond to rotations in the aforementioned
binary trees.

22062

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


62 22062 – Computation and Reconfiguration in Low-Dimensional Topological Spaces

Figure 28 Flip graph Gn of diagonal rectangulations with n = 4 rectangles.

The graph Gn is known to be the cover graph of a lattice, and the skeleton of a polytope [3],
very much analogous to the Tamari lattice and the associahedron for triangulations. In this
project we are interested in the diameter of Gn, analogous to the famous diameter question
for the associahedron [4].

Question: What is the diameter of Gn?

This problem was mentioned by Jean Cardinal at SoCG 2018, and so far only relatively
little is known. Ackerman et al. [1] proved an upper bound of 11n.
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Figure 29 Gray code for all 14 triangulations of the 6-gon.

2 1
1

2

21

2

1

2

Figure 30 Number of appearances of each edge along the Gray code from Figure 29.

5.3 Balanced triangulation Gray codes
Torsten Mütze (University of Warwick, UK, torsten.mutze@warwick.ac.uk)
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We consider all triangulations of a convex n-gon. Two of them differ in a flip if they agree
in all but 2 triangles. The corresponding flip graph, which has as nodes all triangulations,
with edges connecting triangulations that differ in a flip, is the famous associahedron. It
is well-known [3, 4] that for any n ≥ 3, the associahedron has a Hamilton cycle. In other
words, there is a Gray code for triangulations, i.e., we can list them cyclically so that any
two consecutive triangulations differ in a flip; see Figure 29.

In a recent paper [2], we consider cycles in the associahedron that are balanced, i.e., if we
count the number of times that each of the

(
n
2
)

− n possible inner edges of the triangulation
appears along the cycle, then these counts differ by at most ±1; see Figure 30. Clearly, if an
edge appears k times along the cycle, it also has to disappear k times.

Question: Is there a balanced Gray code for triangulations for every n ≥ 3?

This problem is analogous to the problem of constructing balanced Gray codes for all
2n binary strings of length n, where one bit is flipped in each step, and each of the n bits
should be flipped the same number of times (up to ±1) [1].
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Figure 31 The braid words σ1σ−1
2 σ3σ−1

1 σ−1
3 and σ−1

2 σ−1
1 σ2 are isotopic.

[2, 4][1, 2][2, 3]
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Figure 32 The braid word σ1σ−1
2 σ3σ−1

1 σ−1
3 matches the pattern [2, 4][1, 2][2, 3] because the

isotopic braid word σ−1
2 σ−1

1 σ2 matches it directly.

5.4 Pattern-Matching on Braids
Tim Ophelders (Utrecht University & TU Eindhoven, The Netherlands, t.a.e.ophelders@uu.nl)
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The braid group on n strands has generators σ1, . . . , σn−1 and the following relations.
σiσj = σjσi for all i + 1 < j.
σiσi+1σi = σi+1σiσi+1.

Let Σi,j := {σi, . . . , σj−1} ∪ {σ−1
i , . . . , σ−1

j−1} and Σn := Σ1,n. A braid word on n strands is a
sequence of elements of Σn. We say that two braid words are isotopic if the corresponding
elements of the braid group are equal. See Figure 31 for an example and a geometric
interpretation of the braid group.

Let In := {[i, j] | i, j ∈ {1, . . . , n}} be the set of intervals with integer endpoints between
1 and n. A pattern on n strands is a sequence of elements of Σn ⊔ In.

A braid word directly matches a pattern p if it can be obtained from p by substituting
each element [i, j] by some sequence of elements of Σi,j (different occurrences of [i, j] may be
substituted by different such sequences). A braid word matches a pattern p if it is isotopic
to a braid word that directly matches p, see Figure 32.

Question 1. Given a braid b and a pattern p, is testing whether b matches p decidable?

Call a pattern pure if all of its elements are drawn from In, i.e. none are drawn from Σn.

Subquestion 1.1. Given a braid b and a pure pattern p, is testing whether b matches p

decidable?
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